2009 Microchip Technology Inc. DS21711J-page 1
24AA01/24LC01B
Device Selection Table
Features:
Single Supply with Operation down to 1.7V for
24AAXX Devices, 2.5V for 24LCXX Devices
Low-Power CMOS Technology:
- Read current 1 mA, max.
- Standby current 1 A, max. (I-temp)
2-Wire Serial Inte rfac e, I2C™ Compatible
Schmitt Trigger inputs for Noise Suppression
Output Slope Control to eliminate Ground Bounce
100 kHz and 400 kHz Compatibility
Page Write Time 3 ms, typical
Hardware Write-Protect
ESD Protection >4,000V
More than 1 Million Erase/Write Cycles
Data Retention >200 Years
Factory Programmable Available
Packages include 8-lead PDIP, SOIC, TSSOP,
DFN, TDFN, MSOP, 5-lead SOT-23 and SC-70
Pb-free and RoHS Compliant
Temperature Ranges:
- Industrial (I): -40°C to +85°C
- Automotive (E): -40°C to +125°C
Description:
The Microchip Technology Inc. 24AA01/24LC01B
(24XX01* ) is a 1 Kb it El ect ric all y Era sable PROM. Th e
devi ce is orga nized as o ne block o f 128 x 8 -bit mem ory
with a 2-wire serial interface. Low-voltage design
permit s operation down to 1.7V with st andby and ac tive
currents of only 1 A and 1 mA, respectively. The
24XX01 also has a page write capability for up to 8
bytes of data. The 24XX01 is available in the standard
8-pin PDIP, surface mount SOIC, TSSOP, 2x3 DFN,
2x3 TDFN and MSOP packages, and is also available
in the 5-lead SOT-23 and SC-70 packages.
Package Types
Block Diagram
Part
Number VCC
Range Max. Clock
Frequency Temp.
Ranges
24AA01 1.7-5.5 400 kHz(1) I
24LC01B 2.5-5.5 400 kHz I, E
Note 1: 100 kHz for VCC <2.5V.
A0
A1
A2
VSS
VCC
WP
SCL
SDA
1
2
3
4
8
7
6
5
PDIP, MSOP SOIC, TSSOP
A0
A1
A2
VSS
1
2
3
4
8
7
6
5
VCC
WP
SCL
SDA
DFN/TDFN
A0
A1
A2
VSS
WP
SCL
SDA
VCC
SOT-23/SC-70
15
4
3
SCL
Vss
SDA
WP
Vcc
2
Note: Pins A0, A1 and A2 are not used by the 24XX01 (no
intern al connect ions).
8
7
6
5
1
2
3
4
HV Ge n erato r
EEPROM
Array
Page Latches
YDEC
XDEC
Sense Amp.
Memory
Control
Logic
I/O
Control
Logic
I/O
WP
SDA
SCL
VCC
VSS R/W Control
1K I2C Serial EEPROM
24AA01/24LC01B
DS21711J-page 2 2009 Microchip Technology Inc.
1.0 ELECTRICAL CHARAC TERISTICS
Absolute Maximum Ratings (†)
VCC.............................................................................................................................................................................6.5V
All inputs and outputs w.r.t. VSS ......................................................................................................... -0.3V to VCC +1.0V
Storage temperature ...............................................................................................................................-65°C to +150°C
Ambient temperature with power applied................................................................................................-40°C to +125°C
ESD protection on all pins 4kV
TABLE 1-1: DC CHARACTERISTICS
† NOTICE: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to
the device. This is a stress rating only and functional operation of the device at those or any other conditions
above th ose indi cated in the opera tional li stings of this sp ecificati on is no t implie d. Exposu re to max imum rating
conditions for extended periods may affect device reliability.
DC CHARACTERISTICS Industrial (I): TA = -40°C to +85°C, VCC = +1.7V to +5.5V
Automotive (E): TA = -40°C to +125°C, VCC = +2.5V to +5.5V
Param.
No. Sym. Characteristic Min. Typ. Max. Units Conditions
D1 VIH WP, SCL and SDA pins ——
D2 High-level input voltage 0.7 VCC ——V
D3 VIL Low-level input voltage 0.3 VCC V—
D4 VHYS Hysteresis of Schmitt
Trigger inputs 0.05 VCC ——V(Note)
D5 VOL Low-level output voltage 0.40 V IOL = 3.0 mA, VCC = 2.5V
D6 ILI Input leakage current ——±1AVIN = VSS or VCC
D7 ILO Output le akage curren t ——±1AVOUT = VSS or VCC
D8 CIN,
COUT Pin capacitance
(all inputs/ou tpu t s) ——10pFVCC = 5. 0V (Note)
TA = 25°C, FCLK = 1 MHz
D9 ICC write Operating current —0.13mAVCC = 5.5V, SCL = 400 kHz
D10 ICC read 0.05 1 mA
D11 ICCS Standby current
0.01
1
5

Industrial
Automotive
SDA = SCL = VCC
WP = VSS
Note: This parameter is periodically sampled and not 100% tested.
2009 Microchip Technology Inc. DS21711J-page 3
24AA01/24LC01B
TABLE 1-2: AC CHARACTERISTICS
AC CHARACTERISTICS Industrial (I): TA = -40°C to +85°C, VCC = +1.7V to +5.5V
Automotive (E): TA = -40°C to +125°C, VCC = +2.5V to +5.5V
Param.
No. Sym. Characteristic Min. Typ. Max. Units Conditions
1F
CLK Clock frequency
400
100 kHz 2.5V VCC 5.5V
1.7V VCC 2.5V (24AA01)
2T
HIGH Clock high time 600
4000
ns 2.5V VCC 5.5V
1.7V VCC 2.5V (24AA01)
3TLOW Clock low time 1300
4700
ns 2.5V VCC 5.5V
1.7V VCC 2.5V (24AA01)
4TRSDA and SCL rise time
(Note 1)
300
1000 ns 2.5V VCC 5.5V
1.7V VCC 2.5V (24AA01)
5T
FSDA and SCL fall time
300 ns (Note 1)
6T
HD:STA Start condition hold time 600
4000
ns 2.5V VCC 5.5V
1.7V VCC 2.5V (24AA01)
7TSU:STA Start condition setup
time 600
4700
ns 2.5V VCC 5.5V
1.7V VCC 2.5V (24AA01)
8T
HD:DAT Data input hold time 0
—ns(Note 2)
9T
SU:DAT Data input setup time 100
250
ns 2.5V VCC 5.5V
1.7V VCC 2.5V (24AA01)
10 TSU:STO Stop condition setup
time 600
4000
ns 2.5V VCC 5.5V
1.7V VCC 2.5V (24AA01)
11 TAA Output valid from clock
(Note 2)
900
3500 ns 2.5V VCC 5.5V
1.7V VCC 2.5V (24AA01)
12 TBUF Bus free-time: Time the
bus mu st be free befo r e
a new transmission can
start
1300
4700
ns 2.5V VCC 5.5V
1.7V VCC 2.5V (24AA01)
13 TOF Output fall time from VIH
minimum to VIL
maximum
20+0.1CB
250
250 ns 2.5V VCC 5.5V
1.7V VCC 2.5V (24AA01)
14 TSP Input filter spike
suppression
(SDA and SCL pins)
50 ns (N otes 1 and 3)
15 TWC Write cycl e time
(byte or page) ——5ms
16 Endurance 1M cycles 25°C, (Note 4)
Note 1: Not 100% tested. CB = total capacitance of one bus line in pF.
2: As a transmitter, the device must provide an internal minimum delay time to bridge the undefined region
(minimum 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.
3: The co mbine d TSP and VHYS s pec ifi ca tio ns are due to n ew Sc hm it t Trigger inp ut s w h ic h p rov id e i mp rov ed
noise spike suppression. This eliminates the need for a TI specification for standard operation.
4: This parameter is not tested but ensured by characterization. For endurance es timates in a specific
applic ation, pl ease co nsult the Total Enduran ce™ Mode l which ca n be obt ain ed from Mi crochi p’ s web site
at www.microchip.com.
24AA01/24LC01B
DS21711J-page 4 2009 Microchip Technology Inc.
FIGURE 1-1: BUS TIMING DATA
FIGURE 1-2: BUS T IMING START/STOP
7
524
8910
12
11
14 6
SCL
SDA
IN
SDA
OUT
3
76
D4
10
Start Stop
SCL
SDA
2009 Microchip Technology Inc. DS21711J-page 5
24AA01/24LC01B
2.0 PIN DESCRIPTIONS
The descriptions of the pins are listed in Table 2-1.
TABLE 2-1: PIN FUNCTION TABLE
2.1 A0, A1, A2
The A0, A1 and A2 pins are not used by the 24XX01.
They may be left floating or tied to either VSS or VCC.
2.2 Serial Address/Data Input/Output
(SDA)
The SDA input is a bidirectional pin used to transfer
addresse s and data into an d out of the device . Since
it is an open-drain terminal, the SDA bus requires a
pull-up resistor to VCC (typical 10 k for 100 kHz,
2k for 40 0 k Hz ).
For normal data transfer, SDA is allowed to change
only during SCL low. Changes during SCL high are
reserved for indicating Start and Stop conditions.
2.3 Serial Clock (SCL)
The SCL in put is u sed to sy nc hro niz e th e da t a tra nsfer
to and from the device.
2.4 Wr it e-Protect (WP)
This pin must be connected to either VSS or VCC.
If tied to VSS, normal memory operation is enabled
(read/wri te the ent ire memory 00-7F).
If tied to VCC, write operations are inhibited. The entire
memory will be write-protected. Read operations are
not affected.
Name PDIP SOIC TSSOP DFN TDFN MSOP SOT23 SC-70 Description
A0 1 1 1 1 1 1 Not Connected
A1 2 2 2 2 2 2 Not Connected
A2 3 3 3 3 3 3 Not Connected
VSS 4 4 4 4 4 4 2 2 Ground
SDA 5 5 5 5 5 5 3 3 Serial Address/Data I/O
SCL 6 6 6 6 6 6 1 1 Serial Clock
WP 7 7 7 7 7 7 5 5 Write-Protect Input
VCC 8 8 8 8 8 8 4 4 +1.7V to 5.5V Power Supply
24AA01/24LC01B
DS21711J-page 6 2009 Microchip Technology Inc.
3.0 FUNCTIONAL DESCRIPTION
The 24XX01 supports a bidirectional, 2-wire bus and
data transmission protocol. A device that sends data
onto the bus is defined as transmitter, while defining a
device receiving data as a receiver. The bus has to be
controlled by a master device which generates the
Serial Clock (SCL), controls the bus access and
generates the Start and Stop conditions, while the
24XX01 works as slave. Both master and slave can
operate as transmitter or receiver, but the master
device determines which mode is activated.
4.0 BUS CHARACTERISTICS
The following bus protocol has been defined:
Data transfer may be initiated only when the bus
is not busy.
During data transfer, the data line must remain
stab le when ever th e clock lin e is high . Change s in
the data line while the clock line is high will be
interpreted as a Start or Stop condition.
Accordingly, the following bus conditions have been
defined (Figu re 4-1).
4.1 Bus Not Busy (A)
Both data and clock lines remain high.
4.2 Start Data Transfer (B)
A high-to-low transition of the SDA line while the clock
(SCL) is high determines a Start condition. All
commands must be preceded by a Start condition.
4.3 S top Data Transfer (C)
A low-to-high transition of the SDA line while the clock
(SCL) is high determines a Stop condition. All
operations must be ended with a Stop condition.
4.4 Data Valid (D)
The state of the data line represents valid data when,
after a Start condition, the data line is stable for the
duration of the high period of the clock signal.
The data on the line must be changed during the low
period of the clock signal. There is one clock pulse per
bit of data.
Each dat a transf er is initiated w ith a S tart condition an d
terminated with a Stop condition. The number of data
bytes transferred between the Start and Stop
conditions is determined by the master device and is,
theoretically, unlimited (although only the last sixteen
will be st ored wh en do ing a w ri te op era tio n). W hen an
overwrite does occur, it will replace data in a first-in
first- out (FIFO) fashion.
4.5 Acknowledge
Each receiving device, when addressed, is obliged to
generate an acknowledge after the reception of each
byte. Th e mast er device mus t ge nera te a n ex tra c lock
pulse which is associated with this Acknowledge bit.
The device that acknowledges has to pull down the
SDA line d uring th e ackn owledge clock pulse in such a
way that the SDA line is stable-low during the high
period of the acknowledge-related clock pulse. Of
course, setup and hold times must be taken into
account. During reads, a master must signal an end of
data to t he sla ve by not ge nerati ng an Ac knowl edge b it
on the las t by te that has be en c loc ke d ou t of th e sl av e.
In this c as e, the sl ave (24XX01) w ill le av e th e d at a line
high to enable the master to generate the Stop
condition.
FIGURE 4-1: DAT A TRANSFER SEQUENCE ON THE SERIAL BUS
Note: The 24XX01 does not generate any
Acknowledge bits if an internal
programming cycle is in progress.
SCL
SDA
(A) (B) (D) (D) (A)(C)
Start
Condition Address or
Acknowledge
Valid
Data
Allowed
to Change
Stop
Condition
2009 Microchip Technology Inc. DS21711J-page 7
24AA01/24LC01B
5.0 DEVICE ADDRESSING
A control byte is the first byte received following the
S tar t condition from the m aster device . The co ntrol byte
consis ts of a four -bit control c ode. For the 24XX01, thi s
is set as ‘1010’ binary for read and write operations.
The next three bits of the control byte are “don’t cares”
for the 24XX01.
The last bit of the control byte defines the operation to
be performed. When set to ‘1’, a read operation is
select ed. W hen set to ‘0 , a write operati on is se lecte d.
Follow in g the Start condi tio n, the 24XX01 moni tors the
SDA bus, checking the device type identifier being
transmitted. Upon receiving a ‘1010’ code, the slave
device output s an Acknow ledge signal on the SDA lin e.
Depen din g on th e state of the R/W bit, the 24XX01 wil l
select a read or write operation.
FIGU RE 5-1 : CONTROL BYT E
ALLOCATION
FIGURE 5-2: ADDRESS SEQUENCE BIT ASSIGN MENTS
Operation Control
Code Block Select R/W
Read 1010 Block Addre ss 1
Write 1010 Block Address 0
1010xxx
R/W ACK
Start Bit
Read/Write Bit
x = “don’t care”
S
Slave Address
Acknowledge Bit
Control Code
Block
Select
Bits
1010xxR/W A
6A
0
••
Control Byte Address Low Byte
Control
Code Block
Select
bits
x = “don’t care”
xx
24AA01/24LC01B
DS21711J-page 8 2009 Microchip Technology Inc.
6.0 WRITE OPERATION
6.1 Byte Write
Following the Start condition from the master, the
device code (4 bits), the block address (3 bits, “don’t
cares”) and the R/W bit, which is a logic-low, is placed
onto the bus by the master transmitter . This indicates to
the addressed slave receiver that a byte with a word
address will follow after it has generated an Acknowl-
edge bit during the ninth clock cycle. Therefore, the
next byte transmitted by the master is the word address
and will be written into the Address Pointer of the
24XX01. After receiving another Acknowledge signal
from the 24XX01, the master device will transmit the
data word to be written into the addressed memory
location. The 24XX01 acknowledges again and the
master generates a Stop condition. This initiates the
internal write cycle, and, during this time, the 24XX01
will not generate Acknowledge signals (Figure 6-1).
6.2 Page Write
The write control byte, word add ress and firs t data by te
are transmitted to the 24XX01 in the same way as in a
byte write. However, instead of generating a Stop
conditi on, the mas ter transmit s up to 8 d ata bytes to the
24XX01, which are temporarily stored in the on-chip
page buffer and will be written into the memory once
the master has transmitted a Stop condition. Upon
receipt of each word, the four lower-order Address
Pointer bits are internally incremented by ‘1’. The
higher-order 7 bits of the word address remain
constant. If the master should transmit more than 8
words prior to generating the Stop condition, the
address counter will roll over and the previously
receive d dat a will be overwri tten. As w ith the by te write
operation, once the Stop condition is received, an
internal write cycle will begin (Figure 6-2).
6.3 Write Protection
The W P pin a llows th e user t o writ e-prote ct the entire
array (00-7F ) when the pin is tied to VCC. If tied to VSS,
the write protection is disabled.
FIGURE 6-1: BYTE WRITE
Note: Page write opera tions are l imited to wri ting
bytes within a single physical page
regardless of the number of bytes
actually being written. Physical page
boundaries start at addresses that are
integer multiples of the page buffer size (or
‘page siz e’ ) an d end at ad dres s es that are
integer multiples of [page size – 1]. If a
page write command attempts to write
across a physical page boundary, the
result is that the data wraps around to the
beginning of the current page (overwriting
data previously stored there), instead of
being w ritten to the next page, as migh t be
expected. It is therefore necessary for the
application software to prevent page write
operations that would attempt to cross a
page boundary.
S P
Bus Acti vity
Master
SDA Line
Bus Activity
S
T
A
R
T
S
T
O
P
Control
Byte Word
Address Data
A
C
K
A
C
K
A
C
K
1010xxx0
x = “don’t care”
Block
Select
Bits
2009 Microchip Technology Inc. DS21711J-page 9
24AA01/24LC01B
FIGURE 6-2: PAGE WRITE
S P
Bus Acti vity
Master
SDA Line
Bus Acti vity
S
T
A
R
T
Control
Byte Word
Address (n) Data (n) Data (n + 7)
S
T
O
P
A
C
K
A
C
K
A
C
K
A
C
K
A
C
K
Data (n + 1)
x = “don’t care”
10 10xxx0
Block
Select
Bits
24AA01/24LC01B
DS21711J-page 10 2009 Microchip Technology Inc.
7.0 ACKNOWLEDGE POLLING
Since the device will not acknowledge during a write
cycle, this can be used to determine when the cycle is
complete (this feature can be used to maximize bus
throughput). Once the Stop condition for a write
comma nd has been is sued from the master , the device
initiates the internally-timed write cycle. ACK polling
can then be initiated immediately. This involves the
master sending a S tart c ondition fo llowed by t he contro l
byte for a write c ommand (R/W = 0). If the devic e is still
busy wi th the write cycle, no ACK will be returned. If the
cycle is complete, the device will return the ACK and
the mas ter can then pr oceed with the nex t read or wr ite
command. See Figure 7-1 for a flow diagram of this
operation.
FIGURE 7-1: ACKNOWLEDGE POLLING
FLOW
Send
Write Command
Send Stop
Condition to
Initiate Write Cycle
Send Start
Send Control Byte
with R/W = 0
Did Device
Acknowledge
(ACK = 0)?
Next
Operation
No
Yes
2009 Microchip Technology Inc. DS21711J-page 11
24AA01/24LC01B
8.0 READ OPERATION
Read operations are initiated in the same way as write
operations, with the exception that the R/W bit of the
slave address is set to1’. There are three basic types
of read operat ions: current address read , rand om rea d
and sequential read.
8.1 Current Address Read
The 24XX01 contains an address counter that
maintains the address of the last word accessed,
inter nal ly i nc rem ente d by 1’. Th erefore, if the p reviou s
access (either a read or write operation) was to
address n, the next current address read operation
would access data f rom add ress n + 1 . Upon re ceipt of
the slave address with R/W bit set to ‘1’, the 24XX01
issues an acknowledge and transmits the 8-bit data
word. Th e master will not acknowle dge the transfe r , but
does generate a Stop condition and the 24XX01
discontinues transmission (Figure 8-1).
8.2 Random Read
Random read operations allow the master to access
any memory location in a random manner. To perform
this typ e of re ad ope ratio n, the word add res s mus t firs t
be set. This is accomplished by sending the word
address to the 24XX01 as part of a write operation.
Once th e word address is s ent, the master ge nerates a
Start condition following the acknowledge. This
terminates the write operation, but not before the inter-
nal Address Pointer is set. The master then issues the
control byt e agai n, but wi th the R /W bit se t to a ‘ 1’. The
24XX01 will then issue an acknowledge and transmits
the 8-bit data word. The master will not acknowledge
the transfer , but do es generate a S top condition and the
24XX01 discontinues transmission (Figure 8-2).
8.3 Sequentia l Read
Sequential reads are initiated in the same way as a
random read, except that once the 24XX01 transmits
the first data byte, the master issues an acknowledge
(as opposed to a S top condition in a random read). This
directs the 24XX01 to transmit the next sequentially
addressed 8-bit word (Figure 8-3).
To provide sequential reads the 24XX01 contains an
internal Address Pointer which is incremented by one
at the completion of each operation. This Address
Pointer allows the entire memory contents to be serially
read during one operation.
8.4 Noise Protection
The 24XX01 employs a VCC threshold detector circuit
which disables the internal erase/write logic if the VCC
is below 1.5V at nominal conditions.
The SCL and SDA inputs have Schmitt Trigger and
filter circuits which suppress noise spikes to assure
proper device operation even on a noisy bus.
FIGURE 8-1: CURRENT ADDRESS READ
SP
Bus Activity
Master
SDA Line
Bus Activity
S
T
O
P
Control
Byte Data (n)
A
C
KN
o
A
C
K
S
T
A
R
T
Block
Select
Bits
x = “don’t care”
1010xxx1
24AA01/24LC01B
DS21711J-page 12 2009 Microchip Technology Inc.
FIGURE 8-2: RANDOM READ
FIGU RE 8-3 : SEQUE NT I AL RE A D
S P
S
Bus Activity
Master
SDA Line
Bus Activity
S
T
A
R
T
S
T
O
P
Control
Byte
A
C
K
Word
Address (n) Control
Byte
S
T
A
R
TData (n)
A
C
KA
C
KN
o
A
C
K
x = “don’t care”
1010 xxx01010xxx 1
Block
Select
Bits
Block
Select
Bits
P
Bus Activity
Master
SDA Line
Bus Activity
S
T
O
P
Control
Byte
A
C
KN
o
A
C
K
Data (n) Data (n + 1) Data (n + 2) Data (n + x)
A
C
KA
C
KA
C
K
1
2009 Microchip Technology Inc. DS21711J-page 13
24AA01/24LC01B
9.0 PACKAGING INFORMATION
9.1 Package Marking Information
XXXXXXXX
T/XXXNNN
YYWW
8-Lead PDIP (300 mil) Example:
8-Lead SOIC (3.90 mm) Example:
XXXXXXXT
XXXXYYWW
NNN
8-Lead TSSOP Example:
24LC01B
I/P 13F
0527
24LC01BI
SN 0527
13F
8-Lead MSOP Example:
XXXX
TYWW
NNN
XXXXT
YWWNNN
4L1B
I527
13F
4L1BI
52713F
5-Lead SOT-23 Example:
XXNN M13F
3
e
3
e
24AA01/24LC01B
DS21711J-page 14 2009 Microchip Technology Inc.
Part Numbe r
1st Line Marking Codes
TSSOP MSOP SOT-23 DFN TDFN SC-70
I Temp. E Temp. I Temp. E Temp. I Temp. E Temp. I Temp. E Temp.
24AA01 4A01 4A01T B1NN 211 A11 B2NN
24LC01B 4L1B 4L1BT M1NN N1NN 214 215 A14 A15 B1NN B3NN
Note: T = Temperature grade (I, E)
NN = Alphanumeric traceability code
Legend: XX...X Part number or part number code
T Temperature (I, E)
Y Year code (last digit of calendar year)
YY Year code (last 2 digits of calendar year)
WW Week c ode (w eek of January 1 is week ‘01’)
NNN Alphanumeric traceability code (2 characters for small packages)
Pb-free JEDEC designator for Matte Tin (Sn)
Note: For very small packages with no room for the Pb-free JEDEC designator
, the marking will only appear on the outer carton or reel label.
Note: In the event the full Mi croch ip pa rt numbe r can not be ma rked on one line , it will
be carried over to the next line, thus limiting the number of available
characters for customer-specific information.
3
e
3
e
8-Lead 2x3 TDFN
XXX
YWW
NN
A14
527
13
Example:
8-Lead 2x3 DFN
XXX
YWW
NN
214
527
13
Example:
5-Lead SC-70 Example:
XXNN B13F
Note: Please visit www.microchip.com/Pbfree for the latest information on Pb-free conversion.
*Standard OTP marking consists of Microchip part number, year code, week code, and traceability code.
2009 Microchip Technology Inc. DS21711J-page 15
24AA01/24LC01B


  !"#$%&"' ()"&'"!&)&#*&&&#
 +%&,&!&
- '!!#.#&"#'#%!&"!!#%!&"!!!&$#/!#
 '!#&.0
1,21!'!&$& "!**&"&&!
 3&'!&"&4#*!(!!&4%&&#&
&&255***''54
6&! 7,8.
'!9'&! 7 7: ;
7"')%! 7 <
& 1,
&& = = 
##44!!   - 
1!&&   = =
"#&"#>#& .  - -
##4>#& .   <
: 9& -< -? 
&& 9  - 
9#4!! <  
69#>#& )  ? 
9*9#>#& )  < 
: *+ 1 = = -
N
E1
NOTE 1
D
12
3
A
A1
A2
L
b1
b
e
E
eB
c
  * ,<1
24AA01/24LC01B
DS21711J-page 16 2009 Microchip Technology Inc.
 ! ""#$%& !'

  !"#$%&"' ()"&'"!&)&#*&&&#
 +%&,&!&
- '!!#.#&"#'#%!&"!!#%!&"!!!&$#''!#
 '!#&.0
1,2 1!'!&$& "!**&"&&!
.32 %'!("!"*&"&&(%%'&"!!
 3&'!&"&4#*!(!!&4%&&#&
&&255***''54
6&! 99..
'!9'&! 7 7: ;
7"')%! 7 <
& 1,
: 8& = = 
##44!!   = =
&#%%+  = 
: >#& . ?1,
##4>#& . -1,
: 9& 1,
,'%@&A  = 
3&9& 9  = 
3&& 9 .3
3& IB = <B
9#4!!  = 
9#>#& ) - = 
#%& DB = B
#%&1&&' EB = B
D
N
e
E
E1
NOTE 1
12 3
b
A
A1
A2
L
L1
c
h
h
φ
β
α
  * ,1
2009 Microchip Technology Inc. DS21711J-page 17
24AA01/24LC01B
 ! ""#$%& !'
 3&'!&"&4#*!(!!&4%&&#&
&&255***''54
24AA01/24LC01B
DS21711J-page 18 2009 Microchip Technology Inc.
2009 Microchip Technology Inc. DS21711J-page 19
24AA01/24LC01B
," !*-, , !

  !"#$%&"' ()"&'"!&)&#*&&&#
 '!!#.#&"#'#%!&"!!#%!&"!!!&$#''!#
- '!#&.0
1,2 1!'!&$& "!**&"&&!
.32 %'!("!"*&"&&(%%'&"!!
 3&'!&"&4#*!(!!&4%&&#&
&&255***''54
6&! 99..
'!9'&! 7 7: ;
7"')%! 7 <
& ?1,
: 8& = = 
##44!!   < 
&#%%   = 
: >#& . 1,
##4>#& . -1,
: 9& -1,
3&9& 9  ? <
3&& 9 .3
3& B = <B
9#4!! < = -
9#>#& )  = 
D
N
E
E1
NOTE 1
12
e
b
A
A1
A2
c
L1 L
φ
  * ,1
24AA01/24LC01B
DS21711J-page 20 2009 Microchip Technology Inc.
. !(""!( !(/

 '!!#.#&"#'#%!&"!!#%!&"!!!&$#''!#
 '!#&.0
1,2 1!'!&$& "!**&"&&!
 3&'!&"&4#*!(!!&4%&&#&
&&255***''54
6&! 99..
'!9'&! 7 7: ;
7"')%! 7
9#& 1,
:"&!#9#&  1,
: 8&  = 
##44!!  < = -
&#%%   = 
: >#& .  = -
##4>#& . - = <
: 9&  = -
3&9& 9  = ?
3&& 9 - = <
3& B = -B
9#4!! < = ?
9#>#& )  = 
φ
N
b
E
E1
D
123
e
e1
A
A1
A2 c
L
L1
  * ,1
2009 Microchip Technology Inc. DS21711J-page 21
24AA01/24LC01B
. !(""( '0

 '!!#.#&"#'#%!&"!!#%!&"!!!&$#''!#
 '!#&.0
1,2 1!'!&$& "!**&"&&!
 3&'!&"&4#*!(!!&4%&&#&
&&255***''54
6&! 99..
'!9'&! 7 7: ;
7"')%! 7
& ?1,
: 8& < = 
##44!!  < = 
&#%%   = 
: >#& . <  
##4>#& .   -
: 9& <  
3&9& 9   ?
9#4!! < = ?
9#>#& )  = 
D
b
1
23
E1
E
45
ee
c
L
A1
AA2
  * ,?1