nRF24LU1+ Single Chip 2.4 GHz Transceiver with USB Microcontroller and Flash Memory Product Specification v1.1 Key Features * * * * * * * * * * * * * * * * * * * * * * * * * * nRF24L01+ compatible RF transceiver Worldwide 2.4 GHz ISM band operation Up to 2 Mbps on air data rate Enhanced ShockBurstTM hardware link layer Air compatible with nRF24LU1, nRF24LE1, nRF24L01+, nRF24L01, nRF2401A, nRF2402, nRF24E1 and nRF24E2 Low cost external 60 ppm 16 MHz crystal Full speed USB 2.0 compliant device controller Up to 12 Mbps USB transfer rate 2 control, 10 bulk/interrupt and 2 ISO endpoints Dedicated 512 bytes endpoint buffer RAM Software controlled pull-up resistor for D+ PLL for full-speed USB operation Voltage regulator, 4.0 to 5.25V supply range Enhanced 8-bit 8051 compatible microcontroller Drop-in compatibility with nRF24LU1 Reduced instruction cycle time 32-bit multiplication-division unit 16 or 32 kbytes of on-chip flash memory 2 kbytes of on-chip SRAM 6 general purpose digital input/output pins Hardware SPI slave and master, UART 3 16-bit timers/counters AES encryption/decryption co-processor Supports firmware upgrade over USB Supports FS2 hardware debugger Compact 32-pin 5x5mm QFN package Applications * * * * * * Compact USB dongles for wireless peripherals USB dongles for mouse, keyboards and remotes USB dongle 3-in-1 desktop bundles USB dongle for advanced media center remote controls USB dongle for game controllers Toys All rights reserved. Reproduction in whole or in part is prohibited without the prior written permission of the copyright holder. April 2010 nRF24LU1+ Product Specification Liability disclaimer Nordic Semiconductor ASA reserves the right to make changes without further notice to the product to improve reliability, function or design. Nordic Semiconductor ASA does not assume any liability arising out of the application or use of any product or circuits described herein. All application information is advisory and does not form part of the specification. Limiting values Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the specifications are not implied. Exposure to limiting values for extended periods may affect device reliability. Life support applications Nordic Semiconductor's products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Nordic Semiconductor ASA customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Nordic Semiconductor ASA for any damages resulting from such improper use or sale. Data sheet status Objective product specification This product specification contains target specifications for product development. Preliminary product specification This product specification contains preliminary data; supplementary data may be published from Nordic Semiconductor ASA later. Product specification This product specification contains final product specifications. Nordic Semiconductor ASA reserves the right to make changes at any time without notice in order to improve design and supply the best possible product. Contact details For your nearest dealer, please see www.nordicsemi.com Main office: Otto Nielsens veg 12 7004 Trondheim Phone: +47 72 89 89 00 Fax: +47 72 89 89 89 www.nordicsemi.com Revision 1.1 Page 2 of 187 nRF24LU1+ Product Specification Revision History Date April 2010 Version 1.1 Description Updated section 1.3 on page 11, caption name for Table 46. on page 87. Updated Figure 2. on page 13, Figure 16. on page 46, Figure 18. on page 48, section 1.3 on page 11, section 2.2 on page 15, Table 24. on page 65, Table 53. on page 90,section 7.7.3 on page 80 and Attention box. RoHS statement nRF24LU1+ where explicitly stated in this product specification meets the requirements of Directive 2002/ 95/EC of the European Parliament and of the Council on the Restriction of Hazardous Substances (RoHS). Complete hazardous substance reports as well as material composition reports for all active Nordic products can be found on our web site www.nordicsemi.com. Revision 1.1 Page 3 of 187 nRF24LU1+ Product Specification Contents 1 1.1 1.2 1.3 1.4 1.5 2 2.1 2.2 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5 2.2.6 2.2.7 2.2.8 3 4 5 5.1 5.2 5.3 5.4 5.5 5.6 6 6.1 6.2 6.3 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6 6.4 6.4.1 6.4.2 6.4.3 6.4.4 6.4.5 6.4.6 6.4.7 Introduction ............................................................................................... Prerequisites ........................................................................................ Writing conventions .............................................................................. Features ............................................................................................... Block diagram ...................................................................................... Typical system usage........................................................................... Pin Information.......................................................................................... Pin Assignments .................................................................................. Pin Functions ....................................................................................... Antenna pins.................................................................................... USB pins.......................................................................................... Power supply pins ........................................................................... PROG pin ........................................................................................ Reference current pins .................................................................... Port pins .......................................................................................... External RESET Pin ........................................................................ Crystal oscillator pins....................................................................... Absolute Maximum Ratings ..................................................................... Operating Conditions ............................................................................... Electrical Specifications........................................................................... Power consumption and timing characteristics .................................... RF transceiver characteristics ............................................................. USB interface ....................................................................................... Flash memory ...................................................................................... Crystal specifications ........................................................................... DC Electrical Characteristics................................................................ RF Transceiver .......................................................................................... Features ............................................................................................... Block diagram ...................................................................................... Functional description .......................................................................... Operational Modes .......................................................................... Air data rate ..................................................................................... RF channel frequency ..................................................................... Received Power Detector measurements ....................................... PA control ........................................................................................ RX/TX control .................................................................................. Enhanced ShockBurstTM ...................................................................... Features .......................................................................................... Enhanced ShockBurstTM overview .................................................. Enhanced ShockburstTM packet format ........................................... Automatic packet assembly ............................................................. Automatic packet disassembly ........................................................ Automatic packet transaction handling ............................................ Enhanced ShockBurstTM flowcharts............................................... Revision 1.1 Page 4 of 187 10 10 10 11 12 13 14 14 15 15 15 15 15 16 16 16 16 17 18 19 19 20 23 23 24 24 26 26 27 27 27 31 31 31 31 32 32 32 32 33 36 37 38 40 nRF24LU1+ Product Specification 6.4.8 MultiCeiverTM ................................................................................... 6.4.9 Enhanced ShockBurstTM timing ....................................................... 6.4.10 Enhanced ShockBurstTM transaction diagram ................................. 6.4.11 Compatibility with ShockBurstTM...................................................... 6.5 Data and control interface .................................................................... 6.5.1 SFR registers................................................................................... 6.5.2 SPI operation................................................................................... 6.5.3 Data FIFO........................................................................................ 6.5.4 Interrupt ........................................................................................... 6.6 Register map ........................................................................................ 6.6.1 Register map table .......................................................................... 7 USB Interface............................................................................................. 7.1 Features ............................................................................................... 7.2 Block diagram ...................................................................................... 7.3 Functional description .......................................................................... 7.4 Control endpoints ................................................................................. 7.4.1 Control endpoint 0 implementation .................................................. 7.4.2 Endpoint 0 registers ........................................................................ 7.4.3 Control transfer examples ............................................................... 7.5 Bulk/Interrupt endpoints ....................................................................... 7.5.1 Bulk/Interrupt endpoints implementation ......................................... 7.5.2 Bulk/Interrupt endpoints registers ................................................... 7.5.3 Bulk and interrupt endpoints initialization ........................................ 7.5.4 Data packet synchronization ........................................................... 7.5.5 Endpoint pairing............................................................................... 7.6 Isochronous endpoints ......................................................................... 7.6.1 Isochronous endpoints implementation ........................................... 7.6.2 Isochronous endpoints registers ..................................................... 7.6.3 ISO endpoints initialization .............................................................. 7.6.4 ISO transfers ................................................................................... 7.7 Memory configuration........................................................................... 7.7.1 On-chip memory map ...................................................................... 7.7.2 Setting ISO FIFO size..................................................................... 7.7.3 Setting Bulk OUT size ..................................................................... 7.7.4 Setting Bulk IN size ......................................................................... 7.8 The USB controller interrupts ............................................................... 7.8.1 Wakeup interrupt request ................................................................ 7.8.2 USB interrupt request ...................................................................... 7.8.3 USB interrupt vectors ...................................................................... 7.9 The USB controller registers ................................................................ 7.9.1 Bulk IN data buffers (inxbuf) ............................................................ 7.9.2 Bulk OUT data buffers (outxbuf) ...................................................... 7.9.3 Isochronous OUT endpoint data FIFO (out8dat) ............................. 7.9.4 Isochronous IN endpoint data FIFOs (in8dat) ................................ 7.9.5 Isochronous data bytes counter (out8bch/out8bcl) ......................... 7.9.6 Isochronous transfer error register (isoerr) ..................................... Revision 1.1 Page 5 of 187 43 45 48 52 53 53 54 55 56 57 57 63 63 64 65 69 69 69 70 72 72 72 73 74 75 75 75 76 76 76 77 77 78 79 79 80 80 80 83 83 83 84 84 84 84 84 nRF24LU1+ Product Specification 7.9.7 The zero byte count for ISO OUT endpoints (zbcout) .................... 85 7.9.8 Endpoints 0 to 5 IN interrupt request register (in_irq) ..................... 85 7.9.9 Endpoints 0 to 5 OUT interrupt request register (out_irq) .............. 85 7.9.10 The USB interrupt request register (usbirq) .................................... 85 7.9.11 Endpoint 0 to 5 IN interrupt enables (in_ien) .................................. 86 7.9.12 Endpoint 0 to 5 OUT interrupt enables (out_ien) ............................ 86 7.9.13 USB interrupt enable (usbien) ........................................................ 86 7.9.14 Endpoint 0 control and status register (ep0cs) ............................... 87 7.9.15 Endpoint 0 to 5 IN byte count registers (inxbc) ............................... 88 7.9.16 Endpoint 1 to 5 IN control and status registers (inxcs) ................... 88 7.9.17 Endpoint 0 to 5 OUT byte count registers (outxbc) ........................ 89 7.9.18 Endpoint 1 to 5 OUT control and status registers (outxcs) ............. 89 7.9.19 USB control and status register (usbcs) ......................................... 90 7.9.20 Data toggle control register (togctl) ................................................ 90 7.9.21 USB frame count low (usbframel/usbframeh) ................................. 91 7.9.22 Function address register (fnaddr) ................................................. 91 7.9.23 USB endpoint pairing register (usbpair) ......................................... 91 7.9.24 Endpoints 0 to 5 IN valid bits (Inbulkval) ........................................ 91 7.9.25 Endpoints 0 to 5 OUT valid bits (outbulkval) .................................. 92 7.9.26 Isochronous IN endpoint valid bits (inisoval) .................................. 92 7.9.27 Isochronous OUT endpoint valid bits (outisoval) ............................ 92 7.9.28 SETUP data buffer (setupbuf) ........................................................ 92 7.9.29 ISO OUT endpoint start address (out8addr) ................................... 92 7.9.30 ISO IN endpoint start address (in8addr) ......................................... 92 8 Encryption/Decryption Unit...................................................................... 93 8.1 Features ............................................................................................... 93 8.1.1 ECB - Electronic Code Book........................................................... 93 8.1.2 CBC - Cipher Block Chaining ......................................................... 93 8.1.3 CFB - Cipher FeedBack.................................................................. 94 8.1.4 OFB - Output FeedBack mode ....................................................... 94 8.1.5 CTR - Counter mode ...................................................................... 94 8.2 Functional description .......................................................................... 95 9 SPI master.................................................................................................. 98 9.1 Block diagram ...................................................................................... 98 9.2 Functional description .......................................................................... 98 9.3 SPI operation ....................................................................................... 99 10 SPI slave ................................................................................................... 100 10.1 Block diagram ..................................................................................... 100 10.2 Functional description ......................................................................... 100 10.3 SPI timing ............................................................................................ 101 11 Timer/Counters ......................................................................................... 102 11.1 Features .............................................................................................. 102 11.2 Block diagram ..................................................................................... 102 11.3 Functional description ......................................................................... 102 11.3.1 Timer 0 and Timer 1 ....................................................................... 102 11.3.2 Timer 2 ........................................................................................... 105 Revision 1.1 Page 6 of 187 nRF24LU1+ Product Specification 11.4 SFR registers ...................................................................................... 107 11.4.1 Timer/Counter control register - TCON .......................................... 107 11.4.2 Timer mode register - TMOD .......................................................... 108 11.4.3 Timer0 - TH0, TL0 ......................................................................... 108 11.4.4 Timer1 - TH1, TL1 ......................................................................... 108 11.4.5 Timer 2 control register - T2CON .................................................. 109 11.4.6 Timer 2 - TH2, TL2 ........................................................................ 109 11.4.7 Compare/Capture enable register - CCEN .................................... 110 11.4.8 Capture registers - CC1, CC2, CC3 .............................................. 110 11.4.9 Compare/Reload/Capture register - CRCH, CRCL ....................... 111 12 Serial Port (UART) .................................................................................... 112 12.1 Features .............................................................................................. 112 12.2 Block diagram ..................................................................................... 112 12.3 Functional description ......................................................................... 112 12.4 SFR registers ...................................................................................... 113 12.4.1 Serial Port 0 control register - S0CON ........................................... 113 12.4.2 Serial port 0 data buffer - S0BUF .................................................. 114 12.4.3 Serial port 0 reload register - S0RELH, S0RELL ........................... 114 12.4.4 Serial Port 0 baud rate select register - WDCON ........................... 114 13 Input/Output port (GPIO) ......................................................................... 115 13.1 Normal IO ............................................................................................ 115 13.2 Expanded IO ....................................................................................... 117 14 MCU ........................................................................................................... 118 14.1 Features .............................................................................................. 118 14.2 Block diagram ..................................................................................... 119 14.3 Arithmetic Logic Unit (ALU) ................................................................. 120 14.4 Instruction set summary ...................................................................... 120 14.5 Opcode map ........................................................................................ 124 15 Memory and I/O organization .................................................................. 126 15.1 Special function registers .................................................................... 127 15.1.1 Special function registers locations ................................................ 127 15.1.2 Special function registers reset values ........................................... 128 15.1.3 Accumulator - ACC ......................................................................... 130 15.1.4 B register - B .................................................................................. 130 15.1.5 Program Status Word register - PSW ............................................. 131 15.1.6 Stack Pointer - SP ......................................................................... 131 15.1.7 Data Pointer - DPH, DPL ............................................................... 131 15.1.8 Data Pointer 1 - DPH1, DPL1 ........................................................ 132 15.1.9 Data Pointer Select register - DPS ................................................ 132 16 Random Access Memory (RAM) ............................................................. 133 16.1 Cycle control ....................................................................................... 133 17 Flash Memory ........................................................................................... 134 17.1 Features .............................................................................................. 134 17.2 Block diagram ..................................................................................... 134 17.3 Functional description ......................................................................... 134 17.3.1 Flash memory configuration ........................................................... 134 Revision 1.1 Page 7 of 187 nRF24LU1+ Product Specification 17.3.2 InfoPage content ............................................................................ 136 17.3.3 Protected pages and data pages .................................................... 136 17.3.4 16 kB Flash memory size option .................................................... 137 17.3.5 Software compatibility with nRF24LU1 ........................................... 137 17.3.6 SFR registers for flash memory operations .................................... 138 17.4 Brown-out ............................................................................................ 138 17.5 Flash programming from the MCU ...................................................... 139 17.5.1 MCU write and erase of the MainBlock .......................................... 139 17.5.2 Hardware support for firmware upgrade ......................................... 140 17.6 Flash programming through USB ........................................................ 140 17.6.1 Flash Layout ................................................................................... 140 17.6.2 USB Protocol .................................................................................. 141 17.7 Flash programming through SPI ......................................................... 144 17.7.1 SPI commands ............................................................................... 144 17.7.2 Standalone programming requirements ......................................... 149 17.7.3 In circuit programming over SPI ..................................................... 152 17.7.4 SPI programming sequences ......................................................... 152 18 MDU - Multiply Divide Unit ...................................................................... 155 18.1 Features .............................................................................................. 155 18.2 Block diagram ..................................................................................... 155 18.3 Functional description ......................................................................... 155 18.4 SFR registers ...................................................................................... 155 18.4.1 Loading the MDx registers .............................................................. 156 18.4.2 Executing calculation ...................................................................... 157 18.4.3 Reading the result from the MDx registers ..................................... 157 18.4.4 Normalizing ..................................................................................... 157 18.4.5 Shifting ............................................................................................ 157 18.4.6 The mdef flag .................................................................................. 157 18.4.7 The mdov flag ................................................................................. 158 19 Watchdog and wakeup functions ........................................................... 159 19.1 Features .............................................................................................. 159 19.2 Block diagram ..................................................................................... 159 19.3 Functional description ......................................................................... 160 19.3.1 The Low Frequency Clock (CKLF) ................................................. 160 19.3.2 Tick calibration ................................................................................ 160 19.3.3 RTC wakeup timer .......................................................................... 160 19.3.4 Programmable GPIO wakeup function ........................................... 161 19.3.5 Watchdog ....................................................................................... 161 19.3.6 Programming interface to watchdog and wakeup functions ........... 161 20 Power management ................................................................................. 164 20.1 Features .............................................................................................. 164 20.2 Block diagram ..................................................................................... 164 20.3 Modes of operation ............................................................................. 165 20.4 Functional description ......................................................................... 166 20.4.1 Clock control - CLKCTL ................................................................ 166 20.4.2 Power down control - PWRDWN ................................................... 167 Revision 1.1 Page 8 of 187 nRF24LU1+ Product Specification 20.4.3 Reset result - RSTRES .................................................................. 167 20.4.4 Wakeup configuration register - WUCONF .................................... 167 20.4.5 Power control register - PCON ....................................................... 168 21 Power supply supervisor ........................................................................ 169 21.1 Features ............................................................................................. 169 21.2 Functional description ......................................................................... 169 21.2.1 Power-on reset ............................................................................... 169 21.2.2 Brown-out detection ........................................................................ 169 22 Interrupts .................................................................................................. 170 22.1 Features .............................................................................................. 170 22.2 Block diagram ..................................................................................... 170 22.3 Functional description ......................................................................... 171 22.4 SFR registers ...................................................................................... 171 22.4.1 Interrupt enable 0 register - IEN0 .................................................. 171 22.4.2 Interrupt enable 1 register - IEN1 .................................................. 172 22.4.3 Interrupt priority registers - IP0, IP1 ............................................... 172 22.4.4 Interrupt request control registers - IRCON ................................... 173 23 HW debugger support ............................................................................. 174 23.1 Features .............................................................................................. 174 23.2 Functional description ......................................................................... 174 24 Peripheral information ............................................................................. 175 24.1 Antenna output .................................................................................... 175 24.2 Crystal oscillator .................................................................................. 175 24.3 PCB layout and decoupling guidelines ................................................ 175 25 Application example ................................................................................ 177 25.1 Schematics .......................................................................................... 177 25.2 Layout ................................................................................................. 177 25.3 Bill Of Materials (BOM) ....................................................................... 178 26 Mechanical specifications ....................................................................... 179 27 Ordering information ............................................................................... 180 27.1 Package marking ................................................................................ 180 27.1.1 Abbreviations .................................................................................. 180 27.2 Product options ................................................................................... 181 27.2.1 RF silicon ........................................................................................ 181 27.2.2 Development tools .......................................................................... 181 28 Glossary of terms ..................................................................................... 182 Appendix A - (USB memory configurations) ......................................... 183 Configuration 1 .................................................................................... 183 Configuration 2 .................................................................................... 183 Configuration 3 .................................................................................... 184 Configuration 4 .................................................................................... 185 Appendix B - Configuration for compatibility with nRF24XX ............... 186 Revision 1.1 Page 9 of 187 nRF24LU1+ Product Specification 1 Introduction The nRF24LU1+ is a unique single chip solution for compact USB dongles. The internal nRF24L01+ 2.4 GHz RF transceiver supports a wide range of applications including PC peripherals, sports accessories and game peripherals. With an air data rate of 2 Mbps combined with full speed USB, supporting up to 12 Mbps, the nRF24LU1+ meets the stringent performance requirements of applications such as wireless mouse, game controllers and media center remote controls with displays. The nRF24LU1+ integrates: * * * * A nRF24L01+ 2.4 GHz RF transceiver A full speed USB 2.0 compliant device controller An 8-bit microcontroller 16 or 32 kbytes of flash memory All this is packaged on a compact 5x5mm package, low cost external BOM. With an internal voltage regulator that enables the chip to be powered directly from the USB bus, it does not require an external voltage regulator, saving cost and board space. With a fully integrated RF synthesizer and PLL for the USB no external loop filters, resonators or VCO varactor diodes are required. All that is needed is a low cost 60ppm 16 MHz crystal, matching circuitry and the antenna. The main benefits of nRF24LU1+ are: * * * * * 1.1 Very compact USB dongle Low cost external BOM No need for an external voltage regulator Single low cost 60ppm 16 MHz crystal Flash memory for firmware upgrades Prerequisites In order to fully understand the product specification, a good knowledge of electronic and software engineering is necessary. 1.2 Writing conventions This product specification follows a set of typographic rules that makes the document consistent and easy to read. The following writing conventions are used: * Commands, bit state conditions, and register names are written in Courier. * Pin names and pin signal conditions are written in Courier bold. * Cross references are underlined and highlighted in blue. Revision 1.1 Page 10 of 187 nRF24LU1+ Product Specification 1.3 Features Features of the nRF24LU1+ include: * * * * * * * Fast 8-bit MCU: X Intel MCS 51 compliant instruction set X Reduced instruction cycle time, up to 12x compared to legacy 8051 X 32 bit multiplication - division unit Memory: X 16 or 32 kbytes of on-chip flash memory with security features X 2 kbytes of on-chip RAM memory X Pre-programmed USB bootloader in the on-chip flash memory. 6 programmable digital input/output pins configurable as: X GPIO X SPI master X SPI slave X External interrupts X Timer inputs X Full duplex serial port X Debug interface High performance 2.4 GHz RF-transceiver X True single chip GFSK transceiver X Enhanced ShockBurstTM link layer support in HW: X Packet assembly/disassembly X Address and CRC computation X Auto ACK and retransmit X On the air data rate 250 kbps, 1 Mbps or 2 Mbps X Digital interface (SPI) speed 0-8 Mbps X 125 RF channel option, with 79 (2.402 GHz-2.480 GHz) channels within 2.400 - 2.4835 GHz X Short switching time enable frequency hopping X Fully RF compatible with nRF24LXX X RF compatible with nRF2401A, nRF2402, nRF24E1, nRF24E2 in 250 kbps and 1 Mbps mode AES encryption/decryption HW-block with 128 bits key length X ECB - Electronic Code Book mode X CBC - Cipher Block Chaining X CFB - Cipher FeedBack mode X OFB - Output FeedBack mode X CTR - Counter mode Full speed USB 2.0 compliant device controller supporting: X Data transfer rates up to 12 Mbit/s X Control, Interrupt, Bulk and ISO data transfer X Endpoint 0 for control X 5 input and 5 output Bulk/Interrupt endpoints X 1 input and 1 output iso-synchronous endpoints X Total 512 bytes of USB buffer endpoint memory sharable between endpoints X On-chip USB transceiver PHY X On-chip pull-up resistor on D+ line with software controlled disconnect Power management function: X Low power design supporting fully static stop/ standby/ suspend modes X Programmable MCU clock frequency from 64 kHz to 16 MHz X On-chip voltage regulators supporting low power mode (supplied from USB power) X Watchdog and wakeup functionality running in low power mode Revision 1.1 Page 11 of 187 nRF24LU1+ Product Specification * * * * 1.4 On-chip oscillator and PLL to obtain full speed USB operation and to reduce the need for external components On-chip power on reset generator and brown-out detector On-chip support for FS2 and nRFprobeTM HW debugger, supported by Keil development tools. Complete firmware platform available: X Hardware abstraction layer (HAL) Functions X USB library Functions X Standard and HID specific USB Requests and Descriptors X nRF24LU1+ Library functions X AES HAL X Application examples X Device Firmware Upgrade Block diagram USB FLASH 16/32 kbytes XOSC 16MHz SRAM 2 kbytes PLL 48MHz MEM-bus RTC IRAM 256 byte MCU 8051 Interrupt Control Voltage regulator Power on reset Watch dog Wakeup Slow clock bridge Enhanced ShockBurst SPI Master SFR-bus OCI SPI Master/Slave AES coprocessor Port Interface Figure 1. nRF24LU1+ block diagram To find more information on the block diagram, see Table 1. Revision 1.1 2.4GHz RF Transceiver Page 12 of 187 Power Management Brown-out Detector nRF24LU1+ Product Specification Name USB FLASH SRAM 2.4 GHz RF transceiver XOSC Enhanced ShockBurstTM IRAM MCU RTC, Watchdog and Wakeup SPI Master Interrupt control SPI master/slave AES co-processor Power management Brown-out detector Reference chapter 7 on page 63 chapter 17 on page 135 chapter 15 on page 127 chapter 6 on page 26 section 24.2 on page 176 section 6.4 on page 32 chapter 16 on page 134 chapter 14 on page 119 chapter 19 on page 160 chapter 9 on page 99 chapter 21 on page 170 chapter 9 on page 99 and chapter 10 on page 101 chapter 8 on page 94 chapter 20 on page 165 section 17.4 on page 139 Table 1. Block diagram cross references ESD Typical system usage USB Connector 1.5 nRF24LU1+ Xtal Figure 2. Typical system usage Revision 1.1 Page 13 of 187 Antenna Matching nRF24LU1+ Product Specification XC2 VSS DEC2 DEC1 VDD VSS IREF Pin Assignments XC1 32 31 30 29 28 27 26 25 VDD 1 24 VDD VBUS 2 23 VSS VDD 3 22 ANT2 D+ 4 21 ANT1 D- 5 20 VDD_PA VSS 6 19 VDD PROG 7 18 VSS RESET 8 17 VSS nRF24LU1+ QFN32 5X5 9 10 11 12 13 14 15 16 P0.1 VSS P0.2 P0.3 P0.4 P0.5 Exposed die pad P0.0 2.1 Pin Information VDD 2 Figure 3. nRF24LU1+ pin assignment (top view) for a QFN32 5x5 mm package. Revision 1.1 Page 14 of 187 nRF24LU1+ Product Specification 2.2 Pin Functions Pin 21, 22 5, 4 28, 29 Name ANT1, ANT2 D-, D+ DEC1, DEC2 25 10, 11, 13, 14, 15, 16 7 8 IREF P0.0 - P0.5 2 1, 3, 9, 19, 24, 27 20 6, 12, 17, 18, 23, 26, 30 32, 31 PROG RESET VBUS VDD VDD_PA VSS XC1, XC2 Exposed die pad Type RF Digital I/O Power Description Antenna connection USB data Positive Digital Supply output for de-coupling purposes Analog Input Reference current output. Digital I/O General purpose data Port 0, bit 0 - 5. See Table 99. on page 118 for alternative pin functions. Digital Input Enables SPI flash programming Digital Input Reset for microcontroller, active low Power Power USB power connection Alternative power supply pins. The VDD pins must always be connected and de-coupled externally. Power Output Power supply (+1.8V) to Power Amplifier Power Ground (0V) Analog Input Crystal connection Power/heat Not connected relief Table 2. nRF24LU1+ pin functions 2.2.1 Antenna pins ANT1 and ANT2 are connections for the external antenna (both receive and transmit). 2.2.2 USB pins D- and D+ are the connections to the USB data lines. External ESD protection is recommended. 2.2.3 Power supply pins VBUS and VSS are the power supply and ground pins. The nRF24LU1+ can operate from a single power supply. The nRF24LU1+ contains an on-chip regulator that produces +3.3V on the VDD pins, from the VBUS supply line (4.0 - 5.25 V). Alternatively, the VBUS pin can be left open and the VDD pins may be fed from an external 3.3V supply. In this case, the on-chip 3.3V regulator is switched off. Additional on-chip regulators produce voltages for internal analog and digital functions blocks. External decoupling capacitors are required on DEC1 and DEC2. VDD_PA is a 1.8V output that is used to switch on an external RF Power Amplifier. 2.2.4 PROG pin When set high this pin enables external SPI flash programming and Port 0 is configured as a slave SPI port. The PROG pin needs an external pull-down resistor. Revision 1.1 Page 15 of 187 nRF24LU1+ Product Specification 2.2.5 Reference current pins The IREF pin must be connected to an external resistor. 2.2.6 Port pins P0.0 - P0.5 are six general purpose I/O pins. Their functions are described in chapter 13 on page 116. 2.2.7 External RESET Pin A logic 0 on the RESET pin forces the nRF24LU1+ to a known start-up state. 2.2.8 Crystal oscillator pins XC1 and XC2 are connections to an external crystal. Revision 1.1 Page 16 of 187 nRF24LU1+ Product Specification 3 Absolute Maximum Ratings Maximum ratings are the extreme limits that you can expose the nRF24LU1+ to without permanently damaging it. Exposure to absolute maximum ratings for prolonged periods of time may affect device reliability. Operating conditions Supply voltages VBUS VSS VDD Input voltage VI Temperatures Operating Temperature Storage Temperature Minimum Maximum Units -0.3 -0.3 +5.75 0 +3.6 V V V -0.3 +3.6 V -40 -40 +85 +125 C C Table 3. Absolute maximum ratings Attention! Observe precaution for handling Electrostatic Sensitive Device. HBM (Human Body Model): Class 1C Revision 1.1 Page 17 of 187 nRF24LU1+ Product Specification 4 Operating Conditions Symbol Parameter (condition) VBUS Supply voltage VDD Alternative supply voltage TEMP Operating Temperature Notes Table 4. Operating conditions Revision 1.1 Page 18 of 187 Min. 4.0 3.05 -40 Typ. 5 3.27 +27 Max. Units 5.25 V 3.5 V +85 C nRF24LU1+ Product Specification 5 Electrical Specifications This section contains electrical and timing specifications. 5.1 Power consumption and timing characteristics Symbol IOP ISTANDBY IMCU16MPLL IMCU12MPLL IMCU8MPLL IMCU4MPLL IMCU1.6MPLL IMCU4MXO IMCU1.6MXO IMCU.32MXO IMCU64KXO Trst_act Tint_act Tact_stby ITX IRX Tstby2a Trst_radio IUSB Tusb_wh Tusb_wmcu Tusbact_susp Tplloff_on Tpllon_off a. b. c. d. Parameter (condition) Notes a Average supply current in operating mode b Supply current in standby mode MCU Running @ 16 MHz, generated from PLL Running @ 12 MHz, generated from PLL Running @ 8 MHz, generated from PLL Running @ 4 MHz, generated from PLL Running @ 1.6 MHz, generated from PLL Running @ 4 MHz, generated from XO Running @ 1.6 MHz, generated from XO Running @ 0.32 MHz, generated from XO Running @ 0.064 MHz MHz, generated from XO From RESET to MCU active From INTERRUPT to MCU active c MCU from active to standby RF Transceiver RF Transceiver TX current @0dBm output power RF Transceiver RX current @ 2 Mbps RF Transceiver RX current @ 1 Mbps c RF Transceiver from standby to active From RESET to RF Transceiver power down USB USB active current USB wakeup from host USB wakeup from MCU c USB from active to suspend PLL cd PLL from off to on time cd PLL from on to off time Min. Typ. 24 Max. Units mA 480 A 6.3 mA 5 mA 4 3 2 mA mA mA 2.4 1.75 1.1 mA mA mA 1 mA 2 300 32 ms s s 11.1 mA 13.3 12.9 130 50 mA mA s ms 500 300 32 mA s s s 250 32 s s 4.4 MCU running radio receive at 2 Mbps and USB transmit When MCU is in standby, USB is suspended and the RF Transceiver is in standby Measured from start of the software instruction which executes the change of mode, see also Table 15. Only possible when USB is in suspend mode Table 5. Power consumption and timing characteristics Revision 1.1 Page 19 of 187 nRF24LU1+ Product Specification 5.2 RF transceiver characteristics Symbol Parameter (condition) Notes Min. General RF conditions a fOP Operating frequency 2400 PLLres PLL Programming resolution fXTAL Crystal frequency Frequency deviation @ 250 kbps f250 f1M Frequency deviation @ 1 Mbps Frequency deviation @ 2 Mbps f2M b Air data rate 250 RGFSK c FCHANNEL 1M Non-overlapping channel spacing @ 250 kbps/1 Mbps) FCHANNEL 2M Non-overlapping channel spacing @ 2 Mbps Transmitter operation d PRF Maximum output power PRFC RF power control range 16 PRFCR RF power accuracy 20dB bandwidth for modulated carrier PBW2 (2 Mbps) 20dB bandwidth for modulated carrier PBW1 (1 Mbps) 20dB bandwidth for modulated carrier PBW250 (250 kbps) PRF1.2 1st Adjacent Channel Transmit Power 2 MHz (2 Mbps) PRF2.2 2nd Adjacent Channel Transmit Power 4 MHz (2 Mbps) PRF1.1 1st Adjacent Channel Transmit Power 1 MHz (1 Mbps) PRF2.1 2nd Adjacent Channel Transmit Power 2 MHz (1 Mbps) PRF1.250 1st Adjacent Channel Transmit Power 1 MHz (250 kbps) PRF2.250 2nd Adjacent Channel Transmit Power 2 MHz (250 kbps) Receiver operation RXMAX Maximum received signal at < 0.1% BER RXSENS Sensitivity (0.1% BER) @ 2 Mbps RXSENS Sensitivity (0.1% BER) @ 1 Mbps e RXSENS Sensitivity (0.1% BER) @ 250 kbps RX selectivity according to ETSI EN 300 440-1 V1.3.1 (2001-09) page 27 C/ICO C/I co-channel (2 Mbps) C/I1ST 1st ACS (Adjacent Channel Selectivity), C/I 2 MHz (2 Mbps) C/I2ND 2nd ACS, C/I 4 MHz (2 Mbps) Revision 1.1 Page 20 of 187 Typ. Max. Units 2525 1 MHz MHz MHz kHz kHz kHz kbps MHz 2 MHz 1 16 160 160 320 2000 0 18 1800 +4 20 4 2000 dBm dB dB kHz 950 1100 kHz 700 800 kHz -20 dBc -45 dBc -20 dBc -40 dBc -25 dBc -40 dBc 0 dBm -82 -85 -94 dBm dBm dBm 7 3 dBc dBc -17 dBc nRF24LU1+ Product Specification Symbol C/I3RD C/INth C/INth C/ICO C/I1ST C/I2ND C/I3RD C/INth C/INth C/ICO C/I1ST C/I2ND C/I3RD C/INth Parameter (condition) Notes rd 3 ACS, C/I 6 MHz (2 Mbps) Nth ACS, C/I fi > 12 MHz (2 Mbps) f Nth ACS, C/I fi > 36 MHz (2 Mbps) C/I co-channel (1 Mbps) st 1 ACS, C/I 1 MHz (1 Mbps) 2nd ACS, C/I 2 MHz (1 Mbps) 3rd ACS, C/I 3 MHz (1 Mbps) Nth ACS, C/I fi > 6 MHz (1 Mbps) Nth ACS, C/I fi > 25 MHz (1 Mbps) C/I co-channel (250 kbps) f st 1 ACS, C/I 1 MHz (250 kbps) 2nd ACS, C/I 2 MHz (250 kbps) 3rd ACS, C/I 3 MHz (250 kbps) Nth ACS, C/I fi > 6 MHz (250 kbps) Min. Typ. -21 -40 Max. Units dBc dBc -48 dBc 9 8 -20 -30 -40 dBc dBc dBc dBc dBc -47 dBc 12 -12 -33 -38 -50 dBc dBc dBc dBc dBc C/INth f -60 dBc Nth ACS, C/I fi > 25 MHz (250 kbps) RX selectivity with nRF24L01 equal modulation on interfering signal (Pin = -67dBm for wanted signal) C/ICO C/I co-channel (2 Mbps) (modulated 11 dBc carrier) C/I1ST 4 dBc 1st ACS (Adjacent Channel Selectivity), C/I 2 MHz (2 Mbps) C/I2ND -18 dBc 2nd ACS, C/I 4 MHz (2 Mbps) rd -24 dBc C/I3RD 3 ACS, C/I 6 MHz (2 Mbps) C/INth -40 dBc Nth ACS, C/I f > 12 MHz (2 Mbps) i C/INth C/ICO C/I1ST C/I2ND C/I3RD C/INth C/INth C/ICO C/I1ST C/I2ND C/I3RD C/INth C/INth -48 dBc 12 8 -21 -30 -40 dBc dBc dBc dBc dBc -50 dBc ACS, C/I 1 MHz (250 kbps) 2 ACS, C/I 2 MHz (250 kbps) 3rd ACS, C/I 3 MHz (250 kbps) Nth ACS, C/I fi > 6 MHz (250 kbps) 7 -12 -34 -39 -50 dBc dBc dBc dBc dBc Nth ACS, C/I fi > 25 MHz (250 kbps) -60 th N ACS, C/I fi > 36 MHz (2 Mbps) C/I co-channel (1 Mbps) 1st ACS, C/I 1 MHz (1 Mbps) 2 ACS, C/I 2 MHz (1 Mbps) 3rd ACS, C/I 3 MHz (1 Mbps) Nth ACS, C/I fi > 6 MHz (1 Mbps) nd Nth ACS, C/I fi > 25 MHz (1 Mbps) C/I co-channel (250 kbps) 1st nd RX intermodulation performance according to Bluetooth specification version 2.0, 4 2004, page 42 g P_IM(6) Input power of IM interferers at 6 and -42 @ 2 Mbps 12 MHz distance from wanted signal g -38 P_IM(8) Input power of IM interferers at 8 and @ 2Mbps 16 MHz distance from wanted signal Revision 1.1 Page 21 of 187 dBc th November dBm dBm nRF24LU1+ Product Specification Symbol P_IM(10) @ 2Mbps P_IM(3) @ 1Mbps P_IM(4) @ 1Mbps P_IM(5) @ 1Mbps P_IM(3) @ 250 kbps P_IM(4) @ 250 kbps P_IM(5) @ 250 kbps a. b. c. d. e. Parameter (condition) Input power of IM interferers at 10 and 20 MHz distance from wanted signal Input power of IM interferers at 3 and 6 MHz distance from wanted signal Input power of IM interferers at 4 and 8 MHz distance from wanted signal Input power of IM interferers at 5 and 10 MHz distance from wanted signal Input power of IM interferers at 3 and 6 MHz distance from wanted signal Input power of IM interferers at 4 and 8 MHz distance from wanted signal Input power of IM interferers at 5 and 10 MHz distance from wanted signal Notes g Min. Typ. -37 Max. Units dBm g -36 dBm g -36 dBm g -36 dBm g -36 dBm g -36 dBm g -36 dBm Usable band is determined by local regulations. Data rate in each burst on-air. The minimum channel spacing is 1 MHz. Antenna load impedance = 15 + j88. For 250 kpbs sensitivity, frequencies which are integer multiples of 16 MHz (2400, 2416 and so on,) sensitivity is reduced. f. Narrow Band (In Band) Blocking measurements: 0 to 40 MHz; 1 MHz step size For Interferer frequency offsets n*2*fxtal, blocking performance is degraded by approximately 5dB compared to adjacent figures. g. Wanted signal level at Pin = -64dBm. Two interferers with equal input power are used. The interferer closest in frequency is unmodulated, the other interferer is modulated equal with the wanted signal. The input power of interferers where the sensitivity equals BER = 0.1% is presented. Table 6. RF Transceiver specifications Revision 1.1 Page 22 of 187 nRF24LU1+ Product Specification 5.3 USB interface The USB interface electrical performance is compliant with the USB specification 2.0. Characteristic Electrical characteristics Input high voltage (driven) Input low voltage Differential input sensitivity Differential common mode range Symbol VIH VIL VDI VCM Single ended receiver threshold Single ended receiver hysteresis Output low voltage Output high voltage Differential output signal cross-point voltage Internal pull-up resistor (Standby mode) Internal pull-up resistor (Active mode) Termination voltage connected to RPU Output driver resistance (does not include the series resistance) Timing characteristics Driver rise time Driver fall time Rise/fall time matching Transceiver pad capacitance Conditions Min. Max 2.0 0.8 |(D+) - (D-)| Includes VDI range 0.2 0.8 VSE VSEH VOL VOH VCRS 0.8 RPU1 900 RPU2 VTRM ZDRV 1425 3.05 TFR TFF TFRFF CIN Typ. 2.5 2.0 0.3 3.6 2.0 1100 1575 2100 3090 3.5 V 20 20 111 20 ns ns % pF 0 2.8 1.3 CL=50pF CL=50pF TRF / TFF Pad to ground V V V V V mV V V V 200 Steady state drive Unit 15 4 4 90 Table 7. USB interface characteristics 5.4 Flash memory Characteristic Symbol Nendur Tret Endurance Data retention Conditions 25C Min. 1000 100 Typ. Max Table 8. Flash memory characteristics Name Flash memory MainBlock Flash InfoPage Flash page size Size 32768 512 512 Table 9. Flash memory and page size Revision 1.1 Page 23 of 187 Unit bytes bytes bytes Unit cycles years nRF24LU1+ Product Specification 5.5 Crystal specifications Symbol fNOM fTOL CL C0 ESR PD Parameter (condition) Nominal frequency (parallel resonant) Frequency tolerance Load capacitance Shunt capacitance Equivalent series resistance Drive level Notes Min. Typ. 16.000 Max. 60 16 7 100 100 ab 9 3 50 Units MHz ppm pF pF W a. Includes initial accuracy, stability over temperature, aging and frequency pulling due to incorrect load capacitance. b. Frequency regulations in certain regions set tighter requirements on frequency tolerance (for example Japan and South Korea max 50ppm). Table 10. Crystal specifications 5.6 DC Electrical Characteristics Symbol VBUS TEMP VDD IVDD Parameter (condition) Operating conditions Supply voltage Operating Temperature On-chip voltage regulators Output voltage External load current Notes a Min. Typ. Max. Units 4.0 -40 5.0 +27 5.25 +85 V C 3.05 3.27 3.5 2 V mA Typ. Max. VDD 0.3 VDD Units V V a. Also valid for VDD input voltage. Table 11. DC characteristics Symbol Parameter (condition) VIH HIGH level input voltage VIL LOW level input voltage Notes Min. 0.7 VDD VSS Table 12. Digital input pin Revision 1.1 Page 24 of 187 nRF24LU1+ Product Specification Symbol VOH VOL Parameter (condition) HIGH level output voltage (IOH= -1.0mA) LOW level output voltage (IOL= 1.0mA)) Notes a Min. VDD-0.3 VSS Typ. Max. VDD Units V 0.3 V a. When the nRF24LU1+ is supplied from VBUS, there is a limit (IVDD) on the current that can be drawn from VDD by external devices. Current sourced by high outputs are supplied to external devices for this purpose. Table 13. Digital output pin Revision 1.1 Page 25 of 187 nRF24LU1+ Product Specification 6 RF Transceiver The nRF24LU1+ uses the same 2.4 GHz GFSK RF transceiver with embedded protocol engine (Enhanced ShockBurstTM) that is found in the nRF24L01+ single chip RF Transceiver and in the nRF24LE1 on-chip solution. The RF Transceiver is designed for operation in the world wide ISM frequency band at 2.400 - 2.4835 GHz and is very well suited for ultra low power wireless applications. The RF Transceiver module is configured and operated through the RF transceiver map. This register map is accessed by the MCU through a dedicated on-chip Serial Peripheral interface (SPI) and is available in all power modes of the RF Transceiver module. The embedded protocol engine (Enhanced ShockBurstTM) enables data packet communication and supports various modes from manual operation to advanced autonomous protocol operation. Data FIFOs in the RF Transceiver module ensure a smooth data flow between the RF Transceiver module and the nRF24LU1+ MCU. The rest of this chapter is written in the context of the RF Transceiver module as the core and the rest of the nRF24LU1+ as external circuitry to this module. 6.1 Features Features of the RF Transceiver include: * * * * * * General X Worldwide 2.4GHz ISM band operation X Common antenna interface in transmit and receive X GFSK modulation X 250 kbps, 1 and 2Mbps on air data rate Transmitter X Programmable output power: 0, -6, -12 or -18dBm X 11.1mA at 0dBm output power Receiver X Integrated channel filters X 13.3mA at 2 Mbps X -82dBm sensitivity at 2 Mbps X -85dBm sensitivity at 1 Mbps X -94dBm sensitivity at 250 kbps RF Synthesizer X Fully integrated synthesizer X 1 MHz frequency programming resolution X Accepts low cost 60ppm 16 MHz crystal X 1 MHz non-overlapping channel spacing at 1 Mbps X 2 MHz non-overlapping channel spacing at 2 Mbps Enhanced ShockBurstTM X 1 to 32 bytes dynamic payload length X Automatic packet handling (assembly/disassembly) X Automatic packet transaction handling (auto ACK, auto retransmit) 6 data pipe MultiCeiverTM for 6:1 star networks Revision 1.1 Page 26 of 187 nRF24LU1+ Product Specification 6.2 Block diagram RF Transmitter TX Filter PA RFCON.rfce Baseband RFCON.rfcsn TX FIFOs GFSK Modulator SPI SPI (Slave) (Master) Enhanced ShockBurst Baseband Engine RF Receiver RX Filter LNA ANT2 GFSK Demodulator RX FIFOs RF Synthesiser Power Management Register map RFIRQ ANT1 Radio Control RFCON.rfcken XOSC16M Figure 4. RF Transceiver block diagram 6.3 Functional description This section describes the different operating modes of the RF Transceiver and the parameters used to control it. The RF Transceiver module has a built-in state machine that controls the transitions between the different operating modes. The state machine is controlled by SFR register RFCON and RF transceiver register CONFIG, see section 6.5 for details. 6.3.1 Operational Modes You can configure the RF Transceiver to power down, standby, RX and TX mode. This section describes these modes in detail. 6.3.1.1 State diagram The state diagram (Figure 5.) shows the operating modes of the RF Transceiver and how they function. At the end of the reset sequence the RF Transceiver enters Power Down mode. When the RF Transceiver enters Power Down mode the MCU can still control the module through the SPI and the rfcsn bit in the RFCON register. There are three types of distinct states highlighted in the state diagram: * * * Recommended operating mode: is a recommended state used during normal operation. Possible operating mode: is a possible operating state, but is not used during normal operation. Transition state: is a time limited state used during start up of the oscillator and settling of the PLL. Revision 1.1 Page 27 of 187 nRF24LU1+ Product Specification . Legend: Undefined Undefined Undefined Recommended operating mode Power on reset 50ms Possible operating mode Transition state Recommended path between operating modes Power Down Possible path between operating modes CE = 1 Pin signal condition PWR_DN = 1 Bit state condition TX FIFO empty PWR_UP=0 PWR_UP = 1 Start up time is 150s System information PWR_UP=0 PWR_UP = 0 PRIM_RX = 0 TX FIFO empty rfce = 1 Standby-I PWR_UP = 0 rfce = 0 RX Settling 130 us PRIM_RX = 1 rfce = 1 Standby-II TX FIFO not empty PRIM_RX = 0 rfce = 1 for more than 10s TX finished with one packet rfce = 0 rfce = 0 TX FIFO not empty rfce = 1 TX Settling 130 us RX Mode TX FIFO empty rfce = 1 PWR_UP=0 TX Mode PWR_UP = 0 rfce = 1 TX FIFO not empty Figure 5. Radio control state diagram 6.3.1.2 Power down mode In power down mode the RF Transceiver is disabled with minimal current consumption. All the register values available from the SPI are maintained and the SPI can be activated. For start up times see Table 15. Power down mode is entered by setting the PWR_UP bit in the CONFIG register low. 6.3.1.3 Standby modes Standby-I mode By setting the PWR_UP bit in the CONFIG register to 1, the RF Transceiver enters standby-I mode. StandbyI mode is used to minimize average current consumption while maintaining short start up times. Change to the active mode only happens if the rfce bit is enabled and when it is not enabled, the RF Transceiver returns to standby-I mode from both the TX and RX modes. Revision 1.1 Page 28 of 187 nRF24LU1+ Product Specification Standby-II mode In standby-II mode extra clock buffers are active and more current is used compared to standby-I mode. The RF Transceiver enters standby-II mode if the rfce bit is held high on a PTX operation with an empty TX FIFO. If a new packet is downloaded to the TX FIFO, the PLL immediately starts and the packet is transmitted after the normal PLL settling delay (130s). The register values are maintained and the SPI can be activated during both standby modes. For start up times see Table 15. 6.3.1.4 RX mode The RX mode is an active mode where the RF Transceiver is used as a receiver. To enter this mode, the RF Transceiver must have the PWR_UP bit, PRIM_RX bit and the rfce bit is set high. In RX mode the receiver demodulates the signals from the RF channel, constantly presenting the demodulated data to the baseband protocol engine. The baseband protocol engine constantly searches for a valid packet. If a valid packet is found (by a matching address and a valid CRC) the payload of the packet is presented in a vacant slot in the RX FIFOs. If the RX FIFOs are full, the received packet is discarded. The RF Transceiver remains in RX mode until the MCU configures it to standby-I mode or power down mode. However, if the automatic protocol features (Enhanced ShockBurstTM) in the baseband protocol engine are enabled, the RF Transceiver can enter other modes in order to execute the protocol. In RX mode a Received Power Detector (RPD) signal is available. The RPD is a signal that is set high when a RF signal higher than -64dBm is detected inside the receiving frequency channel. The internal RPD signal is filtered before presented to the RPD register. The RF signal must be present for at least 40s before the RPD is set high. How to use the RPD is described in Section 6.3.4 on page 31. 6.3.1.5 TX mode The TX mode is an active mode for transmitting packets. To enter this mode, the RF Transceiver must have the PWR_UP bit set high, PRIM_RX bit set low, a payload in the TX FIFO and a high pulse on the rfce bit for more than 10s. The RF Transceiver stays in TX mode until it finishes transmitting a packet. If rfce = 0, RF Transceiver returns to standby-I mode. If rfce = 1, the status of the TX FIFO determines the next action. If the TX FIFO is not empty the RF Transceiver remains in TX mode and transmits the next packet. If the TX FIFO is empty the RF Transceiver goes into standby-II mode. The RF Transceiver transmitter PLL operates in open loop when in TX mode. It is important never to keep the RF Transceiver in TX mode for more than 4ms at a time. If the Enhanced ShockBurstTM features are enabled, RF Transceiver is never in TX mode longer than 4ms. Revision 1.1 Page 29 of 187 nRF24LU1+ Product Specification 6.3.1.6 Operational modes configuration The following table (Table 14.) describes how to configure the operational modes. RX mode TX mode PWR_UP register 1 1 PRIM_RX register 1 0 TX mode 1 0 Standby-II Standby-I Power Down 1 1 0 0 - Mode FIFO state rfce 1 1 Data in TX FIFO. Will empty all levels in TX FIFOa. Minimum 10s Data in TX FIFO.Will empty one high pulse level in TX FIFOb. 1 TX FIFO empty 0 No ongoing packet transmission - a. If the rfce bit is held high the TX FIFO is emptied and all necessary ACK and possible retransmits are carried out. The transmission continues as long as the TX FIFO is refilled. If the TX FIFO is empty when the rfce bit is still high, the RF Transceiver enters standby-II mode. In this mode the transmission of a packet is started as soon as the rfcsn is set high after an upload (UL) of a packet to TX FIFO. b. This operating mode pulses the rfce bit high for at least 10s. This allows one packet to transmit. This is the normal operating mode. After the packet is transmitted, the RF Transceiver enters standby-I mode. Table 14. RF Transceiver main modes 6.3.1.7 Timing information The timing information in this section relates to the transitions between modes and the timing for the rfce bit. The transition from TX mode to RX mode or vice versa is the same as the transition from the standby modes to TX mode or RX mode (130s), as described in Table 15. Name Tpd2stby Tstby2a Thce Tpece2csn RF Transceiver Power Down I Standby mode Standby modes I TX/RX mode Minimum rfce high Delay from rfce pos. edge to rfcsn low Max. 150s 130s Min. Comments 10s 4s Table 15. Operational timing of RF Transceiver Note: If VDD is turned off, the register values are lost and you must reconfigure the RF Transceiver before entering the TX or RX modes. Revision 1.1 Page 30 of 187 nRF24LU1+ Product Specification 6.3.2 Air data rate The air data rate is the modulated signaling rate the RF Transceiver uses when transmitting and receiving data. It can be 250 kbps, 1 Mbps or 2 Mbps. Using lower air data rate gives better receiver sensitivity than higher air data rate. But, high air data rate gives lower average current consumption and reduced probability of on-air collisions. The air data rate is set by the RF_DR bit in the RF_SETUP register. A transmitter and a receiver must be programmed with the same air data rate to communicate with each other. The RF Transceiver is fully compatible with nRF24L01. For compatibility with nRF2401A, nRF2402, nRF24E1, and nRF24E2 the air data rate must be set to 250 kbps or 1 Mbps. 6.3.3 RF channel frequency The RF channel frequency determines the center of the channel used by the RF Transceiver. The channel occupies a bandwidth of less than 1 MHz at 250 kbps and 1 Mbps and a bandwidth of less than 2 MHz at 2 Mbps. The RF Transceiver can operate on frequencies from 2.400 GHz to 2.525 GHz. The programming resolution of the RF channel frequency setting is 1 MHz. At 2 Mbps the channel occupies a bandwidth wider than the resolution of the RF channel frequency setting. To ensure non-overlapping channels in 2 Mbps mode, the channel spacing must be 2 MHz or more. At 1 Mbps and 250 kbps the channel bandwidth is the same or lower than the resolution of the RF frequency. The RF channel frequency is set by the RF_CH register according to the following formula: F0= 2400 + RF_CH MHz You must program a transmitter and a receiver with the same RF channel frequency to communicate with each other. 6.3.4 Received Power Detector measurements Received Power Detector (RPD), located in register 09, bit 0, triggers at received power levels above -64dBm that are present in the RF channel you receive on. If the received power is less than -64dBm, RDP = 0. The RPD can be read out at any time while the RF Transceiver is in receive mode. This offers a snapshot of the current received power level in the channel. The RPD is latched whenever a packet is received or when the MCU sets rfce low The status of RPD is correct when RX mode is enabled and after a wait time of Tstby2a +Tdelay_AGC= 130 s + 40 s. The RX gain varies over temperature which means that the RPD threshold also varies over temperature. The RPD threshold value is reduced by - 5dB at T = -40C and increased by + 5dB at 85C. 6.3.5 PA control The PA (Power Amplifier) control is used to set the output power from the RF Transceiver power amplifier. In TX mode PA control has four programmable steps, see Table 16. Revision 1.1 Page 31 of 187 nRF24LU1+ Product Specification The PA control is set by the RF_PWR bits in the RF_SETUP register. SPI RF-SETUP RF output power (RF_PWR) 11 0dBm 10 -6dBm 01 -12dBm 00 -18dBm DC current consumption 11.1mA 8.8mA 7.3 6.8mA Conditions: VDD = 3.0V, VSS = 0V, TA = 27C, Load impedance = 15+j88. Table 16. RF output power setting for the RF Transceiver 6.3.6 RX/TX control The RX/TX control is set by PRIM_RX bit in the CONFIG register and sets the RF Transceiver in transmit/ receive. 6.4 Enhanced ShockBurstTM Enhanced ShockBurstTM is a packet based data link layer that features automatic packet assembly and timing, automatic acknowledgement and retransmissions of packets. Enhanced ShockBurstTM enables the implementation of ultra low power and high performance communication. The Enhanced ShockBurstTM features enable significant improvements of power efficiency for bi-directional and uni-directional systems, without adding complexity on the host controller side. 6.4.1 Features The main features of Enhanced ShockBurstTM are: * * * * 6.4.2 1 to 32 bytes dynamic payload length Automatic packet handling Auto packet transaction handling X Auto Acknowledgement X Auto retransmit 6 data pipe MultiCeiverTM for 1:6 star networks Enhanced ShockBurstTM overview Enhanced ShockBurstTM uses ShockBurstTM for automatic packet handling and timing. During transmit, ShockBurstTM assembles the packet and clocks the bits in the data packet for transmission. During receive, ShockBurstTM constantly searches for a valid address in the demodulated signal. When ShockBurstTM finds a valid address, it processes the rest of the packet and validates it by CRC. If the packet is valid the payload is moved into a vacant slot in the RX FIFOs. All high speed bit handling and timing is controlled by ShockBurstTM. Enhanced ShockBurstTM features automatic packet transaction handling for the easy implementation of a reliable bi-directional data link. An Enhanced ShockBurstTM packet transaction is a packet exchange between two transceivers, with one transceiver acting as the Primary Receiver (PRX) and the other transceiver acting as the Primary Transmitter (PTX). An Enhanced ShockBurstTM packet transaction is always initiated by a packet transmission from the PTX, the transaction is complete when the PTX has received an Revision 1.1 Page 32 of 187 nRF24LU1+ Product Specification acknowledgment packet (ACK packet) from the PRX. The PRX can attach user data to the ACK packet enabling a bi-directional data link. The automatic packet transaction handling works as follows: 1. You begin the transaction by transmitting a data packet from the PTX to the PRX. Enhanced ShockBurstTM automatically sets the PTX in receive mode to wait for the ACK packet. If the packet is received by the PRX, Enhanced ShockBurstTM automatically assembles and transmits an acknowledgment packet (ACK packet) to the PTX before returning to receive mode. If the PTX does not receive the ACK packet immediately, Enhanced ShockBurstTM automatically retransmits the original data packet after a programmable delay and sets the PTX in receive mode to wait for the ACK packet. 2. 3. In Enhanced ShockBurstTM it is possible to configure parameters such as the maximum number of retransmits and the delay from one transmission to the next retransmission. All automatic handling is done without the involvement of the MCU. 6.4.3 Enhanced ShockburstTM packet format The format of the Enhanced ShockBurstTM packet is described in this section. The Enhanced ShockBurstTM packet contains a preamble field, address field, packet control field, payload field and a CRC field. Figure 6. shows the packet format with MSB to the left. P re a m b le 1 b y te A d d re s s 3 -5 b y te P a c k e t C o n tro l F ie ld 9 b it P a y lo a d 0 - 3 2 b y te C R C 1 -2 b y te Figure 6. An Enhanced ShockBurstTM packet with payload (0-32 bytes) 6.4.3.1 Preamble The preamble is a bit sequence used to synchronize the receivers demodulator to the incoming bit stream. The preamble is one byte long and is either 01010101 or 10101010. If the first bit in the address is 1 the preamble is automatically set to 10101010 and if the first bit is 0 the preamble is automatically set to 01010101. This is done to ensure there are enough transitions in the preamble to stabilize the receiver. 6.4.3.2 Address This is the address for the receiver. An address ensures that the correct packet is detected by the receiver. The address field can be configured to be 3, 4 or, 5 bytes long with the AW register. Note: Addresses where the level shifts only one time (that is, 000FFFFFFF) can often be detected in noise and can give a false detection, which may give a raised Packet-Error-Rate. Addresses as a continuation of the preamble (hi-low toggling) raises the Packet-Error-Rate. Revision 1.1 Page 33 of 187 nRF24LU1+ Product Specification 6.4.3.3 Packet Control Field Figure 7. shows the format of the 9-bit packet control field, MSB to the left. Payload length 6bit PID 2bit NO_ACK 1bit Figure 7. Packet control field The packet control field contains a 6-bit payload length field, a 2-bit PID (Packet Identity) field and a 1-bit NO_ACK flag. Payload length This 6-bit field specifies the length of the payload in bytes. The length of the payload can be from 0 to 32 bytes. Coding: 000000 = 0 byte (only used in empty ACK packets.) 100000 = 32 byte, 100001 = Don't care. This field is only used if the Dynamic Payload Length function is enabled. PID (Packet identification) The 2-bit PID field is used to detect if the received packet is new or retransmitted. PID prevents the PRX operation from presenting the same payload more than once to the MCU. The PID field is incremented at the TX side for each new packet received through the SPI. The PID and CRC fields (see section 6.4.3.5 on page 35) are used by the PRX operation to determine if a packet is retransmitted or new. When several data packets are lost on the link, the PID fields may become equal to the last received PID. If a packet has the same PID as the previous packet, the RF Transceiver compares the CRC sums from both packets. If the CRC sums are also equal, the last received packet is considered a copy of the previously received packet and discarded. No Acknowledgment flag (NO_ACK) The Selective Auto Acknowledgement feature controls the NO_ACK flag. This flag is only used when the auto acknowledgement feature is used. Setting the flag high, tells the receiver that the packet is not to be auto acknowledged. 6.4.3.4 Payload The payload is the user defined content of the packet. It can be 0 to 32 bytes wide and is transmitted on-air when it is uploaded (unmodified) to the device. Enhanced ShockBurstTM provides two alternatives for handling payload lengths; static and dynamic. The default is static payload length. With static payload length all packets between a transmitter and a receiver have the same length. Static payload length is set by the RX_PW_Px registers on the receiver side. The payload length on the transmitter side is set by the number of bytes clocked into the TX_FIFO and must equal the value in the RX_PW_Px register on the receiver side. Revision 1.1 Page 34 of 187 nRF24LU1+ Product Specification Dynamic Payload Length (DPL) is an alternative to static payload length. DPL enables the transmitter to send packets with variable payload length to the receiver. This means that for a system with different payload lengths it is not necessary to scale the packet length to the longest payload. With the DPL feature the nRF24L01+ can decode the payload length of the received packet automatically instead of using the RX_PW_Px registers. The MCU can read the length of the received payload by using the R_RX_PL_WID command. Note: Always check if the packet width reported is 32 bytes or shorter when using the R_RX_PL_WID command. If its width is longer than 32 bytes then the packet contains errors and must be discarded. Discard the packet by using the Flush_RX command. In order to enable DPL the EN_DPL bit in the FEATURE register must be enabled. In RX mode the DYNPD register must be set. A PTX that transmits to a PRX with DPL enabled must have the DPL_P0 bit in DYNPD set. 6.4.3.5 CRC (Cyclic Redundancy Check) The CRC is the error detection mechanism in the packet. It may either be 1 or 2 bytes and is calculated over the address, Packet Control Field and Payload. The polynomial for 1 byte CRC is X8 + X2 + X + 1. Initial value 0xFF. The polynomial for 2 byte CRC is X16+ X12 + X5 + 1. Initial value 0xFFFF. No packet is accepted by Enhanced ShockBurstTM if the CRC fails. Revision 1.1 Page 35 of 187 nRF24LU1+ Product Specification 6.4.4 Automatic packet assembly The automatic packet assembly assembles the preamble, address, packet control field, payload and CRC to make a complete packet before it is transmitted. Start: Collect Address from TX_ADDR register TX_ADDR MSB =1 No Yes Add preamble 0x55 Add preamble 0xAA EN_DPL=1 Yes PCF[8:3]= #bytes in upper level of TX_FIFO New data in TX_FIFO No No REUSE_TX_PL active Yes Yes PCF[2:1]++ No SPI TX command W_TX_PAYLOAD_NOACK W_TX_PAYLOAD PCF[0]=0 PCF[0]=1 Collect Payload from TX_FIFO EN_CRC = 1 Yes No CRCO = 1 Yes Calculate and add 2 Byte CRC based on Address, PCF and Payload No Calculate and add 1 Byte CRC based on Address, PCF and Payload STOP Figure 8. Automatic packet assembly Revision 1.1 Page 36 of 187 nRF24LU1+ Product Specification 6.4.5 Automatic packet disassembly After the packet is validated, Enhanced ShockBurstTM disassembles the packet and loads the payload into the RX FIFO, and asserts the RX_DR IRQ. Start Read Address width from SETUP_AW No Monitor SETUP_AW wide window of received bit stream Received window = RX_ADDR_Px Yes PCF = 9 first bits received after valid address No EN_DPL=1 No Yes Payload = PCF[8:3] bytes from received bit stream Payload = RX_PW_Px bytes from received bit stream No CRCO = 1 Yes TX_CRC = 2 Bytes from received bit stream TX_CRC = 1 Byte from received bit stream RX_CRC = 2 Byte CRC calculated from received Address, PCF and Payload RX_CRC = 1 Byte CRC calculated from received Address, PCF and Payload TX_CRC = RX_CRC No Yes PCF[2:1] Changed from last packet CRC Changed from last packet No Yes New packet received Reject the duplicate received packet STOP Figure 9. Automatic packet disassembly Revision 1.1 Page 37 of 187 nRF24LU1+ Product Specification 6.4.6 Automatic packet transaction handling Enhanced ShockBurstTM features two functions for automatic packet transaction handling; auto acknowledgement and auto re-transmit. 6.4.6.1 Auto Acknowledgement Auto acknowledgment is a function that automatically transmits an ACK packet to the PTX after it has received and validated a packet. The auto acknowledgement function reduces the load of the system MCU and reduces average current consumption. The Auto Acknowledgement feature is enabled by setting the EN_AA register. Note: If the received packet has the NO_ACK flag set, auto acknowledgement is not executed. An ACK packet can contain an optional payload from PRX to PTX. In order to use this feature, the Dynamic Payload Length (DPL) feature must be enabled. The MCU on the PRX side has to upload the payload by clocking it into the TX FIFO by using the W_ACK_PAYLOAD command. The payload is pending in the TX FIFO (PRX) until a new packet is received from the PTX. The RF Transceiver can have three ACK packet payloads pending in the TX FIFO (PRX) at the same time. RX Pipe address ACK generator Address decoder and buffer controller TX FIFO Payload 3 Payload 2 Payload 1 TX Pipe address SPI Module From MCU Figure 10. TX FIFO (PRX) with pending payloads Figure 10. shows how the TX FIFO (PRX) is operated when handling pending ACK packet payloads. From the MCU the payload is clocked in with the W_ACK_PAYLOAD command. The address decoder and buffer controller ensure that the payload is stored in a vacant slot in the TX FIFO (PRX). When a packet is received, the address decoder and buffer controller are notified with the PTX address. This ensures that the right payload is presented to the ACK generator. If the TX FIFO (PRX) contains more than one payload to a PTX, payloads are handled using the first in - first out principle. The TX FIFO (PRX) is blocked if all pending payloads are addressed to a PTX where the link is lost. In this case, the MCU can flush the TX FIFO (PRX) by using the FLUSH_TX command. In order to enable Auto Acknowledgement with payload the EN_ACK_PAY bit in the FEATURE register must be set. 6.4.6.2 Auto Retransmission (ART) The auto retransmission is a function that retransmits a packet if an ACK packet is not received. It is used in an auto acknowledgement system on the PTX. When a packet is not acknowledged, you can set the number of times it is allowed to retransmit by setting the ARC bits in the SETUP_RETR register. PTX enters RX mode and waits a time period for an ACK packet each time a packet is transmitted. The amount of time the PTX is in RX mode is based on the following conditions: Revision 1.1 Page 38 of 187 nRF24LU1+ Product Specification * * * Auto Retransmit Delay (ARD) elapsed. No address match within 250s. After received packet (CRC correct or not) if address match within 250s. The RF Transceiver asserts the TX_DS IRQ when the ACK packet is received. The RF Transceiver enters standby-I mode if there is no more untransmitted data in the TX FIFO and the rfce bit in the RFCON register is low. If the ACK packet is not received, the RF Transceiver goes back to TX mode after a delay defined by ARD and retransmits the data. This continues until acknowledgment is received, or the maximum number of retransmits is reached. Two packet loss counters are incremented each time a packet is lost, ARC_CNT and PLOS_CNT in the OBSERVE_TX register. The ARC_CNT counts the number of retransmissions for the current transaction. You reset ARC_CNT by initiating a new transaction. The PLOS_CNT counts the total number of retransmissions since the last channel change. You reset PLOS_CNT by writing to the RF_CH register. It is possible to use the information in the OBSERVE_TX register to make an overall assessment of the channel quality. The ARD defines the time from the end of a transmitted packet to when a retransmit starts on the PTX. ARD is set in SETUP_RETR register in steps of 250s. A retransmit is made if no ACK packet is received by the PTX. There is a restriction on the length of ARD when using ACK packets with payload. The ARD time must never be shorter than the sum of the startup time and the time on-air for the ACK packet. * * For 2 Mbps data rate and 5 byte address; 15 byte is maximum ACK packet payload length for ARD=250 s (reset value). For 1 Mbps data rate and 5 byte address; 5 byte is maximum ACK packet payload length for ARD=250 s (reset value). ARD=500s is long enough for any ACK payload length in 1 or 2 Mbps mode. * For 250 kbps data rate and 5byte address the following values apply: ARD 1500 s 1250 s 1000 s 750 s 500 s ACK packet size (in bytes) All ACK payload sizes < 24 < 16 <8 Empty ACK with no payload Table 17. Maximum ACK payload length for different retransmit delays at 250 kbps As an alternative to Auto Retransmit it is possible to manually set the RF Transceiver to retransmit a packet a number of times. This is done by the REUSE_TX_PL command. The MCU must initiate each transmission of the packet with a pulse on the CE pin when this command is used. Revision 1.1 Page 39 of 187 nRF24LU1+ Product Specification Enhanced ShockBurstTM flowcharts 6.4.7 This section contains flowcharts outlining PTX and PRX operation in Enhanced ShockBurstTM. 6.4.7.1 PTX operation The flowchart in Figure 11. outlines how a RF Transceiver configured as a PTX behaves after entering standby-I mode. Start Primary TX ShockBurstTM operation Standby-I mode No Is rfce=1? Yes No Is rfce =1? Yes Standby-II mode Packet in TX FIFO? No Yes No No Packet in TX FIFO? Packet in TX FIFO? Yes Packet assembly and TX Settling TX mode Transmit Packet Yes Yes Is rfce =1? Set TX_DS IRQ Is Auto ReTransmit enabled? No Yes No_ACK? Yes No RX Settling RX mode No Set MAX_RT IRQ Timeout? Is an ACK received? No Yes Yes Yes Standby-II mode Has the ACK payload? No No Has ARD elapsed? TX mode Retransmit last packet Yes TX Settling No Put payload in RX FIFO. Set TX_DS IRQ and RX_DR IRQ Set TX_DS IRQ Number of retries = ARC? Yes Note: ShockBurstTM operation is outlined with a dashed square. Figure 11. PTX operations in Enhanced ShockBurstTM Revision 1.1 Page 40 of 187 nRF24LU1+ Product Specification Activate PTX mode by setting the rfce bit in the RFCON register high. If there is a packet present in the TX FIFO the RF Transceiver enters TX mode and transmits the packet. If Auto Retransmit is enabled, the state machine checks if the NO_ACK flag is set. If it is not set, the RF Transceiver enters RX mode to receive an ACK packet. If the received ACK packet is empty, only the TX_DS IRQ is asserted. If the ACK packet contains a payload, both TX_DS IRQ and RX_DR IRQ are asserted simultaneously before the RF Transceiver returns to standby-I mode. If the ACK packet is not received before timeout occurs, the RF Transceiver returns to standby-II mode. It stays in standby-II mode until the ARD has elapsed. If the number of retransmits has not reached the ARC, the RF Transceiver enters TX mode and transmits the last packet once more. While executing the Auto Retransmit feature, the number of retransmits can reach the maximum number defined in ARC. If this happens, the RF Transceiver asserts the MAX_RT IRQ and returns to standby-I mode. If the rfce bit in the RFCON register is high and the TX FIFO is empty, the RF Transceiver enters StandbyII mode. Revision 1.1 Page 41 of 187 nRF24LU1+ Product Specification 6.4.7.2 PRX operation The flowchart in Figure 12. outlines how a RF Transceiver configured as a PRX behaves after entering standby-I mode. S tart P rim a ry R X S ta ndb y-I m o de S h o ckB u rst T M o p e ratio n No Is rfce = 1? No Yes R X S ettling R X m ode Is rfce =1 ? Y es R X F IF O F ull? Y es M on ito r S E T U P _ A W w id e w ind ow of received bit stream R eceive d w ind ow = RX_ADDR_Px No Yes P acket disasse m bly V a lid pa cket received ? No P ut pa ylo ad in R X F IF O an d se t R X _ D R IR Q Yes Is A uto A cknow ledg em ent e nab le d ? Yes No Yes Is the re ce ived pa cket a new pa cket? No Y es P ut payload in R X F IF O a nd set R X _ D R IR Q D iscard pa cket W as there p aylo ad a ttached w ith th e last ACK? No Yes S et T X _ D S IR Q N o _ A C K se t in re ce ived pa cket? No No P en ding pa ylo ad in T X F IF O ? Y es T X S e ttlin g T X S ettling T X m od e T ransm it A C K T X m ode T ran sm it A C K w ith pa yloa d Note: ShockBurstTM operation is outlined with a dashed square. Figure 12. PRX operations in Enhanced ShockBurstTM Activate PRX mode by setting the rfce bit in the RFCON register high. The RF Transceiver enters RX mode and starts searching for packets. If a packet is received and Auto Acknowledgement is enabled, the RF Transceiver decides if the packet is new or a copy of a previously received packet. If the packet is new Revision 1.1 Page 42 of 187 nRF24LU1+ Product Specification the payload is made available in the RX FIFO and the RX_DR IRQ is asserted. If the last received packet from the transmitter is acknowledged with an ACK packet with payload, the TX_DS IRQ indicates that the PTX received the ACK packet with payload. If the No_ACK flag is not set in the received packet, the PRX enters TX mode. If there is a pending payload in the TX FIFO it is attached to the ACK packet. After the ACK packet is transmitted, the RF Transceiver returns to RX mode. A copy of a previously received packet might be received if the ACK packet is lost. In this case, the PRX discards the received packet and transmits an ACK packet before it returns to RX mode. 6.4.8 MultiCeiverTM MultiCeiverTM is a feature used in RX mode that contains a set of six parallel data pipes with unique addresses. A data pipe is a logical channel in the physical RF channel. Each data pipe has its own physical address (data pipe address) decoding in the RF Transceiver. PTX3 PTX4 PTX2 2 Da ta P 5 Pi pe PTX6 Da ta e3 pe Pi Data Pip Data ta Da PTX1 Pipe 4 PTX5 ipe 1 Da ip ta P e0 PRX Frequency Channel N Figure 13. PRX using MultiCeiverTM The RF Transceiver configured as PRX (primary receiver) can receive data addressed to six different data pipes in one frequency channel as shown in Figure 13. Each data pipe has its own unique address and can be configured for individual behavior. Up to six RF Transceivers configured as PTX can communicate with one RF Transceiver configured as PRX. All data pipe addresses are searched for simultaneously. Only one data pipe can receive a packet at a time. All data pipes can perform Enhanced ShockBurstTM functionality. Revision 1.1 Page 43 of 187 nRF24LU1+ Product Specification The following settings are common to all data pipes: * * * * * * CRC enabled/disabled (CRC always enabled when Enhanced ShockBurstTM is enabled) CRC encoding scheme RX address width Frequency channel Air data rate LNA gain The data pipes are enabled with the bits in the EN_RXADDR register. By default only data pipe 0 and 1 are enabled. Each data pipe address is configured in the RX_ADDR_PX registers. Note: Always ensure that none of the data pipes have the same address. Each pipe can have up to a 5 byte configurable address. Data pipe 0 has a unique 5 byte address. Data pipes 1-5 share the four most significant address bytes. The LSByte must be unique for all six pipes. Figure 14. is an example of how data pipes 0-5 are addressed. Byte 4 Byte 3 Byte 2 Byte 1 Byte 0 Data pipe 0 (RX_ADDR_P0) 0xE7 0xD3 0xF0 0x35 0x77 Data pipe 1 (RX_ADDR_P1) 0xC2 0xC2 0xC2 0xC2 0xC2 Data pipe 2 (RX_ADDR_P2) 0xC2 0xC2 0xC2 0xC2 0xC3 Data pipe 3 (RX_ADDR_P3) 0xC2 0xC2 0xC2 0xC2 0xC4 Data pipe 4 (RX_ADDR_P4) 0xC2 0xC2 0xC2 0xC2 0xC5 Data pipe 5 (RX_ADDR_P5) 0xC2 0xC2 0xC2 0xC2 0xC6 Figure 14. Addressing data pipes 0-5 Revision 1.1 Page 44 of 187 nRF24LU1+ Product Specification A3 B6 3 B5 B4 5B6A B3 0x 3B4B B 0x R: DD _P0: _A TX ADDR _ RX PTX3 TX RX _AD _A DR DD : R_ P0 0x :0 B3 xB B4 3B B5 4B B6 5B 0F 60 F The PRX, using MultiCeiverTM and Enhanced ShockBurstTM, receives packets from more than one PTX. To ensure that the ACK packet from the PRX is transmitted to the correct PTX, the PRX takes the data pipe address where it received the packet and uses it as the TX address when transmitting the ACK packet. Figure 15. is an example of an address configuration for the PRX and PTX. On the PRX the RX_ADDR_Pn, defined as the pipe address, must be unique. On the PTX the TX_ADDR must be the same as the RX_ADDR_P0 and as the pipe address for the designated pipe. PTX4 PTX2 Da ta Pip e Pi p PTX6 Da ta 2 TX _ A R X _ D D R: A DD 0x R_ P 0 : 0 B 3 B 4B 5 x B3 B4 B B 6 F 1 5B 6 F1 05 B6 5 B5 60 B4 B 5B 3 4 B 0 x B3B 0x R: P0: D _ D _A DR TX _AD RX 5 Pipe Data pe Pi Pipe 3 ta Da PTX1 4 PTX5 Data TX _ RX ADDR _A DD : R_ P0 0xB3 :0 xB B4B5 3B 4B B 6CD 5B 6C D e1 D at aP 0 ipe R: 0 P ADD TX_ AD DR_ RX _ PRX Addr Addr Addr Addr Addr Addr Data Data Data Data Data Data Pipe Pipe Pipe Pipe Pipe Pipe 0 1 2 3 4 5 (RX_ADDR_P0): (RX_ADDR_P1): (RX_ADDR_P2): (RX_ADDR_P3): (RX_ADDR_P4): (RX_ADDR_P5): 878 787 87 8 7 878 0x7 87878 7 :0x 0x7878787878 0xB3B4B5B6F1 0xB3B4B5B6CD 0xB3B4B5B6A3 0xB3B4B5B60F 0xB3B4B5B605 Frequency Channel N Figure 15. Example of data pipe addressing in MultiCeiverTM Only when a data pipe receives a complete packet can other data pipes begin to receive data. When multiple PTXs are transmitting to a PRX, the ARD can be used to skew the auto retransmission so that they only block each other once. 6.4.9 Enhanced ShockBurstTM timing This section describes the timing sequence of Enhanced ShockBurstTM and how all modes are initiated and operated. The Enhanced ShockBurstTM timing is controlled through the Data and Control interface. The RF Transceiver can be set to static modes or autonomous modes where the internal state machine Revision 1.1 Page 45 of 187 nRF24LU1+ Product Specification controls the events. Each autonomous mode/sequence ends with a RFIRQ interrupt. All the interrupts are indicated as IRQ events in the timing diagrams. >10 s TIRQ TUL PTX SPI 130 s TOA IRQ: TX DS1 UL PTX rfce PTX IRQ PTX MODE Standby 1 PLL Lock TX Standby-I 1 IRQ if No Ack is on. TIRQ = 8.2 s @ 1 Mbps, TIRQ = 6.0 s @ 2 Mbps Figure 16. Transmitting one packet with NO_ACK on The following equations calculate various timing measurements: Symbol TOA Description Time on-air TOA 1[byte]+ 3,4 or 5 [bytes ]+ N [bytes ]+ 1 or 2 [bytes ] + 8bit byte preamble packet length address payload CRC = = air data rate air data rate bit s packet control field T ACK 1[byte]+ 3,4 or 5 [bytes]+ N [bytes ]+ 1 or 2 [bytes] + 8bit byte preamble packet length address payload CRC = = air data rate air data rate bit s packet control field TU L N [bytes ] 8 bit byte payload length payload = = SPI data rate SPI data rate bit s [ ] 9 [bit ] Time on-air Ack TACK [ ] Time Upload TUL TESB Equation [ ] Time Enhanced Shock- TESB = TUL + 2 . Tstby2a + TOA + TACK + TIRQ BurstTM cycle Table 18. Timing equations Revision 1.1 Page 46 of 187 9 [bit ] nRF24LU1+ Product Specification TESB Cycle >10 s TUL PTX SPI 130 s TIRQ TOA IRQ: TX DS UL PTX rfce PTX IRQ PTX MODE PRX MODE Standby 1 Standby 1 PLL Lock PLL Lock TX RX PLL Lock RX Standby 1 PLL Lock TX PLL Lock TACK 130 s RX PRX IRQ PRX rfce PRX SPI IRQ:RX DR/DL 130 s 130 s TIRQ Figure 17. Timing of Enhanced ShockBurstTM for one packet upload (2 Mbps) In Figure 17. the transmission and acknowledgement of a packet is shown. The PRX operation activates RX mode (rfce=1), and the PTX operation is activated in TX mode (rfce=1 for minimum 10 s). After 130 s the transmission starts and finishes after the elapse of TOA. When the transmission ends the PTX operation automatically switches to RX mode to wait for the ACK packet from the PRX operation. When the PRX operation receives the packet it sets the interrupt for the host MCU and switches to TX mode to send an ACK. After the PTX operation receives the ACK packet it sets the interrupt to the MCU and clears the packet from the TX FIFO. Revision 1.1 Page 47 of 187 nRF24LU1+ Product Specification In Figure 18. the PTX timing of a packet transmission is shown when the first ACK packet is lost. To see the complete transmission when the ACK packet fails see Figure 21. >10 s TUL PTX SPI ARD 130 s TOA PLL Lock TX 130 s 250 s max 130 s UL PTX RFCE PTX IRQ PTX MODE Standby I PLL Lock RX Standby II PLL Lock TX Figure 18. Timing of Enhanced ShockBurstTM when the first ACK packet is lost (2 Mbps) 6.4.10 Enhanced ShockBurstTM transaction diagram This section describes several scenarios for the Enhanced ShockBurstTM automatic transaction handling. The call outs in this section's figures indicate the IRQs and other events. For MCU activity the event may be placed at a different timeframe. Note: The figures in this section indicate the earliest possible download (DL) of the packet to the MCU and the latest possible upload (UL) of payload to the transmitter. Revision 1.1 Page 48 of 187 nRF24LU1+ Product Specification 6.4.10.1 Single transaction with ACK packet and interrupts In Figure 19. the basic auto acknowledgement is shown. After the packet is transmitted by the PTX and received by the PRX the ACK packet is transmitted from the PRX to the PTX. The RX_DR IRQ is asserted after the packet is received by the PRX, whereas the TX_DS IRQ is asserted when the packet is acknowledged and the ACK packet is received by the PTX. MCU PTX UL IRQ Ack received IRQ:TX DS (PID=1) 130us1 PTX TX:PID=1 RX PRX RX ACK:PID=1 Packet received IRQ: RX DR (PID=1) MCU PRX DL 1 Radio Turn Around Delay Figure 19. TX/RX cycles with ACK and the according interrupts 6.4.10.2 Single transaction with a lost packet Figure 20. is a scenario where a retransmission is needed due to loss of the first packet transmit. After the packet is transmitted, the PTX enters RX mode to receive the ACK packet. After the first transmission, the PTX waits a specified time for the ACK packet, if it is not in the specific time slot the PTX retransmits the packet as shown in Figure 20. MCU PTX UL Packet PID=1 lost during transmission IRQ No address detected. RX off to save current Auto retransmit delay elapsed 130us1 PTX TX:PID=1 Retransmit of packet PID=1 130us1 ACK received IRQ: TX DS (PID=1) 130us1 RX TX:PID=1 RX ARD PRX RX ACK:PID=1 Packet received. IRQ: RX DR (PID=1) MCU PRX DL 1 Radio Turn Around Delay Figure 20. TX/RX cycles with ACK and the according interrupts when the first packet transmit fails Revision 1.1 Page 49 of 187 nRF24LU1+ Product Specification When an address is detected the PTX stays in RX mode until the packet is received. When the retransmitted packet is received by the PRX (see Figure 20. ) , the RX_DR IRQ is asserted and an ACK is transmitted back to the PTX. When the ACK is received by the PTX, the TX_DS IRQ is asserted. 6.4.10.3 Single transaction with a lost ACK packet Figure 21. is a scenario where a retransmission is needed after a loss of the ACK packet. The corresponding interrupts are also indicated. MCU PTX UL IRQ No address detected. RX off to save current 130us PTX TX:PID=1 Auto retransmit delay elapsed 1 130us Retransmit of packet PID=1 1 ACK received IRQ: TX DS (PID=1) 130us1 RX TX:PID=1 RX ARD PRX RX ACK:PID=1 Packet received. IRQ: RX DR (PID=1) RX ACK PID=1 lost during transmission MCU PRX ACK:PID=1 Packet detected as copy of previous, discarded DL 1 Radio Turn Around Delay Figure 21. TX/RX cycles with ACK and the according interrupts when the ACK packet fails 6.4.10.4 Single transaction with ACK payload packet Figure 22. is a scenario of the basic auto acknowledgement with payload. After the packet is transmitted by the PTX and received by the PRX the ACK packet with payload is transmitted from the PRX to the PTX. The RX_DR IRQ is asserted after the packet is received by the PRX, whereas on the PTX side the TX_DS IRQ is asserted when the ACK packet is received by the PTX. On the PRX side, the TX_DS IRQ for the ACK packet payload is asserted after a new packet from PTX is received. The position of the IRQ in Figure 22. shows where the MCU can respond to the interrupt. MCU PTX UL1 DL IRQ UL2 ACK received IRQ: TX DS (PID=1) RX DR (ACK1PAY) Transmit of packet PID=2 130 s3 130 s1 PTX TX:PID=1 PRX RX RX TX:PID=2 ACK1 PAY RX Packet received. IRQ: RX DR (PID=2) TX DS (ACK1PAY) Packet received. IRQ: RX DR (PID=1) MCU PRX UL2 DL DL IRQ 1 Radio Turn Around Delay 2 Uploading Payload for Ack Packet 3 Delay defined by MCU on PTX side, 130 s Figure 22. TX/RX cycles with ACK Payload and the according interrupts Revision 1.1 Page 50 of 187 nRF24LU1+ Product Specification 6.4.10.5 Single transaction with ACK payload packet and lost packet Figure 23. is a scenario where the first packet is lost and a retransmission is needed before the RX_DR IRQ on the PRX side is asserted. For the PTX both the TX_DS and RX_DR IRQ are asserted after the ACK packet is received. After the second packet (PID=2) is received on the PRX side both the RX_DR (PID=2) and TX_DS (ACK packet payload) IRQ are asserted. MCU PTX UL1 DL IRQ UL2 Packet PID=1 lost during transmission No address detected. RX off to save current Auto retransmit delay elapsed 130us1 PTX TX:PID=1 Retransmit of packet PID=1 130us1 ACK received IRQ: TX DS (PID=1) RX DR (ACK1PAY) 130us3 130us1 RX TX:PID=1 RX TX:PID=2 ACK1 PAY RX ARD PRX RX Packet received. IRQ: RX DR (PID=2) TX DS (ACK1PAY) Packet received. IRQ: RX DR (PID=1) MCU PRX UL 2 DL DL 1 Radio Turn Around Delay 2 Uploading Paylod for Ack Packet 3 Delay defined by MCU on PTX side, 130us Figure 23. TX/RX cycles and the according interrupts when the packet transmission fails 6.4.10.6 MCU PTX Two transactions with ACK payload packet and the first ACK packet lost UL1 UL2 No address detected. RX off to save current 130us PTX TX:PID=1 DL IRQ UL3 Auto retransmit delay elapsed 1 130us ACK received IRQ: TX DS (PID=1) RX DR (ACK1PAY) Retransmit of packet PID=1 1 RX 130us TX:PID=1 ACK received IRQ: TX DS (PID=2) RX DR (ACK2PAY) 130us 1 130us3 130us 1 3 RX TX:PID=2 RX TX:PID=3 ACK1 PAY RX ACK2 PAY RX ARD PRX RX ACK1 PAY Packet received. IRQ: RX DR (PID=1) MCU PRX UL12 RX ACK PID=1 lost during transmission DL Packet detected as copy of previous, discarded Packet received. IRQ: RX DR (PID=2) TX DS (ACK1PAY) Packet received. IRQ: RX DR (PID=3) TX DS (ACK2PAY) DL IRQ UL2 2 1 Radio Turn Around Delay 2 Uploading Payload for Ack Packet 3 Delay defined by MCU on PTX side, 130us Figure 24. TX/RX cycles with ACK Payload and the according interrupts when the ACK packet fails In Figure 24. the ACK packet is lost and a retransmission is needed before the TX_DS IRQ is asserted, but the RX_DR IRQ is asserted immediately. The retransmission of the packet (PID=1) results in a discarded packet. For the PTX both the TX_DS and RX_DR IRQ are asserted after the second transmission of ACK, which is received. After the second packet (PID=2) is received on the PRX both the RX_DR (PID=2) and TX_DS (ACK1PAY) IRQ is asserted. The callouts explains the different events and interrupts. Revision 1.1 Page 51 of 187 nRF24LU1+ Product Specification 6.4.10.7 Two transactions where max retransmissions is reached MCU PTX UL IRQ No address detected. RX off to save current 130us PTX TX:PID=1 Auto retransmit delay elapsed 1 130us Retransmit of packet PID=1 1 RX 130us TX:PID=1 ARD No address detected. RX off to save current 130us3 1 RX No address detected. RX off to save current. IRQ:MAX_RT reached 130us1 TX:PID=1 RX ARD 130us1 PRX RX ACK1 PAY Packet received. IRQ: RX DR (PID=1) MCU PRX UL2 RX ACK PID=1 lost during transmission ACK PID=1 lost during transmission ACK1 PAY Packet detected as copy of previous, discarded RX ACK PID=1 lost during transmission DL 1 Radio Turn Around Delay 2 Uploading Paylod for Ack Packet 3 Delay defined by MCU on PTX side, 130us Figure 25. TX/RX cycles with ACK Payload and the according interrupts when the transmission fails. ARC is set to 2. MAX_RT IRQ is asserted if the auto retransmit counter (ARC_CNT) exceeds the programmed maximum limit (ARC). In Figure 25. the packet transmission ends with a MAX_RT IRQ. The payload in TX FIFO is NOT removed and the MCU decides the next step in the protocol. A toggle of the rfce bit in the RFCON register starts a new transmitting sequence of the same packet. The payload can be removed from the TX FIFO using the FLUSH_TX command. 6.4.11 Compatibility with ShockBurstTM You must disable Enhanced ShockBurstTM for backward compatibility with the nRF2401A, nRF2402, nRF24E1 and, nRF24E2. Set the register EN_AA = 0x00 and ARC = 0 to disable Enhanced ShockBurstTM. In addition, the RF Transceiver air data rate must be set to 1 Mbps or 250 kbps. 6.4.11.1 ShockBurstTM packet format The ShockBurstTM packet format is described in this chapter. Figure 26. shows the packet format with MSB to the left. Preamble 1 byte Address 3-5 byte Payload 1 - 32 byte CRC 1-2 byte Figure 26. A ShockBurstTM packet compatible with nRF2401/nRF2402/nRF24E1/nRF24E2 devices. The ShockBurstTM packet format has a preamble, address, payload and CRC field that are the same as the Enhanced ShockBurstTM packet format described in section 6.4.3 on page 33. Revision 1.1 Page 52 of 187 nRF24LU1+ Product Specification The differences between the ShockBurstTM packet and the Enhanced ShockBurstTM packet are: * * The 9-bit Packet Control Field is not present in the ShockBurstTM packet format. The CRC is optional in the ShockBurstTM packet format and is controlled by the EN_CRC bit in the CONFIG register. 6.5 Data and control interface The data and control interface gives you access to all the features in the RF Transceiver. Compared to the standalone nRF24L01+ chip, SFR registers are used instead of port pins, so that the SFR RCON bits rfcsn, rfce and rfcken control the CSN, CE and CKEN pins of the standalone component. 6.5.1 SFR registers The MCU uses an internal SPI to communicate with the RF Transceiver. This SPI is controlled by the SFR registers shown in the tables below. Address 0xE5 Reset value 0x00 Bit Name data R/W RW Function SPI data input/output Table 19. RFDAT register Address Reset value 0xE6 0x00 Bit 7:5 4 Name ss R/W 3:0 rfctl RW RW Function Must be zero SPI enable: 0: disable, 1: enable Divider factor from MCU clock (Cclk) to SPI clock frequency 000X: 1/2 of Cclk frequency 0010: 1/4 of Cclk frequency 0011: 1/8 of Cclk frequency 0100: 1/16 of Cclk frequency 0101: 1/32 of Cclk frequency other: 1/64 of Cclk frequency Table 20. RFCTL register Address 0x90 Reset value 0x02 Bit Name R/W 7:3 2 1 0 rfcken rfcsn rfce RW RW RW Function Reserved RF Clock Enable (16 MHz) RF SPI CSN 0: enabled 1: disabled RF CE 1: enabled 0: disabled Table 21. RFCON register Revision 1.1 Page 53 of 187 nRF24LU1+ Product Specification 6.5.2 SPI operation This section describes the SPI commands and timing. 6.5.2.1 SPI commands The SPI commands are shown in Table 22. Every new command must be started by writing 0 to rfcsn in the RFCON register. The SPI command is transferred to RF Transceiver by writing the command to the RFDAT register. After the first transfer the RF Transceiver's STATUS register can be read from RFDAT when the transfer is completed. The serial shifting SPI commands is in the following format: Command name R_REGISTER W_REGISTER Command # Data bytes word (binary) 000A AAAA 1 to 5 LSByte first 001A AAAA 1 to 5 LSByte first R_RX_PAYLOAD 0110 0001 1 to 32 LSByte first W_TX_PAYLOAD 1010 0000 FLUSH_TX FLUSH_RX 1110 0001 1110 0010 1 to 32 LSByte first 0 0 REUSE_TX_PL 1110 0011 0 R_RX_PL_WIDa 0110 0000 1 Operation Read command and status registers. AAAAA = 5 bit Register Map Address Write command and status registers. AAAAA = 5 bit Register Map Address Executable in power down or standby modes only. Read RX-payload: 1 - 32 bytes. A read operation always starts at byte 0. Payload is deleted from FIFO after it is read. Used in RX mode. Write TX-payload: 1 - 32 bytes. A write operation always starts at byte 0 used in TX payload. Flush TX FIFO, used in TX mode Flush RX FIFO, used in RX mode Should not be executed during transmission of acknowledge, that is, acknowledge package will not be completed. Used for a PTX operation Reuse last transmitted payload. TX payload reuse is active until W_TX_PAYLOAD or FLUSH TX is executed. TX payload reuse must not be activated or deactivated during package transmission. Read RX payload width for the top R_RX_PAYLOAD in the RX FIFO. Note: Flush RX FIFO if the read value is larger than 32 bytes. Revision 1.1 Page 54 of 187 nRF24LU1+ Product Specification Command # Data bytes Operation word (binary) 1010 1PPP 1 to 32 Used in RX mode. W_ACK_PAYLOADa LSByte first Write Payload to be transmitted together with ACK packet on PIPE PPP. (PPP valid in the range from 000 to 101). Maximum three ACK packet payloads can be pending. Payloads with same PPP are handled using first in - first out principle. Write payload: 1- 32 bytes. A write operation always starts at byte 0. W_TX_PAYLOAD_NO 1011 0000 1 to 32 Used in TX mode. Disables AUTOACK on this ACK specific packet. LSByte first NOP 1111 1111 0 No Operation. Might be used to read the STATUS register Command name a. The bits in the FEATURE register shown in Table 23. have to be set. Table 22. Command set for the RF Transceiver SPI The W_REGISTER and R_REGISTER commands operate on single or multi-byte registers. When accessing multi-byte registers read or write to the MSBit of LSByte first. You can terminate the writing before all bytes in a multi-byte register are written, leaving the unwritten MSByte(s) unchanged. For example, the LSByte of RX_ADDR_P0 can be modified by writing only one byte to the RX_ADDR_P0 register. The content of the status register is always read to MISO after a high to low transition on CSN. Note: The 3-bit pipe information in the STATUS register is updated during the RFIRQ high to low transition. The pipe information is unreliable if the STATUS register is read during an RFIRQ high to low transition. 6.5.3 Data FIFO The data FIFOs store transmitted payloads (TX FIFO) or received payloads that are ready to be clocked out (RX FIFO). The FIFOs are accessible in both PTX mode and PRX mode. The following FIFOs are present in the RF Transceiver: * * TX three level, 32 byte FIFO RX three level, 32 byte FIFO Both FIFOs have a controller and are accessible through the SPI by using dedicated SPI commands. A TX FIFO in PRX can store payloads for ACK packets to three different PTX operations. If the TX FIFO contains more than one payload to a pipe, payloads are handled using the first in - first out principle. The TX FIFO in a PRX is blocked if all pending payloads are addressed to pipes where the link to the PTX is lost. In this case, the MCU can flush the TX FIFO using the FLUSH_TX command. The RX FIFO in PRX can contain payloads from up to three different PTX operations and a TX FIFO in PTX can have up to three payloads stored. You can write to the TX FIFO using these three commands; W_TX_PAYLOAD and W_TX_PAYLOAD_NO_ACK in PTX mode and W_ACK_PAYLOAD in PRX mode. All three commands provide access to the TX_PLD register. The RX FIFO can be read by the command R_RX_PAYLOAD in PTX and PRX mode. This command provides access to the RX_PLD register. Revision 1.1 Page 55 of 187 nRF24LU1+ Product Specification The payload in TX FIFO in a PTX is not removed if the MAX_RT IRQ is asserted. RX FIFO 32 byte 32 byte 32 byte RX FIFO Controller TX FIFO Controller Data Control SPI command decoder SPI Data Control TX FIFO Data 32 byte 32 byte Data 32 byte Figure 27. FIFO (RX and TX) block diagram You can read if the TX and RX FIFO are full or empty in the FIFO_STATUS register. TX_REUSE (also available in the FIFO_STATUS register) is set by the SPI command REUSE_TX_PL, and is reset by the SPI commands W_TX_PAYLOAD or FLUSH TX. 6.5.4 Interrupt The RF Transceiver can send interrupts to the MCU. The interrupt (RFIRQ) is activated when TX_DS, RX_DR or MAX_RT are set high by the state machine in the STATUS register. RFIRQ is deactivated when the MCU writes '1' to the interrupt source bit in the STATUS register. The interrupt mask in the CONFIG register is used to select the IRQ sources that are allowed to activate RFIRQ. By setting one of the mask bits high, the corresponding interrupt source is disabled. By default all interrupt sources are enabled. Note: The 3-bit pipe information in the STATUS register is updated during the RFIRQ high to low transition. The pipe information is unreliable if the STATUS register is read during a RFIRQ high to low transition. Revision 1.1 Page 56 of 187 nRF24LU1+ Product Specification 6.6 Register map You can configure and control the radio (using read and write commands) by accessing the register map through the SPI. 6.6.1 Register map table All undefined bits in the table below are redundant. They are read out as '0'. Note: Addresses 18 to 1B are reserved for test purposes, altering them makes the chip malfunction. Address (Hex) 00 01 Mnemonic Bit Reset Value CONFIG Reserved MASK_RX_DR 7 6 0 0 MASK_TX_DS 5 0 MASK_MAX_RT 4 0 EN_CRC 3 1 CRCO 2 0 PWR_UP PRIM_RX 1 0 0 0 Type Description Configuration Register R/W Only '0' allowed R/W Mask interrupt caused by RX_DR 1: Interrupt not reflected on the RFIRQ 0: Reflect RX_DR as active low on RFIRQ R/W Mask interrupt caused by TX_DS 1: Interrupt not reflected on the RFIRQ 0: Reflect TX_DS as active low interrupt on RFIRQ R/W Mask interrupt caused by MAX_RT 1: Interrupt not reflected on RFIRQ 0: Reflect MAX_RT as active low on RFIRQ R/W Enable CRC. Forced high if one of the bits in the EN_AA is high R/W CRC encoding scheme '0' - 1 byte '1' - 2 bytes R/W 1: POWER UP, 0:POWER DOWN R/W RX/TX control 1: PRX, 0: PTX Enable `Auto Acknowledgment' Function Disable this functionality to be compatible with nRF2401. EN_AA Enhanced ShockBurstTM Reserved ENAA_P5 ENAA_P4 ENAA_P3 ENAA_P2 ENAA_P1 ENAA_P0 7:6 5 4 3 2 1 0 00 1 1 1 1 1 1 R/W R/W R/W R/W R/W R/W R/W Only '00' allowed Enable auto acknowledgement data pipe 5 Enable auto acknowledgement data pipe 4 Enable auto acknowledgement data pipe 3 Enable auto acknowledgement data pipe 2 Enable auto acknowledgement data pipe 1 Enable auto acknowledgement data pipe 0 EN_RXADDR Reserved ERX_P5 ERX_P4 ERX_P3 ERX_P2 ERX_P1 ERX_P0 7:6 5 4 3 2 1 0 00 0 0 0 0 1 1 R/W R/W R/W R/W R/W R/W R/W Enabled RX Addresses Only '00' allowed Enable data pipe 5. Enable data pipe 4. Enable data pipe 3. Enable data pipe 2. Enable data pipe 1. Enable data pipe 0. 02 Revision 1.1 Page 57 of 187 nRF24LU1+ Product Specification Address (Hex) Mnemonic 03 SETUP_AW 04 Bit Reset Value Type Setup of Address Widths (common for all data pipes) R/W Only '000000' allowed R/W RX/TX Address field width '00' - Illegal '01' - 3 bytes '10' - 4 bytes '11' - 5 bytes LSByte is used if address width is below 5 bytes Reserved AW 7:2 1:0 000000 11 SETUP_RETR ARDa 7:4 0000 ARC 3:0 0011 RF_CH Reserved RF_CH 7 6:0 0 0000010 RF_SETUP CONT_WAVE Reserved RF_DR_LOW 7 6 5 0 0 0 PLL_LOCK RF_DR_HIGH 4 3 0 1 RF_PWR 2:1 11 05 06 Revision 1.1 Description Setup of Automatic Retransmission R/W Auto Retransmit Delay `0000' - Wait 250 s `0001' - Wait 500 s `0010' - Wait 750 s ........ `1111' - Wait 4000 s (Delay defined from end of transmission to start of next transmission)b R/W Auto Retransmit Count `0000' -Re-Transmit disabled `0001' - Up to 1 Re-Transmit on fail of AA ...... `1111' - Up to 15 Re-Transmit on fail of AA RF Channel R/W Only '0' allowed R/W Sets the frequency channel the RF Transceiver operates on RF Setup Register R/W Enables continuous carrier transmit when high. R/W Only '0' allowed R/W Set RF Data Rate to 250 kbps. See RF_DR_HIGH for encoding. R/W Force PLL lock signal. Only used in test R/W Select between the high speed data rates. This bit is don't care if RF_DR_LOW is set. Encoding: RF_DR_LOW, RF_DR_HIGH: `00' - 1 Mbps `01' - 2 Mbps `10' - 250 kbps `11' - Reserved R/W Set RF output power in TX mode '00' - -18dBm '01' - -12dBm '10' - -6dBm '11' - 0dBm Page 58 of 187 nRF24LU1+ Product Specification Address (Hex) 07 Mnemonic Bit Obsolete 0 Reset Value Type Don't care STATUS Reserved RX_DR 7 6 0 0 R/W R/W TX_DS 5 0 R/W MAX_RT 4 0 R/W RX_P_NO 3:1 111 R TX_FULL 0 0 R OBSERVE_TX PLOS_CNT 7:4 0 R ARC_CNT 3:0 0 R RPD Reserved RPD 7:1 0 000000 0 R R 0A RX_ADDR_P0 39:0 0xE7E7E 7E7E7 0B RX_ADDR_P1 39:0 0C RX_ADDR_P2 7:0 0D RX_ADDR_P3 7:0 08 09 Revision 1.1 Description Status Register (In parallel to the SPI command word applied on the MOSI pin, the STATUS register is shifted serially out on the MISO pin) Only '0' allowed Data Ready RX FIFO interrupt. Asserted when new data arrives RX FIFOc. Write 1 to clear bit. Data Sent TX FIFO interrupt. Asserted when packet transmitted on TX. If AUTO_ACK is activated, this bit is set high only when ACK is received. Write 1 to clear bit. Maximum number of TX retransmits interrupt Write 1 to clear bit. If MAX_RT is asserted it must be cleared to enable further communication. Data pipe number for the payload available for reading from RX_FIFO 000-101: Data Pipe Number 110: Not Used 111: RX FIFO Empty TX FIFO full flag. 1: TX FIFO full. 0: Available locations in TX FIFO. Transmit observe register Count lost packets. The counter is overflow protected to 15, and discontinues at max until reset. The counter is reset by writing to RF_CH. Count retransmitted packets. The counter is reset when transmission of a new packet starts. Received Power Detector. This register is called CD (Carrier Detect) in the nRF24L01. The name is different in the RF Transceiver due to the different input power level threshold for this bit. See section 6.3.4 on page 31. R/W Receive address data pipe 0. 5 Bytes maximum length. (LSByte is written first. Write the number of bytes defined by SETUP_AW) 0xC2C2C R/W Receive address data pipe 1. 5 Bytes maximum 2C2C2 length. (LSByte is written first. Write the number of bytes defined by SETUP_AW) 0xC3 R/W Receive address data pipe 2. Only LSB. MSBytes are equal to RX_ADDR_P1 39:8 0xC4 R/W Receive address data pipe 3. Only LSB. MSBytes are equal to RX_ADDR_P139:8 Page 59 of 187 nRF24LU1+ Product Specification Address (Hex) 0E Mnemonic Bit RX_ADDR_P4 7:0 Reset Value 0xC5 0F RX_ADDR_P5 7:0 0xC6 10 TX_ADDR 39:0 0xE7E7E 7E7E7 R/W Transmit address. Used for a PTX operation only. (LSByte is written first) Set RX_ADDR_P0 equal to this address to handle automatic acknowledge if this is a PTX operation with Enhanced ShockBurstTM enabled. 11 RX_PW_P0 Reserved RX_PW_P0 7:6 5:0 00 0 R/W Only '00' allowed R/W Number of bytes in RX payload in data pipe 0 (1 to 32 bytes). 0 Pipe not used 1 = 1 byte ... 32 = 32 bytes RX_PW_P1 Reserved RX_PW_P1 7:6 5:0 00 0 R/W Only '00' allowed R/W Number of bytes in RX payload in data pipe 1 (1 to 32 bytes). 0 Pipe not used 1 = 1 byte ... 32 = 32 bytes RX_PW_P2 Reserved RX_PW_P2 7:6 5:0 00 0 R/W Only '00' allowed R/W Number of bytes in RX payload in data pipe 2 (1 to 32 bytes). 0 Pipe not used 1 = 1 byte ... 32 = 32 bytes RX_PW_P3 Reserved RX_PW_P3 7:6 5:0 00 0 R/W Only '00' allowed R/W Number of bytes in RX payload in data pipe 3 (1 to 32 bytes). 0 Pipe not used 1 = 1 byte ... 32 = 32 bytes RX_PW_P4 Reserved 7:6 00 R/W Only '00' allowed 12 13 14 15 Revision 1.1 Type Description R/W Receive address data pipe 4. Only LSB. MSBytes are equal to RX_ADDR_P139:8 R/W Receive address data pipe 5. Only LSB. MSBytes are equal to RX_ADDR_P139:8 Page 60 of 187 nRF24LU1+ Product Specification Address (Hex) Mnemonic Bit RX_PW_P4 5:0 Reset Value 0 RX_PW_P5 Reserved RX_PW_P5 7:6 5:0 00 0 FIFO_STATUS Reserved TX_REUSE 7 6 0 0 TX_FULL 5 0 TX_EMPTY 4 1 Reserved RX_FULL 3:2 1 00 0 RX_EMPTY 0 1 N/A ACK_PLD 255:0 X N/A TX_PLD 255:0 X 16 17 Revision 1.1 Type Description R/W Number of bytes in RX payload in data pipe 4 (1 to 32 bytes). 0 Pipe not used 1 = 1 byte ... 32 = 32 bytes R/W Only '00' allowed R/W Number of bytes in RX payload in data pipe 5 (1 to 32 bytes). 0 Pipe not used 1 = 1 byte ... 32 = 32 bytes FIFO Status Register R/W Only '0' allowed R Used for a PTX operation Pulse the rfce high for at least 10s to Reuse last transmitted payload. TX payload reuse is active until W_TX_PAYLOAD or FLUSH TX is executed. TX_REUSE is set by the SPI command REUSE_TX_PL, and is reset by the SPI commands W_TX_PAYLOAD or FLUSH TX R TX FIFO full flag. 1: TX FIFO full. 0: Available locations in TX FIFO. R TX FIFO empty flag. 1: TX FIFO empty. 0: Data in TX FIFO. R/W Only '00' allowed R RX FIFO full flag. 1: RX FIFO full. 0: Available locations in RX FIFO. R RX FIFO empty flag. 1: RX FIFO empty. 0: Data in RX FIFO. W Written by separate SPI command ACK packet payload to data pipe number PPP given in SPI command. Used in RX mode only. Maximum three ACK packet payloads can be pending. Payloads with same PPP are handled first in first out. W Written by separate SPI command TX data payload register 1 - 32 bytes. This register is implemented as a FIFO with three levels. Used in TX mode only. Page 61 of 187 nRF24LU1+ Product Specification Address (Hex) N/A Mnemonic Bit RX_PLD 255:0 Reset Value X DYNPD Reserved DPL_P5 7:6 5 0 0 DPL_P4 4 0 DPL_P3 3 0 DPL_P2 2 0 DPL_P1 1 0 DPL_P0 0 0 FEATURE Reserved EN_DPL EN_ACK_PAYd EN_DYN_ACK 7:3 2 1 0 0 0 0 0 1C 1D Type Description R Read by separate SPI command. RX data payload register. 1 - 32 bytes. This register is implemented as a FIFO with three levels. All RX channels share the same FIFO. Enable dynamic payload length R/W Only `00' allowed R/W Enable dynamic payload length data pipe 5. (Requires EN_DPL and ENAA_P5) R/W Enable dynamic payload length data pipe 4. (Requires EN_DPL and ENAA_P4) R/W Enable dynamic payload length data pipe 3. (Requires EN_DPL and ENAA_P3) R/W Enable dynamic payload length data pipe 2. (Requires EN_DPL and ENAA_P2) R/W Enable dynamic payload length data pipe 1. (Requires EN_DPL and ENAA_P1) R/W Enable dynamic payload length data pipe 0. (Requires EN_DPL and ENAA_P0) R/W R/W R/W R/W R/W Feature Register Only `00000' allowed Enables Dynamic Payload Length Enables Payload with ACK Enables the W_TX_PAYLOAD_NOACK command a. Please take care when setting this parameter. If the ACK payload is more than 15 byte in 2 Mbps mode the ARD must be 500 s or more, if the ACK payload is more than 5 byte in 1 Mbps mode the ARD must be 500 s or more. In 250 kbps mode (even when the payload is not in ACK) the ARD must be 500 s or more. b. This is the time the PTX is waiting for an ACK packet before a retransmit is made. The PTX is in RX mode for a minimum of 250 s, but it stays in RX mode to the end of the packet if that is longer than 250 s. Then it goes to standby-I mode for the rest of the specified ARD. After the ARD it goes to TX mode and then retransmits the packet. c. The RX_DR IRQ is asserted by a new packet arrival event. The procedure for handling this interrupt should be: 1) read payload through SPI, 2) clear RX_DR IRQ, 3) read FIFO_STATUS to check if there are more payloads available in RX FIFO, 4) if there are more data in RX FIFO, repeat from step 1). d. If ACK packet payload is activated, ACK packets have dynamic payload lengths and the Dynamic Payload Length feature should be enabled for pipe 0 on the PTX and PRX. This is to ensure that they receive the ACK packets with payloads. If the ACK payload is more than 15 byte in 2 Mbps mode the ARD must be 500 s or more, and if the ACK payload is more than 5 byte in 1 Mbps mode the ARD must be 500 s or more. In 250 kbps mode (even when the payload is not in ACK) the ARD must be 500 s or more. Table 23. Register map of the RF Transceiver Revision 1.1 Page 62 of 187 nRF24LU1+ Product Specification 7 USB Interface The USB device controller provides a full speed USB function interface that meets the 1.1 and 2.0 revision of the USB specification. It handles byte transfers autonomously and bridges the USB interface to a simple read/write parallel interface. 7.1 * * * * * * * Features Serial Interface Engine X Supports full speed devices X Extraction of clock and data signals in internal DPLL X NRZI decoding/encoding X Bit stuffing/stripping X CRC checking/generation X On-chip transceiver X On-chip pull-up resistor on D+ with software controlled disconnect 2 control, 10 bulk/interrupt and 2 ISO endpoints X Supports control transfers by endpoint #0 X Supports bulk, interrupt on endpoint #1 - #5 (in/out) X Support double buffering for isochronous endpoint #8 (in/out) X Programmable double buffering for bulk and interrupt endpoints Automatic data retry mechanism Data toggle synchronization mechanism Suspend and resume power management functions Remote Wakeup function Flexible endpoint buffers RAM X 512 bytes buffer total X Up to 64 bytes buffer size for endpoint 0-5 X Up to 128bytes buffer size for endpoint 8 The endpoint set up allows for five different applications (for example, Mouse, Keyboard, Remote Control, Gamepad and Joystick) to use both input and output data transfer on separate endpoints. The nRF24LU1+ supports a total of 14 endpoints. EP0 IN/OUT supports input and output control data transfer, EP1-5 IN/OUT supports input and output bulk and interrupt data transfer. In addition, EP8 IN/OUT can be configured for input and output isynchronous data transfer. These two endpoints share memory buffer area with EP0-5. This sharing is controlled by nRF24LU1+ firmware. Revision 1.1 Page 63 of 187 nRF24LU1+ Product Specification 7.2 Block diagram USB controller USB transceiver PHY VDD RPU rst wakeup rst wakeup usbcs.discon D+ D- USBIRQ USBWU Endpoint buffer RAM MCU address usbramaddr A data usbramdata D WE we Figure 28. USB block diagram Revision 1.1 Page 64 of 187 nRF24LU1+ Product Specification 7.3 Functional description The USB module is designed to serve as a Full Speed (FS) USB device as defined in the Universal Serial Bus Specification Rev 2.0. It is controlled both with SFR registers and XDATA mapped registers. There are two SFR registers, USBCON and USBSLP, and the rest of the registers are XDATA mapped registers. Address 0xA0 Reset value 0x00 Bit Name R/W Description 7 6 swrst wu RW RW 5 suspend R 4:0 ivec[6:2] R 1: reset USB 1: wakeup USB, must be cleared before setting USBSLP. 1: USB is suspended. This bit acknowledges USBSLP=1, after a delay of up to 32 s. Interrupt vector ivec, see Table 34. on page 84 Table 24. USBCON register Address 0xD9 Reset value 0x00 Bit Name R/W 7:1 0 Sleep WO Description Not used 1: Disable USB clock, bit automatically cleared. Set wu=1 in USBCON to enable USB clock Table 25. USBSLP register The other USB registers and buffer RAM are accessible through a 2k "window" in XDATA space using the MOVX instruction. Note: Undefined addresses should not be written or read. Note: Key to abbreviations used in Table 27. on page 70: Xu - unchanged value after reset Xx - unknown Hex address C440C47Fa C480C4BF C4C0C4FF C500C53F C540C57F C580C5BF C5C0C5FF Revision 1.1 Hex USB hard reset reset out5buf x x Name bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 d7 d6 d5 d4 d3 d2 d1 d0 in5buf x x d7 d6 d5 d4 d3 d2 d1 d0 out4buf x x d7 d6 d5 d4 d3 d2 d1 d0 in4buf x x d7 d6 d5 d4 d3 d2 d1 d0 out3buf x x d7 d6 d5 d4 d3 d2 d1 d0 in3buf x x d7 d6 d5 d4 d3 d2 d1 d0 out2buf x x d7 d6 d5 d4 d3 d2 d1 d0 Page 65 of 187 nRF24LU1+ Product Specification Hex address C600C63F C640C67F C680C6BF C6C0C6FF C700C73F C760 Name in2buf Hex USB hard reset reset x x bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 d7 d6 d5 d4 d3 d2 d1 d0 out1buf x x d7 d6 d5 d4 d3 d2 d1 d0 in1buf x x d7 d6 d5 d4 d3 d2 d1 d0 out0buf x x d7 d6 d5 d4 d3 d2 d1 d0 in0buf x x d7 d6 d5 d4 d3 d2 d1 d0 out8data x d7 d6 d5 d4 d3 d2 d1 d0 C768 in8data x d7 d6 d5 d4 d3 d2 d1 d0 C770 out8bch 00 0 0 0 0 0 0 bc9 bc8 C771 out8bcl 00 bc7 bc6 bc5 bc4 bc3 bc2 bc1 bc0 C781 bout1addr 00 C782 bout2addr 00 C783 bout3addr 00 C784 bout4addr 00 C785 bout5addr 00 C788 binstaddr 00 C789 bin1addr 00 C78A bin2addr 00 C78B bin3addr 00 C78C bin4addr 00 C78D bin5addr 00 C7A0 isoerr 00 C7A2 zbcout 00 C7A8 ivec 00 C7A9 in_irq 00 C7AA out_irq 00 uuuuu uuu uuuuu uuu uuuuu uuu uuuuu uuu uuuuu uuu uuuuu uuu uuuuu uuu uuuuu uuu uuuuu uuu uuuuu uuu uuuuu uuu uuuuu uuu uuuuu uuu uuuuu uuu uuuuu uuu uuuuu uuu uuuuu uuu uuuuu uuu uuuuu uuu uuuuu uuu Revision 1.1 addr8 addr7 addr6 addr5 addr4 addr3 addr2 addr1 addr8 addr7 addr6 addr5 addr4 addr3 addr2 addr1 addr8 addr7 addr6 addr5 addr4 addr3 addr2 addr1 addr8 addr7 addr6 addr5 addr4 addr3 addr2 addr1 addr8 addr7 addr6 addr5 addr4 addr3 addr2 addr1 addr9 addr8 addr7 addr6 addr5 addr4 addr3 addr2 addr8 addr7 addr6 addr5 addr4 addr3 addr2 addr1 addr8 addr7 addr6 addr5 addr4 addr3 addr2 addr1 addr8 addr7 addr6 addr5 addr4 addr3 addr2 addr1 addr8 addr7 addr6 addr5 addr4 addr3 addr2 addr1 addr8 addr7 addr6 addr5 addr4 addr3 addr2 addr1 0 0 0 0 0 0 0 iso8err 0 0 0 0 0 0 0 ep8 0 iv4 iv3 iv2 iv1 iv0 0 0 0 0 in5ir in4ir in3ir in2ir in1ir in0ir 0 0 out5ir out4ir out3ir out2ir out1ir out0ir Page 66 of 187 nRF24LU1+ Product Specification Hex address C7AB C7AC C7AD C7AE C7AF C7B4 C7B5 C7B6 C7B7 C7B8 C7B9 C7BA C7BB C7BC C7BD C7BE C7BF C7C5 C7C6 C7C7 C7C8 C7C9 C7CA C7CB C7CC Revision 1.1 Hex USB hard reset reset usbirq 00 uuuuu uuu in_ien 00 uuuuu uuu out_ien 00 uuuuu uuu usbien 00 uuuuu uuu usbbav 00 uuuuu uuu ep0cs 08 uuuu u0uu in0bc 00 uuuuu uuu in1cs 00 uuuu uu00 in1bc 00 uuuuu uuu in2cs 00 uuuu uu00 in2bc 00 uuuuu uuu in3cs 00 uuuu uu00 in3bc 00 uuuuu uuu in4cs 00 uuuu uu00 in4bc 00 uuuuu uuu in5cs 00 uuuu uu00 in5bc 00 uuuuu uuu out0bc 00 uuuuu uuu out1cs 02 uuuuu uuu out1bc 00 uuuuu uuu out2cs 02 uuuuu uuu out2bc 00 uuuuu uuu out3cs 02 uuuuu uuu out3bc 00 uuuuu uuu out4cs 02 uuuuu uuu Name bit 7 bit 6 bit 5 bit 4 bit 3 0 0 ibnir uresir suspir sutokir 0 0 in5ien in4ien in3ien 0 0 0 0 out5ie out4ien out3ien out2ien out1ie out0ien n n ibnie uresie suspie sutokie sofie sudavie 0 0 0 0 0 0 0 0 chgset dstall outbsy inbsy 0 bc6 bc5 bc4 bc3 bc2 bc1 bc0 0 0 0 0 0 0 in1bsy in1stl 0 bc6 bc5 bc4 bc3 bc2 bc1 bc0 0 0 0 0 0 0 in2bsy in2stl 0 bc6 bc5 bc4 bc3 bc2 bc1 bc0 0 0 0 0 0 0 in3bsy in3stl 0 bc6 bc5 bc4 bc3 bc2 bc1 bc0 0 0 0 0 0 0 in4bsy in4stl 0 bc6 bc5 bc4 bc3 bc2 bc1 bc0 0 0 0 0 0 0 in5bsy in5stl 0 bc6 bc5 bc4 bc3 bc2 bc1 bc0 0 bc6 bc5 bc4 bc3 bc2 bc1 bc0 0 0 0 0 0 0 0 bc6 bc5 bc4 bc3 bc2 0 0 0 0 0 0 0 bc6 bc5 bc4 bc3 bc2 0 0 0 0 0 0 0 bc6 bc5 bc4 bc3 bc2 0 0 0 0 0 0 Page 67 of 187 bit 2 bit 1 bit 0 sofir sudavir in2ien in1ien in0ien 0 aven hsnak ep0stall out1bs out1stl y bc1 bc0 out2bs out2stl y bc1 bc0 out3bs out3stl y bc1 bc0 out4bs out4stl y nRF24LU1+ Product Specification Hex address Name C7CD out4bc C7CE out5cs C7CF out5bc C7D6 usbcs C7D7 togctlb C7D8 usbfrml C7D9 usbfrmh C7DB fnaddr C7DD usbpair C7DE inbulkval C7DF outbulkval C7E0 inisoval C7E1 outisoval C7E2 isostaddr C7E3 isosize C7E8 setupbuf C7E9 setupbuf C7EA setupbuf C7EB setupbuf C7EC setupbuf C7ED setupbuf Revision 1.1 Hex USB hard bit 7 bit 6 bit 5 reset reset 00 uuuuu 0 bc6 bc5 uuu 02 uuuuu 0 0 0 uuu 00 uuuuu 0 bc6 bc5 uuu 00 uuuuu wakesr 0 sofgen uuu c 00 uuuuu q s r uuu 00 uuuuu fc7 fc6 fc5 uuu 00 uuuuu 0 0 0 uuu 00 0000 0 fa6 fa5 0000 00 uuuuu isosend 0 0 uuu 0 57 uuuuu 0 0 in5val uuu 55 uuuuu 0 0 out5va uuu l 07 uuuuu 0 0 0 uuu 07 uuuuu 0 0 0 uuu 00 uuuuu 0 addr10 addr9 uuu 00 uuuuu 0 size10 size9 uuu 00 uuuuu d7 d6 d5 uuu 00 uuuuu d7 d6 d5 uuu 00 uuuuu d7 d6 d5 uuu 00 uuuuu d7 d6 d5 uuu 00 uuuuu d7 d6 d5 uuu 00 uuuuu d7 d6 d5 uuu Page 68 of 187 bit 4 bit 3 bit 2 bit 1 bit 0 bc4 bc3 bc2 bc1 bc0 0 0 0 bc4 bc3 bc2 0 discon 0 forcej io 0 ep2 ep1 sigrsume ep0 fc4 fc3 fc2 fc1 fc0 0 0 fc10 fc9 fc8 fa4 fa3 fa2 fa1 fa0 0 pr4in pr2in in2val in1val 1 pr4out pr2out in4val in3val out5bs out5stl y bc1 bc0 out4val out3val out2val out1va 1 l 0 0 0 0 in8val 0 0 0 0 out8val addr8 addr7 addr6 addr5 addr4 size8 size7 size6 size5 size4 d4 d3 d2 d1 d0 d4 d3 d2 d1 d0 d4 d3 d2 d1 d0 d4 d3 d2 d1 d0 d4 d3 d2 d1 d0 d4 d3 d2 d1 d0 nRF24LU1+ Product Specification Hex USB hard reset reset setupbuf 00 uuuuu uuu setupbuf 00 uuuuu uuu out8addr 00 uuuuu uuu in8addr 00 uuuuu uuu Hex address Name C7EE C7EF C7F0 C7F8 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 d7 d6 d5 d4 d3 d2 d1 d0 d7 d6 d5 d4 d3 d2 d1 d0 a9 a8 a7 a6 a5 a4 0 0 a9 a8 a7 a6 a5 a4 0 0 a. The addresses for outxbuf and inxbuf are indirect addresses which are mapped according to the endpoint definitions given in register boutxaddr and binxaddr. b. See also section 7.5.4 Note: Key to abbreviations used in the table: X X U - unchanged value after reset Un - unknown Table 26. USB buffer and register map 7.4 Control endpoints Each USB device is allocated by endpoint numbers. The endpoint 0 (EP0) is reserved for control transfers. Using USB requests, the host uses EP0 for device configuration. The device processes the SET_ADDRESS request and sets the address in the fnaddr register. Firmware interrupts this request as configured in the usbien register. All other USB device requests must be processed by firmware. 7.4.1 Control endpoint 0 implementation Every USB device must have the endpoint 0, it is the special control endpoint. Revision 1.1 Page 69 of 187 nRF24LU1+ Product Specification 7.4.2 Endpoint 0 registers Register name Bit name usbien(0) sudavie usbien(2) sutokie usbirq(0) sudavir usbirq(2) sutokir setupdat0 Setup Data setupdat7 Buffer in_irq(0) in0ir out_irq(0) out0ir in_ien(0) in0ien out_ien(0) out0ien ep0cs(0) ep0stall ep0cs(1) hsnak ep0cs(2) inbsy ep0cs(3) outbsy ep0cs(4) dstall ep0cs(5) chgset in0bc Register out0bc Register Bit description Setup data valid interrupt enable Setup token interrupt enable Setup data valid interrupt request Setup token interrupt request 8 bytes setup data packet IN 0 endpoint interrupt request OUT 0 endpoint interrupt request IN 0 endpoint interrupt enable OUT 0 endpoint interrupt enable Endpoint 0 STALL bit Handshake NAK IN 0 buffer busy flag OUT 0 buffer busy flag Send STALL in the data stage Setup Buffer content was changed IN 0 byte counter OUT 0 byte counter Table 27. Endpoint 0 Register Revision 1.1 Page 70 of 187 nRF24LU1+ Product Specification 7.4.3 Control transfer examples A control transfer consists of two or three stages: * * * Setup stage Data stage (optional) Status stage 7.4.3.1 Control write transfer example Setup Stage: SETUP Token SETUP(0) set sutokir, set hsnak Host to Device Device to Host setupdat buffer now contains data that arrived in data0 packet 8 Bytes Data0 ACK Packet Packet set sudavir Data Stage: OUT Token Payload Data1 ACK Packet Packet OUT(1) Status Stage: IN Token NAK Packet MCU services out0 interrupt request and reloads out0bc register OUT Token Payload Data0 ACK Packet Packet OUT(0) set out0ir set out0ir MCU clears hsnak or dstall (or sets stal bit) IN 0 Bytes Data1 ACK Token Packet Packet IN(1) Figure 29. Control Write Transfer After receiving the SETUP token, the USB controller sets the hsnak and sutokir bits. If an 8-byte data packet is received correctly, the USB controller sets the sudavir bit. Setting sutokir and (or) sudavir bits generates the appropriate interrupts. The data stage consists of one or more OUT bulk-like transactions. The USB controller generates the OUT 0 interrupt request by setting the out0ir bit after each correct OUT transaction during the data stage. Out0bc register contains the number of data bytes received in the last OUT transaction. The MCU services the interrupt request and then prepares the endpoint for the next transaction by reloading the out0bc register with any value (setting outbsy bit). The status stage of a control transfer is the last operation in the sequence. The MCU clears the hsnak bit (by writing 1 to it) to instruct the USB controller to ACK the status stage. The USB controller sends a STALL handshake when both hsnak and stall bits are set. Revision 1.1 Page 71 of 187 nRF24LU1+ Product Specification 7.4.3.2 Control read transfer example Setup Stage: SETUP Token SETUP(0) set sutokir, set hsnak Host to Device Device to Host setupdat buffer now contains data that arrived in data0 packet 8 Bytes Data0 ACK Packet Packet set sudavir Data Stage: IN Token Payload Data1 ACK Packet Packet IN (1) IN Token Payload Data0 ACK Packet Packet IN(0) set in0ir set in0ir Status Stage: OUT Token Microcontroller services in0 interrupt request and reloads in0bc register Microcontroller clears hsnak or dstall (or sets stall bit) 0 Bytes Data1 NAK Packet Packet OUT 0 Bytes Data1 ACK Token Packet Packet OUT(1) OUT (1) Figure 30. Control Read Transfer Control read transfer is similar to control write transfer with the only difference in the data stage. During the data stage of control read transfers, the USB controller generates the IN 0 interrupt request by setting in0ir bit. This is done after each acknowledge by the host data packet. The MCU loads new data into the IN 0 buffer and then reloads the in0bc register with a valid number of loaded data. Reloading the in0bc register causes the inbsy bit to set and arms the endpoint for the next IN transaction. The status stage of a control transfer is the last operation in the sequence. The MCU clears the hsnak bit (by writing 1 to it) to instruct the USB controller to ACK the status stage. The USB controller sends the STALL handshake when both hsnak and stall bits are set. 7.4.3.3 No-data control transfer example Setup Stage: SETUP Token SETUP(0) set sutokir, set hsnak Host to Device Device to Host setupdat buffer now contains data that arrived in data0 packet 8 Bytes Data0 ACK Packet Packet set sudavir Status Stage: IN Token NAK Packet Microcontroller clears hsnak (or sets stall bit) IN 0 Bytes Data1 ACK Token Packet Packet Figure 31. No-data Control Transfer Revision 1.1 Page 72 of 187 IN(1) nRF24LU1+ Product Specification Some control transfers do not have a data stage. In this case the status stage consists of the IN data packet. The MCU clears the hsnak bit (by writing 1 to it) to instruct the USB controller to ACK (acknowledge) the status stage. 7.5 Bulk/Interrupt endpoints Each USB transaction is formed as a token packet, optional data packet and, optional handshake packet. Data transfers consist of two or three phases: * * * Token packet Data packet Handshake packet (optional) Only control, bulk and, interrupt transfers have their own handshake phase. Isochronous transfers do not contain a handshake phase. Data is transferred during the data packet phase. Two PID types are available for this: DATA0 and DATA1. 7.5.1 Bulk/Interrupt endpoints implementation The USB controller has 1 to 5 bulk IN endpoints and 1 to 5 bulk OUT endpoints. 7.5.2 Bulk/Interrupt endpoints registers Register name inbulkval(x) usbpair in_ien(x) inxbuf inxbc inxcs(0) inxcs(1) in_irq(x) Bit name Inxval Register Inxien Buffer Register inxstl inxbsy inxir Bit description IN x endpoint valid (x = endpoint number) Endpoint pairing register IN x endpoint interrupt enable (x = endpoint number) Endpoint x buffer (x = endpoint number) IN x byte count register (x = endpoint number) IN x endpoint stall bit (x = endpoint number) IN x endpoint busy bit (x = endpoint number) IN x endpoint interrupt request Table 28. Bulk/Interrupt IN endpoints registers Register name outbulkval(x) usbpair out_ien(x) Bit name Outxval Bit description OUT x endpoint valid (x = endpoint number) Register Outxien Endpoint pairing register OUT x endpoint interrupt enable (x = endpoint number) outxbuf outxbc outxcs(0) outxcs(1) out_irq(x) Buffer Register Outxstl Outxbsy Outxir Endpoint x buffer (x = endpoint number) OUT x byte count register (x = endpoint number) OUT x endpoint stall bit (x = endpoint number) OUT x endpoint busy bit (x = endpoint number) OUT x endpoint interrupt request Table 29. Bulk OUT endpoints registers Revision 1.1 Page 73 of 187 nRF24LU1+ Product Specification 7.5.3 Bulk and interrupt endpoints initialization The MCU sets the appropriate valid bits in the in(out)bulkval register to enable bulk IN (OUT) endpoints for normal operation. 7.5.3.1 Bulk and interrupt transfers a) IN transfers IN Token P a y lo a d D a ta P acket H o s t to D e v ic e D e v ic e to H o s t ACK P acket IN (0 /1 ) s e t in x ir c le a r in x b s y Figure 32. Bulk IN transfer The host issues an IN token to receive bulk data. If the inxbsy bit is set, the USB controller responds by returning a data packet. If the host receives a valid data packet, it responds with an ACK handshake. After receiving a valid ACK handshake from the host, the USB controller sets the inxir bit and clears the inxbsy bit. Setting the inxir bit generates an interrupt request for IN x endpoint (x = appropriate number of endpoint). The MCU services the interrupt request. During a service interrupt request the MCU loads new data into the inxbuf buffer and then reloads the inxbc register with a valid number of data bytes to set the inxbsy bit. IN x endpoint is armed for the next transfer when the inxbsy bit is set. When the inxbsy bit is not set, the USB controller returns NAK handshake for each IN token from the host. When the inxstl bit is set, the USB controller returns the STALL handshake. Errors in IN token NO NO NO NO YES Inxbsy 1 0 0 1 - Inxstl 0 1 0 1 - USB controller to host response Inxbc bytes data packet STALL NAK STALL No response Table 30. The USB controller response for IN Token Revision 1.1 Page 74 of 187 nRF24LU1+ Product Specification b) OUT transfers OUT Token Host to Device Device to Host Payload Data ACK Packet Packet OUT (0/1) set outxir clear outxbsy Figure 33. Bulk OUT transfer When the host wants to transmit bulk data, it issues an OUT Token packet followed by a data packet. An ACK handshake is returned to the host and the outxir bit is set when the USB controller receives an error free OUT, data packets and, the outxbsy bit is set. Setting the outxir bit generates an interrupt request for the OUT x endpoint (x = appropriate number of endpoints). The MCU services the OUT x interrupt request. The received data packet is available in the outxbuf buffer. After servicing an interrupt request, the MCU reloads the outxbc register with any value to set the outxbsy bit. When the outxbsy bit is set the OUT x endpoint is armed for the next OUT transfer. A NAK handshake is returned to the host when the USB controller receives data packets and an error free OUT but the outxbsy bit is not set. A STALL handshake is returned to the host when the USB controller receives an error free OUT and data packets and the outxstl bit is set. The USB controller does not return a handshake if any transmission error occurs during an OUT token or data phase. Errors in OUT token or in data packet NO NO NO NO YES outxbsy outxstl USB controller to host response 0 0 1 1 - 0 1 0 1 - NAK STALL ACK STALL No response Table 31. The USB controller response for OUT transfers 7.5.4 Data packet synchronization Data packet synchronization is achieved through the use of the data sequence toggle bits and the DATA0/ DATA1 PIDs. The USB controller automatically toggles DATA0/DATA1 PIDs every bulk transfer. The MCU can directly set or clear data toggle bits using the togctl register. The MCU clears the toggle bits when the host issues Clear Feature, Set Interface or, selects alternate settings. To write a toggle bit the MCU performs the following sequence: * * Write to togctl register "000d0eee" value to select endpoint "eee" ("eee" - binary value). Endpoint direction bit "d": "d"='0' - OUT endpoint; "d"='1' - IN endpoint. Clear or set toggle bit by writing to togctl register "0srd0eee" value. "sr"='10' - setting toggle bit; "sr"='01' - clearing toggle bit. Revision 1.1 Page 75 of 187 nRF24LU1+ Product Specification 7.5.5 Endpoint pairing To enable double buffering the MCU sets the appropriate bits in the usbpair register to `1' (see section 15.1 on page 128). When double buffering is enabled, the MCU may access one buffer of the pair while the USB host accesses the other. When an endpoint is paired, the MCU uses only an even numbered endpoint of the pair. For example, if the usbpair(0) bit is set, that means that the IN 2 and the IN 3 endpoints are paired. The MCU should not access in3buf data buffer, in3val bit, in3bc register, in3ir bit, in3ien bit, or in3cs registers. 7.5.5.1 Paired IN endpoint status When both endpoint buffers of the pair are filled and armed, the inxbsy bit is set to `1' by the USB controller and the MCU does not load new data into the inxbuf buffer. When one or both buffers of the pair are empty (unarmed), the inxbsy bit is set to `0' by the USB controller and the MCU may fill inxbuf with new data and reload the inxbc register to arm the endpoint for transmission. Clearing the inxbsy bit (write a `1') causes both of the paired endpoints to unarm. An interrupt request is generated after each data packet is correctly sent, independent of the inxbsy bit. 7.5.5.2 Paired OUT endpoint status When the MCU pairs OUT endpoints by setting bit in the usbpair register, it also reloads twice the outxbc register to arm paired OUT endpoints. When both endpoint buffers of the pair are empty and no data is available for the MCU, the outxbsy bit is set to `1' by the USB controller. When one or both of the buffers contain valid data, the outxbsy bit is reset to `0' by the USB controller. Clearing the outxbsy bit (write a `1') causes both of the paired endpoints to unarm. An interrupt request is generated after each data packet is correctly received, independent of outxbsy bit or dstall. To receive an interrupt you must arm the endpoint by setting outxbc to a non-zero value. 7.6 Isochronous endpoints Isochronous (ISO) transactions have a token and a data phase, but no handshake phase. ISO transactions do not support a handshake phase or retry capability and they do not support a data toggle synchronization mechanism. Isochronous transmission is double buffered. An ISO FIFO swap occurs for every start of frame packet. 7.6.1 Isochronous endpoints implementation The USB controller contains one IN endpoint and one isochronous OUT endpoint (Endpoint 8 IN/OUT). Revision 1.1 Page 76 of 187 nRF24LU1+ Product Specification 7.6.2 Isochronous endpoints registers Register name inisoval in8addr usbpair(7) usbien(1) in8data usbirq(1) Bit name in8val register isosend0 sofie register sofir Bit description IN 8 endpoint valid IN 8 endpoint address register ISO endpoints send a zero length data packet if it is empty Start of Frame interrupt enable IN 8 endpoint data register Start of Frame interrupt request Table 32. ISO IN endpoint registers Register name outisoval out8addr usbien(1) out8data usbirq(1) out8bch out8bcl isoerr Bit name out8val register sofie register sofir register register iso8err Bit description OUT 8 endpoint valid OUT 8 endpoint address register Start of Frame interrupt enable OUT 8 endpoint data register Start of Frame interrupt request Received byte count register high Received byte count register low OUT 8 endpoint CRC error Table 33. ISO OUT endpoint registers 7.6.3 ISO endpoints initialization The MCU performs the following steps to enable isochronous IN (OUT) endpoints for normal operation: * * * * Sets the appropriate valid bits into the in(out)isoval register. Sets the endpoint's FIFO size by loading the start address into the in(out)8addr register. Sets the isosend0 bit into the usbpair register - for IN endpoints only. Enables the start of frame interrupt by setting the sofie bit in the usbien register. 7.6.4 ISO transfers The MCU serves all the ISO endpoints in response to a start of frame interrupt request. 7.6.4.1 ISO IN transfers IN Token Payload Data Packet IN (0) Host to Device Device to Host Figure 34. ISO IN transfer The MCU loads new data into the ISO IN endpoint buffer(s) at every start of frame interrupt request. The ISO IN endpoint is accessed through the in8data register. The USB controller keeps track of the number of bytes that the MCU loads and sends loaded data during the next frame. Revision 1.1 Page 77 of 187 nRF24LU1+ Product Specification When the host wants to receive ISO data, it issues an IN token for a specific endpoint. If the IN buffer the host selected contains data, the USB controller responds by returning a data packet. If the buffer is empty the USB controller behavior depends on the isosend0 bit: * * If the isosend0 bit is set, the USB controller responds with a zero byte length data packet. If the isosend0 bit is not set, USB controller does not respond. 7.6.4.2 ISO OUT transfers Payload Data IN Packet Token OUT (0) Host to Device Device to Host Figure 35. ISO OUT transfer With every start of frame interrupt request the MCU reads data that was sent by the host in the previous frame. Out8bch and out8bcl registers contain the number of transferred bytes. Data is accessible through the out8data register. The USB controller sets the iso8err bit when the ISO data packet is corrupted. 7.7 Memory configuration 7.7.1 On-chip memory map All endpoint buffers are located in a single 512 byte memory block. Bulk OUT buffers block start at address 0. You can program localization of the Bulk IN buffers using binstaddr register. If the host sends a packet which is larger than the configured buffer size, the USB controller will not NAK or STALL. You can program start of ISO buffers using isostaddr register. Additionally, program size of the ISO buffers using isosize register. Note: All ISO endpoints are double buffered. Figure 36. shows on-chip memory organization. See Appendix A on page 184 for various USB memory configurations. Revision 1.1 Page 78 of 187 nRF24LU1+ Product Specification On-Chip Memory comments usbramaddr 0x000 (Bulk starts at 0x000) Bulk OUT buffers up to 192 Bytes 0x0C0 (max) (*4) Bulk IN buffers up to 192 Bytes 0x180 (max) binstaddr = sum of sizes of all Bulk OUT endpoints 4 (*16) sum of sizes of all Bulk endpoints 16 isostaddr = ISO buffers up to 64 Bytes ( toggle 0 ) + 0x1C0 (max) (*16) + isosize = sum of sizes of all ISO endpoints 16 ISO buffers up to 64 Bytes ( toggle 1 ) Figure 36. On-chip memory map 7.7.2 Setting ISO FIFO size 128 byte ISO buffers memory may be distributed over the two endpoint addresses: EP8 IN and EP8 OUT. The MCU initializes the endpoint FIFO sizes by setting the starting address for each FIFO. The first FIFO starting address is 0x000. The size of an isochronous endpoint FIFO is determined by subtracting consecutive values of FIFO 8 starting addresses. Note: Only the six most significant bits can be written by the MCU (see Figure 37. on page 79). 8-bit in(out)8addr register addr9 addr8 addr7 addr6 addr5 addr4 0 FIFO 8 starting address Figure 37. FIFO 8 starting address Revision 1.1 Page 79 of 187 0 0 0 nRF24LU1+ Product Specification The LSB values of the in(out)8addr register are always zero, that is, the smallest size of FIFO buffer for each ISO endpoints is 16 bytes. 7.7.3 Setting Bulk OUT size 8-bit boutxaddr register addr9 addr8 addr7 addr6 addr5 addr4 addr3 addr2 0 Bulk OUT x starting address Figure 38. Bulk OUT x starting address Bulk OUT buffers memory can be distributed over the 6 bulk OUT endpoints. Size of each Bulk OUT endpoint should be programmed using boutxaddr registers. When OUT x endpoint is not used the boutxaddr for this endpoint should be set to 0x000. The first starting address (EP0 OUT) is 0x000. The size of a bulk OUT endpoint is determined by subtracting consecutive values of bulk OUT x starting addresses. The size of Bulk OUT buffer is a multiple of two bytes. Here is an example initialization of the boutxaddr registers: const uint8_t EP0OUTSTARTADDR = 0; // start address for EP0 OUT bout1addr = EP0OUTSTARTADDR + (EP0OUT_SIZE/2); bout2addr = bout1addr + (EP1OUT_SIZE/2); bout3addr = bout2addr + (EP2OUT_SIZE/2); bout4addr = bout3addr + (EP3OUT_SIZE/2); bout5addr = bout4addr + (EP4OUT_SIZE/2); binstaddr = (bout5addr + (EP5OUT_SIZE/2))/2; Bulk IN buffers 7.7.4 // beginning of Setting Bulk IN size 8-bit binxaddr register addr9 addr8 addr7 addr6 addr5 addr4 addr3 addr2 0 Bulk IN x starting address Figure 39. Bulk IN x starting address Bulk IN buffers memory can be distributed over the 6 bulk IN endpoints. Size of each bulk IN endpoint is programmed using binxaddr registers. Revision 1.1 Page 80 of 187 nRF24LU1+ Product Specification When IN x endpoint does not exist (or is not used) the binxaddr for it should be set to 0x000. The first starting address (EP0 IN) is 0x000. The size of a Bulk IN endpoint is determined by subtracting consecutive values of Bulk IN x starting addresses. The size of Bulk IN buffer is a multiple of two bytes. Here is an example initialization of the binxaddr registers: const unsigned char EP0INSTARTADDR = 0; // start address for EP0 IN bin1addr = EP0INSTARTADDR + (EP0IN_SIZE/2); bin2addr = bin1addr + (EP1IN_SIZE/2); bin3addr = bin2addr + (EP2IN_SIZE/2); bin4addr = bin3addr + (EP3IN_SIZE/2); bin5addr = bin4addr + (EP4IN_SIZE/2); isostaddr = (bin5addr + (EP5IN_SIZE/2))/8 + binstaddr/4; // beginning of the ISO buffers 7.8 The USB controller interrupts The USB controller provides the two following interrupt signals for MCUs: * * USBWU USBIRQ The USB controller generates interrupts by setting the USBWU or USBIRQ signal high and then setting it low. This interrupt request pulse is detected by the MCU as an edge triggered interrupt. 7.8.1 Wakeup interrupt request When the USB controller is suspended by the host, it can be resumed in two ways: * * By the MCU setting the wakeup bit 6 of USBCON SFR register. By receiving a resume request from the host. After resuming, the USB controller generates a wakeup interrupt request by setting the USBWU signal high. 7.8.2 USB interrupt request The USB interrupt request is provided through the USBIRQ signal and includes: * * * * * * 12 bulk endpoint interrupts Start of frame interrupt (sofir) Suspend interrupt (suspir) USB reset interrupt (uresir) Setup token interrupt (sutokir) Setup data valid interrupt (sudavir) Figure 40. on page 83 shows all the interrupt sources and their natural priority. After servicing the USB controller interrupt, the MCU clears the individual interrupt request flag in the USB registers. If any other USB interrupts are pending, the act of clearing the interrupt request flag causes the USB controller to generate another pulse for the highest priority pending interrupt. If more than one interrupt is pending, each is serviced in the priority order. The sequence of clearing the interrupt requests is important. The MCU first clears the main interrupt request flag (USBIRQ) and then each individual interrupt request in the USB controller register (usbirq). Revision 1.1 Page 81 of 187 nRF24LU1+ Product Specification Clearing the interrupt source immediately generates an interrupt pulse for the next pending interrupt. The interrupt may be lost when the MCU clears the main interrupt request flag after clearing the individual interrupt source. Note: There is a difference between the interrupt USBIRQ, which is defined in Table 138., and the register usbirq described in Table 44. Revision 1.1 Page 82 of 187 nRF24LU1+ Product Specification natural priority highest sudav interrupt request bits usbirq(0) sof usbirq(1) sutok usbirq(2) susp usbirq(3) ures usbirq(4) in0 in_irq(0) out0 out_irq(0) in1 in_irq(1) out1 out_irq(1) in2 in_irq(2) out2 out_irq(2) in3 in_irq(3) out3 out_irq(3) in4 in_irq(4) out4 out_irq(4) in5 in_irq(5) out5 out_irq(5) interrupt enable bits usbien(0) 1 0 usbien(1) 1 0 usbien(2) 1 0 usbien(3) 1 0 usbien(4) 1 0 in_ien(0) 1 0 out_ien(0) 1 0 in_ien(1) 1 0 out_ien(1) 1 0 in_ien(2) 1 0 out_ien(2) 1 0 in_ien(3) 1 0 out_ien(3) 1 0 in_ien(4) 1 0 out_ien(4) 1 0 in_ien(5) 1 0 out_ien(5) 1 0 lowest Figure 40. The USB controller interrupt sources Revision 1.1 Page 83 of 187 interrupt request generator USBIRQ nRF24LU1+ Product Specification 7.8.3 USB interrupt vectors The USB controller prioritizes the USB interrupts if two or more occur simultaneously. The vector of the active interrupt is available in the ivec register. Table 34. shows the contents of the ivec register for the USB interrupts. Source of interrupt sudav sof sutok suspend usbreset ep0in ep0out ep1in ep1out ep2in ep2out ep3in ep3out ep4in ep4out ep5in ep5out Register bit usbirq(0) usbirq(1) usbirq(2) usbirq(3) usbirq(4) In_irq(0) out07irq(0) In_irq(1) out07irq(1) In_irq(2) out07irq(2) In_irq(3) out07irq(3) In_irq(4) out07irq(4) In_irq(5) out07irq(5) Contents of ivec register 0x00 0x04 0x08 0x0C 0x10 0x18 0x1C 0x20 0x24 0x28 0x2C 0x30 0x34 0x38 0x3C 0x40 0x44 Table 34. Interrupt vectors 7.9 The USB controller registers The microprocessor interfaces with the USB controller logic through the following registers and RAM buffers. 7.9.1 Bulk IN data buffers (inxbuf) Six 32 byte bulk IN buffers are in RAM memory. Address 0xC700-0xC73F 0xC680-0xC6BF 0xC600-0xC63F 0xC580-0xC5BF 0xC500-0xC53F 0xC480-0xC4BF Name in0buf in1buf in2buf in3buf in4buf in5buf Function Max 64 bytes bulk 0 IN buffer Max 64 bytes bulk 1 IN buffer Max 64 bytes bulk 2 IN buffer Max 64 bytes bulk 3 IN buffer Max 64 bytes bulk 4 IN buffer Max 64 bytes bulk 5 IN buffer Note: The sum of all endpoints (IN+OUT+ISO) must be less or equal to 512. Table 35.Bulk IN endpoints memory locations Revision 1.1 Page 84 of 187 nRF24LU1+ Product Specification 7.9.2 Bulk OUT data buffers (outxbuf) Six 32 byte bulk OUT buffers are in RAM memory. Address 0xC6C0-0xC6FF 0xC640-0xC67F 0xC5C0-0xC5FF 0xC540-0xC57F 0xC4C0-0xC4FF 0xC440-0xC47F Name out0buf out1buf out2buf out3buf out4buf out5buf Function Max 64 bytes bulk 0 OUT buffer Max 64 bytes bulk 1 OUT buffer Max 64 bytes bulk 2 OUT buffer Max 64 bytes bulk 3 OUT buffer Max 64 bytes bulk 4 OUT buffer Max 64 bytes bulk 5 OUT buffer Note: The sum of all endpoints (IN+OUT+ISO) must be less or equal to 512. Table 36.Bulk OUT endpoints memory locations 7.9.3 Isochronous OUT endpoint data FIFO (out8dat) Address 0xC760 Name out8data Function ISO OUT endpoint 8 data FIFO register Table 37. The out8dat register 7.9.4 Isochronous IN endpoint data FIFOs (in8dat) Address 0xC768 Name in8data Function ISO IN endpoint 8 FIFO data register Table 38. The in8dat register 7.9.5 Isochronous data bytes counter (out8bch/out8bcl) Address 0xC770 0xC771 Name out8bch out8bcl Function ISO OUT endpoint 8 data counter high ISO OUT endpoint 8 data counter low Table 39. The outxbch/bcl register 7.9.6 Isochronous transfer error register (isoerr) Address 0xC7A0 MSB - - - - - - - LSB iso8err Table 40. The isoerr register The isoerr register is updated at every Start Of Frame. The iso8err bits indicate that an error occurred during the receiving of ISO OUT 8 endpoint data packet. Iso8err bit = 1 means that a CRC error occurred, but received data is available in the out8data register. Revision 1.1 Page 85 of 187 nRF24LU1+ Product Specification 7.9.7 The zero byte count for ISO OUT endpoints (zbcout) Address 0xC7A2 MSB - - - - - - - LSB ep8 Table 41. The zbcout register The ep8 bit is set to `1' when zero-byte ISO OUT data packet is received for OUT 8 endpoint in the previous frame. 7.9.8 Endpoints 0 to 5 IN interrupt request register (in_irq) Address 0xC7A9 MSB - - in5ir in4ir in3ir in2ir in1ir LSB in0ir Table 42. The in_irq register inxir is set to `1' when IN packet transmits and ACK receives from the host. Firmware sets inxir to `1' to clear interrupt. 7.9.9 Endpoints 0 to 5 OUT interrupt request register (out_irq) Address 0xC7AA MSB - - out5ir out4ir out3ir out2ir out1ir LSB out0ir Table 43. The out_irq register outxir is set to `1' when OUT packet is received error free. Firmware sets outxir to `1' to clear interrupt. 7.9.10 The USB interrupt request register (usbirq) Address 0xC7AB Bit 7:5 4 Name uresir 3 suspir 2 sutokir 1 sofir 0 sudavir Function Must be zero USB reset interrupt request 1: a USB bus reset is detected USB suspend interrupt request 1: USB SUSPEND signaling detected SETUP token interrupt request 1: SETUP token detected Start of frame interrupt request 1: SOF packet received SETUP data valid interrupt request 1: error free SETUP data packet received Table 44. The usbirq bit functions Firmware clears an interrupt request by writing `1' to the corresponding request bit. Revision 1.1 Page 86 of 187 nRF24LU1+ Product Specification 7.9.11 Endpoint 0 to 5 IN interrupt enables (in_ien) Address 0xC7AC MSB - - in5ien in4ien in3ien in2ien in1ien LSB in0ien out2ien out1ien LSB out0ien Table 45. The in_ien register Firmware sets inxien to `1' to enable interrupt. 7.9.12 Endpoint 0 to 5 OUT interrupt enables (out_ien) Address 0xC7AD MSB - - out5ien out4ien out3ien Table 46. The out_ien register Firmware sets outxien to `1' to enable interrupt. 7.9.13 USB interrupt enable (usbien) Address 0xC7AE Bit 7:5 4 3 2 1 0 Name uresie suspie sutokie sofie sudavie Function Must be zero USB reset interrupt enable USB suspend interrupt enable SETUP token interrupt enable Start of frame interrupt enable SETUP data valid interrupt enable Table 47. The usbien register Revision 1.1 Page 87 of 187 nRF24LU1+ Product Specification 7.9.14 Endpoint 0 control and status register (ep0cs) Address 0xC7B4 Bit 7:6 5 Name chgset 4 dstall 3 outbsy 2 inbsy 1 hsnak 0 ep0stall Function Must be zero Setup Buffer content was changed. Chgset=1 - setup buffer was changed. Chgset=0 - setup buffer was not changed. The MCU clears the chgset bit by writing a `1' to it. The chgset bit is automatically set when USB controller receives setup data packet. Send STALL in the data stage. If dstall bit is set to `1', the USB controller sends a STALL handshake for any IN or OUT token in the data stage. When dstall is set and USB controller sends STALL in the data stage, the ep0stall is automatically set to `1' and USB controller sends STALL handshake also in the status stage. dstall is automatically cleared when a SETUP token arrives. The MCU sets this bit by writing `1' to it. The MCU should set dstall bit after last successful transaction in the data stage. When there were not excessive transactions in the data stage and the next transaction is in the correct status stage the USB controller will answer based on hsnak and ep0stall settings. OUT0 endpoint busy bit. Outbsy is a read only bit that is automatically cleared when a SETUP token arrives. The MCU sets this bit by writing a dummy value to the out0bc register. 1: USB controller controls the OUT 0 endpoint buffer. 0: the MCU controls of the OUT 0 endpoint buffer. IN0 endpoint busy bit. inbsy is a read only bit that is automatically cleared when a SETUP token arrives. The MCU sets this bit by reloading the in0bc register. 1: USB controller controls the IN 0 endpoint buffer. 0: the MCU controls the IN 0 endpoint buffer. If hsnak bit is set to `1', the USB controller responds with a NAK handshake for every packet in the status stage. hsnak bit is automatically set when a SETUP token arrives. The MCU clears the hsnak bit by writing a `1' to it. Endpoint 0 stall. 1: the USB controller sends a STALL handshake for any IN or OUT token. This is done in the data or handshake phases of the CONTROL transfer. Ep0stall is automatically cleared when a SETUP token arrives. The MCU sets this bit by writing `1' to it. Table 48. ep0cs register Revision 1.1 Page 88 of 187 nRF24LU1+ Product Specification 7.9.15 Endpoint 0 to 5 IN byte count registers (inxbc) Address 0xC7B5 0xC7B7 0xC7B9 0xC7BB 0xC7BD 0xC7BF Name in0bc in1bc in2bc in3bc in4bc in5bc Function IN 0 endpoint byte count register IN 1 endpoint byte count register IN 2 endpoint byte count register IN 3 endpoint byte count register IN 4 endpoint byte count register IN 5 endpoint byte count register Table 49. Endpoint 0 to 5 IN byte count register locations After loading the IN x endpoint buffer, the MCU writes to the inxbc register with the number of loaded bytes. Writing to the inxbc register causes the arming of IN x endpoint by setting the inxbsy bit to `1'. When the host sends IN token for IN x endpoint and inxbsy bit is set, the USB controller responds with an inxbc size data packet. 7.9.16 Endpoint 1 to 5 IN control and status registers (inxcs) Address 0xC7B6 0xC7B8 0xC7BA 0xC7BC 0xC7BE Name in1cs in2cs in3cs in4cs in5cs Function IN 1 endpoint control and status register IN 2 endpoint control and status register IN 3 endpoint control and status register IN 4 endpoint control and status register IN 5 endpoint control and status register Table 50. Endpoint 1 to 5 IN control and status register locations Bit 7:2 1 Symbol inxbsy 0 inxstl Function Not used. IN x endpoint busy bit. 1: the USB controller takes control of the IN x endpoint buffer. 0: the MCU takes control of the IN x endpoint buffer. When the host sends an IN token for IN x endpoint and the inxbsy bit is set, the USB controller responds with inxbc size data packet and clears the inxbsy bit. 0: the IN x endpoint is empty and ready for loading by the MCU. 1: the MCU does not access the IN x endpoint buffer. A `1' to `0' transition of the inxbsy bit generates an interrupt request for the IN x endpoint. The MCU sets the inxbsy bit by reloading the inxbc register. IN x endpoint stall bit. 1: the USB controller returns a STALL handshake for all requests to the endpoint x. Table 51. The inxcs register description Revision 1.1 Page 89 of 187 nRF24LU1+ Product Specification 7.9.17 Endpoint 0 to 5 OUT byte count registers (outxbc) Address 0xC7C5 0xC7C7 0xC7C9 0xC7CB 0xC7CD 0xC7CF Name out0bc out1bc out2bc out3bc out4bc out5bc Function OUT 0 endpoint byte count register OUT 1 endpoint byte count register OUT 2 endpoint byte count register OUT 3 endpoint byte count register OUT 4 endpoint byte count register OUT 5 endpoint byte count register Table 52. Endpoint 0 to 5 OUT byte count register locations The outxbc register contains the number of bytes sent during the last OUT transfer from the host to an OUT x endpoint. The outxbc is a read only register that is updated by the USB controller. 7.9.18 Endpoint 1 to 5 OUT control and status registers (outxcs) Address 0xC7C6 0xC7C8 0xC7CA 0xC7CC 0xC7CE Name out1cs out2cs out3cs out4cs out5cs Function OUT 1 endpoint control and status register OUT 2 endpoint control and status register OUT 3 endpoint control and status register OUT 4 endpoint control and status register OUT 5 endpoint control and status register Table 53. Endpoint 1 to 5 OUT control and status register locations Bit 1 0 Symbol Function Not used outxbsy OUT x endpoint busy bit. 1: the USB controller takes control of the OUT x endpoint buffer. 0: the MCU takes control of the OUT x endpoint buffer. When the host sends an OUT token for an OUT x endpoint and the outxbsy bit is set, the USB controller receives an OUT data packet and clears the outxbsy bit. If outxbsy='1', the OUT x endpoint is empty and ready to receive the next data packet from the host. When outxbsy='1', the MCU does not read the OUT x endpoint buffer. A `1' to `0' transition of the outxbsy bit generates an interrupt request for the OUT x endpoint. The MCU sets the outxbsy bit by reloading the outxbc register with a dummy value. outxstl OUT x endpoint stall bit. If outxstl='1', the USB controller returns a STALL handshake for all requests to the endpoint x. Table 54. The outxcs register description Revision 1.1 Page 90 of 187 nRF24LU1+ Product Specification 7.9.19 USB control and status register (usbcs) Address 0xC7D6 Bit 7 Name wakesrc 6 5 sofgen 4 3 discon 2 1 forcej 0 sigrsume Function Wakeup source. This bit indicates that a wakeup pin resumed the USB controller. The MCU resets this bit by writing a `1' to it. Not used. Sofgen= 1 - internal SOF timer is used to generate SOF interrupt in case when SOF issued by USB host was missed. Sofgen= 0 - internal SOF timer is disabled. Default value (after reset) is `0'. Not used. 1: Disconnect the 1.5 kohm internal pull-up resistor on D+ line, 0: Normal Not used. Forcej should be used only in the suspend state. The MCU should set forcej bit to drive J state on the USB lines and then clear forcej and set sigrsume to drive resume-K state on the USB lines. Forcing J state between idle and K state can be done to raise the crossover voltage and eliminate any false SE0. Signal remote device resume. If the MCU sets this bit to `1', the USB controller sets K state on the USB. Table 55. The usbcs bit functions 7.9.20 Data toggle control register (togctl) Address 0xC7D7 Bit 7 Name 6 s 5 r 4 io 3 2 1 0 ep2 ep1 ep0 q Function Data toggle value q='1' means that data toggle for endpoint selected by ep2,ep1,ep0 and io bits is set to DATA1. q='0' means that data toggle for endpoint selected by ep2,ep1,ep0 and io bits is set to DATA0. Before reading this bit, the MCU writes the ep2, ep1, ep0 and io bits. Set data toggle to DATA1. Writing `1' to this bit when endpoint is selected (ep2, ep1, ep0, io bits) causes setting the data toggle to DATA1. Reset data toggle to DATA0. Write `1' to this bit when endpoint is selected (ep2, ep1, ep0, io bits) causes setting data toggle to DATA0. Select IN or OUT endpoint io='1' selects IN endpoint, i0='0' selects OUT endpoint. Not used. Select number of endpoint. Valid values are 0 to 5 (000 - 101). Table 56. The togctl bit functions Revision 1.1 Page 91 of 187 nRF24LU1+ Product Specification 7.9.21 USB frame count low (usbframel/usbframeh) Address 0xC7D8 0xC7D9 Name usbframel usbframeh Function USB frame count low USB frame count high Table 57. USB frame count low (usbframel/usbframeh) The USB controller copies the frame count into the usbframel and usbframeh registers at every SOF (Start Of Frame). These registers are read only. Note: Frame count wraps from 3ffh to 0x000. 7.9.22 Function address register (fnaddr) Address 0xC7DB Name fnaddr Function USB function address (1-127) Table 58. Function address register (fnaddr) The USB controller copies the "function address" which was sent by the host into the fnaddr register. The USB controller responds only with its assigned address. The fnaddr is a read only register. 7.9.23 USB endpoint pairing register (usbpair) Address 0xC7DD Bit 7 Name isosend0 6:5 4 3 2 1 0 pr4out pr2out pr6in pr4in pr2in Function ISO endpoints send zero length data packet. If the USB controller receives IN token for the isochronous endpoint and IN endpoint FIFO is empty, the USB controller response depends on the isosend0 bit. If isosend0='1', the USB controller sends a zero length data packet. If isosend0='0', the USB controller does not respond. Not used. 1: Pair bulk OUT 4 and bulk OUT 5 endpoints. 1: Pair bulk OUT 2 and bulk OUT 3 endpoints. 1: Pair bulk IN 6 and bulk IN 7 endpoints. 1: Pair bulk IN 4 and bulk IN 5 endpoints. 1: Pair bulk IN 2 and bulk IN 3 endpoints. Table 59. The usbpair bit functions 7.9.24 Endpoints 0 to 5 IN valid bits (Inbulkval) Address 0xC7DE MSB 0 0 in5val in4val in3val in2val in1val LSB 1 Table 60. The inbulkval register If inxval='1', the IN x endpoint is active. When inxval='0', the IN x endpoint is inactive and the USB controller does not respond if IN x endpoint is addressed. Revision 1.1 Page 92 of 187 nRF24LU1+ Product Specification 7.9.25 Endpoints 0 to 5 OUT valid bits (outbulkval) Address 0xC7DF MSB 0 0 out5val out4val out3val out2val out1val LSB 1 Table 61. The outbulkval register If outxval='1', the OUT x endpoint is active. When outxval='0', the OUT x endpoint is inactive and the USB controller does not respond if OUT x endpoint is addressed. 7.9.26 Isochronous IN endpoint valid bits (inisoval) Address 0xC7E0 MSB 0 0 0 0 0 0 0 LSB in8val Table 62. The inisoval register If in8val='1', the IN 8 endpoint is active. When in8val='0', the IN 8 endpoint is inactive and the USB controller does not respond if IN 8 endpoint is addressed. 7.9.27 Isochronous OUT endpoint valid bits (outisoval) Address 0xC7E1 MSB 0 0 0 0 0 0 0 LSB out8val Table 63. The outisoval register If out8val='1', the OUT 8 endpoint is active. When out8val='0', the OUT 8 endpoint is inactive and the USB controller does not respond if OUT 8 endpoint is addressed. 7.9.28 SETUP data buffer (setupbuf) Address 0xC7E8-0xC7EF MSB D7 D6 D5 D4 D3 D2 D1 LSB D0 Table 64. The setupbuf buffer The setupbuf contains the 8 bytes of the SETUP data packet from the latest CONTROL transfer. 7.9.29 ISO OUT endpoint start address (out8addr) Address 0xC7F0 MSB A9 A8 A7 A6 A5 A4 0 LSB 0 A4 0 LSB 0 Table 65. The out8addr start address 7.9.30 ISO IN endpoint start address (in8addr) Address 0xC7F8 MSB A9 A8 A7 A6 A5 Table 66. The in8addr start address Revision 1.1 Page 93 of 187 nRF24LU1+ Product Specification 8 Encryption/Decryption Unit The nRF24LU1+ has dedicated HW for data encryption or decryption according to the AES (Advanced Encryption Standard) algorithm. An AES encryption/decryption consists of the transformation of a 128-bit block into an encrypted 128-bit block. 8.1 Features The AES block supports both encryption and decryption in ECB, CBC, CFB, OFB and CTR modes using a 128-bit key and optionally a 128-bit initialization vector. 8.1.1 ECB - Electronic Code Book ECB is the most basic AES encryption/decryption mode. In encryption E the plaintext on DI is converted to a ciphertext on DO. In decryption D the ciphertext on DI is converted to plaintext on DO. ECB must use the last expanded key to decrypt. Decryption reverses encryption operations and is identical to the encryption function. KEY KEY Plaintext Ciphertext E DI D DI DO DO Plaintext Ciphertext Figure 41. ECB - Electronic Code Book 8.1.2 CBC - Cipher Block Chaining CBC adds a feedback mechanism to a block cipher. The result of the previous encryption operation is XOR'ed with incoming data. An initialization vector IV is used for the first iteration. CBC must use the last expanded key to decrypt. Decryption reverses encryption operations and is identical to the encryption function. IV D E E D E IV Figure 42. CBC - Cipher Block Chaining mode Revision 1.1 Page 94 of 187 D nRF24LU1+ Product Specification 8.1.3 CFB - Cipher FeedBack In CFB the output of an encryption operation is fed back to the input of the AES block. An initialization vector IV is used for the first iteration. Input data is encrypted by XORing it with the output of the encryption module. Decryption reverses encryption operations and is identical to the encryption function. IV INIT KEY AES E/D DIN DOUT Figure 43. CFB - Cipher FeedBack mode 8.1.4 OFB - Output FeedBack mode In OFB the output of an encryption operation is fed back to the input of the AES core. An initialization vector IV is used for the first iteration. Input data is encrypted by XORing it with the output of the encryption module. Decryption reverses encryption operations and is identical to the encryption function. IV INIT KEY AES DIN DOUT Figure 44. OFB - Output FeedBack mode 8.1.5 CTR - Counter mode In CTR the output of a counter is the input of the AES core. When entering CTR mode, an initialization vector IV is used to initialize the counter. Input data is encrypted by XORing it with the output of the encryption module. Decryption reverses encryption operations and is identical to the encryption function. Revision 1.1 Page 95 of 187 nRF24LU1+ Product Specification Note: The counter cannot be reinitialized without changing mode. IV INIT KEY Counter AES DIN DOUT Figure 45. CTR - Counter mode 8.2 Functional description The MCU initializes the AES block with key (AESKIN) and optionally the initialization vector (AESIV). Then the MCU loads a 128-bit block into AESD, selects mode and starts the operation with AESCS. When the result is ready, the AESIRQ is asserted and the MCU reads out the AESD register. Alternatively, the AESCS[0] can be polled instead of using interrupts. Address 0xE8 Reset value 0x00 Bit Name 7:5 4:2 mode 1 0 decr go Description Not used Type of AES encryption/decryption 000: CBC, 001: CFB, 010: OFB, 011: CTR, 100: ECB 0: Encrypt, 1: Decrypt Set by SW to `1' to start operation. SW can poll this signal to check if AES block is busy. Automatically reset by HW when operation is completed. An encrypt or decrypt operation takes about 45 Cclk cycles. Table 67. AESCS register The AESKIN, AESIV and AESD are 128-bit registers. In order to update or read one of these registers, 16 consecutive write (or read) operations to a single register are required. The order of writing (or reading) to update a register in nRF24LU1+ begins with the last (16th) operation and works back to the first. Revision 1.1 Page 96 of 187 nRF24LU1+ Product Specification AES data sets are normally organized in two dimensional arrays (ai,j): a0,0 a0,1 a0,2 a0,3 a1,0 a1,1 a1,2 a1,3 a2,0 a2,1 a2,2 a2,3 a3,0 a3,1 a3,2 a3,3 Table 68. A two dimensional array The array position to write to is decided by AESIA1 which contains two 4 bit pointers for the AESKIN register and the AESIV register. These pointers are incremented by each read/write to AESKIN or AESIV. After 16 reads/writes, the pointers wrap around to the starting value. The relation of the byte pointer address n and the position in the AES array (ai,j) is given by the following definition: i = n mod 4; j = [n / 4]; n = 15 - i - 4 * j The relationship between the byte pointer address and the AES array position in nRF24LU1+ is shown in Table 69. below: n = 15 n = 11 n=7 n=3 n = 14 n = 10 n=6 n=2 n = 13 n=9 n=5 n=1 n = 12 n=8 n=4 n=0 Table 69. Relation between the byte pointer address and AES data array Address 0xF1 0xF2 0xF3 Reset value 0x00 0x00 0x00 Bit R/W Description 7:0 7:0 7:0 RW RW RW AESKIN AESIV AESD Table 70. AESKIN, AESIV and AESD registers A partial update can be done by using the AESIA1 or AESIA2 registers (see Table 71. and Table 72.). By setting AESIA1 a single byte or a smaller block can be updated. Address 0xF5 Reset value Bit 0x00 7:4 3:0 Name ia_kin ia_iv Description AESKIN byte pointer address AESIV byte pointer address Table 71. AESIA1 register Revision 1.1 Page 97 of 187 nRF24LU1+ Product Specification The AESIA2 works like AESIA1, but only contains a 4-bit pointer for AESD. Address 0xF6 Reset value 0x00 Bit 7:4 3:0 Name Description not used ia_data AESD byte pointer address Table 72. AESIA2 register Revision 1.1 Page 98 of 187 nRF24LU1+ Product Specification 9 SPI master The system features a simple single buffered SPI (Serial Peripheral Interface) master working in mode 0, that is, capture MISO in rising SCK, and changing MOSI on falling SCK. The SPI bus (MMISO, MSCK and MMOSI) are available at the programmable digital I/O. The SPI hardware does not generate any chip select signal. Another programmable digital I/O must be used to act as chip selects for one or more external SPI devices, see Table 98. on page 117 for details. 9.1 Block diagram MCU MMISO SMDAT MMOSI MSCK Figure 46. Master SPI block diagram 9.2 Functional description The SPI hardware is controlled by SFR registers SMDAT and SMCTRL. Address 0xB2 Reset value 0x00 Bit R/W R/W Function SPI data input/output Table 73. SMDAT register Address Reset value 0xB3 0x00 Bit 7:5 4 3:0 R/W RW RW Function Not used 00: disable, 01: enable Divider factor from MCU clock (Cclk) to SPI clock frequency 0000: 1/2 of Cclk frequency 0001: 1/2 of Cclk frequency 0010: 1/4 of Cclk frequency 0011: 1/8 of Cclk frequency 0100: 1/16 of Cclk frequency 0101: 1/32 of Cclk frequency 0110: 1/64 of Cclk frequency other: 1/64 of Cclk frequency Table 74. SMCTRL register. Revision 1.1 Page 99 of 187 nRF24LU1+ Product Specification 9.3 SPI operation A sequence of 8 pulses is started on MSCK every time you write to the SMDAT register. Also, the 8 bits of SMDAT register are clocked out on MMOSI with MSB clocking out first. Simultaneously, 8 bits from MMISO are clocked into SMDAT register. Output data is shifted on the negative edge of MSCK, and input data is read on the positive edge of MSCK. This is illustrated in Figure 47. When the 8 bits from MMISO are finished, MSDONE interrupt goes active, and the 8 bits from MMISO can be read from SMDAT register. The interrupt bit must be cleared, by writing to SMDAT register again, before starting another SPI transaction. End of write to SMDAT register TMcc TMch TMcl MSCK MMISO TMdh TMdc S7 TMcsd MMOSI S6 S0 TMcd C7 C0 T dready SPI_READY interrupt Figure 47. Master SPI timing Value Description TMsck = TMch + SCK cycle time, as defined by SMCTRL register. TMcl Time from writing to SMDAT register to first MSCK pulse, TMsck / 2. TMcc Delay from negative edge of MSCK to new MMOSI output data, may vary TMcd from -10ns to 10ns. TMdc MMISO setup time to positive edge of MSCK, TMdc > 45ns. MMISO hold time to positive edge of MSCK, TMdh > 0ns. TMdh Tdready Time from last MSCK pulse to MSDONE interrupt goes active. 7 MCU clock cycles. Conditions: Output load= 10pF, MMISO rise/fall time=5ns. Table 75. Master SPI timing values Minimum time between two consecutive SPI transactions is: 8.5 TMsck + Tdready + Tsw where Tsw is the time taken by the software to process MSDONE interrupt and write to SMDAT register. Revision 1.1 Page 100 of 187 nRF24LU1+ Product Specification 10 SPI slave The system features a simple single buffered SPI (Serial Programmable Interface) slave working in mode 0, that is, capturing SMOSI on rising SSCK, and changing SMISO in falling SSCK. The slave SPI monitors the SCSN, SMOSI and SSCK pins, and controls the SMISO pin. They are available on P0.3 to P0.0, see chapter 13 on page 116 for details.The SPI slave may also be used for flash programming when PROG=1, see section 17.7. 10.1 Block diagram MCU SMOSI SMISO SSDAT SSCK Figure 48. Slave SPI block diagram 10.2 Functional description The following registers control the slave SPI. Address 0xBC Reset value 0x00 Bit 7:6 5 4 3 2:1 0 R/W RW RW RW RW Function Not used 1: Disable interrupt when SCSN goes high 1: Disable interrupt when SCSN goes low 1: Disable slave SPI interrupts Not used 1: Enable slave SPI Table 76. SSCONF register Address 0xBE Reset value 0x00 Bit 7:3 2 1 0 R/W R R R Function Not used 1: Interrupt caused by positive edge of SCSN 1: Interrupt caused by negative edge of SCSN 1: Interrupt caused by data-byte sent or receiveda a. If SPI is polled (no interrupts), then IRCON.2 (see chapter 22.4.4 on page 174) should be polled, since reading SSSTAT clears the status-flags. Table 77. SSSTAT register Address 0xBD Reset value 0x00 Bit R/W RW Function Data register Table 78. SSDAT register Revision 1.1 Page 101 of 187 nRF24LU1+ Product Specification 10.3 SPI timing TScwh SCSN TScc TSch TScl TScch SSCK TSdh TSdc SMOSI C7 C6 TScsd C0 TScd SMISO TScdz S7 S0 Figure 49. SPI NOP timing diagram) Parameter SMOSI to SSCK Setup SSCK to SMOSI Hold SCSN to SMISO Active SSCK to SMISO Valid SSCK Low Time SSCK High Time SSCK Frequency SCSN to SSCK Setup SSCK to SCSN Hold SCSN inactive time SCSN to SMISO High Z Symbol TSdc TSdh TScsd TScd TScl TSch FSSCK TScc TScch TScwh TScdz Min. 5 2 Max 35 42 50 50 0 8 2 130 8 25 Units ns ns ns ns ns ns MHz ns ns ns ns Conditions: SMISO load= 10pF, SSCK rise/fall time=2ns, other inputs rise/fall time=5ns. Table 79. SPI timing parameters Revision 1.1 Page 102 of 187 nRF24LU1+ Product Specification 11 Timer/Counters The nRF24LU1+ contains a set of counters used for timing up important system events. 11.1 Features nRF24LU1+ includes the following set of timers/counters: * * Three 16-bit timers/counters (Timer 0, Timer 1 and Timer 2) which can operate as either a timer with a clock rate based on the MCU clock, or as an event counter clocked by signals from the programmable digital I/O. In addition there is a RTC2 wakeup timer which is described in section 19.3.3 on page 161. 11.2 Block diagram Timer 1/Timer 0 TIMER1 (from pin) TH1 TL1 TH0 TL0 TIMER0 (from pin) TCON tf1 (irq) tf0 (irq) TMOD Timer 2 TH2 TIMER2 (from pin) CKLF/2 TL2 tf2 (irq) T2CON t2ex CRCH CRCL CCH3 CCL3 CCH2 CCL2 CCH1 CCL1 exf2 (irq) CCEN Cclk Figure 50. Block diagram of timers/counters 11.3 Functional description 11.3.1 Timer 0 and Timer 1 In timer mode, Timer 0/1 is incremented every 12 clock cycles. In the counter mode, the Timers 1 and 0 are incremented when the falling edge is detected at the corresponding input pin T0 for Timer 0, or T1 for Timer 1. Note: Timer input pins TO, T1, and T2 must be configured as described in section 13.2 on page 118. Revision 1.1 Page 103 of 187 nRF24LU1+ Product Specification Since it takes two clock cycles to recognize a 1-to-0 event, the maximum input count rate is 1/2 of the oscillator frequency. There are no restrictions on the duty cycle, however to ensure proper recognition of 0 or 1 state, an input should be stable for at least 1 clock cycle. Timer 0 and Timer 1 status and control are in TCON and TMOD register. The actual 16-bit Timer 0 value is in TH0 (8 msb) and TL0 (8 lsb), while Timer 1 use TH1 and TL1. Four operating modes can be selected for Timer 0 and Timer 1. Two Special Function Registers, TMOD and TCON, are used to select the appropriate mode. 11.3.1.1 Mode 0 and Mode 1 In mode 0, Timer 0 and Timer 1 are configured as 13-bit registers (TL0/TL1 = 5 bits, TH0/TH1 = 8 bits). The upper three bits of TL0/TL1 are unchanged and should be ignored. In mode 1 Timer 0 and Timer 1 are configured as 16-bit registers. Cclk /12 TMOD.ct0=0 TL0 T0 (from pin) TH0 TCON.tf0 TH1 TCON.tf1 TMOD.ct0=1 TCON.tr0 TMOD.gate0 P0.3 Figure 51. Timer 0 in mode 0 and 1 Cclk /12 TMOD.ct1=0 T1 (from pin) TL1 TMOD.ct1=1 TCON.tr1 Figure 52. Timer 1 in mode 0 and 1 Revision 1.1 Page 104 of 187 nRF24LU1+ Product Specification 11.3.1.2 Mode 2 In this mode, Timer 0 and Timer 1 are configured as 8-bit registers with auto reload. Cclk /12 TMOD.ct0=0 TL0 T0 (from pin) TCON.tf0 TMOD.ct0=1 TCON.tr0 TMOD.gate0 TH0 P0.3 Figure 53. Timer 0 in mode 2 Cclk /12 TMOD.ct1=0 T1 (from pin) TMOD.ct1=1 TL1 TCON.tr1 THi Figure 54. Timer 1 in mode 2 Revision 1.1 Page 105 of 187 TCON.tf1 nRF24LU1+ Product Specification 11.3.1.3 Mode 3 In mode 3 Timer 0 and Timer 1 are configured as one 8-bit timer/counter and one 8-bit timer, but timer 1 in this mode holds its count. When Timer 0 works in mode 3 Timer 1 can still be used in other modes by the serial port as a baud rate generator, or as an application not requiring an interrupt from Timer 1. TH0 TCON.tf1 TL0 TCON.tf0 /12 Cclk TMOD.ct0=0 T0 (from pin) TCON.tr1 TMOD.ct0=1 TCON.tr0 TMOD.gate0 TCON.tf0 P0.3 Figure 55. Timer 0 in mode 3 11.3.2 Timer 2 Timer 2 is controlled by T2CON while the value is in TH2 and TL2. Timer 2 also has four capture and one compare/reload registers which can read a value without pausing or reload a new 16-bit value when Timer 2 reaches zero, see chapter 11.4.7 on page 111 and chapter 11.4.8 on page 111. Cclk Prescaler TIMER2 CCL3 CCL3+ +CCH3 CCH3 CCL2 + CCH2 CCL1 + CCH1 CRCL + CRCH Figure 56. Timer 2 block diagram Revision 1.1 Page 106 of 187 nRF24LU1+ Product Specification 11.3.2.1 Timer 2 description Timer 2 can operate as a timer, event counter, or gated timer. Interrupt (exf2) count enable exen2 th2 + tl2 t2ex Interrupt (tf2) Reload Mode 1 Reload Mode 0 crch + crcl Figure 57. Timer 2 in Reload Mode 11.3.2.2 Timer mode Timer mode is invoked by setting the t2i0=1 and t2i1=0 in the T2CON register. In this mode, the count rate is derived from the clk input. Timer 2 is incremented every 12 or 24 clock cycles depending on the 2:1 prescaler. The prescaler mode is selected by bit t2ps of T2CON register. When t2ps=0, the timer counts up every 12 clock cycles, otherwise every 24 cycles. 11.3.2.3 Event counter mode This mode is invoked by setting the t2i0=0 and t2i1=1 in the T2CON register. In this mode, Timer 2 is incremented when external signal T2 (P0.5) (see section 13.2 on page 118 for more information on T2) changes its value from 1 to 0. The T2 input is sampled at every rising edge of the clock. Timer 2 is incremented in the cycle following the one in which the transition was detected. The maximum count rate is 1/2 of the clock frequency. 11.3.2.4 Gated timer mode This mode is invoked by setting the t2i0=1 and t2i1=1 in the T2CON register. In this mode, Timer 2 is incremented every 12 or 24 clock cycles (depending on T2CON t2ps flag). Additionally, it is gated by the external signal T2 (P0.5). When T2=0, Timer 2 is stopped. Revision 1.1 Page 107 of 187 nRF24LU1+ Product Specification 11.3.2.5 Timer 2 reload A 16-bit reload from the CRC register can be done in two modes: * * Reload Mode 0: Reload signal is generated by Timer 2 overflow (auto reload). Reload Mode 1: Reload signal is generated by negative transition at t2ex. Note: t2ex is connected to an internal clock signal which is half frequency of CKLF (see section 19.3.1 on page 161. 11.4 SFR registers 11.4.1 Timer/Counter control register - TCON TCON register reflects the current status of MCU Timer 0 and Timer 1 and it is used to control the operation of these modules. Address 0x88 Reset value 0x00 Bit Name 7 tf1 6 5 tr1 tf0 4 3 2 1 0 tr0 ie1 it1 ie0 it0 Auto Description clear Yes Timer 1 overflow flag. Set by hardware when Timer1 overflows. No Timer 1 Run control. If cleared, Timer 1 stops. Yes Timer 0 overflow flag. Set by hardware when Timer 0 overflows. No Timer 0 Run control. If cleared, Timer 0 stops. Yes External interrupt 1 flag. Set by hardware. No External interrupt 1 type control. 1: falling edge, 0: low level Yes External interrupt 0 flag. Set by hardware. No External interrupt 0 type control. 1: falling edge, 0: low level Table 80. TCON register The tf0, tf1 (timer 0 and timer 1 overflow flags), ie0 and ie1 (external interrupt 0 and 1 flags) are automatically cleared by hardware when the corresponding service routine is called. Revision 1.1 Page 108 of 187 nRF24LU1+ Product Specification 11.4.2 Timer mode register - TMOD TMOD register is used for configuration of Timer 0 and Timer1. Address 0x89 Reset Bit Name Description value 0x00 7 reserved Must be 0 6 ct1 Timer 1 counter/timer select. 1: Counter, 0: Timer 5-4 mode1 Timer 1 mode 00 - Mode 0: 13-bit counter/timer 01 - Mode 1: 16-bit counter/timer 10 - Mode 2: 8-bit auto-reload timer 11 - Mode 3: Timer 1 stopped 3 gate0 Timer 0 gate control 2 ct0 Timer 0 counter/timer select. 1: Counter, 0: Timer 1-0 mode0 Timer 0 mode 00 - Mode 0: 13-bit counter/timer 01 - Mode 1: 16-bit counter/timer 10 - Mode 2: 8-bit auto-reload timer 11 - Mode 3: two 8-bit timers/counters Table 81. TMOD register 11.4.3 Timer0 - TH0, TL0 Address 0x8A 0x8C Register name TL0 TH0 Table 82. Timer 0 register (TH0:TL0) These registers reflect the state of Timer 0. TH0 holds higher byte and TL0 holds lower byte. Timer 0 can be configured to operate as either a timer or a counter. 11.4.4 Timer1 - TH1, TL1 Address 0x8B 0x8D Register name TL1 TH1 Table 83. Timer 1 register (TH1:TL1) These registers reflect the state of Timer 1. TH1 holds higher byte and TL1 holds lower byte. Timer 1 can be configured to operate as either timer or counter. Revision 1.1 Page 109 of 187 nRF24LU1+ Product Specification 11.4.5 Timer 2 control register - T2CON T2CON register reflects the current status of Timer 2 and is used to control the Timer 2 operation. Address 0xC8 Reset Bit Name Description value 0x00 7 t2ps Prescaler select. 0: timer 2 is clocked with 1/12 of the Cclk frequency. 1: timer 2 is clocked with 1/24 of the Cclk frequency. 6 i3fr INT3 edge select. 0: falling edge, 1: rising edge 5 i2fr INT2 edge select: 0: falling edge, 1: rising edge 4:3 t2r Timer 2 reload mode. 0X - reload disabled, 10 - Mode 0, 11 - Mode 1 2 t2cm Timer 2 compare mode. 0: Mode 0, 1: Mode 1 1-0 t2i Timer 2 input select. 00: stopped, 01: f/12 or f/24, 10: falling edge of t2, 11: f/12 or f/24 gated by t2. Table 84. T2CON register 11.4.6 Timer 2 - TH2, TL2 Address 0xCC 0xCD Register name TL2 TH2 Table 85. Timer 2 (TH2:TL2) The TL2 and TH2 registers reflect the state of Timer 2. TH2 holds higher byte and TL2 holds lower byte. Timer 2 can be configured to operate in compare, capture or, reload modes. Revision 1.1 Page 110 of 187 nRF24LU1+ Product Specification 11.4.7 Compare/Capture enable register - CCEN The CCEN register serves as a configuration register for the Compare/Capture Unit associated with the Timer 2. Address 0xC1 Reset value 0x00 Bit Name 7:6 coca3 5:4 coca2 3:2 coca1 1:0 coca0 Description compare/capture mode for CC3 register 00: compare/capture disabled 01: reserved 10: reserved 11: capture on write operation into register CCL3 compare/capture mode for CC2 register 00: compare/capture disabled 01: reserved 10: reserved 11: capture on write operation into register CCL2ah3 compare/capture mode for CC1 register 00: compare/capture disabled 01: reserved 10: reserved 11: capture on write operation into register CCL1 compare/capture mode for CRC register 00: compare/capture disabled 01: reserved 10: compare enabled 11: capture on write operation into register CRCL Table 86. CCEN register 11.4.8 Capture registers - CC1, CC2, CC3 The Compare/Capture registers (CC1, CC2, CC3) are 16-bit registers used by the Compare/Capture Unit associated with the Timer 2. CCHn holds higher byte and CCLn holds lower byte of the CCn register. Address 0xC2 0xC3 0xC4 0xC5 0xC6 0xC7 Register name CCL1 CCH1 CCL2 CCH2 CCL3 CCH3 Table 87. Capture Registers - CC1, CC2 and CC3 Revision 1.1 Page 111 of 187 nRF24LU1+ Product Specification 11.4.9 Compare/Reload/Capture register - CRCH, CRCL Address 0xCA 0xCB Reset value 0x00 0x00 Register name CRCL CRCH Table 88. Compare/Reload/Capture register - CRCH, CRCL CRC (Compare/Reload/Capture) register is a 16-bit wide register used by the Compare/Capture Unit associated with Timer 2. CRCH holds higher byte and CRCL holds lower byte. Revision 1.1 Page 112 of 187 nRF24LU1+ Product Specification 12 Serial Port (UART) The MCU system is configured with one serial port that is identical in operation to the standard 8051 serial port (Serial interface 0). The two serial port signals RXD and TXD are available at the programmable digital I/O. See Chapter 13 on page 116. The serial port (UART) derives its clock from the MCU clock; Cclk. See chapter 20.4.1 on page 167 for more information. 12.1 * * * * * Features Synchronous mode, fixed baud rate 8-bit UART mode, variable baud rate 9-bit UART mode, variable baud rate 9-bit UART mode, fixed baud rate Additional baud rate generator 12.2 Block diagram Transmit & Receive UART/RXD (from pin) UART/TXD (to pin) S0BUF S0CON WDCON.7 From Timer 1 Baud rate generator S0RELH S0RELL Figure 58. Block diagram of serial port 12.3 Functional description The serial port is controlled by S0CON, while the actual data transferred is read or written in the S0BUF register. Transmission speed (baud rate) is selected using the S0RELL, S0RELH and WDCON registers. Revision 1.1 Page 113 of 187 nRF24LU1+ Product Specification 12.4 SFR registers 12.4.1 Serial Port 0 control register - S0CON The S0CON register controls the function of Serial Port 0. Address 0x98 Reset value 0x00 Bit Name 7:6 5 4 3 2 1 0 Description sm0: Serial Port 0 mode select sm1 0 0: Mode 0 - Shift register at baud rate Cclk / 12 0 1: Mode 1 - 8-bit UART. Baud rate see Figure 59. on page 114 1 0: Mode 2 - 9-bit UART at baud rate Cclk /32 or Cclk/64a 1 1: Mode 3 - 9 bit UART. Baud rate see Figure 59. on page 114 sm20 Multiprocessor communication enable ren0 Serial reception enable: 1: Enable Serial Port 0. tb80 Transmitter bit 8. This bit is used while transmitting data through Serial Port 0 in Modes 2 and 3. The state of this bit corresponds with the state of the 9th transmitted bit (for example, parity check or multiprocessor communication). It is controlled by software. rb80 Received bit 8. This bit is used while receiving data through Serial Port 0 in Modes 2 and 3. It reflects the state of the 9th received bit. ti0 Transmit interrupt flag. It indicates completion of a serial transmission at Serial Port 0. It is set by hardware at the end of bit 8 in mode 0 or at the beginning of a stop bit in other modes. It must be cleared by software. ri0 Receive interrupt flag. It is set by hardware after completion of a serial reception at Serial Port 0. It is set by hardware at the end of bit 8 in mode 0 or in the middle of a stop bit in other modes. It must be cleared by software. a. If smod = 0 baud rate is Cclk/64, if smod = 1 then baud rate is Cclk/32. Table 89. S0CON register The baud rate for Mode 1 or Mode 3 is: for bd ( wdcon.7) = 0 : baud rate = 2 smod * Cclk * (Timer 1 overflow rate ) 32 for bd ( wdcon.7) = 1 : baud rate = 2 smod * Cclk 64 * 210 - s 0rel ( ) Figure 59. Equation of baud rate settings for Serial Port 0 Revision 1.1 Page 114 of 187 nRF24LU1+ Product Specification Below is an explanation of some of the values used in Figure 59. : Value smod (PCON.7) s0rel bd (wdcon.7) Definition Serial Port 0 baud rate select flag The contents of S0REL registers (s0relh, s0rell) see chapter 12.4.3 on page 115. The MSB of WDCON register see chapter 12.4.4 on page 115 Table 90. Values of S0CON equation 12.4.2 Serial port 0 data buffer - S0BUF Address 0x99 Reset value 0x00 Register name S0BUF Table 91. S0BUF register Writing data to the SOBUF register sets data in serial output buffer and starts the transmission through Serial Port 0. Reading from the S0BUF reads data from the serial receive buffer. 12.4.3 Serial port 0 reload register - S0RELH, S0RELL Serial Port 0 Reload register is used for Serial Port 0 baud rate generation. Only 10 bits are used, 8 bits from the S0RELL, and 2 bits from the S0RELH. Address 0xAA 0xBA Reset value 0xD9 0x03 Register name S0RELL S0RELH Table 92. S0RELL/S0RELH register 12.4.4 Serial Port 0 baud rate select register - WDCON The MSB of this register is used by Serial Port 0 for baud rate generation Address 0xD8 Reset Bit Name Description value 0x00 7 bd Serial Port 0 baud rate select (in modes 1 and 3) When 1, additional internal baud rate generator is used, otherwise Timer 1 overflow is used.a 6-0 Not used Table 93. WDCON register a. It is not recommended to use Timer1 overflow as baud generator. Revision 1.1 Page 115 of 187 nRF24LU1+ Product Specification 13 Input/Output port (GPIO) Six general purpose I/O lines are available on the nRF24LU1+. These can be used for general I/O with selectable direction for each bit, or these lines can be used for specialized functions. 13.1 Normal IO When PROG=0, the GPIO pins are controlled by the registers P0ALT, P0DIR and P0EXP, when PROG=1 the GPIO pins are configured as a slave SPI port, see pins SCSN, SMISO,SMOSI, SSCK below. The P0ALT register selects between the default and the alternate functions for each of the six port pins when P0EXP=0. If P0ALT=0 then the default function is selected, port data is set with the P0 register, and pin direction is set with P0DIR register. Address 0x80 Reset value 0xFF bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bbit 0 - - D5 D4 D3 D2 D1 D0 Table 94. P0 register Address 0x94 Reset value 0xFF Bit 7:6 5:0 Description Not used 0: P0.x is output, 1: P0.x is input Table 95. P0DIR register The P0ALT and P0EXP registers are used to select alternate or expanded functions, see Table 98. on page 117 for details. Address 0x95 Reset value 0x00 Bit 7:6 5:0 Description Not used 1: Alternate function, 0: General I/O, see Table 99. on page 118 Table 96. P0ALT register Address 0xC9 Reset value 0x00 Bit 7:6 5:4 3:2 1:0 Description Controls P0.5 Controls P0.4 Not used Controls P0.3-P0.0, see Table 99. on page 118 for details Table 97. P0EXP register The relationship between the P0EXP and P0ALT registers is shown in Table 98. on page 117. Revision 1.1 Page 116 of 187 nRF24LU1+ Product Specification Pin Normal Default Alternate function Expanded 1 Expanded 2 Expanded 3 10 P0ALT[5] x 11 10 P0ALT[4] x 11 11 P0.3a 10 P0ALT[3-0] x SCSN MMISO MMOSI MSCK SMISO SMOSI SSCK P0EXP[7:6] 00 P0ALT[5] P0.5 0 D5 01 1 T0 (timer0 input) T2 (timer2 input) P0EXP[5:4] 00 P0ALT[4] P0.4 0 D4 01 1 00 P0ALT[3-0] P0.3 0 D3 P0.2 P0.1 P0.0 D2 D1 D0 1 INT0 (interrupt) TXD (UART) RXD (UART) GTIMERb T1 (timer1 input) P0EXP[1:0] 01 a. Configured as output, typically used for Master SPI, see chapter 9 on page 99. b. GTIMER is an RTC output controlled by WGTIMER, see chapter 19.3.6 on page 162. Table 98. Port functions Revision 1.1 Page 117 of 187 nRF24LU1+ Product Specification 13.2 Expanded IO The combined effect of the P0ALT and P0EXP register is shown in Table 99. on page 118. The content of both P0ALT and P0EXP is shown in binary. An `X' in Table 104 means that the bit can both be `0' or `1'. P0ALT 00000000 001XXXXX 001XXXXX 00X1XXXX 00X1XXXX 00X1XXXX 00XX1XXX 00XX1XXX 00XX1XXX 00XX1XXX 00XXX1XX 00XXX1XX 00XXX1XX 00XXX1XX 00XXXX1X 00XXXX1X 00XXXX1X 00XXXX1X 00XXXXX1 00XXXXX1 00XXXXX1 00XXXXX1 a. b. c. d. e. P0EXP 00000000 00XXXXXX 01XXXXXX XX00XXXX XX01XXXX XX11XXXX XXXXXX00 XXXXXX01 XXXXXX10 XXXXXX11 XXXXXX00 XXXXXX01 XXXXXX10 XXXXXX11 XXXXXX00 XXXXXX01 XXXXXX10 XXXXXX11 XXXXXX00 XXXXXX01 XXXXXX10 XXXXXX11 P0.5 D5 T0a T2b P0.4 D4 P0.3 D3 P0.2 D2 P0.1 D1 T1c INT0d MCSN SCSN OCITDO TXD MMISO SMISO OCITDI RXD MMOSI SMOSI OCITMS GTIMERe MSCK SSCK OCITCK Timer0 input Timer2 input Timer1 input Interrupt input INT0 GTIMER is an RTC output controlled by WGTIMER, see chapter 19.3.6 on page 162. Table 99. Alternative functions of Port 0 Revision 1.1 P0.0 D0 Page 118 of 187 nRF24LU1+ Product Specification 14 MCU The nRF24LU1+ contains a fast 8-bit MCU, which executes the normal 8051 instruction set. The architecture eliminates redundant bus states and implements parallel execution of fetch and execution phases. Most of the one-byte instructions are performed in one single cycle. The MCU uses 1 clock per cycle. This leads to a performance improvement rate of 8.0 (in terms of MIPS) with respect to legacy 8051 devices. The original 8051 had a 12-clock architecture. A machine cycle needed 12 clocks and most instructions were either one or two machine cycles. Except for MUL and DIV instructions, the 8051 used either 12 or 24 clocks for each instruction. Each cycle in the 8051 also used two memory fetches. In many cases, the second fetch was a dummy, and extra clocks were wasted. Table 100. shows the speed advantage compared to a legacy 8051. A speed advantage of 12 implies that the instruction is executed twelve times faster. The average speed advantage is 8.0. However, the real speed improvement seen in any system depends on the instruction mix. Speed advantage 24 12 9.6 8 6 4.8 4 3 Average: 8.0 Number of instructions 1 27 2 16 44 1 18 2 Sum: 111 Number of opcodes 1 83 2 38 89 2 31 9 Sum: 255 Table 100. Speed advantage summary 14.1 * * * * * Features Control Unit X 8-bit Instruction decoder X Reduced instruction cycle time (up to 12 times in respect to standard 80C51) Arithmetic-Logic Unit X 8-bit arithmetic and logical operations X Boolean manipulations X 8 x 8 bit multiplication and 8 / 8 bit division Multiplication-Division Unit X 16 x 16 bit multiplication X 32 / 16 bit and 16 / 16 bit division X 32-bit normalization X 32-bit L/R shifting Three 16-bit Timers/Counters X 80C51-like Timer 0 & 1 X 80515-like Timer 2 Compare/Capture Unit, dedicated to Timer 2 X Four 16-bit Compare registers used for Pulse Width Modulation X Four external Capture inputs used for Pulse Width Measuring X 16-bit Reload register used for Pulse Generation Revision 1.1 Page 119 of 187 nRF24LU1+ Product Specification * Full Duplex Serial Interfaces X Serial 0 (80C51-like) X Synchronous mode, fixed baud rate X 8-bit UART mode, variable baud rate X 9-bit UART mode, fixed baud rate X 9-bit UART mode, variable baud rate X Baud Rate Generator Interrupt Controller X Four Priority Levels with 13 interrupt sources Memory interface X addresses up to 64 kB of External Program/Data Memory X Dual Data Pointer for fast data block transfer Hardware support for software debug * * * 14.2 Block diagram Timer0 and 1 Memory control Internal Flash and RAM PC DPTR DPTR1 TL0 TL1 TH0 TH1 TCON TMOD Timers inputs DPS Timer 2 RAM/SFR control TL2 TH2 4x CCU_PORT Memory/SFR Interface T2CON CRCL CRCH CCL1 CCH1 SP CCL2 CCH2 Timer 2 inputs CCL3 CCH3 ALU ACC B PSW ISR IP0 IP1 IEN0 IEN1 Interrupt inputs MDU MD0 MD2 MD4 ARCON SERIAL 0 S0CON MD1 MD3 MD5 GPIO P0 Figure 60. MCU block diagram Revision 1.1 Page 120 of 187 S0BUF Serial 0 Interface Port 0.0-0.5 nRF24LU1+ Product Specification 14.3 Arithmetic Logic Unit (ALU) The Arithmetic Logic Unit (ALU) provides 8-bit division, 8-bit multiplication, and 8-bit addition with or without carry. The ALU also provides 8-bit subtraction with borrow and some bitwise logic operations, that is, logical AND, OR, Exclusive OR or NOT. All operations are unsigned integer operations. Additionally, the ALU can increment or decrement 8-bit registers. For accumulator only, it can rotate left or right through carry or not, swap nibbles, clear or complement bits and perform a decimal adjustment. The ALU is handled by three registers, which are memory mapped as special function registers. Operands for operations may come from accumulator ACC, register B or from outside of the unit. The result may be stored in accumulator ACC or may be driven outside of the unit. The control register, that contains flags such as carry, overflow or parity, is the PSW (Program Status Word) register. The nRF24LU1+ also contains an on-chip co-processor MDU (Multiplication Division Unit). This unit enables 32-bit division, 16-bit multiplication, shift and normalize operations, see chapter 18 on page 156 for details. 14.4 Instruction set summary All instructions are binary code compatible and perform the same functions as they do within the legacy 8051 processor. The following tables give a summary of instruction cycles of the MCU core. Mnemonic ADD A,Rn ADD A,direct ADD A,@Ri ADD A,#data ADDC A,Rn ADDC A, direct ADDC A,@Ri ADDC A,#data SUBB A,Rn SUBB A, direct Description Add register to accumulator Add directly addressed data to accumulator Add indirectly addressed data to accumulator Add immediate data to accumulator Add register to accumulator with carry Add directly addressed data to accumulator with carry Add indirectly addressed data to accumulator with carry Add immediate data to accumulator with carry Subtract register from accumulator with borrow Subtract directly addressed data from accumulator with borrow SUBB A, @Ri Subtract indirectly addressed data from accumulator with borrow SUBB A, #data Subtract immediate data from accumulator with borrow INC A Increment accumulator INC Rn Increment register INC direct Increment directly addressed location INC @Ri Increment indirectly addressed location INC DPTR Increment data pointer DEC A Decrement accumulator DEC Rn Decrement register DEC direct Decrement directly addressed location DEC @Ri Decrement indirectly addressed location MUL AB Multiply A and B DIV Divide A by B DA A Decimal adjust accumulator Table 101. Arithmetic operations Revision 1.1 Page 121 of 187 Code Bytes Cycles 0x28-0x2F 1 1 0x25 2 2 0x26-0x27 1 2 0x24 2 2 0x38-0x3F 1 1 0x35 2 2 0x36-0x37 1 2 0x34 2 2 0x98-0x9F 1 1 0x95 2 2 0x96-0x97 1 2 0x94 0x04 0x08-0x0F 0x05 0x06-0x07 0xA3 0x14 0x18-0x1F 0x15 0x16-0x17 0xA4 0x84 0xD4 2 1 1 2 1 1 1 1 2 1 1 1 1 2 1 2 3 3 1 1 2 3 3 5 5 1 nRF24LU1+ Product Specification Mnemonic ANL A, Rn ANL A,direct ANL A,@Ri ANL A,#data ANL direct,A ANL direct,#data ORL A,Rn ORL A,direct ORL A,@Ri ORL A,#data ORL direct,A ORL direct,#data XRL A,Rn XRL A, direct Description AND register to accumulator AND directly addressed data to accumulator AND indirectly addressed data to accumulator AND immediate data to accumulator AND accumulator to directly addressed location AND immediate data to directly addressed location OR register to accumulator OR directly addressed data to accumulator OR indirectly addressed data to accumulator OR immediate data to accumulator OR accumulator to directly addressed location OR immediate data to directly addressed location Exclusive OR register to accumulator Exclusive OR indirectly addressed data to accumulator XRL A,@Ri Exclusive OR indirectly addressed data to accumulator XRL A,#data Exclusive OR immediate data to accumulator XRL direct,A Exclusive OR accumulator to directly addressed location XRL Exclusive OR immediate data to directly direct,#data addressed location CLR A Clear accumulator CPL A Complement accumulator RL A Rotate accumulator left RLC A Rotate accumulator left through carry RR A Rotate accumulator right RRC A Rotate accumulator right through carry SWAP A Swap nibbles within the accumulator Code 0x58-0x5F 0x55 0x56-0x57 0x54 0x52 0x53 Bytes 1 2 1 2 2 3 Cycles 1 2 2 2 3 4 0x48-0x4F 0x45 0x46-0x47 0x44 0x42 0x43 1 2 1 2 2 3 1 2 2 2 3 4 0x68-0x6F 0x66-0x67 1 2 1 2 0x66-0x67 2 2 0x64 0x62 2 2 2 3 0x63 3 4 0xE4 0xF4 0x23 0x33 0x03 0x13 0xC4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Code 0xE8-0xEF 0xE5 0xE6-0xE7 Bytes 1 2 1 Cycles 1 2 2 0x74 0xF8-0xFF 0xA8-0xAF 0x78-0x7F 0xF5 0x88-0x8F 0x85 2 1 2 2 2 2 3 2 2 4 2 3 3 4 0x86-0x87 2 4 Table 102. Logic operations Mnemonic Description MOV A,Rn Move register to accumulator MOV A,direct Move directly addressed data to accumulator MOV A,@Ri Move indirectly addressed data to accumulator MOV A,#data Move immediate data to accumulator MOV Rn,A Move accumulator to register MOV Rn,direct Move directly addressed data to register MOV Rn,#data Move immediate data to register MOV direct,A Move accumulator to direct MOV direct,Rn Move register to direct MOV Move directly addressed data to directly directl,direct2 addressed location MOV Move indirectly addressed data to directly direct,@Ri addressed location Revision 1.1 Page 122 of 187 nRF24LU1+ Product Specification Mnemonic MOV direct,#data MOV @Ri,A MOV @Ri,direct MOV @Ri,#data MOV DPTR,#datal6 MOVC A,@A+DPTR MOVC A,@A+PC MOVX A,@Ri MOVX A,@DPTR MOVX @Ri,A MOVX @DPTR,A PUSH direct POP direct XCH A,Rn XCH A,direct XCH A,@Ri XCHD A,@Ri Description Move immediate data to directly addressed location Move accumulator to indirectly addressed location Move directly addressed data to indirectly addressed location Move immediate data to indirectly addressed location Load data pointer with a 16-bit immediate Load accumulator with a code byte relative to DPTR Load accumulator with a code byte relative to PC Movea external RAM (8-bit addr) to accumulator Movea external RAM (16-bit addr) to accumulator Movea accumulator to external RAM (8-bit addr) Movea accumulator to external RAM (16-bit addr) Push directly addressed data onto stack Pop directly addressed location from stack Exchange register with accumulator Exchange directly addressed location with accumulator Exchange indirect RAM with accumulator Exchange low-order nibbles of indirect and accumulator Code 0x75 Bytes 3 Cycles 3 0xF6-0xF7 1 3 0xA6-0xA7 2 5 0x76-0x77 2 3 0x90 3 3 0x93 1 3 0x83 1 3 0xE2-0xE3 1 4 0xE0 1 4 0xF2-0xF3 1 5 0xF0 1 5 0xC0 0xD0 0xC8-0xCF 0xC5 2 2 1 2 4 3 2 3 0xC6-0xC7 0xD6-0xD7 1 1 3 3 a. The MOVX instructions perform one of two actions depending on the state of pmw bit (pcon.4). Table 103. Data transfer operations Mnemonic ACALL addr11 LCALL addr16 RET RETI AJMP addr11 LJMP addrl6 SJMP rel JMP @A+DPTR JZ rel JNZ rel JC rel JNC rel JB bit, rel JNB bit, rel Revision 1.1 Description Absolute subroutine call Long subroutine call Code xxx10001b 0x12 Bytes 2 3 Cycles 6 6 Return from subroutine Return from interrupt Absolute jump Long jump Short jump (relative address) Jump indirect relative to the DPTR 0x22 0x32 xxx00001b 0x02 0x80 0x73 1 1 2 3 2 1 4 4 3 4 3 2 0x60 0x70 0x40 0x50 0x20 0x30 2 2 2 2 3 3 3 3 3 3 4 4 Jump if accumulator is zero Jump if accumulator is not zero Jump if carry flag is set Jump if carry flag is not set Jump if directly addressed bit is set Jump if directly addressed bit is not set Page 123 of 187 nRF24LU1+ Product Specification Mnemonic JBC bit, rel CJNE A, direct, rel CJNE A,#data,rel CJNE Rn, #data, rel CJNE @Ri, #data, rel DJNZ Rn, rel DJNZ direct, rel NOP Description Jump if directly addressed bit is set and clear bit Compare directly addressed data to accumulator and jump if not equal Compare immediate data to accumulator and jump if not equal Compare immediate data to register and jump if not equal Compare immediate data to indirect addressed value and jump if not equal Decrement register and jump if not zero Decrement directly addressed location and jump if not zero No operation Code 0x10 0xB5 Bytes 3 3 Cycles 4 4 0xB4 3 4 0xB8-0xBF 3 4 0xB6-B7 3 4 0xD8-DF 0xD5 2 3 3 4 0x00 1 1 Table 104. Program branches Mnemonic CLR C CLR bit SETB C SETB bit CPL C CPL bit ANL C,bit ANL C,/bit ORL C,bit ORL C,/bit MOV C,bit MOV bit,C Description Clear carry flag Clear directly addressed bit Set carry flag Set directly addressed bit Complement carry flag Complement directly addressed bit AND directly addressed bit to carry flag AND complement of directly addressed bit to carry OR directly addressed bit to carry flag OR complement of directly addressed bit to carry Move directly addressed bit to carry flag Move carry flag to directly addressed bit Table 105. Boolean manipulation Revision 1.1 Page 124 of 187 Code 0xC3 0xC2 0xD3 0xD2 0xB3 0xB2 0x82 0xB0 0x72 0xA0 0xA2 0x92 Bytes 1 2 1 2 1 2 2 2 2 2 2 2 Cycles 1 3 1 3 1 3 2 2 2 2 2 3 nRF24LU1+ Product Specification 14.5 Opcode 00H 01H 02H 03H 04H 05H 06H 07H 08H 09H 0AH 0BH 0CH 0DH 0EH 0FH 10H 11H 12H 13H 14H 15H 16H 17H 18H 19H 1AH 1BH 1CH 1DH 1EH 1FH 20H 21H 22H 23H 24H 25H 26H 27H 28H 29H 2AH 2BH 2CH 2DH 2EH 2FH 30H 31H Revision 1.1 Opcode map Mnemonic NOP AJMP addr11 JUMP addrl6 RRA INCA INC direct INC @R0 INC @R1 INC R0 INC R1 INC R2 INC R3 INC R4 INC R5 INC R6 INC R7 JBC bit, rel ACALL addr11 LCALL add r16 RRC A DEC A DEC direct DEC @R0 DEC @R1 DEC R0 DEC R1 DEC R2 DECR3 DECR4 DECR5 DECR6 DECR7 JB bit, rel AJMP addr11 RET RL A ADD A, #data ADD A, direct ADD A,@R0 ADD A,@R1 ADD A,R0 ADD A,R1 ADD A,R2 ADD A,R3 ADD A,R4 ADD A,R5 ADD A,R6 ADD A,R7 JNB bit, rel ACALL addr11 Opcode 56H 57H 58H 59H 5AH 5BH 5CH 5DH 5EH 5FH 60H 61H 62H 63H 64H 65H 66H 67H 68H 69H 6AH 6BH 6CH 6DH 6EH 6FH 70H 71H 72H 73H 74H 75H 76H 77H 78H 79H 7AH 7BH 7CH 7DH 7EH 7FH 80H 81H 82H 83H 84H 85H 86H 87H Mnemonic ANL A,@R0 ANL A,@R1 ANL A,R0 ANL A,R1 ANL A,R2 ANL A,R3 ANL A,R4 ANL A,R5 ANL A,R6 ANL A,R7 JZ rel AJMP addr11 XRL direct, A XRL direct, #data XRL A, #data XRL A,direct XRLA,@R0 XRL A,@R1 XRL A,R0 XRL A,R1 XRL A,R2 XRL A,R3 XRL A,R4 XRL A,R5 XRL A,R6 XRL A,R7 JNZ rel ACALL addr11 ORL C, bit JMP @A+DPTR MOV A, #data MOV direct, #data MOV @R0,#data MOV @R1, #data MOV R0, #data MOV R1, #data MOV R2, #data MOV R3, #data MOV R4, #data MOV R5, #data MOV R6, #data MOV R7, #data SJMP rel AJMP addr11 ANL C, bit MOVC A,@A+PC DIV AB MOV direct, direct MOV direct,@R0 MOV direct,@R1 Page 125 of 187 Opcode ACH ADH AFH AFH B0H B1H B2H B3H B4H B5H B6H B7H B8H B9H BAH BBH BCH BDH BEH BFH C0H C1H C2H C3H C4H C5H C6H C7H C8H C9H CAH CBH CCH CDH CEH CFH D0H D1H D2H D3H D4H D5H D6H D7H D8H D9H DAH DBH DCH DDH Mnemonic MOV R4,direct MOV R5,direct MOV R6,direct MOV R7,direct ANL C,/bit ACALL addr11 CPL bit CPLC CJNE A,#data,rel CJNE A, direct, rel CJNE @R0,#data,rel CJNE @R1, #data,rel CJNE R0, #data,rel CJNE R1,#data,rel CJNE R2,#data,rel CJNE R3,#data,rel CJNE R4,#data,rel CJNE R5,#data,rel CJNE R6,#data,rel CJNE R7,#data,rel PUSH direct AJMP addr11 CLR bit CLR C SWAP A XCH A, direct XCH A,@R0 XCH A,@R1 XCH A,R0 XCH A,R1 XCH A,R2 XCHA,R3 XCH A,R4 XCH A,R5 XCH A,R6 XCHA,R7 POP direct ACALL addr11 SETB bit SETB C DAA DJNZ direct, rel XCHDA,@R0 XCHD A,@R1 DJNZ R0,rel DJNZ R1,rel DJNZ R2,rel DJNZ R3,rel DJNZ R4,rel DJNZ R5,rel nRF24LU1+ Product Specification Opcode 32H 33H 34H 35H 36H 37H 38H 39H 3AH 3BH 3CH 3DH 3EH 3FH 40H 41H 42H 43H 44H 45H 46H 47H 48H 49H 4AH 4BH 4CH 4DH 4EH 4FH 50H 51H 52H 53H 54H 55H Mnemonic RETI RLC A ADDC A,#data ADDC A, direct ADDC A,@R0 ADDC A,@R1 ADDC A,R0 ADDC A,R1 ADDC A,R2 ADDC A,R3 ADDC A,R4 ADDC A,R5 ADDC A,R6 ADDC A,R7 JC rel AJMP addr11 ORL direct, A ORL direct, #data ORL A, #data ORL A, direct ORL A,@R0 ORL A,@R1 ORL A,R0 ORL A,R1 ORL A,R2 ORLA,R3 ORL A,R4 ORL A,R5 ORL A,R6 ORLA,R7 JNC rel ACALL addr11 ANL direct, A ANL direct, #data ANL A, #data ANL A, direct Opcode 88H 89H 8AH 8BH 8CH 8DH 8EH 8FH 90H 91H 92H 93H 94H 95H 96H 97H 98H 99H 9AH 9BH 9CH 9DH 9EH 9FH A0H A1H A2H A3H A4H A5H A6H A7H A8H A9H AAH ABH Mnemonic Opcode Mnemonic MOV direct,R0 DFH DJNZ R6,rel MOV direct,R1 DFH DJNZ R7,rel MOV direct,R2 F0H MOVX A,@DPTR MOV direct,R3 F1H AJMP addr11 MOV direct,R4 E2H MOVX A,@R0 MOV direct, R5 F3H MOVX A,@R1 MOV direct,R6 E4H CLR A MOV direct,R7 F5H MOVA, direct MOV DPTR, #datal6 E6H MOVA,@R0 ACALL addr11 F7H MOV A,@R1 MOV bit, C E8H MOV A,R0 MOVCA,@A+DPTR F9H MOV A,R1 SUBB A, #data EAH MOV A,R2 SUBB A, direct FRH MOV A,R3 SUBB A,@R0 ECH MOV A,R4 SUBB A,@R1 FDH MOV A,R5 SUBB A, R0 EEH MOV A,R6 SUBB A,R1 EFH MOV A,R7 SUBB A,R2 F0H MOVX @DPTR,A SUBB A,R3 F1H ACALL addr11 SUBB A,R4 F2H MOVX @R0,A SUBB A,R5 F3H MOVX @R1,A SUBB A,R6 F4H CPL A SUBB A,R7 F5H MOV direct, A ORL C,/bit F6H MOV @R0,A AJMP addr11 F7H MOV @R1,A MOV C, bit F8H MOV R0,A INC DPTR F9H MOV R1,A MUL AB FAH MOV R2,A Debug FBH MOV R3,A MOV @R0,direct FCH MOV R4,A MOV @R1,direct FDH MOV R5,A MOV R0,direct FEH MOV R6,A MOV R1,direct FFH MOV R7,A MOV R2,direct MOV R3,direct Table 106. Opcode map Revision 1.1 Page 126 of 187 nRF24LU1+ Product Specification 15 Memory and I/O organization The MCU has a 64 kbytes address space for code and data, an area of 256 byte for internal data (IRAM), and an area of 128 byte for Special Function Registers (SFR). The nRF24LU1+ has 16 or 32 kbytes of flash program memory, 2 kbytes of SRAM data memory and a dedicated internal RAM of 256 byte for MCU internal data, see Figure 61. To allow erase and write flash operations, the MCU must run the sequence described in section 17.5.1. In addition, an area of 2 kbytes is reserved for the USB buffer RAM and the USB configuration registers. 0xFFFF 0xC7FF 0xC000 0x87FF 0x8000 USB (RAM) (2 kB) Data (RAM) (2 kB) 0x7FFF Program/Data (Flash 32 kB) Accessible with movc and movx For Flash 16 kB, address space is 0x0000 to 0x3FFF IRAM SFR Accessible by indirect addressing only Accessible by direct addressing only 0xFF 0xFF 0x80 0x7F 0x80 Accessible by direct and indirect addressing 0x0000 Special Funtion Registers 0x00 Note: In a program running in a protected flash area, movc may not be used to access addresses 0x00 to 0x03. Figure 61. nRF24LU1+ memory map Revision 1.1 Page 127 of 187 nRF24LU1+ Product Specification 15.1 Special function registers 15.1.1 Special function registers locations The map of Special Function Registers is shown in Table 107. Address 0xF8-0xFF 0xF0-0xF7 0xE8-0xEF 0xE0-0xE7 0xD8-0xDF 0xD0-0xD7 0xC8-0xCF 0xC0-0xC7 0xB8-0xBF 0xB0-0xB7 0xA8-0xAF 0xA0-0xA7 0x98-0x9F 0x90-0x97 0x88-0x8F 0x80-0x87 X000 FSR B AESCS ACC WDCON PSW T2CON IRCON IEN1 X001 FPCR AESKIN MD0 X010 FCR AESIV MD1 X011 X100 X101 X110 X111 AESD MD2 MD3 AESIA1 MD4 RFDAT AESIA2 MD5 RFCTL ARCON USBSLP P0EXP CRCL CRCH TL2 TH2 CCEN CCL1 4CCH1 CCL2 CCH2 IP1 S0RELH SSCONF SSDAT RSTRES SMDAT SMCTRL TICKDV IEN0 IP0 S0RELL REGXH REGXL REGXC USBCON CLKCTL PWRDWN WUCONF S0CON S0BUF RFCON DPS P0DIR P0ALT TCON TMOD TL0 TL1 TH0 TH1 P0 SP DPL DPH DPL1 DPH1 CCL3 SSSTAT CCH3 INTEXP CKCON PCON Table 107. Special Function Registers locations Note: Undefined locations are reserved and must not be read or written. The registers in the X000 column in Table 107. above are both byte and bit addressable. The other registers are only byte addressable. Revision 1.1 Page 128 of 187 nRF24LU1+ Product Specification 15.1.2 Special function registers reset values Register name Address Reset value More information Description ACC 0xE0 0x00 Section 15.1.3 on page Accumulator 131 AESCS 0xE8 0x00 Section 8.2 on page 96 AES Command/Status AESD 0xF3 0x00 Section 8.2 on page 96 AES Data In/Out AESIA1 0xF5 0x00 Section 8.2 on page 96 AES Indirect Address register 1 AESIA2 0xF6 0x00 Section 8.2 on page 96 AES Indirect Address register 2 AESIV 0xF2 0x00 Section 8.2 on page 96 AES Initialization Vector AESKIN 0xF1 0x00 Section 8.2 on page 96 AES Key In ARCON 0xEF 0x00 Section 18.3 on page 156 Arithmetic Control register B 0xF0 0x00 Section 15.1.4 on page B register 131 CCEN 0xC1 0x00 Section 11.4.7 on page 111 Compare/Capture Enable register CCH1 0xC3 0x00 Section 11.4.8 on page 111 Compare/Capture register 1, high byte CCH2 0xC5 0x00 Section 11.4.8 on page 111 Compare/Capture register 2, high byte CCH3 0xC7 0x00 Section 11.4.8 on page 111 Compare/Capture register 3, high byte CCL1 0xC2 0x00 Section 11.4.8 on page 111 Compare/Capture register 1, low byte CCL2 0xC4 0x00 Section 11.4.8 on page 111 Compare/Capture register 2, low byte CCL3 0xC6 0x00 Section 11.4.8 on page 111 Compare/Capture register 3, low byte CKCON 0x8E 0x01 Section 16.1 on page 134 Memory cycle control CLKCTL 0xA3 0x80 Section 20.4.1 on page 167 CRCH 0xCB 0x00 Section 11.4.9 on page 112 Compare/Reload/Capture register, high byte CRCL 0xCA 0x00 Section 11.4.9 on page 112 Compare/Reload/Capture register, low byte DPH 0x83 0x00 Section 15.1.7 on page Data Pointer High 132 DPL 0x82 0x00 Section 15.1.7 on page Data Pointer Low 132 DPS 0x92 0x00 Section 15.1.9 on page Data Pointer Select register 133 FCR 0xFA 0x00 Section 17.3.6 on page Flash Command register 139 FPCR 0xF9 NA Section 17.3.6 on page Flash Protect Configuration regis139 ter FSR 0xF8 NA Section 17.3.6 on page Flash Status register 139 IEN0 0xA8 0x00 Section 22.4.1 on page Interrupt Enable register 0 172 IEN1 0xB8 0x00 Section 22.4.2 on page Interrupt Priority register / Enable 173 register 1 INTEXP 0xA6 0x01 Section 22.4.2 on page 173 Revision 1.1 Page 129 of 187 nRF24LU1+ Product Specification Register name Address Reset value More information IP0 0xA9 0x00 Section 22.4.3 on page 173 IP1 0xB9 0x00 Section 22.4.3 on page 173 IRCON 0xC0 0x00 Section 22.4.4 on page 174 MD0 0xE9 0x00 Section 18.3 on page 156 MD1 0xEA 0x00 Section 18.3 on page 156 MD2 0xEB 0x00 Section 18.3 on page 156 MD3 0xEC 0x00 Section 18.3 on page 156 MD4 0xED 0x00 Section 18.3 on page 156 MD5 0xEE 0x00 Section 18.3 on page 156 P0 0x80 0xFF Section 13.1 on page 116 P0ALT P0DIR P0EXP PCON 0x95 0x94 0xC9 0x87 0x00 0xFF 0x00 0x00 PSW 0xD0 0x00 PWRDWN 0xA4 0x00 REGXC 0xAD 0x00 REGXH 0xAB 0x00 REGXL 0xAC 0x00 RFCON 0x90 0x02 RFCTL RFDAT RSTRES 0xE6 0xE5 0xB1 0x00 0x00 0x00 S0BUF 0x99 0x00 S0CON 0x98 0x00 S0RELH 0xBA 0x03 S0RELL 0xAA 0xD9 SMCTRL SMDAT SP 0xB3 0xB2 0x81 0x00 0x00 0x07 SSCONF SSDAT SSSTAT T2CON 0xBC 0xBD 0xBE 0xC8 0x00 0x00 0x00 0x00 Revision 1.1 Description Interrupt Priority register 0 Interrupt Priority register 1 Interrupt Request Control register Multiplication/Division register 0 Multiplication/Division register 1 Multiplication/Division register 2 Multiplication/Division register 3 Multiplication/Division register 4 Multiplication/Division register 5 Port 0 (only P0.0 - P0.5 available externally) Section 13.1 on page 116 GPIO port functions Section 13.1 on page 116 GPIO pin direction control Section 13.1 on page 116 Section 20.4.5 on page Power Control 169 Section 15.1.5 on page Program Status Word 132 Section 20.4.2 on page 168 Section 19.3.6 on page Control register for watchdog and 162 wakeup functions Section 19.3.6 on page High byte of 16-bit watchdog/ 162 wakeup register Section 19.3.6 on page Low byte of 16-bit watchdog/ 162 wakeup register Section 6.5.1 on page 53 RF Transceiver configuration register Section 6.5.1 on page 53 RF Transceiver control register Section 6.5.1 on page 53 RF data register Section 20.4.3 on page 168 Section 12.4.2 on page Serial Port 0, Data Buffer 115 Section 12.4.1 on page Serial Port 0, Control register 114 Section 12.4.3 on page Serial Port 0, Reload register, high 115 byte Section 12.4.3 on page Serial Port 0, Reload register, low 115 byte Section 9.2 on page 99 SPI Master Control register Section 9.2 on page 99 SPI Master data register Section 15.1.6 on page Stack Pointer 132 Section 10.2 on page 101 SPI Slave configuration Section 10.2 on page 101 SPI Slave Data register Section 10.2 on page 101 SPI Slave Status register Section 11.4.5 on page 110 Timer 2 Control register Page 130 of 187 nRF24LU1+ Product Specification Register name Address Reset value More information Description TCON 0x88 0x00 Section 11.4.1 on page Timer/Counter Control register 108 TH0 0x8C 0x00 Section 11.4.3 on page Timer 0, high byte 109 TH1 0x8D 0x00 Section 11.4.4 on page Timer 1, high byte 109 TH2 0xCD 0x00 Section 11.4.6 on page 110 Timer 2, high byte TICKDV 0xB5 0x03 Section 19.3.2 on page Divider for watchdog and wakeup 161 functions TL0 0x8A 0x00 Section 11.4.3 on page Timer 0, low byte 109 TL1 0x8B 0x00 Section 11.4.4 on page Timer 1, low byte 109 TL2 0xCC 0x00 Section 11.4.6 on page 110 Timer 2, low byte TMOD 0x89 0x00 Section 11.4.2 on page Timer Mode register 109 USBCON 0xA0 0xFF Section 7.3 on page 65 USB configuration/status register USBSLP 0xD9 0x00 Section 7.3 on page 65 USB sleep WDCON 0xD8 0x00 Section 12.4.4 on page Serial Port 0 Baud Rate Select reg115 ister (only wdcon.7 bit used) WUCONF 0xA5 0x00 Section 20.4.4 on page Wakeup configuration register 168 Table 108. Special Function Registers reset values 15.1.3 Accumulator - ACC Accumulator is used by most of the MCU instructions to hold the operand and to store the result of an operation. Note: The mnemonics for accumulator specific instructions refer to accumulator as A, not ACC. Address Reset value 0xE0 0x00 bit7 acc.7 bit6 acc.6 bit5 acc.5 bit4 acc.4 bit3 acc.3 bit2 acc.2 bit1 acc.1 bit0 acc.0 Table 109. ACC register 15.1.4 B register - B The B register is used during multiplying and division instructions. It can also be used as a scratch-pad register to hold temporary data. Address Reset value 0xF0 0x00 bit7 b.7 bit6 b.6 bit5 b.5 bit4 b.4 Table 110. B register Revision 1.1 Page 131 of 187 bit3 b.3 bit2 b.2 bit1 b.1 bit0 b.0 nRF24LU1+ Product Specification 15.1.5 Program Status Word register - PSW The PSW register contains status bits that reflect the current state of the MCU. Address 0xD0 Reset value 0x00 Bit Name Description 7 cy 6 ac 5 4-3 f0 rs 2 ov 1 0 f1 p Carry flag: Carry bit in arithmetic operations and accumulator for Boolean operations. Auxiliary Carry flag: Set if there is a carry-out from 3rd bit of Accumulator in BCD operations General purpose flag 0 Register bank select, bank 0..3 (0x00-0x07, 0x08-0x0f, 0x100x17, 0x18-0x1f) Overflow flag: Set if overflow in Accumulator during arithmetic operations General purpose flag 1 Parity flag: Set if odd number of `1' in ACC. Table 111. PSW register Note: The Parity bit can only be modified by hardware in the ACC register state. 15.1.6 Stack Pointer - SP This register points to the top of the stack in internal data memory space. It is used to store the return address of a program before executing an interrupt routine or subprograms. The SP register is incremented before executing PUSH or CALL instruction and it is decremented after executing POP or RET(I) instruction (it always points to the top of the stack). Address 0x81 Reset value 0x07 Register name SP Table 112. SP register 15.1.7 Data Pointer - DPH, DPL Address 0x82 0X83 Reset value 0x00 0x00 Register name DPL DPH Table 113. Data Pointer register (DPH:DPL) The Data Pointer registers can be accessed through DPL and DPH. The actual data pointer is selected by DPS register. The Data Pointer registers are intended to hold a 16-bit address in the indirect addressing mode used by MOVX (move external memory), MOVC (move program memory) or JMP (computed branch) instructions. They may be manipulated as 16-bit register or as two separate 8-bit registers. DPH holds a higher byte and DPL holds a lower byte of an indirect address. These registers are used to access external code or data space (for example, MOVC A, @A+DPTR or MOV A, @DPTR). Revision 1.1 Page 132 of 187 nRF24LU1+ Product Specification 15.1.8 Data Pointer 1 - DPH1, DPL1 Address 0x84 0X85 Register name DPL1 DPH1 Table 114. Data Pointer 1 register (DPH1:DPL1) The Data Pointer register 1 can be accessed through DPL1 and DPH1. The actual data pointer is selected by DPS register. These registers are intended to hold a 16-bit address in the indirect addressing mode used by MOVX (move external memory), MOVC (move program memory) or JMP (computed branch) instructions. They can be manipulated as a 16-bit register or as two separate 8-bit registers. DPH1 holds a higher byte and DPL1 holds a lower byte of an indirect address. These registers are used to access external code or data space (for example, MOVC A,@A+DPTR or MOV A,@DPTR respectively). The Data Pointer 1 is an extension to the standard 8051 architecture to speed up block data transfers. 15.1.9 Data Pointer Select register - DPS The MCU contains two Data Pointer registers. Both Data Pointer registers can be used as 16-bits address source for indirect addressing. The DPS register serves for selecting the active data pointer register. Address Reset value Bit 0x92 0x00 7:1 0 Name dps Description Not used Data Pointer Select. 0: select DPH:DPL, 1: select DPH1:DPL1 Table 115. DPS register Revision 1.1 Page 133 of 187 nRF24LU1+ Product Specification 16 Random Access Memory (RAM) The nRF24LU1+ contains two separate RAM blocks. These blocks are used to save temporary data or programs. The RAM blocks are 256x8 IRAM bits and 2048x8 bits. Note: The information in these blocks is lost when power to the device is removed. As described in chapter 15 on page 127, the RAM resides in different maps, that is, different instructions are used to access them. The smallest RAM-block (256 bytes) resides in the "internal" RAM-area, called IRAM, and contains scratch-pad data, subroutine stacks, register files, and so on. Note: The lower 128 bytes can be addressed direct or indirectly, while the upper 128 bytes can only be accessed using indirect addressing. The largest RAM (2048 bytes) resides in the XDATA space and is a fixed block located from address 0x8000 to 0x87FF. This block is used for data or program code. 16.1 Cycle control The MCU has a programmable SFR register that controls timing to on-chip memory. Since this memory is fast, the default values are recommended. Address 0x8E Reset value 0x01 Bit 7 6-4 3 2-0 Description Not used Program memory wait state control 000: No wait-states (default at power-up) Other values are reserved and should not be used Not used External data memory stretch control. 001: One stretch cycle (default) Other values are reserved and should not be used Table 116. CKCON register Revision 1.1 Page 134 of 187 nRF24LU1+ Product Specification 17 Flash Memory This section describes the operation of the embedded flash memory. The MCU can read and write the memory and perform erase page operations. You can configure and program the flash memory through an external SPI slave interface and you can also configure it to inhibit readback or modification of the memory content. You can also program the flash memory through the USB by using the USB bootloader. 17.1 * * * * * * * * * Features 16 or 32 kB Flash memory Page size 512 bytes 32 or 64 pages of MainBlock + 1 InfoPage Endurance minimum 1000 write/erase cycles Direct SPI programmable Read and write accessible from MCU Configurable MCU write and erase protection Configurable SPI readback protection HW support for FW upgrade 17.2 Block diagram 0x7FFF Page 63 SPI PROG=1 MCU PROG=0 INFEN=0 MainBlock INFEN=1 0x1FF InfoPage Page 0 0x00 Figure 62. Flash memory block diagram 17.3 Functional description 17.3.1 Flash memory configuration The flash memory is divided into two blocks, the MainBlock and the information block (one InfoPage). At the chip interface the flash behaves as an SPI programmable flash memory. All configuration and setup of the behavior during normal mode (that is, when MCU is active and running) is defined through the SPI Revision 1.1 Page 135 of 187 nRF24LU1+ Product Specification and the configuration data is stored in the InfoPage. During the chip reset/start-up sequence the configuration data is read and stored in a set of registers that control flash memory behavior. MainBlock Enable 2 pages of data memory if DAEN = 1 Page address Data 62 Protected Program Memory NUPP DAEN Odd number of 1's, set start program execution at the bottom of protected area. NUPP FlashProtectConfigReg Unprotected Program Memory Page size InfoPage Even number of 1's, set start program execution at address "0" 0 0 The content of the 16 highest addresses is read during startup and saved as BootStartSelector BootstartSelector Figure 63. Flash memory organization The MainBlock of flash memory can be configured through the SPI (Figure 63.) in the following ways: * * * Unprotected program memory; can be read, written and erased through the SPI and by the MCU. With no configuration the whole MainBlock is unprotected memory. Protected program memory; can be read, written and erased through the SPI but only read by the MCU. Any number of pages can be configured as protected memory. Data memory; can be read, written and erased through the SPI and by the MCU. Two data pages 62 and 63 may be enabled. If enabled, the number of protected pages is reduced by two. You can program the InfoPage through the SPI only, because the MCU has only read access to the InfoPage, except for byte 0x23, which is writable from the MCU, see Table 117. Note: You can write to a flash byte twice between each erase. A page (or full) erase sets the value of all erased bytes to 0xFF. A write to a flash byte only programs the 0-bits of the byte, leaving the 1-bits as they are (after the erase). Thus for the second write, only the remaining 1bits can be programmed. This results in an "and" function of the first and second write. Example: Writing 0x46 and 0x27 to the same byte (without erase in between) will result in a stored value 0x06. Revision 1.1 Page 136 of 187 nRF24LU1+ Product Specification 17.3.2 InfoPage content The content of the InfoPage is given in Table 117. below. The InfoPage is erased at factory so that all bytes, except CHIPID, initially have the value 0xFF. InfoPage data Reserved CHIPID Size 11 bytes 5 bytes Address 0x00 0x0B Reserved Page address for start of protected area (that is, number of unprotected pages) Enable flash data memory 16 bytes 1 byte 0x10 0x20 1 byte 0x21 Readback blocking byte for InfoPage 1 byte 0x22 Readback blocking byte for MainBlock 1 byte 0x23 Enable debug 1 byte 0x24 Reserved For user data 219 bytes 256 bytes 0x25 0x100 Comment Reserved. ID number for each individual device. The ID is generated by a pseudo random process. No ID will violate the rules specificed in section 6.4.3.2 Reserved. Read out during reset/start-up sequence of the chip to register FPCR.NUPP Byte value: 0xFF: all pages are unprotected Other value: page address Read out during reset/start-up sequence of the chip. Byte value: 0xFF: no data memory, FPCR.DAEN=0 Other value: data memory exists, FPCR.DAEN=1 Read out during reset/start-up sequence of chip. Byte value: 0xFF: FSR.RDISIP=0 Other value: FSR.RDISIP=1 Read out during reset/start-up sequence of chip. Byte value: 0xFF: FSR.RDISMB=0 Other value: FSR.RDISMB=1 Note: This byte may be written (to 0x00) by the MCU, but the InfoPage cannot be erased by the MCU. Read out during reset/start-up sequence of chip. Byte value: 0xFF: FSR.DBG=0 Other value: FSR.DBG=1 if FSR.RDISMB=0, enables HW debug. See chapter 23 on page 175 Reserved. Free to use. Note: The InfoPage can only be erased if FSR.RDISMB= 0. See also section 17.7.4.1 on page 154. Table 117. InfoPage content 17.3.3 Protected pages and data pages The flash memory can be split into unprotected, protected and data areas. When you protect an area of flash memory it becomes read only for the MCU, but it can still be read, written and erased through the SPI interface. The protected area of the flash memory is safe from illegal erase/write operations from the MCU and can typically be used for firmware upgrade functions, see section 17.5.2 on page 141. The flash MainBlock consists of 32 or 64 pages each 512 bytes long. The factory configuration FPCR.NUPP (Number of Unprotected Pages)=0xFF leaves all pages unprotected, that is, the MCU can erase and write to any page. FPCR.DAEN=1 reserves the two highest pages (62-63) as data pages. The FPCR.NUPP value is the page number of the first protected page, see Figure 62. on page 135. For exam- Revision 1.1 Page 137 of 187 nRF24LU1+ Product Specification ple, FPCR.NUPP=12 and FPCR.DAEN=1 gives 12 unprotected pages (0-11) and 50 protected pages (1261) and two data pages (62-63), see Figure 63. on page 136. If you have a protected and unprotected area, the value of the 16 topmost flash memory addresses decide from which area the MCU will start code execution. During the reset/start up sequence these 16 bytes are read automatically. If there is an even number of logic 1 databits in the 16 topmost addresses of the flash memory, FSR.STP = 0, otherwise FSR.STP = 1. The factory configuration of FSR.STP=0 starts the code execution at address 0x0000 which is the beginning of the unprotected area. If FSR.STP=1, the code execution starts from the beginning of the protected area. To use this "start from protected" feature, data pages must be enabled (FPCR.DAEN=1), which will allow MCU programming access to the highest page (63). 16 kB Flash memory size option 17.3.4 nRF24LU1+ has two flash memory size options, 32 k bytes and 16 k bytes, see also chapter 27.1.1 on page 181. For the 16 kB Flash version the data pages, if configured, always reside in pages 62-63. Any MCU program, with a size less than 16 kB, running on a 32 kB Flash version, will run unmodified in a 16 kB Flash version. Likewise any MCU program running on a 16 kB Flash version will run unmodified on a 32 kB Flash version. Example configurations 0 0 0 1 1 1 1 Flash memory size 32 kB 32 kB 32 kB 32 kB 32 kB 32 kB 32 kB All memory unprotected (pages 0-63) NA because FSR.STP cannot be set All memory protected (pages 0-63) Pages 0-61 unprotected, data pages 62-63 Pages 0-39 unprotected, pages 40-61 protected, data pages 62-63 Pages 0-19 unprotected, pages 20-61 protected, data pages 62-63 Pages 0-61 protected, data pages 62-63 0 0 0 1 1 1 1 16 kB 16 kB 16 kB 16 kB 16 kB 16 kB 16 kB All memory unprotected (pages 0-31) NA because FSR.STP cannot be set All memory protected (pages 0-31) Pages 0-29 unprotected, data pages 62-63 Illegal (values >29 and < 64 are illegal) Pages 0-19 unprotected, pages 20-29 protected, data pages 62-63 Pages 0-29 protected, data pages 62-63 FPCR. NUPP FPCR. DAEN 255 20 0 255 40 20 0 255 20 0 255 40 20 0 Description Table 118. Example of Flash configurations for 32 kB and 16 kB size 17.3.5 Software compatibility with nRF24LU1 nRF24LU1 programs with no protected flash memory configured (FPCR.NUPP=0xFF) can be ported unchanged to nRF24LU1+. Revision 1.1 Page 138 of 187 nRF24LU1+ Product Specification For nRF24LU1 programs with protected flash memory configured (FPCR.NUPP < 30), the addresses of the data pages must be changed. This is because the data pages in nRF24LU1 reside in pages 30-31 while the data pages in nRF24LU1+ reside in pages 62-63. This means that all addresses for write or erase of the data pages in nRF24LU1 must be translated from pages 30-31 to pages 62-63 to run on nRF24LU1+. However, this address translation is not required if no protected memory is configured. 17.3.6 Addr 0xF8 0xF9 0xFA SFR registers for flash memory operations Reset value Read from Flash, see Table 117. Read from Flash 0 0 0 Read from Flash, see Table 117. Read from Flash 0 N/A Bit Name RW 7 DBG RW 6 STP R 5 4 3 2 WEN RDYN INFEN RDISMB RW R RW R 1 RDISIP R 0 - 7 DAEN R 6:0 NUPP R 7:0 EPA RW 0x00 Function FSR - Flash Status Register 1: Enable HW debugger, 0: Disable HW debugger, if RDISMB = 0, DBG may be set (to one) by the MCU/SFR write, but it will return back to reset value after a subsequent reset. 1: Start from protected program memory, 0: start from address 0 Flash write (or erase) enable. 1: enable Flash interface ready. 0: ready InfoPage enable. 1: enable SPI read-back disable of MainBlock. 1: read back disable and also inhibits page erase and MainBlock write. Writable by SPI command RDISMB and is cleared automatically by the ERASE_ALL command. Can also be written indirectly by MCU as described in Table 117. on page 137. SPI read-back disable of InfoPage. 1: read back disable. Only writable by SPI command RDISIP and is cleared automatically if InfoPage is erased. Reserved, read as 0. FPCR - Flash Protect Configuration Register 1: The two upper flash pages reserved as data memory, 0: no data memory enabled. Number of unprotected pages. Note: NUPP < 0xFF reserves the 16 highest bytes of the flash MainBlock. FCR - Flash Command Register Byte value < 64: Erase page address, otherwise used for secure MCU flash write, see section 17.5.1 on page 140. Table 119. FSR, FPCR and FCR registers 17.4 Brown-out There is an on-chip power-fail detector, see chapter 21 on page 170, which ensures that any flash memory program or erase access will be ignored when the `Power Fail' signal (see Figure 83.) is active. Both the micro controller and the flash memory still function according to specification, and any write operation that was started will be completed. Flash erase operations will be aborted. If the supply voltage drops further, that is when the signal "Reset" (see Figure 83.) is active, the chip will be reset. If the power supply rises again before reaching the reset threshold, there will be no reset, and there is no status indication to show Revision 1.1 Page 139 of 187 nRF24LU1+ Product Specification that this has happened. To ensure proper programming of the flash in the cases where power supply may be unreliable, the user should take the following precautions: * * * Make sure there is no partial erase. X If the device is reset during an erase cycle, always assume that the erase was unsuccessful. X If there is no reset, make sure that the erase duration is longer than 20 ms. A sample firmware code for such a check may be found in nRFGo SDK. Make sure the data read back from the flash is identical to what is written to flash. The mechanism above will guarantee that the data is safely stored to flash if the value does compare. If the compare fails, the write has been ignored due to a power supply event. Using the VBUS supply, the time from "Power Fail" to "Reset" is longer than one flash byte write operation (around 46 s), as this is assured by the 10F capacitor on the VBUS pin. If using the VDD supply, make sure that this requirement is met by sufficient reservoir on the supply. 17.5 Flash programming from the MCU This section describes how you can write and erase the flash memory using the MCU. Note that all flash write and erase operations require that Cclk 12 MHz, see Table 133. on page 167. 17.5.1 MCU write and erase of the MainBlock When a flash write is initiated, the MCU is halted for 740 clock cycles (46s @16 MHz) for each byte written. When a page erase is initiated, the MCU can be halted for up to 360,000 clock cycles (22.5 ms @16 MHz). During this time the MCU does not respond to any interrupts. Firmware must assure that page erase does not interfere with normal operation of the nRF24LU1+. The MCU can perform erase page and write operations to the unprotected part and the data part of the flash MainBlock. To prevent unwanted/harmful erase and write operations a security mechanism is implemented. To allow erase and write flash operations the MCU must run the following sequence: 1. 2. 3. 4. 5. Write 0xAA to the FCR register. This starts an internal 7 bit down counter. The counter counts down from 127 to 0. Before the count down period has expired (8 s @16 MHz), write 0x55 to the FCR. This restarts the internal 7 bit down counter. Then the counter again counts down from 127 to 0. In the count down period (8 s) the FSR.WEN bit is writeable from the MCU. Set FSR.WEN high before count down period has expired. The flash is now open for erase and write from the MCU until FSR.WEN is set low again. FSR.WEN can be set low directly (no security mechanism applies). To erase a page, write page address (range 0-63) to the FCR register. Bytes are written individually (there is no auto increment) to the flash using the specific memory address. When the programming code executes from the flash, any erase or write operation is self timed and the MCU stops until the operation is finished. If the programming code executes from the XDATA RAM the code must wait until the operation has finished. This can be done either by polling the FSR.RDYN bit to go low or by a wait loop. Do not set FSR.WEN low before the write or erase operation is finished. Memory address is identical to the flash address, see Chapter 15 on page 127 for memory mapping. Revision 1.1 Page 140 of 187 nRF24LU1+ Product Specification 17.5.2 Hardware support for firmware upgrade If the FSR.STP bit is high the MCU starts a program execution from the lowest address in the protected part of the flash memory (FPCR.NUPP<<9). If the FSR.STP bit is low (as it is in a normal case) the MCU starts an execution from address "0" of the flash memory. The FSR.STP bit can only be set indirectly by programming one of the 16 last bytes of flash MainBlock. Upon the next Reset these 16 bytes will be read, and if the data area is enabled (FPCR.DAEN = 1) and the content of the 16 highest addresses of the flash memory (MainBlock) have an odd number of 1's then FSR.STP is set high. Otherwise, FSR.STP is set low. If the data area is not enabled (FPCR.DAEN = 0) FSR.STP is always low. This mechanism may be used to obtain a safe upgrade for the unprotected area of the flash. There is only one set of interrupt vectors (see Table 138.) and they always point to the first page of flash memory, regardless of whether the page is defined as protected or unprotected memory. So, if a program is placed in the protected part of flash memory starting at a higher page, the corresponding interrupt vectors still point to the unprotected part of the memory. Unless the implications of this are clearly understood, it is recommended not to use interrupt in programs intended to run from the protected area. Here is an example of this mechanism in use: * * * * * * * * * The application is running in an unprotected area and the program doing the upgrade resides in a protected area. You must configure flash with FPCR.DAEN=1 to allow firmware control over the FSR.STP bit. The host initiates a firmware upgrade over the USB interface. Set FSR.WEN as described in section 17.5.1 on page 140. A bit in one of the 16 highest addressed bytes is programmed to 0. You can now restart the system. The system restarts from the protected area. You can now perform erase and write operations safely in the unprotected area, that is, you can update the unprotected area through the USB interface. In case of a power failure or a restart, the MCU starts an execution in the protected area. When the upgrade is finished a new bit in one of the 16 highest addressed bytes is programmed to 0 which gives an even number of 1s in these bytes, implying FSR.STP=0, after next reset. You can now restart the system, and it restarts from the unprotected area. Note: For program in protected area, see the restriction for movc in Figure 61. on page 127 17.6 Flash programming through USB The nRF24LU1+ bootloader allows you to program the nRF24LU1+ through the USB interface. The bootloader is pre-programmed into the nRF24LU1+ flash memory and automatically starts when power is applied. After start-up the bootloader copies the flash programming code to the internal SRAM from where the complete flash memory can be programmed. The bootloader occupies the topmost 2K bytes (KB) of the flash and is not deleted unless the user program extends into this area. If the program is larger than 30KB the bootloader is overwritten and lost. In addition to the topmost 2KB of the flash, the bootloader also uses the 3 byte reset vector at address 0. If your application needs to re-execute the bootloader; you must restore the reset vector so that the bootloader executes after power on reset. 17.6.1 Flash Layout The 32 kB flash is divided into 64 pages of 512 bytes each. Since the maximum USB packet size in nRF24LU1+ is 64 bytes the bootloader divides each flash page into 8 blocks of 64 bytes each as shown in the following figure: Revision 1.1 Page 141 of 187 nRF24LU1+ Product Specification 0x7FFF block 511 page 63 block 15 page 1 block 7 page 0 0x0000 block 0 Figure 64. Relation between address, pages and blocks 17.6.2 USB Protocol nRF24LU1+ begins enumerating when connected to a USB host and is available to the operating system. A driver, or application, communicating with the bootloader must use the following parameters: USB parameters VID (Vendor Identification) PID (Product Identification) IN endpoint address OUT endpoint address Value 0x1915 0x0101 0x81 0x01 Table 120. Driver/application USB parameters for communication with bootloader The USB host communicates with the bootloader by writing commands to the IN endpoint. All USB commands to the bootloader start with a 1 byte identifier (cmd id) and return a packet. If the command takes parameters, the parameters are written as one or two bytes after the one byte identifier, for example, command 0x02 takes the parameter pn. Each command returns a value that must be read from the OUT endpoint. Revision 1.1 Page 142 of 187 nRF24LU1+ Product Specification 17.6.2.1 Firmware Version (cmd id 0x01) 0x01 Returns: hb lb Figure 65. Command 0x01 This command returns firmware information of the bootloader. hb is the major version number and lb is the minor version number. 17.6.2.2 Flash Write Init (cmd 0x02) This command is sent to the bootloader to start writing a flash page to the page indicated by the parameter pn. After this command is completed the host must send the 8 blocks that constitutes the page. This is done by sending 64 byte packets to the USB IN endpoint with the contents of the block. The bootloader responds with a one-byte packet (containing 0x00) after each packet has been sent. Returns: pn b0 b1 ... b448 b449 ... 0x00 b63 Returns: 0x00 b511 Returns: 0x00 ... 0x02 Figure 66. Command 0x02 17.6.2.3 Read Flash (cmd 0x03) This command is sent by the host to read one of the 64 byte flash blocks. The block is indicated by the parameter bn (bits 0-7 only. Bit 8 is set by cmd 6 below). If the flash MainBlock readback disable is effective this command returns 0x00 in all bytes in the flash page containing the block is used (programmed) and 0xff if it is empty. 0x03 bn Returns: b0 Figure 67. Command 0x03 Revision 1.1 Page 143 of 187 ... b63 nRF24LU1+ Product Specification 17.6.2.4 Flash Page Erase (cmd 0x04) This command is used mainly for debugging purposes since the Flash Page Write command above automatically erases the page if needed prior to programming. Using this command erases page pn. 0x04 Returns: pn 0 Figure 68. Command 0x04 17.6.2.5 Turn on flash MainBlock readback disable (cmd 0x05) Returns: 0x05 0x00 Figure 69. Command 0x05 This command returns 0x00 if successful or 0x01 if the bootloader failed to turn on flash MainBlock readback disable. The device must be reset for the readback disable to be effective. 17.6.2.6 Select flash half (cmd 0x06) 0x06 n Returns: 0 Figure 70. Command 0x06 This command is used to select which flash half command 0x03 works against (bit 8 of the block number). When n = 0 the lower 16 kB flash is selected and when n = 1 the upper 16 kB is selected. The reason for having this command is to make sure the interface and commands for the nRF24LU1 bootloader are the same on the nRF24LU1+. Revision 1.1 Page 144 of 187 nRF24LU1+ Product Specification 17.7 Flash programming through SPI The on-chip flash is designed to interface a standard SPI device for programming. The interface uses an 8 bit instruction register and a set of instructions/commands to program and configure the flash memory. Note that all flash write and erase operations require that Cclk 12 MHz, see Table 133. on page 167. 17.7.1 SPI commands To allow access through the SPI the external PROG pin must be set high during all flash operation commands. After activation of the PROG pin you must wait at least 1.5 ms before you input the first flash command. When the PROG pin is set, the GPIO pins are automatically configured as slave SPI (see chapter 13 on page 116. Further description of SPI slave is found in chapter 10 on page 101). Before each flash write or erase command, FSR.WEN must be set, because this bit is automatically cleared after any write or erase command. The value of FSR.INFEN always decides if access goes to the flash MainBlock or the InfoPage. WREN WRDIS RDSR WRSR Command format 0x06 0x04 0x05 0x01 READ 0x03 PROGRAM 0x02 ERASE PAGE 0x52 ERASE ALL RDFPCR Command Address NA NA NA NA Number of databytes 0 0 1 (or more) 1 1-32768 0x62 0x89 Start address, 2 bytes Start address, 2 bytes page number, 1 byte NA NA RDISIP 0x84 NA 0 RDISMB 0x85 NA 0 ENDEBUG 0x86 NA 0 1-256 Command operation Set flash write enable,FSR.WEN Reset flash write enable, FSR.WEN Read Flash Status Register (FSR) Write Flash Status Register (FSR). Only bits 5 and 3 (WEN and INFEN) are writable by this command. Read data from flash Write data to flash 0 Erase addressed flash page 0 1 Erase all pages of flash MainBlock Read Flash Protect Configuration Register (FPCR) Set flash InfoPage read-back disable, FSR.RDISIP, and write 0x00 to InfoPage byte 0x22. Set flash MainBlock read-back disable, FSR.RDISMB and write 0x00 to InfoPage byte 0x23. Write 0x00 to InfoPage byte 0x24, and after next reset, the HW debugger will be enabled, see chapter 23 on page 175 for details, and FSR.DBG will be set. Table 121. Flash SPI operation commands Revision 1.1 Page 145 of 187 nRF24LU1+ Product Specification CSN (P0.3) SCK (P0.0) MOSI (P0.1) C7 C6 C5 C4 C3 C2 C1 C0 MISO (P0.2) D6 D5 D7 D4 D3 D2 D1 D0 Figure 71. SPI read command without address CSN (P0.3) SCK (P0.0) MOSI (P0.1) C7 C6 C5 C4 C3 C2 C1 C0 A14 A13 A12 A11 A10 A15 A9 A7 A8 A6 A5 A4 A3 A2 A1 A0 MISO (P0.2) D7 D6 D5 D4 D3 D2 D1 D0 Figure 72. SPI flash read operation, shown with 1 databyte Optional CSN (P0.3) SCK (P0.0) MOSI (P0.1) C7 C6 C5 C4 C3 C2 C1 C0 D7 D6 D5 D4 D3 D2 D1 D0 MISO (P0.2) Figure 73. SPI write command without address CSN (P0.3) SCK (P0.0) MOSI (P0.1) C7 C6 C5 C4 C3 C2 C1 C0 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 D7 MISO (P0.2) Figure 74. SPI flash write operation, shown with 1 databyte Revision 1.1 Page 146 of 187 D6 D5 D4 D3 D2 D1 D0 nRF24LU1+ Product Specification An SPI command always starts with the external master sending a command byte to the flash slave, followed by a variable number of address and data bytes. The number of address and data bytes are specific to each command, as shown in Table 121. on page 145. In Figure 71. to Figure 74. Cn is the SPI command bit, An is the address bit and Dn is the data bit (note: MSBit in each byte first). After CSN is deactivated, a flash write or erase command requires the chip to do the flash programming or erase, and this will take some time to complete therefore, it is advised not to issue a new command until the specified amount of time has elapsed. Alternatively, you can repeatedly issue RDSR commands until the FSR.RDYN bit reads back as 0. 17.7.1.1 WREN/WRDIS SPI command WREN sets the flash write enable bit FSR.WEN, and SPI command WRDIS resets FSR.WEN. This bit enables all SPI write and erase operations to the flash memory. The device powers up in write disable state and will automatically return to write disable state after any SPI flash write or erase command. Each SPI flash write and erase instruction must therefore be preceded by a WREN command. Both WREN and WRDIS are 1-byte commands with no data. 17.7.1.2 RDSR The SPI command RDSR reads out the content of the flash status register FSR, and consists of 1-command byte and 1-data byte as shown in Figure 71. on page 146. By keeping the CSN line active after the first data byte, FSR will be repeatedly re-read until CSN is set inactive. 17.7.1.3 WRSR The SPI command WRSR writes to the flash status register FSR, and consists of a 1-command byte and 1-data byte as shown in Figure 73. on page 146. 17.7.1.4 READ The SPI command READ reads out the content of the flash memory, starting from the given address. If FSR.INFEN=0, flash MainBlock will be read. If FSR.INFEN=1, flash InfoPage will be read. The following sequence is required: 1. 2. 3. The CSN line is activated (that is, pulled low) to enable/ activate the SPI slave. The READ command is transmitted through the MOSI line followed by the two byte address to the byte to be read as shown in Figure 72. on page 146. The addressed data byte is shifted out on the MISO line. If the CSN line is kept active after the first byte is read out the read command can be extended, the address is auto incremented and data continues to be shifted out. The internal address counter rolls over when the highest address is reached, allowing the complete memory to be read in one continuous read command. A readback of the flash content is only possible if the respective read disable bit FSR.RDISMB or FSR.RDISIP is not set. 17.7.1.5 PROGRAM The SPI command PROGRAM writes to (or programs) the flash memory, starting from the given address. If FSR.INFEN=0, flash MainBlock will be written to. If FSR.INFEN=1, flash InfoPage will be written to. The following sequence is required: Revision 1.1 Page 147 of 187 nRF24LU1+ Product Specification 1. 2. 3. 4. 5. Enable the device for writing (set FSR.WEN) using the WREN or WRSR command. The CSN line is pulled low to enable the SPI slave. The PROGRAM command is sent on the MOSI line followed by the two-byte address (address of the first byte) and the data to be programmed/ written, as shown in Figure 74. on page 146. The on-chip driven program sequence is started when you set the CSN pin high/ deactivated. Programming n bytes takes (n + 1)*365 clock cycles (XC1) after CSN is deactivated. During the program sequence all SPI commands are ignored except the RDSR command. The CSN line can be kept active to write up to 256 bytes (with address auto increment) in one PROGRAM command. The first byte can be anywhere in a page. Normally, a byte can not be reprogrammed without erasing the whole page, see also the Note: on page 136. Note: FSR.RDISMB = 1 inhibits the write to flash MainBlock. The device returns to write disable after completion of a PROGRAM command. 17.7.1.6 ERASE PAGE The SPI command ERASE PAGE erases 1 addressed page in the flash memory, so that the content of the page will be 0xFF. If FSR.INFEN=0, a page in flash MainBlock will be erased. If FSR.INFEN=1, flash InfoPage will be erased. The following sequence is required: 1. 2. 3. 4. 5. Enable the device for writing (set FSR.WEN) using the WREN or WRSR command. The CSN line is pulled low to enable the SPI slave. The ERASE PAGE command is sent on the MOSI line followed by the page number (0-63) to be erased. The on-chip driven erase sequence is started when the CSN pin is set high. Erasing a page takes about 360000 clock cycles (XC1) after CSN is deactivated. During the erase sequence all SPI commands are ignored except the RDSR command. Note: FSR.RDISMB = 1 inhibits page erase of both flash MainBlock and the InfoPage. The device returns to write disable after completion of an ERASE PAGE command. 17.7.1.7 ERASE ALL The SPI command ERASE ALL erases all content of the flash MainBlock memory to value 0xFF. The following sequence is required: 1. 2. 3. 4. 5. Enable the device for writing (set FSR.WEN) using the WREN or WRSR command. The CSN line is pulled low to enable the SPI slave. The ERASE ALL command is sent on the MOSI line. The on-chip driven erase sequence is started when the CSN pin is set high. ERASE_ALL takes about 360000 clock cycles (XC1) after CSN is deactivated. During the erase sequence all SPI commands are ignored except the RDSR command. The ERASE_ALL command cannot be used to erase the flash InfoPage, but is always allowed to erase flash MainBlock. The device returns to write disable after completion of an ERASE ALL command. 17.7.1.8 RDFPCR The SPI command RDFPCR reads out the content of the flash project configuration register FPCR, and consists of 1 command byte and 1 data byte as shown in Figure 71. on page 146. Revision 1.1 Page 148 of 187 nRF24LU1+ Product Specification 17.7.1.9 RDISIP Flash InfoPage readback disables and writes 0x00 to byte 0x22 in flash InfoPage. The command disables all read access to the flash InfoPage from the external SPI interface. This is a single byte command with no data.The following sequence is required: 1. 2. 3. 4. 5. Enable the device for writing (set FSR.WEN) using the WREN or WRSR command. The CSN line is pulled low to enable the SPI slave. The RDISIP command is sent on the MOSI line. The on-chip driven program sequence is started when the CSN pin is high/deactivated. The program sequence takes 730 clock cycles (XC1) after CSN is deactivated. During this sequence all SPI commands are ignored except the RDSR command. The device returns to write disable after completion of an RDISIP command. FSR.RDISIP can only be cleared by erasing flash InfoPage with an ERASE PAGE command, which is only allowed if FSR.RDISMB=0. 17.7.1.10 RDISMB Flash MainBlock readback disables and writes 0x00 to byte 0x23 in flash InfoPage. The command disables all read, write and page erase access to the flash MainBlock from any external interface (SPI or HW debugger). It also prevents erase of flash InfoPage and enabling of HW debugger. This will protect the content of the flash MainBlock from being read out over the external SPI or HW debugger interface. This is a single byte command with no data. The following sequence is required: 1. 2. 3. 4. 5. Enable the device for writing (set FSR.WEN) using the WREN or WRSR command. The CSN line is pulled low to enable the SPI slave. The RDISMB command is sent on the MOSI line. The on-chip driven program sequence is started when the CSN pin is high/deactivated. The program sequence takes 730 clock cycles (XC1) after CSN is deactivated. During this sequence all SPI commands are ignored except the RDSR command. The device returns to write disable after completion of an RDISMB command. The only way to clear FSR.RDISMB is to erase the whole flash MainBlock with an ERASE ALL command, and thereafter do an ERASE PAGE of the flash InfoPage to set the value of byte 0x23 to 0xFF. 17.7.1.11 ENDEBUG The SPI command ENDEBUG writes 0x00 to the flash InfoPage byte 0x24, and after the next reset FSR.DBG is set and the HW Debugger is enabled. To clear FSR[7] first erase the flash InfoPage, and then perform a reset. This is a single byte command with no data. This command is only allowed if FSR.DBG=0, and is ignored otherwise. The following sequence is required: 1. 2. 3. 4. 5. Enable the device for writing (set FSR.WEN) using the WREN or WRSR command. The CSN line is pulled low to enable the SPI slave. The ENDEBUG command is sent on the MOSI line. The on-chip driven program sequence is started when the CSN pin is high/deactivated. The program sequence takes 730 clock cycles (XC1) after CSN is deactivated. During this sequence all SPI commands are ignored except the RDSR command. Revision 1.1 Page 149 of 187 nRF24LU1+ Product Specification FSR.DBG may be set (only when FSR.RDISMB=0) without involving the flash InfoPage, by the following sequence: MCU writes a "1" to FSR.DBG. The HW debugger is then temporarily enabled until next reset, when the flash InfoPage value takes control. Note: There is no SPI command for directly setting or clearing FSR.DBG. The device returns to write disable after completion of an ENDEBUG command. 17.7.1.12 SPI Readback disable A mechanism to prevent readback over the external SPI interface is implemented. Two bytes of the InfoPage are reserved for this. The InfoPage and MainBlock each have their own readback disable signal, FSR.RDISIP and FSR.RDISMB. The InfoPage content is checked whenever the chip is started or restarted. If byte 0x22 of InfoPage=0xFF, FSR.RDISIP=0, otherwise FSR.RDISIP=1. If byte 0x23 of InfoPage=0xFF, FSR.RDISMB=0, otherwise FSR.RDISMB=1. The InfoPage bytes may be written once, (by using command SPI commands RDISIP or RDISMB) which enables the readback disable function. The InfoPage byte 0x23 (RDISMB) is also writable by MCU. Until the flash memory is erased again, the readback function cannot be enabled. FSR.RDISMB=1 inhibits page erase and write to flash (both MainBlock and InfoPage), but erase all is always allowed, as it is the only way to clear FSR.RDISMB. 17.7.2 Standalone programming requirements When programming the nRF24LU1+ in a standalone flash/EEPROM/MCU programmer, an adapter board (or socket assembly) with capacitors and resistors and possibly an oscillator are required. The following table describes how the device pins are used: Signal VDD PROG Pins 1, 3, 9, 19, 24, 27 3 4 5 6, 12, 17, 18, 23, 26, 30 7 RESET 8 SCK 10 MOSI 11 MISO 13 CSN 14 P0.4 P0.5 VDD_PA 15 16 20 VBUS D+ DVSS Revision 1.1 Disposition Connect together to supply and decouple Open Leave open Leave open Connect to ground net (plane) Connect to pin electronics or strap to VDD Connect to pin electronics or strap to VDD Connect to pin electronics (nRF24LU1+ in) Connect to pin electronics (nRF24LU1+ in) Connect to pin electronics (nRF24LU1+ out) Connect to pin electronics (nRF24LU1+ in) Leave open Leave open Leave open Page 150 of 187 Further information See 17.7.2.2 See 17.7.2.2 See 17.7.2.2 See 2.2.2 See 2.2.7 See 17.7.1 See 17.7.1 See 17.7.1 See 17.7.1 nRF24LU1+ Product Specification Signal ANT1 ANT2 IREF DEC1 DEC2 XC2 XC1 Pins 21 22 25 28 29 31 32 Disposition Leave open Leave open Leave open Leave open Decouple to VSS leave open (optionally connect to XTAL) Connect to clock source Further information See 17.7.2.2 See 17.7.2.1 See 17.7.2.1 Table 122. Device pins 17.7.2.1 Clock requirements The XC1 requires a clock between 9 MHz and 16 MHz during the entire programming sequence. The programming speed is directly proportional to the speed of the clock so, we recommend a clock speed of 16 MHz +/- 60ppm. The clock source can be a crystal between XC1 and XC2 or an external clock source connected to the XC1 pin: From an oscillator module on the adapter board or a pin driver in the programmer. X Required amplitude is at least 0.5V p-p, maximum 3.3V p-p. X Waveform is sine or square. X Required duty cycle is 40% to 60% (V/2 in the sine case). XC2 XC1 OSC * nRF24LU1+ PROG CSN MISO MOSI SCK RESET Figure 75. External clock source * From a crystal between XC1 (pin 32) and XC2 (pin 31) Revision 1.1 Page 151 of 187 nRF24LU1+ Product Specification See chapter 24 on page 176 for oscillator circuitry details. Make sure the socket solution does not add significant parasitic to the circuit. XC1 X XC2 X nRF24LU1+ PROG CSN MISO MOSI SCK RESET Figure 76. Clock source from a crystal between XC1 and XC2 pins 17.7.2.2 Power supply requirements All VSS pins should be well connected to the adapter board, preferably using a ground plan. All VDD pins should be connected together and decoupled with at least three capacitors (two 10nF capacitors and one 100nF capacitor), to VSS. The DEC2 pin should be decoupled with 33nF to VSS. Using 3.3V supply (preferred) Leave the VBUS pin open and connect a 3.3V +/- 5% power supply to the VDD pins. 17.7.2.3 Signal pin requirements SPI Port The pins CSN, SCK and MOSI must be driven by programmer pin electronics. All write operations to the FLASH are controlled by these three signals. The pin MISO is an output of the nRF24LU1+ that must be read to validate flash contents, and can be read to check status during write or erase operations. Revision 1.1 Page 152 of 187 nRF24LU1+ Product Specification The clock frequency of the SPI port is not correlated to the XC1 clock (it does not need to be synchronous). The SPI data signals have no defined relation to the XC1 clock (can be any phase). For more information see chapter 5 on page 19. Control pins PROG and RESET If power on sequence is clean (that is, nRF24LU1+ is well seated when power is ramped and power ramp is monotonous), the program and reset signals may be strapped to VDD. However, if possible, these signals should be controlled by pin drivers so that they are independent of power ramp quality. 17.7.3 In circuit programming over SPI You can program a finished PCB with nRF24LU1+ that has all parts mounted. There are similar requirements to a standalone programmer with the following exceptions: * * * * * * * * * All pins must be connected according to application requirements. PROG pin needs a pull-down on the PCB. PROG pin should be under control of the programmer over the edge of the PCB or through a pogo pin. RESET pin needs a pull-up on the PCB. RESET pin should be under control of the programmer over the edge of the PCB or through a pogo pin (to restart device after programming if required). The SPI input pins (CSN, SCK, MOSI) should be under control of the programmer over the edge of the PCB or through a pogo pin. The SPI output pin (MISO) should be readable by programmer over the edge of the PCB or through a pogo pin. The applications use of the SPI port pins should not conflict with the use of these pins as a SPI port. nRF24LU1+ can be powered effectively by a 5V connected to VBUS (over USB plug or pogo pin) or by a 3.3V +/- 5% connected to VDD over the edge of the PCB or through a pogo pin. 17.7.4 SPI programming sequences The details of SPI timing are described in section 10.3 on page 102. With limit track length (and other loading on MISO) it is possible to operate the SPI up to 8 MHz. Reducing that to 4 MHz (or even 2 MHz) does not significantly impact the overall programming time. The sequences of command and data in an SPI command are found in Figure 72. on page 146 and Figure 74. on page 146. In these figures only 1 byte of data is shown. Typically for read and write data transfers the block should be as long as possible (64 to 256 data bytes gives the best performance). The typical production line sequence of commands is: 1. 2. 3. 4. 5. 6. Pulse RESET pin low and return to high. Pull PROG pin high and wait for 2ms. Issue WREN command Issue ERASE_ALL command Wait for the ERASE_ALL command to finish (this takes 360,000 clock cycles (XC1) after the positive edge of CSN). Repeat the following 128 times for 32 kB flash memory, (64 times for 16 kB): X Issue WREN command X Issue PROGRAM command followed by the next address and then the next 256 data bytes. X Wait until the PROGRAM command is finished (this is 256 + 1 times 365 clock cycles (XC1) after the positive edge of CSN). Revision 1.1 Page 153 of 187 nRF24LU1+ Product Specification 7. Repeat the following 128 times for 32 kB flash memory: X Issue READ command followed by next address then read out 256 bytes on MISO X Compare read bytes against expected The following are optional steps that update the InfoPage fields: 8. Issue WFSR to set FSR.INFEN bit to 1. IF "Page address for start of protected area" is specified (not equal to 0xFF): 9. 10. 11. Issue SPI command WREN Issue SPI command PROGRAM with address 0x0020 followed by the offset byte Wait until PROGRAM command is finished IF "Enable flash data memory" is specified: 12. 13. 14. Issue SPI command WREN Issue SPI command PROGRAM with address 0x0021 followed by a byte that is not 0xFF Wait until PROGRAM command has completed (this is 365 clock cycles (XC1) after the positive edge of CSN). IF "Readback blocking for MainBlock" is specified: 15. 16. Issue SPI command RDISMB Wait until PROGRAM command has completed (this is 365 clock cycles (XC1) after the positive edge of CSN). IF "Readback blocking for InfoPage" is specified: 17. 18. Issue SPI command RDISIP Wait until PROGRAM command has completed (This is 365 clock cycles (XC1) after the positive edge of CSN). Note: The completion of the ERASE_ALL and/or the PROGRAM command may be ensured by waiting the specified amount of time, or alternatively repeatedly issuing RDSR commands until the FSR.RDYN bit reads back as 0. 17.7.4.1 Erasing and programming the InfoPage Our devices have all user defined fields of the InfoPage pre-erased. The above programming sequence does not erase the InfoPage. If InfoPage needs to be erased due to re-programming of a part, the following steps must be added: 1. 2. Issue WFSR to set FSR.INFEN bit to 1 and FSR.WEN bit to 1 Issue ERASE_PAGE 0 Note: To avoid losing the CHIP_ID (at address 0x0B to 0x0F), these bytes should be saved before erasing, and programmed back afterwards. 3. Wait until ERASE_PAGE command is finished (this will be 360,000 clock cycles (XC1) after the positive edge of CSN). The InfoPage is now erased and ready for programming. If the flash MainBlock is read protected (FSR.RDISMB=1), the InfoPage can only be erased if the MainBlock has been erased. This means that Revision 1.1 Page 154 of 187 nRF24LU1+ Product Specification step 1 of this sequence must come after step 5 (ERASE_ALL) in the programming sequence in section 17.7.4 on page 153. Note: The completion of the ERASE_PAGE and/or the PROGRAM command may be ensured by waiting the specified amount of time, or alternatively repeatedly issuing RDSR commands until the FSR.RDYN bit reads back as 0. Revision 1.1 Page 155 of 187 nRF24LU1+ Product Specification 18 MDU - Multiply Divide Unit The MDU - Multiplication Division Unit, is an on-chip arithmetic co-processor which enables the MCU to perform additional extended arithmetic operations like 32-bit division, 16-bit multiplication, shift and, normalize operations. 18.1 Features The MDU is controlled by the SFR registers MD0 .. MD5 and ARCON. 18.2 Block diagram MDU MD0 MD2 MD4 MD1 MD3 MD5 ARCON Figure 77. Block diagram of MDU 18.3 Functional description All operations are unsigned integer operations. The MDU is handled by seven registers, which are memory mapped as Special Function Registers. The arithmetic unit allows concurrent operations to be performed independent of the MCU's activity. Operands and results are stored in MD0..MD5 registers. The module is controlled by the ARCON register. Any calculation of the MDU overwrites its operands. The MDU does not allow reentrant code and cannot be used in multiple threads of the main and interrupt routines at the same time. Use the NOMDU_R515 directive to disable MDU operation in possible conflicting functions. 18.4 SFR registers The MD0 .. MD5 are registers used in the MDU operation. Address 0xE9 0xEA 0xEB 0xEC 0xED 0xEE Register name MD0 MD1 MD2 MD3 MD4 MD5 Table 123. Multiplication/Division registers MD0..MD5 Revision 1.1 Page 156 of 187 nRF24LU1+ Product Specification The ARCON register controls the operation of MDU and informs you about its current state. Address Reset value Bit Name Description 0xEF 0x00 7 mdef MDU Error flag MDEF. Indicates an improperly performed operation (when one of the arithmetic operations has been restarted or interrupted by a new operation). 6 mdov MDU Overflow flag MDOV. Overflow occurrence in the MDU operation. 5 slr Shift direction, 0: shift left, 1: shift right. 4-0 sc Shift counter. When set to `0's, normalize operation is selected. After normalization, the "sc.0" ... "sc.4" contains the number of normalizing shifts performed. Shift operation is selected when at least one of these bits is set high. The number of shifts performed is determined by the number written to "sc.4".., "sc.0", where "sc.4" is the MSB. Table 124. ARCON register The operation of the MDU consists of the following phases: 18.4.1 Loading the MDx registers The type of calculation the MDU has to perform is selected in accordance with the order in which the MDx registers are written. MD4 (lsb) MD5 (msb) MD4 (lsb) MD5 (msb) 16 bit x 16 bit MD0 (lsb) Num1 MD4 (lsb) Num2 MD1 (msb) Num1 MD5 (msb) Num2 Shift/normalize MD0 (lsb) MD1 MD2 MD3 (msb) Number 16 bit / 16 bit MD0 (lsb) MD1 (msb) Ddivisor Dividend last write 32 bit/16 bit MD0 (lsb) MD1 MD2 MD3 (msb) Ddivisor Dividend Operation first write ARCON Table 125. MDU registers write sequence 1. 2. 3. Write MD0 to start any operation. Write operations, as shown in Table 125. to determine appropriate MDU operation. Write (to MD5 or ARCON) starts selected operation. The SFR Control detects some of the above sequences and passes control to the MDU. When a write access occurs to MD2 or MD3 between write accesses to MD0 and finally to MD5, then a 32/16 bit division is selected. When a write access to MD4 or MD1 occurs before writing to MD5, then a 16/16 bit division or 16x16 bit multiplication is selected. Writing to MD4 selects 16/16 bit division and writing to MD1 selects 16x16 bit multiplication, that is, Num1 x Num2. Revision 1.1 Page 157 of 187 nRF24LU1+ Product Specification 18.4.2 Executing calculation During executing operation, the MDU works on its own in parallel with the MCU. Operation Division 32bit/16bit Division 16bit/16bit Multiplication Shift Normalize Number of clock cycles 17 clock cycles 9 clock cycles 11 clock cycles min. 3 clock cycles (sc = 01h) max 18 clock cycles (sc = 1Fh) min. 4 clock cycles (sc <- 01h) max 19 clock cycles (sc <- 1Fh) Table 126. MDU operations execution times Reading the result from the MDx registers Shift/normalize MD0 (lsb) MD1 MD2 Number Quotient MD4 (lsb) MD5 (msb) 16 bit x 16 bit MD0 (lsb) MD1 MD2 Product MD4 (lsb) MD5 (msb) 16 bit / 16 bit MD0 (lsb) MD1 (msb) Remainder last read 32 bit/16 bit MD0 (lsb) MD1 MD2 MD3 (msb) Quotient Operation first read Remainder 18.4.3 MD3 (msb) MD3 (msb) Table 127. MDU registers read sequence The Read out sequence of the first MDx registers is not critical but the last read (from MD5 - division and MD3 - multiplication, shift or normalize) determines the end of a whole calculation (end of phase three). 18.4.4 Normalizing All leading zeroes of 32-bit integer variable stored in the MD0 .. MD3 registers are removed by shift left operations. The whole operation is completed when the MSB (Most Significant Bit) of MD3 register contains a '1'. After normalizing, bits ARCON.4 (msb) .. ARCON.0 (lsb) contain the number of shift left operations that were done. 18.4.5 Shifting In shift operation, 32-bit integer variable stored in the MD0 ... MD3 registers (the latter contains the most significant byte) is shifted left or right by a specified number of bits. The slr bit (ARCON.5) defines the shift direction and bits ARCON.4 ... ARCON.0 specify the shift count (which must not be 0). During shift operation, zeroes come into the left end of MD3 for shifting right or they come in the right end of the MD0 for shifting left. 18.4.6 The mdef flag The mdef error flag (see Table 124. on page 157) indicates an improperly performed operation (when one of the arithmetic operations is restarted or interrupted by a new operation). The error flag mechanism is automatically enabled with the first write operation to MD0 and disabled with the final read instruction from MD3 (multiplication or shift/norm) or MD5 (division) in phase three. Revision 1.1 Page 158 of 187 nRF24LU1+ Product Specification The error flag is set when: * * If you write to MD0 .. MD5 and/or ARCON during phase two of MDU operation (restart or calculations interrupting). If any of the MDx registers are read during phase two of MDU operation when the error flag mechanism is enabled. In this case, the error flag is set but the calculation is not interrupted. The error flag is reset only after read access to the ARCON register. The error flag is read only. 18.4.7 The mdov flag The mdov overflow flag (see Table 124. on page 157) is set when one of the following conditions occurs: * * * division by zero. multiplication with a result greater than 0000 FFFFh. start of normalizing if the most significant bit of MD3 is set ("md3.7" = `1'). Any operation of the MDU that does not match the above conditions clears the overflow flag. Note: The overflow flag is exclusively controlled by hardware, it cannot be written. Revision 1.1 Page 159 of 187 nRF24LU1+ Product Specification 19 Watchdog and wakeup functions In order to achieve the lowest possible average current consumption, the processor clock can be stopped under firmware control. Operation can be resumed (wakeup) on external events like toggling of GPIO pins or from the internal RTC wakeup timer, USB or, the RF-module, see chapter 20 on page 165 for details. In addition, a programmable watchdog timer can be enabled to reset the system if the software hangs. 19.1 * * * * * * * Features 32 kHz operation Programmable 8-bit resoulution 16-bit range Watchdog Watchdog disabled (reset) only by a system reset 24-bit range wakeup timer Timer is a possible interrupt source Timer reload can be signalled on GPIO 19.2 Block diagram Data & Control Interface REGXH REGXL REGXC Latch logic 24-bit (8+16) Divider TICKDV CKLF Enable Watchdog 16-bit Down-Counter RTC 24-bit Down-Counter 4-bit To Wakeup & Interrupt logic 4-bit Counter GTIMER Watchdog reset Figure 78. Watchdog and wakeup functions block diagram Revision 1.1 Page 160 of 187 nRF24LU1+ Product Specification 19.3 Functional description 19.3.1 The Low Frequency Clock (CKLF) CKLF frequency fCKLF is 32000 Hz (derived from the crystal oscillator1 and is used for wakeup functions and the Watchdog. This clock is always running. 19.3.2 Tick calibration The tick is an interval (in CKLF periods) that determines the resolution of the watchdog and the RTC wakeup timer. By default the tick is set to 125 s (4 CKLF cycles). The programmable range is from 31.25 s to 8 ms. The tick is as accurate as the 32 kHz source. The tick is controlled by the TICKDV register. Addr Reset value 0xB5 0x03 bit 7:0 R/W RW Function Divider that is used in generating tick from CKLF frequency. Ttick = (1 + TICKDV) / fCKLF. Table 128. TICKDV register 19.3.3 RTC wakeup timer The RTC is a simple 24 bit down counter that produces an optional interrupt and reloads automatically when the count reaches zero. This process is initially disabled, and is enabled with the first write to the lower 16 bit of the timer latch (WRTCLAT). Writing the lower 16 bits of the timer latch is always followed by a reload of the counter. Only write the upper 8 bit of the timer latch when the timer is disabled, see Table 130. on page 164. The RTC counter may be disabled again by writing a disable opcode to the control register (WRTCDIS). Both the latch and the counter value may be read by giving the respective codes in the control register, see the description in Table 129. on page 163 and Table 130. on page 164. The RTC counter is used for a wakeup sometime in the future (a relative time wakeup call). If `N' is written to the counter, the first wakeup happens between `N+1' and `N+2' "tick" from the completion of the write. From then on a new wakeup is issued every "N+1" "tick" until the unit is disabled or another value is written to the latch. The wakeup timer is one of the sources that can generate a WU interrupt (see Table 140. on page 173) to the MCU. You may poll the flag or enable the interrupt. If the MCU is in a power down or standby state, the wakeup forces the device to exit power down or standby regardless of the state of the interrupt enable. The MCU system does not provide any "absolute time functions". Absolute time functions can be handled in software since the RAM is continuously powered even when in sleep mode. 1. fCKLF is 1/500 of oscillator frequency. Revision 1.1 Page 161 of 187 nRF24LU1+ Product Specification 19.3.4 Programmable GPIO wakeup function All pins in port 0 can be used as wakeup signals for the MCU system. The device can be programmed to react on rising, falling or, both edges of each pin individually. Additionally, each pin is equipped with a programmable filter that is used for glitch suppression. CKLF P0x Debounce [1:0] Edge [3:2] Wakeup P0x WWCON Figure 79. Wakeup filter, each pin for GPIO wakeup function The debounce logic acts as a low pass filter. The input has to be stable for the number of clock pulses that are given (in WGTIMER) to appear on the output. Edge triggers on positive, negative, or both edges. The edge delay is 2 clock cycles. Please see Table 130. on page 164 and Table 131. on page 164 for filter configuration. 19.3.5 Watchdog The watchdog is activated on the first write to its control register REGXC. It cannot be disabled by any other means than a reset. The watchdog register is loaded by writing a 16-bit value (number of ticks) to the two 8-bit data registers (REGXH and REGXL) and then writing the correct opcode to the control register. The watchdog counts down towards 0 and when 0 is reached the complete MCU is reset. To avoid the reset, the software must regularly load new values into the watchdog register. 19.3.6 Programming interface to watchdog and wakeup functions Figure 80. on page 163 shows how the blocks that are always active are connected to the MCU. RTC timer GPIO wakeup and Watchdog are controlled through three SFRs. The three registers, REGXH, REGXL and, REGXC, are used to interface the blocks running on the slow CKLF clock. The 16-bit register REGXH:REGXL can be written or read as two bytes from the MCU. Typical sequences are: Write:Write REGXH, Write REGXL, Write REGXC Read: Write REGXC, Read REGXH, Read REGXL Revision 1.1 Page 162 of 187 nRF24LU1+ Product Specification REGXC REGXH load load 8+16+4 bit Timer_latch Clocked on MCU clock Clocked on CKLF load GPIO wakeup Watchdog 16-bit downcounter =0 tick REGXL 24-bit load down-counter 4-bit cntr RTC P0 GPIO Wakeup and Int =0 GTIMER P0.0 GPIO P0ALT.0 Watchdog reset Figure 80. Block diagram of wakeup and watchdog functions Table 129. on page 163 describes the functions of the SFR registers that control those blocks, and Table 130. on page 164 explains the contents of the individual control registers for watchdog and wakeup functions. Reset value 0xAB 0x00 0xAC 0x00 0xAD 0x00 Addr bit R/W 7:0 7:0 RW 0x00 RW 0x00 0x00 R RW RW 7:5 4 3 2:0 Init Name Function REGXH Most significant byte of 16-bit data register REGXL Least significant byte of 16-bit data register REGXC Control register for 16 bit data register Not used Status of last REGXC write access 0: finished, 1: not finished 0: read, 1: write; see R/W column in Table 130. on page 164. Indirect address, see the far left column in Table 130. on page 164. Table 129. REGXH, REGXL and REGXC registers Indirect Data register R/Wa Address Bit 000 15:0 R 15:0 W 001 15:8 R 7:0 R 15:12 11:8 W 7:0 W 010 15:0 R 15:0 W 011 15:0 R W Revision 1.1 Name RWD WWD RGTIMER WGTIMER RRTCLAT WRTCLAT RRTC WRTCDIS Function Watchdog register (count) Watchdog register (count) MSB part of RTC counter MSB part of RTC latch Not used GTIMER latch MSB part of RTC latch Least significant part of RTC latch Least significant part of RTC latch RTC counter value Disable RTC (data not used) Page 163 of 187 nRF24LU1+ Product Specification Indirect Data register R/Wa Address Bit 15:9 100 8 R 5:0 R 100 15:14 W 13:12 W 11:10 W 9:8 W W 7:6 W 5:4 W 3:2 W 1:0 101 110 111 15:9 8 7:0 15:8 7:6 5:4 3:2 1:0 R R W W W W 15:0 15:0 - Name Function RWSTA0 Not used Wakeup status for RTC timer Wakeup status for pins P05-P00. RWSTA0 is automatically cleared after read. Edge selection of P03 Debounce filter for P03 Edge selection of P02 Debounce filter for P02 Edge selection of P01 Debounce filter for P01 Edge selection of P00 Debounce filter for P00, see Table 131. on page 164. Identical to RWSTA0 above WWCON0 RWSTA1 WWCON1 - Not used Edge selection of P05 Debounce filter for P05 Edge selection of P04 Debounce filter for P04, see Table 131. on page 164. Reserved, do not use Reserved, do not use a. REGXC bit-3 selects between R(ead) and W(rite) operation Table 130. Indirect addresses and functions Debounce filter selection Code Number of clock pulses 00 0 01 2 10 8 11 64 Code 00 01 10 11 Edge selection positive/negative trigger Off Positive Negative Both Table 131. GPIO wakeup filter configuration, WWCON Revision 1.1 Page 164 of 187 nRF24LU1+ Product Specification 20 Power management The nRF24LU1+ Power Management function controls the power dissipation through the administration of modes of operation and by controlling clock frequencies. 20.1 * * * * Features Supports low power modes for MCU, RF Tranceiver, USB and 48 MHz PLL Programmable MCU clock frequency from 64 kHz to 16 MHz Multi-source MCU wakeup Watchdog and wakeup functionality running in low power mode 20.2 Block diagram Wakeup sources Wakeup logic WUCONF Interrupts Operational mode control Oscillators/ Regulators/ Reset sources PWRDWN Clock Control CLKCTL Reset Control RSTRES Figure 81. Power management block diagram Revision 1.1 Page 165 of 187 Cclk CKLF Local reset signals nRF24LU1+ Product Specification 20.3 Modes of operation There are four main power consuming functions on the chip. These can be controlled on and off in different ways depending on the required functionality after the start-up/reset sequence is ended. These functions are: * MCU X X X X states of operation: active and standby active at the end of the reset sequence Set to standby by software (write PWRDWN register = 0x01) Set to active by wakeup sources: Interrupt from USB Interrupt from RF Transceiver Interrupt from external pin Interrupt from on-chip RTC * RF Transceiver X states of operation: power down, standby and active (TX or RX) X pwrdwn at the end of the reset sequence X Set to standby, active or power down by software, see section 6.3.1 on page 27 * USB X X X X * states of operation: active and suspend active at the end of the reset sequence Set to suspend by software (write USBSLP register = 0x01) Set to active by software or by wakeup from USB host (through the USB bus) PLL X X X states of operation: on and off on at the end of the reset sequence Set to on or off by hardware with one exception: if the USB is in suspend the PLL may be controlled by software (Enable PLL, bit 7 in the CLKCTL register) Table 132. on page 166 summarizes the available modes of operation after the reset sequence is ended: * * PROG is an external pin on the nRF24LU1+. RF Transceiver, USB, MCU and PLL represent the functions defined above. PROG 1 0 0 0 0 0 0 0 0 RF Transceiver standby standby standby standby active active active active USB suspend suspend active active suspend suspend active active MCU PLL Comment Flash programming mode via SPI standby OFF active software standby ON active ON standby OFF active software standby ON active ON Table 132. nRF24LU1+ modes of operation Revision 1.1 Page 166 of 187 nRF24LU1+ Product Specification In nRF24LU1+ the 16 MHz oscillator is always running. An internal PLL can be enabled that multiplies the 16 MHz by three to get an internal 48 MHz clock. This clock is required for USB operation. The internal 32.000 kHz clock (CKLF) is generated from the 16 MHz oscillator. To save power when the USB is suspended, the PLL can be turned off, and the clock frequency to the MCU can be reduced. This reduces power consumption, but also reduces performance. To further reduce power, the MCU clock can be stopped using the PWRDWN register. In the PCON register stop and idle modes can be selected, but since their effect on power consumption is minor use PWRDWN. The following various internal and external events can resume the MCU clock: * * * Interrupt from RF Transceiver, rfirq Interrupt from USB Interrupt from RTC timer or GPIO-pins (see chapter 19 on page 160) The WUCONF register controls how these events are handled. 20.4 Functional description 20.4.1 Clock control - CLKCTL Reset value 0xA3 0x80 Addr Bit R/W 7 6:4 RW RW 3:2 1:0 RW Function Enable PLL, 1: PLL on, 0: PLL off Set Cclk (MCU clock) frequency when PLL is ON 000: 16 MHz 001: 12 MHz 010: 8 MHz 011: 4 MHz 100: 1.6 MHz Other combinations: reserved. Not used Set Cclk (MCU clock) frequency when PLL is OFF 00: 4 MHz 01: 1.6 MHz 10: 320 kHz 11: 64 kHz Table 133. CLKCTL register Revision 1.1 Page 167 of 187 nRF24LU1+ Product Specification 20.4.2 Power down control - PWRDWN Addr Reset value Bit 0xA4 0x00 7:4 3 2:0 R/W R W Function Not used Read CKLF clock (32 kHz clock, always running) Set MCU to standby if different from 000 Note: Any pending interrupt flags in IRCON must be cleared before setting MCU to standby. Table 134.PWRDWN register 20.4.3 Reset result - RSTRES The following three reset sources initiate the same reset/start-up sequence: * * * Reset from the on-chip reset generator. Reset from pin. Reset generated from the on-chip watchdog function. The RSTRES register stores the reset cause: Addr 0xB1 Reset value 0x00 Bit 7:1 0 R/W R Function Not used Reset cause, 1: Watchdog, 0: other Table 135. RSTRES register 20.4.4 Wakeup configuration register - WUCONF Reset value 0xA5 0x00 Addr Bit R/W 7:6 RW 5:4 RW 3:2 RW 1:0 RW Function 00: Enable wakeup on RFIRQ, if IEN1.1=1 01: Reserved, not used 10: Enable wakeup on RFIRQ, regardless of IEN1.1 11: Ignore RFIRQ 00: Enable wakeup on WU, if IEN1.5=1a 01: Reserved, not used 10: Enable wakeup on WU, regardless of IEN1.5 11: Ignore WU 00: Enable wakeup on USBIRQ, if IEN1.4=1 01: Reserved, not used 10: Enable wakeup on USBIRQ, regardless of IEN1.4 11: Ignore USBIRQ 00: Enable wakeup on USBWU, if IEN1.3=1 01: Reserved, not used 10: Enable wakeup on USBWU, regardless of IEN1.3 11: Ignore USBWU a. WU is generated as described in sections 19.3.3 and 19.3.4 Note: IRCON flag will be set upon wakeup, even if interrupt is not enabled in IEN1. Table 136.WUCONF register Revision 1.1 Page 168 of 187 nRF24LU1+ Product Specification 20.4.5 Power control register - PCON The PCON register is used to control the Power Down Modes (IDLE, STOP), the Program Memory Write Mode and Serial Port 0 baud rate doubler. Address 0x87 Reset value 0x00 Bit Name 7 6 5 4 3 2 1 0 Description smod Serial Port 0 baud rate select, see Table 89. on page 114 (baud rate doubler). gf3 General purpose flag 3 gf2 General purpose flag 2 pmw Program memory write mode. Setting this bit enables the program memory write mode. gf1 General purpose flag 1 gf0 General purpose flag 0 stop Stop mode control. Setting this bit activates the Stop Mode. Always read as 0. idle Idle mode control. Setting this bit activates the Idle Mode. Always read as 0. Table 137. PCON register Revision 1.1 Page 169 of 187 nRF24LU1+ Product Specification 21 Power supply supervisor The power supply supervisor initializes the system at power-on, provides an early warning of impending power failure, and puts the system in reset state if the supply voltage is too low for safe operation. 21.1 * * * Features Power-on reset Brown-out reset Early power-fail warning with some hardware protection of data in flash memory 21.2 Functional description 21.2.1 Power-on reset A Power-on reset generator initializes the system at power-on. The system is held in reset state until VDD has reached around 2.7V or higher. Voltage VDD >2.7V Time 0V Reset X Figure 82. Power-on reset 21.2.2 Brown-out detection If supply VBUS or VDD drops below around 2.7V (which is outside the operational specification), a powerfail detection signal goes active. If the supply goes below around 1.8V, a brown-out reset signal goes on and the chip is reset. The supply must rise above approximately 2.7V again before the reset signal is released. The power-fail signal is used to prevent flash memory write or erase at low voltage, see section 17.4 on page 139. Voltage VDD 2.7V 1.8V Time Power Fail Reset Figure 83. Brown-out detection Revision 1.1 Page 170 of 187 nRF24LU1+ Product Specification 22 Interrupts nRF24LU1+ has an advanced interrupt controller with 15 sources, as shown in Figure 84.. The unit manages dynamic program sequencing based upon important real-time events as signalled from timers, the RF Transceiver, the USB interface or pin activity. 22.1 * * * Features Interrupt controller with 15 sources and 4 priority levels Interrupt request flags available Interrupt from pin with selectable polarity Block diagram 22.2 Request flags P0[3] (INT0) edge/level TCON[0] Auto clear request flags IEN0[7] IEN0[0] TCON[1] IEN1[0] RFRDY IP1[0] IP0[0] IRCON[0] IEN0[1] tf0 (INT2) AESIRQ MSDONE SSDONE IEN1[1] edge sel: T2CON[5] IRCON[1] edge/level TCON[2] TCON[3] IEN0[2] source: INTEXP edge sel: T2CON[6] IEN1[2] IEN0[3] tf1 TCON[7] IEN1[3] USBWU IP1[3] IP0[3] IRCON[3] ri0 S0CON[0] ti0 S0CON[1] IEN0[4] IEN1 [4] USBIRQ IP1[4] IP0[4] IRCON[4] exf2 IRCON[7] IEN0[5] IEN1[7] IRCON[6] IEN1[5] WU IP1[2] IP0[2] IRCON[2] (INT3) tf2 IP1[1] IP0[1] IP1[5] IP0[5] IRCON[5] Figure 84. nRF24LU1+ interrupt structure Revision 1.1 Page 171 of 187 Processing sequence RFIRQ TCON[5] MCU interrupt nRF24LU1+ Product Specification 22.3 Functional description When an enabled interrupt occurs, the MCU vectors to the address of the interrupt service routine (ISR) associated with that interrupt, as listed in Table 138. on page 172. The MCU executes the ISR to completion unless another interrupt of higher priority occurs. Source P0.3 tf0 AESIRQ tf1 ri0 ti0 tf2 exf2 RFRDY RFIRQ MSDONE SSDONE USBWU USBIRQ WU Vector 0x0003 0x000B 0x0013 0x001B 0x0023 0x0023 0x002B 0x002B 0x0043 0x004B 0x0053 0x0053 0x005B 0x0063 0x006B Polarity low/fall high low/fall high high high high High high fall/rise fall/rise fall/rise rise rise rise Description External pin P0.3 Timer 0 interrupt AES ready interrupt Timer 1 interrupt Serial channel receive interrupt Serial channel transmit interrupt Timer 2 interrupt Timer 2 external event (pin P0.5) RF SPI ready RF IRQ Master SPI transaction completed Slave SPI transaction completed USB wakeup interrupt USB interrupt Internal Wakeup interrupt Table 138. nRF24LU1+ interrupt sources 22.4 SFR registers Various SFR registers are used to control and prioritize between different interrupts. The IRCON, SCON, IP0, IP1, IEN0, IEN1 and INTEXP are described in this section. In addition, a description of the TCON and T2CON registers is found in chapter 11 on page 103. 22.4.1 Interrupt enable 0 register - IEN0 The IEN0 register is responsible for global interrupt system enabling/disabling as well as Timer0, 1 and 2, Port 0 and Serial Port individual interrupts enabling/disabling. Address Reset value Bit Description 0xA8 0x00 7 1: Enable interrupts. 0: all interrupts are disabled. 6 Not used. 5 1: Enable Timer2 interrupt. 4 1: Enable Serial Port interrupt. 3 1: Enable Timer1 overflow interrupt 2 1: Enable pin P0.4 interrupt. 1 1: Enable Timer0 overflow interrupt. 0 1: Enable pin P0.3 interrupt. Table 139. IEN0 register Revision 1.1 Page 172 of 187 nRF24LU1+ Product Specification 22.4.2 Interrupt enable 1 register - IEN1 The IEN1 register is responsible for RF, SPI, USB and Timer 2 interrupts. Address Reset value 0xB8 0x00 Bit 7 6 5 4 3 2 1 0 Description 1: Enable Timer2 external reload interrupt Not used 1: Wakeup interrupt enable 1: USB interrupt enable 1: USB wakeup interrupt enable 1: Master or Slave SPI ready interrupt enable 1: RF interrupt enable 1: RF SPI ready enable Table 140. IEN1 register Master SPI and Slave SPI share the same interrupt line. Address 0xA6 Reset value 0x01 Bit Function 7:2 Not used 1 1: Enable Master SPI interrupt 0 1: Enable Slave SPI interrupt Table 141. INTEXP register. 22.4.3 Interrupt priority registers - IP0, IP1 The 14 interrupt sources are grouped into six priority groups. For each of the groups, one of four priority levels can be selected. It is achieved by setting appropriate values in IP0 and IP1 registers. The contents of the Interrupt Priority Registers define the priority levels for each interrupt source according to the tables below. Address 0xA9 Reset value 0x00 Bit Description 7:6 Not used. 5:0 Interrupt priority. Each bit together with corresponding bit from IP1 register specifies the priority level of the respective interrupt priority group. Table 142. IP0 register Address 0xB9 Reset value 0x00 Bit Description 7:6 Not used. 5:0 Interrupt priority. Each bit together with corresponding bit from IP0 register specifies the priority level of the respective interrupt priority group. Table 143. IP1 register Revision 1.1 Page 173 of 187 nRF24LU1+ Product Specification Group 0 1 2 3 4 5 Interrupt bits ip1.0, ip0.0 ip1.1, ip0.1 ip1.2, ip0.2 ip1.3, ip0.3 ip1.4, ip0.4 ip1.5, ip0.5 P0.3 interrupt Timer 0 interrupt P0.4 interrupt Timer 1 interrupt Serial port receive Timer 2 interrupt Priority groups RF interrupt RF SPI interrupt Master SPI USB wakeup Serial port transmit Wakeup interrupt Slave SPI USB interrupt Table 144. Priority groups ip1.x 0 0 1 1 ip0.x 0 1 0 1 Priority level Level 0 (lowest) Level 1 Level 2 Level 3 (highest) Table 145. Priority levels (x is the number of priority group) 22.4.4 Interrupt request control registers - IRCON The IRCON register contains Timer 2, SPI, RF, USB and wakeup interrupt request flags. Address 0xC0 Reset value 0x00 Flag exf2 tf2 WU USBIRQ USBWU M- or S-DONE RFIRQ RFRDY Bit Auto cleara 7 6 5 4 3 2 1 0 Yes Yes Yes Yes Yes - Description Timer 2 external reload flag Timer 2 overflow flag Wakeup interrupt flag USB interrupt flag USB wakeup interrupt flag Master or Slave SPI interrupt flag RF interrupt flag RF SPI interrupt flag a. Auto clear means that the flag is cleared by hardware automatically when the corresponding service routine is vectored. Table 146. IRCON register Revision 1.1 Page 174 of 187 nRF24LU1+ Product Specification 23 HW debugger support The nRF24LU1+ has the following on-chip hardware debug support for a JTAG debugger: * * nRFProbe hardware debugger from Nordic Semiconductor. System Navigator from First Silicon Solutions (www.fs2.com). These debug modules are available on device pins OCITO, OCTMS, OCITDO,OCITDI, OCITCK when enabled in the flash InfoPage. The HW debug features can be interfaced through USB to a PC and utilized in the Keil Integrated Development Environment (IDE) by running nRFProbe found in the nRFgo development kits or dedicated HW from First Silicon Solutions. 23.1 * * * * * Features Read/write all processor registers, SFR, program and data memory. Go/halt processor run control. Single step by assembly and C source instruction. Four independent HW execution breakpoints. Driver software for Keil Vision debugger interface. The features listed below are for the Keil Vision debugger only: * * * * * * * Load binary, Intel Hex or OMF51 file formats. Symbolic debug. Load symbols, including code, variables and variable types. Support C and assembly source code. Source window can display C source and mixed mode. Source window provides execution control; go, halt; goto cursor; step over/into call. Source window can set or clear software and hardware breakpoints. 23.2 Functional description The JTAG debug interface is enabled by writing (through the flash SPI slave interface) to address 0x24 in the InfoPage. Any byte value other than 0xFF enables debug. The Flash Status Register (FSR bit 7, 17.3.6 on page 139) shows the current status of the interface. The GPIO allocated in debug mode is summarized in Table 147. OCITO OCITDO OCITDI OCITMS OCITCK P0.4 P0.3 P0.2 P0.1 P0.0 Table 147. HW debug physical interface for nRF24LU1+ Note: A pull-up on OCITCK is required for the MCU to run (in debug mode) without the system navigator cable plugged in. A separate "Trigger Out" is available on the OCITO pin. This output can be activated when certain address and data combinations occur. Revision 1.1 Page 175 of 187 nRF24LU1+ Product Specification 24 Peripheral information This chapter describes peripheral circuitry and PCB layout requirements that are important for achieving optimum RF performance from the nRF24LU1+. 24.1 Antenna output The ANT1 and ANT2 output pins provide a balanced RF output to the antenna. The pins must have a DC path to VDD_PA, either through a RF choke or through the center point in a balanced dipole antenna. A load of 15 +j88 is recommended for maximum output power (0dBm). Lower load impedance (for instance 50 ) can be obtained by fitting a simple matching network between the load and ANT1 and ANT2. A recommended matching network for 50 load impedance is illustrated in Chapter 25 on page 178. 24.2 Crystal oscillator A crystal being used with the nRF24LU1+ must fulfil the specifications given in Table 10. on page 24. You must use a crystal with a low load capacitance specification to achieve a crystal oscillator solution with low power consumption and fast start-up time. A lower C0 also gives lower current consumption and faster start-up time, but may increase the cost of the crystal. Typically C0=1.5pF at a crystal specified for C0max=7.0pF. The crystal load capacitance, CL, is given by: CL = C1 'C 2 ' C1 ' + C 2 ' , where C1' = C1 + CPCB1 +CI1 and C2' = C2 + CPCB2 + CI2 C1 and C2 are SMD capacitors as shown in the application schematics, see Chapter 25 on page 178. CPCB1 and CPCB2 are the layout parasitic on the circuit board. CI1 and CI2 are the capacitance seen into the XC1 and XC2 pins respectively; the value is typically 1pF for each of these pins. 24.3 PCB layout and decoupling guidelines A well designed PCB is necessary to achieve good RF performance. A poor layout can lead to loss of performance or functionality. A fully qualified RF-layout for the nRF24LU1+ and its surrounding components, including matching networks, can be downloaded from www.nordicsemi.no. A PCB with a minimum of two layers including a ground plane is recommended for optimum performance. The nRF24LU1+ DC supply voltage should be decoupled as close as possible to the VDD pins with high performance RF capacitors.See the schematics layout in Chapter 25 on page 178 for recommended decoupling capacitor values. The nRF24LU1+ supply voltage should be filtered and routed separately from the supply voltages of any digital circuitry. Long power supply lines on the PCB should be avoided. All device grounds, VDD connections and VDD bypass capacitors must be connected as close as possible to the nRF24LU1+ IC. For a PCB with a topside RF ground plane, the VSS pins should be connected directly to the ground plane. For a PCB with a bottom ground plane, the best technique is to have via holes as close as possible to the VSS pads. A minimum of one via hole should be used for each VSS pin. Revision 1.1 Page 176 of 187 nRF24LU1+ Product Specification Full swing digital data or control signals should not be routed close to the crystal or the power supply lines. The exposed die attach pad is a ground pad connected to the IC substrate die ground and is intentionally not used in our layouts. It is recommended to keep it unconnected. Revision 1.1 Page 177 of 187 nRF24LU1+ Product Specification 25 Application example 25.1 Schematics 25.2 Layout A double sided FR-4 board of 1.6 mm thickness is used. This PCB has a ground plane on the bottom layer. There are ground areas on the component side of the board to ensure sufficient grounding of critical components. A large number of via holes connect the top layer to ground areas to the bottom layer ground plane. No components in bottom layer Top silk screen Revision 1.1 Page 178 of 187 nRF24LU1+ Product Specification Top view 25.3 Bottom view Bill Of Materials (BOM) Designator C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 L1 L2 L3 R2 R3 R4 R5 R6 R7 U1 X1 Value 15pF 15pF 2.2nF Not mounted 1.2pF 1.0pF 10nF 10nF 33nF 33nF 100nF 10uF 6.8nH 6.8nH 4.7nH 22k 22R 22R 10k 10R 10k nRF24LU1+ 16 MHz Footprint 0402 0402 0402 0402 0402 0402 0402 0402 0402 0402 0402 0805 0402 0402 0402 0402 0402 0402 0402 0402 0402 QFN32L/5x5 BT-XTAL Comment NP0 +/-2% NP0 +/-2% X7R +/-10% NP0 +/-0.1pF NP0 +/-0.1pF X7R +/-10% X7R +/-10% X7R +/-10% X7R +/-10% X7R +/-10% X5R +/-10% Chip inductor +/-5% Chip inductor +/-5% Chip inductor +/-5% 1% 1% 1% 1% 1% 1% nRF24LU1+ 16 MHz, CL=9pF +/-60ppm Table 148. Bill Of Materials Revision 1.1 Page 179 of 187 nRF24LU1+ Product Specification 26 Mechanical specifications nRF24LU1+ is packaged in a QFN32 5 x 5 x 0.85 mm, 0.5 mm pitch. D D2 D2/2 32 31 L 1 E2/2 2 E2 E 2 1 K 32 e TOP VIEW b BOTTOM VIEW A A1 SIDE VIEW Package QFN32 A3 A A1 A3 b D, E D2, E2 0.80 0.00 0.18 3.20 0.85 0.02 0.20 0.23 5 3.30 0.90 0.05 0.30 3.40 e K L 0.20 0.35 0.5 0.40 0.45 Min. Typ. Max Table 149. QFN32 dimensions in mm (Bold dimension denotes BSC) Revision 1.1 Page 180 of 187 nRF24LU1+ Product Specification 27 Ordering information 27.1 Package marking nRF24LU1P-F32 option: n 2 Y R F B 4 L U 1 Y W W L X P L nRF24LU1P-F16 option: n L Y R F B U 1 P 1 Y W W L 27.1.1 X 6 L Abbreviations Abbreviation LU1P16 24LU1P B X YY WW LL Definition Product number, F16 option Product number, F32 option Build Code, that is, unique code for production sites, package type and, test platform. "X" grade, that is, Engineering Samples (optional). Two digit Year number Two digit week number Two letter wafer lot number code Table 150. Abbreviations Revision 1.1 Page 181 of 187 nRF24LU1+ Product Specification 27.2 Product options 27.2.1 RF silicon Ordering code nRF24LU1P-F32Q32-T nRF24LU1P-F32Q32-R7 nRF24LU1P-F32Q32-R nRF24LU1P-F32Q32-SAMPLE nRF24LU1P-F16Q32-T nRF24LU1P-F16Q32-R7 nRF24LU1P-F16Q32-R nRF24LU1P-F16Q32-SAMPLE Flash memory Package size 32 kB 5x5mm 32-pin QFN, lead free (green) 32 kB 5x5mm 32-pin QFN, lead free (green) 32 kB 5x5mm 32-pin QFN, lead free (green) 32 kB 5x5mm 32-pin QFN, lead free (green) 16 kB 5x5mm 32-pin QFN, lead free (green) 16 kB 5x5mm 32-pin QFN, lead free (green) 16 kB 5x5mm 32-pin QFN, lead free (green) 16 kB 5x5mm 32-pin QFN, lead free (green) Container MOQa Tray 490 7" reel 1500 13" reel 4000 Sample box 5 Tray 490 7" reel 1500 13" reel 4000 Sample box 5 a. Minimum Order Quantity Table 151. nRF24LU1+ RF silicon options 27.2.2 Development tools Type Number Description nRF24LU1P-FxxQ32-DK nRF24LU1+ Development kit nRF6700 nRFgo Starter Kit nRF6704 nRFgo nRF24LU1P Flash/OTP Programming Adapter Kit (requires nRFgo Starter Kit) Table 152. nRF24LU1+ solution options Revision 1.1 Page 182 of 187 nRF24LU1+ Product Specification 28 Glossary of terms Term ACC ACK ART BSC Cclk CRC CSN DPS ESB FCR FPCR FSR GFSK HAL HID IRQ ISM LNA LSB LSByte MCU Mbps MISO MoQ MOSI MSB MSByte PCB PER PID PLD PRX PSW PTX pwrdwn PWR_UP RAM RDSR rfce RX RX_DR SDK SP SPI TX TX_DS USB WO Description Accumulator Acknowledgement Auto Re-Transmit Basic Spacing between Centers MCU Clock Cyclic Redundancy Check Chip Select NOT Data Pointer Select register Enhanced ShockBurstTM Flash Command Register Flash Protect Config Register Flash Status Register Gaussian Frequency Shift Keying Hardware Abstraction Layer Human Interface Device Interrupt Request Industrial-Scientific-Medical Low Noise Amplifier Least Significant Bit Least Significant Byte Microcontroller Megabit(s) per second Master In Slave Out Minimum Order Quantity Master Out Slave In Most Significant Bit Most Significant Byte Printed Circuit Board Packet Error Rate Packet Identity Bits Payload Primary RX Program Status Word Register Primary TX Power Down Power Up Random Access Memory Read Status Register Radio transceiver chip enable Receive Receive Data Ready Software Development Kit Stack Pointer Serial Peripheral Interface Transmit Transmit Data Sent Universal Serial Bus Write Only Table 153. Glossary Revision 1.1 Page 183 of 187 nRF24LU1+ Product Specification Appendix A - (USB memory configurations) The USB buffer memory has a total size of 512 bytes. Bulk/control buffer size can be 2, 4, 8, 16, 32 or, 64 bytes, while ISO buffers (if used) must be multiples of 16 bytes. Some example configurations are given below. Configuration 1 Endpoint 0-5 Bulk/control IN/OUT, each of size 32 bytes. Endpoint 8 ISO IN/OUT, each of size 32 bytes (with double buffering). Total buffer area: 448 bytes. Register bout1addr bout2addr bout3addr bout4addr bout5addr binstaddr bin1addr bin2addr bin3addr bin4addr bin5addr isostaddr out8addr in8addr isosize Value (hex) 0x10 0x20 0x30 0x40 0x50 0x30 0x10 0x20 0x30 0x40 0x50 0x18 0x00 0x08 0x04 Calculation (ep0 out size)/2 bout1addr + (ep1out size)/2 bout2addr + (ep2 out size)/2 bout3addr + (ep3 out size)/2 bout4addr + (ep4 out size)/2 (bulk out size)/4 (ep0 in size)/2 bin1addr + (ep1 in size)/2 bin2addr + (ep2 in size)/2 bin3addr + (ep3 in size)/2 bin4addr + (ep4 in size)/2 (bulk size)/16 0 (ep8 out size)/4 (iso size)/16 Comment Start addr. of bulk 1 OUT Start addr. of bulk 2 OUT Start addr. of bulk 3 OUT Start addr. of bulk 4 OUT Start addr. of bulk 5 OUT Start addr. of bulk 1 IN Start addr. of bulk 1 IN Start addr. of bulk 2 IN Start addr. of bulk 3 IN Start addr. of bulk 4 IN Start addr. of bulk 5 IN Start addr. of iso Start addr. of iso OUT Start addr. of iso IN Table 154. Configuration 1 Configuration 2 Endpoint 0-2 bulk/control IN/OUT, each of size 32 bytes Endpoint 3-4 bulk IN/OUT, each of size 16 bytes Endpoint 8 ISO IN/OUT, each of size 32 bytes (with double buffering). Total buffer area: 320 bytes Register bout1addr bout2addr bout3addr bout4addr binstaddr bin1addr bin2addr Revision 1.1 value (hex) 0x10 0x20 0x30 0x38 0x20 0x10 0x20 Calculation (ep0 out size)/2 bout1addr + (ep1 out size)/2 bout2addr + (ep2 out size)/2 bout3addr + (ep3 out size)/2 (bulk out size)/4 (ep0 in size)/2 bin1addr + (ep1 in size)/2 Page 184 of 187 Comment Start addr. of bulk 1 OUT Start addr. of bulk 2 OUT Start addr. of bulk 3 OUT Start addr. of bulk 4 OUT Start addr. of bulk 1 IN Start addr. of bulk 1 IN Start addr. of bulk 2 IN nRF24LU1+ Product Specification Register bin3addr bin4addr isostaddr out8addr in8addr isosize value (hex) 0x30 0x40 0x10 0x00 0x08 0x04 Calculation bin2addr + (ep2 in size)/2 bin3addr + (ep3 in size)/2 (bulk size)/16 0 (ep8 out size)/4 (iso size)/16 Comment Start addr. of bulk 3 IN Start addr. of bulk 4 IN Start addr. of iso Start addr. of iso OUT Start addr. of iso IN Table 155. Configuration 2 Unused bout5addr and bin5addr shall be 0x00. Configuration 3 Endpoint 0-3 bulk IN/OUT, each of size 16 bytes Endpoint 4-5 bulk IN/OUT, each of size 32 bytes Endpoint 8 iso IN/OUT, each of size 32 bytes (with double buffering) Total buffer area: 320 bytes. Register bout1addr bout2addr bout3addr bout4addr bout5addr binstaddr bin1addr bin2addr bin3addr bin4addr bin5addr isostaddr out8addr in8addr isosize Value (h) 0x08 0x10 0x18 0x20 0x30 0x20 0x08 0x10 0x18 0x20 0x30 0x10 0x00 0x08 0x04 Calculation (ep0 out size)/2 bout1addr + (ep1 out size)/2 bout2addr + (ep2 out size)/2 bout3addr + (ep3 out size)/2 bout4addr + (ep4 out size)/2 (bulk out size)/4 (ep0 in size)/2 bin1addr + (ep1 in size)/2 bin2addr + (ep2 in size)/2 bin3addr + (ep3 in size)/2 bin4addr + (ep4 in size)/2 (bulk size)/16 0 (ep8 out size)/4 (iso size)/16 Table 156. Configuration 3 Revision 1.1 Page 185 of 187 Comment Start addr. of bulk 1 OUT Start addr. of bulk 2 OUT Start addr. of bulk 3 OUT Start addr. of bulk 4 OUT Start addr. of bulk 5 OUT Start addr. of bulk 1 IN Start addr. of bulk 1 IN Start addr. of bulk 2 IN Start addr. of bulk 3 IN Start addr. of bulk 4 IN Start addr. of bulk 5 IN Start addr. of iso Start addr. of iso OUT Start addr. of iso IN nRF24LU1+ Product Specification Configuration 4 Endpoint 0-1 bulk/control IN/OUT, each of size 32 bytes Endpoint 8 ISO IN/OUT, each of size 32 bytes (with double buffering). Total buffer area: 192 bytes. Register bout1addr binstaddr bin1addr isostaddr out8addr in8addr isosize Value (h) 0x10 0x10 0x10 0x08 0x00 0x08 0x04 Calculation (ep0 out size)/2 (bulk out size)/4 (ep0 in size)/2 (bulk size)/16 0 (ep8 out size)/4 (iso size)/16 Comment Start addr. of bulk 1 OUT Start addr. of bulk 1 IN Start addr. of bulk 1 IN Start addr. of iso Start addr. of iso OUT Start addr. of iso IN Table 157. Configuration 4 Unused bout2addr to bout5addr and bin2addr to bin5addr shall be 0x00. Revision 1.1 Page 186 of 187 nRF24LU1+ Product Specification Appendix B - Configuration for compatibility with nRF24XX How to setup the radio module in nRF24LU1+ to receive from an nRF2401/nRF2402/nRF24E1/nRF24E2/ nRF24LE1: 1. 2. 3. 4. 5. 6. 7. 8. Use the same CRC configuration as the nRF2401/nRF2402/nRF24E1/nRF24E2/nRF24LE1. Set the PWR_UP and PRIM_RX bit to 1. Disable auto acknowledgement on the addressed data pipe. Use the same address width as the PTX device. Use the same frequency channel as the PTX device. Select data rate 1 Mbps on both nRF24LU1+ and nRF2401/nRF2402/nRF24E1/nRF24E2/ nRF24LE1. Set correct payload width on the addressed data pipe. Set rfce high. How to setup the radio module in nRF24LU1+ to transmit to an nRF2401/nRF24E1/nRF24LE1: 1. 2. 3. 4. 5. 6. 7. 8. 9. Use the same CRC configuration as the nRF2401/nRF24E1/nRF24LE1. Set the PRIM_RX bit to 0. Set the Auto Retransmit Count to 0 to disable the auto retransmit functionality. Use the same address width as the nRF2401/nRF24E1/nRF24LE1. Use the same frequency channel as the nRF2401/nRF24E1/nRF24LE1. Select data rate 1 Mbps on both nRF24LU1+ and nRF2401/nRF24E1/nRF24LE1. Set PWR_UP high. Clock in a payload that has the same length as the nRF2401/nRF24E1/nRF24LE1 is configured to receive. Pulse rfce to transmit the packet. Revision 1.1 Page 187 of 187