AYA BBomnomones LM118-LM218 LM318 SINGLE OPERATIONAL AMPLIFIERS a INPUT OFFSET VOLTAGE : 4 mV max. LM118 LM218 10 mV max. LM318 i: mg INPUT BIAS CURRENT : 250nA max. a INPUT OFFSET CURRENT : 50nA max. D ws SLEW RATE OF 150 V/us AS INVERTING DIP8 sos AMPLIFIER (Plastic Package) (Plastic Micropackage) J CERDIP8 DESCRIPTION (Cerdip Package) The LM118, LM218 and LM318 are precision high | speed operational amplifiers designed for applica- Gan | tions requiring wide bandwidth and high slew rate. | They feature internal frequency compensation and a factor of ten increase in speed over general pur- H pose devices. TO9s9 Although, no external frequency compensation (Metal Can) ; components are needed for operation, feedforward compensation may be used to further increase the | speed. For inverting applications, feedforward com- pensation will boost the slew rate to over 150 Vius ORDER CODES and almost double the bandwidth. However, for non- : . . sae , rt T Package _ inverting or differential applications feedforward Neher henge HN 7 D : cannot be used. rMi18 55 4 105C Se be Te The high speed and fast settling time of these op LM2t8 40, 405C | elele amps make them useful in A/D converters, oscilla- oF tors, active filters, sample and hold circuits, or LM318 0, + 70C sj|evrte | general purpose amplifiers. Examples : LM118J, LM218H PIN CONNECTIONS (top views) TOSS DIP&/CERDIP3 sos 1 - Balance/Compensation 1 7 2 - Inverting input 1 1 8 3 - Non-inverting input 4-Veo 2 go 7 5 - Balance/Compensation 3 3 1 i Ns 6 - Output 7 - Vec* 4] 5 8 - Compensation 2 118-01.EPS 118-02.EPS December 1992 18 317 118-01.TBLLM118 - LM218 - LM318 SCHEMATIC DIAGRAM j Balance | Compensation Compensation | Oo + vec : l Alay) Ate h Ata J | Ten Vek 82 mn , {025 | c1 i 100pF ou a15 ais { Geet R16, j O13 Geir i A10 AN : _. ZOKR Oks 016 j Compensation oe on ss Inverting input ax gs ts Non-inverting input | 030 i 20 21 i a23 ' a9 ji? 1 2es2 Ap 12a . Lovee 118-03.EPS ABSOLUTE MAXIMUM RATINGS : Symbol Parameter LM118 LM218 LM318 Unit Vcc _| Supply Voltage +20 +20 +20 Vv : Vi Input Voltage - (note 1) +15 +15 +15 Vv lia Differential Input Current - (note 2) +10 +10 +10 mA Output Short-circuit Duration Infinite Prot Power Dissipation LM318D 300 mw All other Versions 500 500 500 Toper | Operating Free-air Temperature Range ~55 to +125 | 40 to +105 0 to +70 C Tstg Storage Temperature Range ~65 to +150 | -65 to +150 | -65 to +150 c Notes: 1. For supply voltage less than t15V, the absolute maximum input voltage is equal to the supply voltage 2. The inputs are shunted with shunt diodes for overvoltage protection. Therefore, excessive current will flow if a differential input voltage in excess of 1V is applied between the inputs unless some limiting resistance is used. | 218 SGS-THOMSON | Ly SSNS I 318 \ELECTRICAL CHARACTERISTICS ' +5V <$Vec < +20V, Ci LM118 - LM218 - LM318 = 30pF, Tamp = 25C(unless otherwise specified) Symbol Parameter LM118 - LM218 LM318 Min. | Typ. Typ. Unit Vio Input Offset Voltage (Rg < 10k22) Tamb = 25C Tin. S Tamb < Tmax. 2 4 6 10 15 mV lib Input Bias Current Tamb = 25C Tin. < Tamb S Tmax. 160 250 500 160 500 750 nA lio Input Offset Current Tamp = 25C Tmin S Tamb S Tmax 50 100 200 Ava Large Signal Voltage Gain (Veco = 15V, Vo = 10V, Ri = 2kQ2) Tamb = 25C Tmin. < Tamb S Tmax. 50 200 25 25 20 200 VimV SVR Supply Voltage | Rejection Ratio (Rs < 10kQ) Tamb = Tmin. < foe S Tmax. 70 97 70 65 97 dB loc Supply Current, no Load amb = 25C Tin. < Tam S Tmax. 10 15 mA Vi Input Voltage Range (Voc. = +15V) Tamb = 25C Trin. $ Tamb S Tmax. a4 =a an CMR Common Mode rejection Ratio (As < 10k) Tamb = 25C Tin. < Tamb S s Tmax. 105 dB Output Short- circuit Current (Vcc = +15V) Tamb = 25 Cc 10 30 60 + Vopp Output Voltage Swing (Vcc = +15V, Ri = 2k22) b = mw s a < Tmax. +12 +13 +12 +12 +12 +13 SR Slew Rate (Vcc = +15V, Vi = +10V, RL = 2kQ, Ci = 100pF, Tam = 25C, unity gain) - (note 3) 50 70 50 70 Vius Ri Input Impedance MQ GBP Gain Bandwidth Product (Voc = 15V, Vi= tOmV, Ri = 2kQ, C. = 100pF, f = 100kHz) 15 15 MHz THD Total Harmonic Distortion (Voc = 15V, f = 1kHz, Ay = 20dB, Rp = 2kQ, Vo = 2Vpp, CL = 100 pF) 0.008 0.008 % en Equivalent Input Noise Voltage (Vcc = +15V, f = 1kHz, Rs = 100Q) 17 17 Note : 3. May be improved up to 150V/s in inverting amplifier configuration (see basic diagrarns). G7 S&S-THOMSON SIF inerostecraomcs 3/8 319 118-03.TBLLM118 - LM218 - LM318 NIB (nA) INPUT BIAS. CURRENT VOLTAGE FOLLOWER SLEW RATE (Note 5} 170 130 = , Positive slew z | 129 }f_Festive _ 160 5 = 110 w a gc 155 = f > 100 2 150 rs Z 145 = ~ 140 z 80 > a Vec= tv = 135 70 f Ag = Ay10 ko c1_s5 130 60 55-35-15 5 25 45 66 85 105125 -55 -3515 5 25 45 65 BS 105125 TEMPERATURE (C) TEMPERATURE (C) 118-04.EPS 148-05.EPS UNITY GAIN BANDWIDTH {GAIN : 1) {Note 5} FPR ST ASE RMON z REJECTION RATIO a 24 2 120 = zn = 2 wth Os 115 xz cc= 25 i 20 Voc= +18 V S= 110 = root + we q 2 Vec=+10V ge 105 z 4o gd 16 oF > =o. >a 4 ia oa 12 a 90 E aw = w ro : 2 ws i 83 z 80 5 -35-15 5 25 45 65 85 105125 a -55 -35 -15 5 25 45 65 65 105125 TEMPERATURE (C) TEMPERATURE (C) 118-06.EPS 118-07.EPS loc (mA) OUTPUT SHORT-CIRCUIT CURRENT NOISE EQUIVALENT INPUT NOISE - 40 (nV H2) 20 G 635 a a 30 2 15 E 25 5 3 S\f cg 2 ='= 10 GE 5S ed Ze 5 a z 10 = 5 5 ad 5 o > w a - 0 0 3 85-35-15 5 25 45 65 85 105125 55-35-15 5 25 45 65 85 105125 TEMPERATURE (C) TEMPERATURE (C) 118-08.EPS 118-09.EPS 6 iy7 SGS-THomson Tf MICROELECTRONICS ! 8NOISE (nV/VAz} COMMON MODE REJECTION (dB) OUTPUT GWING (+V) 8 8 8 100 ik 10k 100k IM 10M FREQUENCY (fz) 118-10.EPS _ INPUT NOISE VOLTAGE Tamb = + 25C Vec =+15V Aig = 100k jg = 1000, Rg = T 100 1k 10k 100k FREQUENCY (Hz! 116-12.EPS CURRENT LIMITING Vec=+18V Tamb = + 128C Tamb = + 28C 118-14.EPS SUPPLY REJECTION (dB) VOLTAGE GAIN (dB) SUPPLY CURRENT (mA) LM118 - LM218 - LM318 18 POWER SUPPLY REJECTION 100 80 60 40 20 o -20 100 1k 10k =100k 1M FREQUENCY {Hz} VOLTAGE GAIN 116 110 105 100 95 5 10 5 SUPPLY VOLTAGE (Vv) SUPPLY CURRENT 5.5 Tamb = - 55C 5 45 5 10 18 SUPPLY VOLTAGE (Vi 10M 118-11.EPS 20 118-13.EPS 20 118-15.EPS 5/8 321LM118 - LM218 - LM318 INPUT CURRENT LARGE SIGNAL FREQUENCY RESPONSE 600 14 Tamb = + 25C Vcc = t16V 400 12 Tamb = + 25C 200 INPUT CURRENT [nA) OUTPUT SWING (+ V) a ; -200 4 -400 2 600 0 -08 -04 0 04 08 05M 1M 2M SM 10M 20M 50M DIFFERENTIAL INPUT {V} FREQUENCY (Hz) 118-16.EPS 118-17.EPS | i LARGE SIGNAL FREQUENCY RESPONSE* OPEN LOOP FREQUENCY RESPONSE 120 Vec= +15 V =4 Tamb ~ +25C _ 100 Tamb=+25C 1225 z = C4 a S = 80 1890 +H z x z 5 g @ 60 135 z a z z 2 4 20 8 a a = i 5 2 3 i a 9 2 45 = ] be 1 2 5 6 0 a -20 : 1M 3m 1oM 30M 100M 10 100 1k 10k 100k 1M 70M 100M FREQUENCY [Hz) FREQUENCY (Hz) i 118-18.EPS 118-19.EPS OPEN LOOP FREQUENCY RESPONSE VOLTAGE FOLLOWER PULSE RESPONSE Vec= +15V a Tomb +25C 1775 S uv = . =x z 180 > g = a = < m = 135 @ uw wi Q o o < so < 5 s 5 s 3 > a5 3 > o 10 100 1k 1Ok 100k 1M 10M 100M FREQUENCY (Hz) THME (pe) 118-20.EPS 118-21.EPS 6/8 f $GS-THOMSON Je, Gucnoelec monies 322 :LM118 - LM218 - LM318 VOLTAGE SWING iV) Vec-: +1 V Tab = + 26C -0.1 O.1 0.3 as 07 09 ] THME (ps) * With feedforward compensation 118-22. EPS BASIC DIAGRAMS FEEDFORWARD COMPENSATION FOR GREATER INVERTING SLEW RATE* INVERTER SETTLING TIME Ss TT Tee ot amb \ 10 mv 10 = oS 5 00 mv, mV < f 3 S > t 2. = Mec: tbVv 1mv 5 Rs -5 id -10 [Ry_-5 OQ C1 .- 10 pF 10 mv yp (SC7=O1ME LLL ao3 On 0.3 3 TIME (ns) 118-23.EPS COMPENSATION FOR MINIMUM SETTLING TIME* * * Settling time to 0.1 % for a 10V * Slew rate typically 150 Vis. 118-24.EPS step changes is 800 ns 118-25.EPS | ISOLATING LARGE CAPACITIVE LOADS 118-26.EPS 6&7 $68:THomson ze 2 wicnociscrmeancs 323LM118 - LM218 - LM318 OFFSET BALANCING OVERCOMPENSATION 200kQ Vec 118-28.EPS 118-28.EPS TYPICAL APPLICATION DIAGRAM | FAST SAMPLE AND HOLD FAST SUMMING AMPLIFIER WITH LOW INPUT CURRENT 118-29.EPS 118-30.EPS D/A CONVERTER USING LADDER NETWORK * Optional . reduces settling time 118-31.EPS | 8/8 -THOMSON 37, SES;THOMSON 324