October 2006 Rev 4 1/31
31
Order code
Part number Package Marking Packing
STLD20D-C8 SOT23-8L L2D Tape and reel
STLD20D-DEF QFN 3x3 8L L2D Tape and reel
STLD20D
White LED power supply
General features
Typical guaranteed efficiency: 80%
Drives up to 4 LEDs in series from a 2.8V up to
4.2V supply voltage
Constant current regulation over the whole
operating voltage range
PWM control mode
Integrated load disconnect switch that opens
the LEDs path in shutdown mode
Integrated soft start peak inductor current
Programmable peak inductor current
(STLD20D-C8 only)
Shutdown pin allows digital dimming control up
to 10kHz
Over voltage and over temperature protection
with automatic restart
Low shutdown current (< 1µA)
Small external inductor (10µH)
Tiny external ceramic capacitor (1µF)
Application
White Led supply for LCD backlight
Mobile phone
PDA and organizers, MP3 players, Toys
Description
The STLD20D is a constant switching frequency
boost regulator mainly dedicated to supply up to 4
white LEDs connected in series. A constant LED
current is achieved by sensing the LED current
through a sensing resistor RLED (see
Figure 3.
).
The device also includes a supply voltage
rejection circuit that prevents from any possible
flickering effect on the display that might happen
during input supply voltage variation. An
integrated Load Disconnect Switch open the LED
path to eliminate the current consumption in
shutdown mode. The maximum peak inductor
current can be programmed (STLD20D-C8 only).
SOT23-8LQFN 3x3 8L
www.st.com
Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s)
Obsolete Product(s) - Obsolete Product(s)
Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s)
Contents STLD20D
2/31
Contents
1 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3 Maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
5 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.1 Boost converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.2 Peak inductor current limitation and soft start function . . . . . . . . . . . . . . . . 9
5.3 Peak inductor current programmability (STLD20D-C8 only) . . . . . . . . . . . 9
5.4 Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.5 Brightness control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.6 Over temperature protection (OTP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.7 Over voltage protection (OVP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.8 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6 Typical performance characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
7 Components selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
7.1 L, Boost inductor selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
7.1.1 Calculation of the inductor value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
7.1.2 Calculation of the saturation current I(sat) . . . . . . . . . . . . . . . . . . . . . . . 15
7.1.3 Choice of the RSET resistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
7.1.4 Reference selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
7.2 CIN and COUT capacitors selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.3 1.3. D, Boost diode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.3.1 Electrical characteristic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7.4 RLED feedback resistance selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7.5 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
8 PWM dimming control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Obsolete Product(s) - Obsolete Product(s)
Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s)
STLD20D Contents
3/31
9 Analog dimming control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
9.1 Minimum dimming current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
9.2 Rd1 Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
9.3 Rdim calculation for dimming mode control . . . . . . . . . . . . . . . . . . . . . . . 22
10 Layout recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
11 Evaluation board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
12 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
13 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Obsolete Product(s) - Obsolete Product(s)
Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s)
Pin description STLD20D
4/31
1 Pin description
Figure 1. Pin configuration (top view)
SW
V
OUT
LDS
FBFB
GND
V
IN
SHDN
R
SET
12345678
GND V
IN SHDN RSET FB LDS VOUT SW
GND
EXPOSED PAD
SW
VIN VOUT
SHDN LDS
N/C FB
12345678
GND VIN SHDN N/C FB LDS VOUT SW
Obsolete Product(s) - Obsolete Product(s)
Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s)
STLD20D Block diagram
5/31
2 Block diagram
Figure 2. Block diagram
GND
SHDN
FB
VIN
LDS
VOUT
RSET (*)
OSCILLATOR
OTP
OVP
RAMP
OSCILLATOR
COMPENSATION
PWN
COMP.
S
Q
R
+
+
+
-
-
-
POWER
FAULT
VIN
ENABLE
DRAIN
CURRENT
REFERENCE
LOAD DISCONNECT
LED CURRENT
REFERENCE
SHDN
VIN
SW
LDS
SW
(*) STLD20D-C8 only
VIN
Obsolete Product(s) - Obsolete Product(s)
Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s)
Block diagram STLD20D
6/31
Note: The external components proposal should be considered as a design reference guide.The
performances mentioned in the electrical characteristics table are not guaranteed for all the
possible electrical parameters of the components included in this list. On the other hand the
operation of STLD20D is not limited with the use of components included in this list.
Figure 3. Basic connection
Table 1. External components proposal
Symbol Parameter Test conditions
Value
Unit
Min. Typ. Max.
RLED LED current resistance 15
CIN Input filtering capacitor Ceramic type 2.2 µF
COUT Output capacitance 1
L Boost inductor (height < 2mm)
Inductance 10 µH
Resistance at 500kHz 1
ISAT (RSET = 100k) 300 mA
DBoost diode
(STMicroelectronics STPS1L40M type)
VRRM 40 Vdc
IF (peak forward current) 1 A
VF @ IF = 1A Tj = 25°C 0.40 0.46 V
Obsolete Product(s) - Obsolete Product(s)
Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s)
STLD20D Maximum ratings
7/31
3 Maximum ratings
Table 2. Absolute maximum ratings
Symbol Parameter Test conditions
Value
Unit
Min. Typ. Max.
VIN Supply voltage range 2.5 5 V
VESD ESD ratings HBM MIL STD 883C 2 kV
TOP Operating temperature - 40 + 85 °C
Tstg Storage temperature - 65 150 °C
BVDS Breakdown voltage at pin SW and TSS and VOUT 20 V
SHDN Maximum voltage applied on SHDN pin VIN V
Table 3. Thermal data
Symbol Parameter
Value
Unit
Min. Typ. Max.
RthJA Mounted on epoxy board without
copper heatsink
SOT23-8L 300 °C/W
QFN 350
Obsolete Product(s) - Obsolete Product(s)
Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s)
Electrical characteristics STLD20D
8/31
4 Electrical characteristics
Table 4. Electrical characteristics (VIN = 2.8 to 4.2V and TJ = 25°C)
Symbol Parameter Test conditions
Value
Unit
Min. Typ. Max.
VIN Operating Input voltage range 2.8 4.2 V
ILED Average regulated current ILED = 20mA RLED = 1519 20 21 mA
ISD Stand-by current SHDN = low VIN = 4.2V 1 µA
IQQuiescent current consumption SHDN = high VIN = 4.2V 0.43 0.6 mA
SW Boost switch
RDSON
SOT23-8L TJ = 25°C
ISW = 250mA
VIN = 2.8V 0.48
VIN = 4.2V 0.38
QFN TJ = 25°C
ISW = 250mA
VIN = 2.8V 0.57
VIN = 4.2V 0.42
LDS Load Disconnect
Switch RDSON
SOT23-8L TJ = 25°C
ILDS = 20mA
VIN = 2.8V 5.0
VIN = 4.2V 4.2
QFN TJ = 25°C
ILDS = 20mA
VIN = 2.8V 5.1
VIN = 4.2V 4.3
FB Feedback voltage 0.285 0.302 0.315 V
Line Variation of the LED current versus the input voltage:
RLED = 150.9 mA/V
Eff Efficiency with 4 LEDS, VOUT = 16V VIN = 2.8V 80 %
VIN = 4.2V 85
fSW Switching frequency 400 500 600 kHz
DCMIN Minimum duty cycle 20 %
ILIM Peak current boost switch (1) L = 10µH
RSET = GND (STLD20D-C8) 640 mA
OVP Overvoltage protection 17.5 18.5 20 VDC
HystOV Overvoltage hysteresis 0.7 VDC
OTP Over temperature protection 110 °C
HystOT Over temperature protection hysteresis 5 °C
SHDN Shutdown signal logic Disable Low VIL 0.3 V
Enable high VIH 1.2
1. Guaranteed by design.
Obsolete Product(s) - Obsolete Product(s)
Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s)
STLD20D Functional description
9/31
5 Functional description
5.1 Boost converter
The STLD20D is a PWM mode control boost converter operating at 500kHz.
An automatic compensation of the oscillation ramp allows rejection of the battery voltage
transient. The LED current regulation (see
Figure 3.
) is done by sensing the LED current
through the resistance RLED. The voltage across RLED is used by the feedback loop of the
controller (FB pin).
5.2 Peak inductor current limitation and soft start function
An integrated current sensor limits the switching current at 640 mA maximum.
Should the peak drain current exceed 640mA (if RSET = 0 for STLD20D-C8), the flip flop will
turn off the switch SW. During start up, this peak drain current limitation acts like a soft start
function.
5.3 Peak inductor current programmability (STLD20D-C8 only)
The converter peak current must be always below the inductor saturation current. For
flexibility reasons, the maximum peak inductor current can be programmed by connecting a
resistor at the pin RSET
.
The
Figure 12.
gives the value of the resistance RSET versus the peak inductor current limit
ILMAX.
5.4 Shutdown
The SHDN pin is a low logic input signal and allows turning off the controller without cutting
the input voltage from the boost regulator circuit.
An integrated Load Disconnect Switch LDS disconnects the LEDs branch in shutdown
mode.This arrangement allows eliminating the DC current path that normally exists with
traditional boost regulator in shutdown mode.
5.5 Brightness control
The brightness of the LED is adjusted by pulsing the shutdown pin with a PWM signal as
high as 10kHz.
By using such a PWM signal the controller is alternatively ON and OFF and the LED current
changes from full current to zero.
The duty cycle allows regulating the average LED current. This scheme ensures that when
the LEDs are ON, they are driven at the full current without risk of color change.
Obsolete Product(s) - Obsolete Product(s)
Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s)
Functional description STLD20D
10/31
5.6 Over temperature protection (OTP)
An integrated temperature sensor senses the temperature of the junction of the controller.
As soon as this temperature exceeds 110°C min fixed internally, the controller is
automatically turned OFF. When the temperature is reduced of 5°C the operation of the
device automatically recovers.
5.7 Over voltage protection (OVP)
In case of failure and if the LED branch is cut, then there is no signal at the feedback pin FB
(
Figure 3.
), the PWM controller will then switches with a maximum duty cycle. This will
generate a voltage at the pin SW and VOUT that can exceed the maximum rating of the
device.
The overvoltage protection block senses the output voltage at the pin VOUT (
Figure 3.
). If the
voltage exceeds 18.5VDC typical the controller is automatically turned OFF.
When the voltage is reduced of 0.7V, the operation of the device automatically recovers.
5.8 Efficiency
(
Figure 4.
&
Figure 9.
)
The efficiency takes into account these following losses:
RLED ohmic losses
Boost switch SW losses
Load Disconnect Switch LDS
Boost inductor losses
Boost diode losses
Obsolete Product(s) - Obsolete Product(s)
Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s)
STLD20D Typical performance characteristics
11/31
6 Typical performance characteristics
Figure 4. 4 LEDs efficiency measurement Figure 5. LED current vs input voltage
Figure 6. Feedback voltage Figure 7. Boost switch resistance (STLD20D-
C8)
Figure 8. Boost switch resistance (STLD20D-
DEF)
Figure 9. Efficiency vs input voltage
(ILED=20mA; TA=25°C)
70.0
80.0
90.0
2.5 3.0 3.5 4.0 4.5
LQH32CN100K33
LPO04815-103
CRDH2D14-100
Shielded TDK
VLF3010AT-100MR49
V (V)
IN
Efficiency (%)
I = 20mA,
LED n.V = 16V, DC = 100%
LED
T = 25°C
a
V (V)
IN
I (mA)
LED
19.00
19.20
19.40
19.60
19.80
20.00
20.20
20.40
20.60
20.80
21.00
2.5 3 3.5 4 4.5 5
T = 25°C
a
290.0
295.0
300.0
305.0
310.0
2.5 3.0 3.5 4.0 4.5
T = 85°C
a
T = 25°C
a
T = -40°C
a
V (V)
IN
V (mV)
FB
0.2
0.3
0.4
0.5
0.6
0.7
0.8
2.5 3.0 3.5 4.0 4.5
T = 85°C
a
T = 25°C
a
T = -40°C
a
V (V)
IN
RDSon( )
0.2
0.3
0.4
0.5
0.6
0.7
0.8
2.5 3.0 3.5 4.0 4.5
T = 85°C
a
T = 25°C
a
T = -40°C
a
V (V)
IN
RDSon( )
78
79
80
81
82
83
84
85
86
87
88
2.5 3 3.5 4 4.5 5
Input voltage (V )
DC
Efficiency (%)
Obsolete Product(s) - Obsolete Product(s)
Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s)
Typical performance characteristics STLD20D
12/31
Figure 10. Load disconnect switch resistance Figure 11. Quiescent Current consumption
Figure 12. Max peak inductor current IL versus
L and RSET
Figure 13. Max peak inductor current IL versus
RSET
Figure 14. ILED versus duty cycle Figure 15. Typical waveform
2.0
3.0
4.0
5.0
6.0
7.0
2.5 3.0 3.5 4.0 4.5
T = 85°C
a
T = 25°C
a
T = -40°C
a
V (V)
IN
RDSon( )
200.0
250.0
300.0
350.0
400.0
450.0
500.0
2.5 3.0 3.5 4.0 4.5
T = 85°C
a
T = 25°C
a
T = -40°C
a
V(V)
IN
I (µA)
Q
200.0
250.0
300.0
350.0
400.0
450.0
500.0
550.0
600.0
4.0 8.0 12.0 16.0 20.0 24.0
RSET = GND
RSET = 100K
L(µH)
I (mA)
LIM
300
200
250
350
400
450
500
550
600
30 40 50 60 70 80 90 100
R(k)
SET
I (mA)
LIM
I = f(R )
(L = 10µH)
LIM SET
I = 450 mA
R
LIM
SET = 56 k
0
2
4
6
8
10
12
14
16
18
20
0 102030405060708090100
Theoretical
Real Values 300Hz
Real Values 10kHz
Duty(%)
I (mA)
LED
I = F(Duty), T = 25°C
LED a
VOUT
VSW
ILED
IL
Obsolete Product(s) - Obsolete Product(s)
Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s)
STLD20D Typical performance characteristics
13/31
Figure 16. Supply voltage rejection Figure 17. Overvoltage protection
V
IN
V
SW
I
LED
V
OUT
I
L
Obsolete Product(s) - Obsolete Product(s)
Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s)
Components selection STLD20D
14/31
7 Components selection
7.1 L, Boost inductor selection
To get a good trade-off thickness/efficiency, an attention must be given on the inductor
choice.
The inductance value must be selected to remain in the discontinuous conduction mode.
Its saturation current (Isat) must be equal or higher than the programmed current (ILIM).
An attention must be taken on the dynamic inductor parameters. Actually, some power
losses can occur in the boost inductor when it works at several hundred KHz and can
reduce the efficiency.
7.1.1 Calculation of the inductor value
The inductor must be dimensioned so that the STLD20D stays running in discontinuous
conduction mode operation in the worst operation condition (VIN = VIN_min= 2.8V). The limit
between continuous and discontinuous mode is called critical mode and characterized by an
uninterrupted current through the inductor (see figure 18).
The formula [1] gives the maximum typical value of the inductor for a discontinuous mode
operation in the worst case condition (critical mode). Figure 19 shows the typical L value
versus the voltage across the LED branch N.VLED. Note that this curve includes the
STLD20D and inductance dispersions (20%).
N.VLED = 4x4V = 16V and ILOAD = 20mA
Figure 18. 3 different conduction modes
I
L
Continuous
Discontinuous
Critical
t
Ltyp
ηV
2
in min()
NV
LED Vin min()
VFB ILED RLDS
++()
2.4 ILED NV
LED Fmax NV
LED ILED RLDS
+()⋅⋅
-------------------------------------------------------------------------------------------------------------------------------------------------------------- 1[]
Obsolete Product(s) - Obsolete Product(s)
Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s)
STLD20D Components selection
15/31
Where:
η is the efficiency (80%)
N is the number of the white LEDs in series
VLED is the forward voltage of the LED for the ILED current (VLED = 4V in our example)
VIN(min) is the minimum input voltage (2.8V)
VFB is the error amplifier reference (0.3V)
RLDS is the internal resistance of the Load Disconnect Switch power MosFET (6)
Fmax is the maximum frequency of the STLD20D (600kHz)
ILED_MAX is the current through the LED
For example, the case with 4 white LEDs can be considered in order to evaluate L value in
the worst case conduction.
From figure 19, typical inductance must be lower than 11µH. By minimizing the inductance
to ensure the discontinuous mode operation, the standard coil value is equal to 10µH. Then:
L=10µH
7.1.2 Calculation of the saturation current I(sat)
The maximum peak current (Ip(max)) during steady state can be estimated by the formula [2]:
Where:
Ltyp is the typical inductance value
Fmin is the minimum frequency due to the STLD20D spread-off (400kHz)
Figure 19. Typical inductance value versus the white LED voltage for three IOUT
Ltyp=f(nV )
LED
7.0E-06
9.0E-06
1.1E-05
1.3E-05
1.5E-05
1.7E-05
1.9E-05
2.1E-05
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
15mA
20mA
25mA
11µH
N.V (V)
LED
L typ (H)
Ipmax()
2I
LED NV
LED NV
LED VIN min()
VFB ILED RLDS
++()⋅⋅
ηFmin 0.8 Ltyp NV
LED VFB ILED RLDS
++()⋅⋅
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 2[]=
Obsolete Product(s) - Obsolete Product(s)
Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s)
Components selection STLD20D
16/31
Figure 20 shows the maximum peak current Ip(max) through the coil for L=10µH versus the
voltage across the LED branch, N.VLED and the LED current ILED for VIN > 2.8V. As N.VLED
= 16V and ILED = 20mA, then Ip(max) = 0.45A. The curve below ends when the converter
reaches the critical mode operation.
Therefore, the saturation current (Isat) of the inductor must be higher than 0.45A. To
conclude:
7.1.3 Choice of the RSET resistor
The resistor RSET fixes the maximum peak current flowing through the inductor whatever the
operating conditions. Thus, current saturation (Isat) is never reached. If the height constraint
is important, this function allows using low profile inductor with a small saturation current.
The
Figure 12.
on page 12 gives the corresponding typical value of the external resistor
RSET versus the ILIM value. This curve is slightly dependent of the temperature and the input
voltage.
To prevent the coil saturation RSET must be equal to 56k, see
Figure 12.
Thus:
7.1.4 Reference selection
The table below gives some coil references suitable for the STLD20D versus L, DCR, Isat
value and sizing requirements.
Figure 20. Maximum peak current (Ip(max)) versus the white LEDs voltages for 3 outputs current
- VIN > 2.8V
10µH
0.2
0.25
0.3
0.35
0.4
0.45
0.5
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
15mA
20mA
25mA
N.V (V)
LED
I (max) (A)
P
Isat Ipmax()
Isat 0.4A
Isat ILIM Ipmax()
≥≥
Obsolete Product(s) - Obsolete Product(s)
Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s)
STLD20D Components selection
17/31
7.2 CIN and COUT capacitors selection
The capacitance values and its intrinsic resistance (ESR) must be selected in order to
reduce the output ripple.
The ceramic capacitor technology offers the best compromise between the space and the
performance (low ESR, value, voltage rating). Nevertheless, their values changes with the
time as well as with temperature, DC bias voltage and switching frequency. Thus it might be
necessary to use higher capacitor value if low ripple is an absolute need.
7.3 1.3. D, Boost diode selection
The diode selection is based upon two major criteria:
Low losses to get the best converter efficiency
Mechanical size
7.3.1 Electrical characteristic
VRRM (Repetitive peak reverse voltage) is the first parameter to consider in the selection of
the boost diode. Its value must be always higher than the reverse voltage (VR) occurring
during the steady state. Note that, some transient voltages occurs during the commutation
period due to the leakage inductance of the PCB. Generally, a power diode with a maximum
reverse voltage equal or just higher than 20V suits perfectly. Therefore a Schottky diode
technology can be used.
Schottky diode has a low forward voltage, nevertheless they have an additional reverse
current which provides additional losses at high ambient temperature.
Table 5. Reference selection
Name Ref Height (mm) L typ (µH) DCR ()I
SAT (A)
Murata
LQH32CN4R7M33 2 4.7 0.15 0.65
LQH32CN100K33 2 10 0.3 0.45
LQH32CN4R7M53 1.55 4.7 0.15 0.65
LQH32CN100K53 1.55 10 0.3 0.45
Coilcraft LP04815-472MXC 1.5 4.7 0.15 0.77
LP04815-103MXC 1.5 10 0.23 0.55
Wurth Elektronik
(WE)
744031100 1.65 10 0.205 0.74
744031150 1.65 15 0.285 0.62
744042100 1.8 10 0.15 1.3
Sumida
CDRH2014-100 1.855 10 0.294 0.7
CLS4D14 1.5 6.8 0.13 0.8
CLS4D14 1.5 10 0.18 0.65
TDK VLF3010AT 100HR49
shielded 10 10 0.67 0.49
Obsolete Product(s) - Obsolete Product(s)
Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s)
Components selection STLD20D
18/31
In fact, in boost backlighting converter, the conduction losses (Pcond) lead by the forward
characteristics can be negligible compared to the losses induced by the reverse current
(Prev), especially at high temperature.
7.4 RLED feedback resistance selection
The average output current is regulated by sensing a low external ohmic sensing resistor
RLED. Thus, a constant current value is fixed for each LED whatever the ambient
temperature conditions. RLED is given by:
7.5 Efficiency
Efficiency is a significant parameter for the application. The higher the efficiency, the longer
the life time of the battery. The efficiency is given by:
.
RLED
V
FB
ILED
----------- 0.3V
20mA
----------------15 7[]===
Efficiency
P
output
Pinput
-------------------
NV
LED
I
LED
VIN Iinput
-------------------------------------------- 8[]==
Obsolete Product(s) - Obsolete Product(s)
Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s)
STLD20D PWM dimming control
19/31
8 PWM dimming control
By applying a PWM signal on the shutdown pin SHDN, the average current and the
brightness of the LED can be adjusted.
Figure 21.
shows ILED current and the other typical
waveform during this dimming control mode.
Note that the Load Disconnect Switch LDS turns ON/OFF at the same frequency and with
the same duty cycle as the PWM signal. Thus, the LED current is a perfect square wave
phased with the dimming signal. This leads to a good correlation between the real average
current of the LED and the theoretical current given by:
Where:
ILED: is the nominal current programmed by the RLED resistance
DC: is the duty cycle of the dimming signal.
Figure 14.
shows that the correlation between the real average current and the theoretical
value is given for a minimum duty cycle of 5% when the dimming frequency is 300Hz and
20% for a 10kHz dimming signal.
Figure 21. Typical waveform when the PWM dimming is used at 300Hz
δ= 0.38
Vshutdown
ILED
VOUT
IL
ILIM Ireg
VOUT
ILED
Vshutdown
ILED TheoDC ILED
×=
Obsolete Product(s) - Obsolete Product(s)
Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s)
Analog dimming control STLD20D
20/31
9 Analog dimming control
Some application are sensitive to low frequency dimming signal; in this case an analog
dimming control technic with a DC voltage Vdim to control the brightness of the LED can be
used with the circuit shown
Figure 22.
The formula below gives the LED current versus the dimming voltage Vdim:
Where:
Vdim: Analog Dimming Voltage
Rdim, Rd1: Resistors of the dimming circuit (see figure 26)
9.1 Minimum dimming current
The PWM control of the STLD20D has a minimum duty cycle DCMIN that limits the dimming
current range. It exists a minimum dimming current ILEDC corresponding to the typical
DCMIN of the control loop.
This minimum dimming current depends on the maximum input voltage and the forward
voltage of the LED and can be estimated by:
ILED
V
FB
R
dim
R
d1
R
LED
++
()V
dim
R
LED
R
d1
+
()
Rdim RLED
-------------------------------------------------------------------------------------------------------------------------------------- 19[]=
Figure 22. Analogical dimming schematics
+
-
PWM
R1
C1
STLD20D
C2
R2 Rdim
ILED
Rd1
Vfd
Vref
Ve
Vfd
LDS
GND
RLED
Vdim
ILEDC
DCmin VIN max()
()
2
2L
typ Ftyp NV
LED
VFB VIN max()
+[]⋅⋅
-------------------------------------------------------------------------------------------------------------------------- 20[
]
Obsolete Product(s) - Obsolete Product(s)
Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s)
STLD20D Analog dimming control
21/31
Where:
VIN(max): is the maximum input voltage
DCMIN: is the typical minimum duty cycle of the STLD20D (18%)
Ltyp: is the typical vale of the inductance
Ftyp: is the typical switching frequency
Figure 23.
gives the ILED versus the LED branch voltage N.VLED. This curve is calculated
with:
Ltyp = 10µH, Ftyp = 500kHz, DCMIN = 18% and VIN(max) = 4.2VDC.
Higher the voltage across the branch LEDs, higher the range current control. After these
considerations, it is described here the basics rule to help the designer to choose the
external components such as Rd1, Rdim and RLED versus Vdim and brightness control
current ILED.
9.2 Rd1 Calculation
To avoid significant shifting of the cross over frequency and to keep enough high the
corrector network gain of the error amplifier, it is recommended to dimension the resistor
Rd1 below 10k (10% of R1).
Dimension RLED for full brightness operating mode
RLED is dimensioned to get the nominal current ILED for the full brightness of the LED.
It is recommended to fix Vdim = VFB during the full brightness operating mode so that the
LED current correspond to the programmed value ILED. Thus:
Figure 23. ILEDC current vs N.VLED corresponding at the DCMIN
0.000
0.002
0.004
0.006
0.008
0.010
0.012
0.014
91011121314151617181920
N.V (V)
LED
I (A)
LEDC
I = f (
LEDC
V)
LED
RLED
V
FB
ILED
----------- 21[]=
Obsolete Product(s) - Obsolete Product(s)
Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s)
Analog dimming control STLD20D
22/31
Where:
VFB is the feedback voltage
ILED is the LED current for full brightness
Note: If Vdim is equal to 0 the LED current can be higher the programmed value.
9.3 Rdim calculation for dimming mode control
Rdim and Rd1 are dimensioned to get a current in the dimming circuit much smaller than the
LED current. From the formula 19, Rdim can be calculated by:
Where:
Vdimmax is the maximum dimming voltage
ILEDmin is the expected minimum dimming current
Rdim
R
d1
R
LED
+
[]V
FB
V
dim max
[]
ILEDmin RLED VFB
------------------------------------------------------------------------------------------- 22[]=
Obsolete Product(s) - Obsolete Product(s)
Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s)
STLD20D Layout recommendation
23/31
10 Layout recommendation
The package connection of the STLD20D has been realized in order to facilitate the layout
of the PCB. The golden rule to obtain an optimized layout is to split the power and signal track
as shown on the
Figure 24.
It is necessary to place the input capacitor as closed as possible between pin1 and pin2 of
the STLD20D package. If the CIN capacitor is not closed to the device, high frequency noise
due to gate driver dI/dt flows through the copper track of the board and can generate some
line voltage drop due to the line inductance.
For the same reason, in order to eliminate high frequency current loop, the connection of the
diode (D) and the output capacitor (COUT) must be as close as possible to the internal power
MosFET (SW) (close to pin 8 and 1).
Concerning the signal path, we recommend to create the PCB GND signal from the pin 1
("A" point in the
Figure 24.
). Thus all signal references such as feedback and the voltage
across Rset are not disturbed by the power stage.
Figure 24. Layout suggested
A
GND
VIN
COUT 12
8
D
LSTLD20D
CIN
RSET
SHDN
RLED
Obsolete Product(s) - Obsolete Product(s)
Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s)
Evaluation board STLD20D
24/31
11 Evaluation board
Figure 25.
shows the top view of the evaluation board that show all the application features
of the STLD20D.
Figure 25. Evaluation board top view with its connections at the external equipment
Figure 26. Demo board layout top view
Obsolete Product(s) - Obsolete Product(s)
Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s)
STLD20D Package mechanical data
25/31
12 Package mechanical data
In order to meet environmental requirements, ST offers these devices in ECOPACK®
packages. These packages have a Lead-free second level interconnect. The category of
second level interconnect is marked on the package and on the inner box label, in
compliance with JEDEC Standard JESD97. The maximum ratings related to soldering
conditions are also marked on the inner box label. ECOPACK is an ST trademark.
ECOPACK specifications are available at: www.st.com
Obsolete Product(s) - Obsolete Product(s)
Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s)
Package mechanical data STLD20D
26/31
DIM. mm. inch
MIN. TYP MAX. MIN. TYP. MAX.
A 0.80 0.90 1.00 0.032 0.035 0.039
A1 0.03 0.05 0.001 0.002
A2 0.65 0.70 0.75 0.026 0.028 0.030
A3 0.15 0.20 0.25 0.006 0.008 0.010
b 0.29 0.31 0.39 0.011 0.012 0.015
b1 0.17 0.30 0.007 0.012
D 3.00 0.118
D2 1.92 2.02 2.12 0.076 0.080 0.084
E 3.00 0.118
E2 1.11 1.21 1.31 0.044 0.048 0.052
e 0.65 0.026
K 0.20 0.008
L 0.20 0.29 0.45 0.008 0.011 0.018
L1 0.16 0.24 0.40 0.006 0.009 0.016
L2 0.13 0.005
r 0.15 0.006
r1 0.15 0.006
QFN8 (3x3) MECHANICAL DATA
7517789
Obsolete Product(s) - Obsolete Product(s)
Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s)
STLD20D Package mechanical data
27/31
DIM.
mm. mils
MIN. TYP MAX. MIN. TYP. MAX.
A 0.90 1.45 35.4 57.1
A1 0.00 0.15 0.0 5.9
A2 0.90 1.30 35.4 51.2
b 0.22 0.38 8.6 14.9
C 0.09 0.20 3.5 7.8
D 2.80 3.00 110.2 118.1
E 2.60 3.00 102.3 118.1
E1 1.50 1.75 59.0 68.8
e0.65 25.6
e1 1.95 76.7
L 0.35 0.55 13.7 21.6
SOT23-8L MECHANICAL DATA
Obsolete Product(s) - Obsolete Product(s)
Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s)
Package mechanical data STLD20D
28/31
DIM.
mm. inch
MIN. TYP MAX. MIN. TYP. MAX.
A 330 12.992
C 12.8 13.2 0.504 0.519
D20.2 0.795
N60 2.362
T 18.4 0.724
Ao 3.3 0.130
Bo 3.3 0.130
Ko 1.1 0.043
Po 4 0.157
P 8 0.315
Tape & Reel QFNxx/DFNxx (3x3) MECHANICAL DATA
Obsolete Product(s) - Obsolete Product(s)
Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s)
STLD20D Package mechanical data
29/31
DIM.
mm. inch
MIN. TYP MAX. MIN. TYP. MAX.
A 180 7.086
C 12.8 13.0 13.2 0.504 0.512 0.519
D 20.2 0.795
N 60 2.362
T 14.4 0.567
Ao 3.13 3.23 3.33 0.123 0.127 0.131
Bo 3.07 3.17 3.27 0.120 0.124 0.128
Ko 1.27 1.37 1.47 0.050 0.054 0.0.58
Po 3.9 4.0 4.1 0.153 0.157 0.161
P 3.9 4.0 4.1 0.153 0.157 0.161
Tape & Reel SOT23-xL MECHANICAL DATA
Obsolete Product(s) - Obsolete Product(s)
Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s)
Revision history STLD20D
30/31
13 Revision history
Table 6. Revision history
Date Revision Changes
3-Aug-2004 1 Initial release.
12-Oct-2004 2
Table 4 on page 4 following parameters values updated:
. ILED (min), IQ (min), SW (QFN max), LDS (QFN max), ILIM, Hyst OT
. FB VAR symbol changed to Line and value changed from 0.7 to 0.9 mA/V
08-May-2006 3 Change figure 25, add figure 26 and new template.
23-Oct-2006 4 The SW, LDS and DCMIN values on table 4 have been updated, add note in
ILIM.
Obsolete Product(s) - Obsolete Product(s)
Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s)
STLD20D
31/31
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2006 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
Obsolete Product(s) - Obsolete Product(s)