Products and specifications discussed herein are subject to change by Micron without notice.
512MB (SR), 1GB (DR): (x64) 168-Pin SDRAM UDIMM
Features
PDF: 09005aef8088b2e3/Source: 09005aef8088077a Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
SD8_16C64_128x64AG. fm - Rev. C 6/05 EN 1©2002 Micron Technology, Inc. All rights reserved.
Synchronous DRAM Module
MT8LSDT6464A – 512MB
MT16LSDT12864A – 1GB
For the latest data sheet, refer to Micron’s Web site: www.micron.com/products/modules.
Features
PC100- and PC133-compliant
168-pin, dual in-line memory module (DIMM)
Utilizes 125 MHz and 133 MHz SDRAM
components
Unbuffered
512MB (64 Meg x 64), 1GB (128 Meg x 64)
Si n gle +3.3V po wer supply
Fully synchr onous; all signals registere d on positive
edge of system clock
Internal pipelined operation; column addres s can
be changed every clock cycle
Internal SDRAM banks for hiding row access/
precharge
Programmable burst lengths: 1, 2, 4, 8, or full page
Auto precharge, including concurrent auto
precharge, and auto refresh modes
64ms, 8,192 cycle auto refresh cycle
Self refresh mode
LVTTL-compatible inputs and outputs
Seri a l presence-detect (SP D)
Gold edge contacts
Table 1: Timing Parameters
Module
Marking Clock
Frequency
Access Time Setup
Time Hold
TimeCL = 2 CL = 3
-13E 133 MHz 5.4ns 1.5 0.8
-133 133 MHz 5.4ns 1.5 0.8
Figure 1: 168-Pin DIMM (MO–161)
Notes: 1. Contact Micron for product availability.
Options Marking
•Package
168-pin DIMM (standard) G
168-pin DIMM (lead-free) Y1
Memory Clock/CAS Latency
(133 MHz)/CL = 2 -13E
(133 MHz)/CL = 3 -133
•PCB
St andard 1.375in. (34.93mm) See note 1 on
page 2
Low-Profile 1.125in. (28.58mm) See note 1 on
page 2
Standard 1.375in. (34.925mm)
Low Profile 1.125in. (28.575mm)
Table 2: Address Table
Parameter 512MB 1GB
Refresh Count 8K 8K
Device Banks 4 (BA0, BA1) 4 (BA0, BA1)
Device Co nfiguration 512Mb (64 Meg x 8) 512Mb (64 Meg x 8)
Row Addressing 8K (A0–A12) 8K (A0–A12)
Column Addressing 2K (A0–A9, A11) 2K (A0–A9, A11)
Module Ranks 1 (S0#,S2#) 2 (S0#, S2#; S1#, S3#)
PDF: 09005aef8088b2e3/Source: 09005aef8088077a Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
SD8_16C64_128x64AG. fm - Rev. C 6/05 EN 2©2002 Micron Technology, Inc. All rights reserved.
512MB (SR), 1GB (DR): (x64) 168-Pin SDRAM UDIMM
Features
Notes: 1. The designators for component and PCB re vision are the last two characters of each part
number. Consult fac tory for current revis ion c odes. Example: MT8LSDT6464AG-133B1.
Table 3: Part Numbers
Part Numbers Module Density Configuration System
Bus Speed
MT8LSDT6464AG-13E_ 512MB 64 Meg x 64 133 MHz
MT8LSDT6464AY-13E_ 512MB 64 Meg x 64 133 MHz
MT8LSDT6464AG-133_ 512MB 64 Meg x 64 133 MHz
MT8LSDT6464AY-133_ 512MB 64 Meg x 64 133 MHz
MT16LSDT12864AG-13E_ 1GB 128 Meg x 64 133 MHz
MT16LSDT12864AY-13E_ 1GB 128 Meg x 64 133 MHz
MT16LSDT12864AG-133_ 1GB 128 Meg x 64 133 MHz
MT16LSDT12864AY-133_ 1GB 128 Meg x 64 133 MHz
PDF: 09005aef8088b2e3/Source: 09005aef8088077a Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
SD8_16C64_128x64AG. fm - Rev. C 6/05 EN 3©2002 Micron Technology, Inc. All rights reserved.
512MB (SR), 1GB (DR): (x64) 168-Pin SDRAM UDIMM
Pin Assignments and Descriptions
Pin Assignments and Descriptions
Figure 2: Pin Locations (168-Pin DIMM)
Table 4: Pin Assignment
168-Pin DIMM Front 168-Pin DIMM Back
Pin Symbol Pin Symbol Pin Symbol Pin Symbol Pin Symbol Pin Symbol Pin Symbol Pin Symbol
1V
SS 22 NC 43 VSS 64 VSS 85 VSS 106 NC 127 VSS 148 VSS
2DQ023 VSS 44 NC 65 DQ21 86 DQ32 107 VSS 128 CKE0 149 DQ53
3DQ124 NC 45 S2# 66 DQ22 87 DQ33 108 NC 129 S3# 150 DQ54
4DQ225 NC 46 DQMB2 67 DQ23 88 DQ34 109 NC 130 DQMB6 151 DQ55
5DQ326 VDD 47 DQMB3 68 VSS 89 DQ35 110 VDD 131 DQMB7 152 VSS
6VDD 27 WE# 48 NC 69 DQ24 90 VDD 111CAS#132 NC 153 DQ56
7DQ428 DQMB0 49 VDD 70 DQ25 91 DQ36 112 DQMB4 133 VDD 154 DQ57
8DQ529 DQMB1 50 NC 71 DQ26 92 DQ37 113 DQMB5 134 NC 155 DQ58
9DQ630 S0# 51 NC 72 DQ27 93 DQ38 114 S1# 135 NC 156 DQ59
10 DQ7 31 NC 52 NC 73 VDD 94 DQ39 115RAS#136 NC 157 VDD
11 DQ8 32 VSS 53 NC 74 DQ28 95 DQ40 116 VSS 137 NC 158 DQ60
12 VSS 33 A0 54 VSS 75 DQ29 96 VSS 117A1138VSS 159 DQ61
13 DQ9 34 A2 55 DQ16 76 DQ30 97 DQ41 118 A3 139 DQ48 160 DQ62
14 DQ10 35 A4 56 DQ17 77 DQ31 98 DQ42 119 A5 140 DQ49 161 DQ63
15 DQ11 36 A6 57 DQ18 78 VSS 99 DQ43 120 A7 141 DQ50 162 VSS
16 DQ12 37 A8 58 DQ19 79 CK2 100 DQ44 121 A9 142 DQ51 163 CK3
17 DQ13 38 A10 59 VDD 80 NC 101 DQ45 122 BA0 143 VDD 164 NC
18 VDD 39 BA1 60 DQ20 81 NC 102 VDD 123 A11 144 DQ52 165 SA0
19 DQ14 40 VDD 61 NC 82 SDA 103 DQ46 124 VDD 145 NC 166 SA1
20 DQ15 41 VDD 62 NC 83 SCL 104 DQ47 125 CK1 146 NC 167 SA2
21 NC 42 CK0 63 CKE1 84 VDD 105 NC 126 A12 147 NC 168 VDD
Front View
Back View (Populated only for 1GB module)
Indicates a V
DD
pin
Indicates a V
SS
pin
PIN 1 PIN 41 PIN 84
PIN 85
PIN125
PIN 168
U1 U2 U3 U4 U6 U7 U8 U9
U10
U11 U12 U13 U14 U16 U17 U18 U19
PDF: 09005aef8088b2e3/Source: 09005aef8088077a Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
SD8_16C64_128x64AG. fm - Rev. C 6/05 EN 4©2002 Micron Technology, Inc. All rights reserved.
512MB (SR), 1GB (DR): (x64) 168-Pin SDRAM UDIMM
Pin Assignments and Descriptions
Table 5: Pin Descriptions
Pin numbers may not correlate with symbols. Refer to Table 4 on page 3 for pin number and symbol
information.
Pin Numbers Symbol Type Description
27, 111, 115 RAS#, CAS#,
WE# Input C ommand inputs: RAS# , CAS#, and WE# (along with S#) define the
command being entered.
42, 79, 125, 163 CK0–CK3 Input Clock: CK is driven by the system clock. All SDRAM input signals are
sampled on the positive edge of CK. CK also increments the internal
burst counter and controls the output registers.
63, 128 CKE0, CKE1 Input Clock enable: CKE activates (HIGH) and deactivates (LOW) the CK
signal. Deactivating the clock provides PRECHARGE POWER-DOWN
and SELF REFRESH operation (all device banks idle) or CLOCK
SUSPEND OPERATION (burst access in progress). CKE is synchronous
except after the device enters power- down and self refresh modes,
where CKE becomes asynchronous until after exiting the same
mode. The inp ut buffers, including CK, are disabled during power-
down and self refresh modes, providing low standby power.
30, 45,114, 129 S0#–S3# Input Chip select: S# enables (registered LOW) and disables (registered
HIGH) the command decoder. A ll commands are masked when S# is
registered HIGH. S# is considered part of the command code.
28, 29, 46, 47, 112, 113,
130, 131 DQMB0–
DQMB7 Input Input/Outp ut mask: DQMB is an input mask signal for write accesses
and an output enable signal for read accesses. Input data is masked
when DQMB is sampled HIGH during a WRITE cycle. The output
buffers are placed in a High-Z state (two-clock latency) when DQMB
is sampled HIGH during a READ cycle.
39, 122 BA0, BA1 Input Bank address: BA0 and BA1 define to which device bank the
ACTIVE, READ, WRITE, or PRECHARGE command is being applied.
33–38, 117–121, 123, 126 A0–A12 Input Address inputs: Provide the row address for ACTIVE commands, and
the column address and auto precharge bit (A10 ) for READ/WRITE
commands, to select one location out of the memory array in the
respective device bank. A10 sampled during a PRECHARGE
command determines whether the PRECHARGE applies to one
device bank (A10 LOW, device bank selected by BA0, BA1) or all
device banks (A10 HIGH). The address inputs also provide the op-
code during a MODE REGISTER SET command.
83 SCL Input Serial clock for presence-detect: SCL is used to synchronize the
presence-detect data transfer to and from the module.
165–167 SA0–SA2 Input Presence-Detect address Inputs: These pins are used to configure the
presence-detect device.
2–5, 7–11, 13–17, 19–20,
55–58, 60, 65–67, 69–72,
74–77, 86–89, 91–95,
97–101, 103–104, 139–142,
144, 149–151,
153–156,158–161
DQ0–DQ63 Input/
Output Data I/O: Data bus.
82 SDA Input/
Output Serial presence-detect data: SDA is a bidirect ional pin used to
transfer addresses and data into and out of the presence-det ect
portion of the module.
6, 18, 26, 40, 41, 49, 59, 73,
84, 90, 102, 110, 124, 133,
143, 157, 168
VDD Supply Power supply: +3.3V ±0.3V.
1, 12, 23, 32, 43, 54, 64, 68,
78, 85, 96, 107, 116, 127,
138, 148,. 152, 162
VSS Supply Ground.
PDF: 09005aef8088b2e3/Source: 09005aef8088077a Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
SD8_16C64_128x64AG. fm - Rev. C 6/05 EN 5©2002 Micron Technology, Inc. All rights reserved.
512MB (SR), 1GB (DR): (x64) 168-Pin SDRAM UDIMM
Functional Block Diagrams
Functional Block Diagrams
All resistor values are 10Ω unless otherwise spec ifi e d.
Per industry standard, Micron modules use various component speed grades as refer-
enced in the modu le part numberi n g gui de at: www.micron.com/numberguide.
Standard modules use the following SDRAM devices: MT48LC64M8A2TG. Lead-free
modules use the following SDRAM devices: MT48LC64M8A2P.
Figure 3: Single Rank
21–22, 24–25, 31, 44, 48,
50–53, 61–62, 80, 81,
105–106, 108–109, 132,
134–137, 145–147, 164
NC Not connected: These pins are not connected on these modules.
Table 5: Pin Descriptions (continued)
Pin numbers may not correlate with symbols. Refer to Table 4 on page 3 for pin number and symbol
information.
Pin Numbers Symbol Type Description
DQM CS#
U8
A0
SA0
SPD
SDA
A1
SA1
A2
SA2
DQ56
DQ57
DQ58
DQ59
DQ60
DQ61
DQ62
DQ63
DQMB7
DQM CS#
U6
DQ48
DQ49
DQ50
DQ51
DQ52
DQ53
DQ54
DQ55
DQMB6
DQM CS#
U4
DQ40
DQ41
DQ42
DQ43
DQ44
DQ45
DQ46
DQ47
DQMB5
DQM CS#
U2
DQ32
DQ33
DQ34
DQ35
DQ36
DQ37
DQ38
DQ39
DQMB4
DQM CS#
U9
DQ24
DQ25
DQ26
DQ27
DQ28
DQ29
DQ30
DQ31
DQMB3
DQM CS#
U7
DQ16
DQ17
DQ18
DQ19
DQ20
DQ21
DQ22
DQ23
DQMB2
DQM CS#
U3
DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
DQMB1
DQM CS#
U1
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DQMB0
S2#
S0#
RAS#
CAS#
CKE0
WE#
RAS#: SDRAMs
CAS#: SDRAMs
CKE0: SDRAMs
WE#: SDRAMs
A0-A12: SDRAMs
BA0: SDRAMs
BA1: SDRAMs
A0-A12
BA0
BA1
VDD
VSS
SDRAMs
SDRAMs
10pF
CK1,
CK3
U1
U2
U3
U4
U5
CK0
U6
U7
U8
U9
CK2
3.3pF
SCL
WP U10
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
PDF: 09005aef8088b2e3/Source: 09005aef8088077a Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
SD8_16C64_128x64AG. fm - Rev. C 6/05 EN 6©2002 Micron Technology, Inc. All rights reserved.
512MB (SR), 1GB (DR): (x64) 168-Pin SDRAM UDIMM
Functional Block Diagrams
Figure 4: Dual Rank
DQM CS#
U8
DQ56
DQ57
DQ58
DQ59
DQ60
DQ61
DQ62
DQ63
DQMB7
DQM CS#
U6
DQ48
DQ49
DQ50
DQ51
DQ52
DQ53
DQ54
DQ55
DQMB6
DQM CS#
U4
DQ40
DQ41
DQ42
DQ43
DQ44
DQ45
DQ46
DQ47
DQMB5
DQM CS#
U2
DQ32
DQ33
DQ34
DQ35
DQ36
DQ37
DQ38
DQ39
DQMB4
DQM CS#
U9
DQ24
DQ25
DQ26
DQ27
DQ28
DQ29
DQ30
DQ31
DQMB3
DQM CS#
U7
DQ16
DQ17
DQ18
DQ19
DQ20
DQ21
DQ22
DQ23
DQMB2
DQM CS#
U3
DQ8
DQ9
DQ10
DQ11
DQ12
DQ13
DQ14
DQ15
DQMB1
DQM CS#
U1
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ0
DQ1
DQ2
DQ3
DQ4
DQ5
DQ6
DQ7
DQMB0
S2#
S0#
DQM CS#
U12
DQM CS#
U14
DQM CS#
U16
DQM CS#
U18
S1#
DQM CS#
U11
DQM CS#
U13
DQM CS#
U17
DQM CS#
U19
S3#
A0
SA0
SPD
SDA
A1
SA1
A2
SA2
CKE1
CKE0
CAS#
RAS#
WE#
CKE: SDRAMs U11-U19
CKE: SDRAMs U1-U9
CAS#: SDRAMs
RAS#: SDRAMs
WE#: SDRAMs
A0-A12: SDRAMs
BA0: SDRAMs
BA1: SDRAMs
A0-A12
BA0
BA1
V
DD
V
SS
SDRAMs
SDRAMs
V
DD
10K Ω
SCL
WP U10
U1
U2
U3
U4
U5
CK0
U6
U7
U8
U9
CK2
3.3pF
U11
U12
U13
U14
CK3
3.3pF
U15
U16
U17
U18
U19
CK1
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
PDF: 09005aef8088b2e3/Source: 09005aef8088077a Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
SD8_16C64_128x64AG. fm - Rev. C 6/05 EN 7©2002 Micron Technology, Inc. All rights reserved.
512MB (SR), 1GB (DR): (x64) 168-Pin SDRAM UDIMM
General Description
General Description
The MT8LSDT6464A and MT16LSDT12864A are high-speed CMOS, dynamic random-
access, 512MB and 1GB memory modules organized in a x64 configuration. These mod-
ules use internally configured quad-bank SDRAMs with a synchronous interface (all sig-
nals are registe red on the positive ed ge of the clock signals CK).
Read and write accesses to SDRAM modules are burst oriented; accesses start at a
selected location and continue for a pr ogramme d number of locations in a progr ammed
sequence. Accesses beg in with the registration of an ACTIVE command, which is then
followed by a READ or WRITE command. The address bits registered coincident with the
ACTIVE command are used to select the de vice bank and row to be accessed (BA0, BA1
select the device bank, A0–A11 select the device row). The address bits registered coinci-
dent with the READ or WRITE command are used to select the starting column location
for the burst access.
The modules provide for programmable READ or WRITE burst lengths of 1, 2, 4, or 8
locations, or the full page, with a burst terminate option. An AUTO PRECHARGE func-
tion may be enabled to provide a self-timed row precharge that is initiated at the end of
the burst seque nce.
SDRAM modules use an internal pipelined architecture to achieve high-speed opera-
tion. This architecture is compatible with the 2n rule of prefetch architectures, but it also
allows the column address to be changed on every clock cycle to achieve a high-speed,
fully random acce ss . P recharg ing one devi ce bank while acc essing one of the other three
device banks will hide the precharge cycles and provide seamless, high-speed, random-
access operation.
SDRAM modules are designed to operate in 3.3V, low-power memory systems. An auto
refresh mode is provided, along with a power-s aving, power-down mode . All inp uts a nd
outputs are LV TTL-compatible.
SDRAM modules offer substanti al adva nces in DRAM oper ating performance , inc luding
the ability to synchronously burst data at a high data rate with automatic column-
address generation, the ability to interleave between internal banks in order to hide pre-
charge time and the capability to randomly change column addresses on each clock
cycle during a burst access. For more information regarding SDRAM operation, refer to
the 512Mb SDRAM component data sheets.
Serial Presence-Detect Op eration
SDRAM modules incorpor ate serial pr esence-detec t (SPD). The SPD function is imple-
mented using a 2,048-bit EEPROM. This nonvolatile storage device contains 256 bytes.
The first 128 bytes can be programmed by Micron to identify the module type and vari-
ous SDRAM organizations and timing parameters. The remaining 128 bytes of storage
are available for use b y the customer. System READ/WRITE oper ations between the
master (system logic) and the slave EEPROM device (DIMM) occur via a standard I2C
bus using the DIMM’s SCL (clock) and SDA (data) signals, together with SA (2:0), which
pro vide eight unique DIMM/EEPR OM addresses . Write protect (WP) is tied to ground on
the module, permanently disabling hardware write protect.
Initialization SDRAMs must be powered up and initialized in a predefined manner. Operational pr o-
cedures other than those specified may result in undefined operation. Once power is
applied to VDD and VDDQ (simultaneously) and the clock is stable (stable clock is
defined as a signal cycling within timing constraints specified for the clock pin), the
SDRAM requires a 100µs delay prior to issuing any command other than a COMMAND
PDF: 09005aef8088b2e3/Source: 09005aef8088077a Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
SD8_16C64_128x64AG. fm - Rev. C 6/05 EN 8©2002 Micron Technology, Inc. All rights reserved.
512MB (SR), 1GB (DR): (x64) 168-Pin SDRAM UDIMM
Mode Register Definition
INHIBIT or NOP. St arting at some point during this 100µs period and continuing at least
through the end of this pe riod, C O MMAND INHIBIT or NOP commands should be
applied.
Once the 100µs delay has been satisfied wi th at least one COMMAND INHIBIT or NOP
command having been applied, a PRECHARGE command should be applied. All devic e
banks must then be pr echarged, thereby placing the device in the all banks idle state.
Once in the idle state, two AUTO refresh cycles must be perf ormed. After the AUTO
refresh cycles are complete, the SDRAM is ready for mode register programming.
Because the mode re gister will power up in an unknown state, it should be loaded prior
to applying any operational command.
Mode Register Definition
The mode register is used to define the specific mode of operation of the SDRAM. This
definition includes the selection of a burst length, a burst type, a CAS latency, an operat-
ing mode and a write burst mode, as shown in the Mode Register Definition Diagram.
The mode register is programmed via the LOAD MODE REGISTER command and will
retain the stored information until it is programmed again or the device loses power.
Mode r egister bits M0–M2 specify the burst length, M3 specifies the type of burst
(sequential or interleaved), M4–M6 specify the CAS latency, M7 and M8 specify the oper-
ating mode, M9 specifies the write burst mode, and M10 and M11 are r eserved for future
use.
The mode regi ster must be loaded when all device banks ar e idle, and the contro ller
must wait the specified time before initiating the subsequent operation. Violating either
of these requi rements will resul t in unspecified operation.
Burst Length Read and write accesses to the SDRAM are burst oriented, with the burst le ng th being
programmable, as shown in Mode Register Definition Diagram. The burst length deter-
mines the maximum number of column locations that can be accessed for a given READ
or WRITE command. Burst lengths of 1, 2, 4, or 8 locations are available for both the
sequential and the interleaved burst types, and a full-page burst is available for the
sequential type. The full-page burst is used in conjunction with the BURST TERMINATE
command to generate arbitrary burst lengths.
Reserved states should not be used, as unknown operation or incompatibility with
future versions may result.
When a READ or WRITE comm and is issu ed , a block of col u m n s eq ual to the bu rst
length is effectivel y selected. All accesses for that burst take place within this block,
meaning that the burst will wrap within the block if a boundary is reached, as sho wn in
Table 6 on page 10. The block is uniquely selected by A1A9 when BL = 2; by A2A9 when
BL = 4; and by A3–A9 when BL = 8. The remaining (least significant) address bit(s) is (ar e)
used to select the starting location within the block. Full-page bursts wrap within the
page if the boundary is reached, as shown in Table 6 on page 10.
Burst Type A ccesses within a gi ven burst may be pr ogrammed to be either sequenti al or interleav ed;
this is referred to as the burst type and is selected via bit M3.
The ordering of accesse s within a burst is determi ned by the burst leng th, the burst type
and the starting column address, as show n in Table 6 on page 10.
PDF: 09005aef8088b2e3/Source: 09005aef8088077a Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
SD8_16C64_128x64AG. fm - Rev. C 6/05 EN 9©2002 Micron Technology, Inc. All rights reserved.
512MB (SR), 1GB (DR): (x64) 168-Pin SDRAM UDIMM
Mode Register Definition
Figure 5: Mode Register Definition Diagram
Reserved
M2
0
0
0
0
1
1
1
1
M1
0
0
1
1
0
0
1
1
M0
0
1
0
1
0
1
0
1
M3 = 0
1
2
4
8
Reserved
Reserved
Reserved
Full Page
M3 = 1
1
2
4
8
Reserved
Reserved
Reserved
Reserved
Operating Mode
Standard Operation
All Other States Reserved
0
-
0
-
Defined
-
0
1
Burst Type
Sequential
Interleaved
CAS Latency
Reserved
Reserved
2
3
Reserved
Reserved
Reserved
Reserved
M6
0
0
0
0
1
1
1
1
M4
0
1
0
1
0
1
0
1
M5
0
0
1
1
0
0
1
1
Burst Length
Burst LengthCAS LatencyBT
A9 A7 A6A5 A4 A3
A8 A2 A1 A0
Mode Register (Mx)
Address Bus
976543
8210
M3
M6–M0
M8 M7
Op Mode
A10
A11
A12
10
11
12
WB
0
1
Write Burst Mode
Programmed Burst Length
Single Location Access
M9
Program
M12, M11, M10 = “0, 0, 0”
to ensure compatibility
with future devices.
PDF: 09005aef8088b2e3/Source: 09005aef8088077a Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
SD8_16C64_128x64AG. fm - Rev. C 6/05 EN 10 ©2002 Micron Technology, Inc. All rights reserved.
512MB (SR), 1GB (DR): (x64) 168-Pin SDRAM UDIMM
Mode Register Definition
Notes: 1. For full-page accesses: y = 2,048.
2. For BL = 2, A1–A9, A11 select the block of two burst ; A0 sel ect s th e sta rti ng co lu mn wi th in
the block.
3. For BL = 4, A2–A9, A11 select the block of four burst; A0–A1 select the starting column
within the block.
4. For BL = 8, A3–A9, A11 select the block of eight burst; A0–A2 select the starting column
within the block.
5. For a full-page burst, the full row is selected and A0–A9, A11 select the starting column.
6. Whenever a boundary of the block is reached within a given sequence above, the follow-
ing access wraps within the block.
7. For BL = 1, A0–A9, A11 select the unique column to be accessed, and mode register bit M3
is ignored.
Table 6: Burst Definition Table
Burst
Length Starting Column
Address
Order of Accesses Within a Burst
Type = Sequential Type = Interle aved
2A0
00-1 0-1
11-0 1-0
4
A1 A0
0 0 0-1-2-3 0-1-2-3
0 1 1-2-3-0 1-0-3-2
1 0 2-3-0-1 2-3-0-1
1 1 3-0-1-2 3-2-1-0
8
A2 A1 A0
0 0 0 0-1-2-3-4-5-6-7 0-1-2-3-4-5-6-7
0 0 1 1-2-3-4-5-6-7-0 1-0-3-2-5-4-7-6
0 1 0 2-3-4-5-6-7-0-1 2-3-0-1-6-7-4-5
0 1 1 3-4-5-6-7-0-1-2 3-2-1-0-7-6-5-4
1 0 0 4-5-6-7-0-1-2-3 4-5-6-7-0-1-2-3
1 0 1 5-6-7-0-1-2-3-4 5-4-7-6-1-0-3-2
1 1 0 6-7-0-1-2-3-4-5 6-7-4-5-2-3-0-1
1 1 1 7-0-1-2-3-4-5-6 7-6-5-4-3-2-1-0
Full Page
(y) n = A0–A9, A11
(location 0-y) Cn, Cn+1, Cn+2 Cn+3,
Cn+4...
...Cn-1, Cn... Not Supported
PDF: 09005aef8088b2e3/Source: 09005aef8088077a Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
SD8_16C64_128x64AG. fm - Rev. C 6/05 EN 11 ©2002 Micron Technology, Inc. All rights reserved.
512MB (SR), 1GB (DR): (x64) 168-Pin SDRAM UDIMM
Mode Register Definition
Figure 6: CAS Latency Diagram
Burst Type A ccesses within a gi ven burst may be pr ogrammed to be either sequenti al or interleav ed;
this is referred to as the burst type and is selected via bit M3.
The ordering of the accesses within a burst is determined by the burst length, the burst
type, and the starting column address, as shown in Table 6 on page 10.
CAS Latency The CAS latency is the delay, in clock cycles, between the registration of a READ com-
mand and the availability of the first piece of output data. The l atency can be set to two
or three clocks.
If a READ command is registered at clock edge n, and the latency is m clocks, the data
will be available by clock edge n + m. The DQ will start drivin g as a result of the clock
edge one cycle earlier (n + m - 1), and provided that the relevant access times are met,
the data will be valid by clock edge n + m. For example, assuming that the clock cycle
time is such that all relevant access times ar e met, if a READ command is r egister ed at T0
and the latency is programmed to two clocks, the DQ will start driving after T1 and the
data will be valid by T2, as shown in Fi gure 6. Table 7 on page 12, indicates the operating
frequencies at which each CAS latency set ting can b e use d.
Reserved states should not be used as unkno wn operation or incompatibility with future
versions may result.
CLK
DQ
T2T1 T3T0
CAS Latency = 3
LZ
DOUT
tOH
t
COMMAND NOPREAD
tAC
NOP
T4
NOP
DON’T CARE
UNDEFINED
CLK
DQ
T2T1 T3T0
CAS Latency = 2
LZ
DOUT
tOH
t
COMMAND NOPREAD
tAC
NOP
PDF: 09005aef8088b2e3/Source: 09005aef8088077a Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
SD8_16C64_128x64AG. fm - Rev. C 6/05 EN 12 ©2002 Micron Technology, Inc. All rights reserved.
512MB (SR), 1GB (DR): (x64) 168-Pin SDRAM UDIMM
Mode Register Definition
Operating Mode The normal operating mode is selected by set ting M7 and M8 to zero; the other comb i-
nations of values for M7 and M8 are reserved for future use and/or test modes. The pro-
grammed burst length applies to both READ and WRITE bursts.
Test modes and reserved states should not be used because unknown operation or
incompatibility with future versions may result.
Write Burst Mode When M9 = 0, the burst length programmed via M0–M2 applies to both READ and
WRITE bursts; when M9 = 1, the programmed burst length applies to READ bursts, but
write accesses are single-location (non burst) accesses.
Table 7: CAS Latency Table
Speed
Allowable Operating Clock Frequency (MHz)
CAS Latency = 2 CAS Latency = 3
-13E 133 143
-133 100 133
PDF: 09005aef8088b2e3/Source: 09005aef8088077a Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
SD8_16C64_128x64AG. fm - Rev. C 6/05 EN 13 ©2002 Micron Technology, Inc. All rights reserved.
512MB (SR), 1GB (DR): (x64) 168-Pin SDRAM UDIMM
Commands
Commands Table 8 provides a quick reference of available commands. This is followed by a written
description of each command. For a more detailed description of commands and oper-
ations, refer to the 512Mb SDRAM component data sheet.
Notes: 1. A0–A12 provide row address; BA0–BA1 determine which de vice bank is made active.
2. A0–A9, A11 provide column address; A10 HIGH enables the auto-precharge feature (non-
persistent), while A10 LOW disables the auto-precharge feature; BA0–BA1 determine
which device bank is being re a d fr om or writte n to .
3. A10 LOW: BA0–BA1 determine which device bank is being precharged. A10 HIGH: all
device banks are precharged and BA0, BA1 are “Don’t Care.
4. This command is AUTO REFRESH if CKE is HIGH, SELF REFRESH if CKE is LOW.
5. Internal refresh counter controls row addressing; all inputs and I/Os are Don’t Care
except for CKE.
6. A0–A11 define the op-code written to the mode register and A12 should be driven LOW.
7. Activates or deactivates the DQ during WRITEs (zero-clock delay) and READs (two-clock
delay).
Table 8: Truth Table – SDRAM Commands and DQMB Operation
CKE is HIGH for all commands shown except SELF REFRESH; notes appear following the Truth Table
Name (Function) CS# RAS# CAS# WE# DQMB ADDR DQ Notes
COMMAND INHIBIT (NOP) HXXX X X X
NO OPERATION (NOP) LHHH X X X
ACTIVE (Select bank and act iva t e ro w) L L H H X Bank/Row X 1
READ (Select bank and column, and start READ burst) LHLHL/HBank/ColX 2
WRITE (Select bank and column, and start WRITE burst) L H L L L/H Bank/Col Valid 2
BURST TERMINATE LHHL X XActive
PRECHARGE (Deactivate row in bank or banks) LLHL X Code X 3
AUTO REFRESH or SELF REFRESH (Enter self refresh
mode) LLLHX X X4, 5
LOAD MODE REGISTER LLLL XOp-codeX 6
Write Enable/Output Enable –––– L Active7
Write Inhibit/Output High-Z –––– H –High-Z7
PDF: 09005aef8088b2e3/Source: 09005aef8088077a Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
SD8_16C64_128x64AG. fm - Rev. C 6/05 EN 14 ©2002 Micron Technology, Inc. All rights reserved.
512MB (SR), 1GB (DR): (x64) 168-Pin SDRAM UDIMM
Absolute Maximum Ratings
Absolute Maximum Ratings
S tresses gr eater than those listed may cause permanent damage to the device . This is a
stress r ating only, and functional operation of the device at these or any other conditions
above those indicate d in the operational sections of this spe c ification is not implie d.
Exposure to absolute maximum rating conditions for extended periods may affect
reliability.
DC Operating Specifications
Table 9: Absolute Maximum DC Ratings
Parameter Min Max Unit
Voltage on VDD, VDDQ supply relative to V SS -1 +4.6 V
Voltage on inputs NC or I/O pins relative to VSS -1 +4.6 V
Operating temperature TOPR (commercial - ambient) . 0 +65 °C
Storage temperature (plastic) -55 +150 °C
Table 10: DC Electrical Characteristics and Operating Conditions – 512MB
Notes:1, 5, 6; notes appear on page 18; VDD = VDDQ = +3.3V ±0.3V
Parameter/Condition Symbol Min Max Units Notes
Supply voltage VDD, VDDQ3 3.6 V
Input high voltage: Logic 1; All inputs VIH 2VDD + 0.3 V 22
Input low voltage: Logic 0; All inputs VIL -0.3 0.8 V 22
Input leakage current:
Any input 0V VIN VDD
(All other pins not under test = 0V)
Command and
address Inputs, CKE II-40 40 µA
33
CK, S# -20 20 µA
DQMB -5 5 µA
Output leakage current: DQ pins are
disabled; 0V VOUT VDDQDQ IOZ -5 5 µA 33
Output levels:
Output high voltage (IOUT = -4mA)
Output low voltage (IOUT = 4mA)
VOH 2.4 V
VOL –0.4V
Table 11: DC Electrical Characteristics and Operating Conditions – 1GB
Notes: 1, 5, 6; notes appear on page 18; VDD = VDDQ = +3.3V ±0.3V
Parameter/Condition Symbol Min Max Units Notes
Supply voltage VDD, VDDQ3 3.6 V
Input high voltage: Logic 1; All inputs VIH 2VDD + 0.3 V 22
Input low voltage: Logic 0; All inputs VIL -0.3 0.8 V 22
Input leakage current:
Any input 0V VIN VDD
(All other pins not under test = 0V)
Command and
address Inputs, CKE II
-80 80 µA
33
CK, S# -20 20 µA
DQMB -10 10 µA
Output leakage current: DQ pins are
disabled; 0V VOUT VDDQDQ IOZ -10 10 µA 33
Output levels:
Output high voltage (IOUT = -4mA)
Output low voltage (IOUT = 4mA)
VOH 2.4 V
VOL –0.4V
PDF: 09005aef8088b2e3/Source: 09005aef8088077a Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
SD8_16C64_128x64AG. fm - Rev. C 6/05 EN 15 ©2002 Micron Technology, Inc. All rights reserved.
512MB (SR), 1GB (DR): (x64) 168-Pin SDRAM UDIMM
I
DD
Specifications and Conditions
IDD Specifications and Conditions
Note: a - Value calculated as one module rank in this condition, and all other module ranks in
power- down mode (IDD2).
b - Value calculated reflects all module ranks in this condition.
Table 12: IDD Specifications and Conditions – 512MB
Notes: 1, 5, 6, 11, 13; notes appear on page 18; VDD, VDDQ = +3.3V ±0.3V; SDRAM component values only
Parameter/Condition Symbol
Max
Units Notes-13E -133
Operating current: Active mode; Burst = 2; READ or WRITE; tRC =
tRC (MIN) IDD1960 880 mA 3, 18,19,
30
Standby current: Power-Down mode; All device banks idle; CKE =
LOW IDD228 28 mA 30
Standby current: Active mode; CKE = HIGH; CS# = HIGH; All device
banks active after tRCD met; No accesses in progress IDD3360 360 mA 3, 12, 19,
30
Operating current: Burst Mode; Continuous burst; READ or WRITE;
All device banks active IDD41,000 1,000 mA 3, 18, 19,
30
Auto refresh current tRFC = tRFC (MIN) IDD51,960 1,960 mA 3, 12
CKE = HIGH; CS# = HIGH tRFC = 7.8125µs IDD648 48 mA 18, 19 ,
30, 31
Self refresh current: CKE 0.2V IDD748 48 mA 4
Table 13: IDD Specifications and Conditions – 1GB
Notes: 1, 6, 11, 13; notes appear on page 18; VDD, VDDQ = +3.3V ±0.3V; SDRAM component values only
Parameter/Condition Symbol
Max
Units Notes-13E -133
Operating current: Active mode; Burst = 2; READ or WRITE;
tRC = tRC (MIN) IDD1a1,112 1,008 mA 3, 18,19,
30
Standby current: Power-Down mode; All device banks idle;
CKE = LOW IDD2b63 63 mA 30
Standby current: Active mode; CKE = HIGH; CS# = HIGH; All device
banks active after tRCD met; No accesses in progress IDD3a437 437 mA 3, 12, 19,
30
Operating current: Burst Mode; Continuous burst; READ or WRITE;
All device banks active IDD4a1,157 1,157 mA 3, 18, 19,
30
Auto refresh current tRFC = tRFC (MIN) IDD5b4,410 4,410 mA 3, 12
CKE = HIGH; CS# = HIGH tRFC = 7.8125µs IDD6b108 108 mA 18, 19,
30, 31
Self refresh current: CKE 0.2V IDD7b108 108 mA 4
PDF: 09005aef8088b2e3/Source: 09005aef8088077a Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
SD8_16C64_128x64AG. fm - Rev. C 6/05 EN 16 ©2002 Micron Technology, Inc. All rights reserved.
512MB (SR), 1GB (DR): (x64) 168-Pin SDRAM UDIMM
Capacitance
Capacitance
AC Operating Specifications
Table 14: Capacitance – 512MB
Note 2; notes appear on page 18
Parameter Symbol Min Max Units
Input capacitance: Address and command CI120 30.4 pF
Input capacitance: CK CI213.3 17.3 pF
Input capacitance: S# CI310 15.2 pF
Input capacitance: CKE CI420 30.4 pF
Input capacitance: DQMB CI52.5 3.8 pF
Input/Output capacitance: DQ CIO246pF
Table 15: Capacitance – 1GB
Note 2; notes appear on page 18
Parameter Symbol Min Max Units
Input capacitance: Address and command CI140 60.8 pF
Input capacitance: CK CI213.3 17.3 pF
Input capacitance: S# CI310 15.2 pF
Input capacitance: CKE CI420 30.4 pF
Input capacitance: DQMB CI557.6pF
Input/Output capacitance: DQ CIO2812pF
Table 16: Electrical Characteristics and Recommended AC Operating Conditions
Notes: 5, 6, 8, 9, 11, 31; notes appear on page 18
Module AC timing parameters comply with PC100 and PC133 Design Specs, based on component parameters
AC Characteristics
Symbol
-13E -133
Units NotesParameter Min Max Min Max
Access time from CLK (positive edge) CL = 3 tAC(3) 5.4 5.4 ns 27
CL = 2 tAC(2) 5.4 6 ns
Address hold time tAH 0.8 0.8 ns
Address setup time tAS 1.5 1.5 ns
CLK high-level width tCH 2.5 2.5 ns
CLK low-level width tCL 2.5 2.5 ns
Clock cycle time CL = 3 tCK(3) 7 7.5 ns 23
CL = 2 tCK(2) 7.5 10 ns 23
CKE hold time tCKH 0.8 0.8 ns
CKE setup time tCKS 1.5 1.5 ns
CS#, RAS#, CAS#, WE#, DQM hold time tCMH 0.8 0.8 ns
CS#, RAS#, CAS#, WE#, DQM setup time tCMS 1.5 1.5 ns
Data-in hold time tDH 0.8 0.8 ns
Data-in setup time tDS 1.5 1.5 ns
PDF: 09005aef8088b2e3/Source: 09005aef8088077a Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
SD8_16C64_128x64AG. fm - Rev. C 6/05 EN 17 ©2002 Micron Technology, Inc. All rights reserved.
512MB (SR), 1GB (DR): (x64) 168-Pin SDRAM UDIMM
AC Operating Specifications
Data-out High-Z time CL = 3 tHZ(3) 5.4 5.4 ns 10
CL = 2 tHZ(2) 5.4 6 ns 10
Data-out Low-Z time tLZ 1 1 ns
Data-out hold time (load) tOH 2.7 2.7 ns
Data-out hold time (no load) tOHN1.8 1.8 ns 28
ACTIVE-to-PRECHARGE command tRAS 37 120,000 44 120,000 ns 32
ACTIVE-to-ACTIVE command period tRC 60 66 ns
ACTIVE-to-READ or WRITE delay tRCD 15 20 ns
Refresh period (8,192 rows) tREF 64 64 ms
Auto refresh period tRFC 66 66 ns
PRECHARGE command period tRP 15 20 ns
ACTIVE bank a to ACTIVE bank b command tRRD 14 15 ns
Transition time tT 0.3 1.2 0.3 1.2 ns 7
WRITE recovery time tWR 1 CLK
+ 7ns 1 CLK
+ 7ns ns 24
14 15 ns 25
Exit SELF REFRESH-to-ACTIVE command tXSR 67 75 ns 20
Table 17: AC Functional Characteristics
Notes: 5, 6, 7, 8, 9, 11, 31; notes appear on page 18
Parameter Symbol -13E -133 Units Notes
READ/WRITE command to READ/WRITE command tCCD 1 1 tCK 17
CKE to clock disable or power-down entry mode tCKED 1 1 tCK 14
CKE to clock enable or power-down exit setup mode tPED 1 1 tCK 14
DQM to input data delay tDQD 0 0 tCK 17
DQM to data mask during WRITEs tDQM 0 0 tCK 17
DQM to data High-Z during READs tDQZ 2 2 tCK 17
WRITE command to input data delay tDWD 0 0 tCK 17
Data-into ACTIVE command tDAL 4 5 tCK 15, 21
Data-into PRECHARGE command tDPL 2 2 tCK 16, 21
Last data-in to burst STOP command tBDL 1 1 tCK 17
Last data-in to new READ/WRITE command tCDL 1 1 tCK 17
Last data-into PRECHARGE command tRDL 2 2 tCK 16, 21
LOADMODEREGISTER command to ACTIVE or REFRESH command tMRD 2 2 tCK 26
Data-out to High-Z from PRECHARGE command CL = 3 tROH(3) 3 3 tCK 17
CL = 2 tROH(2) 2 2 tCK 17
Table 16: Electrical Characteristics and Recommended AC Operating Conditions (continued)
Notes: 5, 6, 8, 9, 11, 31; notes appear on page 18
Module AC timing parameters comply with PC100 and PC133 Design Specs, based on component parameters
AC Characteristics
Symbol
-13E -133
Units NotesParameter Min Max Min Max
PDF: 09005aef8088b2e3/Source: 09005aef8088077a Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
SD8_16C64_128x64AG. fm - Rev. C 6/05 EN 18 ©2002 Micron Technology, Inc. All rights reserved.
512MB (SR), 1GB (DR): (x64) 168-Pin SDRAM UDIMM
Notes
Notes 1. All voltages referenced to VSS.
2. This parameter is sampled . VDD, VDDQ = +3.3V; TA= 25°C; pin under test biased at
1.4V; f = 1 MHz.
3. IDD is dependent on output loading and cy cle rates. Specified value s are obtained
with minimum cycle time and the outputs open.
4. Enables on-chip refresh and address counters.
5. The minimum specifications are used only to indicate cycle time at which proper
operation over the full temperature range is ensured.
6. An initial pause of 100µs is required after power-up, followed by two AUTO REFRESH
commands, before prope r devi ce operation is ensured. (VDD and VDDQ must be pow-
ered up simultaneously. VSS and VSSQ must be at same potential.) The two AUTO
REFRESH command wake-ups should be repeated any time the tREF re fresh require-
ment is exceeded.
7. AC characteristics assume tT = 1ns.
8. In addition to meeting the transition rate specification, the clock and CKE must tran-
sit between VIH and VIL (or between VIL and VIH) in a monotonic manner.
9. Outputs measured at 1.5V with equivalent load:
10. tHZ defines the time at which the output achieves the open circuit condition; it is not
a reference to VOH or VOL. The last valid data elemen t will meet tOH before going
High-Z.
11. AC timing and IDD tests have VIL = 0V and VIH = 3.0V with timing referenced to 1.5V
crossover point. If the input transition time is longer than 1ns, then the timing is ref-
erenced at VIL (MAX) and VIH (MIN) and no longer at the 1.5V crossover point.
12. Other input signals are allowed to transition no more than once every two clocks and
are otherwise at valid VIH or VIL levels.
13. IDD specifications are tested after the device is properly initialized.
14. Timing actually specified by tCKS; clock(s) specified as a ref erence only at minimum
cycle rate.
15. Timing actually specified by tWR plus tRP; clock(s) specified as a referen ce on ly a t
minimum cycle rate.
16. Timing actually specified by tWR.
17. Required clocks are specified by JEDEC functionality and are not dependent on any
timing parameter.
18. The IDD current will increase or decrease proportionally according to the amount of
frequency alteration for the test condition.
19. Address transitions average one transition every two clocks.
20. CLK must be toggled a minimum of two times during this period.
21. Based on tCK = 7.5ns for -133 and -13E.
22. VIH overshoot: VIH (MA X) = VDDQ + 2V for a pulse width 3ns, and the pulse width
cannot be greater than one third of the cycle rate. VIL undershoot: VIL (MIN) = -2V for
a pulse width 3ns for all inputs except A12. VIH ove r shoot for pin A12 is limited to
VDDQ + 1V for a pulse width 3ns, and the pulse width cannot be greater than one
third of the cycle rate.
Q50pF
PDF: 09005aef8088b2e3/Source: 09005aef8088077a Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
SD8_16C64_128x64AG. fm - Rev. C 6/05 EN 19 ©2002 Micron Technology, Inc. All rights reserved.
512MB (SR), 1GB (DR): (x64) 168-Pin SDRAM UDIMM
Notes
23. The clock frequency must remain constant (stable clock is defined as a signal cycling
within timing constraints specified for the clock pin) during access or precharge
states (READ, WRITE, including tWR, and PRECHARGE commands). CKE may be
used to reduce the data rate.
24. Auto precharge mode only. The precharge timing budget (tRP) begins 7ns for -13E,
and 7.5ns for -133 after the first clock delay, after the last WRITE is executed. May not
exceed limit set for precharge mode.
25. Precharge mode only.
26. JEDEC and PC100 specify three clocks.
27. tAC for -133/-13E at CL = 3 with no load is 4.6ns and is guaranteed by design.
28. Parameter guaranteed by design.
29. For -13E, CL = 2 and tCK = 7.5ns; and for -133, CL = 3 and tCK = 7.5ns.
30. CKE is HIGH durin g refresh command period tRFC (MIN) else CKE is LOW. The IDD6
limit is actually a nomina l value and does not result in a fail value.
31. Refer to device data sheet for timing waveforms.
32. The value of tRAS used in -13E speed grade modules is calculated from tRC - tRP.
33. Leakage number reflects the worst case l eakage poss ible thr ough the module pin, not
what each memory device contributes.
PDF: 09005aef8088b2e3/Source: 09005aef8088077a Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
SD8_16C64_128x64AG. fm - Rev. C 6/05 EN 20 ©2002 Micron Technology, Inc. All rights reserved.
512MB (SR), 1GB (DR): (x64) 168-Pin SDRAM UDIMM
Serial Presence Detect
Serial Presence Detect
SPD Clock and Data Conventions
Data states on the SDA line can change only during SCL LOW. SDA state changes during
SCL HIGH are reserved for indicating start and stop conditions (as shown in Figure7,
and Figure 8 on page 21).
SPD Start Condition
All commands are preceded by the start condition, which is a HIGH-to-LOW transition
of SDA when SCL is HIGH. The SPD device continuously monitors the SDA and SCL
lines for the start condition and will not respond to any command until this condition
has been met.
SPD Stop ConditionAll communications are terminated by a stop condition, which is a LOW-to-HIGH tran-
sition of SDA when SCL is HIGH. The stop condition is also used to place the SPD device
into standby power mode.
SPD Acknowledge Acknowledge is a software convention used to indicate succ essful data transfers. The
transmitting device, either master or slave, will release the bus after transmitting eight
bits. During the ninth clock cy cle, the receiv er will pull the SDA line LO W to ackno wledge
that it received the eight bits of data (as shown in Figure9 on page 21).
The SPD device will always respond with an acknowledge after recognition of a start
condition and its slave address. If both the device and a WRITE operation have been
selected, the SPD device will respond with an acknowledge after the receipt of each sub-
sequent eight bit word. In the read mode the SPD device will transmit eight bits of data,
release the SDA line and monitor the line for an acknowledge. If an acknowledge is
detected and no stop condition is generated by the master, the slave will continue to
transmit data. If an acknowledge is not detected, the slave will terminate further data
transmissions and await the stop condition to return to standby power mode.
Figure 7: Data Validity
SCL
SDA
Data stable Data stableData
change
PDF: 09005aef8088b2e3/Source: 09005aef8088077a Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
SD8_16C64_128x64AG. fm - Rev. C 6/05 EN 21 ©2002 Micron Technology, Inc. All rights reserved.
512MB (SR), 1GB (DR): (x64) 168-Pin SDRAM UDIMM
Serial Presence Detect
Figure 8: Definition of Start and Stop
Figure 9: Acknowledge Response From Receiver
Table 18: EEPROM Device Select Code
The most significant bit (b7) is sent first
Device Type Identifier Chip Enable RW
b7 b6 b5 b4 b3 b2 b1 b0
Memory area select code (two arrays) 1 0 1 0 SA2 SA1 SA0 RW
Protecti on register se le ct code 0 1 1 0 SA2 SA1 SA0 RW
Table 19: EEPROM Operating Modes
Mode RW Bit WC Bytes Initial Sequence
Current address read 1V
IH or VIL 1Start, device select, RW = 1
Random address read 0V
IH or VIL 1Start, device select, RW= 0, Address
1V
IH or VIL Restart, device select, RW= 1
Sequential read 1V
IH or VIL 1Similar to current or random address read
Byte write 0V
IL 1Start, device select, RW = 0
Page write 0V
IL 16 Start, device select, RW = 0
SCL
SDA
Start
bit Stop
bit
SCL from Master
Data Output
from Transmitter
Data Output
from Receiver
98
Acknowledge
PDF: 09005aef8088b2e3/Source: 09005aef8088077a Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
SD8_16C64_128x64AG. fm - Rev. C 6/05 EN 22 ©2002 Micron Technology, Inc. All rights reserved.
512MB (SR), 1GB (DR): (x64) 168-Pin SDRAM UDIMM
Serial Presence Detect
Figure 10: SPD EEPROM Timing Diagram
Table 20: SERIAL Presence-Detect EEPROM DC Operating Conditions
All voltages referen ce d to VSS; VDDSPD = +2.3V to +3.6V
Parameter/Condition Symbol Min Max Units
Supply voltage VDD 33.6V
Input high voltage: Logic 1; All inputs VIH VDD × 0.7 VDD + 0.5 V
Input low voltage: Logic 0; All inputs VIL -1 VDD × 0.3 V
Output low voltage: IOUT = 3mA VOL –0.4V
Input leakage current: VIN = GND to VDD ILI –10µA
Output leakage current: VOUT = GND to VDD ILO –10µA
Standby current: SCL = SDA = VDD - 0.3V; All other inputs = GND or
3.3V ±10% ICCS –30µA
Power supply current:
SCL Clock frequency = 100 KHz ICC Write
ICC Read
3
1mA
Table 21: Serial Presence-Detect EEPROM AC Operating Conditions
All voltages referen ce d to VSS; VDDSPD = +2.3V to +3.6V
Parameter/Condition Symbol Min Max Units Notes
SCL LOW to SDA data-out valid tAA 0.2 0.9 µs 1
Time the bus must be free before a new transition can start tBUF 1.3 µs
Data-out hold time tDH 200 ns
SDA and SCL fall time tF300ns2
Data-in hold time tHD:DAT 0 µs
Start condition hold time tHD:STA 0.6 µs
Clock HIGH period tHIGH 0.6 µs
Noise suppression time constant at SCL, SDA inputs tI50ns
Clock LOW period tLOW 1.3 µs
SDA and SCL rise time tR0.3µs2
SCL clock frequency fSCL 400 KHz
SCL
SDA IN
SDA OUT
tLOW
tSU:STA tHD:STA
tFtHIGH tR
tBUF
tDH
tAA
tSU:STO
tSU:DAT
tHD:DAT
UNDEFINED
PDF: 09005aef8088b2e3/Source: 09005aef8088077a Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
SD8_16C64_128x64AG. fm - Rev. C 6/05 EN 23 ©2002 Micron Technology, Inc. All rights reserved.
512MB (SR), 1GB (DR): (x64) 168-Pin SDRAM UDIMM
Serial Presence Detect
Notes: 1. To avoid spurious start and stop con ditions, a minimum delay is placed between SCL = 1
and the falling or rising edge of SDA.
2. This parameter is sampled.
3. For a restart condition, or following a WRITE cycle.
4. The SPD EEPROM WRITE cycle time (tWRC) is the time from a valid stop condition of a
write sequence to the end of the EEPROM internal erase/program cycle. During the WRITE
cycle, the EEPROM bus interface circuit is disabled, SDA remains HIGH due to pull-up resis-
tor, and the EEPROM does not respond to its slave address.
Data-in setup time tSU:DAT 100 ns
Start condition setup time tSU:STA 0.6 µs 3
Stop condition setup time tSU:STO 0.6 µs
WRITE cycle time tWRC 10 ms 4
Table 21: Serial Presence-Detect EEPROM AC Operating Conditions (continued)
All voltages referen ce d to VSS; VDDSPD = +2.3V to +3.6V
Parameter/Condition Symbol Min Max Units Notes
PDF: 09005aef8088b2e3/Source: 09005aef8088077a Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
SD8_16C64_128x64AG. fm - Rev. C 6/05 EN 24 ©2002 Micron Technology, Inc. All rights reserved.
512MB (SR), 1GB (DR): (x64) 168-Pin SDRAM UDIMM
Serial Presence Detect
Table 22: Serial Presence-Detect Matrix
VDD = +3.3V ±0.3V; 1/0: Serial Data, driven to HIGH/driven to LOW
Byte Description Entry (Version) MT8LSDT6464A MT16LSDT12864A
0Number of bytes used by Micron 128 80 80
1Total number of SPD memory bytes 256 08 08
2Memory type SDRAM 04 04
3Number of row addresses 13 0D 0D
4Number of column addresses 11 0B 0B
5Number of module ranks 1 or 2 01 02
6Module data width 64 40 40
7Module data width (continued) 000 00
8Module voltage interface levels LVTTL 01 01
9SDRAM cycle time, tCK
(CAS latency = 3) 7ns (-13E)
7.5ns (-133) 70
75 70
75
10 SDRAM access from Clock, tAC
(CAS latency = 3) 5.4ns (-13E/-133) 54 54
11 Module configuration type NON-ECC 00 00
12 Refresh rate/type 7.8125µs/SELF 82 82
13 SDRAM width (primary SDRAM) 808 08
14 Error-checking SDRAM data width NONE 00 00
15 Minimum clock delay from back-to-back random
column addresses, tCCD 101 01
16 Burst lengths supported 1, 2, 4, 8, PAGE 8F 8F
17 Number of banks on SDRAM device 404 04
18 CAS latencies supported 2, 3 06 06
19 CS latency 001 01
20 WE latency 001 01
21 SDRAM module attributes UNBUFFERED 00 00
22 SDRAM device attributes: general 0E 0E 0E
23 SDRAM cycle time, tCK
(CAS latency = 2) 7.5ns (13E)
10ns (-133) 75
A0 75
A0
24 SDRAM access from clock, tAC
(CAS latency = 2) 5.4ns (-13E)
6ns (-133) 54
60 54
60
25 SDRAM cycle time, tCK, (CAS latency = 1) 00 00
26 SDRAM access from clock, tAC, (CAS latency = 1) 00 00
27 Minimum row precharge time, tRP 15ns (-13E)
20ns (-133) 0F
14 0F
14
28 Minimum row active to row active, tRRD 14ns (-1 3E )
15ns (-133) 0E
0F 0E
0F
29 Minimum RAS# to CAS# delay, tRCD 15ns (-13E)
20ns (-133) 0F
14 0F
14
30 Minimum RAS# pu lse wid t h, tRAS (see note 1) 45ns (-13E)
44ns (133) 2D
2C 2D
2C
31 Module rank density 512MB 80 80
32 Command and address setup time, tAS, tCMS 1.5ns (-13E/-133) 15 15
33 Command and address hold time, tAH, tCMH 0.8ns (-13E/-133) 08 08
34 Data signal input setup time, tDS 1.5ns (-13E/-133) 15 15
35 Data signal input hold time, tDH 0.8ns (-13E/-133) 08 08
36-40 Reserved 00 00
PDF: 09005aef8088b2e3/Source: 09005aef8088077a Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
SD8_16C64_128x64AG. fm - Rev. C 6/05 EN 25 ©2002 Micron Technology, Inc. All rights reserved.
512MB (SR), 1GB (DR): (x64) 168-Pin SDRAM UDIMM
Serial Presence Detect
Notes: 1. The value of tRAS used for -13E modules is calculated from tRC - tRP. Actual device spe c.
value is 37ns.
41 Device minimum active/auto-refresh time, tRC 60ns (-13E)
66ns (-133) 3C
42 3C
42
42-61 Reserved 00 00
62 SPD revision REV. 2.0 02 02
63 Checksum for bytes 0–62 (-13E)
(-133) F8
44 F9
45
64 Manufacturers JEDEC ID code MICRON 2C 2C
65-71 Manufacturer’s JEDEC ID code (continued) FF FF
72 Manufacturing location 01 - 06 01 - 06
73-90 Module part number (ASCII) Variable Data Variable Data
91 PCB identification code 01-04 01-04
92 Identification code (continued) 000 00
93 Year of manufacture in BCD Variable Data Variable Data
94 Week of manufacture in BCD Variable Data Variable Data
95-98 Module serial number Variable Data Variable Data
99-125 Manufacturer-specific data (RSVD)
126 System frequency 100 MHz
(-13E/-133) 64 64
127 SDRAM component and clock detail AF FF
Table 22: Serial Presence-Detect Matrix (continued)
VDD = +3.3V ±0.3V; 1/0: Serial Data, driven to HIGH/driven to LOW
Byte Description Entry (Version) MT8LSDT6464A MT16LSDT12864A
PDF: 09005aef8088b2e3/Source: 09005aef8088077a Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
SD8_16C64_128x64AG. fm - Rev. C 6/05 EN 26 ©2002 Micron Technology, Inc. All rights reserved.
512MB (SR), 1GB (DR): (x64) 168-Pin SDRAM UDIMM
Module Dimensions
Module Dimensions
Figure 11: 168-Pin DIMM Dimensions – 512MB
Note: All dimensions in inches (millimeters); or typical where noted.
0.125 (3.18)
MAX
0.054 (1.37)
0.046 (1.17)
PIN 1 (PIN 85 ON BACKSIDE)
0.700 (17.78)
TYP
0.118 (3.00)
(2X)
0.118 (3.00) TYP
4.550 (115.57)
0.050 (1.27)
TYP
.118 (3.00)
TYP 0.039 (1.00)
TYP
0.079 (2.00) R
(2X)
0.039 (1.00)R
(2X)
FRONT VIEW
0.128 (3.25)
0.118 (3.00)
PIN 84 (PIN 168 ON BACKSIDE)
(2X)
0.250 (6.35) TYP
1.661 (42.18)
2.625 (66.68)
1.380 (35.05)
1.370 (34.80)
5.256 (133.50)
5.244 (133.20)
U1 U2 U3 U4 U6 U7 U8 U9
U10
STANDARD PCB
0.125 (3.18)
MAX
0.054 (1.37)
0.046 (1.17)
PIN 1 (PIN 85 ON BACKSIDE)
0.700 (17.78)
TYP
0.118 (3.00)
(2X)
0.118 (3.00) TYP
4.550 (115.57)
0.050 (1.27)
TYP
0.118 (3.00)
TYP 0.039 (1.00)
TYP
0.079 (2.00) R
(2X)
0.039 (1.00)R
(2X)
FRONT VIEW
0.128 (3.25)
0.118 (3.00)
PIN 84 (PIN 168 ON BACKSIDE)
(2X)
0.250 (6.35) TYP
1.661 (42.18)
2.625 (66.68)
1.131 (28.73)
1.119 (28.42)
5.256 (133.50)
5.244 (133.20)
U1 U2 U3 U4 U6 U7 U8 U9
U10
LOW PROFILE PCB
MAX
MIN
PDF: 09005aef8088b2e3/Source: 09005aef8088077a Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
SD8_16C64_128x64AG. fm - Rev. C 6/05 EN 27 ©2002 Micron Technology, Inc. All rights reserved.
512MB (SR), 1GB (DR): (x64) 168-Pin SDRAM UDIMM
Module Dimensions
Figure 12: 168-Pin DIMM Dimensions – 1GB
Note: All dimensions in inches (millimeters); or typical where noted.
0.157 (3.99)
MAX
0.054 (1.37)
0.046 (1.17)
PIN 1
0.700 (17.78)
TYP
0.118 (3.00)
0(2X)
.118 (3.00) TYP
4.550 (115.57)
0.050 (1.27)
TYP
0.118 (3.00)
TYP 0.039 (1.00)
TYP
0.079 (2.00) R
(2X)
0.039 (1.00)R
(2X)
FRONT VIEW
0.128 (3.25)
0.118 (3.00)
PIN 84
(2X)
0.250 (6.35) TYP
1.661 (42.18)
2.625 (66.68)
1.131 (28.73)
1.119 (28.42)
5.256 (133.50)
5.244 (133.20)
U1 U2 U3 U4 U6 U7 U8 U9
U10
LOW PROFILE PCB
U11 U12 U13 U14 U16 U17 U18 U19
PIN 85
PIN 168
BACK VIEW
0.157 (3.99)
MAX
0.054 (1.37)
0.046 (1.17)
PIN 1
0.700 (17.78)
TYP
0.118 (3.00)
(2X)
0.118 (3.00) TYP
4.550 (115.57)
0.050 (1.27)
TYP
0.118 (3.00)
TYP 0.039 (1.00)
TYP
0.079 (2.00) R
(2X)
0.039 (1.00)R
(2X)
FRONT VIEW
0.128 (3.25)
0.118 (3.00)
PIN 84
(2X)
0.250 (6.35) TYP
1.661 (42.18)
2.625 (66.68)
1.380 (35.05)
1.370 (34.80)
5.256 (133.50)
5.244 (133.20)
U1 U2 U3 U4 U6 U7 U8 U9
U10
STADARD PCB
U11 U12 U13 U14 U16 U17 U18 U19
PIN 85
PIN 168
BACK VIEW
MAX
MIN
®
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900
prodmktg@micron.com www.micron.com Customer Comment Line: 800-932- 4992
Micron, the M logo, and the Micron logo are trademarks of Micron Technology, Inc.
All other trademarks are the property of their respective owners.
This data sheet contains minimum and maximum limits specified over the complete power supply and temperature range
for production devices. Although considered final, these specifications are subject to change, as further product
development and data characterization sometimes occur.
PDF: 09005aef8088b2e3/Source: 09005aef8088077a Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
SD8_16C64_128x64AG. fm - Rev. C 6/05 EN 28 ©2002 Micron Technology, Inc. All rights reserved.
512MB (SR), 1GB (DR): (x64) 168-Pin SDRAM UDIMM
Module Dimensions