STM32G474xB STM32G474xC STM32G474xE Arm(R) Cortex(R)-M4 32b MCU+FPU, up to 512 KB Flash, 170 MHz / 213 DMIPS, 128 KB SRAM, rich analog, math accelerator, 184ps 12ch Hi-res timer Datasheet - production data Features * Core: Arm(R) 32-bit Cortex(R)-M4 CPU with FPU, Adaptive real-time accelerator (ART Accelerator) allowing 0-wait-state execution from Flash memory, frequency up to 170 MHz with 213 DMIPS, MPU, DSP instructions * Operating conditions: - VDD, VDDA voltage range: 1.71 V to 3.6 V * Mathematical hardware accelerators - CORDIC for trigonometric functions acceleration - FMAC: Filter mathematical accelerator * Memories - 512 Kbytes of Flash memory with ECC support, two banks read-while-write, proprietary code readout protection (PCROP), securable memory area, 1 Kbyte OTP - 96 Kbytes of SRAM, with hardware parity check implemented on the first 32 Kbytes - Routine booster: 32 Kbytes of SRAM on instruction and data bus, with hardware parity check (CCM SRAM) - External memory interface for static memories FSMC supporting SRAM, PSRAM, NOR and NAND memories - Quad-SPI memory interface * Reset and supply management - Power-on/power-down reset (POR/PDR/BOR) - Programmable voltage detector (PVD) - Low-power modes: sleep, stop, standby and shutdown - VBAT supply for RTC and backup registers * Clock management - 4 to 48 MHz crystal oscillator - 32 kHz oscillator with calibration - Internal 16 MHz RC with PLL option ( 1%) May 2019 This is information on a product in full production. LQFP48 (7 x 7 mm) LQFP64 (10 x 10 mm) UFQFPN48 (7 x 7 mm) WLCSP81 (4.02 x 4.27 mm) LQFP80 (12 x 12 mm) LQFP100 (14 x 14 mm) LQFP128 (14 x 14 mm) TFBGA100 (8 x 8 mm Pitch 0.8) - Internal 32 kHz RC oscillator ( 5%) * Up to 107 fast I/Os - All mappable on external interrupt vectors - Several I/Os with 5 V tolerant capability * Interconnect matrix * 16-channel DMA controller * 25 x 12-bit ADCs 0.25 s, up to 42 channels. Resolution up to 16-bit with hardware oversampling, 0 to 3.6 V conversion range * 7 x 12-bit DAC channels - 3 x buffered external channels 1 MSPS - 4 x unbuffered internal channels 15 MSPS * 7 x ultra-fast rail-to-rail analog comparators * 6 x operational amplifiers that can be used in PGA mode, all terminals accessible * Internal voltage reference buffer (VREFBUF) supporting three output voltages (2.048 V, 2.5 V, 2.95 V) * 17 timers: - HRTIM (Hi-Resolution and complex waveform builder): 6 x16-bit counters, 184 ps resolution, 12 PWM - 2 x 32-bit timer and 2 x 16-bit timers with up to four IC/OC/PWM or pulse counter and quadrature (incremental) encoder input - 3 x 16-bit 8-channel advanced motor control timers, with up to 8 x PWM DS12288 Rev 1 1/232 www.st.com STM32G474xB STM32G474xC STM32G474xE - - - - - - channels, dead time generation and emergency stop 1 x 16-bit timer with 2 x IC/OCs, one OCN/PWM, dead time generation and emergency stop 2 x 16-bit timers with IC/OC/OCN/PWM, dead time generation and emergency stop 2 x watchdog timers (independent, window) 1 x SysTick timer: 24-bit downcounter 2 x 16-bit basic timers 1 x low-power timer * Calendar RTC with alarm, periodic wakeup from stop/standby - 5 x USART/UARTs (ISO 7816 interface, LIN, IrDA, modem control) - 1 x LPUART - 4 x SPIs, 4 to 16 programmable bit frames, 2 x with multiplexed half duplex I2S interface - 1 x SAI (serial audio interface) - USB 2.0 full-speed interface with LPM and BCD support - IRTIM (infrared interface) - USB Type-CTM /USB power delivery controller (UCPD) * True random number generator (RNG) * Communication interfaces * CRC calculation unit, 96-bit unique ID - 3 x FDCAN controller supporting flexible * Development support: serial wire debug data rate (SWD), JTAG, Embedded trace macrocellTM - 4 x I2C Fast mode plus (1 Mbit/s) with 20 mA current sink, SMBus/PMBus, wakeup from stop Table 1. Device summary Reference Part number STM32G474xB STM32G474CB, STM32G474MB, STM32G474RB, STM32G474VB, STM32G474QB STM32G474xC STM32G474CC, STM32G474MC, STM32G474RC, STM32G474VC, STM32G474QC STM32G474xE STM32G474CE, STM32G474ME, STM32G474RE, STM32G474VE, STM32G474QE 2/232 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE Contents Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1 Arm(R) Cortex(R)-M4 core with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.2 Adaptive real-time memory accelerator (ART accelerator) . . . . . . . . . . . 17 3.3 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.4 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.5 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.6 Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.7 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.8 CORDIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.9 Filter mathematical accelerator (FMAC) . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.10 Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 22 3.11 Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.11.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.11.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.11.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.11.4 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.11.5 Reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.11.6 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.12 Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.13 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.14 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.15 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.16 DMA request router (DMAMux) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.17 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.18 3.17.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 30 3.17.2 Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 30 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.18.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 DS12288 Rev 1 3/232 6 Contents 4/232 STM32G474xB STM32G474xC STM32G474xE 3.18.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.18.3 VBAT battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.18.4 Operational amplifier internal output (OPAMPxINT): . . . . . . . . . . . . . . . 32 3.19 Digital to analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.20 Voltage reference buffer (VREFBUF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.21 Comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.22 Operational amplifier (OPAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.23 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.24 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.24.1 High-resolution timer (HRTIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.24.2 Advanced motor control timer (TIM1, TIM8, TIM20) . . . . . . . . . . . . . . . 35 3.24.3 General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM15, TIM16, TIM17) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.24.4 Basic timers (TIM6 and TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.24.5 Low-power timer (LPTIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.24.6 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.24.7 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.24.8 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.25 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 38 3.26 Tamper and backup registers (TAMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.27 Infrared transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.28 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.29 Universal synchronous/asynchronous receiver transmitter (USART) . . . 41 3.30 Low-power universal asynchronous receiver transmitter (LPUART) . . . . 42 3.31 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.32 Serial audio interfaces (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.33 Controller area network (FDCAN1, FDCAN2, FDCAN3) . . . . . . . . . . . . . 44 3.34 Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.35 USB Type-CTM / USB Power Delivery controller (UCPD) . . . . . . . . . . . . . 44 3.36 Clock recovery system (CRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.37 Flexible static memory controller (FSMC) . . . . . . . . . . . . . . . . . . . . . . . . 45 3.38 Quad SPI memory interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.39 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.39.1 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.39.2 Embedded trace macrocellTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE 4 5 Contents Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.1 UFQFPN48 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.2 LQFP48 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.3 LQFP64 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.4 LQFP80 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.5 LQFP100 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.6 LQFP128 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.7 WLCSP81 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.8 TFBGA100 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.9 Pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.10 Alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 85 5.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 85 5.3.4 Embedded voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.3.6 Wakeup time from low-power modes and voltage scaling transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 5.3.7 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 121 5.3.8 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 126 5.3.9 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 5.3.10 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 5.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 5.3.12 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 DS12288 Rev 1 5/232 6 Contents 6 STM32G474xB STM32G474xC STM32G474xE 5.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 5.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 5.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 5.3.16 High-resolution timer (HRTIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 5.3.17 Extended interrupt and event controller input (EXTI) characteristics . . 142 5.3.18 Analog switches booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 5.3.19 Analog-to-digital converter characteristics . . . . . . . . . . . . . . . . . . . . . . 144 5.3.20 Digital-to-Analog converter characteristics . . . . . . . . . . . . . . . . . . . . . 155 5.3.21 Voltage reference buffer characteristics . . . . . . . . . . . . . . . . . . . . . . . . 162 5.3.22 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 5.3.23 Operational amplifiers characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 166 5.3.24 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 5.3.25 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 5.3.26 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 5.3.27 Communication interfaces characteristics . . . . . . . . . . . . . . . . . . . . . . 172 5.3.28 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 5.3.29 QUADSPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 5.3.30 UCPD characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 6.1 WLCSP81 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 6.2 UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 6.3 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 6.4 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211 6.5 LQFP80 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 6.6 TFBGA100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 6.7 LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 6.8 LQFP128 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 6.9 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 6.9.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 6.9.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 227 7 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 6/232 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 STM32G474xB/xC/xE features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 STM32G474xB/xC/xE peripherals interconnect matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 DMA implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 USART/UART/LPUART features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 SAI implementation for the features implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 STM32G474xB/xC/xE pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Alternate function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 85 Embedded internal voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Current consumption in Run and Low-power run modes, code with data processing running from Flash in single Bank, ART enable (Cache ON Prefetch OFF) . . 89 Current consumption in Run and Low-power run modes, code with data processing running from Flash in dual bank, ART enable (Cache ON Prefetch OFF) . . . . 91 Current consumption in Run and Low-power run modes, code with data processing running from Flash in single bank, ART disable . . . . . . . . . . . . . . . . . . . . . . . . 93 Current consumption in Run and Low-power run modes, code with data processing running from Flash in dual bank, ART disable . . . . . . . . . . . . . 95 Current consumption in Run and Low-power run modes, code with data processing running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Typical current consumption in Run and Low-power run modes, with different codes running from Flash, ART enable (Cache ON Prefetch OFF) . . . . . . . . . . . . . . . . . . . . . . . 99 Typical current consumption in Run and Low-power run modes, with different codes running from Flash, ART disable . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Typical current consumption in Run and Low-power run modes, with different codes running from SRAM1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Typical current consumption in Run and Low-power run modes, with different codes running from SRAM2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Typical current consumption in Run and Low-power run modes, with different codes running from CCMSRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Current consumption in Sleep and Low-power sleep mode Flash ON . . . . . . . . . . . . . . . 106 Current consumption in low-power sleep modes, Flash in power-down. . . . . . . . . . . . . . 107 Current consumption in Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Current consumption in Stop 0 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Current consumption in Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 DS12288 Rev 1 7/232 9 List of tables Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. Table 80. Table 81. Table 82. Table 83. Table 84. Table 85. Table 86. Table 87. Table 88. Table 89. 8/232 STM32G474xB STM32G474xC STM32G474xE Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Regulator modes transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Wakeup time using USART/LPUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 HSI16 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 I/O (except FT_c) AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 I/O FT_c AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 HRTIM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 HRTIM output response to fault protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 HRTIM output response to external events 1 to 5 (Low-Latency mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 HRTIM output response to external events 1 to 10 (Synchronous mode ) . . . . . . . . . . . . 142 HRTIM synchronization input / output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 EXTI input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 Analog switches booster characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Maximum ADC RAIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 ADC accuracy - limited test conditions 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 ADC accuracy - limited test conditions 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 ADC accuracy - limited test conditions 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 DAC 1MSPS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 DAC 1MSPS accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 DAC 15MSPS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 DAC 15MSPS accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 VREFBUF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 OPAMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 VBAT charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 IWDG min/max timeout period at 32 kHz (LSI). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 WWDG min/max timeout value at 170 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 Minimum I2CCLK frequency in all I2C modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE Table 90. Table 91. Table 92. Table 93. Table 94. Table 95. Table 96. Table 97. Table 98. Table 99. Table 100. Table 101. Table 102. Table 103. Table 104. Table 105. Table 106. Table 107. Table 108. Table 109. Table 110. Table 111. Table 112. Table 113. Table 114. Table 115. Table 116. Table 117. Table 118. Table 119. Table 120. Table 121. Table 122. Table 123. List of tables I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 USB electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 USART electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . 184 Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT timings . . . . . . . . . . . 184 Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 185 Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT timings. . . . . . . . . . . 186 Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 187 Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 187 Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 189 Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 189 Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 194 Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 198 Quad SPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 QUADSPI characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 UCPD characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 WLCSP - 81 balls, 4.02x4.27 mm, 0.4 mm pitch wafer level chip scale mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 WLCSP81 recommended PCB design rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 UFQFPN - 48 leads, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 LQFP - 48 pins, 7 x 7 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 LQFP - 64 pins, 10 x 10 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 LQFP - 80 pins, 12 x 12 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214 TFBGA - 100 balls, 8X8 mm, 0.8 mm pitch fine pitch ball grid array mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 TFBGA100 recommended PCB design rules (0.8 mm pitch BGA). . . . . . . . . . . . . . . . . . 218 LQPF - 100 pins, 14 x 14 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 LQFP - 128 pins, 14 x 14 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 DS12288 Rev 1 9/232 9 List of figures STM32G474xB STM32G474xC STM32G474xE List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. Figure 48. 10/232 STM32G474xB/xC/xE block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Voltage reference buffer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Infrared transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 STM32G474xB/xC/xE UFQFPN48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 STM32G474xB/xC/xE LQFP48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 STM32G474xB/xC/xE LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 STM32G474xB/xC/xE LQFP80 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 STM32G474xB/xC/xE LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 STM32G474xB/xC/xE LQFP128 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 STM32G474xB/xC/xE WLCSP81 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 STM32G474xB/xC/xE TFBGA100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 VREFINT versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 HSI16 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 HSI48 frequency versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 I/O AC characteristics definition(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 12-bit buffered / non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 VREFOUT_TEMP in case VRS = 00 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 VREFOUT_TEMP in case VRS = 01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 VREFOUT_TEMP in case VRS = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 OPAMP noise density @ 25C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 183 Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 185 Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 186 Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 188 Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 194 Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE Figure 49. Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. Figure 55. Figure 56. Figure 57. Figure 58. Figure 59. Figure 60. Figure 61. Figure 62. Figure 63. Figure 64. Figure 65. Figure 66. Figure 67. Figure 68. Figure 69. Figure 70. Figure 71. Figure 72. Figure 73. Figure 74. List of figures NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 197 NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 198 Quad SPI timing diagram - SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 Quad SPI timing diagram - DDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201 WLCSP - 81 balls, 4.02x4.27 mm, 0.4 mm pitch wafer level chip scale package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 WLCSP - 81 balls, 4.02x4.27 mm, 0.4 mm pitch wafer level chip scale recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 UFQFPN - 48 leads, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 UFQFPN - 48 leads, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 UFQFPN48, 7 x 7 mm, low-profile quad flat package top view example . . . . . . . . . . . . . 206 LQFP - 48 pins, 7 x 7 mm low-profile quad flat package outline. . . . . . . . . . . . . . . . . . . . 207 LQFP - 48 pins, 7 x 7 mm low-profile quad flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209 LQFP48, 7 x 7 mm, low-profile quad flat package top view example . . . . . . . . . . . . . . . . 210 LQFP - 64 pins, 10 x 10 mm low-profile quad flat package outline. . . . . . . . . . . . . . . . . . 211 LQFP - 64 pins, 10 x 10 mm low-profile quad flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 LQFP64, 10 x 10 mm, low-profile quad flat package top view example . . . . . . . . . . . . . 213 LQFP - 80 pins, 12 x 12 mm low-profile quad flat package outline. . . . . . . . . . . . . . . . . . 214 LQFP - 80 pins, 12 x 12 mm low-profile quad flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 LQFP80, 12 x 12 mm, low-profile quad flat package top view example . . . . . . . . . . . . . . 216 TFBGA - 100 balls, 8X8 mm, 0.8 mm pitch fine pitch ball grid array package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217 TFBGA - 100 balls, 8X8 mm, 0.8 mm pitch fine pitch ball grid array recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218 TFBGA100 - 8 x 8 mm, low-profile quad flat package top view example . . . . . . . . . . . . 219 LQFP - 100 pins, 14 x 14 mm low-profile quad flat package outline. . . . . . . . . . . . . . . . . 220 LQFP - 100 pins, 14 x 14 mm low-profile quad flat recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221 LQFP100 - 14 x 14 mm, low-profile quad flat package top view example . . . . . . . . . . . . 222 LQFP - 128 pins, 14 x 14 mm low-profile quad flat package outline. . . . . . . . . . . . . . . . . 223 LQFP128 - 14 x 14 mm, low-profile quad flat package top view example . . . . . . . . . . . . 225 DS12288 Rev 1 11/232 11 Introduction 1 STM32G474xB STM32G474xC STM32G474xE Introduction This datasheet provides the ordering information and mechanical device characteristics of the STM32G474xB/xC/xE microcontrollers. This document should be read in conjunction with the reference manual RM0440 "STM32G4 Series advanced Arm(R) 32-bit MCUs". The reference manual is available from the STMicroelectronics website www.st.com. For information on the Arm(R)(a) Cortex(R)-M4 core, refer to the Cortex(R)-M4 technical reference manual, available from the www.arm.com website. a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere. 12/232 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE 2 Description Description The STM32G474xB/xC/xE devices are based on the high-performance Arm(R) Cortex(R)-M4 32-bit RISC core. They operate at a frequency of up to 170 MHz. The Cortex-M4 core features a single-precision floating-point unit (FPU), which supports all the Arm single-precision data-processing instructions and all the data types. It also implements a full set of DSP (digital signal processing) instructions and a memory protection unit (MPU) which enhances the application's security. These devices embed high-speed memories (512 Kbytes of Flash memory, and 128 Kbytes of SRAM), a flexible external memory controller (FSMC) for static memories (for devices with packages of 100 pins and more), a Quad SPI Flash memory interface, and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit multi-AHB bus matrix. The devices also embed several protection mechanisms for embedded Flash memory and SRAM: readout protection, write protection, securable memory area and proprietary code readout protection. The devices embed peripherals allowing mathematical/arithmetic function acceleration (CORDIC for trigonometric functions and FMAC unit for filter functions). They offer five fast 12-bit ADCs (5 Msps), seven comparators, six operational amplifiers, seven DAC channels (3 external and 4 internal), an internal voltage reference buffer, a lowpower RTC, two general-purpose 32-bit timers, three 16-bit PWM timers dedicated to motor control, seven general-purpose 16-bit timers, and one 16-bit low-power timer, and high resolution timer with 184 ps resolution. They also feature standard and advanced communication interfaces such as: * Four I2Cs * Four SPIs multiplexed with two half duplex I2Ss * Three USARTs, two UARTs and one low-power UART. * Three FDCANs * One SAI * USB device * UCPD The devices operate in the -40 to +85 C (+105 C junction), -40 to +105 C (+125 C junction) and -40 to +125 C (+130 C junction) temperature ranges from a 1.71 to 3.6 V power supply. A comprehensive set of power-saving modes allows the design of low-power applications. Some independent power supplies are supported including an analog independent supply input for ADC, DAC, OPAMPs and comparators. A VBAT input allows backup of the RTC and the registers. The STM32G474xB/xC/xE family offers 8 packages from 48-pin to 128-pin. DS12288 Rev 1 13/232 47 Description STM32G474xB STM32G474xC STM32G474xE Table 2. STM32G474xB/xC/xE features and peripheral counts Peripheral STM32G474 Cx STM32G474 Rx Flash memory STM32G474 Qx Yes(1) Yes 128 (80 + 16+ 32) KB External memory controller for static memories (FSMC) No Yes QUADSPI 1 Advanced motor control 3 (16-bit) HRTIM 1 General purpose 5 (16-bit) 2 (32-bit) Basic 2 (16-bit) Low power 1 (16-bit) SysTick timer 1 Watchdog timers (independent, window) 2 SPI(I2S)(2) I 3 (2) 4 (2) 2C 4 USART UART Comm. LPUART interfaces FDCANs 3 0 2 1 3 USB device Yes UCPD Yes SAI Yes RTC Yes Tamper pins 2 3 Random number generator Yes CORDIC Yes FMAC Yes GPIOs Wakeup pins 14/232 STM32G474 Vx 512 KB SRAM Timers STM32G474 Mx 38 in LQFP48 42 in UFQFPN48 3 52 4 DS12288 Rev 1 67 in WLCSP81 66 in LQFP80 4 86 107 5 5 STM32G474xB STM32G474xC STM32G474xE Description Table 2. STM32G474xB/xC/xE features and peripheral counts (continued) Peripheral STM32G474 Cx STM32G474 Rx STM32G474 Mx STM32G474 Vx STM32G474 Qx 42 42 5 12-bit ADCs Number of channels 20 in LQFP48 21 in UFQFPN48 12-bit DAC Number of channels 42 in WLCSP81 41 in LQFP80 26 4 7 (3 external + 4 internal) Internal voltage reference buffer Yes Analog comparator 7 Operational amplifiers 6 Max. CPU frequency 170 MHz Operating voltage Operating temperature Packages 1.71 V to 3.6 V Ambient operating temperature: -40 to 85 C / -40 to 105 C / -40 to 125 C LQFP48/ UFQFPN48 LQFP64 WLCSP81 LQFP80 LQFP100/ TFBGA100 LQFP128 1. For the LQFP100 package, only FMC bank1 and NAND bank are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 chip select. 2. The SPI2/3 interfaces can work in an exclusive way in either the SPI mode or the I2S audio mode. DS12288 Rev 1 15/232 47 Description STM32G474xB STM32G474xC STM32G474xE Figure 1. STM32G474xB/xC/xE block diagram !2- #/24%8 - -(Z 15!$30) $ "53 ) "53 3 "53 '0 $-! #HAN '0 $-! #HAN 6$$! ##- 32!- +" 2.' 3!2 !$# )& &-!# $+% 0! 86$570%SV '0)/ 0/24 ! ,3) 0/2 53!24 '0)/-"PS 0/24 " 0,, 0# 53!24 '0)/-"PS 0/24 # 2ESET )NT 0' 53!24 '0)/-"PS 0/24 ' &3 3#+ 3$ -#,+ AS !& 3TANDBY )NTERFACE 6"!4 TO 6 6"!4 PERIPHERALCLOCKS AND SYSTEM E3:0 (24IMER #2# %84 -"PS )4 7+50 53!24 E3:0 24# )NTERFACE !("!0" !("!0" E3:0 4)-%2 53!24 -"PS #( AS !& 4)-%2 53!24 -"PS 4)-%2 53!24 -"PS 07- 07%42 "+). AS & 28 48 3#+ #43 243 AS !& 53!2453!24 -"PS -/3) -)3/ 3#+ .33 AS !& 30) 53!24 -"PS 4)-%2 E E3:0 30) #( %42 AS !& 4)-%2 #( %42 AS !& 072#42, E E 4)-%2 ,0?5!24 7IN7!4#($/' B TRIGG 4)-%2 B TRIGG 53!24 5!24 30) #23 #!. 9UHIB%XI &203 3MCARD IR$! IR$! )3 HALF DUPLEX 28 48 3#+ #43 243 AS !& 28 48 #43 243 AS !& -/3) -)3/ 3#+ .33 AS !& 28 48 AS !& 5#0$ 23$03 ),)2 3+< 3YS#FG 6$$! 3#, 3$! 3-"!, AS !& )# ,0 TIMER 4)-%2 28 48 AS !& ),)2 4)-%2 /3#?). /3#?/54 24#?/54 24#?43 24#?4!-0X 53" $EVICE 3+< 4)-%2 -/3) -)3/ 3#+ .33 AS !& 84!, K(Z 24# $:8 %.35(* #( AS !& #( AS !&B /3#?). /3#?/54 )7$' 2%3%4 #,/#+#42, 3!) $3% !& 07- 07%42 "+). AS & 07- 07%42 "+). AS & 6$$ 633 6$$! 633! 2%3%4 06$ 07- 84!, /3# -(Z $3%0+]$3% &AULT INPUTS AS !& EXT EVENT INPUTS SYNCHRO INPUT SYNCHRO /UTPUT 07- OUTPUTS 0/2 "/2 +6, 53!24 '0)/-"PS 0/24 $ 53!24 '0)/-"PS 0/24 % 6$$ TO 6 633 6$$ 3500,9 350%26)3)/. 6$$ (3) #( 6/,4 2%' 6 4/ 6 0" 53!24 '0)/-"PS 0/24 & #( 0/7%2 -.'4 6$$ )& #( $!# #/2$)# 3!2 !$# 0& /54 #( $!# 2." ANALOG 0% #( $!# 32!- +" 3!2 !$# 0$ /54/54 #( 32!- +" 6$$! 3!2 !$# #( $!# !(" 3!2 !$# #,+ .#3 "+?)/;= &,!3( X +" '0$08; !IN !$# #,+ % ! $ /%. 7%. ", , 7!)4)/2$9 )/2$ )/7$ )3 AS !& &3-# -05 .6)# &05 !##%, #!#(% 42!#%#+ 42!#%$ *4!' 37 %4- $+%%860$75,;06 *4234 *4$) *4#+37#,+ *4$/37$ *4$/ $ $ ## ## 06Y9 Note: 16/232 AF: alternate function on I/O pins. DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE 3 Functional overview 3.1 Arm(R) Cortex(R)-M4 core with FPU Functional overview The Arm(R) Cortex(R)-M4 with FPU processor is the latest generation of Arm processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of the MCU implementation, with a reduced pin count and with low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts. The Arm(R) Cortex(R)-M4 with FPU 32-bit RISC processor features an exceptional codeefficiency, delivering the expected high-performance from an Arm core in a memory size usually associated with 8-bit and 16-bit devices. The processor supports a set of DSP instructions which allows an efficient signal processing and a complex algorithm execution. Its single precision FPU speeds up the software development by using metalanguage development tools to avoid saturation. With its embedded Arm core, the STM32G474xB/xC/xE family is compatible with all Arm tools and software. Figure 1 shows the general block diagram of the STM32G474xB/xC/xE devices. 3.2 Adaptive real-time memory accelerator (ART accelerator) The ART accelerator is a memory accelerator that is optimized for the STM32 industrystandard Arm(R) Cortex(R)-M4 processors. It balances the inherent performance advantage of the Arm(R) Cortex(R)-M4 over Flash memory technologies, which normally requires the processor to wait for the Flash memory at higher frequencies. 3.3 Memory protection unit The memory protection unit (MPU) is used to manage the CPU accesses to the memory and to prevent one task to accidentally corrupt the memory or the resources used by any other active task. This memory area is organized into up to 8 protected areas, which can be divided in up into 8 subareas each. The protection area sizes range between 32 bytes and the whole 4 gigabytes of addressable memory. The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting based on the process to be executed. The MPU is optional and can be bypassed for applications that do not need it. DS12288 Rev 1 17/232 47 Functional overview 3.4 STM32G474xB STM32G474xC STM32G474xE Embedded Flash memory The STM32G474xB/xC/xE devices feature 512 kbytes of embedded Flash memory which is available for storing programs and data. The Flash interface features: - Single or dual bank operating modes - Read-while-write (RWW) in dual bank mode This feature allows to perform a read operation from one bank while an erase or program operation is performed to the other bank. The dual bank boot is also supported. Flexible protections can be configured thanks to the option bytes: * Readout protection (RDP) to protect the whole memory. Three levels of protection are available: - Level 0: no readout protection - Level 1: memory readout protection; the Flash memory cannot be read from or written to if either the debug features are connected or the boot in RAM or bootloader are selected - Level 2: chip readout protection; the debug features (Cortex-M4 JTAG and serial wire), the boot in RAM and the bootloader selection are disabled (JTAG fuse). This selection is irreversible. * Write protection (WRP): the protected area is protected against erasing and programming. * Proprietary code readout protection (PCROP): a part of the Flash memory can be protected against read and write from third parties. The protected area is execute-only and it can only be reached by the STM32 CPU as an instruction code, while all other accesses (DMA, debug and CPU data read, write and erase) are strictly prohibited. An additional option bit (PCROP_RDP) allows to select if the PCROP area is erased or not when the RDP protection is changed from Level 1 to Level 0. * Securable memory area: a part of Flash memory can be configured by option bytes to be securable. After reset this securable memory area is not secured and it behaves like the remainder of main Flash memory (execute, read, write access). When secured, any access to this securable memory area generates corresponding read/write error. Purpose of the Securable memory area is to protect sensitive code and data (secure keys storage) which can be executed only once at boot, and never again unless a new reset occurs. The Flash memory embeds the error correction code (ECC) feature supporting: 18/232 * Single error detection and correction * Double error detection * The address of the ECC fail can be read in the ECC register * 1 Kbyte (128 double word) OTP (one-time programmable) bytes for user data. The OTP area is available in Bank 1 only. The OTP data cannot be erased and can be written only once. DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE 3.5 Functional overview Embedded SRAM STM32G474xB/xC/xE devices feature 128 Kbytes of embedded SRAM. This SRAM is split into three blocks: * 80 Kbytes mapped at address 0x2000 0000 (SRAM1). The CM4 can access the SRAM1 through the System Bus or through the I-Code/D-Code bus. The first 32 Kbyte of SRAM1 support hardware parity check. * 16 Kbytes mapped at address 0x2001 4000 (SRAM2). The CM4 can access the SRAM2 through the System Bus or through the I-Code/D-Code bus. SRAM2 can be retained in standby modes. * 32 Kbytes mapped at address 0x1000 0000 (CCM SRAM). It is accessed by the CPU through I-Code/D-Code bus for maximum performance. It is also aliased at 0x2001 8000 address to be accessed by all masters (CPU, DMA1, DMA2) through SBUS contiguously to SRAM1 and SRAM2. The CCM SRAM supports hardware parity check and can be write-protected with 1 Kbyte granularity. * The memory can be accessed in read/write at max CPU clock speed with 0 wait states. DS12288 Rev 1 19/232 47 Functional overview 3.6 STM32G474xB STM32G474xC STM32G474xE Multi-AHB bus matrix The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs) and the slaves (Flash memory, RAM, FSMC, QUADSPI, AHB and APB peripherals). It also ensures a seamless and efficient operation even when several high-speed peripherals work simultaneously. Figure 2. Multi-AHB bus matrix '0$ '0$ 6EXV 'EXV ,EXV &257(;0 ZLWK)38 '&RGH $&&(/ ,&RGH )/$6+ .% 65$0 &&0 65$0 65$0 $+% SHULSKHUDOV $+% SHULSKHUDOV )60& 48$'63, %XV0DWUL[6 06Y9 3.7 Boot modes At startup, a BOOT0 pin (or nBOOT0 option bit) and an nBOOT1 option bit are used to select one of three boot options: * Boot from user Flash * Boot from system memory * Boot from embedded SRAM The BOOT0 value may come from the PB8-BOOT0 pin or from an nBOOT0 option bit depending on the value of a user nBOOT_SEL option bit to free the GPIO pad if needed. The boot loader is located in the system memory. It is used to reprogram the Flash memory by using USART, I2C, SPI, and USB through the DFU (device firmware upgrade). 20/232 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE 3.8 Functional overview CORDIC The CORDIC provides hardware acceleration of certain mathematical functions, notably trigonometric, commonly used in motor control, metering, signal processing and many other applications. It speeds up the calculation of these functions compared to a software implementation, allowing a lower operating frequency, or freeing up processor cycles in order to perform other tasks. Cordic features 3.9 * 24-bit CORDIC rotation engine * Circular and Hyperbolic modes * Rotation and Vectoring modes * Functions: Sine, Cosine, Sinh, Cosh, Atan, Atan2, Atanh, Modulus, Square root, Natural logarithm * Programmable precision up to 20-bit * Fast convergence: 4 bits per clock cycle * Supports 16-bit and 32-bit fixed point input and output formats * Low latency AHB slave interface * Results can be read as soon as ready without polling or interrupt * DMA read and write channels Filter mathematical accelerator (FMAC) The filter mathematical accelerator unit performs arithmetic operations on vectors. It comprises a multiplier/accumulator (MAC) unit, together with address generation logic, which allows it to index vector elements held in local memory. The unit includes support for circular buffers on input and output, which allows digital filters to be implemented. Both finite and infinite impulse response filters can be realized. The unit allows frequent or lengthy filtering operations to be offloaded from the CPU, freeing up the processor for other tasks. In many cases it can accelerate such calculations compared to a software implementation, resulting in a speed-up of time critical tasks. DS12288 Rev 1 21/232 47 Functional overview STM32G474xB STM32G474xC STM32G474xE FMAC features 3.10 * 16 x 16-bit multiplier * 24+2-bit accumulator with addition and subtraction * 16-bit input and output data * 256 x 16-bit local memory * Up to three areas can be defined in memory for data buffers (two input, one output), defined by programmable base address pointers and associated size registers * Input and output sample buffers can be circular * Buffer "watermark" feature reduces overhead in interrupt mode * Filter functions: FIR, IIR (direct form 1) * AHB slave interface * DMA read and write data channels Cyclic redundancy check calculation unit (CRC) The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator with polynomial value and size. Among other applications, the CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a mean to verify the Flash memory integrity. The CRC calculation unit helps to compute a signature of the software during runtime, which can be ulteriorly compared with a reference signature generated at link-time and which can be stored at a given memory location. 3.11 Power supply management 3.11.1 Power supply schemes The STM32G474xB/xC/xE devices require a 1.71 V to 3.6 V VDD operating voltage supply. Several independent supplies, can be provided for specific peripherals: * VDD = 1.71 V to 3.6 V VDD is the external power supply for the I/Os, the internal regulator and the system analog such as reset, power management and internal clocks. It is provided externally through the VDD pins. * 22/232 VDDA = 1.62 V to 3.6 V (see Section 5: Electrical characteristics for the minimum VDDA voltage required for ADC, DAC, COMP, OPAMP, VREFBUF operation). VDDA is the external analog power supply for A/D converters, D/A converters, voltage reference buffer, operational amplifiers and comparators. The VDDA voltage level is DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE Functional overview independent from the VDD voltage and should preferably be connected to VDD when these peripherals are not used. * VBAT = 1.55 V to 3.6 V VBAT is the power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when VDD is not present. * VREF-, VREF+ VREF+ is the input reference voltage for ADCs and DACs. It is also the output of the internal voltage reference buffer when enabled. When VDDA < 2 V VREF+ must be equal to VDDA. When VDDA 2 V VREF+ must be between 2 V and VDDA. The internal voltage reference buffer supports three output voltages, which are configured with VRS bits in the VREFBUF_CSR register: - VREF+ = 2.048 V - VREF+ = 2.5 V - VREF+ = 2.95 V VREF- is double bonded with VSSA. 3.11.2 Power supply supervisor The device has an integrated ultra-low-power brown-out reset (BOR) active in all modes (except for Shutdown mode). The BOR ensures proper operation of the device after poweron and during power down. The device remains in reset mode when the monitored supply voltage VDD is below a specified threshold, without the need for an external reset circuit. The lowest BOR level is 1.71 V at power on, and other higher thresholds can be selected through option bytes.The device features an embedded programmable voltage detector (PVD) that monitors the VDD power supply and compares it to the VPVD threshold. An interrupt can be generated when VDD drops below the VPVD threshold and/or when VDD is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. In addition, the device embeds a peripheral voltage monitor which compares the independent supply voltages VDDA, with a fixed threshold in order to ensure that the peripheral is in its functional supply range. 3.11.3 Voltage regulator Two embedded linear voltage regulators, main regulator (MR) and low-power regulator (LPR), supply most of digital circuitry in the device. The MR is used in Run and Sleep modes. The LPR is used in Low-power run, Low-power sleep and Stop modes. In Standby and Shutdown modes, both regulators are powered down and their outputs set in highimpedance state, such as to bring their current consumption close to zero. The device supports dynamic voltage scaling to optimize its power consumption in Run mode. the voltage from the main regulator that supplies the logic (VCORE) can be adjusted according to the system's maximum operating frequency. The main regulator (MR) operates in the following ranges: * Range 1 boost mode with the CPU running at up to 170 MHz. * Range 1 normal mode with CPU running at up to 150 MHz. * Range 2 with a maximum CPU frequency of 26 MHz. DS12288 Rev 1 23/232 47 Functional overview 3.11.4 STM32G474xB STM32G474xC STM32G474xE Low-power modes By default, the microcontroller is in Run mode after system or power Reset. It is up to the user to select one of the low-power modes described below: 3.11.5 * Sleep mode: In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. * Low-power run mode: This mode is achieved with VCORE supplied by the low-power regulator to minimize the regulator's operating current. The code can be executed from SRAM or from Flash, and the CPU frequency is limited to 2 MHz. The peripherals with independent clock can be clocked by HSI16. * Low-power sleep mode: This mode is entered from the low-power run mode. Only the CPU clock is stopped. When wakeup is triggered by an event or an interrupt, the system reverts to the Low power run mode. * Stop mode: In Stop mode, the device achieves the lowest power consumption while retaining the SRAM and register contents. All clocks in the VCORE domain are stopped. The PLL, as well as the HSI16 RC oscillator and the HSE crystal oscillator are disabled. The LSE or LSI keep running. The RTC can remain active (Stop mode with RTC, Stop mode without RTC). Some peripherals with wakeup capability can enable the HSI16 RC during Stop mode, so as to get clock for processing the wakeup event. * Standby mode: The Standby mode is used to achieve the lowest power consumption with brown-out reset, BOR. The internal regulator is switched off to power down the VCORE domain. The PLL, as well as the HSI16 RC oscillator and the HSE crystal oscillator are also powered down. The RTC can remain active (Standby mode with RTC, Standby mode without RTC). The BOR always remains active in Standby mode. For each I/O, the software can determine whether a pull-up, a pull-down or no resistor shall be applied to that I/O during Standby mode. Upon entering Standby mode, SRAM and register contents are lost except for registers in the RTC domain and standby circuitry. The device exits Standby mode upon external reset event (NRST pin), IWDG reset event, wakeup event (WKUP pin, configurable rising or falling edge) or RTC event (alarm, periodic wakeup, timestamp, tamper), or when a failure is detected on LSE (CSS on LSE). * Shutdown mode: The Shutdown mode allows to achieve the lowest power consumption. The internal regulator is switched off to power down the VCORE domain. The PLL, as well as the HSI16 and LSI RC-oscillators and HSE crystal oscillator are also powered down. The RTC can remain active (Shutdown mode with RTC, Shutdown mode without RTC). The BOR is not available in Shutdown mode. No power voltage monitoring is possible in this mode. Therefore, switching to RTC domain is not supported. SRAM and register contents are lost except for registers in the RTC domain. The device exits Shutdown mode upon external reset event (NRST pin), IWDG reset event, wakeup event (WKUP pin, configurable rising or falling edge) or RTC event (alarm, periodic wakeup, timestamp, tamper). Reset mode In order to improve the consumption under reset, the I/Os state under and after reset is "analog state" (the I/O schmitt trigger is disabled). In addition, the internal reset pull-up is deactivated when the reset source is internal. 24/232 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE 3.11.6 Functional overview VBAT operation The VBAT pin allows to power the device VBAT domain from an external battery, an external supercapacitor, or from VDD when there is no external battery and when an external supercapacitor is present. The VBAT pin supplies the RTC with LSE and the backup registers. Three anti-tamper detection pins are available in VBAT mode. The VBAT operation is automatically activated when VDD is not present. An internal VBAT battery charging circuit is embedded and can be activated when VDD is present. Note: When the microcontroller is supplied from VBAT, neither external interrupts nor RTC alarm/events exit the microcontroller from the VBAT operation. DS12288 Rev 1 25/232 47 Functional overview 3.12 STM32G474xB STM32G474xC STM32G474xE Interconnect matrix Several peripherals have direct connections between them. This allows autonomous communication between peripherals, saving CPU resources thus power supply consumption. In addition, these hardware connections allow fast and predictable latency. Depending on peripherals, these interconnections can operate in Run, Sleep and Stop modes. Run Sleep Low-power run Low-power sleep Stop Table 3. STM32G474xB/xC/xE peripherals interconnect matrix TIMx Timers synchronization or chaining Y Y Y Y - ADCx DACx Conversion triggers Y Y Y Y - DMA Memory to memory transfer trigger Y Y Y Y - COMPx Comparator output blanking Y Y Y Y - IRTIM Infrared interface output generation Y Y Y Y - TIM1, 8, 20 TIM2, 3, 4, 5 Timer input channel, trigger, break from analog signals comparison Y Y Y Y - LPTIMER1 Low-power timer triggered by analog signals comparison Y Y Y Y Y HRTIM COMPx Output is an input event or a fault input for HRTIM Y Y Y Y - TIM1, 8, 20 Timer triggered by analog watchdog Y Y Y Y - HRTIM HRTIM external event source can be ADCx analog watchdog Y Y Y Y - TIM16 Timer input channel from RTC events Y Y Y Y - LPTIMER1 Low-power timer triggered by RTC alarms or tampers Y Y Y Y Y All clocks sources (internal and external) TIM5, TIM15, 16, 17 Clock source used as input channel for RC measurement and trimming Y Y Y Y - USB TIM2 Timer triggered by USB SOF Y Y - - - CSS RAM (parity error) Flash memory (ECC error) COMPx PVD TIM1,8, 20 TIM15,16,17 HRTIM Timer break Y Y Y Y - Interconnect source TIMx TIM16/TIM17 COMPx ADCx RTC 26/232 Interconnect destination Interconnect action HRTIM SYSFLT DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE Functional overview Low-power sleep Stop GPIO Low-power run CPU (hard fault) Sleep Interconnect source Run Table 3. STM32G474xB/xC/xE peripherals interconnect matrix (continued) Y Y Y Y - External trigger Y Y Y Y - LPTIMER1 External trigger Y Y Y Y Y HRTIM External fault/event/Synchro inputs for HRTIM Y Y Y Y - ADCx DACx Conversion external trigger Y Y Y Y - DACx/ADCx Conversion trigger Y Y Y Y - GPIO Synchro output for HRTIM Y Y Y Y - Interconnect destination Interconnect action TIM1,8,20 TIM15/16/17 HRTIM Timer break TIMx HRTIM SYSFLT HRTIM DS12288 Rev 1 27/232 47 Functional overview 3.13 STM32G474xB STM32G474xC STM32G474xE Clocks and startup The clock controller distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. It features: * Clock prescaler: to get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler * Safe clock switching: clock sources can be changed safely on the fly in run mode through a configuration register. * Clock management: to reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory. * System clock source: three different sources can deliver SYSCLK system clock: - 4 - 48 MHz high-speed oscillator with external crystal or ceramic resonator (HSE). It can supply clock to system PLL. The HSE can also be configured in bypass mode for an external clock. - 16 MHz high-speed internal RC oscillator (HSI16), trimmable by software. It can supply clock to system PLL. - System PLL with maximum output frequency of 170 MHz. It can be fed with HSE or HSI16 clocks. * RC48 with clock recovery system (HSI48): internal HSIRC48 MHz clock source can be used to drive the USB or the RNG peripherals. * Auxiliary clock source: two ultra-low-power clock sources for the real-time clock (RTC): - 32.768 kHz low-speed oscillator with external crystal (LSE), supporting four drive capability modes. The LSE can also be configured in bypass mode for using an external clock. - 32 kHz low-speed internal RC oscillator (LSI) with 5% accuracy, also used to clock an independent watchdog. * Peripheral clock sources: several peripherals (I2S, USART, I2C, LPTimer, ADC, SAI, RNG) have their own clock independent of the system clock. * Clock security system (CSS): in the event of HSE clock failure, the system clock is automatically switched to HSI16 and, if enabled, a software interrupt is generated. LSE clock failure can also be detected and generate an interrupt. * Clock-out capability: - MCO: microcontroller clock output: it outputs one of the internal clocks for external use by the application - LSCO: low speed clock output: it outputs LSI or LSE in all low-power modes. Several prescalers allow to configure the AHB frequency, the High-speed APB (APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and the APB domains is 170 MHz. 28/232 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE 3.14 Functional overview General-purpose inputs/outputs (GPIOs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. Fast I/O toggling can be achieved thanks to their mapping on the AHB2 bus. The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers. 3.15 Direct memory access controller (DMA) The device embeds 2 DMAs. Refer to Table 4: DMA implementation for the features implementation. Direct memory access (DMA) is used in order to provide a high-speed data transfer between peripherals and memory as well as from memory to memory. Data can be quickly moved by DMA without any CPU actions. This keeps the CPU resources free for other operations. The two DMA controllers have 16 channels in total, each one dedicated to manage memory access requests from one or more peripherals. Each controller has an arbiter for handling the priority between DMA requests. The DMA supports: * 16 independently configurable channels (requests) - Each channel is connected to a dedicated hardware DMA request, a software trigger is also supported on each channel. This configuration is done by software. * Priorities between requests from channels of one DMA are both software programmable (4 levels: very high, high, medium, low) or hardware programmable in case of equality (request 1 has priority over request 2, etc.) * Independent source and destination transfer size (byte, half word, word), emulating packing and unpacking. Source/destination addresses must be aligned on the data size. * Support for circular buffer management * 3 event flags (DMA half transfer, DMA transfer complete and DMA transfer error) logically ORed together in a single interrupt request for each channel * Memory-to-memory transfer * Peripheral-to-memory, memory-to-peripheral, and peripheral-to-peripheral transfers * Access to Flash, SRAM, APB and AHB peripherals as source and destination * Programmable number of data to be transferred: up to 65536. Table 4. DMA implementation DMA features DMA1 DMA2 Number of regular channels 8 8 DS12288 Rev 1 29/232 47 Functional overview 3.16 STM32G474xB STM32G474xC STM32G474xE DMA request router (DMAMux) When a peripheral indicates a request for DMA transfer by setting its DMA request line, the DMA request is pending until it is served and the corresponding DMA request line is reset. The DMA request router allows to route the DMA control lines between the peripherals and the DMA controllers of the product. An embedded multi-channel DMA request generator can be considered as one of such peripherals. The routing function is ensured by a multi-channel DMA request line multiplexer. Each channel selects a unique set of DMA control lines, unconditionally or synchronously with events on synchronization inputs. For simplicity, the functional description is limited to DMA request lines. The other DMA control lines are not shown in figures or described in the text. The DMA request generator produces DMA requests following events on DMA request trigger inputs. 3.17 Interrupts and events 3.17.1 Nested vectored interrupt controller (NVIC) The STM32G474xB/xC/xE devices embed a nested vectored interrupt controller which is able to manage 16 priority levels, and to handle up to 102 maskable interrupt channels plus the 16 interrupt lines of the Cortex(R)-M4. The NVIC benefits are the following: * Closely coupled NVIC gives low latency interrupt processing * Interrupt entry vector table address passed directly to the core * Allows early processing of interrupts * Processing of late arriving higher priority interrupts * Support for tail chaining * Processor state automatically saved * Interrupt entry restored on interrupt exit with no instruction overhead The NVIC hardware block provides flexible interrupt management features with minimal interrupt latency. 3.17.2 Extended interrupt/event controller (EXTI) The extended interrupt/event controller consists of 44 edge detector lines used to generate interrupt/event requests and to wake-up the system from the Stop mode. Each external line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The internal lines are connected to peripherals with wakeup from Stop mode capability. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 107 GPIOs can be connected to the 16 external interrupt lines. 30/232 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE 3.18 Functional overview Analog-to-digital converter (ADC) The device embeds five successive approximation analog-to-digital converters with the following features: * 12-bit native resolution, with built-in calibration * 4 Msps maximum conversion rate with full resolution Down to 25 ns sampling time - Increased conversion rate for lower resolution (up to 6.66 Msps for 6-bit resolution) * One external reference pin is available on all packages, allowing the input voltage range to be independent from the power supply * Single-ended and differential mode inputs * Low-power design * 3.18.1 - - Capable of low-current operation at low conversion rate (consumption decreases linearly with speed) - Dual clock domain architecture: ADC speed independent from CPU frequency Highly versatile digital interface - Single-shot or continuous/discontinuous sequencer-based scan mode: 2 groups of analog signals conversions can be programmed to differentiate background and high-priority real-time conversions - Each ADC support multiple trigger inputs for synchronization with on-chip timers and external signals - Results stored into a data register or in RAM with DMA controller support - Data pre-processing: left/right alignment and per channel offset compensation - Built-in oversampling unit for enhanced SNR - Channel-wise programmable sampling time - Analog watchdog for automatic voltage monitoring, generating interrupts and trigger for selected timers - Hardware assistant to prepare the context of the injected channels to allow fast context switching - Flexible sample time control - Hardware gain and offset compensation Temperature sensor The temperature sensor (TS) generates a voltage VTS that varies linearly with temperature. The temperature sensor is internally connected to the ADCs input channels which is used to convert the sensor output voltage into a digital value. The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only. To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode. DS12288 Rev 1 31/232 47 Functional overview STM32G474xB STM32G474xC STM32G474xE Table 5. Temperature sensor calibration values 3.18.2 Calibration value name Description Memory address TS_CAL1 TS ADC raw data acquired at a temperature of 30 C ( 5 C), VDDA = VREF+ = 3.0 V ( 10 mV) 0x1FFF 75A8 - 0x1FFF 75A9 TS_CAL2 TS ADC raw data acquired at a temperature of 110 C ( 5 C), VDDA = VREF+ = 3.0 V ( 10 mV) 0x1FFF 75CA - 0x1FFF 75CB Internal voltage reference (VREFINT) The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the ADC and the comparators. The VREFINT is internally connected to the ADCx_IN18, x = 1,3,4,5 input channel. The precise voltage of VREFINT is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode. Table 6. Internal voltage reference calibration values 3.18.3 Calibration value name Description Memory address VREFINT Raw data acquired at a temperature of 30 C ( 5 C), VDDA = VREF+ = 3.0 V ( 10 mV) 0x1FFF 75AA - 0x1FFF 75AB VBAT battery voltage monitoring This embedded hardware enables the application to measure the VBAT battery voltage using the internal ADC1_IN17 channel. As the VBAT voltage may be higher than the VDDA, and thus outside the ADC input range, the VBAT pin is internally connected to a bridge divider by 3. As a consequence, the converted digital value is one third of the VBAT voltage. 3.18.4 Operational amplifier internal output (OPAMPxINT): The OPAMPx (x = 1...6) output OPAMPxINT can be sampled using an ADCx (x = 1...5) internal input channel. In this case, the I/O on which the OPAMPx output is mapped can be used as GPIO. 3.19 Digital to analog converter (DAC) Seven 12 bit DAC channels (3 external buffered and 4 internal unbuffered) can be used to convert digital signals into analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in inverting configuration. 32/232 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE Functional overview This digital interface supports the following features: * Up to two DAC output channels * 8-bit or 12-bit output mode * Buffer offset calibration (factory and user trimming) * Left or right data alignment in 12-bit mode * Synchronized update capability * Noise-wave generation * Triangular-wave generation * Saw tooth wave generation * Dual DAC channel independent or simultaneous conversions * DMA capability for each channel * External triggers for conversion * Sample and hold low-power mode, with internal or external capacitor * Up to 1 Msps for external output and 15 Msps for internal output The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels. 3.20 Voltage reference buffer (VREFBUF) The STM32G474xB/xC/xE devices embed a voltage reference buffer which can be used as voltage reference for ADC, DACs and also as voltage reference for external components through the VREF+ pin. The internal voltage reference buffer supports three voltages: * 2.048 V * 2.5 V * 2.9 V An external voltage reference can be provided through the VREF+ pin when the internal voltage reference buffer is off. Figure 3. Voltage reference buffer 95()%8) 9''$ %DQGJDS '$&$'& 95() /RZIUHTXHQF\ FXWRIIFDSDFLWRU Q) 06Y9 DS12288 Rev 1 33/232 47 Functional overview 3.21 STM32G474xB STM32G474xC STM32G474xE Comparators (COMP) The STM32G474xB/xC/xE devices embed seven rail-to-rail comparators with programmable reference voltage (internal or external), hysteresis. The reference voltage can be one of the following: * External I/O * DAC output channels * Internal reference voltage or submultiple (1/4, 1/2, 3/4). All comparators can wake up from Stop mode, generate interrupts and breaks for the timers. 3.22 Operational amplifier (OPAMP) The STM32G474xB/xC/xE devices embed six operational amplifiers with external or internal follower routing and PGA capability. The operational amplifier features: 3.23 * 15 MHz bandwidth * Rail-to-rail input/output * PGA with a non-inverting gain ranging of 2, 4, 8, 16, 32 or 64 or inverting gain ranging of -1, -3, -7, -15, -31 or -63 Random number generator (RNG) All devices embed an RNG that delivers 32-bit random numbers generated by an integrated analog circuit. 3.24 Timers and watchdogs The STM32G474xB/xC/xE devices include One High Resolution time, two advanced motor control timers, up to nine general-purpose timers, two basic timers, one low-power timer, two watchdog timers and a SysTick timer. The table below compares the features of the advanced motor control, general purpose and basic timers. Table 7. Timer feature comparison Timer type Timer Counter resolution Counter type Prescaler factor DMA request generation Capture/ compare channels Complementary outputs High resolution timer HRTIM 16-bit Up /1 /2 /4 (x2 x4 x8 x16 x32, with DLL) Yes 12 Yes Advanced motor control TIM1, TIM8, TIM20 16-bit Up, Any integer down, between 1 and Up/down 65536 Yes 4 4 Generalpurpose TIM2, TIM5 32-bit Up, Any integer down, between 1 and Up/down 65536 Yes 4 No 34/232 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE Functional overview Table 7. Timer feature comparison (continued) DMA request generation Capture/ compare channels Complementary outputs Any integer Up, down, between 1 and Up/down 65536 Yes 4 No Up Any integer between 1 and 65536 Yes 2 1 16-bit Up Any integer between 1 and 65536 Yes 1 1 16-bit Up Any integer between 1 and 65536 Yes 0 No Timer type Timer Counter resolution Generalpurpose TIM3, TIM4 16-bit Generalpurpose TIM15 16-bit Generalpurpose TIM16, TIM17 Basic TIM6, TIM7 3.24.1 Counter type Prescaler factor High-resolution timer (HRTIM) The high-resolution timer (HRTIM) allows generating digital signals with high-accuracy timings, such as PWM or phase-shifted pulses. It consists of 7 timers, 1 master and 6 slaves, totaling 12 high-resolution outputs, which can be coupled by pairs for deadtime insertion. It also features 6 fault inputs for protection purposes and 10 inputs to handle external events such as current limitation, zero voltage or zero current switching. HRTIM timer is made of a digital kernel clocked at 170 MHz followed by delay lines. Delay lines with closed loop control guarantee a 184 ps resolution whatever the voltage, temperature or chip-to-chip manufacturing process deviation. The high-resolution is available on the 12 outputs in all operating modes: variable duty cycle, variable frequency, and constant ON time. The slave timers can be combined to control multiswitch complex converters or operate independently to manage multiple independent converters. The waveforms are defined by a combination of user-defined timings and external events such as analog or digital feedbacks signals. HRTIM timer includes options for blanking and filtering out spurious events or faults. It also offers specific modes and features to offload the CPU: DMA requests, burst mode controller, push-pull and resonant mode. It supports many topologies including LLC, Full bridge phase shifted, buck or boost converters, either in voltage or current mode, as well as lighting application (fluorescent or LED). It can also be used as a general purpose timer, for instance to achieve high-resolution PWM-emulated DAC. In debug mode, the HRTIM counters can be frozen and the PWM outputs enter safe state. 3.24.2 Advanced motor control timer (TIM1, TIM8, TIM20) The advanced motor control timers can each be seen as a four-phase PWM multiplexed on 8 channels. They have complementary PWM outputs with DS12288 Rev 1 35/232 47 Functional overview STM32G474xB STM32G474xC STM32G474xE programmable inserted dead-times. They can also be seen as complete general-purpose timers. The 4 independent channels can be used for: * Input capture * Output compare * PWM generation (edge or center-aligned modes) with full modulation capability (0-100%) * One-pulse mode output In debug mode, the advanced motor control timer counter can be frozen and the PWM outputs disabled in order to turn off any power switches driven by these outputs. Many features are shared with the general-purpose TIMx timers (described in Section 3.24.3) using the same architecture, so the advanced motor control timers can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining. 3.24.3 General-purpose timers (TIM2, TIM3, TIM4, TIM5, TIM15, TIM16, TIM17) There are up to seven synchronizable general-purpose timers embedded in the STM32G474xB/xC/xE devices (see Table 7 for differences). Each general-purpose timer can be used to generate PWM outputs, or act as a simple time base. * TIM2, TIM3, TIM4 and TIM5 They are full-featured general-purpose timers: - TIM2 and TIM5 have a 32-bit auto-reload up/downcounter and 32-bit prescaler - TIM3 and TIM4 have 16-bit auto-reload up/downcounter and 16-bit prescaler. These timers feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. They can work together, or with the other general-purpose timers via the Timer Link feature for synchronization or event chaining. The counters can be frozen in debug mode. All have independent DMA request generation and support quadrature encoders. * TIM15, 16 and 17 They are general-purpose timers with mid-range features: They have 16-bit auto-reload upcounters and 16-bit prescalers. - TIM15 has 2 channels and 1 complementary channel - TIM16 and TIM17 have 1 channel and 1 complementary channel All channels can be used for input capture/output compare, PWM or one-pulse mode output. The timers can work together via the Timer Link feature for synchronization or event chaining. The timers have independent DMA request generation. The counters can be frozen in debug mode. 3.24.4 Basic timers (TIM6 and TIM7) The basic timers are mainly used for DAC trigger generation. They can also be used as generic 16-bit timebases. 36/232 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE 3.24.5 Functional overview Low-power timer (LPTIM1) The devices embed a low-power timer. This timer has an independent clock and are running in Stop mode if it is clocked by LSE, LSI or an external clock. It is able to wakeup the system from Stop mode. LPTIM1 is active in Stop mode. This low-power timer supports the following features: 3.24.6 * 16-bit up counter with 16-bit autoreload register * 16-bit compare register * Configurable output: pulse, PWM * Continuous/ one shot mode * Selectable software/hardware input trigger * Selectable clock source - Internal clock sources: LSE, LSI, HSI16 or APB clock - External clock source over LPTIM input (working even with no internal clock source running, used by pulse counter application). * Programmable digital glitch filter * Encoder mode Independent watchdog (IWDG) The independent watchdog is based on a 12-bit downcounter and an 8-bit prescaler. It is clocked from an independent 32 kHz internal RC (LSI) and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode. 3.24.7 System window watchdog (WWDG) The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode. 3.24.8 SysTick timer This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features: * A 24-bit down counter * Autoreload capability * Maskable system interrupt generation when the counter reaches 0. * Programmable clock source DS12288 Rev 1 37/232 47 Functional overview 3.25 STM32G474xB STM32G474xC STM32G474xE Real-time clock (RTC) and backup registers The RTC supports the following features: * Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format. * Automatic correction for 28, 29 (leap year), 30, and 31 days of the month. * Two programmable alarms. * On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock. * Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision. * Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal inaccuracy. * Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to VBAT mode. * 17-bit auto-reload wakeup timer (WUT) for periodic events with programmable resolution and period. The RTC is supplied through a switch that takes power either from the VDD supply when present or from the VBAT pin. The RTC clock sources can be: * A 32.768 kHz external crystal (LSE) * An external resonator or oscillator (LSE) * The internal low power RC oscillator (LSI, with typical frequency of 32 kHz) * The high-speed external clock (HSE) divided by 32. The RTC is functional in VBAT mode and in all low-power modes when it is clocked by the LSE. When clocked by the LSI, the RTC is not functional in VBAT mode, but is functional in all low-power modes except Shutdown mode. All RTC events (Alarm, WakeUp Timer, Timestamp) can generate an interrupt and wakeup the device from the low-power modes. 3.26 38/232 Tamper and backup registers (TAMP) * 32 32-bit backup registers, retained in all low-power modes and also in VBAT mode. They can be used to store sensitive data as their content is protected by an tamper detection circuit. They are not reset by a system or power reset, or when the device wakes up from Standby or Shutdown mode. * Up to three tamper pins for external tamper detection events. The external tamper pins can be configured for edge detection, edge and level, level detection with filtering. * Five internal tampers events. * Any tamper detection can generate a RTC timestamp event. * Any tamper detection erases the backup registers. * Any tamper detection can generate an interrupt and wake-up the device from all lowpower modes. DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE 3.27 Functional overview Infrared transmitter The STM32G474xB/xC/xE devices provide an infrared transmitter solution. The solution is based on internal connections between TIM16 and TIM17 as shown in the figure below. TIM17 is used to provide the carrier frequency and TIM16 provides the main signal to be sent. The infrared output signal is available on PB9 or PA13. To generate the infrared remote control signals, TIM16 channel 1 and TIM17 channel 1 must be properly configured to generate correct waveforms. All standard IR pulse modulation modes can be obtained by programming the two timers output compare channels. Figure 4. Infrared transmitter 7,0B&+ ,57,0 ,5B287 7,0B&+ 069 DS12288 Rev 1 39/232 47 Functional overview 3.28 STM32G474xB STM32G474xC STM32G474xE Inter-integrated circuit interface (I2C) The device embeds four I2Cs. Refer to Table 8: I2C implementation for the features implementation. The I2C bus interface handles communications between the microcontroller and the serial I2C bus. It controls all I2C bus-specific sequencing, protocol, arbitration and timing. The I2C peripheral supports: * * I2C-bus specification and user manual rev. 5 compatibility: - Slave and master modes, multimaster capability - Standard-mode (Sm), with a bitrate up to 100 kbit/s - Fast-mode (Fm), with a bitrate up to 400 kbit/s - Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os - 7-bit and 10-bit addressing mode, multiple 7-bit slave addresses - Programmable setup and hold times - Optional clock stretching System management bus (SMBus) specification rev 2.0 compatibility: - Hardware PEC (packet error checking) generation and verification with ACK control - Address resolution protocol (ARP) support - SMBus alert * Power system management protocol (PMBusTM) specification rev 1.1 compatibility * Independent clock: a choice of independent clock sources allowing the I2C communication speed to be independent from the PCLK reprogramming. * Wakeup from Stop mode on address match * Programmable analog and digital noise filters * 1-byte buffer with DMA capability Table 8. I2C implementation I2C features(1) I2C1 I2C2 I2C3 I2C4 Standard-mode (up to 100 kbit/s) X X X X Fast-mode (up to 400 kbit/s) X X X X Fast-mode Plus with 20mA output drive I/Os (up to 1 Mbit/s) X X X X Programmable analog and digital noise filters X X X X SMBus/PMBus hardware support X X X X Independent clock X X X X Wakeup from Stop mode on address match X X X X 1. X: supported 40/232 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE 3.29 Functional overview Universal synchronous/asynchronous receiver transmitter (USART) The STM32G474xB/xC/xE devices have three embedded universal synchronous receiver transmitters (USART1, USART2 and USART3) and two universal asynchronous receiver transmitters (UART4, USART5). These interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN master/slave capability. They provide hardware management of the CTS and RTS signals, and RS485 driver enable. The USART1, USART2 and USART3 also provide a Smartcard mode (ISO 7816 compliant) and an SPI-like communication capability. The USART comes with a Transmit FIFO (TXFIFO) and a Receive FIFO (RXFIFO). FIFO mode is enabled by software and is disabled by default. All USART have a clock domain independent from the CPU clock, allowing the U(S)ARTx (x=1,2,3,4,5) to wake up the MCU from Stop mode. The wakeup from Stop mode can be done on: * Start bit detection * Any received data frame * A specific programmed data frame * Some specific TXFIFO/RXFIFO status interrupts when FIFO mode is enabled All USART interfaces can be served by the DMA controller. Table 9. USART/UART/LPUART features USART modes/features(1) USART1 USART2 USART3 UART4 UART5 LPUART1 Hardware flow control for modem X X X X X X Continuous communication using DMA X X X X X X Multiprocessor communication X X X X X X Synchronous mode X X X - - - Smartcard mode X X X - - - Single-wire half-duplex communication X X X X X X IrDA SIR ENDEC block X X X X X - LIN mode X X X X X - Dual clock domain X X X X X X Wakeup from Stop mode X X X X X X Receiver timeout interrupt X X X X X - Modbus communication X X X X X - Auto baud rate detection Driver Enable X (4 modes) X X LPUART/USART data length X X X X 7, 8 and 9 bits DS12288 Rev 1 41/232 47 Functional overview STM32G474xB STM32G474xC STM32G474xE Table 9. USART/UART/LPUART features (continued) USART modes/features(1) USART1 USART2 USART3 UART4 Tx/Rx FIFO X Tx/Rx FIFO size 8 UART5 LPUART1 1. X = supported. 3.30 Low-power universal asynchronous receiver transmitter (LPUART) The STM32G474xB/xC/xE devices embed one Low-Power UART. The LPUART supports asynchronous serial communication with minimum power consumption. It supports halfduplex single-wire communication and modem operations (CTS/RTS). It allows multiprocessor communication. The LPUART comes with a Transmit FIFO (TXFIFO) and a Receive FIFO (RXFIFO). FIFO mode is enabled by software and is disabled by default. It has a clock domain independent from the CPU clock, and can wakeup the system from Stop mode. The wake up from Stop mode can be done on: * Start bit detection * Any received data frame * A specific programmed data frame * Some specific TXFIFO/RXFIFO status interrupts when FIFO mode is enabled Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an extremely low energy consumption. Higher speed clock can be used to reach higher baudrates. The LPUART interface can be served by the DMA controller. 3.31 Serial peripheral interface (SPI) Four SPI interfaces allow communication up to 75 Mbits/s in master and up to 41 Mbits/s in slave, half-duplex, full-duplex and simplex modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits. The SPI interfaces support NSS pulse mode, TI mode and hardware CRC calculation. Two standard I2S interfaces (multiplexed with SPI2 and SPI3) supporting four different audio standards can operate as master or slave at half-duplex communication modes. They can be configured to transfer 16 and 24 or 32 bits with 16-bit or 32-bit data resolution and synchronized by a specific signal. Audio sampling frequency from 8 kHz up to 192 kHz can be set by 8-bit programmable linear prescaler. When operating in master mode it can output a clock for an external audio component at 256 times the sampling frequency. All SPI interfaces can be served by the DMA controller. 42/232 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE 3.32 Functional overview Serial audio interfaces (SAI) The device embeds 1 SAI. The SAI bus interface handles communications between the microcontroller and the serial audio protocol. SAI peripheral supports: * Two independent audio sub-blocks which can be transmitters or receivers with their respective FIFO. * 8-word integrated FIFOs for each audio sub-block. * Synchronous or asynchronous mode between the audio sub-blocks. * Master or slave configuration independent for both audio sub-blocks. * Clock generator for each audio block to target independent audio frequency sampling when both audio sub-blocks are configured in master mode. * Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit. * Peripheral with large configurability and flexibility allowing to target as example the following audio protocol: I2S, LSB or MSB-justified, PCM/DSP, TDM, AC'97 and SPDIF out. * Up to 16 slots available with configurable size and with the possibility to select which ones are active in the audio frame. * Number of bits by frame may be configurable. * Frame synchronization active level configurable (offset, bit length, level). * First active bit position in the slot is configurable. * LSB first or MSB first for data transfer. * Mute mode. * Stereo/Mono audio frame capability. * Communication clock strobing edge configurable (SCK). * Error flags with associated interrupts if enabled respectively. - Overrun and underrun detection. - Anticipated frame synchronization signal detection in slave mode. - Late frame synchronization signal detection in slave mode. - Codec not ready for the AC'97 mode in reception. * Interruption sources when enabled: - Errors. - FIFO requests. * DMA interface with 2 dedicated channels to handle access to the dedicated integrated FIFO of each SAI audio sub-block. Table 10. SAI implementation for the features implementation SAI features Support(1) I2S, LSB or MSB-justified, PCM/DSP, TDM, AC'97 X Mute mode X Stereo/Mono audio frame capability X 16 slots X Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit X FIFO size X (8 word) SPDIF X 1. X: supported. DS12288 Rev 1 43/232 47 Functional overview 3.33 STM32G474xB STM32G474xC STM32G474xE Controller area network (FDCAN1, FDCAN2, FDCAN3) The controller area network (CAN) subsystem consists of three CAN modules and a shared message RAM memory. The three CAN modules (FDCAN1, FDCAN2 and FDCAN3) are compliant with ISO 11898-1 (CAN protocol specification version 2.0 part A, B) and CAN FD protocol specification version 1.0. A 3-Kbyte message RAM memory implements filters, receive FIFOs, receive buffers, transmit event FIFOs, transmit buffers. This message RAM is shared between the three FDCAN modules. 3.34 Universal serial bus (USB) The STM32G474xB/xC/xE devices embed a full-speed USB device peripheral compliant with the USB specification version 2.0. The internal USB PHY supports USB FS signaling, embedded DP pull-up and also battery charging detection according to Battery Charging Specification Revision 1.2. The USB interface implements a full-speed (12 Mbit/s) function interface with added support for USB 2.0 Link Power Management. It has softwareconfigurable endpoint setting with packet memory up-to 1 Kbyte and suspend/resume support. It requires a precise 48 MHz clock which can be generated from the internal main PLL (the clock source must use a HSE crystal oscillator) or by the internal 48 MHz oscillator in automatic trimming mode. The synchronization for this oscillator can be taken from the USB data stream itself (SOF signalization) which allows crystal less operation. 3.35 USB Type-CTM / USB Power Delivery controller (UCPD) The device embeds one controller (UCPD) compliant with USB Type-C Rev. 1.2 and USB Power Delivery Rev. 3.0 specifications. The controller uses specific I/Os supporting the USB Type-C and USB Power Delivery requirements, featuring: * USB Type-C pull-up (Rp, all values) and pull-down (Rd) resistors * "Dead battery" support * USB Power Delivery message transmission and reception * FRS (fast role swap) support The digital controller handles notably: 44/232 * USB Type-C level detection with de-bounce, generating interrupts * FRS detection, generating an interrupt * Byte-level interface for USB Power Delivery payload, generating interrupts (DMA compatible) * USB Power Delivery timing dividers (including a clock pre-scaler) * CRC generation/checking * 4b5b encode/decode * Ordered sets (with a programmable ordered set mask at receive) * Frequency recovery in receiver during preamble DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE Functional overview The interface offers low-power operation compatible with Stop mode, maintaining the capacity to detect incoming USB Power Delivery messages and FRS signaling. 3.36 Clock recovery system (CRS) The devices embed a special block which allows automatic trimming of the internal 48 MHz oscillator to guarantee its optimal accuracy over the whole device operational range. This automatic trimming is based on the external synchronization signal, which could be either derived from USB SOF signalization, from LSE oscillator, from an external signal on CRS_SYNC pin or generated by user software. For faster lock-in during startup it is also possible to combine automatic trimming with manual trimming action. 3.37 Flexible static memory controller (FSMC) The Flexible static memory controller (FSMC) includes two memory controllers: * The NOR/PSRAM memory controller * The NAND/memory controller This memory controller is also named Flexible memory controller (FMC). The main features of the FMC controller are the following: * Interface with static-memory mapped devices including: - Static random access memory (SRAM) - NOR Flash memory/OneNAND Flash memory - PSRAM (4 memory banks) - NAND Flash memory with ECC hardware to check up to 8 Kbytes of data - Ferroelectric RAM (FRAM) * 8-,16- bit data bus width * Independent Chip Select control for each memory bank * Independent configuration for each memory bank * Write FIFO * The Maximum FMC_CLK frequency for synchronous accesses is HCLK/2. LCD parallel interface The FMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost effective graphic applications using LCD modules with embedded controllers or high performance solutions using external controllers with dedicated acceleration. DS12288 Rev 1 45/232 47 Functional overview 3.38 STM32G474xB STM32G474xC STM32G474xE Quad SPI memory interface (QUADSPI) The Quad SPI is a specialized communication interface targeting single, dual or quad SPI flash memories. It can operate in any of the three following modes: * Indirect mode: all the operations are performed using the QUADSPI registers * Status polling mode: the external flash status register is periodically read and an interrupt can be generated in case of flag setting * Memory-mapped mode: the external Flash is memory mapped and is seen by the system as if it were an internal memory. Both throughput and capacity can be increased two-fold using dual-flash mode, where two quad SPI flash memories are accessed simultaneously. The Quad SPI interface supports: * Indirect mode: all the operations are performed using the QUADSPI registers * Status polling mode: the external flash status register is periodically read and an interrupt can be generated in case of flag setting * Memory-mapped mode: the external Flash is memory mapped and is seen by the system as if it were an internal memory * Three functional modes: indirect, status-polling, and memory-mapped * SDR and DDR support * Fully programmable opcode for both indirect and memory mapped mode * Fully programmable frame format for both indirect and memory mapped mode - Each of the 5 following phases can be configured independently (enable, length, single/dual/quad communication) - Instruction phase - Address phase - Alternate bytes phase - Dummy cycles phase - Data phase * Integrated FIFO for reception and transmission * 8, 16, and 32-bit data accesses are allowed * DMA channel for indirect mode operations * Programmable masking for external flash flag management * Timeout management * Interrupt generation on FIFO threshold, timeout, status match, operation complete, and access error 3.39 Development support 3.39.1 Serial wire JTAG debug port (SWJ-DP) The Arm SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with 46/232 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE Functional overview SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP. 3.39.2 Embedded trace macrocellTM The Arm embedded trace macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32G474xB/xC/xE devices through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. Real-time instruction and data flow activity be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors. The Embedded trace macrocell operates with third party debugger software tools. DS12288 Rev 1 47/232 47 Pinouts and pin description STM32G474xB STM32G474xC STM32G474xE 4 Pinouts and pin description 4.1 UFQFPN48 pinout description 9'' 3% 3%%227 3% 3% 3% 3% 3% 3& 3& 3$ 3$ Figure 5. STM32G474xB/xC/xE UFQFPN48 pinout 9%$7 3$ 3& 9'' 3&26&B,1 3$ 3&26&B287 3$ 3)26&B,1 3$ 3)26&B287 3$ 3*1567 3$ 8)4)31 3$ 3& 3$ 3% 3$ 3% 3$ 3% 3$ 3% 1. The above figure shows the package top view 2. VSS pads are connected to the exposed pad. 48/232 DS12288 Rev 1 3% 9'' 3% 9''$ 95() 3% 3% 3% 3& 3$ 3$ 3$ ([SRVHGSDG 966 069 STM32G474xB STM32G474xC STM32G474xE LQFP48 pinout description 9'' 966 3% 3%%227 3% 3% 3% 3% 3% 3$ 3$ 3$ Figure 6. STM32G474xB/xC/xE LQFP48 pinout 9%$7 9'' 3& 966 3&26&B,1 3$ 3&26&B287 3$ 3)26&B,1 3$ 3)26&B287 3$ 3*1567 3$ /4)3 9''$ 3% 966 9'' 3% 95() 3% 3$ 966$ 3% 3% 3$ 3% 3% 3$ 3% 3$ 3% 3$ 3$ 3$ 3$ 4.2 Pinouts and pin description 06Y9 1. The above figure shows the package top view DS12288 Rev 1 49/232 78 Pinouts and pin description 4.3 STM32G474xB STM32G474xC STM32G474xE LQFP64 pinout description 9'' 966 3% 3%%227 3% 3% 3% 3% 3% 3' 3& 3& 3& 3$ 3$ 3$ Figure 7. STM32G474xB/xC/xE LQFP64 pinout 9%$7 9'' 3& 966 3&26&B,1 3$ 3&26&B287 3$ 3)26&B,1 3$ 3)26&B287 3$ 3*1567 3$ 3& 3& 3& 3& 3& 3& 3& 3& 3$ 3% 3$ 3% 3$ 3% 966 3% 9'' 3% 3$ 3$ 3$ 3$ 3$ 3& 3& 3% 3% 3% 966$ 95() 9''$ 3% 966 9'' /4)3 1. The above figure shows the package top view. 50/232 DS12288 Rev 1 06Y9 STM32G474xB STM32G474xC STM32G474xE LQFP80 pinout description 9'' 966 3% 3%%227 3% 3% 3% 3% 3% 3' 3' 3' 3& 3& 3& 3$ 3$ 3$ 9'' 966 Figure 8. STM32G474xB/xC/xE LQFP80 pinout 9%$7 3$ 3& 3$ 3&26&B,1 3$ 3&26&B287 3$ 3)26&B,1 3$ 3)26&B287 3& 3*1567 3& 3& 3& 3& 3& 3& 9'' 3& 966 3$ 3' 3$ 3' 3$ 3' 966 3% 9'' 3% 3$ 3% 3$ 3% 3$ 3% 3$ 9'' 3$ 3& 3% 3% 3% 966$ 95() 9''$ 3( 3( 3( 3( 3( 3( 3( 3( 3( 3% 966 /4)3 3& 4.4 Pinouts and pin description 06Y9 1. The above figure shows the package top view. DS12288 Rev 1 51/232 78 Pinouts and pin description 4.5 STM32G474xB STM32G474xC STM32G474xE LQFP100 pinout description 9'' 966 3( 3( 3% 3%%227 3% 3% 3% 3% 3% 3' 3' 3' 3' 3' 3' 3' 3' 3& 3& 3& 3$ 3$ 3$ Figure 9. STM32G474xB/xC/xE LQFP100 pinout 3( 9'' 3( 966 3( 3$ 3( 3$ 3( 3$ 9%$7 3$ 3& 3$ 3&26&B,1 3& 3&26&B287 3& 3) 3& 3) 3& 3)26&B,1 9'' 3)26&B287 966 3*1567 3' 3& 3' 3& 3' 3& 3' 3& 3' 3) 3' 3$ 3' 3$ 3' 3$ 3% 966 3% 9'' 3% 3$ 3% 3$ 3$ 3$ 3$ 3& 3& 3% 3% 3% 966$ 95() 9''$ 3( 3( 3( 3( 3( 3( 3( 3( 3( 3% 966 9'' 3% /4)3 1. The above figure shows the package top view. 52/232 DS12288 Rev 1 06Y9 STM32G474xB STM32G474xC STM32G474xE 4.6 Pinouts and pin description LQFP128 pinout description 9'' 966 3' 3' 3* 3* 3* 3* 3* 3& 3& 3& 3$ 3$ 3) 3' 3' 3' 3' 3' 3' 3% 3% 3% 3%%227 3% 3% 3( 3% 3( 966 9'' Figure 10. STM32G474xB/xC/xE LQFP128 pinout 3( 3$ 3( 9'' 3( 966 3( 3$ 3( 3$ 9%$7 3$ 3& 3$ 3&26&B,1 3$ 3&26&B287 3& 3) 3& 3) 3* 966 3* 9'' 3* 3) 3* 3) 3* 3) 3& 3) 3& 3) 9'' 3)26&B,1 966 3)26&B287 3' 3*1567 3' 3& 3' 3& 3' 3& 3' 3& 3' 3) 3' 3$ 3' 3$ 3% 3$ 3% 966 3% 9'' 3% 3$ 3% 966 9'' 3) 3) 3) 3) 3) 3( 3( 3( 3( 3( 3( 3( 3( 3( 3% 966 9'' 3% 3% 9''$ 3% 3& 95() 3& 3$ 3$ 966$ 3$ 95() 3$ /4)3 06Y9 1. The above figure shows the package top view. DS12288 Rev 1 53/232 78 Pinouts and pin description 4.7 STM32G474xB STM32G474xC STM32G474xE WLCSP81 pinout description Figure 11. STM32G474xB/xC/xE WLCSP81 pinout $ 9'' 3$ 3& 3' 3% 3% 3% 966 9'' % 966 3$ 3& 3' 3' 3% 3%%227 3& 9%$7 & 3$ 3$ 3$ 3& 3& 3% 3% 3& 3& 26&B,1 ' 3$ 3& 3$ 3$ 3& 3$ 3$ 3*1567 3& 26&B287 ( 9'' 3' 3& 3% 3( 3& 3$ 3& 3)26&B,1 ) 966 3' 3' 3( 3( 3% 3$ 3& 3) 26&B287 * 3' 3% 3% 3( 3( 3% 3$ 3$ 3& + 3% 3% 3% 3( 3( 966$ 3& 3$ 966 - 9'' 966 3( 3( 9''$ 95() 3% 3$ 9'' 06Y9 1. The above figure shows the package top view. 4.8 TFBGA100 pinout description Figure 12. STM32G474xB/xC/xE TFBGA100 pinout $ 3( 3% 3%%227 3% 3% 3' 3' 3' 3' 3& % 3( 3( 3( 3% 3% 3' 3' 3' 3$ 3$ & 3& 26&B,1 3( 3( 3( 3% 3' 3& 3& 3$ 3$ ' 3& 26&B287 966 9%$7 3& 9'' 966 9'' 3$ 3$ 3$ ( 3)26&B,1 3) 26&B287 3) 3) 966 966 966 3& 3& 3$ ) 3& 3& 3*1567 3& 9'' 966 9'' 3' 3& 3& * 3& 3$ 3) 3$ 3( 3( 3' 3' 3' 3' + 3$ 3$ 3$ 3% 3( 3( 3( 3% 3% 3' - 3$ 3$ 3& 3% 9''$ 3( 3( 3% 3% 3' . 3$ 3& 3% 966$ 95() 3( 3( 3% 3% 3' 069 1. The above figure shows the package top view. 54/232 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE 4.9 Pinouts and pin description Pin definition Table 11. Legend/abbreviations used in the pinout table Name Pin name Pin type Abbreviation Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name S Supply pin I Input only pin I/O Input / output pin FT 5 V tolerant I/O TT 3.6 V tolerant I/O B Dedicated BOOT0 pin NRST I/O structure I/O, with Analog switch function supplied by VDDA _c I/O, USB Type-C PD capable _d I/O, USB Type-C PD Dead Battery function (2) _u(3) Pin functions Bidirectional reset pin with embedded weak pull-up resistor Option for TT or FT I/Os _a(1) _f Notes Definition I/O, Fm+ capable I/O, with USB function Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset Alternate functions Functions selected through GPIOx_AFR registers Additional functions Functions directly selected/enabled through peripheral registers 1. The related I/O structures in Table 12 are: FT_a, FT_fa, TT_a. 2. The related I/O structures in Table 12 are: FT_f, FT_fa. 3. The related I/O structures in Table 12 are FT_u. DS12288 Rev 1 55/232 78 Pinouts and pin description STM32G474xB STM32G474xC STM32G474xE - - - - - - - - - - - - - - - - - - C3 B2 A1 B1 1 2 3 4 1 2 3 4 PE2 PE3 PE4 PE5 Pin type LPQF128 LPQF100 TFBGA100 LQFP80 LQFP64 - Pin name (function after reset)(1) I/O I/O I/O I/O FT FT FT FT Notes - LQFP48 UFQFPN48 WLCSP81 Pin Number I/O structure Table 12. STM32G474xB/xC/xE pin definition Alternate functions Additional functions - TRACECK, TIM3_CH1, SAI1_CK1, SPI4_SCK, TIM20_CH1, FMC_A23, SAI1_MCLK_A, EVENTOUT - - TRACED0, TIM3_CH2, SPI4_NSS, TIM20_CH2, FMC_A19, SAI1_SD_B, EVENTOUT - - TRACED1, TIM3_CH3, SAI1_D2, SPI4_NSS, TIM20_CH1N, FMC_A20, SAI1_FS_A, EVENTOUT - - TRACED2, TIM3_CH4, SAI1_CK2, SPI4_MISO, TIM20_CH2N, FMC_A21, SAI1_SCK_A, EVENTOUT - WKUP3, RTC_TAMP3 - - - - - C2 5 5 PE6 I/O FT - TRACED3, SAI1_D1, SPI4_MOSI, TIM20_CH3N, FMC_A22, SAI1_SD_A, EVENTOUT B9 1 1 1 1 D3 6 6 VBAT S - - - - TIM1_BKIN, TIM1_CH1N, TIM8_CH4N, EVENTOUT WKUP2, RTC_TAMP1, RTC_TS, RTC_OUT1 EVENTOUT OSC32_IN EVENTOUT OSC32_OUT B8 2 2 2 2 D4 7 7 PC13 I/O FT C9 3 3 3 3 C1 8 8 PC14OSC32_IN I/O FT D9 4 4 4 4 D1 9 9 PC15OSC32_OUT I/O FT 56/232 DS12288 Rev 1 (2) (3) (2) (3) (2) (3) STM32G474xB STM32G474xC STM32G474xE Pinouts and pin description - - - - - 10 PF3 Pin type LPQF128 LPQF100 TFBGA100 LQFP80 LQFP64 LQFP48 - Pin name (function after reset)(1) I/O FT_f Notes - UFQFPN48 WLCSP81 Pin Number I/O structure Table 12. STM32G474xB/xC/xE pin definition (continued) Alternate functions Additional functions - TIM20_CH4, I2C3_SCL, FMC_A3, EVENTOUT - - - - - - - - - 11 PF4 I/O FT_f - COMP1_OUT, TIM20_CH1N, I2C3_SDA, FMC_A4, EVENTOUT F1 - - - - D2 - 12 VSS S - - - - A9 - - - - D5 - 13 VDD S - - - - - - - - - - - 14 PF5 I/O FT - TIM20_CH2N, FMC_A5, EVENTOUT - - TIM20_BKIN, TIM5_CH2, QUADSPI1_BK1_IO2 , FMC_A1, SAI1_MCLK_B, EVENTOUT - - TIM20_BKIN2, TIM5_CH3, QUADSPI1_BK1_IO0 , FMC_A24, SAI1_SCK_B, EVENTOUT - - TIM20_BKIN, TIM15_CH1, SPI2_SCK, TIM5_CH4, QUADSPI1_BK1_IO1 , FMC_A25, SAI1_FS_B, EVENTOUT - - TIM20_BKIN2, TIM15_CH2, SPI2_SCK, QUADSPI1_CLK, FMC_A0, SAI1_D3, EVENTOUT - ADC1_IN10, OSC_IN ADC2_IN10, COMP3_INM, OSC_OUT - - - - - - - - - - - - - - - - - - - - - - E3 E4 - - 10 11 15 16 17 18 PF7 PF8 PF9 PF10 I/O I/O I/O I/O FT FT FT FT E9 5 5 5 5 E1 12 19 PF0-OSC_IN I/O FT_fa - I2C2_SDA, SPI2_NSS/I2S2_WS, TIM1_CH3N, EVENTOUT F9 6 6 6 6 E2 13 20 PF1OSC_OUT I/O FT_a - SPI2_SCK/I2S2_CK, EVENTOUT DS12288 Rev 1 57/232 78 Pinouts and pin description STM32G474xB STM32G474xC STM32G474xE LQFP48 LQFP64 LQFP80 TFBGA100 LPQF100 LPQF128 7 7 7 7 F3 14 21 E8 C8 F8 G9 - D7 E7 58/232 - - - - - 8 9 - - - - - 8 9 8 9 10 11 - 12 13 8 9 10 11 - 12 13 F2 F4 F1 G1 G3 G4 G2 15 16 17 18 19 20 21 22 23 24 25 26 27 28 PG10-NRST I/O PC0 PC1 PC2 PC3 PF2 PA0 PA1 I/O I/O I/O I/O I/O I/O I/O DS12288 Rev 1 Notes UFQFPN48 D8 Pin name (function after reset)(1) Pin type WLCSP81 Pin Number I/O structure Table 12. STM32G474xB/xC/xE pin definition (continued) Alternate functions Additional functions FT - MCO, EVENTOUT NRST - LPTIM1_IN1, TIM1_CH1, LPUART1_RX, EVENTOUT ADC12_IN6, COMP3_INM - LPTIM1_OUT, TIM1_CH2, LPUART1_TX, QUADSPI1_BK2_IO0 , SAI1_SD_A, EVENTOUT ADC12_IN7, COMP3_INP - LPTIM1_IN2, TIM1_CH3, COMP3_OUT, TIM20_CH2, QUADSPI1_BK2_IO1 , EVENTOUT ADC12_IN8 - LPTIM1_ETR, TIM1_CH4, SAI1_D1, TIM1_BKIN2, QUADSPI1_BK2_IO2 , SAI1_SD_A, EVENTOUT ADC12_IN9, OPAMP5_VINP - TIM20_CH3, I2C2_SMBA, FMC_A2, EVENTOUT - - TIM2_CH1, TIM5_CH1, USART2_CTS, COMP1_OUT, TIM8_BKIN, TIM8_ETR, TIM2_ETR, EVENTOUT ADC12_IN1, COMP1_INM, COMP3_INP, RTC_TAMP2,WK UP1 - RTC_REFIN, TIM2_CH2, TIM5_CH2, USART2_RTS_DE, TIM15_CH1N, EVENTOUT ADC12_IN2, COMP1_INP, OPAMP1_VINP, OPAMP3_VINP, OPAMP6_VINM FT_a TT_a FT_a TT_a FT TT_a TT_a STM32G474xB STM32G474xC STM32G474xE Pinouts and pin description H1 22 29 PA2 I/O FT_a - H9 - - 15 15 D6 23 30 VSS S - - - - J9 - - 16 16 D7 24 31 VDD S - - - - - TIM2_CH4, TIM5_CH4, SAI1_CK1, USART2_RX, TIM15_CH2, QUADSPI1_CLK, LPUART1_RX, SAI1_MCLK_A, EVENTOUT ADC1_IN4, COMP2_INP, OPAMP1_VINM/ OPAMP 1_VINP, OPAMP5_VINM - TIM3_CH2, SPI1_NSS, SPI3_NSS/I2S3_WS, USART2_CK, SAI1_FS_B, EVENTOUT ADC2_IN17, DAC1_OUT1, COMP1_INM - TIM2_CH1, TIM2_ETR, SPI1_SCK, UCPD1_FRSTX, EVENTOUT ADC2_IN13, DAC1_OUT2, COMP2_INM, OPAMP2_VINM - TIM16_CH1, TIM3_CH1, TIM8_BKIN, SPI1_MISO, TIM1_BKIN, COMP1_OUT, QUADSPI1_BK1_IO3 , LPUART1_CTS, EVENTOUT ADC2_IN3, DAC2_OUT1, OPAMP2_VOUT - TIM17_CH1, TIM3_CH2, TIM8_CH1N, SPI1_MOSI, TIM1_CH1N, COMP2_OUT, QUADSPI1_BK1_IO2 , UCPD1_FRSTX, EVENTOUT ADC2_IN4, COMP2_INP, OPAMP1_VINP, OPAMP2_VINP H8 D6 F7 G7 J8 11 12 13 14 15 11 12 13 14 15 17 18 19 20 21 17 18 19 20 21 H3 H2 J1 J2 K1 25 26 27 28 29 LPQF128 14 LPQF100 14 TFBGA100 10 LQFP80 10 LQFP64 G8 TIM2_CH3, TIM5_CH3, USART2_TX, COMP2_OUT, TIM15_CH1, QUADSPI1_BK1_NC S, LPUART1_TX, UCPD1_FRSTX, EVENTOUT LQFP48 Alternate functions WLCSP81 Notes Pin name (function after reset)(1) Pin type UFQFPN48 Pin Number I/O structure Table 12. STM32G474xB/xC/xE pin definition (continued) 32 33 34 35 36 PA3 PA4 PA5 PA6 PA7 I/O I/O I/O I/O I/O DS12288 Rev 1 TT_a TT_a TT_a TT_a TT_a Additional functions ADC1_IN3, COMP2_INM, OPAMP1_VOUT, WKUP4/LSCO 59/232 78 Pinouts and pin description STM32G474xB STM32G474xC STM32G474xE H7 F6 G6 16 - 17 18 - - 16 17 23 24 25 22 23 24 25 K2 J3 H4 K3 30 31 32 33 37 38 39 40 PC4 PC5 PB0 PB1 Pin type LPQF128 LPQF100 TFBGA100 LQFP80 LQFP64 22 Pin name (function after reset)(1) I/O I/O I/O I/O FT_fa TT_a TT_a TT_a Notes E6 LQFP48 UFQFPN48 WLCSP81 Pin Number I/O structure Table 12. STM32G474xB/xC/xE pin definition (continued) Alternate functions Additional functions - TIM1_ETR, I2C2_SCL, USART1_TX, QUADSPI1_BK2_IO3 , EVENTOUT ADC2_IN5 - TIM15_BKIN, SAI1_D3, TIM1_CH4N, USART1_RX, HRTIM1_EEV10, EVENTOUT ADC2_IN11, OPAMP1_VINM, OPAMP2_VINM, WKUP5 - TIM3_CH3, TIM8_CH2N, ADC3_IN12/ADC TIM1_CH2N, 1_IN15, QUADSPI1_BK1_IO1 COMP4_INP, , HRTIM1_FLT5, OPAMP2_VINP, UCPD1_FRSTX, OPAMP3_VINP EVENTOUT - TIM3_CH4, TIM8_CH3N, TIM1_CH3N, ADC3_IN1/ADC1 COMP4_OUT, _IN12, QUADSPI1_BK1_IO0 COMP1_INP, , OPAMP3_VOUT, LPUART1_RTS_DE, OPAMP6_VINM HRTIM1_SCOUT, EVENTOUT ADC2_IN12, COMP4_INM, OPAMP3_VINM J7 19 18 26 26 J4 34 41 PB2 I/O TT_a - RTC_OUT2, LPTIM1_OUT, TIM5_CH1, TIM20_CH1, I2C3_SMBA, QUADSPI1_BK2_IO1 , HRTIM1_SCIN, EVENTOUT H6 - 19 27 27 K4 35 42 VSSA S - - - - J6 20 20 28 28 K5 36 43 VREF+ S - - - VREFBUF_OUT - - - - - - - 44 VREF+ S - - - VREFBUF_OUT J5 21 21 29 29 J5 37 45 VDDA S - - - - H9 - - - - E5 - 46 VSS S - - - - J1 - - - - F5 - 47 VDD S - - - - - - - - - - - 48 PF11 I/O FT - TIM20_ETR, FMC_NE4, EVENTOUT - 60/232 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE Pinouts and pin description LQFP48 LQFP64 LQFP80 TFBGA100 LPQF100 LPQF128 - - - - - - 49 PF12 I/O Notes UFQFPN48 - Pin name (function after reset)(1) Pin type WLCSP81 Pin Number I/O structure Table 12. STM32G474xB/xC/xE pin definition (continued) Alternate functions Additional functions FT - TIM20_CH1, FMC_A6, EVENTOUT - - - - - - - - - 50 PF13 I/O FT - TIM20_CH2, I2C4_SMBA, FMC_A7, EVENTOUT - - - - - - - 51 PF14 I/O FT_f - TIM20_CH3, I2C4_SCL, FMC_A8, EVENTOUT - - - - - - - - 52 PF15 I/O FT_f - TIM20_CH4, I2C4_SDA, FMC_A9, EVENTOUT - H5 - - - 30 G5 38 53 PE7 I/O TT_a - TIM1_ETR, FMC_D4, SAI1_SD_B, EVENTOUT ADC3_IN4, COMP4_INP - TIM5_CH3, TIM1_CH1N, FMC_D5, SAI1_SCK_B, EVENTOUT ADC345_IN6, COMP4_INM - TIM5_CH4, TIM1_CH1, FMC_D6, SAI1_FS_B, EVENTOUT ADC3_IN2 - TIM1_CH2N, QUADSPI1_CLK, FMC_D7, SAI1_MCLK_B, EVENTOUT ADC345_IN14 - TIM1_CH2, SPI4_NSS, QUADSPI1_BK1_NC S, FMC_D8, EVENTOUT ADC345_IN15 - TIM1_CH3N, SPI4_SCK, QUADSPI1_BK1_IO0 , FMC_D9, EVENTOUT ADC345_IN16 - TIM1_CH3, SPI4_MISO, QUADSPI1_BK1_IO1 , FMC_D10, EVENTOUT ADC3_IN3 G5 F5 J4 H4 E5 G4 - - - - - - - - - - - - - - - - - - 31 32 33 34 35 36 H5 H6 K6 J6 G6 K7 39 40 41 42 43 44 54 55 56 57 58 59 PE8 PE9 PE10 PE11 PE12 PE13 I/O I/O I/O I/O I/O I/O DS12288 Rev 1 FT_a FT_a FT_a FT_a FT_a FT_a 61/232 78 Pinouts and pin description STM32G474xB STM32G474xC STM32G474xE F4 - - - - - 37 38 J7 H7 45 46 60 61 PE14 PE15 Pin type LPQF128 LPQF100 TFBGA100 LQFP80 LQFP64 - Pin name (function after reset)(1) I/O I/O FT_a FT_a Notes J3 LQFP48 UFQFPN48 WLCSP81 Pin Number I/O structure Table 12. STM32G474xB/xC/xE pin definition (continued) Alternate functions Additional functions - TIM1_CH4, SPI4_MOSI, TIM1_BKIN2, QUADSPI1_BK1_IO2 , FMC_D11, EVENTOUT ADC4_IN1 - TIM1_BKIN, TIM1_CH4N, USART3_RX, QUADSPI1_BK1_IO3 , FMC_D12, EVENTOUT ADC4_IN2 COMP5_INM, OPAMP3_VINM, OPAMP4_VINM H3 22 22 30 39 J8 47 62 PB10 I/O TT_a - TIM2_CH3, USART3_TX, LPUART1_RX, QUADSPI1_CLK, TIM1_BKIN, HRTIM1_FLT3, SAI1_SCK_A, EVENTOUT J2 - 23 31 40 E6 48 63 VSS S - - - - J1 23 24 32 41 F7 49 64 VDD S - - - - - TIM2_CH4, USART3_RX, LPUART1_TX, QUADSPI1_BK1_NC S, HRTIM1_FLT4, EVENTOUT ADC12_IN14, COMP6_INP, OPAMP4_VINP, OPAMP6_VOUT - TIM5_ETR, I2C2_SMBA, SPI2_NSS/I2S2_WS, ADC4_IN3/ADC1 TIM1_BKIN, _IN11, USART3_CK, COMP7_INM, LPUART1_RTS_DE, OPAMP4_VOUT, FDCAN2_RX, OPAMP6_VINP HRTIM1_CHC1, EVENTOUT - SPI2_SCK/I2S2_CK, TIM1_CH1N, USART3_CTS, LPUART1_CTS, FDCAN2_TX, HRTIM1_CHC2, EVENTOUT H2 G3 H1 62/232 24 25 26 25 26 27 33 34 35 42 43 44 H8 K8 J9 50 51 52 65 66 67 PB11 PB12 PB13 I/O I/O I/O DS12288 Rev 1 TT_a TT_a TT_a ADC3_IN5, COMP5_INP, OPAMP3_VINP, OPAMP4_VINP, OPAMP6_VINP STM32G474xB STM32G474xC STM32G474xE Pinouts and pin description 27 36 45 H9 53 68 PB14 Pin type LPQF128 LPQF100 TFBGA100 LQFP80 LQFP64 LQFP48 28 Pin name (function after reset)(1) I/O TT_a Notes G2 UFQFPN48 WLCSP81 Pin Number I/O structure Table 12. STM32G474xB/xC/xE pin definition (continued) Alternate functions Additional functions - TIM15_CH1, SPI2_MISO, TIM1_CH2N, USART3_RTS_DE, COMP4_OUT, HRTIM1_CHD1, EVENTOUT ADC4_IN4/ADC1 _IN5, COMP7_INP, OPAMP2_VINP, OPAMP5_VINP RTC_REFIN, TIM15_CH2, TIM15_CH1N, ADC4_IN5/ADC2 COMP3_OUT, _IN15, TIM1_CH3N, COMP6_INM, SPI2_MOSI/I2S2_SD OPAMP5_VINM , HRTIM1_CHD2, EVENTOUT E4 28 29 37 46 K9 54 69 PB15 I/O TT_a - G1 - - - 47 K10 55 70 PD8 I/O TT_a - USART3_TX, FMC_D13, EVENTOUT ADC4_IN12/ADC 5_IN12, OPAMP4_VINM F3 - - - 48 G8 56 71 PD9 I/O TT_a - USART3_RX, FMC_D14, EVENTOUT ADC4_IN13/ADC 5_IN13, OPAMP6_VINP F2 - - - 49 G7 57 72 PD10 I/O FT_a - USART3_CK, FMC_D15, EVENTOUT ADC345_IN7, COMP6_INM - TIM5_ETR, I2C4_SMBA, USART3_CTS, FMC_A16, EVENTOUT ADC345_IN8, COMP6_INP, OPAMP4_VINP ADC345_IN9, COMP5_INP, OPAMP5_VINP E2 - - - - H10 58 73 PD11 I/O TT_a - - - - - J10 59 74 PD12 I/O TT_a - TIM4_CH1, USART3_RTS_DE, FMC_A17, EVENTOUT - - - - - G9 60 75 PD13 I/O FT_a - TIM4_CH2, FMC_A18, EVENTOUT ADC345_IN10, COMP5_INM - - - - - F8 61 76 PD14 I/O TT_a - TIM4_CH3, FMC_D0, EVENTOUT ADC345_IN11, COMP7_INP, OPAMP2_VINP COMP7_INM - - - - - G10 62 77 PD15 I/O FT_a - TIM4_CH4, SPI2_NSS, FMC_D1, EVENTOUT B1 - - - 50 E7 63 78 VSS S - - - - E1 - - - 51 - 64 79 VDD S - - - - DS12288 Rev 1 63/232 78 Pinouts and pin description STM32G474xB STM32G474xC STM32G474xE 29 - 52 F9 65 80 PC6 Pin type LPQF128 LPQF100 TFBGA100 LQFP80 LQFP64 38 Pin name (function after reset)(1) I/O FT_f Notes E3 LQFP48 UFQFPN48 WLCSP81 Pin Number I/O structure Table 12. STM32G474xB/xC/xE pin definition (continued) Alternate functions Additional functions - TIM3_CH1, HRTIM1_EEV10, TIM8_CH1, I2S2_MCK, COMP6_OUT, I2C4_SCL, HRTIM1_CHF1, EVENTOUT - - D5 - - 39 53 F10 66 81 PC7 I/O FT_f - TIM3_CH2, HRTIM1_FLT5, TIM8_CH2, I2S3_MCK, COMP5_OUT, I2C4_SDA, HRTIM1_CHF2, EVENTOUT - - - - - - - 82 PG0 I/O FT - TIM20_CH1N, FMC_A10, EVENTOUT - - - - - - - - 83 PG1 I/O FT - TIM20_CH2N, FMC_A11, EVENTOUT - - TIM20_CH3N, SPI1_SCK, FMC_A12, EVENTOUT - - TIM20_BKIN, I2C4_SCL, SPI1_MISO, TIM20_CH4N, FMC_A13, EVENTOUT - - TIM20_BKIN2, I2C4_SDA, SPI1_MOSI, FMC_A14, EVENTOUT - - TIM3_CH3, HRTIM1_CHE1, TIM8_CH3, TIM20_CH3, COMP7_OUT, I2C3_SCL, EVENTOUT - - - - C5 64/232 - - - - - - - - - - - 40 - - - 54 - - - E8 - - - 67 84 85 86 87 PG2 PG3 PG4 PC8 I/O I/O I/O I/O DS12288 Rev 1 FT FT_f FT_f FT_f STM32G474xB STM32G474xC STM32G474xE Pinouts and pin description D1 D4 D3 - 30 31 32 30 31 32 41 42 43 44 55 56 57 58 E9 E10 D10 D9 68 69 70 71 88 89 90 91 PC9 PA8 PA9 PA10 Pin type LPQF128 LPQF100 TFBGA100 LQFP80 LQFP64 LQFP48 - Pin name (function after reset)(1) I/O I/O I/O I/O DS12288 Rev 1 FT_f FT_a FT_fd a FT_fd a Notes D2 UFQFPN48 WLCSP81 Pin Number I/O structure Table 12. STM32G474xB/xC/xE pin definition (continued) Alternate functions Additional functions - TIM3_CH4, RTIM1_CHE2, TIM8_CH4, I2SCKIN, TIM8_BKIN2, I2C3_SDA, EVENTOUT - - MCO, I2C3_SCL, I2C2_SDA, I2S2_MCK, TIM1_CH1, USART1_CK, COMP7_OUT, TIM4_ETR, FDCAN3_RX, SAI1_CK2, HRTIM1_CHA1, SAI1_SCK_A, EVENTOUT ADC5_IN1, OPAMP5_VOUT - I2C3_SMBA, I2C2_SCL, I2S3_MCK, TIM1_CH2, USART1_TX, OMP5_OUT, TIM15_BKIN, TIM2_CH3, HRTIM1_CHA2, SAI1_FS_A, EVENTOUT ADC5_IN2, UCPD1_DBCC1 - TIM17_BKIN, USB_CRS_SYNC, I2C2_SMBA, SPI2_MISO, TIM1_CH3, USART1_RX, COMP6_OUT, TIM2_CH4, TIM8_BKIN, SAI1_D1, HRTIM1_CHB1, SAI1_SD_A, EVENTOUT UCPD1_DBCC2 65/232 78 Pinouts and pin description STM32G474xB STM32G474xC STM32G474xE 33 33 59 C10 72 92 PA11 Pin type LPQF128 LPQF100 TFBGA100 LQFP80 LQFP64 45 Pin name (function after reset)(1) I/O FT_u Notes C2 LQFP48 UFQFPN48 WLCSP81 Pin Number I/O structure Table 12. STM32G474xB/xC/xE pin definition (continued) Alternate functions Additional functions - SPI2_MOSI/I2S2_SD , TIM1_CH1N, USART1_CTS, COMP1_OUT, FDCAN1_RX, TIM4_CH1, TIM1_CH4, TIM1_BKIN2, HRTIM1_CHB2, EVENTOUT USB_DM USB_DP C1 34 34 46 60 C9 73 93 PA12 I/O FT_u - TIM16_CH1, I2SCKIN, TIM1_CH2N, USART1_RTS_DE, COMP2_OUT, FDCAN1_TX, TIM4_CH2, TIM1_ETR, HRTIM1_FLT1, EVENTOUT A8 - 35 47 61 F6 74 94 VSS S - - - - A1 35 36 48 62 - 75 95 VDD S - - - - (4) SWDIO-JTMS, TIM16_CH1N, I2C4_SCL, I2C1_SCL, IR_OUT, USART3_CTS, TIM4_CH3, SAI1_SD_B, EVENTOUT - - TIM5_ETR, TIM4_CH4, SAI1_SD_B, I2C2_SCL, TIM5_CH1, USART3_RTS, QUADSPI1_BK1_IO3 , EVENTOUT - (4) SWCLK-JTCK, LPTIM1_OUT, I2C4_SMBA, I2C1_SDA, TIM8_CH2, TIM1_BKIN, USART2_TX, SAI1_FS_B, EVENTOUT - B2 - C3 66/232 36 - 37 37 - 38 49 - 50 63 - 64 D8 - B10 76 - 77 96 97 98 PA13 PF6 PA14 I/O I/O I/O DS12288 Rev 1 FT_f FT_f FT_f STM32G474xB STM32G474xC STM32G474xE Pinouts and pin description A2 B3 C4 A3 - - - 38 39 40 - - - - 39 - - - - - - 51 52 53 54 - - - 65 66 67 68 - - - B9 C8 C7 A10 - - - 78 79 80 81 - - - 99 100 101 102 103 104 105 PA15 PC10 PC11 PC12 PG5 PG6 PG7 I/O I/O I/O I/O I/O I/O I/O DS12288 Rev 1 FT_f FT FT_f FT FT FT FT_f Notes Pin name (function after reset)(1) Pin type LPQF128 LPQF100 TFBGA100 LQFP80 LQFP64 LQFP48 UFQFPN48 WLCSP81 Pin Number I/O structure Table 12. STM32G474xB/xC/xE pin definition (continued) Alternate functions Additional functions (4) JTDI, TIM2_CH1, TIM8_CH1, I2C1_SCL, SPI1_NSS, SPI3_NSS/I2S3_WS, USART2_RX, UART4_RTS_DE, TIM1_BKIN, FDCAN3_TX, HRTIM1_FLT2, TIM2_ETR, EVENTOUT - - TIM8_CH1N, UART4_TX, SPI3_SCK/I2S3_CK, USART3_TX, HRTIM1_FLT6, EVENTOUT - - HRTIM1_EEV2, TIM8_CH2N, UART4_RX, SPI3_MISO, USART3_RX, I2C3_SDA, EVENTOUT - - TIM5_CH2, HRTIM1_EEV1, TIM8_CH3N, UART5_TX, SPI3_MOSI/I2S3_SD , USART3_CK, UCPD1_FRSTX, EVENTOUT - - TIM20_ETR, SPI1_NSS, LPUART1_CTS, FMC_A15, EVENTOUT - - TIM20_BKIN, I2C3_SMBA, LPUART1_RTS_DE, FMC_INT, EVENTOUT - - SAI1_CK1, I2C3_SCL, LPUART1_TX, FMC_INT, SAI1_MCLK_A, EVENTOUT - 67/232 78 Pinouts and pin description STM32G474xB STM32G474xC STM32G474xE - B4 - - - - - - - - - - 69 - - B8 - - 82 106 107 108 PG8 PG9 PD0 Pin type LPQF128 LPQF100 TFBGA100 LQFP80 LQFP64 - Pin name (function after reset)(1) I/O I/O I/O FT_f FT FT Notes - LQFP48 UFQFPN48 WLCSP81 Pin Number I/O structure Table 12. STM32G474xB/xC/xE pin definition (continued) Alternate functions Additional functions - I2C3_SDA, LPUART1_RX, FMC_NE3, EVENTOUT - - SPI3_SCK, USART1_TX, FMC_NCE/FMC_NE 2, TIM15_CH1N, EVENTOUT - - TIM8_CH4N, FDCAN1_RX, FMC_D2, EVENTOUT - - A4 - - - 70 A9 83 109 PD1 I/O FT - TIM8_CH4, TIM8_BKIN2, FDCAN1_TX, FMC_D3, EVENTOUT - - - - - - - 110 VSS S - - - - A1 - - - - - - 111 VDD S - - - - - TIM3_ETR, TIM8_BKIN, UART5_RX, EVENTOUT - - TIM2_CH1/ TIM2_ETR, USART2_CTS, QUADSPI1_BK2_NC S, FMC_CLK, EVENTOUT - - TIM2_CH2, USART2_RTS_DE, QUADSPI1_BK2_IO0 , FMC_NOE, EVENTOUT - - USART2_TX, QUADSPI1_BK2_IO1 , FMC_NWE, EVENTOUT - - TIM2_CH4, SAI1_D1, USART2_RX, QUADSPI1_BK2_IO2 , FMC_NWAIT, SAI1_SD_A, EVENTOUT - B5 - - - - 68/232 - - - - - - - - - - 55 - - - - 71 - - - - B7 C6 A8 A7 A6 84 85 86 87 88 112 113 114 115 116 PD2 PD3 PD4 PD5 PD6 I/O I/O I/O I/O I/O DS12288 Rev 1 FT FT FT FT FT STM32G474xB STM32G474xC STM32G474xE Pinouts and pin description A5 C6 A6 - 41 42 43 40 41 42 - 56 57 58 - 72 73 74 B6 A5 C5 B5 89 90 91 92 117 118 119 120 PD7 PB3 PB4 PB5 Pin type LPQF128 LPQF100 TFBGA100 LQFP80 LQFP64 LQFP48 - Pin name (function after reset)(1) I/O I/O I/O I/O DS12288 Rev 1 FT FT FT_c FT_f Notes - UFQFPN48 WLCSP81 Pin Number I/O structure Table 12. STM32G474xB/xC/xE pin definition (continued) Alternate functions Additional functions - TIM2_CH3, USART2_CK, QUADSPI1_BK2_IO3 , FMC_NCE/FMC_NE 1, EVENTOUT - (4) JTDO-TRACESWO, TIM2_CH2, TIM4_ETR, UCPD1_CRS_SYNC, TIM8_CH1N, SPI1_SCK, SPI3_SCK/I2S3_CK, USART2_TX, TIM3_ETR, FDCAN3_RX, HRTIM1_SCOUT, HRTIM1_EEV9, SAI1_SCK_B, EVENTOUT - (4) JTRST, TIM16_CH1, TIM3_CH1, TIM8_CH2N, SPI1_MISO, SPI3_MISO, USART2_RX, UART5_RTS_DE, TIM17_BKIN, FDCAN3_TX, HRTIM1_EEV7, SAI1_MCLK_B, EVENTOUT UCPD1_CC2 - TIM16_BKIN, TIM3_CH2, TIM8_CH3N, I2C1_SMBA, SPI1_MOSI, SPI3_MOSI/I2S3_SD , USART2_CK, I2C3_SDA, FDCAN2_RX, TIM17_CH1, LPTIM1_IN1, SAI1_SD_B, HRTIM1_EEV6, UART5_CTS, EVENTOUT - 69/232 78 Pinouts and pin description STM32G474xB STM32G474xC STM32G474xE C7 B7 A7 70/232 44 45 46 47 43 44 45 46 60 61 62 75 76 77 78 A4 B4 A3 A2 93 94 95 96 121 122 123 124 PB6 PB7 PB8-BOOT0 PB9 Pin type LPQF128 LPQF100 TFBGA100 LQFP80 LQFP64 59 Pin name (function after reset)(1) I/O I/O I/O I/O DS12288 Rev 1 FT_c FT_f FT_f FT_f Notes B6 LQFP48 UFQFPN48 WLCSP81 Pin Number I/O structure Table 12. STM32G474xB/xC/xE pin definition (continued) Alternate functions Additional functions - TIM16_CH1N, TIM4_CH1, TIM8_CH1, TIM8_ETR, USART1_TX, COMP4_OUT, FDCAN2_TX, TIM8_BKIN2, LPTIM1_ETR, HRTIM1_SCIN, HRTIM1_EEV4, SAI1_FS_B, EVENTOUT UCPD1_CC1 - TIM17_CH1N, TIM4_CH2, I2C4_SDA, I2C1_SDA, TIM8_BKIN, USART1_RX, COMP3_OUT, TIM3_CH4, LPTIM1_IN2, FMC_NL, HRTIM1_EEV3, UART4_CTS, EVENTOUT PVD_IN (5) TIM16_CH1, TIM4_CH3, SAI1_CK1, I2C1_SCL, USART3_RX, COMP1_OUT, FDCAN1_RX, TIM8_CH2, TIM1_BKIN, HRTIM1_EEV8, SAI1_MCLK_A, EVENTOUT - - TIM17_CH1, TIM4_CH4, SAI1_D2, I2C1_SDA, IR_OUT, USART3_TX, COMP2_OUT, FDCAN1_TX, TIM8_CH3, TIM1_CH3N, HRTIM1_EEV5, SAI1_FS_A, EVENTOUT - STM32G474xB STM32G474xC STM32G474xE Pinouts and pin description - - - C4 97 125 PE0 Pin type LPQF128 LPQF100 TFBGA100 LQFP80 LQFP64 LQFP48 - Pin name (function after reset)(1) I/O FT Notes - UFQFPN48 WLCSP81 Pin Number I/O structure Table 12. STM32G474xB/xC/xE pin definition (continued) Alternate functions Additional functions - TIM4_ETR, TIM20_CH4N, TIM16_CH1, TIM20_ETR, USART1_TX, FMC_NBL0, EVENTOUT - - - - - - - B3 98 126 PE1 I/O FT - TIM17_CH1, TIM20_CH4, USART1_RX, FMC_NBL1, EVENTOUT - - 47 63 79 - 99 127 VSS S - - - - A9 48 48 64 80 - 100 128 VDD S - - - - 1. Function availability depends on the chosen device. 2. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited: - The speed should not exceed 2 MHz with a maximum load of 30 pF - These GPIOs must not be used as current sources (e.g. to drive an LED). 3. After a backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the RTC registers which are not reset by the system reset. For details on how to manage these GPIOs, refer to the Backup domain and RTC register descriptions in the reference manual RM0440 "STM32G4 Series advanced Arm(R)-based 32-bit MCUs". 4. After reset, these pins are configured as JTAG/SW debug alternate functions, and the internal pull-up on PA15, PA13, PB4 pins and the internal pull-down on PA14 pin are activated. 5. It is recommended to set PB8 in another mode than analog mode after startup to limit consumption if the pin is left unconnected. DS12288 Rev 1 71/232 78 Alternate functions Table 13. Alternate function AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 I2C4/ SYS_AF LPTIM1/ TIM2/5/ 15/16/17 I2C1/3/ TIM1/2/3/4/5/8/ 20/15/ COMP1 QUADSPI1/ I2C3/4/SAI1/US B/HRTIM1/ TIM8/20/15/ COMP3 I2C1/2/3/ 4/TIM1/8/ 16/17 QUADSPI1 /SPI1/2/3/4/ I2S2/3/I2C4/ UART4/5/ TIM8/ Infrared QUADSPI1/ SPI2/3/I2S2 /3/TIM1/5/8/ 20/Infrared USART1/2/3 /FDCAN/CO MP7/5/6 I2C3/4/UAR T4/5/LPUA RT1/COMP 1/2/7/4/5/6/ 3 FDCAN/T IM1/8/15/ FDCAN1/ 2 QUADSPI1/ TIM2/3/4/8/1 7 LPTIM1/ TIM1/8/F DCAN1/3 SDIO/FMC/LP UART1/SAI1/H RTIM1/TIM1 SAI1SAI1/HR TIM1/OPAMP 2 UART4/5/ SAI1/TIM 2/15/ UCPD1 EVENT PA0 - TIM2_CH1 TIM5_CH1 - - - - USART2_ CTS COMP1 _OUT TIM8_ BKIN TIM8_ETR - - - TIM2_ ETR EVENT OUT PA1 RTC_ REFIN TIM2_CH2 TIM5_CH2 - - - - USART2_ RTS_DE - TIM15_ CH1N - - - - - EVENT OUT PA2 - TIM2_CH3 TIM5_CH3 - - - - USART2_ TX COMP2 _OUT TIM15_ CH1 QUADSPI1_ BK1_NCS - LPUART1_TX - UCPD1_ FRSTX EVENT OUT PA3 - TIM2_CH4 TIM5_CH4 SAI1_CK1 - - - USART2_ RX - TIM15_ CH2 QUADSPI1_ CLK - LPUART1_RX SAI1_MCLK_ A - EVENT OUT PA4 - - TIM3_CH2 - - SPI1_NSS SPI3_NSS/ I2S3_WS USART2_ CK - - - - - SAI1_FS_B - EVENT OUT PA5 - TIM2_CH1 TIM2_ETR - - SPI1_SCK - - - - - - - - UCPD1_ FRSTX EVENT OUT PA6 - TIM16_CH1 TIM3_CH1 - TIM8_ BKIN SPI1_MISO TIM1_BKIN - COMP1 _OUT - QUADSPI1_ BK1_IO3 - LPUART1_ CTS - - EVENT OUT PA7 - TIM17_CH1 TIM3_CH2 - TIM8_ CH1N SPI1_MOSI TIM1_ CH1N - COMP2_ OUT - QUADSPI1_ BK1_IO2 - - - UCPD1_ FRSTX EVENT OUT PA8 MCO - I2C3_SCL - I2C2_ SDA I2S2_MCK TIM1_CH1 USART1_ CK COMP7 _OUT - TIM4_ETR FDCAN3 _RX SAI1_CK2 HRTIM1_ CHA1 SAI1_SC K_A EVENT OUT PA9 - - I2C3_SMBA - I2C2_ SCL I2S3_MCK TIM1_CH2 USART1_ TX COMP5 _OUT TIM15_ BKIN TIM2_CH3 - - HRTIM1_ CHA2 SAI1_FS _A EVENT OUT PA10 - TIM17_BKIN - USB_ CRS_SYNC I2C2_ SMBA SPI2_MISO TIM1_CH3 USART1_ RX COMP6 _OUT - TIM2_CH4 TIM8_ BKIN SAI1_D1 HRTIM1_ CHB1 SAI1_SD _A EVENT OUT PA11 - - - - - SPI2_MOSI/ I2S2_SD TIM1_ CH1N USART1_ CTS COMP1 _OUT FDCAN1 _RX TIM4_CH1 TIM1_ CH4 TIM1_BKIN2 HRTIM1_ CHB2 - EVENT OUT PA12 - TIM16_CH1 - - - I2SCKIN TIM1_ CH2N USART1_ RTS_DE COMP2 _OUT FDCAN1 _TX TIM4_CH2 TIM1_ ETR - HRTIM1_ FLT1 - EVENT OUT PA13 SWDIOJTMS TIM16_CH1N - I2C4_SCL I2C1_ SCL IR_OUT - USART3_ CTS - - TIM4_CH3 - - SAI1_SD_B - EVENT OUT PA14 SWCLKJTCK LPTIM1_OUT - I2C4_SMBA I2C1_ SDA TIM8_CH2 TIM1_ BKIN USART2_ TX - - - - - SAI1_FS_B - EVENT OUT PA15 JTDI TIM2_CH1 TIM8_CH1 - I2C1_ SCL SPI1_NSS SPI3_NSS/ I2S3_WS USART2_ RX UART4 _RTS_DE TIM1_ BKIN - FDCAN3 _ TX - HRTIM1_ FLT2 TIM2_ ETR EVENT OUT Port Port A DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE AF0 Pinouts and pin description 72/232 4.10 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 I2C4/ SYS_AF LPTIM1/ TIM2/5/ 15/16/17 I2C1/3/ TIM1/2/3/4/5/8/ 20/15/ COMP1 QUADSPI1/ I2C3/4/SAI1/US B/HRTIM1/ TIM8/20/15/ COMP3 I2C1/2/3/ 4/TIM1/8/ 16/17 QUADSPI1 /SPI1/2/3/4/ I2S2/3/I2C4/ UART4/5/ TIM8/ Infrared QUADSPI1/ SPI2/3/I2S2 /3/TIM1/5/8/ 20/Infrared USART1/2/3 /FDCAN/CO MP7/5/6 I2C3/4/UAR T4/5/LPUA RT1/COMP 1/2/7/4/5/6/ 3 FDCAN/T IM1/8/15/ FDCAN1/ 2 QUADSPI1/ TIM2/3/4/8/1 7 LPTIM1/ TIM1/8/F DCAN1/3 SDIO/FMC/LP UART1/SAI1/H RTIM1/TIM1 SAI1SAI1/HR TIM1/OPAMP 2 UART4/5/ SAI1/TIM 2/15/ UCPD1 EVENT PB0 - - TIM3_CH3 - TIM8_ CH2N - TIM1_ CH2N - - - QUADSPI1_ BK1_IO1 - - HRTIM1_ FLT5 UCPD1_ FRSTX EVENT OUT PB1 - - TIM3_CH4 - TIM8_ CH3N - TIM1_ CH3N - COMP4_ OUT - QUADSPI1_ BK1_IO0 - LPUART1_ RTS_DE HRTIM1_ SCOUT - EVENT OUT PB2 RTC_OUT2 LPTIM1_OUT TIM5_CH1 TIM20_CH1 I2C3_ SMBA - - - - - QUADSPI1_ BK2_IO1 - - HRTIM1_ SCIN - EVENT OUT PB3 JTDOTRACESWO TIM2_CH2 TIM4_ETR USB_CRS_ SYNC TIM8_ CH1N SPI1_SCK SPI3_SCK/ I2S3_CK USART2_ TX - - TIM3_ETR FDCAN3 _RX HRTIM1_ SCOUT HRTIM1_ EEV9 SAI1_ SCK_B EVENT OUT PB4 JTRST TIM16_CH1 TIM3_CH1 - TIM8_ CH2N SPI1_MISO SPI3_MISO USART2_ RX UART5_ RTS_DE - TIM17_BKIN FDCAN3 _TX - HRTIM1_ EEV7 SAI1_ MCLK_B EVENT OUT PB5 - TIM16_BKIN TIM3_CH2 TIM8_CH3N I2C1_ SMBA SPI1_MOSI SPI3_MOSI /I2S3_SD USART2_ CK I2C3_SDA FDCAN2 _RX TIM17_CH1 LPTIM1_ IN1 SAI1_SD_B HRTIM1_ EEV6 UART5_ CTS EVENT OUT PB6 - TIM16_CH1N TIM4_CH1 - - TIM8_CH1 TIM8_ETR USART1_ TX COMP4_ OUT FDCAN2 _TX TIM8_BKIN2 LPTIM1_ ETR HRTIM1_SCIN HRTIM1_ EEV4 SAI1_FS _B EVENT OUT PB7 - TIM17_CH1N TIM4_CH2 I2C4_SDA I2C1_ SDA TIM8_BKIN - USART1_ RX COMP3_ OUT - TIM3_CH4 LPTIM1_ IN2 FMC_NL HRTIM1_ EEV3 UART4_ CTS EVENT OUT PB8 - TIM16_CH1 TIM4_CH3 SAI1_CK1 I2C1_ SCL - - USART3_ RX COMP1_ OUT FDCAN1 _RX TIM8_CH2 - TIM1_BKIN HRTIM1_ EEV8 SAI1_ MCLK_A EVENT OUT PB9 - TIM17_CH1 TIM4_CH4 SAI1_D2 I2C1_ SDA - IR_OUT USART3_ TX COMP2_ OUT FDCAN1 _TX TIM8_CH3 - TIM1_CH3N HRTIM1_ EEV5 SAI1_FS _A EVENT OUT PB10 - TIM2_CH3 - - - - - USART3_ TX LPUART1_ RX - QUADSPI1_ CLK - TIM1_BKIN HRTIM1_ FLT3 SAI1_SC K_A EVENT OUT PB11 - TIM2_CH4 - - - - - USART3_ RX LPUART1_ TX - QUADSPI1_ BK1_NCS - - HRTIM1_ FLT4 - EVENT OUT PB12 - - TIM5_ETR - I2C2_ SMBA SPI2_NSS/ I2S2_WS TIM1_BKIN USART3_ CK LPUART1_ RTS_DE FDCAN2 _RX - - - HRTIM1_ CHC1 - EVENT OUT PB13 - - - - - SPI2_SCK/ I2S2_CK TIM1_ CH1N USART3_ CTS LPUART1_ CTS FDCAN2 _TX - - - HRTIM1_ CHC2 - EVENT OUT PB14 - TIM15_CH1 - - - SPI2_MISO TIM1_ CH2N USART3_ RTS_DE COMP4_ OUT - - - - HRTIM1_ CHD1 - EVENT OUT PB15 RTC_REFIN TIM15_CH2 TIM15_CH1N COMP3_OUT TIM1_ CH3N SPI2_MOSI/ I2S2_SD - - - - - - - HRTIM1_ CHD2 - EVENT OUT DS12288 Rev 1 Port B Port 73/232 Pinouts and pin description AF0 STM32G474xB STM32G474xC STM32G474xE Table 13. Alternate function (continued) AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 I2C4/ SYS_AF LPTIM1/ TIM2/5/ 15/16/17 I2C1/3/ TIM1/2/3/4/5/8/ 20/15/ COMP1 QUADSPI1/ I2C3/4/SAI1/US B/HRTIM1/ TIM8/20/15/ COMP3 I2C1/2/3/ 4/TIM1/8/ 16/17 QUADSPI1 /SPI1/2/3/4/ I2S2/3/I2C4/ UART4/5/ TIM8/ Infrared QUADSPI1/ SPI2/3/I2S2 /3/TIM1/5/8/ 20/Infrared USART1/2/3 /FDCAN/CO MP7/5/6 I2C3/4/UAR T4/5/LPUA RT1/COMP 1/2/7/4/5/6/ 3 FDCAN/T IM1/8/15/ FDCAN1/ 2 QUADSPI1/ TIM2/3/4/8/1 7 LPTIM1/ TIM1/8/F DCAN1/3 SDIO/FMC/LP UART1/SAI1/H RTIM1/TIM1 SAI1SAI1/HR TIM1/OPAMP 2 UART4/5/ SAI1/TIM 2/15/ UCPD1 EVENT PC0 - LPTIM1_IN1 TIM1_CH1 - - - - - LPUART1_ RX - - - - - - EVENT OUT PC1 - LPTIM1_OUT TIM1_CH2 - - - - - LPUART1_ TX - QUADSPI1_ BK2_IO0 - - SAI1_SD_A - EVENT OUT PC2 - LPTIM1_IN2 TIM1_CH3 COMP3_OUT - - TIM20_CH2 - - - QUADSPI1_ BK2_IO1 - - - - EVENT OUT PC3 - LPTIM1_ETR TIM1_CH4 SAI1_D1 - - TIM1_ BKIN2 - - - QUADSPI1_ BK2_IO2 - - SAI1_SD_A - EVENT OUT PC4 - - TIM1_ETR - I2C2_ SCL - - USART1_ TX - - QUADSPI1_ BK2_IO3 - - - - EVENT OUT PC5 - - TIM15_BKIN SAI1_D3 - - TIM1_ CH4N USART1_ RX - - - - - HRTIM1_ EEV10 - EVENT OUT PC6 - - TIM3_CH1 HRTIM1_EEV10 TIM8_ CH1 - I2S2_MCK COMP6_ OUT I2C4_SCL - - - - HRTIM1_ CHF1 - EVENT OUT PC7 - - TIM3_CH2 HRTIM1_FLT5 TIM8_ CH2 - I2S3_MCK COMP5_ OUT I2C4_SDA - - - - HRTIM1_ CHF2 - EVENT OUT PC8 - - TIM3_CH3 HRTIM1_CHE1 TIM8_ CH3 - TIM20_CH3 COMP7_ OUT I2C3_SCL - - - - - - EVENT OUT PC9 - - TIM3_CH4 HRTIM1_CHE2 TIM8_ CH4 I2SCKIN TIM8_ BKIN2 - I2C3_SDA - - - - - - EVENT OUT PC10 - - - - TIM8_ CH1N UART4_TX SPI3_SCK/ I2S3_CK USART3_ TX - - - - - HRTIM1_ FLT6 - EVENT OUT PC11 - - - HRTIM1_EEV2 TIM8_ CH2N UART4_RX SPI3_MISO USART3_ RX I2C3_SDA - - - - - - EVENT OUT PC12 - TIM5_CH2 - HRTIM1_EEV1 TIM8_ CH3N UART5_TX SPI3_MOSI /I2S3_SD USART3_ CK - - - - - - UCPD1_ FRSTX EVENT OUT PC13 - - TIM1_BKIN - TIM1_ CH1N - TIM8_ CH4N - - - - - - - - EVENT OUT PC14 - - - - - - - - - - - - - - - EVENT OUT PC15 - - - - - - - - - - - - - - - EVENT OUT DS12288 Rev 1 Port C Port STM32G474xB STM32G474xC STM32G474xE AF0 Pinouts and pin description 74/232 Table 13. Alternate function (continued) AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 I2C4/ SYS_AF LPTIM1/ TIM2/5/ 15/16/17 I2C1/3/ TIM1/2/3/4/5/8/ 20/15/ COMP1 QUADSPI1/ I2C3/4/SAI1/US B/HRTIM1/ TIM8/20/15/ COMP3 I2C1/2/3/ 4/TIM1/8/ 16/17 QUADSPI1 /SPI1/2/3/4/ I2S2/3/I2C4/ UART4/5/ TIM8/ Infrared QUADSPI1/ SPI2/3/I2S2 /3/TIM1/5/8/ 20/Infrared USART1/2/3 /FDCAN/CO MP7/5/6 I2C3/4/UAR T4/5/LPUA RT1/COMP 1/2/7/4/5/6/ 3 FDCAN/T IM1/8/15/ FDCAN1/ 2 QUADSPI1/ TIM2/3/4/8/1 7 LPTIM1/ TIM1/8/F DCAN1/3 SDIO/FMC/LP UART1/SAI1/H RTIM1/TIM1 SAI1SAI1/HR TIM1/OPAMP 2 UART4/5/ SAI1/TIM 2/15/ UCPD1 EVENT PD0 - - - - - - TIM8_ CH4N - - FDCAN1 _RX - - FMC_D2 - - EVENT OUT PD1 - - - - TIM8_ CH4 - TIM8_ BKIN2 - - FDCAN1 _TX - - FMC_D3 - - EVENT OUT PD2 - - TIM3_ETR - TIM8_ BKIN UART5_RX - - - - - - - - - EVENT OUT PD3 - - TIM2_CH1/ TIM2_ETR - - - - USART2_ CTS - - QUADSPI1 _BK2_NCS - FMC_CLK - - EVENT OUT PD4 - - TIM2_CH2 - - - - USART2_ RTS_DE - - QUADSPI1_ BK2_IO0 - FMC_NOE - - EVENT OUT PD5 - - - - - - - USART2_ TX - - QUADSPI1_ BK2_IO1 - FMC_NWE - - EVENT OUT PD6 - - TIM2_CH4 SAI1_D1 - - - USART2_ RX - - QUADSPI1_ BK2_IO2 - FMC_NWAIT SAI1_SD_A - EVENT OUT PD7 - - TIM2_CH3 - - - - USART2_ CK - - QUADSPI1_ BK2_IO3 - FMC_NCE/ FMC_NE1 - - EVENT OUT PD8 - - - - - - - USART3_ TX - - - - FMC_D13 - - EVENT OUT PD9 - - - - - - - USART3_ RX - - - - FMC_D14 - - EVENT OUT PD10 - - - - - - - USART3_ CK - - - - FMC_D15 - - EVENT OUT PD11 - TIM5_ETR - - I2C4_ SMBA - - USART3_ CTS - - - - FMC_A16 - - EVENT OUT PD12 - - TIM4_CH1 - - - - USART3_ RTS_DE - - - - FMC_A17 - - EVENT OUT PD13 - - TIM4_CH2 - - - - - - - - - FMC_A18 - - EVENT OUT PD14 - - TIM4_CH3 - - - - - - - - - FMC_D0 - - EVENT OUT PD15 - - TIM4_CH4 - - - SPI2_NSS - - - - - FMC_D1 - - EVENT OUT DS12288 Rev 1 Port D Port 75/232 Pinouts and pin description AF0 STM32G474xB STM32G474xC STM32G474xE Table 13. Alternate function (continued) AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 I2C4/ SYS_AF LPTIM1/ TIM2/5/ 15/16/17 I2C1/3/ TIM1/2/3/4/5/8/ 20/15/ COMP1 QUADSPI1/ I2C3/4/SAI1/US B/HRTIM1/ TIM8/20/15/ COMP3 I2C1/2/3/ 4/TIM1/8/ 16/17 QUADSPI1 /SPI1/2/3/4/ I2S2/3/I2C4/ UART4/5/ TIM8/ Infrared QUADSPI1/ SPI2/3/I2S2 /3/TIM1/5/8/ 20/Infrared USART1/2/3 /FDCAN/CO MP7/5/6 I2C3/4/UAR T4/5/LPUA RT1/COMP 1/2/7/4/5/6/ 3 FDCAN/T IM1/8/15/ FDCAN1/ 2 QUADSPI1/ TIM2/3/4/8/1 7 LPTIM1/ TIM1/8/F DCAN1/3 SDIO/FMC/LP UART1/SAI1/H RTIM1/TIM1 SAI1SAI1/HR TIM1/OPAMP 2 UART4/5/ SAI1/TIM 2/15/ UCPD1 EVENT PE0 - - TIM4_ETR TIM20_CH4N TIM16_ CH1 - TIM20_ETR USART1_ TX - FDCAN1 _RXFD - - FMC_NBL0 - - EVENT OUT PE1 - - - - TIM17_ CH1 - TIM20_CH4 USART1_ RX - - - - FMC_NBL1 - - EVENT OUT PE2 TRACECK - TIM3_CH1 SAI1_CK1 - SPI4_SCK TIM20_CH1 - - - - - FMC_A23 SAI1_MCLK_ A - EVENT OUT PE3 TRACED0 - TIM3_CH2 - - SPI4_NSS TIM20_CH2 - - - - - FMC_A19 SAI1_SD_B - EVENT OUT PE4 TRACED1 - TIM3_CH3 SAI1_D2 - SPI4_NSS TIM20_ CH1N - - - - - FMC_A20 SAI1_FS_A - EVENT OUT PE5 TRACED2 - TIM3_CH4 SAI1_CK2 - SPI4_MISO TIM20_ CH2N - - - - - FMC_A21 SAI1_SCK_A - EVENT OUT PE6 TRACED3 - - SAI1_D1 - SPI4_MOSI TIM20_ CH3N - - - - - FMC_A22 SAI1_SD_A - EVENT OUT PE7 - - TIM1_ETR - - - - - - - - - FMC_D4 SAI1_SD_B - EVENT OUT PE8 - TIM5_CH3 TIM1_CH1N - - - - - - - - - FMC_D5 SAI1_SCK_B - EVENT OUT PE9 - TIM5_CH4 TIM1_CH1 - - - - - - - - - FMC_D6 SAI1_FS_B - EVENT OUT PE10 - - TIM1_CH2N - - - - - - - QUADSPI1_ CLK - FMC_D7 SAI1_MCLK_ B - EVENT OUT PE11 - - TIM1_CH2 - - SPI4_NSS - - - - QUADSPI1_ BK1_NCS - FMC_D8 - - EVENT OUT PE12 - - TIM1_CH3N - - SPI4_SCK - - - - QUADSPI1_ BK1_IO0 - FMC_D9 - - EVENT OUT PE13 - - TIM1_CH3 - - SPI4_MISO - - - - QUADSPI1_ BK1_IO1 - FMC_D10 - - EVENT OUT PE14 - - TIM1_CH4 - - SPI4_MOSI TIM1_ BKIN2 - - - QUADSPI1_ BK1_IO2 - FMC_D11 - - EVENT OUT PE15 - - TIM1_BKIN - - - TIM1_ CH4N USART3_ RX - - QUADSPI1_ BK1_IO3 - FMC_D12 - - EVENT OUT DS12288 Rev 1 Port E Port STM32G474xB STM32G474xC STM32G474xE AF0 Pinouts and pin description 76/232 Table 13. Alternate function (continued) AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 I2C4/ SYS_AF LPTIM1/ TIM2/5/ 15/16/17 I2C1/3/ TIM1/2/3/4/5/8/ 20/15/ COMP1 QUADSPI1/ I2C3/4/SAI1/US B/HRTIM1/ TIM8/20/15/ COMP3 I2C1/2/3/ 4/TIM1/8/ 16/17 QUADSPI1 /SPI1/2/3/4/ I2S2/3/I2C4/ UART4/5/ TIM8/ Infrared QUADSPI1/ SPI2/3/I2S2 /3/TIM1/5/8/ 20/Infrared USART1/2/3 /FDCAN/CO MP7/5/6 I2C3/4/UAR T4/5/LPUA RT1/COMP 1/2/7/4/5/6/ 3 FDCAN/T IM1/8/15/ FDCAN1/ 2 QUADSPI1/ TIM2/3/4/8/1 7 LPTIM1/ TIM1/8/F DCAN1/3 SDIO/FMC/LP UART1/SAI1/H RTIM1/TIM1 SAI1SAI1/HR TIM1/OPAMP 2 UART4/5/ SAI1/TIM 2/15/ UCPD1 EVENT PF0 - - - - I2C2_ SDA SPI2_NSS/ I2S2_WS TIM1_ CH3N - - - - - - - - EVENT OUT PF1 - - - - - SPI2_SCK/ I2S2_CK - - - - - - - - - EVENT OUT PF2 - - TIM20_CH3 - I2C2_ SMBA - - - - - - - FMC_A2 - - EVENT OUT PF3 - - TIM20_CH4 - I2C3_ SCL - - - - - - - FMC_A3 - - EVENT OUT PF4 - - COMP1_OUT TIM20_CH1N I2C3_ SDA - - - - - - - FMC_A4 - - EVENT OUT PF5 - - TIM20_CH2N - - - - - - - - - FMC_A5 - - EVENT OUT PF6 - TIM5_ETR TIM4_CH4 SAI1_SD_B I2C2_ SCL - TIM5_CH1 USART3_ RTS - - QUADSPI1_ BK1_IO3 - - - - EVENT OUT PF7 - - TIM20_BKIN - - - TIM5_CH2 - - - QUADSPI1_ BK1_IO2 - FMC_A1 SAI1_MCLK_ B - EVENT OUT PF8 - - TIM20_BKIN2 - - - TIM5_CH3 - - - QUADSPI1_ BK1_IO0 - FMC_A24 SAI1_SCK_B - EVENT OUT PF9 - - TIM20_BKIN TIM15_CH1 - SPI2_SCK TIM5_CH4 - - - QUADSPI1_ BK1_IO1 - FMC_A25 SAI1_FS_B - EVENT OUT PF10 - - TIM20_BKIN2 TIM15_CH2 - SPI2_SCK - - - - QUADSPI1_ CLK - FMC_A0 SAI1_D3 - EVENT OUT PF11 - - TIM20_ETR - - - - - - - - - FMC_NE4 - - EVENT OUT PF12 - - TIM20_CH1 - - - - - - - - - FMC_A6 - - EVENT OUT PF13 - - TIM20_CH2 - I2C4_ SMBA - - - - - - - FMC_A7 - - EVENT OUT PF14 - - TIM20_CH3 - I2C4_ SCL - - - - - - - FMC_A8 - - EVENT OUT PF15 - - TIM20_CH4 - I2C4_ SDA - - - - - - - FMC_A9 - - EVENT OUT DS12288 Rev 1 Port F Port 77/232 Pinouts and pin description AF0 STM32G474xB STM32G474xC STM32G474xE Table 13. Alternate function (continued) AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15 I2C4/ SYS_AF LPTIM1/ TIM2/5/ 15/16/17 I2C1/3/ TIM1/2/3/4/5/8/ 20/15/ COMP1 QUADSPI1/ I2C3/4/SAI1/US B/HRTIM1/ TIM8/20/15/ COMP3 I2C1/2/3/ 4/TIM1/8/ 16/17 QUADSPI1 /SPI1/2/3/4/ I2S2/3/I2C4/ UART4/5/ TIM8/ Infrared QUADSPI1/ SPI2/3/I2S2 /3/TIM1/5/8/ 20/Infrared USART1/2/3 /FDCAN/CO MP7/5/6 I2C3/4/UAR T4/5/LPUA RT1/COMP 1/2/7/4/5/6/ 3 FDCAN/T IM1/8/15/ FDCAN1/ 2 QUADSPI1/ TIM2/3/4/8/1 7 LPTIM1/ TIM1/8/F DCAN1/3 SDIO/FMC/LP UART1/SAI1/H RTIM1/TIM1 SAI1SAI1/HR TIM1/OPAMP 2 UART4/5/ SAI1/TIM 2/15/ UCPD1 EVENT PG0 - - TIM20_CH1N - - - - - - - - - FMC_A10 - - EVENT OUT PG1 - - TIM20_CH2N - - - - - - - - - FMC_A11 - - EVENT OUT PG2 - - TIM20_CH3N - - SPI1_SCK - - - - - - FMC_A12 - - EVENT OUT PG3 - - TIM20_BKIN - I2C4_ SCL SPI1_MISO TIM20_ CH4N - - - - - FMC_A13 - - EVENT OUT PG4 - - TIM20_BKIN2 - I2C4_ SDA SPI1_MOSI - - - - - - FMC_A14 - - EVENT OUT PG5 - - TIM20_ETR - - SPI1_NSS - - LPUART1_ CTS - - - FMC_A15 - - EVENT OUT PG6 - - TIM20_BKIN - I2C3_ SMBA - - - LPUART1_ RTS_DE - - - FMC_INT - - EVENT OUT PG7 - - - SAI1_CK1 I2C3_ SCL - - - LPUART1_ TX - - - FMC_INT SAI1_MCLK_ A - EVENT OUT PG8 - - - - I2C3_ SDA - - - LPUART1_ RX - - - FMC_NE3 - - EVENT OUT PG9 - - - - - - SPI3_SCK USART1_TX - - - - FMC_NCE/ FMC_NE2 - TIM15_ CH1N EVENT OUT PG10 MCO - - - - - - - - - - - - - - EVENT OUT Port G Port DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE AF0 Pinouts and pin description 78/232 Table 13. Alternate function (continued) STM32G474xB STM32G474xC STM32G474xE 5 Electrical characteristics 5.1 Parameter conditions Electrical characteristics Unless otherwise specified, all voltages are referenced to VSS. 5.1.1 Minimum and maximum values Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean 3). 5.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 C, VDD = VDDA = 3 V. They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean 2). 5.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 5.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 13. 5.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 14. Figure 13. Pin loading conditions Figure 14. Pin input voltage 0&8SLQ 0&8SLQ & S) 9,1 069 DS12288 Rev 1 069 79/232 201 Electrical characteristics 5.1.6 STM32G474xB STM32G474xC STM32G474xE Power supply scheme Figure 15. Power supply scheme 9%$7 %DFNXSFLUFXLWU\ /6(57& %DFNXSUHJLVWHUV 9 3RZHUVZLWFK 9'' 9&25( Q[9'' 5HJXODWRU 287 Q[Q) *3,2V ,1 [) /HYHOVKLIWHU 9'',2 ,2 ORJLF .HUQHOORJLF &38'LJLWDO 0HPRULHV Q[966 9''$ 95() 95() 95() Q) ) 5HVHWEORFN 7HPSVHQVRU 3//+6,+6, 9''$ Q) ) 95() $'&V '$&V 23$03V &203V 95()%8) 6WDQGE\FLUFXLWU\ :DNHXSORJLF ,:'* 966$ 069 Caution: 80/232 Each power supply pair (VDD/VSS, VDDA/VSSA etc.) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure the good functionality of the device. DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE 5.1.7 Electrical characteristics Current consumption measurement Figure 16. Current consumption measurement ,''B9%$7 ,'' ,''$ 9%$7 9'' 9''$ 069 The IDD_ALL parameters given in Table 21 to Table 28 represent the total MCU consumption including the current supplying VDD, VDDA and VBAT. 5.2 Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 14: Voltage characteristics, Table 15: Current characteristics and Table 16: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Exposure to maximum rating conditions for extended periods may affect device reliability. Device mission profile (application conditions) is compliant with JEDEC JESD47 qualification standard, extended mission profiles are available on demand. Table 14. Voltage characteristics(1) Symbol VDD - VSS VIN(2) Ratings Min Max -0.3 4.0 Input voltage on FT_xxx pins except FT_c pins VSS-0.3 min (VDD, VDDA) + 4.0(3)(4) Input voltage on FT_c pins VSS-0.3 5.5 Input voltage on TT_xx pins VSS-0.3 4.0 Input voltage on any other pins VSS-0.3 4.0 External main supply voltage (including VDD, VDDA and VBAT) |VDDx| Variations between different VDDX power pins of the same domain - 50 |VSSx-VSS| Variations between all the different ground pins(5) - 50 Unit V mV 1. All main power (VDD, VDDA, VBAT) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. VIN maximum must always be respected. Refer to Table 15: Current characteristics for the maximum allowed injected current values. DS12288 Rev 1 81/232 201 Electrical characteristics STM32G474xB STM32G474xC STM32G474xE 3. This formula has to be applied only on the power supplies related to the IO structure described in the pin definition table. 4. To sustain a voltage higher than 4 V the internal pull-up/pull-down resistors must be disabled. 5. Include VREF- pin. Table 15. Current characteristics Symbol Ratings Max IVDD Total current into sum of all VDD power lines (source)(1) 150 IVSS (sink)(1) 150 Total current out of sum of all VSS ground lines IVDD(PIN) Maximum current into each VDD power pin (source)(1) 100 IVSS(PIN) (1) 100 IIO(PIN) Maximum current out of each VSS ground pin (sink) Output current sunk by any I/O and control pin except FT_f 20 Output current sunk by any FT_f pin 20 Output current sourced by any I/O and control pin IIO(PIN) Total output current sunk by sum of all I/Os and control Unit mA 20 pins(2) Total output current sourced by sum of all I/Os and control pins IINJ(PIN)(3) Injected current on FT_xxx, TT_xx, NRST pins |IINJ(PIN)| Total injected current (sum of all I/Os and control pins)(5) 100 (2) 100 -5/0(4) 25 1. All main power (VDD, VDDA, VBAT) and ground (VSS, VSSA) pins must always be connected to the external power supplies, in the permitted range. 2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages. 3. Positive injection (when VIN > VDD) is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value. 4. A negative injection is induced by VIN < VSS. IINJ(PIN) must never be exceeded. Refer also to Table 14: Voltage characteristics for the minimum allowed input voltage values. 5. When several inputs are submitted to a current injection, the maximum |IINJ(PIN)| is the absolute sum of the negative injected currents (instantaneous values). Table 16. Thermal characteristics Symbol TSTG TJ 82/232 Ratings Storage temperature range Maximum junction temperature DS12288 Rev 1 Value Unit -65 to +150 C 150 C STM32G474xB STM32G474xC STM32G474xE Electrical characteristics 5.3 Operating conditions 5.3.1 General operating conditions Table 17. General operating conditions Symbol Parameter Conditions Min Max fHCLK Internal AHB clock frequency - 0 170 fPCLK1 Internal APB1 clock frequency - 0 170 fPCLK2 Internal APB2 clock frequency - 0 170 Standard operating voltage - 1.71(1) 3.6 VDD VDDA Analog supply voltage ADC 1.62 DAC 1 MSPS or DAC 15 MSPS or OPAMP 1.8 COMP used 1.8 VREFBUF used 2.4 ADC, DAC, OPAMP, COMP, VREFBUF not used VBAT VIN Backup operating voltage - Power dissipation at TA = 85 C for suffix 6(4) 3.6 TT_xx -0.3 VDD+0.3 FT_c -0.3 5 -0.3 MIN(MIN(VDD, VDDA)+3.6 V, 5.5 V)(2)(3) LQFP128 - - 399 LQFP100 - - 399 LQFP80 - - TBD LQFP64 - - 388 LQFP48 - - 376 UFQFPN48 - - 778 TFBGA100 - - 649 WLCSP81 - - 444 DS12288 Rev 1 V V 3.6 3.6 I/O input voltage MHz 3.6 1.55 All I/O except TT_xx and FT_c PD 0 Unit V V mW 83/232 201 Electrical characteristics STM32G474xB STM32G474xC STM32G474xE Table 17. General operating conditions (continued) Symbol PD TA TJ Parameter Power dissipation at TA = 125 C for suffix 3(4) Conditions Min Max LQFP128 - - 100 LQFP100 - - 100 LQFP80 - - TBD LQFP64 - - 97 LQFP48 - - 94 UFQFPN48 - - 194 TFBGA100 - - 162 WLCSP81 - - 111 Ambient temperature for the suffix 6 version Maximum power dissipation -40 85 Low-power dissipation(5) -40 105 Ambient temperature for the suffix 3 version Maximum power dissipation -40 125 Low-power dissipation(5) -40 130 Suffix 6 version -40 105 Suffix 3 version -40 130 Junction temperature range Unit mW 1. When RESET is released functionality is guaranteed down to VBOR0 Min. 2. This formula has to be applied only on the power supplies related to the IO structure described by the pin definition table. Maximum I/O input voltage is the smallest value between MIN(VDD, VDDA)+3.6 V and 5.5V. 3. For operation with voltage higher than Min (VDD, VDDA) +0.3 V, the internal Pull-up and Pull-Down resistors must be disabled. 4. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Section 6.9: Thermal characteristics). 5. In low-power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section 6.9: Thermal characteristics). 84/232 DS12288 Rev 1 C C STM32G474xB STM32G474xC STM32G474xE 5.3.2 Electrical characteristics Operating conditions at power-up / power-down The parameters given in Table 18 are derived from tests performed under the ambient temperature condition summarized in Table 17. Table 18. Operating conditions at power-up / power-down Symbol Parameter VDD rise time rate tVDD Min Max 0 10 0 10 - VDD fall time rate VDDA rise time rate tVDDA 5.3.3 Conditions - VDDA fall time rate Unit s/V s/V Embedded reset and power control block characteristics The parameters given in Table 19 are derived from tests performed under the ambient temperature conditions summarized in Table 17: General operating conditions. Table 19. Embedded reset and power control block characteristics Symbol tRSTTEMPO(2) Parameter Reset temporization after BOR0 is detected VBOR0(2) Brown-out reset threshold 0 VBOR1 Brown-out reset threshold 1 VBOR2 Brown-out reset threshold 2 VBOR3 Brown-out reset threshold 3 VBOR4 Brown-out reset threshold 4 VPVD0 Programmable voltage detector threshold 0 VPVD1 PVD threshold 1 VPVD2 PVD threshold 2 VPVD3 PVD threshold 3 Conditions(1) Min Typ Max Unit - 250 400 s Rising edge 1.62 1.66 1.7 Falling edge 1.6 1.64 1.69 Rising edge 2.06 2.1 2.14 Falling edge 1.96 2 2.04 Rising edge 2.26 2.31 2.35 Falling edge 2.16 2.20 2.24 Rising edge 2.56 2.61 2.66 Falling edge 2.47 2.52 2.57 Rising edge 2.85 2.90 2.95 Falling edge 2.76 2.81 2.86 Rising edge 2.1 2.15 2.19 Falling edge 2 2.05 2.1 Rising edge 2.26 2.31 2.36 Falling edge 2.15 2.20 2.25 Rising edge 2.41 2.46 2.51 Falling edge 2.31 2.36 2.41 Rising edge 2.56 2.61 2.66 Falling edge 2.47 2.52 2.57 VDD rising DS12288 Rev 1 V V V V V V V V V 85/232 201 Electrical characteristics STM32G474xB STM32G474xC STM32G474xE Table 19. Embedded reset and power control block characteristics (continued) Conditions(1) Min Typ Max Rising edge 2.69 2.74 2.79 Falling edge 2.59 2.64 2.69 Rising edge 2.85 2.91 2.96 Falling edge 2.75 2.81 2.86 Rising edge 2.92 2.98 3.04 Falling edge 2.84 2.90 2.96 Hysteresis in continuous Hysteresis voltage of BORH0 mode - 20 - Hysteresis in other mode - 30 - Symbol Parameter VPVD4 PVD threshold 4 VPVD5 PVD threshold 5 VPVD6 PVD threshold 6 Vhyst_BORH0 Unit V V V mV Hysteresis voltage of BORH (except BORH0) and PVD - - 100 - mV BOR(3) (except BOR0) and IDD (BOR_PVD)(2) PVD consumption from VDD - - 1.1 1.6 A Vhyst_BOR_PVD VPVM1 VDDA peripheral voltage monitoring (COMP/ADC) Rising edge 1.61 1.65 1.69 Falling edge 1.6 1.64 1.68 VPVM2 VDDA peripheral voltage monitoring (OPAMP/DAC) Rising edge 1.78 1.82 1.86 Falling edge 1.77 1.81 1.85 V V Vhyst_PVM1 PVM1 hysteresis - - 10 - mV Vhyst_PVM2 PVM2 hysteresis - - 10 - mV - - 2 - A IDD PVM1 and PVM2 (PVM1/PVM2) consumption from VDD (2) 1. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power sleep modes. 2. Guaranteed by design. 3. BOR0 is enabled in all modes (except shutdown) and its consumption is therefore included in the supply current characteristics tables. 86/232 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE 5.3.4 Electrical characteristics Embedded voltage reference The parameters given in Table 20 are derived from tests performed under the ambient temperature and supply voltage conditions summarized in Table 17: General operating conditions. Table 20. Embedded internal voltage reference Symbol Parameter VREFINT Internal reference voltage Conditions -40 C < TA < +130 C Min Typ 1.182 1.212 Max Unit 1.232 V ADC sampling time when reading the internal reference voltage - 4(2) - - s Start time of reference voltage buffer when ADC is enable - - 8 12(2) s VREFINT buffer consumption from VDD IDD(VREFINTBUF) when converted by ADC - - 12.5 20(2) A tS_vrefint (1) tstart_vrefint VREFINT Internal reference voltage spread over the temperature range VDD = 3 V - 5 7.5(2) mV TCoeff Average temperature coefficient -40C < TA < +130C - 30 50(2) ppm/C ACoeff Long term stability 1000 hours, T = 25C - 300 1000(2) ppm Average voltage coefficient 3.0 V < VDD < 3.6 V - 250 1200(2) ppm/V 24 25 26 49 50 51 74 75 76 VDDCoeff VREFINT_DIV1 1/4 reference voltage VREFINT_DIV2 1/2 reference voltage VREFINT_DIV3 3/4 reference voltage - % VREFINT 1. The shortest sampling time is determined in the application by multiple iterations. 2. Guaranteed by design. DS12288 Rev 1 87/232 201 Electrical characteristics STM32G474xB STM32G474xC STM32G474xE Figure 17. VREFINT versus temperature 9 0HDQ 5.3.5 0LQ 0D[ & 06Y9 Supply current characteristics The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code The current consumption is measured as described in Figure 16: Current consumption measurement. Typical and maximum current consumption The MCU is placed under the following conditions: * All I/O pins are in analog input mode * All peripherals are disabled except when explicitly mentioned * The Flash memory access time is adjusted with the minimum wait states number, depending on the fHCLK frequency (refer to the table "number of wait states according to CPU clock (HCLK) frequency" available in the reference manual RM0440 "STM32G4 Series advanced Arm(R)-based 32-bit MCUs"). * When the peripherals are enabled fPCLK = fHCLK * The voltage scaling Range 1 is adjusted to fHCLK frequency as follows: - Voltage Range 1 Boost mode for 150 MHz < fHCLK 170 MHz - Voltage Range 1 Normal mode for 26 MHz < fHCLK 150 MHz The parameters given in Table 21 to Table 28 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 17: General operating conditions. 88/232 DS12288 Rev 1 Condition Symbol Parameter - Typ Voltage scaling Range 2 DS12288 Rev 1 IDD (Run) Supply current in Run mode fHCLK = fHSE up to Range 1 48 MHz included, Boost bypass mode PLL mode ON above 48 MHz all peripherals disable Range 1 fHCLK Max Unit 25C 55C 85C 105C 125C 25C 55C 85C 105C 125C 26 MHz 3.65 3.85 4.45 5.1 6.45 4.00 4.50 6.50 8.40 13.00 16 MHz 2.30 2.55 3.1 3.8 5.15 2.60 3.20 5.20 7.10 11.00 8 MHz 1.25 1.5 2.05 2.8 4.1 1.60 2.10 4.10 6.00 9.80 4 MHz 0.75 0.955 1.5 2.3 3.6 0.94 1.50 3.50 5.40 9.30 2 MHz 0.47 0.69 1.25 2 3.35 0.65 1.30 3.20 5.10 9.00 1 MHz 0.34 0.55 1.1 1.9 3.2 0.51 1.10 3.00 5.00 8.90 100 KHz 0.22 0.43 0.98 1.75 3.1 0.38 0.94 2.90 4.80 8.70 170 MHz 29.50 29.5 31 32 34.5 30.00 30.00 34.00 36.00 42.00 150 MHz 24.50 26 27 28 30 25.00 27.00 29.00 32.00 37.00 120 MHz 19.50 20 20.5 21.5 23.5 20.00 21.00 23.00 25.00 31.00 80 MHz 13.00 13.5 14 15.5 17 14.00 14.00 16.00 19.00 24.00 72 MHz 12.00 12 13 14 15.5 13.00 13.00 16.00 18.00 23.00 64 MHz 10.50 11 11.5 12.5 14.5 11.00 12.00 14.00 16.00 22.00 48 MHz 7.90 8.2 9 9.7 11.5 8.40 9.00 12.00 14.00 20.00 32 MHz 5.40 5.65 6.4 7.2 8.85 5.80 6.50 9.00 12.00 17.00 24 MHz 4.10 4.35 5.1 5.95 7.6 4.50 5.20 7.80 11.00 16.00 16 MHz 2.80 3.1 3.8 4.7 6.3 3.20 3.90 6.50 8.90 14.00 STM32G474xB STM32G474xC STM32G474xE Table 21. Current consumption in Run and Low-power run modes, code with data processing running from Flash in single Bank, ART enable (Cache ON Prefetch OFF) mA Electrical characteristics 89/232 Condition Symbol Parameter - Typ Voltage scaling SYSCLK source is HSE in bypass mode all peripherals disable Supply current IDD (LPRun) in Low-power run mode SYSCLK source is HSI16 all peripherals disable fHCLK Max Unit 55C 85C 105C 125C 25C 55C 85C 105C 125C 2 MHz 455 725 1350 2250 3800 720 1500 3700 6000 11000 1 MHz 280 545 1200 2100 3600 570 1300 3500 5800 11000 250 KHz 160 435 1100 2000 3500 410 1100 3400 5700 10000 62.5 KHz 130 405 1050 1950 3500 390 1000 3400 5600 11000 2 MHz 920 1200 1850 2750 4250 1300 2000 4200 6600 11000 1 MHz 780 1100 1700 2650 4150 1200 1900 4100 6500 11000 250 KHz 725 980 1600 2500 4050 1100 1800 4100 6400 11000 62.5 KHz 720 955 1600 2500 4000 1100 1700 4000 6300 11000 A STM32G474xB STM32G474xC STM32G474xE DS12288 Rev 1 25C Electrical characteristics 90/232 Table 21. Current consumption in Run and Low-power run modes, code with data processing running from Flash in single Bank, ART enable (Cache ON Prefetch OFF) (continued) Conditions Symbol Parameter - Voltage DS12288 Rev 1 IDD (Run) Supply current in Run mode fHCLK fHCLK = fHSE up to 48MHz Range 1 included, bypass mode Boost mode PLL ON above 48 MHz all peripherals disable Range 1 Unit 25C 55C 85C 105C 125C 55C 85C 26 MHz 3.70 3.9 4.45 5.15 16 MHz 2.35 2.55 3.1 8 MHz 1.25 1.5 4 MHz 0.75 2 MHz 105C 125C 6.45 4.10 4.60 6.50 8.50 13.00 3.85 5.15 2.70 3.20 5.20 7.10 11.00 2.05 2.8 4.15 1.60 2.10 4.10 6.00 9.90 0.97 1.5 2.3 3.6 0.94 1.60 3.50 5.40 9.30 0.47 0.7 1.25 2.05 3.35 0.65 1.30 3.20 5.10 9.00 1 MHz 0.34 0.56 1.1 1.9 3.2 0.51 1.10 3.00 5.00 8.90 100 KHz 0.22 0.44 0.975 1.8 3.1 0.38 0.95 2.90 4.80 8.70 170 MHz 29.50 30 31 32 34.5 30.00 31.00 34.00 36.00 42.00 150 MHz 24.50 24.5 25.5 26.5 28.5 25.00 26.00 28.00 30.00 35.00 120 MHz 19.50 20 20.5 22 23.5 20.00 21.00 23.00 26.00 31.00 80 MHz 13.00 13.5 14.5 15.5 17 14.00 14.00 17.00 19.00 24.00 72 MHz 12.00 12.5 13 14 15.5 13.00 13.00 16.00 18.00 23.00 64 MHz 10.50 11 11.5 13 14.5 11.00 12.00 14.00 17.00 22.00 48 MHz 7.95 8.3 9 10 11.5 8.50 9.10 12.00 15.00 20.00 32 MHz 5.40 5.7 6.45 7.25 8.9 5.80 6.50 9.10 12.00 17.00 24 MHz 4.10 4.4 5.1 6 7.65 4.50 5.30 7.80 11.00 16.00 16 MHz 2.85 3.15 3.8 4.75 6.35 3.20 4.00 6.50 8.90 14.00 mA 91/232 Electrical characteristics 25C scaling Range 2 MAX(1) TYP STM32G474xB STM32G474xC STM32G474xE Table 22. Current consumption in Run and Low-power run modes, code with data processing running from Flash in dual bank, ART enable (Cache ON Prefetch OFF) Conditions Symbol Parameter - IDD (LPRun) Supply current in Low-power run mode Voltage fHCLK SYSCLK source is HSI16 all peripherals disable Unit 55C 85C 105C 125C 25C 55C 85C 105C 125C 2 MHz 450 725 1350 2250 3800 725 1500 3700 6000 11000 1 MHz 270 575 1200 2150 3650 575 1300 3500 5800 11000 250 KHz 185 460 1050 2000 3550 460 1100 3400 5700 11000 62.5 KHz 130 430 1050 2000 3500 430 1100 3400 5600 11000 2 MHz 970 1200 1850 2750 4300 1200 2000 4200 6600 12000 1 MHz 800 1100 1700 2650 4150 1100 1900 4100 6500 11000 250 KHz 680 990 1600 2550 4050 990 1800 4100 6400 11000 62.5 KHz 695 965 1600 2500 4050 965 1700 4000 6400 11000 A 1. Guaranteed by characterization results, unless otherwise specified. STM32G474xB STM32G474xC STM32G474xE DS12288 Rev 1 25C scaling SYSCLK source is HSE in bypass mode all peripherals disable MAX(1) TYP Electrical characteristics 92/232 Table 22. Current consumption in Run and Low-power run modes, code with data processing running from Flash in dual bank, ART enable (Cache ON Prefetch OFF) (continued) Typ Condition Symbol Parameter - Voltage scaling Range 2 DS12288 Rev 1 IDD (Run) Supply current in Run mode fHCLK = fHSE up Range 1 to 48 MHz Boost included, bypass mode mode PLL ON above 48 MHz all peripherals disable Range 1 fHCLK Max Unit 25C 55C 85C 105C 125C 25C 55C 85C 105C 125C 26 MHz 3.65 3.85 4.4 5.25 6.8 4.00 4.60 6.50 8.40 13.00 16 MHz 2.75 2.95 3.5 4.35 5.9 3.10 3.70 5.50 7.50 12.00 8 MHz 1.50 1.65 2.2 3.05 4.55 1.70 2.40 4.20 6.10 10.00 4 MHz 0.84 1 1.55 2.35 3.9 1.10 1.70 3.60 5.50 9.30 2 MHz 0.51 0.68 1.2 2.05 3.55 0.70 1.40 3.20 5.10 9.00 1 MHz 0.34 0.51 1.05 1.85 3.35 0.53 1.20 3.10 4.90 8.80 100 KHz 0.20 0.36 0.895 1.7 3.2 0.38 0.99 2.90 4.80 8.70 170 MHz 20.00 20.5 21.5 22.5 24.5 21.00 22.00 25.00 27.00 47.00 150 MHz 18.00 18.5 19 20 22 19.00 16.00 19.00 21.00 26.00 120 MHz 16.50 16.5 17.5 18.5 20.5 18.00 18.00 21.00 23.00 28.00 80 MHz 13.00 13 14 15 17 14.00 15.00 17.00 19.00 24.00 72 MHz 11.50 12 12.5 13.5 15.5 13.00 13.00 16.00 18.00 23.00 64 MHz 10.50 10.5 11.5 12.5 14.5 11.00 12.00 14.00 17.00 22.00 48 MHz 7.95 8.25 9 10 12 8.30 8.90 12.00 14.00 19.00 32 MHz 6.50 6.75 7.5 8.55 10.5 8.10 8.70 11.00 13.00 19.00 24 MHz 4.95 5.2 5.9 6.95 8.8 5.10 6.00 8.50 11.00 16.00 16 MHz 3.40 3.65 4.3 5.35 7.15 3.70 4.50 7.00 9.40 15.00 STM32G474xB STM32G474xC STM32G474xE Table 23. Current consumption in Run and Low-power run modes, code with data processing running from Flash in single bank, ART disable mA Electrical characteristics 93/232 Condition Symbol Parameter - Typ Voltage scaling SYSCLK source is HSE in bypass mode all peripherals disable Supply current IDD (LPRun) in Low-power run mode SYSCLK source is HSI16 all peripherals disable fHCLK Max Unit 55C 85C 105C 125C 25C 55C 85C 105C 125C 2 MHz 505 700 1300 2250 3950 780 1500 3800 6000 11000 1 MHz 295 500 1100 2050 3750 540 1300 3600 5900 11000 250 KHz 145 350 970 1900 3600 410 1100 3400 5700 11000 62.5 KHz 110 310 935 1850 3550 380 1100 3400 5700 11000 2 MHz 940 1150 1800 2700 4400 1300 2100 4400 6600 11000 1 MHz 830 1000 1600 2550 4250 1200 1900 4300 6500 11000 250 KHz 700 890 1500 2400 4100 1000 1800 4100 6400 11000 62.5 KHz 645 855 1450 2400 4100 1100 1800 4100 6400 11000 A STM32G474xB STM32G474xC STM32G474xE DS12288 Rev 1 25C Electrical characteristics 94/232 Table 23. Current consumption in Run and Low-power run modes, code with data processing running from Flash in single bank, ART disable (continued) Symbol Parameter - Voltage DS12288 Rev 1 IDD (Run) Supply current in Run mode fHCLK fHCLK = fHSE up to 48MHz Range 1 included, Boost bypass mode mode PLL ON above 48 MHz all peripherals disable Range 1 Unit 25C 55C 85C 105C 125C 25C 55C 85C 105C 125C 26 MHz 3.35 3.5 4.1 4.95 6.45 3.70 4.20 6.20 8.10 12.00 16 MHz 2.65 2.8 3.4 4.2 5.75 3.00 3.50 5.40 7.40 12.00 8 MHz 1.40 1.6 2.15 2.95 4.45 1.70 2.30 4.20 6.10 10.00 4 MHz 0.81 0.975 1.5 2.35 3.85 1.10 1.60 3.60 5.50 9.30 2 MHz 0.49 0.655 1.2 2 3.5 0.69 1.30 3.20 5.10 9.00 1 MHz 0.34 0.495 1.05 1.85 3.35 0.53 1.10 3.10 5.00 8.80 100 KHz 0.19 0.355 0.895 1.7 3.2 0.38 0.95 2.90 4.80 8.70 170 MHz 18.00 18 19 20 22 19.00 20.00 22.00 25.00 45.00 150 MHz 16.00 16.5 17 18 20 17.00 18.00 20.00 22.00 27.00 120 MHz 14.50 15 15.5 16.5 18.5 16.00 16.00 18.00 21.00 26.00 80 MHz 12.00 12 13 14 15.5 13.00 13.00 16.00 18.00 23.00 72 MHz 10.50 11 11.5 12.5 14.5 12.00 12.00 15.00 17.00 22.00 64 MHz 9.45 9.7 10.5 11.5 13.5 9.90 11.00 13.00 16.00 21.00 48 MHz 7.25 7.55 8.25 9.3 11 7.50 8.20 11.00 14.00 18.00 32 MHz 6.15 6.4 7.1 8.15 10 6.60 7.30 9.80 13.00 18.00 24 MHz 4.70 4.95 5.65 6.65 8.5 5.10 5.80 8.30 11.00 16.00 16 MHz 3.20 3.45 4.15 5.15 6.95 3.60 4.40 6.80 9.30 15.00 scaling Range 2 MAX(1) TYP Conditions STM32G474xB STM32G474xC STM32G474xE Table 24. Current consumption in Run and Low-power run modes, code with data processing running from Flash in dual bank, ART disable mA Electrical characteristics 95/232 Conditions Symbol Parameter - IDD (LPRun) Supply current in Low-power run mode Voltage fHCLK SYSCLK source is HSI16 all peripherals disable Unit 55C 85C 105C 125C 25C 55C 85C 105C 125C 2 MHz 480 665 1300 2200 3900 710 1400 3800 6000 11000 1 MHz 270 485 1100 2050 3750 540 1200 3600 5900 11000 250 KHz 145 340 965 1900 3600 410 1100 3400 5700 11000 62.5 KHz 120 310 930 1850 3550 380 1100 3400 5700 11000 2 MHz 990 1150 1750 2700 4350 1300 2000 4400 6600 11000 1 MHz 830 995 1600 2550 4200 1200 1900 4300 6500 11000 250 KHz 720 880 1500 2400 4100 1100 1700 4100 6400 11000 62.5 KHz 660 845 1450 2400 4050 1100 1700 4100 6400 11000 A 1. Guaranteed by characterization results, unless otherwise specified. STM32G474xB STM32G474xC STM32G474xE DS12288 Rev 1 25C scaling SYSCLK source is HSE in bypass mode all peripherals disable MAX(1) TYP Electrical characteristics 96/232 Table 24. Current consumption in Run and Low-power run modes, code with data processing running from Flash in dual bank, ART disable (continued) Symbol Parameter - Voltage DS12288 Rev 1 IDD(Run) Supply current in Run mode fHCLK = fHSE up to 48MHz included, bypass mode PLL ON above 48 MHz all peripherals disable fHCLK Range 1 Boost mode Range 1 Unit 25C 55C 85C 25C 55C 85C 26 MHz 3.35 3.55 4.1 4.95 6.45 3.70 4.30 6.20 8.10 12.00 16 MHz 2.15 2.35 2.9 3.7 5.25 2.50 3.00 4.90 6.90 11.00 8 MHz 1.15 1.35 1.9 2.7 4.2 1.40 2.00 3.90 5.90 9.70 4 MHz 0.69 0.855 1.4 2.2 3.7 0.89 1.50 3.40 5.30 9.20 2 MHz 0.43 0.595 1.15 1.95 3.45 0.63 1.20 3.10 5.10 8.90 1 MHz 0.30 0.47 1 1.8 3.3 0.50 1.10 3.00 4.90 8.80 100 KHz 0.19 0.355 0.89 1.7 3.2 0.38 0.94 2.90 4.80 8.70 170 MHz 26.00 26.5 27.5 28.5 30.5 28.00 28.00 30.00 33.00 150 MHz 21.50 22 22.5 23.5 25.5 23.00 23.00 25.00 28.00 120 MHz 17.50 17.5 18.5 19.5 21.5 19.00 19.00 21.00 24.00 28.00 80 MHz 11.50 12 12.5 13.5 15.5 13.00 13.00 16.00 18.00 23.00 72 MHz 10.50 11 11.5 12.5 14.5 12.00 12.00 14.00 17.00 22.00 64 MHz 9.45 9.7 10.5 11.5 13.5 9.90 11.00 13.00 16.00 21.00 48 MHz 7.25 7.5 8.2 9.25 11 7.60 8.20 11.00 14.00 18.00 32 MHz 4.90 5.15 5.85 6.9 8.7 5.40 6.10 8.60 11.00 16.00 24 MHz 3.75 4 4.7 5.7 7.5 4.20 4.90 7.40 9.80 15.00 16 MHz 2.60 2.85 3.5 4.5 6.3 3.00 3.70 6.20 8.60 14.00 scaling Range 2 MAX(1) TYP Conditions 105C 125C 105C 125C 38.00 STM32G474xB STM32G474xC STM32G474xE Table 25. Current consumption in Run and Low-power run modes, code with data processing running from SRAM1 (2) 33.00 mA (2) Electrical characteristics 97/232 Conditions Symbol Parameter - IDD (LPRun) Supply current in Low-power run mode Voltage fHCLK SYSCLK source is HSI16 all peripherals disable Unit 55C 85C 105C 125C 25C 55C 85C 105C 125C 2 MHz 365 570 1200 2150 3850 640 1400 3700 6000 11000 1 MHz 240 425 1050 2000 3650 500 1200 3500 5800 11000 250 KHz 135 315 945 1850 3550 390 1100 3400 5700 11000 62.5 KHz 105 285 915 1850 3550 350 990 3300 5600 11000 2 MHz 835 1050 1650 2600 4300 1300 1900 4300 6600 11000 1 MHz 775 940 1550 2500 4150 1200 1800 4200 6400 11000 250 KHz 640 860 1450 2400 4100 1100 1700 4100 6400 11000 62.5 KHz 640 830 1450 2350 4050 1100 1700 4100 6300 11000 A 1. Guaranteed by characterization results, unless otherwise specified. 2. Guaranteed by test in production. STM32G474xB STM32G474xC STM32G474xE DS12288 Rev 1 25C scaling SYSCLK source is HSE in bypass mode all peripherals disable MAX(1) TYP Electrical characteristics 98/232 Table 25. Current consumption in Run and Low-power run modes, code with data processing running from SRAM1 (continued) TYP TYP TYP TYP Single Bank Mode Dual Bank Mode Single Bank Mode Dual Bank Mode 25C 25C 25C 25C Reduced code(1) 3.65 3.7 140 142 Coremark 3.65 3.7 140 142 140 142 Conditions Symbol Parameter Code - Voltage scaling Range2 fHCLK=26MHz DS12288 Rev 1 IDD (Run) Supply current in Run mode fHCLK=fHSE up to 48 MHZ included, bypass mode PLL ON above 48 MHz all peripherals disable Unit mA Dhrystone2.1 3.65 3.7 Fibonacci 4.55 4.2 175 162 While(1) 2.90 3 112 115 Reduced code(1) 24.5 24.5 163 163 24 24 160 160 163 163 Coremark Range 1 fHCLK= 150 MHz Dhrystone2.1 mA 24.5 Fibonacci 22.5 28 150 187 While(1) 19.5 20 130 133 Reduced code(1) 29.5 29.5 174 174 29 29 171 171 174 174 Coremark Range 1 Boost mode Dhrystone2.1 fHCLK= 170 MHz Fibonacci While(1) mA 29.5 29.5 38 35 224 206 23.5 24 138 141 A/MHz A/MHz A/MHz 99/232 Electrical characteristics 24.5 Unit STM32G474xB STM32G474xC STM32G474xE Table 26. Typical current consumption in Run and Low-power run modes, with different codes running from Flash, ART enable (Cache ON Prefetch OFF) TYP TYP Single Bank Mode Dual Bank Mode 25C Reduced code(1) Coremark Conditions Symbol Parameter Code - IDD (LPRun) Supply current in Low-power run Voltage scaling SYSCLK source is HSI16 fHCLK = 2 MHz all peripherals disable TYP TYP Single Bank Mode Dual Bank Mode 25C 25C 25C 920 970 460 485 905 985 453 493 458 458 Unit A Dhrystone2.1 915 915 Fibonacci 1,050 950 525 475 While(1) 930 875 465 438 Unit Electrical characteristics 100/232 Table 26. Typical current consumption in Run and Low-power run modes, with different codes running from Flash, ART enable (Cache ON Prefetch OFF) (continued) A/MHz STM32G474xB STM32G474xC STM32G474xE DS12288 Rev 1 1. Reduced code used for characterization results provided in Table 21, Table 23, Table 25. Single Bank Mode Dual Bank Mode Parameter 25C 25C 25C 25C Reduced code(1) 3.55 3.25 137 125 Coremark 3.45 3.2 133 123 Dhrystone2.1 3.55 3.25 137 125 Fibonacci 3.40 3 131 115 2.90 2.95 112 113 18.50 16.00 123 107 Coremark 17.50 15.50 117 103 Dhrystone2.1 18.50 16.00 123 107 Fibonacci 16.50 14.50 110 97 While(1) 19.50 19.50 130 130 Reduced code(1) 20.50 18.00 121 106 Coremark 20.00 17.50 118 103 Dhrystone2.1 20.50 18.00 121 106 Fibonacci 18.50 16.50 109 97 While(1) 23.50 24.00 138 141 Code - Voltage scaling Range 2 fHCLK= 26 MHz DS12288 Rev 1 While(1) IDD (Run) Supply current in Run mode fHCLK = fHSE up to 48 MHZ included, Range 1 bypass mode PLL ON above fHCLK= 150 MHz 48 MHz all peripherals disable Range 1 Boost mode fHCLK= 170 MHz (1) Reduced code Unit mA mA mA Single Bank Mode TYP Dual Bank Mode Unit A/MHz A/MHz A/MHz 101/232 Electrical characteristics TYP Conditions Symbol TYP TYP STM32G474xB STM32G474xC STM32G474xE Table 27. Typical current consumption in Run and Low-power run modes, with different codes running from Flash, ART disable TYP Single Bank Mode Dual Bank Mode 25C 25C 25C 25C Reduced code(1) 970 1,000 485 500 Coremark 985 1,000 493 500 Dhrystone2.1 985 955 493 478 Fibonacci 1,050 990 525 495 While(1) 920 875 460 438 Conditions Symbol Parameter Code - IDD (LPRun) Supply current in Low-power run Voltage scaling SYSCLK source is HSI16 fHCLK = 2 MHz all peripherals disable TYP TYP Unit A Single Bank Mode TYP Dual Bank Mode Unit Electrical characteristics 102/232 Table 27. Typical current consumption in Run and Low-power run modes, with different codes running from Flash, ART disable (continued) A/MHz STM32G474xB STM32G474xC STM32G474xE DS12288 Rev 1 1. Reduced code used for characterization results provided in the first tables. Conditions Symbol Parameter - TYP Code Voltage scaling Range2 fHCLK=26 M Hz DS12288 Rev 1 IDD (Run) 3.25 125 Coremark 3.35 129 Dhrystone2.1 3.30 Fibonacci 3.30 127 While(1) 3.40 131 21.50 143 Coremark 22.50 150 Dhrystone2.1 21.50 Fibonacci 22.50 150 While(1) 20.00 133 26.00 153 Coremark 27.00 159 Dhrystone2.1 26.00 Fibonacci 27.50 162 While(1) 24.50 144 955 478 Supply current in fHCLK = fHSE = 2 MHz all peripherals disable Low-power run Coremark 890 445 Dhrystone2.1 915 Fibonacci 880 440 While(1) 905 453 103/232 1. Reduced code used for characterization results provided in Table 21, Table 23, Table 25. code(1) code(1) code(1) mA mA mA A 127 143 153 458 A/MHz A/MHz A/MHz A/MHz Electrical characteristics Reduced code(1) Reduced IDD (LPRun) Unit 25C Reduced Range 1 Boost mode fHCLK= 170 MHz Unit 25C Reduced fHCLK = fHSE up to 48 MHZ Range 1 Supply current in included, bypass mode f = 150 PLL ON above 48 MHz all HCLK Run mode MHz peripherals disable TYP STM32G474xB STM32G474xC STM32G474xE Table 28. Typical current consumption in Run and Low-power run modes, with different codes running from SRAM1 Conditions Symbol Parameter - TYP Reduced code(1) 2.65 102 Coremark 2.80 108 Dhrystone2.1 2.65 Fibonacci 2.60 100 While(1) 2.45 94 17.50 117 Coremark 18.00 120 Dhrystone2.1 17.50 Fibonacci 17.00 113 16 107 21.00 124 Coremark 22.00 129 Dhrystone2.1 21.00 Fibonacci 20.50 121 While(1) 19.50 115 890 445 Coremark 830 415 Dhrystone2.1 825 Fibonacci 830 415 While(1) 815 408 Reduced DS12288 Rev 1 IDD (Run) fHCLK = fHSE up to 48 MHZ Range 1 Supply current in included, bypass mode = 150 f PLL ON above 48 MHz all HCLK Run mode MHz peripherals disable While(1) (1) Reduced code Range 1 Boost mode fHCLK= 170 MHz Reduced IDD (LPRun) SYSCLK source is HSI16 Supply current in FHCLK = 2MHz Low-power run all peripherals disable 1. Reduced code used for characterization results provided in Table 21, Table 23, Table 25. code(1) mA mA mA A 102 117 124 413 Unit A/MHz A/MHz A/MHz A/MHz STM32G474xB STM32G474xC STM32G474xE Single bank mode code(1) Unit Single bank mode fHCLK Voltage scaling Range2 fHCLK=26 M Hz TYP Electrical characteristics 104/232 Table 29. Typical current consumption in Run and Low-power run modes, with different codes running from SRAM2 Conditions Symbol Parameter - TYP Voltage scaling Range2 fHCLK=26 M Hz fHCLK Single bank mode Coremark 2.85 110 Dhrystone2.1 2.75 Fibonacci 2.95 113 2.60 100 18.00 120 Coremark 18.50 123 Dhrystone2.1 18.00 Fibonacci 19.00 127 While(1) 17.00 113 Reduced code(1) 22.00 129 Coremark 22.50 132 Dhrystone2.1 22.00 Fibonacci 23.50 138 20.50 121 900 450 Coremark 850 425 Dhrystone2.1 870 Fibonacci 850 425 While(1) 810 405 DS12288 Rev 1 While(1) (1) Reduced code IDD (LPRun) SYSCLK source is HSI16 Supply current in FHCLK = 2MHz Low-power run all peripherals disable mA mA mA A 106 120 129 435 Unit A/MHz A/MHz A/MHz A/MHz 105/232 Electrical characteristics 106 Reduced code Range 1 Boost mode fHCLK= 170 MHz Single bank mode 2.75 (1) IDD (Run) Unit Reduced code(1) While(1) fHCLK = fHSE up to 48 MHZ Range 1 Supply current in included, bypass mode = 150 f PLL ON above 48 MHz all HCLK Run mode MHz peripherals disable TYP STM32G474xB STM32G474xC STM32G474xE Table 30. Typical current consumption in Run and Low-power run modes, with different codes running from CCMSRAM Table 31. Current consumption in Sleep and Low-power sleep mode Flash ON Typ Condition Symbol Parameter - Voltage scaling Range 2 55C 85C 105C 125C 25C 55C 85C 105C 125C 26 MHz 0.98 1.1 1.75 2.4 3.75 1.40 2.00 4.00 5.90 9.80 16 MHz 0.67 0.835 1.45 2.15 3.5 1.10 1.60 3.60 5.50 9.40 8 MHz 0.44 0.605 1.25 2 3.35 0.71 1.30 3.30 5.20 9.00 4 MHz 0.33 0.5 1.1 1.9 3.25 0.55 1.20 3.10 5.00 8.90 2 MHz 0.27 0.445 1.05 1.85 3.2 0.46 1.10 3.00 4.90 8.80 1 MHz 0.24 0.415 1.05 1.8 3.15 0.41 0.97 2.90 4.80 8.70 100 KHz 0.21 0.385 0.995 1.8 3.1 0.37 0.93 2.90 4.80 8.70 6.60 6.95 7.8 8.9 10.5 8.60 8.80 11.00 14.00 19.00 5.50 5.8 6.55 7.55 9.25 6.80 7.30 9.00 12.00 17.00 4.50 4.75 5.5 6.55 8.2 5.80 6.20 8.00 11.00 16.00 80 MHz 3.15 3.45 4.2 5.15 6.8 4.50 4.20 6.70 9.10 14.00 72 MHz 2.85 3.15 3.9 4.9 6.55 3.90 3.90 6.40 8.80 14.00 64 MHz 2.60 2.9 3.65 4.6 6.3 3.60 3.60 6.10 8.60 14.00 48 MHz 1.90 2.2 3 3.65 5.3 3.00 3.10 5.60 8.00 13.00 32 MHz 1.40 1.65 2.4 3.2 4.85 1.90 2.70 5.20 7.60 13.00 24 MHz 1.10 1.35 2.1 3 4.65 1.60 2.40 4.90 7.30 13.00 16 MHz 0.83 1.1 1.85 2.75 4.35 1.30 2.10 4.60 7.00 12.00 Range 1 fHCLK = fHSE Boost 170 MHz up to 48 MHz mode included, bypass mode PLL ON 150 MHz above 48 MHz all peripherals disable 120 MHz Range 1 Unit 25C mA STM32G474xB STM32G474xC STM32G474xE DS12288 Rev 1 IDD (Sleep) Supply current in Sleep mode fHCLK Max Electrical characteristics 106/232 1. Reduced code used for characterization results provided in Table 21, Table 23, Table 25. Condition Symbol Parameter Typ Voltage scaling - SYSCLK source is HSE in bypass mode all peripherals disable Supply current IDD (LPRun) in Low-power run mode SYSCLK source is HSI16 all peripherals disable fHCLK Max Unit DS12288 Rev 1 25C 55C 85C 105C 125C 25C 55C 85C 105C 125C 2 MHz 205 430 1150 2050 3600 1700 2700 3500 5700 11000 1 MHz 165 400 1100 2000 3550 940 2200 3400 5700 11000 250 KHz 145 370 1100 2000 3550 370 1100 3400 5700 11000 62.5 KHz 140 365 1050 2000 3550 360 1100 3400 5600 11000 2 MHz 700 925 1650 2550 4100 1100 1900 4300 6300 11000 1 MHz 710 925 1600 2550 4100 1100 1800 4300 6300 11000 250 KHz 670 910 1600 2500 4050 1100 1800 4200 6300 11000 62.5 KHz 685 910 1600 2500 4050 1100 1800 4000 6300 11000 A A STM32G474xB STM32G474xC STM32G474xE Table 31. Current consumption in Sleep and Low-power sleep mode Flash ON (continued) Table 32. Current consumption in low-power sleep modes, Flash in power-down Condition Symbol Parameter - Voltage scaling IDD (LPSleep) Supply current in low-power sleep mode SYSCLK source is HSI16 all peripherals disable fHCLK Max Unit 107/232 25C 55C 85C 105C 125C 25C 55C 85C 105C 125C 2 MHz 210 385 1150 2050 3550 460 1200 3500 5700 11000 1 MHz 150 360 1100 2000 3550 410 1100 3400 5600 11000 250 KHz 120 330 1050 2000 3500 370 1100 3400 5600 11000 62.5 KHz 110 330 1050 1950 3500 360 1100 3300 5600 10000 2 MHz 675 900 1600 2500 4050 1100 1800 4200 6400 11000 1 MHz 695 890 1600 2500 4050 1100 1800 4100 6300 11000 250 KHz 640 885 1600 2500 4050 1100 1800 4100 6300 11000 62.5 KHz 690 880 1600 2500 4050 990 1600 3500 5400 9300 A Electrical characteristics SYSCLK source is HSE in bypass mode all peripherals disable Typ Symbol Conditions Parameter VDD 25C 55C 85C 105C 125C 25C 55C 85C 105C 125C 1.8 V 80 250 830 1550 2850 230 770 2400 4600 6000 2.4 V 80 250 835 1600 2850 230 780 2400 4600 8400 3.0 V 80.5 255 840 1600 2900 230 780 2400 4600 8400 3.6 V 81.5 255 845 1600 2900 240 780 2400 4600 8400 1.8 V 80.5 255 830 1550 2850 230 770 2400 4600 11000 2.4 V 81 255 835 1600 2850 230 770 2400 4600 11000 3.0 V 81.5 255 835 1600 2850 230 780 2400 4600 11000 3.6 V 82 255 845 1600 2900 240 780 2400 4600 1.8 V 80 255 830 1550 2850 - - - - - 2.4 V 80.5 255 830 1600 2850 - - - - - 3.0 V 81.5 255 835 1600 2900 - - - - - 3.6 V 83 260 845 1600 2900 - - - - - 1.8 V 83.5 220 655 1300 - - - - - - 2.4 V 84 220 660 1300 - - - - - - 3.0 V 84.5 220 660 1300 - - - - - - 3.6 V 87 220 660 1300 - - - - - - Wakeup clock is HSI6, voltage Range 1 3.0 V 1.73 - - - - - - - - - Wakeup clock is HSI6 = 4 MHz, (HPRE = 4), voltage Range 2 3.0 V - Supply current IDD in Stop 1 RTC disabled (Stop 1) mode, RTC disabled RTC clocked by LSI Supply current in Stop 1 mode, RTC RTC clocked by LSE bypassed at 32768 Hz enabled RTC clocked by LSE quartz in low drive mode at 32768 Hz IDD (wakeu p from Stop 1 Supply current during wakeup from Stop 1 mode 11000 (2) A mA 1.29 1. Guaranteed by characterization results, unless otherwise specified. 2. Guaranteed by test in production Unit - - - - - - - - - STM32G474xB STM32G474xC STM32G474xE DS12288 Rev 1 IDD (Stop 1 with RTC) MAX(1) TYP Electrical characteristics 108/232 Table 33. Current consumption in Stop 1 mode Conditions Symbol Parameter - IDD(Stop 0) Supply current in Stop 0 mode, RTC disabled MAX(1) TYP Unit VDD 25C 55C 85C 105C 125C 25C 55C 85C 105C 125C 1.8 V 190 380 980 1750 3100 350 920 2700 5000 12000 2.4 V 190 380 985 1750 3100 350 930 2700 5100 12000 3V 190 380 985 1750 3100 350 940 2700 5100 12000 3.6 V 190 380 985 1750 3100 360 940 2700 5200 A 12000 (2) 1. Guaranteed by characterization results, unless otherwise specified. 2. Guaranteed by test in production. Table 35. Current consumption in Standby mode DS12288 Rev 1 Conditions Symbol Parameter - IDD (Standby) Supply current in Standby mode (backup registers retained), RTC disabled No independent watchdog Unit VDD 25C 55C 85C 105C 125C 25C 55C 85C 105C 125C 1.8 V 100 275 1350 3450 8450 270 1800 4700 8800 24000 2.4 V 110 325 1600 4100 10000 290 2100 5200 11000 28000 3V 130 385 1900 4850 12000 350 2300 6200 12000 32000 3.6 V 180 530 2400 6050 14500 670 2400 7200 14000 1.8 V 300 - - - - - - - - - 2.4 V 365 - - - - - - - - - 3V 435 - - - - - - - - - 3.6 V 545 - - - - - - - - - 38000 (2) nA 109/232 Electrical characteristics With independent watchdog MAX(1) TYP STM32G474xB STM32G474xC STM32G474xE Table 34. Current consumption in Stop 0 mode Conditions Symbol Parameter RTC clocked by LSI, no independent watchdog IDD RTC clocked by LSE bypassed at 32768 Hz RTC clocked by LSE quartz(3) in low drive mode IDD (SRAM2)(4) Supply current to be added in Standby mode when SRAM2 is retained Unit VDD 25C 55C 85C 105C 125C 25C 55C 85C 105C 125C 1.8 V 540 725 1800 3850 8850 770 1900 4900 9300 25000 2.4 V 700 920 2150 4650 10500 960 3900 5800 11000 29000 3V 885 1150 2650 5550 12500 1300 4500 7000 13000 33000 3.6 V 1100 1450 3350 7000 15500 1600 5100 8200 15000 39000 1.8 V 580 - - - - - - - - - 2.4 V 760 - - - - - - - - - 3V 960 - - - - - - - - - 3.6 V 1200 - - - - - - - - - 1.8 V 410 580 1600 3650 8600 - - - - - 2.4 V 545 750 1950 4450 10500 - - - - - 3V 830 1150 2750 5800 13000 - - - - - 3.6 V 2200 3050 5550 9550 18000 - - - - - 1.8 V 370 570 1350 3150 7100 - - - - - 2.4 V 495 715 1650 3800 8350 - - - - - 3V 655 915 2100 4550 9850 - - - - - 3.6 V 875 1350 2800 5750 12000 - - - - - 1.8 V 300 825 2950 6300 12550 - - - - - 2.4 V 305 875 2900 6400 12500 - - - - - 3V 305 865 2950 6150 12500 - - - - - 3.6 V 310 870 3000 6450 13000 - - - - - nA nA nA STM32G474xB STM32G474xC STM32G474xE DS12288 Rev 1 (Standby with RTC) Supply current in Standby mode (backup registers retained), RTC enabled RTC clocked by LSI, with independent watchdog MAX(1) TYP Electrical characteristics 110/232 Table 35. Current consumption in Standby mode (continued) Conditions Symbol Parameter - Unit VDD 25C 55C 85C 3V 2.46 - - Wakeup Supply current during wakeup clock is from Standby) from Standby mode HSI16 = 16 MHz(5) IDD (wakeup MAX(1) TYP 105C 125C 25C 55C 85C 105C - - - - - - 125C - mA 1. Guaranteed by characterization results, unless otherwise specified. 2. Guaranteed by test in production 3. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors. 4. The supply current in Standby with SRAM2 mode is: IDD_ALL(Standby) + IDD_ALL(SRAM2). The supply current in Standby with RTC with SRAM2 mode is: IIDD_ALL(Standby + RTC) + IDD_ALL(SRAM2). 5. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 39: Low-power mode wakeup timings. DS12288 Rev 1 Table 36. Current consumption in Shutdown mode Conditions Symbol Parameter - IDD (Shutdown) Supply current in Shutdown mode (backup registers retained) RTC disabled - STM32G474xB STM32G474xC STM32G474xE Table 35. Current consumption in Standby mode (continued) MAX(1) TYP Unit VDD 25C 55C 85C 105C 125C 25C 55C 85C 105C 125C 1.8 V 19 140 885 2500 6600 160 390 2100 6700 21000 2.4 V 28 180 1050 2950 7800 190 510 2400 7900 24000 3V 43 230 1300 3600 9300 220 580 2900 9100 27000 3.6 V 87 360 1750 4700 12000 300 750 3500 11000 32000 nA Electrical characteristics 111/232 Conditions Symbol Parameter Supply current in Shutdown IDD mode (backup (Shutdown with registers RTC) retained) RTC enabled Supply current during wakeup from Shutdown mode Unit - VDD 25C 55C 85C 105C 125C 25C 55C 85C 105C 125C RTC clocked by LSE bypassed at 32768 Hz 1.8 V 330 445 1150 2700 6800 - - - - - 2.4 V 460 605 1450 3350 8150 - - - - - 3V 745 1000 2200 4550 10500 - - - - - 3.6 V 2100 2850 4900 8150 15500 - - - - - RTC clocked by LSE quartz(2) in low drive mode 1.8 V 285 450 1050 2500 - - - - - - 2.4 V 410 585 1300 3050 - - - - - - 3V 565 770 1750 3750 - - - - - - 3.6 V 780 1200 2400 4850 - - - - - - 3V 1.6 - - - - - - - - - Wakeup clock is HSI16 = 16 MHz(3) 1. Guaranteed by characterization results, unless otherwise specified. 2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors. 3. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 39: Low-power mode wakeup timings. nA mA STM32G474xB STM32G474xC STM32G474xE DS12288 Rev 1 IDD(wakeup from Shutdown) MAX(1) TYP Electrical characteristics 112/232 Table 36. Current consumption in Shutdown mode (continued) Conditions Symbol Parameter - RTC disabled IDD(VBAT) Backup domain supply current RTC enabled and clocked by LSE bypassed at 32768 Hz DS12288 Rev 1 RTC enabled and clocked by LSE quartz(2) MAX(1) TYP Unit VBAT 25C 55C 85C 105C 125C 25C 55C 85C 105C 125C 1.8 V 4 17 92 245 600 - - - - - 2.4 V 5 20 105 280 690 - - - - - 3V 6 24 125 330 805 - - - - - 3.6 V 16 54 260 675 1650 - - - - - 1.8 V 310 315 350 470 - - - - - - 2.4 V 435 440 500 665 - - - - - - 3V 720 815 1050 1350 - - - - - - 3.6 V 2150 2600 3400 4050 - - - - - - 1.8 V 270 345 455 715 835 - - - - - 2.4 V 385 455 650 910 910 - - - - - 3V 525 600 910 1150 1000 - - - - - 3.6 V 710 995 1250 1700 1900 - - - - - nA STM32G474xB STM32G474xC STM32G474xE Table 37. Current consumption in VBAT mode 1. Guaranteed by characterization results, unless otherwise specified. 2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors. Electrical characteristics 113/232 Electrical characteristics STM32G474xB STM32G474xC STM32G474xE IO system current consumption The current consumption of the I/O system has two components: static and dynamic. I/O static current consumption All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in Table 57: I/O static characteristics. For the output pins, any external pull-down or external load must also be considered to estimate the current consumption. Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC, OPAMP, COMP input pins which should be configured as analog inputs. Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This is done either by using pull-up/down resistors or by configuring the pins in output mode. I/O dynamic current consumption In addition to the internal peripheral current consumption measured previously (see Table 39: Low-power mode wakeup timings), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the I/O supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin: I SW = V DDIOx x f SW x C where ISW is the current sunk by a switching I/O to charge/discharge the capacitive load VDD is the I/O supply voltage fSW is the I/O switching frequency C is the total capacitance seen by the I/O pin: C = CINT+ CEXT + CS CS is the PCB board capacitance including the pad pin. The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency. 114/232 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE Electrical characteristics On-chip peripheral current consumption The current consumption of the on-chip peripherals is given in Table 39. The MCU is placed under the following conditions: * All I/O pins are in Analog mode * The given value is calculated by measuring the difference of the current consumptions: - when the peripheral is clocked on - when the peripheral is clocked off * Ambient operating temperature and supply voltage conditions summarized in Table 14: Voltage characteristics * The power consumption of the digital part of the on-chip peripherals is given in Table 39. The power consumption of the analog part of the peripherals (where applicable) is indicated in each related section of the datasheet. Table 38. Peripheral current consumption Range 1 Boost mode Range 1 Normal mode Range 2 Low-power run and sleep Bus Matrix 6.12 5.69 4.70 6.11 AHB1 to APB1 bridge 0.26 0.25 0.22 0.03 AHB1 to APB2 bridge 0.39 0.37 0.32 0.03 FSMC 10.21 9.52 7.87 10.28 QUADSPI 3.51 3.27 2.69 3.51 CORDIC 1.28 1.19 0.98 0.78 CRC 0.74 0.68 0.57 0.63 DMA 1 2.83 2.64 2.17 2.75 DMA 2 3.11 2.90 2.39 2.43 DMAMUX 6.71 6.26 5.17 6.68 SRAM1 0.58 0.54 0.44 0.54 FLASH 6.46 6.01 4.95 6.15 FMAC 4.59 4.29 3.57 3.83 Bus - AHB1 Peripheral DS12288 Rev 1 Unit A/MHz A/MHz 115/232 201 Electrical characteristics STM32G474xB STM32G474xC STM32G474xE Table 38. Peripheral current consumption (continued) Range 1 Boost mode Range 1 Normal mode Range 2 Low-power run and sleep ADC1/ADC2 6.24 5.80 4.77 5.88 ADC3/ADC4/ADC5 8.21 7.64 6.29 8.14 DAC1 4.70 4.38 3.63 4.40 DAC2 2.51 2.34 1.93 2.14 DAC3 4.62 4.31 3.57 4.15 DAC4 4.31 4.01 3.32 3.90 GPIOA 0.09 0.08 0.07 0.14 GPIOB 0.10 0.09 0.07 0.03 GPIOC 0.10 0.09 0.08 0.03 GPIOD 0.06 0.06 0.03 0.05 GPIOE 0.23 0.22 0.18 0.10 GPIOF 0.07 0.07 0.05 0.02 GPIOG 0.25 0.24 0.20 0.24 SRAM2 0.39 0.37 0.29 0.28 CCM SRAM 0.29 0.27 0.23 0.22 RNG 2.09 1.95 NA NA Bus AHB2 116/232 Peripheral DS12288 Rev 1 Unit A/MHz STM32G474xB STM32G474xC STM32G474xE Electrical characteristics Table 38. Peripheral current consumption (continued) Range 1 Boost mode Range 1 Normal mode Range 2 Low-power run and sleep CRS 0.74 0.68 0.57 0.51 FDCAN1/FDCAN2/FDCAN3 22.20 20.68 17.10 21.15 I2C1 1.29 1.20 0.99 1.28 I2C2 1.29 1.20 0.99 1.28 I2C3 1.25 1.17 0.96 1.56 I2C4 1.25 1.16 0.96 1.97 LPTIM1 1.11 1.03 0.85 1.42 LPUART1 1.91 1.78 1.47 2.03 PWR 0.71 0.65 0.53 0.53 RTC 2.64 2.46 2.07 3.26 SPI2/I2S2 4.05 3.77 3.11 4.16 SPI3/I2S3 4.08 3.81 3.13 4.49 TIM2 7.97 7.42 6.16 8.29 TIM3 6.37 5.93 4.92 6.81 TIM4 6.43 5.98 4.97 6.50 TIM5 8.28 7.71 6.38 8.11 TIM6 1.22 1.13 0.94 1.45 TIM7 1.28 1.18 0.98 1.56 UART4 2.51 2.33 1.92 3.14 UART5 2.79 2.60 2.14 3.34 USART2 2.75 2.56 2.12 3.11 USART3 2.71 2.52 2.08 2.47 USB 0.46 0.43 NA NA UCPD 2.46 2.28 1.89 NA WWDG 0.42 0.39 0.31 0.42 Bus APB1 Peripheral DS12288 Rev 1 Unit A/MHz 117/232 201 Electrical characteristics STM32G474xB STM32G474xC STM32G474xE Table 38. Peripheral current consumption (continued) Range 1 Boost mode Range 1 Normal mode Range 2 Low-power run and sleep HRTIM 69.98 65.11 53.68 60.95 SAI1 2.67 2.48 2.05 2.64 SPI1 1.99 1.86 1.54 2.02 SPI4 1.99 1.86 1.54 2.02 1.78 10.85 10.13 8.40 9.93 TIM8 10.67 9.96 8.25 9.82 TIM15 4.81 4.48 3.71 4.57 TIM16 3.71 3.45 2.88 3.45 TIM17 3.66 3.41 2.83 3.81 TIM20 10.71 9.99 8.29 10.00 USART1 2.49 2.31 1.91 2.49 SYSCFG/COMP/OPAMP/VREFBUF 1.63 1.52 1.25 0.91 Bus APB2 118/232 Peripheral DS12288 Rev 1 Unit A/MHz STM32G474xB STM32G474xC STM32G474xE Electrical characteristics Table 38. Peripheral current consumption (continued) Bus Peripheral Range 1 Boost mode Range 1 Normal mode Range 2 Low-power run and sleep ADC1/ADC2 independent clock domain 0.72 0.67 0.53 0.63 ADC3/ADC4/ ADC5 independent clock domain 0.67 0.62 0.50 0.22 FDCAN1/ FDCAN2/ FDCAN3 independent clock domain 11.62 10.84 8.95 10.24 I2C1 independent clock domain 4.03 3.76 3.12 4.15 I2C2 independent clock domain 3.78 3.52 2.93 3.23 I2C3 independent clock domain 2.72 2.55 2.11 2.65 I2C4 independent clock domain 3.95 3.67 3.04 2.81 I2S2 independent clock domain 1.49 1.40 1.15 1.63 I2S3 independent clock domain 1.52 1.43 1.16 2.15 independent clock domain 4.00 3.71 3.08 3.57 LPUART1 independent clock domain 4.43 4.13 3.45 4.02 QUADSPI independent clock domain 0.54 0.51 0.44 0.75 RNG independent clock domain 0.83 0.87 NA NA USB independent clock domain 1.10 1.17 NA NA SAI1 independent clock domain 3.36 3.14 2.58 3.25 UART4 independent clock domain 6.60 6.17 5.14 6.02 UART5 independent clock domain 6.60 6.16 5.12 6.12 USART1 independent clock domain 7.62 7.12 5.89 6.90 USART2 independent clock domain 7.37 6.86 5.70 6.72 USART3 independent clock domain 7.98 7.44 6.17 8.21 Independent LPTIM1 clock domain DS12288 Rev 1 Unit A/MHz 119/232 201 Electrical characteristics 5.3.6 STM32G474xB STM32G474xC STM32G474xE Wakeup time from low-power modes and voltage scaling transition times The wakeup times given in Table 39 are the latency between the event and the execution of the first user instruction. The device goes in low-power mode after the WFE (Wait For Event) instruction. Table 39. Low-power mode wakeup timings(1) Symbol tWUSLEEP Parameter Conditions Typ Max - 11 12 - 10 11 Wakeup time from Sleep mode to Run mode Wakeup time from LowtWULPSLEEP power sleep mode to Lowpower run mode tWUSTOP0 tWUSTOP1 Wake up time from Stop 0 mode to Run mode in Flash Range 1 Wakeup clock HSI16 = 16 MHz 5.8 6 Range 2 Wakeup clock HSI16 = 16 MHz 18.4 19.1 Wake up time from Stop 0 mode to Run mode in SRAM1 Range 1 Wakeup clock HSI16 = 16 MHz 2.8 3 Range 2 Wakeup clock HSI16 = 16 MHz 2.9 3 Wake up time from Stop 1 mode to Run in Flash Range 1 Wakeup clock HSI16 = 16 MHz 9.5 9.8 Range 2 Wakeup clock HSI16 = 16 MHz 21.9 22.7 Wake up time from Stop 1 mode to Run mode in SRAM1 Range 1 Wakeup clock HSI16 = 16 MHz 6.6 6.9 Range 2 Wakeup clock HSI16 = 16 MHz 6.4 6.6 26.1 27.1 Wake up time from Stop 1 mode to Low-power run mode in Flash Wake up time from Stop 1 mode to Low-power run mode in SRAM1 tWUSTBY tWUSTBY SRAM2 tWUSHDN tWULPRUN Regulator in Wakeup clock low-power HSI16 = 16 MHz, mode (LPR=1 with HPRE = 8 in PWR_CR1) 15 Wakeup clock HSI16 = 16 MHz 29.7 33.8 Wakeup time from Standby with SRAM2 to Run mode Range 1 Wakeup clock HSI16 = 16 MHz 29.7 33.5 Wakeup time from Shutdown mode to Run mode Range 1 Wakeup clock HSI16 = 16 MHz 267.9 274.6 1. Guaranteed by characterization results. 2. Time until REGLPF flag is cleared in PWR_SR2. 120/232 14.4 Range 1 Wakeup clock HSI16 = 16 MHz with HPRE = 8 DS12288 Rev 1 Nb of CPU cycles s Wakeup time from Standby mode to Run mode Wakeup time from Lowpower run mode to Run mode(2) Unit 5 7 STM32G474xB STM32G474xC STM32G474xE Electrical characteristics Table 40. Regulator modes transition times(1) Symbol tVOST Parameter Conditions Regulator transition time from Range 2 to Range 1 or Range 1 to Range 2(2) Typ Max Unit 20 40 s Typ Max Unit Stop 0 mode - 1.7 Stop 1 mode - 8.5 Wakeup clock HSI16 = 16 MHz with HPRE = 8 1. Guaranteed by characterization results. 2. Time until VOSF flag is cleared in PWR_SR2. Table 41. Wakeup time using USART/LPUART(1) Symbol tWUUSART tWULPUART Parameter Conditions Wakeup time needed to calculate the maximum USART/LPUART baudrate allowing to wakeup up from stop mode when USART/LPUART clock source is HSI16 s 1. Guaranteed by design. 5.3.7 External clock source characteristics High-speed external user clock generated from an external source In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in Section 5.3.14. However, the recommended clock input waveform is shown in Figure 18: High-speed external clock source AC timing diagram. Table 42. High-speed external user clock characteristics(1) Symbol fHSE_ext Parameter User external clock source frequency Conditions Min Typ Max Voltage scaling Range 1 - 8 48 Voltage scaling Range 2 - 8 26 MHz VHSEH OSC_IN input pin high level voltage - 0.7 VDD - VDD VHSEL OSC_IN input pin low level voltage - VSS - 0.3 VDD Voltage scaling Range 1 7 - - Voltage scaling Range 2 18 - - tw(HSEH) tw(HSEL) Unit V OSC_IN high or low time ns 1. Guaranteed by design. DS12288 Rev 1 121/232 201 Electrical characteristics STM32G474xB STM32G474xC STM32G474xE Figure 18. High-speed external clock source AC timing diagram WZ +6(+ 9+6(+ 9+6(/ WU +6( WI +6( W WZ +6(/ 7+6( 069 Low-speed external user clock generated from an external source In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO. The external clock signal has to respect the I/O characteristics in Section 5.3.14. However, the recommended clock input waveform is shown in Figure 19. Table 43. Low-speed external user clock characteristics(1) Symbol Parameter Conditions Min Typ Max Unit kHz fLSE_ext User external clock source frequency - - 32.768 1000 VLSEH OSC32_IN input pin high level voltage - 0.7 VDD - VDD VLSEL OSC32_IN input pin low level voltage - VSS - 0.3 VDD - 250 - - V tw(LSEH) OSC32_IN high or low time tw(LSEL) ns 1. Guaranteed by design. Figure 19. Low-speed external clock source AC timing diagram WZ /6(+ 9/6(+ 9/6(/ WU /6( WI /6( WZ /6(/ W 7/6( 069 122/232 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE Electrical characteristics High-speed external clock generated from a crystal/ceramic resonator The high-speed external (HSE) clock can be supplied with a 4 to 48 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in Table 44. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 44. HSE oscillator characteristics(1) Symbol fOSC_IN RF Conditions(2) Min Typ Max Unit Oscillator frequency - 4 8 48 MHz Feedback resistor - - 200 - k - - 5.5 VDD = 3 V, Rm = 30 , CL = 10 pF@8 MHz - 0.44 - VDD = 3 V, Rm = 45 , CL = 10 pF@8 MHz - 0.45 - VDD = 3 V, Rm = 30 , CL = 5 pF@48 MHz - 0.68 - VDD = 3 V, Rm = 30 , CL = 10 pF@48 MHz - 0.94 - VDD = 3 V, Rm = 30 , CL = 20 pF@48 MHz - 1.77 - Startup - - 1.5 mA/V VDD is stabilized - 2 - ms Parameter (3) During startup IDD(HSE) Gm HSE current consumption Maximum critical crystal transconductance tSU(HSE)(4) Startup time mA 1. Guaranteed by design. 2. Resonator characteristics given by the crystal/ceramic resonator manufacturer. 3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time 4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 20 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 20). CL1 and CL2 are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing CL1 and CL2. DS12288 Rev 1 123/232 201 Electrical characteristics Note: STM32G474xB STM32G474xC STM32G474xE For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com. Figure 20. Typical application with an 8 MHz crystal 5HVRQDWRUZLWKLQWHJUDWHG FDSDFLWRUV &/ 26&B,1 0+] UHVRQDWRU &/ 5(;7 I+6( 5) %LDV FRQWUROOHG JDLQ 26&B287 069 1. REXT value depends on the crystal characteristics. Low-speed external clock generated from a crystal resonator The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in Table 45. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). 124/232 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE Electrical characteristics Table 45. LSE oscillator characteristics (fLSE = 32.768 kHz)(1) Symbol IDD(LSE) Conditions(2) Parameter LSE current consumption Maximum critical crystal Gmcritmax gm tSU(LSE)(3) Startup time Min Typ Max LSEDRV[1:0] = 00 Low drive capability - 250 - LSEDRV[1:0] = 01 Medium low drive capability - 315 - LSEDRV[1:0] = 10 Medium high drive capability - 500 - LSEDRV[1:0] = 11 High drive capability - 630 - LSEDRV[1:0] = 00 Low drive capability - - 0.5 LSEDRV[1:0] = 01 Medium low drive capability - - 0.75 LSEDRV[1:0] = 10 Medium high drive capability - - 1.7 LSEDRV[1:0] = 11 High drive capability - - 2.7 VDD is stabilized - 2 - Unit nA A/V s 1. Guaranteed by design. 2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers". 3. Note: tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com. Figure 21. Typical application with a 32.768 kHz crystal 5HVRQDWRUZLWKLQWHJUDWHG FDSDFLWRUV &/ 26&B,1 I/6( 'ULYH SURJUDPPDEOH DPSOLILHU N+] UHVRQDWRU 26&B287 &/ 069 Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one. DS12288 Rev 1 125/232 201 Electrical characteristics 5.3.8 STM32G474xB STM32G474xC STM32G474xE Internal clock source characteristics The parameters given in Table 46 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 17: General operating conditions. The provided curves are characterization results, not tested in production. High-speed internal (HSI16) RC oscillator Table 46. HSI16 oscillator characteristics(1) Symbol fHSI16 TRIM Parameter HSI16 Frequency HSI16 user trimming step Conditions Min Typ 15.88 - Trimming code is not a multiple of 64 0.2 0.3 Trimming code is a multiple of 64 -4 -6 -8 45 - 55 % -1 - 1 % -2 - 1.5 % -0.1 - 0.05 % VDD=3.0 V, TA=30 C DuCy(HSI16)(2) Duty Cycle - Unit 16.08 MHz 0.4 % Temp(HSI16) HSI16 oscillator frequency TA= 0 to 85 C drift over temperature TA= -40 to 125 C VDD(HSI16) HSI16 oscillator frequency VDD=1.62 V to 3.6 V drift over VDD tsu(HSI16)(2) HSI16 oscillator start-up time - - 0.8 1.2 s tstab(HSI16)(2) HSI16 oscillator stabilization time - - 3 5 s IDD(HSI16)(2) HSI16 oscillator power consumption - - 155 190 A 1. Guaranteed by characterization results. 2. Guaranteed by design. 126/232 Max DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE Electrical characteristics Figure 22. HSI16 frequency versus temperature 0+] 0HDQ PLQ & PD[ 06Y9 High-speed internal 48 MHz (HSI48) RC oscillator Table 47. HSI48 oscillator characteristics(1) Symbol fHSI48 TRIM USER TRIM COVERAGE Parameter HSI48 Frequency Conditions VDD=3.0V, TA=30C HSI48 user trimming step HSI48 user trimming coverage 32 steps DuCy(HSI48) Duty Cycle - VDD = 3.0 V to 3.6 V, Accuracy of the HSI48 TA = -15 to 85 C ACCHSI48_REL oscillator over temperature VDD = 1.65 V to 3.6 V, (factory calibrated) TA = -40 to 125 C DVDD(HSI48) HSI48 oscillator frequency VDD = 3 V to 3.6 V drift with VDD VDD = 1.65 V to 3.6 V Min Typ Max Unit - 48 - MHz - 0.11(2) 0.18(2) % 3(3) 3.5(3) - % 45(2) - 55(2) % - - 3(3) - - 4.5(3) - 0.025(3) 0.05(3) - 0.05(3) 0.1(3) % % tsu(HSI48) HSI48 oscillator start-up time - - 2.5(2) 6(2) s IDD(HSI48) HSI48 oscillator power consumption - - 340(2) 380(2) A DS12288 Rev 1 127/232 201 Electrical characteristics STM32G474xB STM32G474xC STM32G474xE Table 47. HSI48 oscillator characteristics(1) (continued) Symbol Parameter Conditions Min Typ Max Unit NT jitter Next transition jitter Accumulated jitter on 28 cycles(4) - - +/-0.15(2) - ns PT jitter Paired transition jitter Accumulated jitter on 56 cycles(4) - - +/-0.25(2) - ns 1. VDD = 3 V, TA = -40 to 125C unless otherwise specified. 2. Guaranteed by design. 3. Guaranteed by characterization results. 4. Jitter measurement are performed without clock source activated in parallel. Figure 23. HSI48 frequency versus temperature $YJ PLQ & PD[ 06Y9 Low-speed internal (LSI) RC oscillator Table 48. LSI oscillator characteristics(1) Symbol fLSI tSU(LSI)(2) 128/232 Parameter LSI Frequency Conditions Min Typ Max VDD = 3.0 V, TA = 30 C 31.04 - 32.96 VDD = 1.62 to 3.6 V, TA = -40 to 125 C 29.5 - 34 - 80 130 LSI oscillator start-up time DS12288 Rev 1 - Unit kHz s STM32G474xB STM32G474xC STM32G474xE Electrical characteristics Table 48. LSI oscillator characteristics(1) (continued) Symbol Parameter tSTAB(LSI)(2) IDD(LSI)(2) Conditions Min Typ Max Unit LSI oscillator stabilization 5% of final frequency time - 125 180 s LSI oscillator power consumption - 110 180 nA - 1. Guaranteed by characterization results. 2. Guaranteed by design. 5.3.9 PLL characteristics The parameters given in Table 49 are derived from tests performed under temperature and VDD supply voltage conditions summarized in Table 17: General operating conditions. Table 49. PLL characteristics(1) Symbol fPLL_IN Parameter Conditions Min Typ Max Unit PLL input clock(2) - 2.66 - 16 MHz PLL input clock duty cycle - 45 - 55 % Voltage scaling Range 1 Boost mode 2.0645 - 170 Voltage scaling Range 1 2.0645 - 150 Voltage scaling Range 2 2.0645 - 26 Voltage scaling Range 1 Boost mode 8 - 170 Voltage scaling Range 1 8 - 150 Voltage scaling Range 2 8 - 26 Voltage scaling Range 1 Boost mode 8 - 170 Voltage scaling Range 1 8 - 150 Voltage scaling Range 2 8 - 26 Voltage scaling Range 1 96 - 344 Voltage scaling Range 2 96 - 128 - - 15 40 - 28.6 - - 21.4 - VCO freq = 96 MHz - 200 260 VCO freq = 192 MHz - 300 380 VCO freq = 344 MHz - 520 650 fPLL_P_OUT PLL multiplier output clock P fPLL_Q_OUT PLL multiplier output clock Q fPLL_R_OUT PLL multiplier output clock R fVCO_OUT tLOCK Jitter IDD(PLL) PLL VCO output PLL lock time RMS cycle-to-cycle jitter RMS period jitter PLL power consumption on VDD(1) System clock 150 MHz MHz s ps A 1. Guaranteed by design. 2. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. DS12288 Rev 1 129/232 201 Electrical characteristics 5.3.10 STM32G474xB STM32G474xC STM32G474xE Flash memory characteristics Table 50. Flash memory characteristics(1) Symbol Parameter Conditions Typ Max Unit tprog 64-bit programming time - 81.7 83.35 s tprog_row One row (32 double word) programming time Normal programming 2.61 2.7 Fast programming 1.91 1.95 tprog_page One page (2 Kbytes) programming time Normal programming 20.91 21.34 Fast programming 15.29 15.6 22.02 24.47 Normal programming 2.68 2.73 Fast programming 1.96 2 22.13 24.6 Write mode 3.5 - Erase mode 3.5 - Write mode 7 (for 6 s) - Erase mode 7 (for 67 s) - tERASE Page (2 Kbytes) erase time tprog_bank One bank (256 Kbyte) programming time tME - Mass erase time (one or two banks) - Average consumption from VDD IDD Maximum current (peak) ms s ms mA 1. Guaranteed by design. Table 51. Flash memory endurance and data retention Symbol NEND Parameter Endurance Conditions TA = -40 to +105 C 1 kcycle(2) at TA = 85 C 1 kcycle(2) at TA = 105 C tRET Data retention 1 kcycle 10 (2) at TA = 125 C kcycles(2) Unit 10 kcycles 30 15 7 at TA = 55 C 30 10 kcycles(2) at TA = 85 C 15 10 kcycles(2) at TA = 105 C 10 1. Guaranteed by characterization results. 2. Cycling performed over the whole temperature range. 130/232 Min(1) DS12288 Rev 1 Years STM32G474xB STM32G474xC STM32G474xE 5.3.11 Electrical characteristics EMC characteristics Susceptibility tests are performed on a sample basis during device characterization. Functional EMS (electromagnetic susceptibility) While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs: * Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard. * FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard. A device reset allows normal operations to be resumed. The test results are given in Table 52. They are based on the EMS levels and classes defined in application note AN1709. Table 52. EMS characteristics Conditions Level/ Class Symbol Parameter VFESD Voltage limits to be applied on any I/O pin to induce a functional disturbance VDD = 3.3 V, TA = +25 C, fHCLK = 170 MHz, conforming to IEC 61000-4-2 3B VEFTB Fast transient voltage burst limits to be applied through 100 pF on VDD and VSS pins to induce a functional disturbance VDD = 3.3 V, TA = +25 C, fHCLK = 170 MHz, conforming to IEC 61000-4-4 5A Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Software recommendations The software flowchart must include the management of runaway conditions such as: * Corrupted program counter * Unexpected reset * Critical Data corruption (control registers...) Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. DS12288 Rev 1 131/232 201 Electrical characteristics STM32G474xB STM32G474xC STM32G474xE To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Electromagnetic Interference (EMI) The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading. Table 53. EMI characteristics Symbol SEMI Parameter Peak level Monitored frequency band Conditions Max vs. [fHSE/fHCLK] 0.1 MHz to 30 MHz 4 30 MHz to 130 MHz VDD = 3.6 V, TA = 25 C, LQFP128 package 130 MHz to 1 GHz compliant with IEC 61967-2 1 GHz to 2 GHz 0 EMI Level 5.3.12 Unit 8 MHz / 170 MHz dBV 16 11 3.5 - Electrical sensitivity characteristics Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts x (n+1) supply pins). This test conforms to the ANSI/JEDEC standard. Table 54. ESD absolute maximum ratings Symbol VESD(HBM) Ratings Electrostatic discharge voltage (human body model) Conditions Class TA = +25 C, conforming to ANSI/ESDA/JEDEC JS-001 LQFP100 and LQFP128 TA = +25 C, conforming to Electrostatic discharge VESD(CDM) ANSI/ESDA/JEDEC JSLQFP80 voltage (charge device model) 002 Other packages 1. Guaranteed by characterization results. 132/232 DS12288 Rev 1 Maximum Unit value(1) 2 2000 C1 250 TBD TBD C2a 500 V V STM32G474xB STM32G474xC STM32G474xE Electrical characteristics Static latch-up Two complementary static tests are required on three parts to assess the latch-up performance: * A supply overvoltage is applied to each power supply pin. * A current injection is applied to each input, output and configurable I/O pin. These tests are compliant with EIA/JESD 78E IC latch-up standard. Table 55. Electrical sensitivities Symbol LU 5.3.13 Parameter Static latch-up class Conditions Class TA = +125 C conforming to JESD78E Class II level A I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below VSS or above VDD (for standard, 3.3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. Functional susceptibility to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of the -5 A/+0 A range) or other functional failure (for example reset occurrence or oscillator frequency deviation). The characterization results are given in Table 56. Negative induced leakage current is caused by negative injection and positive induced leakage current is caused by positive injection. Table 56. I/O current injection susceptibility Functional susceptibility Symbol (1) IINJ Description Injected current on pin Unit Negative injection Positive injection All except TT_a, PF10, PB8-BOOT0, PC10 -5 NA PF10, PB8-BOOT0, PC10 -0 NA TT_a pins -5 0 mA 1. Guaranteed by characterization. DS12288 Rev 1 133/232 201 Electrical characteristics 5.3.14 STM32G474xB STM32G474xC STM32G474xE I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in Table 57 are derived from tests performed under the conditions summarized in Table 17: General operating conditions. All I/Os are designed as CMOS- and TTL-compliant. Table 57. I/O static characteristics Symbol Parameter I/O input VIL(1)(2) low level voltage I/O input VIH(1)(2) high level voltage VHYS(3) Input hysteresis Conditions All except FT_c FT_c Min Typ 1.62 V2,7V With One comparator on DAC output tSETTLING Settling time (full scale: for a 12-bit code transition between the lowest and the highest input codes when DAC_OUT reaches final VDDA>2,7V value) With One comparator and OPAMP on DAC output DS12288 Rev 1 VSSA 0 - VREF+ 10%-90% - 16 22 5%-95% - 21 29 1%-99% - 33 46 32lsb - 40 53 1lsb - 64 87 10%-90% - 24 32 5%-95% - 32 43 1%-99% - 49 67 32lsb - 57 75 1lsb - 93 125 ns 159/232 201 Electrical characteristics STM32G474xB STM32G474xC STM32G474xE Table 76. DAC 15MSPS characteristics(1) (continued) Symbol Parameter Conditions Min Typ Max 10%-90% - 16 88 5%-95% - 21 116 1%-99% - 33 181 32lsb - 40 196 1lsb - 64 332 10%-90% - 24 128 5%-95% - 32 170 1%-99% - 49 265 32lsb - 57 284 1lsb - 93 483 - 1.4 3.5 VDD > 2.7 V 65 85 - VDD <2.7 V 40 85 - VDDA<2,7V With One comparator on DAC output tSETTLING Settling time (full scale: for a 12-bit code transition between the lowest and the highest input codes when DAC_OUT reaches final VDDA<2,7V value) With One comparator and OPAMP on DAC output Unit ns tWAKEUP(2) Wakeup time from off state (setting the ENx bit in the DAC Control register) until final value 1 LSB PSRR VDDA supply rejection ratio tSAMP Sampling time in sample and hold mode (code transition between the lowest input code and the highest input code when DACOUT reaches final value 1LSB) - - TBD TBD s CIint Internal sample and hold capacitor - - 4 5 pF CSH = 4 pF T = 55C - TBD - V/ms - TBD TBD Voltage decay rate in dV/dt (hold Sample and hold mode, phase) during hold phase IDDA(DAC) DAC consumption from VDDA DAC consumption from IDDV(DAC) VREF+ Normal mode CL 10 pF No load, middle code (0x800) dB A No load, middle code (0x800)(3) - 720 1. Guaranteed by design. 2. In buffered mode, the output can overshoot above the final value for low input code (starting from min value). 3. Worst case consumption is at code 0x800. 160/232 s DS12288 Rev 1 955 STM32G474xB STM32G474xC STM32G474xE Electrical characteristics Table 77. DAC 15MSPS accuracy(1) . Symbol Parameter DNL Differential non linearity (2) (3) Conditions Min Typ Max - -2 - 2 CL 50 pF, no RL -5 - 5 INL Integral non linearity TUE Total unadjusted error CL 50 pF, no RL -5 - 5 DCS Dynamic code spike Spike amplitude on DAC voltage when DAC output value is decreasing - 0 4 Unit LSB 1. Guaranteed by design. 2. Difference between two consecutive codes - 1 LSB. 3. Difference between measured value at code i and the value at code i on a line drawn between code 0 and last code 4095. Offset error is included. DS12288 Rev 1 161/232 201 Electrical characteristics 5.3.21 STM32G474xB STM32G474xC STM32G474xE Voltage reference buffer characteristics Table 78. VREFBUF characteristics(1) Symbol Parameter Conditions Normal mode VDDA Analog supply voltage Degraded mode(2) Normal mode(3) VREFBUF_ OUT Voltage reference output Degraded VREFOUT_ (3) TEMP mode(2) Min Typ Max VRS = 00 2.4 - 3.6 VRS = 01 2.8 - 3.6 VRS = 10 3.135 - 3.6 VRS= 00 1.65 - 2.4 VRS = 01 1.65 - 2.8 VRS= 10 1.65 - 3.135 VRS= 00 2.044 2.048 2.052 VRS= 01 2.496 2.5 2.504 VRS = 10 2.896 2.9 2.904 VRS= 00 VDDA -250 mV - VDDA VRS = 01 VDDA -250 mV - VDDA VRS = 10 VDDA -250 mV - VDDA - - See Figure 30, Figure 31, Figure 32 mV Voltage reference output spread over VDDA = 3V the temperature range Unit V Trim step resolution - - 0.05 0.1 % CL Load capacitor - 0.5 1 1.5 F esr Equivalent Serial Resistor of Cload - - - 2 Iload Static load current - - - 6.5 mA - 1000 2000 ppm/V - 50 500 ppm/m A -40 C < TJ < +125 C - - 0 C < TJ < +50 C - - DC 40 55 - 100 kHz 25 40 - CL = 0.5 F(6) - 300 350 F(6) - 500 650 (6) - 650 800 TRIM Iline_reg(4) Line regulation - Iload_reg Load regulation 500 A Iload 4 mA TCoeff PSRR tSTART Temperature coefficient Power supply rejection Start-up time CL = 1.1 CL = 1.5 F 162/232 Normal mode DS12288 Rev 1 Tcoeff_vr efint + ppm/ C 50(5) dB s STM32G474xB STM32G474xC STM32G474xE Electrical characteristics Table 78. VREFBUF characteristics(1) (continued) Symbol IINRUSH Parameter Conditions Min Typ Max Unit - - 8 - mA Iload = 0 A - 16 25 Iload = 500 A - 18 30 Iload = 4 mA - 35 50 Iload = 6.5 mA - 45 80 Control of maximum DC current drive on VREFBUF_ OUT during startup phase (7) VREFBUF IDDA(VREF consumption from BUF) VDDA A 1. Guaranteed by design, unless otherwise specified. 2. In degraded mode, the voltage reference buffer can not maintain accurately the output voltage which follows (VDDA - drop voltage). 3. Guaranteed by characterization results. 4. Line regulation is given for overall supply variation, in normal mode. 5. Tcoeff_vrefint refer to Tcoeff parameter in the embedded voltage reference section. 6. The capacitive load must include a 100 nF low ESR capacitor in order to cut-off the high frequency noise. 7. To correctly control the VREFBUF inrush current during start-up phase and scaling change, the VDDA voltage should be in the range [2.4 V to 3.6 V], [2.8 V to 3.6 V] and [3.135 V to 3.6 V] respectively for VRS=0,1 and 2. Figure 30. VREFOUT_TEMP in case VRS = 00 9 0HDQ 0LQ & 0D[ 06Y9 DS12288 Rev 1 163/232 201 Electrical characteristics STM32G474xB STM32G474xC STM32G474xE Figure 31. VREFOUT_TEMP in case VRS = 01 9 0HDQ 0LQ & 0D[ 06Y9 Figure 32. VREFOUT_TEMP in case VRS = 10 9 0HDQ 0LQ & 0D[ 06Y9 164/232 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE 5.3.22 Electrical characteristics Comparator characteristics Table 79. COMP characteristics(1) Symbol Conditions Min Typ Max Analog supply voltage - 1.62 - 3.6 Comparator input voltage range - 0 - VDDA V VBG(2) Scaler input voltage - VSC(3) Scaler offset voltage - VDDA VIN IDDA(SCALER) Parameter tSTART tD (4) Voffset(3) Vhys IDDA(COMP) VREFINT - 5 10 mV - 200 300 nA - 0.8 1 A - - 100 200 s - - - 5 s VDDA < 2.7 V - - 35 ns VDDA 2.7 V - 16.7 31 ns mV Scaler static consumption from BRG_EN=0 (bridge disable) VDDA BRG_EN=1 (bridge enable) tSTART_SCALER Scaler startup time Comparator startup time to reach propagation delay specification Propagation delay (From COMP input pin to COMP output pin) for 200 mV step with 100 mV overdrive 50pF load on output Comparator offset error Full VDDA voltage range, full temperature range -9 -6/+2 3 HYST[2:0] = 0 - 0 - HYST[2:0] =1 4 9 16 HYST[2:0] = 2 7 18 32 HYST[2:0] = 3 11 27 47 HYST[2:0] = 4 15 36 63 HYST[2:0] = 5 19 45 79 HYST[2:0] = 6 23 54 95 HYST[2:0] = 7 26 63 110 - 450 720 - TBD - Comparator hysteresis Unit Static Comparator consumption from With 50 kHz 100 mV overdrive VDDA square signal mV A 1. Guaranteed by design, unless otherwise specified. 2. Refer to Table 20: Embedded internal voltage reference. 3. Guaranteed by characterization results. 4. Typical value (3V) is an average for all comparators propagation delay. DS12288 Rev 1 165/232 201 Electrical characteristics 5.3.23 STM32G474xB STM32G474xC STM32G474xE Operational amplifiers characteristics Table 80. OPAMP characteristics(1) (2) Symbol Parameter Conditions Min Typ Max Unit VDDA Analog supply voltage - 2 3.3 3.6 V CMIR Common mode input range - 0 - VDDA V 25 C, No Load on output. - - 1.5 All voltage/temperature. - - 3 - - 10 - Offset trim step at low TRIMOFFSE common input voltage TP (0.1 VDDA) - - 1.1 1.2 Offset trim step at high TRIMOFFSE common input voltage TN (0.9 VDDA) - - 1.3 1.65 Drive current - - - 500 Drive current in PGA mode - - - 270 CLOAD Capacitive load - - - 50 pF CMRR Common mode rejection ratio - - 60 - dB PSRR Power supply rejection CLOAD 50 pf, ratio RLOAD 4 k DC Vcom=VDDA/2 TBD 80 - dB GBW Gain Bandwidth Product 100mV Output dynamic range VDDA 100mV 7 13 - MHz SR(3) Slew rate (from 10 and 90% of output voltage) Normal mode 2.5 6.5 - High-speed mode 18 45 - 100mV Output dynamic range VDDA 100mV 65 95 - 200mV Output dynamic range VDDA 200mV 75 95 - VDDA - 100 - - VIOFFSET(3) Input offset voltage VIOFFSET Input offset voltage drift ILOAD ILOAD_PGA AO Open loop gain mV V/C mV V/s dB VOHSAT(3) High saturation voltage VOLSAT(3) I = max or Rload = min Input at 0. Low saturation voltage load Follower mode - - 100 m Phase margin Follower mode, Vcom=VDDA/2 - 65 - GM Gain margin Follower mode, Vcom=VDDA/2 - 10 - dB 166/232 Iload = max or Rload = min Input at VDDA. Follower mode A DS12288 Rev 1 mV STM32G474xB STM32G474xC STM32G474xE Electrical characteristics Table 80. OPAMP characteristics(1) (2) (continued) Symbol tWAKEUP(3) Ibias Parameter Conditions Normal mode CLOAD 50 pf, RLOAD 4 k follower configuration High-speed mode CLOAD 50 pf, RLOAD 20 k follower configuration Wake up time from OFF state. OPAMP input bias current PGA gain Max - 3 6 Unit s - 3 6 VDDA < 2.2 -2 - 2 VDDA 2.2 -1 - 1 PGA Gain=4, 100mV Output dynamic range VDDA - 100mV -1 - 1 PGA Gain=8 100mV Output dynamic range VDDA - 100mV -1 - 1 PGA Gain=16, 100mV Output dynamic range VDDA - 100mV -1 - 1 PGA Gain=32 200mV Output VDDA 200mV -2 - 2 PGA Gain=64 200mV Output dynamic range VDDA - 200mV -2 - 2 -2 - 2 -1 - 1 PGA Gain=-3, 100mV Output dynamic range VDDA - 100mV -1 - 1 PGA Gain=-7 100mV Output dynamic range VDDA - 100mV -1 - 1 PGA Gain=-15, 100mV Output dynamic range VDDA - 100mV -1 - 1 PGA Gain=-31 200mV Output VDDA 200mV -2 - 2 PGA Gain=-63 200mV Output dynamic range VDDA - 200mV -5 - 2 PGA Gain = -1 VDDA < 2.2 100mV Output dynamic VDDA 2.2 range VDDA - 100mV Inverting gain value Typ See lleak parameter in Table 57: I/O static characteristics for given pin. PGA Gain = 2 0.1 Out dynamic range VDDA 0.1 Non inverting gain value(4) Min DS12288 Rev 1 - - 167/232 201 Electrical characteristics STM32G474xB STM32G474xC STM32G474xE Table 80. OPAMP characteristics(1) (2) (continued) Symbol Parameter R2/R1 internal resistance values in non-inverting PGA mode(5) Rnetwork Delta R Conditions Min Typ Max PGA Gain = 2 - 10/10 - PGA Gain = 4 - 30/10 - PGA Gain = 8 - 70/10 - PGA Gain = 16 - 150/10 - PGA Gain = 32 - 310/10 - PGA Gain = 64 - 630/10 - PGA Gain = -1 - 10/10 - PGA Gain = -3 - 30/10 - R2/R1 internal PGA Gain = -7 resistance values in inverting PGA mode(5) PGA Gain = -15 - 70/10 - - 150/10 - PGA Gain = -31 - 310/10 - PGA Gain = -63 - 630/10 - -15 - +15 Gain = 2 - GBW/2 - Gain = 4 - GBW/4 - Gain = 8 - GBW/8 - Gain = 16 - GBW/16 - Gain = 32 - GBW/32 - Gain = 64 - GBW/64 - Gain = -1 - GBW/2 - Gain = -3 - GBW/4 - Gain = -7 PGA bandwidth for different inverting gain Gain = -15 - GBW/8 - - GBW/16 - Gain = -31 - GBW/32 - Gain = -63 - GBW/64 - at 1 kHz, Output loaded with 4 k - 250 - at 10 kHz, Output loaded with 4 k - 90 - Normal mode - 1.3 2.2 - 1.4 2.6 Resistance variation (R1 or R2) PGA bandwidth for different non inverting gain PGA BW eN Voltage noise density IDDA(OPAMP) OPAMP consumption from VDDA - High-speed mode No load, follower mode ADC sampling time TS_OPAMP_VO when reading the OPAMP output. UT OPAINTOEN=1 VDDA < 2V 300 - - VDDA 2V 200 - - OPAMP consumption IDDA(OPAMPI from VDDA. NT) OPAINTOEN=1 Normal mode - 0.45 0.7 - 0.5 0.8 168/232 High-speed mode DS12288 Rev 1 no load, follower mode Unit k/k % MHz MHz nV/ Hz mA ns mA STM32G474xB STM32G474xC STM32G474xE Electrical characteristics 1. Guaranteed by design, unless otherwise specified. 2. Data guaranteed on normal and high speed mode unless otherwise specified. 3. Guaranteed by characterization results. 4. Valid also for inverting gain configuration with external bias. 5. R2 is the internal resistance between OPAMP output and OPAMP inverting input. R1 is the internal resistance between OPAMP inverting input and ground. The PGA gain =1+R2/R1 Figure 33. OPAMP noise density @ 25C 06Y9 DS12288 Rev 1 169/232 201 Electrical characteristics 5.3.24 STM32G474xB STM32G474xC STM32G474xE Temperature sensor characteristics Table 81. TS characteristics Symbol Parameter Min Typ Max Unit - 1 2 C 2.3 2.5 2.7 mV/C 0.742 0.76 0.785 V Start-up time in Run mode (start-up of buffer) - 8 15 s Start-up time when entering in continuous mode - 70 120 s tS_temp(1) ADC sampling time when reading the temperature 5 - - s IDD(TS)(1) Temperature sensor consumption from VDD, when selected by ADC - 4.7 7 A TL(1) Avg_Slope VTS linearity with temperature (1) V30 tSTART-RUN(1) tSTART_CONT(3) Average slope Voltage at 30C (5 C)(2) 1. Guaranteed by design. 2. Measured at VDDA = 3.0 V 10 mV. The V30 ADC conversion result is stored in the TS_CAL1 byte. Refer to Table 5: Temperature sensor calibration values. 3. 5.3.25 Continuous mode means RUN mode or Temperature Sensor ON. VBAT monitoring characteristics Table 82. VBAT monitoring characteristics Symbol Parameter Min Typ Max Unit R Resistor bridge for VBAT - 39 - k Q Ratio on VBAT measurement - 3 - - Error on Q -10 - 10 % ADC sampling time when reading the VBAT 12 - - s Er(1) tS_vbat(1) 1. Guaranteed by design. Table 83. VBAT charging characteristics Symbol RBC Parameter Conditions Battery charging resistor 170/232 Min Typ Max VBRS = 0 - 5 - VBRS = 1 - 1.5 - DS12288 Rev 1 Unit k STM32G474xB STM32G474xC STM32G474xE 5.3.26 Electrical characteristics Timer characteristics The parameters given in the following tables are guaranteed by design. Refer to Section 5.3.14: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). Table 84. TIMx(1) characteristics(2) Symbol Parameter tres(TIM) Timer resolution time fEXT Timer external clock frequency on CH1 to CH4 Timer resolution ResTIM tCOUNTER Conditions Min Max Unit - 1 - tTIMxCLK 6.66 - ns 0 fTIMxCLK/2 MHz fTIMxCLK = 170 MHz 0 75 MHz TIMx (except TIM2 and TIM5) - 16 TIM2 and TIM5 - 32 1 65536 tTIMxCLK 0.00666 436.9 s - 65536 x 65536 tTIMxCLK fTIMxCLK = 170 MHz - 28.63 s Encoder frequency on TI1 and TI2 input pins f TIMxCLK = 170MHz 0 fTIMxCLK/4 MHz 0 37.5 MHz - - 16-bit counter clock period fTIMxCLK = 170 MHz Maximum possible tMAX_COUNT count with 32-bit counter fENC fTIMxCLK = 170 MHz - bit tW(INDEX) Index pulsewidth on ETR input - 2 - Tck - 2 - Tck tW(TI1, TI2) Min pulsewidth on TI1 and TI2 inputs in all encoder modes except directional clock x1 Min pulsewidth on TI1 and TI2 inputs in directional clock x1 - 3 - Tck 1. TIMx, is used as a general term in which x stands for 1,2,3,4,5,6,7,8,15,16, 17 or 20. 2. Guaranteed by design. DS12288 Rev 1 171/232 201 Electrical characteristics STM32G474xB STM32G474xC STM32G474xE Table 85. IWDG min/max timeout period at 32 kHz (LSI)(1)(2) Prescaler divider PR[2:0] bits Min timeout RL[11:0]= 0x000 Max timeout RL[11:0]= 0xFFF /4 0 0.125 512 /8 1 0.250 1024 /16 2 0.500 2048 /32 3 1.0 4096 /64 4 2.0 8192 /128 5 4.0 16384 /256 6 or 7 8.0 32768 Unit ms 1. Guaranteed by design. 2. The exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty. Table 86. WWDG min/max timeout value at 170 MHz (PCLK)(1) Prescaler WDGTB Min timeout value Max timeout value 1 0 0.0241 1.542 2 1 0.0482 3.084 4 2 0.0964 6.168 8 3 0.1928 12.336 Unit ms 1. Guaranteed by design. 5.3.27 Communication interfaces characteristics I2C interface characteristics The I2C interface meets the timings requirements of the I2C-bus specification and user manual rev. 03 for: * Standard-mode (Sm): with a bit rate up to 100 kbit/s * Fast-mode (Fm): with a bit rate up to 400 kbit/s * Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s. The I2C timings requirements are guaranteed by design when the I2C peripheral is properly configured (refer to reference manual RM0440 "STM32G4 Series advanced Arm(R)-based 32-bit MCUs") and when the I2CCLK frequency is greater than the minimum shown in the table below. 172/232 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE Electrical characteristics Table 87. Minimum I2CCLK frequency in all I2C modes Symbol Parameter Condition Min Standard mode Fast-mode f(I2CCLK) I2CCLK frequency Fast-mode Plus Unit 2 Analog Filtre ON DNF=0 8 Analog Filtre OFF DNF=1 9 Analog Filtre ON DNF=0 17 Analog Filtre OFF DNF=1 16 MHz The SDA and SCL I/O requirements are met with the following restrictions: * The SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDDIOx is disabled, but is still present. * The 20mA output drive requirement in Fast-mode Plus is supported partially. This limits the maximum load Cload supported in Fm+, which is given by these formulas: - tr(SDA/SCL)=0.8473 x Rp x Cload - Rp(min)= (VDD - VOL(max)) / IOL(max) Where Rp is the I2C lines pull-up. Refer to Section 5.3.14: I/O port characteristics for the I2C I/Os characteristics. All I2C SDA and SCL I/Os embed an analog filter. Refer to Table 88 below for the analog filter characteristics: Table 88. I2C analog filter characteristics(1) Symbol Parameter Min Max Unit tAF Maximum pulse width of spikes that are suppressed by the analog filter 50(2) 90(3) ns 1. Guaranteed by design. 2. Spikes with widths below tAF(min) are filtered. 3. Spikes with widths above tAF(max) are not filtered SPI characteristics Unless otherwise specified, the parameters given in Table 89 for SPI are derived from tests performed under the ambient temperature, fPCLKx frequency and supply voltage conditions summarized in Table 17: General operating conditions. * Output speed is set to OSPEEDRy[1:0] = 11 * Capacitive load C = 30 pF * Measurement points are done at CMOS levels: 0.5 x VDD Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI). DS12288 Rev 1 173/232 201 Electrical characteristics STM32G474xB STM32G474xC STM32G474xE Table 89. SPI characteristics(1) Symbol fSCK 1/tc(SCK) Parameter SPI clock frequency tsu(NSS) NSS setup time Conditions Min Typ Max(2) Master mode 2.7 V < VDD < 3.6 V Voltage Range V1 75 Master mode 1.71 V < VDD < 3.6 V Voltage Range V1 50 Master transmitter mode 1.71 V < VDD < 3.6 V Voltage Range V1 50 Slave receiver mode 1.71 V < VDD < 3.6 V Voltage Range V1 - - 50 Slave mode transmitter/full duplex 2.7 V < VDD < 3.6 V Voltage Range V1 41 Slave mode transmitter/full duplex 1.71 V < VDD < 3.6 V Voltage Range V1 27 1.71 V < VDD < 3.6 V Voltage Range V2 13 Unit MHz Slave mode, SPI prescaler = 2 4*Tpclk - - - Slave mode, SPI prescaler = 2 2*Tpclk - - - Master mode Tpclk-1 Tpclk Tpclk+1 - Master mode 4 - - Slave mode 3 - - Master mode 4 - - Slave mode 1 - - ta(SO) Data output access time Slave mode 9 - 34 ns tdis(SO) Data output disable time Slave mode 9 - 16 ns th(NSS) NSS hold time tw(SCKH) SCK high and low time tw(SCKL) tsu(MI) tsu(SI) th(MI) th(SI) 174/232 Data input setup time Data input hold time DS12288 Rev 1 ns ns STM32G474xB STM32G474xC STM32G474xE Electrical characteristics Table 89. SPI characteristics(1) (continued) Symbol tv(SO) Typ Max(2) Slave mode 2.7 V < VDD < 3.6 V Voltage Range V1 - 9 12 Slave mode 1.71 V < VDD < 3.6 V Voltage Range V1 - 9 18 Slave mode 1.71 V < VDD < 3.6 V Voltage Range V2 - 13 22 Master mode - 3.5 4.5 Slave mode 1.71 V < VDD < 3.6 V 6 - - Slave mode Range V2 9 - - Master mode 2 - - Conditions Data output valid time tv(MO) th(SO) Min Parameter Data output hold time th(MO) Unit ns 1. Guaranteed by characterization results. 2. The maximum frequency in Slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit into SCK low or high-phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having tsu(MI) = 0 while Duty(SCK) = 50%. Figure 34. SPI timing diagram - slave mode and CPHA = 0 166LQSXW WF 6&. 6&.LQSXW WVX 166 WK 166 WZ 6&.+ WU 6&. &3+$ &32/ &3+$ &32/ WD 62 WZ 6&./ WY 62 )LUVWELW287 0,62RXWSXW WK 62 1H[WELWV287 WI 6&. WGLV 62 /DVWELW287 WK 6, WVX 6, 026,LQSXW )LUVWELW,1 1H[WELWV,1 /DVWELW,1 06Y9 DS12288 Rev 1 175/232 201 Electrical characteristics STM32G474xB STM32G474xC STM32G474xE Figure 35. SPI timing diagram - slave mode and CPHA = 1 166LQSXW WF 6&. WVX 166 WZ 6&.+ WD 62 WZ 6&./ WI 6&. WK 166 6&.LQSXW &3+$ &32/ &3+$ &32/ WY 62 WK 62 )LUVWELW287 0,62RXWSXW WVX 6, WU 6&. 1H[WELWV287 WGLV 62 /DVWELW287 WK 6, 026,LQSXW )LUVWELW,1 1H[WELWV,1 /DVWELW,1 06Y9 1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD. Figure 36. SPI timing diagram - master mode +LJK 166LQSXW 6&.2XWSXW &3+$ &32/ 6&.2XWSXW WF 6&. &3+$ &32/ &3+$ &32/ &3+$ &32/ WVX 0, 0,62 ,13 87 WZ 6&.+ WZ 6&./ 06%,1 WU 6&. WI 6&. %,7,1 /6%,1 WK 0, 026, 287387 06%287 WY 02 % , 7287 /6%287 WK 02 DLF 1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD. 176/232 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE Electrical characteristics I2S characteristics Unless otherwise specified, the parameters given in Table 90 for I2S are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 17: General operating conditions, with the following configuration: * Output speed is set to OSPEEDRy[1:0] = 10 * Capacitive load C=30pF * Measurement points are done at CMOS levels: 0.5 VDD Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (CK,SD,WS). Table 90. I2S characteristics(1) Symbol fMCLK Conditions Min Max Uni t - 256x8 K 256 *Fs(2) MH z Master data - 64xFs Slave data - 64xFs MH z 30 70 % Master mode - 6 Master mode 3 - Slave mode 2 - Parameter I2S Main clock output fCK I2S clock frequency DCK I2S clock frequency Slave receiver duty cycle tv(WS) WS valid time th(WS) WS hold time tsu(WS) WS setup time Slave mode 4 - Data input setup time Master receiver 3 - Slave receiver 4 - Master receiver 4 - Slave receiver 2 - 2.7 V VDD 3.6 V - 15 1.65 V VDD 3.6 V - 22 Master transmitter (after enable edge) - 3 Slave transmitter (after enable edge) 7 - Master transmitter (after enable edge) 1 - tsu(SD_MR) tsu(SD_SR) th(SD_MR) th(SD_SR) tv(SD_ST) Data input hold time Data output valid time tv(SD_MT) th(SD_ST) th(SD_MT) Data output hold time Slave transmitter (after enable edge) ns 1. Guaranteed by characterization results, not tested in production. 2. 256xFs maximum is 49.152 MHz. Note: Refer to the reference manual RM0440 "STM32G4 Series advanced Arm(R)-based 32-bit MCUs" I2S section for more details about the sampling frequency (Fs), fMCK, fCK, DCK values reflect only the digital peripheral behavior, source clock precision might slightly change the values DCK depends mainly on ODD bit value. Digital contribution leads to a min of (I2SDIV/(2*I2SDIV+ODD) and a max (I2SDIV+ODD)/(2*I2SDIV+ODD) and Fs max supported for each mode/condition. DS12288 Rev 1 177/232 201 Electrical characteristics STM32G474xB STM32G474xC STM32G474xE SAI characteristics Unless otherwise specified, the parameters given in Table 91 for SAI are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized inTable 17: General operating conditions, with the following configuration: * Output speed is set to OSPEEDRy[1:0] = 10 * Capacitive load C = 30 pF * Measurement points are done at CMOS levels: 0.5 x VDD Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (CK,SD,FS). 178/232 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE Electrical characteristics Table 91. SAI characteristics(1) Symbol Parameter Conditions Min Max Unit fMCLK SAI Main clock output - - 50 MHz Master transmitter 2.7 V VDD 3.6 V Voltage Range 1 - 33 Master transmitter 1.71 V VDD 3.6 V Voltage Range 1 - 22 Master receiver Voltage Range 1 - 22 Slave transmitter 2.7 V VDD 3.6 V Voltage Range 1 - 45 Slave transmitter 1.71 V VDD 3.6 V Voltage Range 1 - 29 Slave receiver Voltage Range 1 - 50 Slave transmitter Voltage Range 2 - 13 Master mode 2.7 V VDD 3.6 V - 15 Master mode 1.71 V VDD 3.6 V - 22 fCK tv(FS) SAI clock frequency(2) FS valid time MHz ns th(FS) FS hold time Master mode 10 - ns tsu(FS) FS setup time Slave mode 2 - ns th(FS) FS hold time Slave mode 1 - ns Master receiver 2.5 - Slave receiver 1 - Master receiver 5 - Slave receiver 1 - Slave transmitter (after enable edge) 2.7 V VDD 3.6 V - 11 Slave transmitter (after enable edge) 1.71 V VDD 3.6 V - 17 Slave transmitter (after enable edge) voltage range V2 - 20 Slave transmitter (after enable edge) 10 - tsu(SD_A_MR) tsu(SD_B_SR) th(SD_A_MR) th(SD_B_SR) tv(SD_B_ST) th(SD_B_ST) Data input setup time Data input hold time Data output valid time Data output hold time DS12288 Rev 1 ns ns ns ns 179/232 201 Electrical characteristics STM32G474xB STM32G474xC STM32G474xE Table 91. SAI characteristics(1) (continued) Symbol tv(SD_A_MT) th(SD_A_MT) Parameter Conditions Data output valid time Data output hold time Min Max Master transmitter (after enable edge) 2.7 V VDD 3.6 V - 14 Master transmitter (after enable edge) 1.71 V VDD 3.6 V - 21 Master transmitter (after enable edge) 10 - Unit ns ns 1. Guaranteed by characterization results. 2. APB clock frequency must be at least twice SAI clock frequency. Figure 37. SAI master timing waveforms F3#+ 3!)?3#+?8 TH&3 3!)?&3?8 OUTPUT TV&3 TH3$?-4 TV3$?-4 3!)?3$?8 TRANSMIT 3LOT N 3LOT N TSU3$?-2 3!)?3$?8 RECEIVE TH3$?-2 3LOT N -36 Figure 38. SAI slave timing waveforms F3#+ 3!)?3#+?8 TW#+(?8 3!)?&3?8 INPUT TW#+,?8 TSU&3 TH&3 TH3$?34 TV3$?34 3!)?3$?8 TRANSMIT 3LOT N TSU3$?32 3!)?3$?8 RECEIVE 3LOT N TH3$?32 3LOT N -36 CAN (controller area network) interface Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (FDCANx_TX and FDCANx_RX). 180/232 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE Electrical characteristics USB characteristics The device USB interface is fully compliant with the USB specification version 2.0 and is USB-IF certified (for Full-speed device operation). Table 92. USB electrical characteristics(1) Symbol Min Typ Max Unit 3.0(2) - 3.6 V USB crystal less operation temperature -15 - 85 C RPUI Embedded USB_DP pull-up value during idle 900 1250 1500 RPUR Embedded USB_PD pull-up value during reception 1400 2300 3200 28 36 44 VDD tCrystal_less ZsDRV(3) Parameter Conditions USB transceiver operating voltage Output driver impedance(4) Driving high and low 1. TA = -40 to 125 C unless otherwise specified. 2. The device USB functionality is ensured down to 2.7 V but not the full USB electrical characteristics, which are degraded in the 2.7-to-3.0 V voltage range. 3. Guarantee by design. 4. No external termination series resistors are required on USB_PD (D+) and USB_DM (D-); the matching impedance is already included in the embedded driver. USART interface characteristics Unless otherwise specified, the parameters given in Table 93 for USART are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 93, with the following configuration: * Output speed is set to OSPEEDRy[1:0] = 10 * Capacitive load C=30 pF * Measurement points are done at CMOS levels: 0.5 VDD Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, CK, TX, RX for USART). Table 93. USART electrical characteristics(1) Symbol fCK Parameter USART clock frequency Conditions Min Typ Max Master mode - - 21 Slave mode - - 22 Unit MHz tsu(NSS) NSS setup time Slave mode tker + 2 - - th(NSS) NSS hold time Slave mode 2 - - tw(CKH) tw(CKL) CK high and low time Master mode 1/fck/2-1 1/fck/2 1/fck/2+1 tsu(RX) Data input setup time Master mode tker + 2 - - Slave mode 2 - - Master mode 1 - - Slave mode 0.5 - - th(RX) Data input hold time DS12288 Rev 1 ns ns ns 181/232 201 Electrical characteristics STM32G474xB STM32G474xC STM32G474xE Table 93. USART electrical characteristics(1) (continued) Symbol tv(TX) th(RX) Parameter Data output valid time Data output hold time Conditions Min Typ Max Master mode - 0.5 1.5 Slave mode - 10 22 Master mode 0 - - Slave mode 7 - - Unit ns 1. Based on characterization, not tested in production. 5.3.28 FSMC characteristics Unless otherwise specified, the parameters given in Table 94 to Table 107 for the FMC interface are derived from tests performed under the ambient temperature, fHCLK frequency and VDD supply voltage conditions summarized in Table 17, with the following configuration: * Output speed is set to OSPEEDRy[1:0] = 11 * Capacitive load C = 30 pF * Measurement points are done at CMOS levels: 0.5 x VDD Refer to Section 5.3.14: I/O port characteristics for more details on the input/output characteristics. Asynchronous waveforms and timings Figure 39 through Figure 42 represent asynchronous waveforms and Table 94 through Table 101 provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration: * AddressSetupTime = 0x1 * AddressHoldTime = 0x1 * DataHoldTime = 0x1 * ByteLaneSetup = 0x1 * DataSetupTime = 0x1 (except for asynchronous NWAIT mode, DataSetupTime = 0x5) * BusTurnAroundDuration = 0x0 In all timing tables, the THCLK is the HCLK clock period. 182/232 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE Electrical characteristics Figure 39. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms TW.% &-#?.% TV./%?.% T W./% T H.%?./% &-#?./% &-#?.7% TV!?.% &-#?!;= T H!?./% !DDRESS TV",?.% T H",?./% &-#?.",;= T H$ATA?.% T SU$ATA?./% TH$ATA?./% T SU$ATA?.% $ATA &-#?$;= T V.!$6?.% TW.!$6 &-#?.!$6 &-#?.7!)4 TH.%?.7!)4 TSU.7!)4?.% -36 DS12288 Rev 1 183/232 201 Electrical characteristics STM32G474xB STM32G474xC STM32G474xE Table 94. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings(1)(2) Symbol tw(NE) tv(NOE_NE) tw(NOE) th(NE_NOE) tv(A_NE) th(A_NOE) tsu(Data_NE) Parameter Min Max 3 THCLK- 0.5 3THCLK+ 1 0 1 2 THCLK- 0.5 2 THCLK+ 1 THCLK - - 2 Address hold time after FMC_NOE high 2 THCLK- 1 - Data to FMC_NEx high setup time THCLK + 20 - FMC_NE low time FMC_NEx low to FMC_NOE low FMC_NOE low time FMC_NOE high to FMC_NE high hold time FMC_NEx low to FMC_A valid tsu(Data_NOE) Data to FMC_NOEx high setup time 20 - th(Data_NOE) Data hold time after FMC_NOE high 0 - th(Data_NE) Data hold time after FMC_NEx high 0 - tv(NADV_NE) FMC_NEx low to FMC_NADV low - 1.5 FMC_NADV low time - THCLK+ 8 tw(NADV) Unit ns 1. CL = 30 pF. 2. Guaranteed by characterization results. Table 95. Asynchronous non-multiplexed SRAM/PSRAM/NOR read-NWAIT timings(1)(2) Symbol tw(NE) tw(NOE) tw(NWAIT) Parameter FMC_NE low time FMC_NWE low time FMC_NWAIT low time tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high th(NE_NWAIT) FMC_NEx hold time after FMC_NWAIT invalid 1. CL = 30 pF. 2. Guaranteed by characterization results. 184/232 DS12288 Rev 1 Min Max - 8 THCLK + 1 7 THCLK - 1 7 THCLK + 0.5 THCLK - 5 THCLK + 17 - 4 THCLK + 17 - Unit ns STM32G474xB STM32G474xC STM32G474xE Electrical characteristics Figure 40. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms TW.% &-#?.%X &-#?./% TV.7%?.% TW.7% T H.%?.7% &-#?.7% TV!?.% &-#?!;= TH!?.7% !DDRESS TV",?.% &-#?.",;= TH",?.7% .", TV$ATA?.% TH$ATA?.7% $ATA &-#?$;= T V.!$6?.% &-#?.!$6 TW.!$6 &-#?.7!)4 TH.%?.7!)4 TSU.7!)4?.% -36 Table 96. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1)(2) Symbol tw(NE) tv(NWE_NE) tw(NWE) th(NE_NWE) tv(A_NE) Parameter Min Max 3 THCLK - 0.5 3 THCLK + 1 THCLK - 0.5 THCLK + 1 THCLK -2 THCLK + 1 THCLK - 0.5 - - 0 THCLK - 1 - - 0 THCLK + 0.5 - - THCLK + 2 THCLK + 6 - FMC_NEx low to FMC_NADV low - 1.5 FMC_NADV low time - THCLK + 0.5 FMC_NE low time FMC_NEx low to FMC_NWE low FMC_NWE low time FMC_NWE high to FMC_NE high hold time FMC_NEx low to FMC_A valid th(A_NWE) Address hold time after FMC_NWE high tv(BL_NE) FMC_NEx low to FMC_BL valid th(BL_NWE) FMC_BL hold time after FMC_NWE high tv(Data_NE) Data to FMC_NEx low to Data valid th(Data_NWE) Data hold time after FMC_NWE high tv(NADV_NE) tw(NADV) Unit ns 1. CL = 30 pF. 2. Guaranteed by characterization results. DS12288 Rev 1 185/232 201 Electrical characteristics STM32G474xB STM32G474xC STM32G474xE Table 97. Asynchronous non-multiplexed SRAM/PSRAM/NOR write-NWAIT timings(1)(2) Symbol Parameter tw(NE) tw(NWE) Min Max FMC_NE low time 9 THCLK - 1 9 THCLK + 1 FMC_NWE low time 6 THCLK - 1 6 THCLK + 1 tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high 7 THCLK + 17 - th(NE_NWAIT) FMC_NEx hold time after FMC_NWAIT invalid 7 THCLK + 17 - Unit ns 1. CL = 30 pF. 2. Guaranteed by characterization results. Figure 41. Asynchronous multiplexed PSRAM/NOR read waveforms TW.% &-#? .% TV./%?.% T H.%?./% &-#?./% T W./% &-#?.7% TH!?./% TV!?.% &-#? !;= !DDRESS TV",?.% TH",?./% &-#? .",;= .", TH$ATA?.% TSU$ATA?.% T V!?.% &-#? !$;= TSU$ATA?./% TH$ATA?./% $ATA !DDRESS TH!$?.!$6 T V.!$6?.% TW.!$6 &-#?.!$6 &-#?.7!)4 TH.%?.7!)4 TSU.7!)4?.% -36 186/232 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE Electrical characteristics Table 98. Asynchronous multiplexed PSRAM/NOR read timings(1)(2) Symbol tw(NE) tv(NOE_NE) tw(NOE) th(NE_NOE) Parameter FMC_NE low time FMC_NEx low to FMC_NOE low FMC_NOE low time Min Max 3 THCLK - 0.5 3 THCLK + 1 0 1 2 THCLK - 0.5 2 THCLK + 0.5 THCLK - - 2 0.5 1.5 THCLK THCLK + 1.5 FMC_AD(address) valid hold time after FMC_NADV high THCLK - 0.3 - Address hold time after FMC_NOE high Address hold until next read operation - THCLK + 20 - 20 - Data hold time after FMC_NEx high 0 - th(Data_NOE) Data hold time after FMC_NOE high 0 - tv(A_NE) FMC_NOE high to FMC_NE high hold time FMC_NEx low to FMC_A valid tv(NADV_NE) FMC_NEx low to FMC_NADV low tw(NADV) th(AD_NADV) th(A_NOE) tsu(Data_NE) FMC_NADV low time Data to FMC_NEx high setup time tsu(Data_NOE) Data to FMC_NOE high setup time th(Data_NE) Unit ns 1. CL = 30 pF. 2. Guaranteed by characterization results. Table 99. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings(1)(2) Symbol tw(NE) tw(NOE) Parameter Min Max FMC_NE low time 8 THCLK - 1 8 THCLK + 1 FMC_NWE low time 7 THCLK - 1 7 THCLK + 0.5 5 THCLK + 17 - FMC_NEx hold time after FMC_NWAIT invalid 4 THCLK + 17 - tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high th(NE_NWAIT) Unit ns 1. CL = 30 pF. 2. Guaranteed by characterization results. DS12288 Rev 1 187/232 201 Electrical characteristics STM32G474xB STM32G474xC STM32G474xE Figure 42. Asynchronous multiplexed PSRAM/NOR write waveforms TW.% &-#? .%X &-#?./% TV.7%?.% TW.7% T H.%?.7% &-#?.7% TH!?.7% TV!?.% &-#? !;= !DDRESS TV",?.% TH",?.7% &-#? .",;= .", T V!?.% &-#? !$;= T V$ATA?.!$6 !DDRESS TH$ATA?.7% $ATA TH!$?.!$6 T V.!$6?.% TW.!$6 &-#?.!$6 &-#?.7!)4 TH.%?.7!)4 TSU.7!)4?.% -36 188/232 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE Electrical characteristics Table 100. Asynchronous multiplexed PSRAM/NOR write timings(1)(2) Symbol Min Max 3 THCLK - 0.5 3 THCLK + 1 THCLK - 0.5 THCLK + 1 THCLK - 2 THCLK + 1 THCLK - 0.5 - FMC_NEx low to FMC_A valid - 0 FMC_NEx low to FMC_NADV low 0 1.5 THCLK + 0.5 THCLK + 1.5 FMC_AD(address) valid hold time after FMC_NADV high THCLK - 3 - th(A_NWE) Address hold time after FMC_NWE high Address hold until next write operation - th(BL_NWE) FMC_BL hold time after FMC_NWE high THCLK - 0.5 - - 0 - THCLK + 2 THCLK + 6 - tw(NE) tv(NWE_NE) tw(NWE) th(NE_NWE) tv(A_NE) tv(NADV_NE) tw(NADV) th(AD_NADV) tv(BL_NE) Parameter FMC_NE low time FMC_NEx low to FMC_NWE low FMC_NWE low time FMC_NWE high to FMC_NE high hold time FMC_NADV low time FMC_NEx low to FMC_BL valid tv(Data_NADV) FMC_NADV high to Data valid th(Data_NWE) Data hold time after FMC_NWE high Unit ns 1. CL = 30 pF. 2. Guaranteed by characterization results. Table 101. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings(1)(2) Symbol Min Max FMC_NE low time 9 THCLK - 1 9 THCLK + 1 FMC_NWE low time 6 THCLK - 1 6 THCLK + 0.5 tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high 7 THCLK + 17 - th(NE_NWAIT) 5 THCLK + 17 - tw(NE) tw(NWE) Parameter FMC_NEx hold time after FMC_NWAIT invalid Unit ns 1. CL = 30 pF. 2. Guaranteed by characterization results. DS12288 Rev 1 189/232 201 Electrical characteristics STM32G474xB STM32G474xC STM32G474xE Synchronous waveforms and timings Figure 43 through Figure 46 represent synchronous waveforms and Table 102 through Table 105 provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration: * BurstAccessMode = FMC_BurstAccessMode_Enable * MemoryType = FMC_MemoryType_CRAM * WriteBurst = FMC_WriteBurst_Enable * CLKDivision = 1 * DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM In all timing tables, the THCLK is the HCLK clock period. * For 2.7 V VDD 3.6 V, maximum FMC_CLK = 60 MHz for CLKDIV = 0x1 and 54 MHz for CLKDIV = 0x0 at CL = 30 pF (on FMC_CLK). * For 1.71 V VDD 2.7 V, maximum FMC_CLK = 60 MHz for CLKDIV = 0x1 and 32 MHz for CLKDIV = 0x0 at CL= 20 pF (on FMC_CLK). Figure 43. Synchronous multiplexed NOR/PSRAM read timings "53452. TW#,+ TW#,+ &-#?#,+ $ATA LATENCY TD#,+, .%X, &-#?.%X T D#,+, .!$6, TD#,+( .%X( TD#,+, .!$6( &-#?.!$6 TD#,+, !6 TD#,+( !)6 &-#?!;= TD#,+, ./%, TD#,+( ./%( &-#?./% T D#,+, !$6 &-#?!$;= TD#,+, !$)6 TSU!$6 #,+( !$;= TH#,+( !$6 TSU!$6 #,+( $ TSU.7!)46 #,+( &-#?.7!)4 7!)4#&' B 7!)40/, B &-#?.7!)4 7!)4#&' B 7!)40/, B TSU.7!)46 #,+( TSU.7!)46 #,+( TH#,+( !$6 $ TH#,+( .7!)46 TH#,+( .7!)46 TH#,+( .7!)46 -36 190/232 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE Electrical characteristics Table 102. Synchronous multiplexed NOR/PSRAM read timings(1)(2)(3) Symbol Min Max R*THCLK - 0.5 - - 1.5 R*THCLK/2 + 1 - td(CLKL-NADVL) FMC_CLK low to FMC_NADV low - 2.5 td(CLKL-NADVH) FMC_CLK low to FMC_NADV high 3.5 - - 4 R*THCLK/2 + 1 - - 2 R*THCLK/2 + 1 - tw(CLK) Parameter FMC_CLK period td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2) td(CLKH_NExH) FMC_CLK high to FMC_NEx high (x= 0...2) td(CLKL-AV) FMC_CLK low to FMC_Ax valid (x=16...25) td(CLKH-AIV) FMC_CLK high to FMC_Ax invalid (x=16...25) td(CLKL-NOEL) FMC_CLK low to FMC_NOE low td(CLKH-NOEH) FMC_CLK high to FMC_NOE high td(CLKL-ADV) FMC_CLK low to FMC_AD[15:0] valid - 3 td(CLKL-ADIV) FMC_CLK low to FMC_AD[15:0] invalid 0 - tsu(ADV-CLKH) FMC_A/D[15:0] valid data before FMC_CLK high 2 - th(CLKH-ADV) FMC_A/D[15:0] valid data after FMC_CLK high 4 - 1.5 - 4 - tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high Unit ns 1. CL = 30 pF. 2. Guaranteed by characterization results. 3. Clock ratio R = (HCLK period /FMC_CLK period). DS12288 Rev 1 191/232 201 Electrical characteristics STM32G474xB STM32G474xC STM32G474xE Figure 44. Synchronous multiplexed PSRAM write timings WZ &/. %867851 WZ &/. )0&B&/. 'DWDODWHQF\ WG &/./1([/ WG &/.+1([+ )0&B1([ WG &/./1$'9/ WG &/./1$'9+ )0&B1$'9 WG &/.+$,9 WG &/./$9 )0&B$>@ WG &/.+1:(+ WG &/./1:(/ )0&B1:( WG &/./'DWD WG &/./$',9 WG &/./'DWD WG &/./$'9 )0&B$'>@ )0&B1:$,7 :$,7&)* E :$,732/E $'>@ ' WVX 1:$,79&/.+ ' WK &/.+1:$,79 WG &/.+1%/+ )0&B1%/ 06Y9 192/232 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE Electrical characteristics Table 103. Synchronous multiplexed PSRAM write timings(1)(2)(3) Symbol tw(CLK) Parameter FMC_CLK period Min Max R*THCLK - 0.5 - - 1.5 R*THCLK/2 + 1 - td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2) td(CLKH-NExH) FMC_CLK high to FMC_NEx high (x= 0...2) td(CLKL-NADVL) FMC_CLK low to FMC_NADV low - 2.5 td(CLKL-NADVH) FMC_CLK low to FMC_NADV high 3.5 - - 4 R*THCLK/2 + 1 - - 2 R*THCLK/2 + 1 - td(CLKL-AV) FMC_CLK low to FMC_Ax valid (x=16...25) td(CLKH-AIV) FMC_CLK high to FMC_Ax invalid (x=16...25) td(CLKL-NWEL) FMC_CLK low to FMC_NWE low td(CLKH-NWEH) FMC_CLK high to FMC_NWE high td(CLKL-ADV) FMC_CLK low to FMC_AD[15:0] valid - 3 td(CLKL-ADIV) FMC_CLK low to FMC_AD[15:0] invalid 0 - td(CLKL-DATA) FMC_A/D[15:0] valid data after FMC_CLK low - 3 td(CLKL-NBLL) FMC_CLK low to FMC_NBL low 1 - td(CLKH-NBLH) FMC_CLK high to FMC_NBL high R*THCLK/2 + 1.5 - 1.5 - 4 - tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high Unit ns 1. CL = 30 pF. 2. Guaranteed by characterization results. 3. Clock ratio R = (HCLK period /FMC_CLK period). DS12288 Rev 1 193/232 201 Electrical characteristics STM32G474xB STM32G474xC STM32G474xE Figure 45. Synchronous non-multiplexed NOR/PSRAM read timings TW#,+ TW#,+ &-#?#,+ TD#,+, .%X, TD#,+( .%X( $ATA LATENCY &-#?.%X TD#,+, .!$6, TD#,+, .!$6( &-#?.!$6 TD#,+( !)6 TD#,+, !6 &-#?!;= TD#,+, ./%, TD#,+( ./%( &-#?./% TSU$6 #,+( TH#,+( $6 TSU$6 #,+( &-#?$;= TH#,+( $6 $ TSU.7!)46 #,+( &-#?.7!)4 7!)4#&' B 7!)40/, B TSU.7!)46 #,+( &-#?.7!)4 7!)4#&' B 7!)40/, B TSU.7!)46 #,+( $ TH#,+( .7!)46 T H#,+( .7!)46 TH#,+( .7!)46 -36 Table 104. Synchronous non-multiplexed NOR/PSRAM read timings(1)(2)(3) Symbol tw(CLK) 194/232 Parameter FMC_CLK period Min Max R*THCLK - 0.5 - - 1.5 R*THCLK/2 + 1 - td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2) td(CLKH-NExH) FMC_CLK high to FMC_NEx high (x= 0...2) td(CLKL-NADVL) FMC_CLK low to FMC_NADV low - 2.5 td(CLKL-NADVH) FMC_CLK low to FMC_NADV high 3.5 - - 4 R*THCLK/2+- 1 - - 2 R*THCLK/2 + 1 - td(CLKL-AV) FMC_CLK low to FMC_Ax valid (x=16...25) td(CLKH-AIV) FMC_CLK high to FMC_Ax invalid (x=16...25) td(CLKL-NOEL) FMC_CLK low to FMC_NOE low td(CLKH-NOEH) FMC_CLK high to FMC_NOE high tsu(DV-CLKH) FMC_D[15:0] valid data before FMC_CLK high 2 - th(CLKH-DV) FMC_D[15:0] valid data after FMC_CLK high 4 - 1.5 - 4 - tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high DS12288 Rev 1 Unit ns ns STM32G474xB STM32G474xC STM32G474xE Electrical characteristics 1. CL = 30 pF. 2. Guaranteed by characterization results. 3. Clock ratio R = (HCLK period /FMC_CLK period). Figure 46. Synchronous non-multiplexed PSRAM write timings WZ &/. WZ &/. )0&B&/. WG &/./1([/ WG &/.+1([+ 'DWDODWHQF\ )0&B1([ WG &/./1$'9/ WG &/./1$'9+ )0&B1$'9 WG &/.+$,9 WG &/./$9 )0&B$>@ WG &/.+1:(+ WG &/./1:(/ )0&B1:( WG &/./'DWD WG &/./'DWD )0&B'>@ ' ' )0&B1:$,7 :$,7&)* E:$,732/E WVX 1:$,79&/.+ WG &/.+1%/+ WK &/.+1:$,79 )0&B1%/ 06Y9 DS12288 Rev 1 195/232 201 Electrical characteristics STM32G474xB STM32G474xC STM32G474xE Table 105. Synchronous non-multiplexed PSRAM write timings(1)(2)(3) Symbol tw(CLK) Parameter FMC_CLK period Min Max R*THCLK - 0.5 - - 1.5 R*THCLK/2 + 1 - td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2) td(CLKH-NExH) FMC_CLK high to FMC_NEx high (x= 0...2) td(CLKL-NADVL) FMC_CLK low to FMC_NADV low - 2.5 td(CLKL-NADVH) FMC_CLK low to FMC_NADV high 3.5 - - 4 R*THCLK/2 + 1 - - 2 R*THCLK/2 + 1 - td(CLKL-AV) FMC_CLK low to FMC_Ax valid (x=16...25) td(CLKH-AIV) FMC_CLK high to FMC_Ax invalid (x=16...25) td(CLKL-NWEL) FMC_CLK low to FMC_NWE low td(CLKH-NWEH) FMC_CLK high to FMC_NWE high td(CLKL-Data) FMC_D[15:0] valid data after FMC_CLK low - 3 td(CLKL-NBLL) FMC_CLK low to FMC_NBL low 1 - td(CLKH-NBLH) FMC_CLK high to FMC_NBL high R*THCLK/2 + 1.5 - 1.5 - 4 - tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high Unit ns 1. CL = 30 pF. 2. Guaranteed by characterization results. 3. Clock ratio R = (HCLK period /FMC_CLK period). NAND controller waveforms and timings Figure 47 through Figure 50 represent synchronous waveforms, and Table 106 and Table 107 provide the corresponding timings. The results shown in these tables are obtained with the following FMC configuration: * COM.FMC_SetupTime = 0x01 * COM.FMC_WaitSetupTime = 0x03 * COM.FMC_HoldSetupTime = 0x02 * COM.FMC_HiZSetupTime = 0x01 * ATT.FMC_SetupTime = 0x01 * ATT.FMC_WaitSetupTime = 0x03 * ATT.FMC_HoldSetupTime = 0x02 * ATT.FMC_HiZSetupTime = 0x01 * Bank = FMC_Bank_NAND * MemoryDataWidth = FMC_MemoryDataWidth_16b * ECC = FMC_ECC_Enable * ECCPageSize = FMC_ECCPageSize_512Bytes * TCLRSetupTime = 0 * TARSetupTime = 0 In all timing tables, the THCLK is the HCLK clock period. 196/232 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE Electrical characteristics Figure 47. NAND controller waveforms for read access )0&B1&([ $/( )0&B$ &/( )0&B$ )0&B1:( WK 12($/( WG 1&(12( )0&B12( 15( WVX '12( WK 12(' )0&B'>@ 06Y9 Figure 48. NAND controller waveforms for write access )0&B1&([ $/( )0&B$ &/( )0&B$ WK 1:($/( WG 1&(1:( )0&B1:( )0&B12( 15( WK 1:(' WY 1:(' )0&B'>@ 06Y9 Figure 49. NAND controller waveforms for common memory read access )0&B1&([ $/( )0&B$ &/( )0&B$ WK 12($/( WG 1&(12( )0&B1:( WZ 12( )0&B12( WVX '12( WK 12(' )0&B'>@ 06Y9 DS12288 Rev 1 197/232 201 Electrical characteristics STM32G474xB STM32G474xC STM32G474xE Figure 50. NAND controller waveforms for common memory write access )0&B1&([ $/( )0&B$ &/( )0&B$ WG 1&(1:( WZ 1:( WK 12($/( )0&B1:( )0&B12( WG '1:( WY 1:(' WK 1:(' )0&B'>@ 06Y9 Table 106. Switching characteristics for NAND Flash read cycles(1)(2) Symbol Tw(N0E) Parameter FMC_NOE low width Min Max 4 THCLK - 1 4 THCLK Tsu(D-NOE) FMC_D[15-0] valid data before FMC_NOE high 19 - Th(NOE-D) FMC_D[15-0] valid data after FMC_NOE high 0 - Td(NCE-NOE) FMC_NCE valid before FMC_NOE low - 3 THCLK Th(NOE-ALE) FMC_NOE high to FMC_ALE invalid 3 THCLK - Unit ns 1. CL = 30 pF. 2. Guaranteed by characterization results. Table 107. Switching characteristics for NAND Flash write cycles(1)(2) Symbol Tw(NWE) Parameter FMC_NWE low width Tv(NWE-D) FMC_NWE low to FMC_D[15-0] valid Th(NWE-D) FMC_NWE high to FMC_D[15-0] invalid Td(D-NWE) FMC_D[15-0] valid before FMC_NWE high Td(NCE_NWE) FMC_NCE valid before FMC_NWE low Th(NWE-ALE) FMC_NWE high to FMC_ALE invalid 1. CL = 30 pF. 2. Guaranteed by characterization results. 198/232 DS12288 Rev 1 Min Max 4 THCLK -1 4 THCLK 0 - 3 THCLK - 1 - 5 THCLK - - 3 THCLK 3 THCLK - Unit ns STM32G474xB STM32G474xC STM32G474xE 5.3.29 Electrical characteristics QUADSPI characteristics Unless otherwise specified, the parameters given in Table 108 and Table 109 for Quad SPI are derived from tests performed under the ambient temperature, fAHB frequency and VDD supply voltage conditions summarized in Table 17: General operating conditions, with the following configuration: * Output speed is set to OSPEEDRy[1:0] = 11 * Capacitive load C = 15 or 20 pF * Measurement points are done at CMOS levels: 0.5 VDD Refer to Section 5.3.14: I/O port characteristics for more details on the input/output alternate function characteristics. Table 108. Quad SPI characteristics in SDR mode(1) Symbol F(QCK) Parameter Conditions Quad SPI clock frequency Min Typ Max 1.71 < VDD< 3.6 V, CLOAD = 15 pF Voltage Range 1 - - 50 1.71 < VDD< 3.6 V, CLOAD = 20 pF Voltage Range 2 - - 110 t(CK)/2-0.5 - t(CK)/2+1 t(CK)/2-1 - t(CK)/2+0.5 (n/2)*t(CK)/(n+1) - 0.5 - (n/2)*t(CK)/(n+1) + 1 (n/2+1)*t(CK)/(n+1) - 1 - (n/2+1)*t(CK)/(n+1) +0.5 tw(CKH) Quad SPI clock high and low time tw(CKL) Even division PRESCALER [7:0] n =0,1, 3, 5 ... tw(CKH) Quad SPI clock high and low time tw(CKL) Odd division PRESCALER [7:0] n =2,4, 6, 8... Unit MHz ts(IN) Data input setup time 1.71 < VDD< 3.6 V 1 - - th(IN) Data input hold time 1.71 < VDD< 3.6 V 5 - - tv(OUT) Data output valid time 1.71 < VDD< 3.6 V - 1 1.5 th(OUT) Data output hold time 1.71 < VDD< 3.6 V 0.5 - - ns 1. Guaranteed by characterization results. Table 109. QUADSPI characteristics in DDR mode(1) Symbol F(QCK) Parameter Quad SPI clock frequency Conditions Min Typ Max 1.71 < VDD< 3.6 V, CLOAD = 15 pF Voltage Range 1 - - 50 1.71 < VDD< 3.6 V, CLOAD = 20 pF Voltage Range 2 - Unit MHz DS12288 Rev 1 - 70 199/232 201 Electrical characteristics STM32G474xB STM32G474xC STM32G474xE Table 109. QUADSPI characteristics in DDR mode(1) (continued) Symbol Parameter tw(CKH) Quad SPI clock high and low time tw(CKL) Even division tw(CKH) Conditions Min Typ Max t(CK)/2 - t(CK)/2+1 t(CK)/2-1 - t(CK)/2 (n/2)*t(CK)/(n+1) - (n/2)*t(CK)/(n+1) + 1 (n/2+1)*t(CK)/(n+1) - 1 - (n/2+1)*t(CK)/(n+1) PRESCALER [7:0] n =0,1, 3, 5 ... Unit tw(CKL) Quad SPI clock high and PRESCALER [7:0] low time n =2,4, 6, 8... Odd division tsh(IN) Data input setup time on 1.71 < VDD< 3.6 V rising edge 1 - - tsl(IN) Data input setup time on 1.71 < VDD< 3.6 V falling edge 1 - - thh(IN) Data input hold time on rising edge 1.71 < VDD< 3.6 V 6 - - thl(IN) Data input hold time on falling edge 1.71 < VDD< 3.6 V 5 - - 1.71 < VDD< 3.6 V Data output valid time on DHHC = 0 rising edge 1.71 < VDD< 3.6 V DHHC = 1 7.5 8 - Thclk/2 +1 Thclk/2+1.5 7 10 Thclk/2 +1 Thclk/2+2 - - tvh(OUT) tvf(OUT) thh(OUT) thf(OUT) Data output valid time 1.71 < VDD< 3.6 V DHHC = 0 - 1.71 < VDD< 3.6 V DHHC = 1 1.71 < VDD< 3.6 V Data output hold time on DHHC = 0 rising edge 1.71 < VDD< 3.6 V DHHC = 1 2 Thclk/2+ 0.5 1.71 < VDD< 3.6 V Data output hold time on DHHC = 0 falling edge 1.71 < VDD< 3.6 V DHHC = 1 ns - 3 - - Thclk/2+0.5 - 1. Guaranteed by characterization results. Figure 51. Quad SPI timing diagram - SDR mode WU &. &ORFN 'DWDRXWSXW W &. WZ &.+ WY 287 WI &. WK 287 ' ' WV ,1 'DWDLQSXW WZ &./ ' ' WK ,1 ' ' 06Y9 200/232 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE Electrical characteristics Figure 52. Quad SPI timing diagram - DDR mode WU &. &ORFN W &. WYI 287 'DWDRXWSXW WZ &.+ WKU 287 ' WYU 287 ' ' WZ &./ WKI 287 ' WVI ,1 WKI ,1 'DWDLQSXW ' ' WI &. ' ' WVU ,1 WKU ,1 ' ' ' ' 06Y9 5.3.30 UCPD characteristics UCPD1 controller complies with USB Type-C Rev.1.2 and USB Power Delivery Rev. 3.0 specifications. Table 110. UCPD characteristics Symbol VDD Parameter Conditions UCPD operating supply voltage Sink mode only Sink and source mode DS12288 Rev 1 Min Typ Max Unit 3.0 3.3 3.6 V 3.135 3.3 3.465 V 201/232 201 Package information 6 STM32G474xB STM32G474xC STM32G474xE Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. 6.1 WLCSP81 package information Figure 53. WLCSP - 81 balls, 4.02x4.27 mm, 0.4 mm pitch wafer level chip scale package outline '(7$,/$ EEE = ) $ $%$// /2&$7,21 H ' $ * H ( H - $ $ HHH ; %277209,(: 7239,(: 6,'(9,(: $ $ E %803 $ )52179,(: HHH = ] E [ FFF 0 = ; < GGG 0 = 6($7,1*3/$1( '(7$,/$ 527$7(' %B:/&63B',(B0(B9 1. Drawing is not to scale. 2. Dimension is measured at the maximum bump diameter parallel to primary datum Z. 3. Primary datum Z and seating plane are defined by the spherical crowns of the bump. 4. Bump position designation per JESD 95-1, SPP-010. 202/232 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE Package information Table 111. WLCSP - 81 balls, 4.02x4.27 mm, 0.4 mm pitch wafer level chip scale mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A(2) - - 0.59 - - 0.023 A1 - 0.18 - - 0.007 - A2 - 0.38 - - 0.015 - A3 - 0.025 - - 0.001 - b 0.22 0.25 0.28 0.009 0.010 0.011 D 4.00 4.02 4.04 0.157 0.158 0.159 E 4.25 4.27 4.29 0.167 0.168 0.169 e - 0.40 - - 0.016 - e1 - 3.20 - - 0.126 - e2 - 3.20 - - 0.126 - F(3) - 0.410 - - 0.016 - G(3) - 0.535 - - 0.021 - aaa - - 0.10 - - 0.004 bbb - - 0.10 - - 0.004 ccc - - 0.10 - - 0.004 ddd - - 0.05 - - 0.002 eee - - 0.05 - - 0.002 1. Values in inches are converted from mm and rounded to 3 decimal digits. 2. The maximum total package height is calculated by the RSS method (Root Sum Square) using nominal and tolerances values of A1 and A2. 3. Calculated dimensions are rounded to the 3rd decimal place Figure 54. WLCSP - 81 balls, 4.02x4.27 mm, 0.4 mm pitch wafer level chip scale recommended footprint 'SDG 'VP %B:/&63B',(B)3B9 DS12288 Rev 1 203/232 229 Package information STM32G474xB STM32G474xC STM32G474xE Table 112. WLCSP81 recommended PCB design rules Dimension 6.2 Recommended values Pitch 0.4 mm Dpad 0,225 mm Dsm 0.290 mm typ. (depends on soldermask registration tolerance) Stencil opening 0.250 mm Stencil thickness 0.100 mm UFQFPN48 package information Figure 55. UFQFPN - 48 leads, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package outline 3LQLGHQWLILHU ODVHUPDUNLQJDUHD ' $ ( ( 7 GGG $ 6HDWLQJ SODQH E H 'HWDLO< ' ([SRVHGSDG DUHD < ' / &[ SLQFRUQHU ( 5W\S 'HWDLO= = $%B0(B9 1. Drawing is not to scale. 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life. 3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this back-side pad to PCB ground. 204/232 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE Package information Table 113. UFQFPN - 48 leads, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A 0.500 0.550 0.600 0.0197 0.0217 0.0236 A1 0.000 0.020 0.050 0.0000 0.0008 0.0020 D 6.900 7.000 7.100 0.2717 0.2756 0.2795 E 6.900 7.000 7.100 0.2717 0.2756 0.2795 D2 5.500 5.600 5.700 0.2165 0.2205 0.2244 E2 5.500 5.600 5.700 0.2165 0.2205 0.2244 L 0.300 0.400 0.500 0.0118 0.0157 0.0197 T - 0.152 - - 0.0060 - b 0.200 0.250 0.300 0.0079 0.0098 0.0118 e - 0.500 - - 0.0197 - ddd - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 56. UFQFPN - 48 leads, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package recommended footprint !"?&0?6 1. Dimensions are expressed in millimeters. DS12288 Rev 1 205/232 229 Package information STM32G474xB STM32G474xC STM32G474xE UFQFPN48 device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. The printed markings may differ depending on the supply chain. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 57. UFQFPN48, 7 x 7 mm, low-profile quad flat package top view example 3URGXFW LGHQWLILFDWLRQ 670* &(8 'DWHFRGH z tt 5HYLVLRQFRGH 3LQ LGHQWLILFDWLRQ % 069 1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. 206/232 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE LQFP48 package information Figure 58. LQFP - 48 pins, 7 x 7 mm low-profile quad flat package outline 3%!4).' 0,!.% # C ! ! ! MM '!5'% 0,!.% CCC # $ + ! $ , , $ 0). )$%.4)&)#!4)/. % % B % 6.3 Package information E "?-%?6 1. Drawing is not to scale. DS12288 Rev 1 207/232 229 Package information STM32G474xB STM32G474xC STM32G474xE Table 114. LQFP - 48 pins, 7 x 7 mm low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 8.800 9.000 9.200 0.3465 0.3543 0.3622 D1 6.800 7.000 7.200 0.2677 0.2756 0.2835 D3 - 5.500 - - 0.2165 - E 8.800 9.000 9.200 0.3465 0.3543 0.3622 E1 6.800 7.000 7.200 0.2677 0.2756 0.2835 E3 - 5.500 - - 0.2165 - e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0 3.5 7 0 3.5 7 ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. 208/232 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE Package information Figure 59. LQFP - 48 pins, 7 x 7 mm low-profile quad flat package recommended footprint AID 1. Dimensions are expressed in millimeters. DS12288 Rev 1 209/232 229 Package information STM32G474xB STM32G474xC STM32G474xE LQFP48 device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. The printed markings may differ depending on the supply chain. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 60. LQFP48, 7 x 7 mm, low-profile quad flat package top view example 3URGXFW LGHQWLILFDWLRQ 670* &(7 'DWHFRGH z tt 5HYLVLRQFRGH 3LQ LGHQWLILFDWLRQ % 069 1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. 210/232 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE LQFP64 package information Figure 61. LQFP - 64 pins, 10 x 10 mm low-profile quad flat package outline PP *$8*(3/$1( F $ $ 6($7,1*3/$1( & $ $ FFF & ' ' ' . / / 3,1 ,'(17,),&$7,21 ( ( E ( 6.4 Package information H :B0(B9 1. Drawing is not to scale. Table 115. LQFP - 64 pins, 10 x 10 mm low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D - 12.000 - - 0.4724 - D1 - 10.000 - - 0.3937 - D3 - 7.500 - - 0.2953 - E - 12.000 - - 0.4724 - E1 - 10.000 - - 0.3937 - DS12288 Rev 1 211/232 229 Package information STM32G474xB STM32G474xC STM32G474xE Table 115. LQFP - 64 pins, 10 x 10 mm low-profile quad flat package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max E3 - 7.500 - - 0.2953 - e - 0.500 - - 0.0197 - K 0 3.5 7 0 3.5 7 L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 62. LQFP - 64 pins, 10 x 10 mm low-profile quad flat package recommended footprint AIC 1. Dimensions are expressed in millimeters. 212/232 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE Package information LQFP64 device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. The printed markings may differ depending on the supply chain. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 63. LQFP64, 10 x 10 mm, low-profile quad flat package top view example 3URGXFW LGHQWLILFDWLRQ 670* 5(7 'DWHFRGH z tt 5HYLVLRQFRGH 3LQ LGHQWLILFDWLRQ % 069 1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. DS12288 Rev 1 213/232 229 Package information 6.5 STM32G474xB STM32G474xC STM32G474xE LQFP80 package information Figure 64. LQFP - 80 pins, 12 x 12 mm low-profile quad flat package outline C ! ! ! 3%!4).' 0,!.% # MM '!5'% 0,!.% # ! CCC , $ K , $ $ 0). )$%.4)&)#!4)/. % % % B E 8?-% 1. Drawing is not to scale. 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life. 3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this back-side pad to PCB ground. Table 116. LQFP - 80 pins, 12 x 12 mm low-profile quad flat package mechanical data inches(1) Millimeters Symbol 214/232 Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE Package information Table 116. LQFP - 80 pins, 12 x 12 mm low-profile quad flat package mechanical data (continued) inches(1) Millimeters Symbol Min Typ Max Min Typ Max D - 14.000 - - 0.5512 - D1 - 12.000 - - 0.4724 - D2 - 9.500 - - 0.3740 - E - 14.000 - - 0.5512 - E1 - 12.000 - - 0.4724 - E3 - 9.500 - - 0.3740 - e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - ccc - - 0.080 - - 0.0031 k 0.0 - 7.0 0.0 - 7.0 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 65. LQFP - 80 pins, 12 x 12 mm low-profile quad flat package recommended footprint 8?&0 1. Dimensions are expressed in millimeters. DS12288 Rev 1 215/232 229 Package information STM32G474xB STM32G474xC STM32G474xE LQFP80 device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. The printed markings may differ depending on the supply chain. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 66. LQFP80, 12 x 12 mm, low-profile quad flat package top view example 3URGXFW LGHQWLILFDWLRQ 670* 0(7 5HYLVLRQFRGH = 'DWHFRGH < :: 3LQ LGHQWLILFDWLRQ 069 1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. 216/232 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE TFBGA100 package information GGG & Figure 67. TFBGA - 100 balls, 8X8 mm, 0.8 mm pitch fine pitch ball grid array package outline 6($7,1* 3/$1( % $EDOO LQGH[ $EDOO DUHD LGHQWLILHU ' H $ $ $ & ) * ' ( $ % & ' ( ) * + . ( 6.6 Package information H $ %277209,(: E %$//6 HHH & $ % III & 7239,(: $4B0(B9 DS12288 Rev 1 217/232 229 Package information STM32G474xB STM32G474xC STM32G474xE Table 117. TFBGA - 100 balls, 8X8 mm, 0.8 mm pitch fine pitch ball grid array mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.100 - - 0.0433 A1 0.150 - - 0.0059 - - A2 - 0.760 - - 0.0299 - b 0.350 0.400 0.450 0.0138 0.0157 0.0177 D 7.850 8.000 8.150 0.3091 0.3150 0.3209 D1 - 7.200 - 0.2835 - E 7.850 8.000 8.150 0.3091 0.3150 0.3209 E1 - 7.200 - - 0.2835 - e - 0.800 - - 0.0315 - F - 0.400 - - 0.0157 - G - 0.400 - - 0.0157 - ddd - - 0.100 - - 0.0039 eee - - 0.150 - - 0.0059 fff - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 68. TFBGA - 100 balls, 8X8 mm, 0.8 mm pitch fine pitch ball grid array recommended footprint 'SDG 'VP %*$B:/&63B)7B9 Table 118. TFBGA100 recommended PCB design rules (0.8 mm pitch BGA) Dimension 218/232 Recommended values Pitch 0.8 Dpad 0.400 mm DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE Package information Table 118. TFBGA100 recommended PCB design rules (0.8 mm pitch BGA) Dimension Recommended values Dsm 0.470 mm typ. (depends on the soldermask registration tolerance) Stencil opening 0.400 mm Stencil thickness Between 0.100 mm and 0.125 mm Pad trace width 0.120 mm TFBGA100 device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. The printed markings may differ depending on the supply chain. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 69. TFBGA100 - 8 x 8 mm, low-profile quad flat package top view example 3URGXFW LGHQWLILFDWLRQ 670* 9(+ 5HYLVLRQFRGH $ 'DWHFRGH < :: 3LQ LGHQWLILFDWLRQ 069 1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. DS12288 Rev 1 219/232 229 Package information 6.7 STM32G474xB STM32G474xC STM32G474xE LQFP100 package information Figure 70. LQFP - 100 pins, 14 x 14 mm low-profile quad flat package outline MM C ! ! ! 3%!4).' 0,!.% # '!5'% 0,!.% $ ! + CCC # , $ , $ 0). )$%.4)&)#!4)/. % % % B E ,?-%?6 1. Drawing is not to scale. Table 119. LQPF - 100 pins, 14 x 14 mm low-profile quad flat package mechanical data inches(1) millimeters Symbol 220/232 Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 15.800 16.000 16.200 0.6220 0.6299 0.6378 D1 13.800 14.000 14.200 0.5433 0.5512 0.5591 D3 - 12.000 - - 0.4724 - E 15.800 16.000 16.200 0.6220 0.6299 0.6378 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE Package information Table 119. LQPF - 100 pins, 14 x 14 mm low-profile quad flat package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max E1 13.800 14.000 14.200 0.5433 0.5512 0.5591 E3 - 12.000 - - 0.4724 - e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0.0 3.5 7.0 0.0 3.5 7.0 ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 71. LQFP - 100 pins, 14 x 14 mm low-profile quad flat recommended footprint AIC 1. Dimensions are expressed in millimeters. DS12288 Rev 1 221/232 229 Package information STM32G474xB STM32G474xC STM32G474xE LQFP100 device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. The printed markings may differ depending on the supply chain. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 72. LQFP100 - 14 x 14 mm, low-profile quad flat package top view example 3URGXFW LGHQWLILFDWLRQ 670* 9(7 5HYLVLRQFRGH 5 'DWHFRGH < :: 3LQ LGHQWLILFDWLRQ 069 1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. 222/232 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE LQFP128 package information Figure 73. LQFP - 128 pins, 14 x 14 mm low-profile quad flat package outline 6($7,1* 3/$1( & F $ $ $ PP *$8*(3/$1( & $ FFF / ' N / ' ' ( ( ( E 6.8 Package information 3,1 ,'(17,),&$7,21 H 7&B0(B9 1. Drawing is not to scale. Table 120. LQFP - 128 pins, 14 x 14 mm low-profile quad flat package mechanical data Inches(1) Millimeters Symbol Min. Typ. Max. Min. Typ. Max. A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.130 0.180 0.230 0.0051 0.0071 0.0091 DS12288 Rev 1 223/232 229 Package information STM32G474xB STM32G474xC STM32G474xE Table 120. LQFP - 128 pins, 14 x 14 mm low-profile quad flat package mechanical data (continued) Inches(1) Millimeters Symbol Min. Typ. Max. Min. Typ. Max. c 0.090 - 0.200 0.0035 - 0.0079 D 15.800 16.000 16.200 0.6220 0.6299 0.6378 D1 13.800 14.000 14.200 0.5433 0.5512 0.5591 D3 - 12.400 - - 0.4882 - E 15.800 16.000 16.200 0.6220 0.6299 0.6378 E1 13.800 14.000 14.200 0.5433 0.5512 0.5591 E3 - 12.400 - - 0.4882 - e - 0.400 - - 0.0157 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0 3.5 7 0 3.5 7 ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. 224/232 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE Package information LQFP128 device marking The following figure gives an example of topside marking orientation versus pin 1 identifier location. The printed markings may differ depending on the supply chain. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 74. LQFP128 - 14 x 14 mm, low-profile quad flat package top view example 3URGXFW LGHQWLILFDWLRQ 670* 4(7 5HYLVLRQFRGH % 'DWHFRGH < :: 3LQ LGHQWLILFDWLRQ 069 1. Parts marked as ES or E or accompanied by an engineering sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. DS12288 Rev 1 225/232 229 Package information 6.9 STM32G474xB STM32G474xC STM32G474xE Thermal characteristics The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated using the following equation: TJ max = TA max + (PD max x JA) Where: * TA max is the maximum ambient temperature in C, * JA is the package junction-to-ambient thermal resistance, in C/W, * PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax), * PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip internal power. PI/O max represents the maximum power dissipation on output pins where: PI/O max = (VOL x IOL) + ((VDDIOx - VOH) x IOH), taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the application. Table 121. Package thermal characteristics Symbol JA 226/232 Parameter Value Thermal resistance junction-ambient LQFP128 - 14 x 14 mm 50.1 Thermal resistance junction-ambient LQFP100 - 14 x 14 mm 50.1 Thermal resistance junction-ambient LQFP80 - 12 x 12 mm TBD Thermal resistance junction-ambient LQFP64 - 10 x 10 mm 51.6 Thermal resistance junction-ambient LQFP48 - 7 x 7 mm 53.2 Thermal resistance junction-ambient TFBGA100 - 8 x 8 mm 30.8 Thermal resistance junction-ambient UFQFPN48 - 7 x 7 mm 25.7 Thermal resistance junction-ambient WLCSP81 - 4.02 X 4.27 mm 45 DS12288 Rev 1 Unit C/W STM32G474xB STM32G474xC STM32G474xE Package information Table 121. Package thermal characteristics (continued) Symbol JC JB 6.9.1 Parameter Value Thermal resistance junction-case LQFP128 - 14 x 14 mm 14.5 Thermal resistance junction-case LQFP100 - 14 x 14 mm 14.5 Thermal resistance junction-case LQFP80 - 12 x 12 mm TBD Thermal resistance junction-case LQFP64 - 10 x 10 mm 14.7 Thermal resistance junction-case LQFP48 - 7 x 7 mm 14.9 Thermal resistance junction-case TFBGA100 - 8 x 8 mm 13 Thermal resistance junction-case UFQFPN48 - 7 x 7 mm 1.5 Thermal resistance junction-case WLCSP81 - 4.02 X 4.27 mm 1.46 Thermal resistance junction-board LQFP128 - 14 x 14 mm 42.5 Thermal resistance junction-board LQFP100 - 14 x 14 mm 42.5 Thermal resistance junction-board LQFP80 - 12 x 12 mm TBD Thermal resistance junction-board LQFP64 - 10 x 10 mm 40.4 Thermal resistance junction-board LQFP48 - 7 x 7 mm 38.3 Thermal resistance junction-board TFBGA100 - 8 x 8 mm 13.42 Thermal resistance junction-board UFQFPN48 - 7 x 7 mm 13.6 Thermal resistance junction-board WLCSP81 - 4.02 X 4.27 mm 27.45 Unit C/W C/W Reference document JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org 6.9.2 Selecting the product temperature range When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in Section 7: Ordering information. DS12288 Rev 1 227/232 229 Package information STM32G474xB STM32G474xC STM32G474xE Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature. As applications do not commonly use the STM32G474xE at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range is best suited to the application. The following examples show how to calculate the temperature range needed for a given application. Example 1: High-performance application Assuming the following application conditions: Maximum ambient temperature TAmax = 82 C (measured according to JESD51-2), IDDmax = 50 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low level with IOL = 8 mA, VOL= 0.4 V and maximum 8 I/Os used at the same time in output at low level with IOL = 20 mA, VOL= 1.3 V PINTmax = 50 mA x 3.5 V= 175 mW PIOmax = 20 x 8 mA x 0.4 V + 8 x 20 mA x 1.3 V = 272 mW This gives: PINTmax = 175 mW and PIOmax = 272 mW: PDmax = 175 + 272 = 447 mW Using the values obtained in TJmax is calculated as follows: - For LQFP100, 42 C/W TJmax = 82 C + (42 C/W x 447 mW) = 82 C + 18.774 C = 100.774 C This is within the range of the suffix 6 version parts (-40 < TJ < 105 C) see Section 7: Ordering information. In this case, parts must be ordered at least with the temperature range suffix 6 (see Section 7: Ordering information). Note: With this given PDmax we can find the TAmax allowed for a given device temperature range (order code suffix 6 or 7). Suffix 6: TAmax = TJmax - (42C/W x 447 mW) = 105-18.774 = 86.226 C Suffix 3: TAmax = TJmax - (42C/W x 447 mW) = 130-18.774 = 111.226 C Example 2: High-temperature application Using the same rules, it is possible to address applications that run at high ambient temperatures with a low dissipation, as long as junction temperature TJ remains within the specified range. Assuming the following application conditions: Maximum ambient temperature TAmax = 100 C (measured according to JESD51-2), IDDmax = 20 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low level with IOL = 8 mA, VOL= 0.4 V PINTmax = 20 mA x 3.5 V= 70 mW PIOmax = 20 x 8 mA x 0.4 V = 64 mW This gives: PINTmax = 70 mW and PIOmax = 64 mW: PDmax = 70 + 64 = 134 mW Thus: PDmax = 134 mW 228/232 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE Package information Using the values obtained in TJmax is calculated as follows: - For LQFP100, 42 C/W TJmax = 100 C + (42 C/W x 134 mW) = 100 C + 5.628 C = 105.628 C This is above the range of the suffix 6 version parts (-40 < TJ < 105 C). In this case, parts must be ordered at least with the temperature range suffix 3 (see Section 7: Ordering information) unless we reduce the power dissipation in order to be able to use suffix 6 parts. DS12288 Rev 1 229/232 229 Ordering information 7 STM32G474xB STM32G474xC STM32G474xE Ordering information Table 122. Ordering information Example: STM32 G 474 V E T 6 x Device family STM32 = Arm-based 32-bit microcontroller Product type G = General-purpose Sub-family 474 = STM32G474xB/xC/xE Pin count C = 48 pins R = 64 pins M = 80 pins, 81 pins V = 100 pins Q = 128 pins Code size B = 128 Kbyte C = 256 Kbyte E = 512 Kbyte Package H = TFBGA T = LQFP U = UFQFPN Y = WLCSP Temperature range 6 = Industrial temperature range, - 40 to 85 C (105 C junction) 7 = Industrial temperature range, - 40 to 105 C (125 C junction) 3 = Industrial temperature range, - 40 to 125 C (130 C junction) Options xxx = programmed parts TR = tape and reel For a list of available options (memory, package, and so on) or for further information on any aspect of this device, contact the nearest ST sales office. 230/232 DS12288 Rev 1 STM32G474xB STM32G474xC STM32G474xE 8 Revision history Revision history Table 123. Document revision history Date Revision 08-May-2019 1 Changes Initial release. DS12288 Rev 1 231/232 231 STM32G474xB STM32G474xC STM32G474xE IMPORTANT NOTICE - PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. (c) 2019 STMicroelectronics - All rights reserved 232/232 DS12288 Rev 1