Copyright ANPEC Electronics Corp.
Rev. A.4 - Jun., 2009
APW7079
www.anpec.com.tw1
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and
advise customers to obtain the latest version of relevant information to verify before placing orders.
Low-Supply-Current Synchronous Step-up DC-DC Converter
Features
0.9V Typical Start-up Input Voltage
11µA Typical No Load Quiescent Current
PFM Operation
High Efficiency up to 92%
Fixed 1.8V, 2.6V, 2.8V, 3V, 3.3V, 3.8V, 4.5V or 5V
Output Voltage
600mA Internal Switch Current
Internal Synchronous Rectifier
SOT-89 Package
Lead Free and Green Devices Available
(RoHS Compliant)
Applications
General Description
The APW7079 is a compact, PFM mode, and step-up
DC-DC converter with low quiescent current. The inter-
nal synchronous rectifier reduces cost and PCB space
by eliminating the need for an external Schottky diode.
Low on-resistance of the internal switches improves the
efficiency up to 92%. The start-up voltage is guaranteed
below 1V. After start-up, the device can operate with input
voltage down to 0.7V. The APW7079 is suitable for por-
table battery-powered applications. Consuming only 11µA
quiescent current and an optimized control scheme al-
lows the device to operate at very high efficiency over the
entire load current range.
Toy
Wireless Mouse
Portable Instrument
Simplified Application Circuit
Pin Configuration
Top View LX VOUT
GND
VIN VOUT
APW7079
L1
22µH
C2
47µF
C1
22µF
IIN IOUT
Efficiency (%)
Output Current, IOUT (mA)
Efficiency vs. Output Current
0
10
20
30
40
50
60
70
80
90
100
0.1 110 100 1000
VIN=2.4V
VIN=1.5V
VIN=1.2V
VIN=1.0V
VIN=0.9V
APW7079-30
SOT-89
LX 3
GND 1
VOUT
(TAB)2
Copyright ANPEC Electronics Corp.
Rev. A.4 - Jun., 2009
APW7079
www.anpec.com.tw2
Ordering and Marking Information
Symbol Parameter Rating Unit
VOUT Output Voltage (VOUT to GND) -0.3 ~ 6 V
VLX LX to GND Voltage -0.3 ~ VOUT+1 V
TSTG Storage Temperature -65 ~ 150 °C
TSDR Maximum Lead Soldering Temperature, 10 Seconds 260 °C
Absolute Maximum Ratings (Note 1)
79
Thermal Characteristics
Symbol Parameter Typical Value Unit
θJA Thermal Resistance -Junction to Ambient (Note 2)
SOT-89
180 oC/W
Note 2: θJA is measured with the component mounted on a high effective thermal conductivity test board in free air.
Symbol Parameter Range Unit
VOUT Output Voltage (VOUT to GND) 0.7 ~ 5.5 V
VIN Converter Supply Voltage 0.3 ~ VOUT+1 V
VLX LX to GND Voltage -0.3 ~ VOUT+0.3 V
IOUT Converter Output Current 0 ~ 0.9 x IOUT(MAX) A
TA Ambient Temperature -40 ~ 85 °C
TJ Junction Temperature -40 ~ 125 °C
Note 3: Refer to the typical application circuit
Note 4: Refer to Application Information for detail value.
Recommended Operating Conditions (Note 3, 4)
Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which
are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020C for
MSL classification at lead-free peak reflow temperature. ANPEC defines Green to mean lead-free (RoHS compliant) and halogen
free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by
weight).
Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
APW7079
Handling Code
Temperature Range
Package Code
Assembly Material
APW7079-18D: XXXXX - Date Code, 18: 1.8V
Package Code
D : SOT-89
Operating Ambient Temperature Range
I : -40 to 85oC
Handling Code
TR : Tape & Reel
Assembly Material
G : Halogen and Lead Free Device
Voltage Code
18: 1.8V 26: 2.6V 28: 2.8V 30: 3.0V
33: 3.3V 38: 3.8V 45: 4.5V 50: 5.0V
Voltage Code
APW7079
XXXXX18 APW7079-26D: XXXXX - Date Code, 26: 2.6V
APW7079
XXXXX26
APW7079-28D: XXXXX - Date Code, 28: 2.8V
APW7079
XXXXX28
APW7079-33D: XXXXX - Date Code, 38: 3.8V
APW7079
XXXXX38
APW7079-33D: XXXXX - Date Code, 33: 3.3V
APW7079
XXXXX33
APW7079-50D: XXXXX - Date Code, 50: 5.0V
APW7079
XXXXX50
APW7079-45D: XXXXX - Date Code, 45: 4.5V
APW7079
XXXXX45
APW7079-30D: XXXXX - Date Code, 30: 3.0V
APW7079
XXXXX30
Copyright ANPEC Electronics Corp.
Rev. A.4 - Jun., 2009
APW7079
www.anpec.com.tw3
Electrical Characteristics
APW7079
Symbol
Parameter Test Conditions Min.
Typ. Max. Unit
VIN Converter Supply Voltage 0.7 - 5.5 V
Start-up Voltage RLOAD=3k - 0.9 1 V
APW7079-18 1.764
1.8 1.836
APW7079-26 2.548
2.6 2.652
APW7079-28 2.744
2.8 2.856
APW7079-30 2.94 3.0 3.06
APW7079-33 3.234
3.3 3.366
APW7079-38 3.724
3.8 3.876
APW7079-45 4.41 4.5 4.59
VOUT Output Voltage
APW7079-50 4.9 5.0 5.1
V
IDD Supply Current VOUT = VOUT(Typ.)+0.5V
Measured at V
OUT
No Inductor Connected 7 11 15 µA
TOFF(MIN)
Main Switch Min. Off-time 0.6 0.9 1.2 µs
TON(MAX)
Main Switch Max. On-time 3 4 5 µs
Main Switch Max. Duty 75 - 85 %
APW7079-18 - 0.5 -
APW7079-26 - 0.4 -
APW7079-28 - 0.4 -
APW7079-30 - 0.4 -
APW7079-33 - 0.4 -
APW7079-38 - 0.4 -
APW7079-45 - 0.3 -
RN-FET Main Switch on Resistance ILX=100mA
APW7079-50 - 0.3 -
APW7079-18 - 1 -
APW7079-26 - 0.8 -
APW7079-28 - 0.8 -
APW7079-30 - 0.7 -
APW7079-33 - 0.6 -
APW7079-38 - 0.5 -
APW7079-45 - 0.4 -
RP-FET Synchronous Switch on
Resistance ILX=100mA
APW7079-50 - 0.4 -
ILIM Main Switch Current Limit 500 600 700 mA
Main Switch Leakage Current
- - 1 µA
Synchronous Switch Leakage
Current - - 1 µA
Over-Temperature Shutdown - 150 - °C
Over-Temperature Hysteresis
- 40 - °C
Refer to Typical Application Circuits. VIN=1.5V, RLOAD = , and TA= -40 ~ 85oC, unless otherwise noted. Typical values are at TA=25oC.
Copyright ANPEC Electronics Corp.
Rev. A.4 - Jun., 2009
APW7079
www.anpec.com.tw4
Typical Operating Characteristics
(Refer to the application circuit in the section “Typical Application Circuit, VIN=1.5V, L1=22µH, TA=25oC unless otherwise noted.)
Efficiency (%)
Output Current, IOUT (mA)
Efficiency vs. Output Current
Output Voltage, VOUT (V)
Output Current, IOUT (mA)
Output Voltage vs. Output Current
Efficiency (%)
Output Current, IOUT (mA)
Efficiency vs. Output Current
Output Voltage, VOUT (V)
Output Current, IOUT (mA)
Output Voltage vs. Output Current
Output Voltage, VOUT (V)
Output Current, IOUT (mA)
Output Voltage vs. Output Current
Efficiency (%)
Output Current, IOUT (mA)
Output Voltage vs. Output Current
0
10
20
30
40
50
60
70
80
90
100
0.1 1 10 100 1000
VIN=1.0V
VIN=1.5V
VIN=0.9V
VIN=1.2V
APW7079-18 1.64
1.66
1.68
1.70
1.72
1.74
1.76
1.78
1.80
1.82
1.84
0 50 100 150 200 250 300
VIN=1.5V
VIN=1.2V
VIN=1.0V
VIN=0.9V
APW7079-18
0
10
20
30
40
50
60
70
80
90
100
0.1 110 100 1000
VIN=2.4V
VIN=1.5V
VIN=1.2V
VIN=1.0V
VIN=0.9V
APW7079-30 2.6
2.7
2.8
2.9
3.0
3.1
050 100 150 200 250 300 350 400
VIN=0.9V
VIN=1.0V
VIN=1.2V
VIN=1.5V
VIN=2.4V
APW7079-30
0
10
20
30
40
50
60
70
80
90
100
0.1 1 10 100 1000
VIN=2.4V
VIN=3.6V
VIN=1.5V
VIN=1.2V
VIN=1.0V
VIN=0.9V
APW7079-50
0
1
2
3
4
5
6
050 100 150 200 250 300 350
VIN=0.9V
VIN=1.0V
VIN=1.2V
VIN=1.5V
VIN=3.6V
VIN=2.4V
APW7079-50
Copyright ANPEC Electronics Corp.
Rev. A.4 - Jun., 2009
APW7079
www.anpec.com.tw5
Start-up/Hold-on Voltage, VST /VHOLD (V)
Output Current, IOUT (mA)
Start-up/Hold-on Voltage vs.
Output Current
Start-up/Hold-on Voltage, VST /VHOLD (V)
Output Current, IOUT (mA)
Start-up/Hold-on Voltage vs.
Output Current
Start-up/Hold-on Voltage, VST /VHOLD (V)
Output Current, IOUT (mA)
Start-up/Hold-on Voltage vs.
Output Current
No Load Battery Current, IIN (µA)
Input Voltage, VIN (V)
No Load Battery Current
vs. Input Voltage
Synchronous Switch ON Resistance,
RP-FET ()
Junction Temperature, TJ (oC)
Synchronous Switch ON Resis-
tance vs. Junction Temperature
Main Switch ON Resistance, RN-FET ()
Junction Temperature, TJ (oC)
Main Switch ON Resistance vs.
Junction Temperature
Typical Operating Characteristics (Cont.)
(Refer to the application circuit in the section “Typical Application Circuit, VIN=1.5V, L1=22µH, TA=25oC unless otherwise noted.)
00.5 11.5 22.5 33.5 44.5 5
0
10
20
30
40
50
60
70
APW7079-18 APW7079-30
APW7079-50
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
-50 -25 025 50 75 100 125
APW7079-50
APW7079-30
APW7079-18
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
-50 -25 0 25 50 75 100 125
APW7079-18
APW7079-30
APW7079-50
0
0.2
0.4
0.6
0.8
1
1.2
1.4
010 20 30 40 50
Start-up
Hold-on
APW7079-50
0
0.2
0.4
0.6
0.8
1
1.2
1.4
010 20 30 40 50
Start-up
Hold-on
APW7079-18 0
0.2
0.4
0.6
0.8
1
1.2
1.4
0 10 20 30 40 50
Start-up
Hold-on
APW7079-30
Copyright ANPEC Electronics Corp.
Rev. A.4 - Jun., 2009
APW7079
www.anpec.com.tw6
Operating Waveforms
Heavy Load Switching Waveform
Load Transient Response Line Transient Response
CH1: VIN, 0.5V/Div, DC
CH3: VOUT, 50mV/Div, AC
Time: 0.1ms/Div
1
3
2V
1.5V
VOUT
VIN
CH2: ILX, 200mA/Div, DC
CH3: VOUT, 50mV/Div, AC
CH4: VLX, 2V/Div, DC
Time: 5µs/Div
2
3
4
VLX
ILX
VOUT
IOUT=100mA, VIN=1.5V
CH2: IOUT, 100mA/Div, DC
CH3: VOUT, 50mV/Div, AC
Time: 0.1ms/Div
VOUT
IOUT=10mA -> 110mA -> 10mA
IOUT rise/fall time = 1µs
VIN=1.5V
10mA
110mA
2
3
IOUT
Copyright ANPEC Electronics Corp.
Rev. A.4 - Jun., 2009
APW7079
www.anpec.com.tw7
Pin Description
PIN FUNCTION
NO. NAME
1 LX Junction of N-FET and P-FET Drains. Connect the inductor here and minimize the trace area for
lowest EMI.
2 VOUT Converter output and control circuitry bias supply pin.
3 GND Ground.
Block Diagram
Gate
Driver
Control
Logic
0.9µs Min.
off-time
4µs Max.
on-time
-
+
-
+
VREF
GND
VOUT
RSENSE
Main Switch
Current Limit
Comparator
Error
Comparator
Thermal
Shutdown
LX
Synchronous
Switch
-
+
Zero Crossing
Comparator
Soft
start
2
3
1
Typical Application Circuit
LX VOUT
GND
VIN APW7079
L1
22µH
C1
22µF
IIN IOUT
Copyright ANPEC Electronics Corp.
Rev. A.4 - Jun., 2009
APW7079
www.anpec.com.tw8
Function Description
The over-temperature circuit limits the junction tempera-
ture of the APW7079. When the junction temperature ex-
ceeds 150°C, a thermal sensor turns off the power
MOSFETs, allowing the devices to cool. The thermal sen-
sor allows the converter to start a start-up process and
regulate the output voltage again after the junction tem-
perature cools by 40°C. The OTP is designed with a 40°C
hysteresis to lower the average TJ during continuous ther-
mal overload conditions, increasing lifetime of the device.
Control Scheme
The converter monitors the output voltage. When the in-
ternal feedback voltage falls below the reference voltage,
the main switch turns on and the inductor current ramps
up. The main switch turns off when the current reaches
the peak current limit of typical 600mA. The second crite-
rion that turns off the switch is the maximum on-time of
4µs (typical). As the main switch is turned off, the syn-
chronous switch is turned on and delivers the current to
the output. The main switch remains off for a minimum of
900ns (typical), or until the internal feedback voltage drops
below the reference voltage. By the control scheme with
low quiescent current of 11µA (typical), the converter gets
high efficiency over a wide load range.
Start-Up
A startup oscillator circuit is integrated in the APW7079.
When the power is applied to the device, the circuit pumps
the output voltage high. Once the output voltage reaches
1.4V (typ), the main DC-DC circuitry turns on and boosts
the output voltage to the final regulation point.
Synchronous Rectification
The internal synchronous rectifier eliminates the need
for an external Schottky diode, thus, reducing cost and
board space. During the cycle off-time, the P-channel
MOSFET turns on and shunts the MOSFET body diode.
As a result, the synchronous rectifier significantly improves
efficiency without the addition of an external component.
Conversion efficiency can be as high as 92%.
Over-Temperature Protection
Copyright ANPEC Electronics Corp.
Rev. A.4 - Jun., 2009
APW7079
www.anpec.com.tw9
Application Information
Input Capacitor Selection
The input capacitor is chosen based on the voltage rating
and the RMS current rating. For reliable operation, it is
recommended to select the capacitor voltage rating at
least 1.3 times higher than the maximum input voltage.
The maximum RMS current rating of the input capacitor is
calculated as the following equation:
Output Capacitor Selection
LTV
3
1
IONIN
RMS
=
where TON = main switch max. on-time (4µs typical)
VIN = input voltage
L = inductor value in µH
The capacitors should be placed close to the inductor
and the GND.
An output capacitor is required to filter the output and sup-
ply the load transient current. The output ripple is the sum
of the voltages across the ESR and the ideal output
capacitor. The peak-to-peak voltage of the ESR is calcu-
lated as the following equations:
LIM
ONIN
IN
OUTOUT
PEAK I
L2 TV
VIV
I
+
η
=
ESR x I VPEAKESR =
Where
IPEAK = peak current of inductor in amp
η
= efficiency (0.85 typical)
The peak-to-peak voltage of the ideal output capacitor is
calculated as the following equation:
For the applications using tantalum capacitors, the VCOUT
is much smaller than the VESR and can be ignored.
Therefore, the AC peak-to-peak output voltage (VOUT) is
shown as below:
OUT
ONOUT
COUT CTI
V×
=
ESR x I VPEAKOUT =
Since the output ripple is the product of the peak inductor
current and the output capacitor ESR, using low-ESR tan-
talum capacitors for the best performance or connecting
two or more filter capacitors in parallel is recommended.
Inductor Selection
η
×
= L2 VV
TI
V
V
IINOUT
OFFLIM
OUT
IN
)MAX(OUT
where
TOFF = main switch min. off-time (0.9µs typical)
Therefore, to consider the balance of the efficiency and
component size, an inductor value of 22µH to 47µH is
recommended in most applications.
VIN VOUT
ILX
N-FET P-FET
LX IOUT
ESR
ISWN
ISWP
CIN
COUT
IIN
The inductor value determines the inductor ripple current
and affects the load transient response. It is recom-
mended to select the boost inductor in order to keep the
maximum peak inductor current below the current limit
threshold of the power switch. For example, the current
limit threshold of the APW7079s switch is 600mA. For
choosing an inductor which has peak current passed,
firstly, it is necessary to consider the output load (IOUT),
input (VIN), and output voltage (VOUT). Secondly, the de-
sired current ripple in the inductor also needed to be
taken into account. The current was calculated in Output
Capacitor Selection. Since the output ripple is the prod-
uct of the peak inductor current and the output capacitor
ESR, the larger inductor value reduces the inductor cur-
rent ripple and output voltage ripple but typically offers a
larger physical size.
The inductor value also slightly affects the maximum out-
put current. The maximum output current can be calcu-
lated as below:
Copyright ANPEC Electronics Corp.
Rev. A.4 - Jun., 2009
APW7079
www.anpec.com.tw10
Application Information (Cont.)
ILIM
ILX
IPEAK
IIN
IOUT
ISWN
ISWP
VOUT
VOUT IPEAK x ESR
TR = (PD)(θJA)
Thermal Consideration
In most applications, the APW7079 does not dissipate
much heat due to its high efficiency. However, in applica-
tions where the APW7079 is running at high ambient tem-
perature with low output voltage, the heat dissipated may
exceed the maximum junction temperature of the part. If
the junction temperature reaches approximately 150°C,
both power switches will be turned off and the LX node
will become high impedance. To avoid the APW7079 from
exceeding the maximum junction temperature, the user
will need to do some thermal analysis. The goal of the
thermal analysis is to determine whether the power dis-
sipated exceeds the maximum junction temperature of
the part. The temperature rise is given by:
where PD is the power dissipated by the regulator and θJA
is the thermal resistance from the junction of the die to
the ambient temperature. The junction temperature, TJ,
is given by:
Layout Consideration
RAJT + T = T
whereTA = the ambient temperature.
The power dissipation can be calculated as below:
PD = POUT x (1-η)/η
wherePOUT = Output power (VOUT x IOUT)
η = Efficiency
As an example, the APW7079-18 converts an input volt-
age 1.2V to provide a load current of 175mA at ambient
temperature of 85°C. Assume the efficiency (η) is 0.75.
Therefore, the power dissipated on the converter is:
PD = 1.8 x 0.175 x (1-0.75)/0.75= 0.105 Watt
For all switching power supplies especially with high peak
currents and switching frequency, the layout is an impor-
tant step in the design. If the layout is not carefully done,
the regulator may show noise problems and duty cycle
jitter.
1.The input capacitor should be placed close to the
device, which can reduce copper trace resistance and
effect input ripple of the IC.
2.The inductor should be placed as close as possible to
the switch pin to minimize the switching noise.
3.The output capacitor should be placed closed to the
VOUT and the GND.
The maximum junction temperature should be less than
125°C. Note that, the junction temperature is lower at
higher output voltages due to reduced switch resistance.
TJ = 85°C + (PD)(180) = 104 °C
Since the power dissipation includes the loss of external
components, the actual value is slightly lower. For the
SOT-89 package, the θJA is 180°C/W. Thus, the junction
temperature of the regulator is as below:
Copyright ANPEC Electronics Corp.
Rev. A.4 - Jun., 2009
APW7079
www.anpec.com.tw11
Application Information (Cont.)
Layout Consideration (Cont.)
Copyright ANPEC Electronics Corp.
Rev. A.4 - Jun., 2009
APW7079
www.anpec.com.tw12
Package Information
SOT-89
S
Y
M
B
OMIN. MAX.
MILLIMETERS
SOT-89
MIN. MAX.
INCHES
A
C
e1
e
B
B1
D
D1
H
EL
E1
1.60
0.44
0.35 0.44
4.40 4.60
1.62 1.83
0.56
2.13
A
B
C
D
D1
E
E1
e
e1
B1 0.36 0.48
3.00 BSC
3.94 4.25
2.29 2.60
2.29
0.118 BSC
0.063
0.017
0.014 0.019
0.014 0.017
0.173 0.181
0.064 0.072
0.084
0.155 0.167
0.090 0.102
0.090
0.022
L0.89 0.035
H
1.50 BSC 0.059 BSC
1.40
1.20 0.047
0.055
L
Note : Follow JEDEC TO-243 AA.
Copyright ANPEC Electronics Corp.
Rev. A.4 - Jun., 2009
APW7079
www.anpec.com.tw13
Application
A H T1 C d D W E1 F
178.0±2.00
50 MIN.
12.4+2.00
-0.00
13.0+0.50
-0.20
1.5 MIN.
20.2 MIN.
12.0±0.30
1.75±0.10
5.50±0.05
P0 P1 P2 D0 D1 T A0 B0 K0
SOT-89
4.0±0.10
8.0±0.10
2.0±0.05
1.5+0.10
-0.00
1.5 MIN.
0.6+0.00
-0.40
4.80±0.20
4.50±0.20
1.80±0.20
Carrier Tape & Reel Dimensions
Devices Per Unit
(mm)
Package Type Unit Quantity
SOT-89 Tape & Reel 1000
H
T1
A
d
A
E1
A
B
W
F
T
P0
OD0
BA0
P2
K0
B0
SECTION B-B
SECTION A-A
OD1
P1
Copyright ANPEC Electronics Corp.
Rev. A.4 - Jun., 2009
APW7079
www.anpec.com.tw14
Taping Direction Information
SOT-89
USER DIRECTION OF FEED
Classification Profile
Copyright ANPEC Electronics Corp.
Rev. A.4 - Jun., 2009
APW7079
www.anpec.com.tw15
Classification Reflow Profiles
Profile Feature Sn-Pb Eutectic Assembly Pb-Free Assembly
Preheat & Soak
Temperature min (Tsmin)
Temperature max (Tsmax)
Time (Tsmin to Tsmax) (ts)
100 °C
150 °C
60-120 seconds
150 °C
200 °C
60-120 seconds
Average ramp-up rate
(Tsmax to TP) 3 °C/second max. 3°C/second max.
Liquidous temperature (TL)
Time at liquidous (tL) 183 °C
60-150 seconds 217 °C
60-150 seconds
Peak package body Temperature
(Tp)* See Classification Temp in table 1 See Classification Temp in table 2
Time (tP)** within 5°C of the specified
classification temperature (Tc) 20** seconds 30** seconds
Average ramp-down rate (Tp to Tsmax)
6 °C/second max. 6 °C/second max.
Time 25°C to peak temperature 6 minutes max. 8 minutes max.
* Tolerance for peak profile Temperature (Tp) is defined as a supplier minimum and a user maximum.
** Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum.
Table 1. SnPb Eutectic Process Classification Temperatures (Tc)
Package
Thickness Volume mm3
<350 Volume mm3
350
<2.5 mm 235 °C 220 °C
2.5 mm 220 °C 220 °C
Table 2. Pb-free Process Classification Temperatures (Tc)
Package
Thickness Volume mm3
<350 Volume mm3
350-2000 Volume mm3
>2000
<1.6 mm 260 °C 260 °C 260 °C
1.6 mm 2.5 mm 260 °C 250 °C 245 °C
2.5 mm 250 °C 245 °C 245 °C
Reliability Test Program
Test item Method Description
SOLDERABILITY JESD-22, B102 5 Sec, 245°C
HOLT JESD-22, A108 1000 Hrs, Bias @ 125°C
PCT JESD-22, A102 168 Hrs, 100%RH, 2atm, 121°C
TCT JESD-22, A104 500 Cycles, -65°C~150°C
HBM MIL-STD-883-3015.7 VHBM2KV
MM JESD-22, A115 VMM200V
Latch-Up JESD 78 10ms, 1tr100mA
Copyright ANPEC Electronics Corp.
Rev. A.4 - Jun., 2009
APW7079
www.anpec.com.tw16
Customer Service
Anpec Electronics Corp.
Head Office :
No.6, Dusing 1st Road, SBIP,
Hsin-Chu, Taiwan, R.O.C.
Tel : 886-3-5642000
Fax : 886-3-5642050
Taipei Branch :
2F, No. 11, Lane 218, Sec 2 Jhongsing Rd.,
Sindian City, Taipei County 23146, Taiwan
Tel : 886-2-2910-3838
Fax : 886-2-2917-3838