Datasheet Voltage Tracker 250 mA Output Voltage Tracker BD42530xxx-C Series Features General Description (Note 1) AEC-Q100 Qualified Qualified for Automotive Applications Wide Temperature Range (Tj): -40 C to +150 C Wide Operating Input Range: 3 V to 42 V Low Quiescent Current: 40 A (Typ) Output Voltage Tracking Accuracy: 10 mV Over Current Protection (OCP) Thermal Shutdown Protection (TSD) (Note 1: Grade 1) The BD42530xxx-C Series are voltage trackers featuring 45 V absolute maximum voltage, output voltage tracking accuracy of 10 mV, 250 mA output current and 40 A (Typ) low current consumption. These trackers are therefore ideal for applications requiring a direct connection to the battery and a low current consumption. Ceramic capacitors can be used for phase compensation capacitor of the output. Furthermore, these ICs also feature overcurrent protection to protect the device from damage caused by short-circuiting and an integrated thermal shutdown to protect the device from overheating at overload conditions. Packages EFJHTSOP-J8 FP2TO263-5 W (Typ) x D (Typ) x H (Max) FPJTO252-J5 4.90 mm x 6.00 mm x 1.00 mm 6.60 mm x 10.10 mm x 2.38 mm 10.16 mm x 15.10 mm x 4.70 mm Applications Automotive (Engine-ECU, Body, Air-Conditioner etc.) Typical Application Circuits Components externally connected: 1 F CIN (Min), 4.7 F CO (Min) Ceramic capacitors with less change in ESR due to temperature characteristics are recommended. VCC CIN N.C. GND ADJ / EN BD42530EFJ-C VO N.C. N.C. N.C. CO Product structure : Silicon monolithic integrated circuit .www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ22111 * 14 * 001 This product has no designed protection against radioactive rays 1/27 TSZ02201-0G7G0AN00550-1-2 29.Dec.2016 Rev.003 BD42530xxx-C Series Ordering Information B D 4 2 5 3 0 Package EFJHTSOP-J8 FPJTO252-J5 FP2TO263-5 Part Number E F C: for Automotive J C E2 Packaging and Forming Specification E2: Embossed Tape and Reel Lineup Output Current 250 mA Package Orderable Part Number HTSOP-J8 Reel of 2500 BD42530EFJ-CE2 TO252-J5 Reel of 2000 BD42530FPJ-CE2 TO263-5 Reel of 500 BD42530FP2-CE2 www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ2211115001 2/27 TSZ02201-0G7G0AN00550-1-2 29.Dec.2016 Rev.003 BD42530xxx-C Series Pin Configurations HTSOP-J8 (Top View) 8 7 6 5 1 2 3 4 TO252-J5 (Top View) TO263-5 (Top View) FIN FIN 1 2 3 4 5 1 2 3 4 5 Pin Descriptions HTSOP-J8 (Note 1), (Note 2), (Note 3) TO252-J5 (Note 1)(Note 2) / TO263-5 (Note 1)(Note 2) Pin No. Pin Name Function Pin No. Pin Name Function 1 VO Output 1 VCC Input 2 N.C. Not connected 2 N.C. Not connected 3 N.C. Not connected 3 GND Ground 4 N.C. Not connected 4 ADJ / EN Output Control Voltage 5 ADJ / EN Output Control Voltage 5 VO Output 6 GND Ground FIN GND Ground 7 N.C. Not connected 8 VCC Input Note 1: N.C. Pin is recommended to short with GND. Note 2: N.C. Pin can be open because it isn't connect it inside of IC. Note 3: Exposed die pad is connected to GND in the inside of IC. Exposed die pad is need to be connected to GND of the board. www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ2211115001 3/27 TSZ02201-0G7G0AN00550-1-2 29.Dec.2016 Rev.003 BD42530xxx-C Series Block Diagrams HTSOP-J8 VCC (8Pin) N.C. (7Pin) GND (6Pin) ADJ / EN (5Pin) Power Tr. PREREG OCP TSD AMP VO (1Pin) N.C. (2Pin) N.C. (3Pin) N.C. (4Pin) TO252-J5 / TO263-5 GND (FIN) Power Tr. PREREG OCP TSD AMP VCC (1Pin) N.C. (2Pin) www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ2211115001 GND (3Pin) 4/27 ADJ / EN (4Pin) VO (5Pin) TSZ02201-0G7G0AN00550-1-2 29.Dec.2016 Rev.003 BD42530xxx-C Series Description of Blocks Block Name Function PREREG Internal Power Supply TSD Thermal Shutdown Protection OCP Over Current Protection The OCP protect the device from damage caused by over current. (Typ:650mA at 25C) AMP Amplifier for the Power Transistor Drive The amplifier drives output power transistor with ADJ/EN voltage as reference voltage. Power Tr. Output Power Transistor www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ2211115001 Description of Blocks Power Supply for Internal Circuit The TSD protect the device from overheating. If the chip temperature (Tj) reaches ca. 175 C (Typ), the output is turned off. PDMOS type output power transistor. 5/27 TSZ02201-0G7G0AN00550-1-2 29.Dec.2016 Rev.003 BD42530xxx-C Series Absolute Maximum Ratings Parameter Symbol Ratings Unit VCC -0.3 to +45 V VADJ / EN -0.3 to +28 V Output Voltage VO -0.3 to +28 V Junction Temperature Range Tj -40 to +150 C Storage Temperature Range Tstg -55 to +150 C Tjmax +150 C (Note 1) Supply Voltage Output Control Voltage Maximum Junction Temperature HBM (Note 2) VESD, HBM 2000 V CDM (Note 3) VESD, CDM 1000 V ESD withstand Voltage (Note 1) Do not exceed Junction Temperature. (Note 2) Human Body Model. (Note 3) Charged Device Model. (Caution) Exceeding the absolute maximum rating for supply voltage, operating temperature or other parameters can result in damages to or destruction of the chip. In this event it also becomes impossible to determine the cause of the damage (e.g. short circuit, open circuit, etc.). Therefore, if any special mode is being considered with values expected to exceed the absolute maximum ratings, implementing physical safety measures, such as adding fuses, should be considered. Operating Range (-40 C Tj +150 C) Parameter Symbol Min Max Unit Supply Voltage (Note 1) VCC 5.6 42 V Tracking Voltage (Note 2) VADJ / EN 2 16 V Start-Up Voltage (Note 3) VCC 3 - V Output Current IO 0 250 mA Ambient Temperature Range Ta -40 125 C (Note 1) VADJ/EN = 5V, IO = 200mA (Note 2) VADJ/EN Vcc - 0.5V (Note 3) IO = 0 mA. Operating Conditions Parameter Ratings Symbol Min (Note 4) Input Capacitor CIN 1 Output Capacitor CO 4.7 (Note 4) (Note 5) (Note 4) Unit Condition Typ Max - - F Ceramic capacitor - - F Ceramic capacitor (Note 5) The minimum value of capacitor must be met this specifications over full operating conditions. (ex. Temperature, DC bias) Electrolytic capacitor and tantalum capacitor can be used satisfying ESR of the stable operation range of the "output capacitor ESR vs. output current" of Figure 17. www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ2211115001 6/27 TSZ02201-0G7G0AN00550-1-2 29.Dec.2016 Rev.003 BD42530xxx-C Series Thermal Resistance(Note 1) Parameter Symbol Thermal Resistance (Typ) 1s (Note 3) (Note 4) 2s2p Unit HTSOP-J8 Junction to Ambient Junction to Top Characterization Parameter (Note 2) JA 130 34 C/W JT 15 7 C/W TO252-J5 JA 136 23 C/W (Note 2) JT 17 3 C/W JA 81 (Note 2) JT 8 Junction to Ambient Junction to Top Characterization Parameter TO263-5 Junction to Ambient Junction to Top Characterization Parameter 21 2 C/W C/W (Note 1)Based on JESD51-2A(Still-Air) (Note 2)The thermal characterization parameter to report the difference between junction temperature and the temperature at the top center of the outside surface of the component package. (Note 3)Using a PCB board based on JESD51-3. Layer Number of Measurement Board Single Material Board Size FR-4 114.3mm x 76.2mm x 1.57mmt Top Copper Pattern Thickness Footprints and Traces 70m (Note 4)Using a PCB board based on JESD51-7. Layer Number of Measurement Board 4 Layers (Note 5) Material Board Size FR-4 114.3mm x 76.2mm x 1.6mmt Top 2 Internal Layers Thermal Via Pitch Diameter 1.20mm 0.30mm Bottom Copper Pattern Thickness Copper Pattern Thickness Copper Pattern Thickness Footprints and Traces 70m 74.2mm x 74.2mm 35m 74.2mm x 74.2mm 70m (Note 5) This thermal via connects with the copper pattern of all layers. www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ2211115001 7/27 TSZ02201-0G7G0AN00550-1-2 29.Dec.2016 Rev.003 BD42530xxx-C Series Electrical Characteristics (Unless otherwise specified, -40 C Tj +150 C, VCC = 13.5 V, VADJ / EN = 5 V, IO = 0 mA. The Typical value is defined at Tj = 25 C.) Limit Parameter Symbol Unit Min Typ Max Circuit Current Output Voltage Tracking Accuracy ICC VO - 40 80 A -10 - 10 mV -10 - 10 mV -10 - 10 mV Dropout Voltage Vd - 0.28 0.60 V Ripple Rejection R.R. - 80 - dB Thermal Shut Down TSD - 175 - C Conditions Io 250 mA 3.5V Vcc 32V 0.1 mA IO 100 mA VADJ / EN = 2V 3.8V Vcc 32V 0.1 mA IO 250 mA VADJ / EN = 2V 6V Vcc 32V 0.1 mA IO 250 mA VADJ / EN = 5V VCC = VO x 0.95 (= 4.75 V: Typ) IO = 200 mA f = 120 Hz, ein = 1 Vrms IO = 100 mA Tj at TSD ON Electrical Characteristics (Output Control Function) (Unless otherwise specified, -40 C Tj +150 C, VCC = 13.5 V, Io = 0 mA. The Typical value is defined at Tj = 25 C.) Limit Parameter Symbol Unit Conditions Min Typ Max Shutdown Current Ishut - 1 5 A VADJ / EN 0.4 V Tj 125 C ADJ / EN ON Mode Voltage VthH 2 - 16 V Active Mode ADJ / EN OFF Mode Voltage VthL 0 - 0.4 V Off Mode IADJ / EN - 1 3 A VADJ / EN=5 V ADJ / EN Bias Current www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ2211115001 8/27 TSZ02201-0G7G0AN00550-1-2 29.Dec.2016 Rev.003 BD42530xxx-C Series Typical Performance Curves Unless otherwise specified: -40 C Tj +150 C, VCC = 13.5 V, VADJ/EN = 5 V, Io = 0 mA. 5 5 Tj=150 4 3 Tracking Accuracy : Vo[mV] Tracking Accuracy : Vo[mV] Tj=25 Tj=25 3 Tj=150 4 Tj=-40 2 1 0 -1 -2 -3 Tj=-40 2 1 0 -1 -2 -3 -4 -4 -5 -5 0 5 10 15 20 25 30 35 40 0 45 50 150 200 250 Output Current : Io[mA] Power Supply Voltage : Vcc[V] Figure 1. Tracking Accuracy vs. Power Supply Voltage Figure 2. Tracking Accuracy vs. Output Current 80 80 Tj=150 70 Tj=150 70 Tj=25 Tj=25 Tj=-40 Tj=-40 60 Circuit Current : Icc[uA] 60 Circuit Current : Icc[uA] 100 50 40 30 20 50 40 30 20 10 10 0 0 0 5 10 15 20 25 30 35 40 0 45 100 150 200 250 Output Current : Io[mA] Power Supply Voltage : Vcc[V] Figure 3. Circuit Current vs. Power Supply Voltage www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ2211115001 50 Figure 4. Circuit Current vs. Output Current 9/27 TSZ02201-0G7G0AN00550-1-2 29.Dec.2016 Rev.003 BD42530xxx-C Series Typical Performance Curves - continued 6 6 5 5 Output Voltage : Vo[V] Output Voltage : Vo[V] Unless otherwise specified: -40 C Tj +150 C, VCC = 13.5 V, VADJ/EN = 5 V, Io = 0 mA. 4 3 2 Tj=150 Tj=25 1 4 3 2 Tj=150 Tj=25 1 Tj=-40 Tj=-40 0 0 0 5 10 15 20 25 30 35 Power Supply Voltage : Vcc[V] 40 45 0 Figure 5. Output Voltage vs. Power Supply Voltage 1 2 3 4 Power Supply Voltage : Vcc[V] Figure 6. Output Voltage vs. Power Supply Voltage at Low Supply Voltage 600 120 500 100 Tj=150 Tj=150 Tj=25 Tj=25 Tj=-40 400 Ripple Rejection : R.R.[dB] Dropout Voltage : Vd[mV] 5 300 200 100 0 Tj=-40 80 60 40 20 0 0 50 100 150 200 Output Current : Io[mA] 250 Figure 7. Dropout Voltage vs. Output Current (Vcc = 4.75V) www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ2211115001 100 1000 10000 Frequency : f[Hz] 100000 Figure 8. Ripple Rejection vs. Frequency (ein = 1Vrms, Io = 100mA) 10/27 TSZ02201-0G7G0AN00550-1-2 29.Dec.2016 Rev.003 BD42530xxx-C Series Typical Performance Curves - continued Unless otherwise specified: -40 C Tj +150 C, VCC = 13.5 V, VADJ/EN = 5 V, Io = 0 mA. 5 80 4 70 Circuit Current : Icc[uA] Tracking Accuracy : Vo[mV] 3 2 1 0 -1 -2 60 50 40 30 20 -3 10 -4 -5 0 -40 10 60 110 160 -40 40 80 120 160 Junction Temperarure : Tj[] Junction Temperarure : Tj[] Figure 10. Circuit Current vs. Junction Temperature Figure 9. Tracking Accuracy vs. Junction Temperature (Io = 50mA) 6 6 5 5 Output Voltage : Vo[V] Output Voltage : Vo[V] 0 4 3 4 3 2 2 Tj=150 Tj=25 1 1 Tj=-40 0 0 0 200 400 600 800 1000 Output Current : Io[mA] 120 140 160 180 200 Junction Temperarure : Tj[] Figure 11. Output Voltage vs. Output Current (Over Current Protection) www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ2211115001 100 Figure 12. Output Voltage vs. Junction Temperature (Thermal Shut Down) 11/27 TSZ02201-0G7G0AN00550-1-2 29.Dec.2016 Rev.003 BD42530xxx-C Series Typical Performance Curves - continued Unless otherwise specified: -40 C Tj +150 C, VCC = 13.5 V, VADJ/EN = 5 V, Io = 0 mA. 5 5 4.5 Tj=25 4 4 Shut Down Current : Ishut[A] Tj=-40 3.5 Shut Down Current : Ishut[A] 4.5 Tj=150 3 2.5 2 1.5 1 3.5 3 2.5 2 1.5 1 0.5 0.5 0 0 0 5 10 15 20 25 30 35 40 -40 45 10 Power Supply Voltage : Vcc[V] 110 160 Junction Temperarure : Tj[] Figure 14. Shut Down Current vs. Junction Temperature Figure 13. Shut Down Current vs. Power Supply Voltage 5 6 Tj=150 4.5 Tj=25 4 5 Tj=-40 Output Voltage : Vo[V] ADJ/EN Bias Current : IADJ/EN[A] 60 3.5 3 2.5 2 1.5 4 3 2 Tj=150 1 Tj=25 1 0.5 Tj=-40 0 0 0 1 2 3 4 5 ADJ/EN Supply Voltage : VADJ/EN[V] 1 2 3 4 5 ADJ/EN Supply Voltage : VADJ/EN[V] Figure 15. ADJ/EN Bias Current vs. ADJ/EN Supply Voltage www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ2211115001 0 12/27 Figure 16. Output Voltage vs. ADJ/EN Supply Voltage TSZ02201-0G7G0AN00550-1-2 29.Dec.2016 Rev.003 BD42530xxx-C Series Measurement Circuit A 8:VCC 1F 7:N.C. 8:VCC 5:ADJ / EN 6:GND 1F BD42530EFJ-C 1:VO 2:N.C. 3:N.C. 7:N.C. 2:N.C. 6:GND 4:N.C. 7:N.C. 6:GND 5:ADJ / EN BD42530EFJ-C 1:VO 2:N.C. 3:N.C. 4:N.C. A V 10F Measurement Setup for Figure 1, 3, 10 7:N.C. 8:VCC 1F 3:N.C. V 10F 8:VCC 5:ADJ / EN BD42530EFJ-C 1:VO 4:N.C. 6:GND Measurement Setup for Figure 2, 9 8:VCC 5:ADJ / EN Io 10F Io 7:N.C. Measurement Setup for Figure 4 5:ADJ / EN 6:GND 8:VCC 7:N.C. 6:GND 5:ADJ / EN 1Vrms 1F 1F V BD42530EFJ-C 1:VO 2:N.C. 3:N.C. 1:VO 4:N.C. 1F BD42530EFJ-C 2:N.C. 3:N.C. BD42530EFJ-C 4:N.C. 1:VO 2:N.C. 3:N.C. 4:N.C. A 10F V 10F Measurement Setup for Figure 5, 6, 12 8:VCC 1F 7:N.C. 6:GND 5:ADJ / EN 1:VO 2:N.C. 3:N.C. 4:N.C. A Io Measurement Setup for Figure 7 A 8:VCC 1F BD42530EFJ-C 10F V Measurement Setup for Figure 11 www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ2211115001 10F Io 7:N.C. 6:GND 1:VO 2:N.C. 3:N.C. 8:VCC 1F 4:N.C. 10F Measurement Setup for Figure 13, 14 13/27 Measurement Setup for Figure 8 5:ADJ / EN BD42530EFJ-C Io 7:N.C. 6:GND 5:ADJ / EN BD42530EFJ-C 1:VO 2:N.C. 3:N.C. 4:N.C. 10F V Measurement Setup for Figure 15, 16 TSZ02201-0G7G0AN00550-1-2 29.Dec.2016 Rev.003 A BD42530xxx-C Series Selection of Components Externally Connected VCC Pin Insert Capacitors with a capacitance of 1 F (Min) or higher between the VCC and GND. Choose the capacitance according to the line between the power smoothing circuit and the VCC. Selection of the capacitance also depends on the application. Verify the application and allow sufficient margins in the design. We recommend to mount the capacitor as close as possible to the pin. When selecting the capacitor, ensure that the capacitance of 1 F or higher is maintained at the intended applied voltage and temperature range. Output Pin Capacitor In order to prevent oscillation, a capacitor needs to be placed between the output pin and GND. We recommend using a capacitor with a capacitance of 4.7 F (Min) or higher. Ceramic, Electrolytic and tantalum capacitors can be used. When selecting the capacitor, ensure that the capacitance of 4.7 F or higher is maintained at the intended applied voltage and temperature range. Capacitance fluctuation due to changes in temperature can possibly result in oscillation. For selection of the capacitor refer to the data of Figure 18. The stable operation range given in the data of Figure 17 is based on the standalone IC and resistive load. For actual applications the stable operating range is influenced by the PCB impedance, input supply impedance and load impedance. Therefore verification of the final operating environment is needed. When selecting a ceramic type capacitor, we recommend using X5R, X7R or better with excellent temperature and DC-biasing characteristics and high voltage tolerance. When the above-mentioned Output Pin Capacitor and the bypass capacitor for the rear stage may be connected in parallel, oscillation may occur due to the deterioration of phase characteristic depending on the ESR value of the Output Pin Capacitor. In such case, select ceramic capacitor of 4.7F or more as the bypass capacitor. Or insert additional ceramic capacitor of 4.7F or more. Also, in case of rapidly changing input voltage and load current, select the capacitance in accordance with verifying that the actual application meets with the required specification. Mount the capacitor as close as possible to the connected pin. 1000 Unstable Operation Range 10 1 0.1 Condition 5.6V Vcc 42V 2V VADJ/EN 16V VADJ/EN < Vcc CIN = 1 F 4.7 F CO 100 F -40C Tj +150C Stable Operation Range 0.01 Output Capacitor: Co [F] Output Capacitor ESR: Co_ESR [] 100 100 Condition 5.6V Vcc 42V 2V VADJ/EN 16V VADJ/EN < Vcc CIN = 1F -40C Tj +150C Stable Operation Range 10 Unstable Operation Range 0.001 1 0 50 100 150 200 250 0 Output Current: Io [mA] 50 100 150 200 250 Output Current: Io [mA] Figure 17. Output Pin Capacitor ESR vs Output Current Figure 18. Output Pin Capacitor vs Output Current 8:VCC CIN 7:N.C. 6:GND 5:ADJ / EN BD42530EFJ-C 1:VO ESR 2:N.C. 3:N.C. 4:N.C. IO CO Figure 19. Measurement Setups for ESR Reference Data www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ2211115001 14/27 TSZ02201-0G7G0AN00550-1-2 29.Dec.2016 Rev.003 BD42530xxx-C Series Power Dissipation HTSOP-J8 5.0 Power Dissipation: Pd[W] 4.0 IC mounted on ROHM standard board based on JEDEC. : 1 - layer PCB (Copper foil area on the reverse side of PCB: 0 mm x 0 mm) Board material: FR4 Board size: 114.3 mm x 76.2 mm x 1.57 mmt Mount condition: PCB and exposed pad are soldered. Top copper foil: ROHM recommended footprint + wiring to measure, 2 oz. copper. 3.67 W 3.0 2.0 0.96 W 1.0 0.0 0 25 50 75 100 125 150 Ambient Temperature: Ta [C] Figure 20. HTSOP-J8 Package Data : 4 - layer PCB (2 inner layers and Copper foil area on the reverse side of PCB: 74.2 mm x 74.2 mm) Board material: FR4 Board size: 114.3 mm x 76.2 mm x 1.60 mmt Mount condition: PCB and exposed pad are soldered. Top copper foil: ROHM recommended footprint + wiring to measure, 2 oz. copper. 2 inner layers copper foil area of PCB : 74.2 mm x 74.2 mm, 1 oz. copper. Copper foil area on the reverse side of PCB : 74.2 mm x 74.2 mm, 2 oz. copper. Condition: JA = 130 C / W, JT (top center) = 15 C / W Condition: JA = 34 C / W, JT (top center) = 7 C / W TO252-J5 10.0 IC mounted on ROHM standard board based on JEDEC. : 1 - layer PCB (Copper foil area on the reverse side of PCB: 0 mm x 0 mm) Board material: FR4 Board size: 114.3 mm x 76.2 mm x 1.57 mmt Mount condition: PCB and exposed pad are soldered. Top copper foil: ROHM recommended footprint + wiring to measure, 2 oz. copper. Power Dissipation: Pd[W] 8.0 6.0 5.43 W 4.0 2.0 0.92 W 0.0 0 25 50 75 100 125 Ambient Temperature: Ta [C] Figure 21. TO252-J5 Package Data 150 : 4 - layer PCB (2 inner layers and Copper foil area on the reverse side of PCB: 74.2 mm x 74.2 mm) Board material: FR4 Board size: 114.3 mm x 76.2 mm x 1.60 mmt Mount condition: PCB and exposed pad are soldered. Top copper foil: ROHM recommended footprint + wiring to measure, 2 oz. copper. 2 inner layers copper foil area of PCB : 74.2 mm x 74.2 mm, 1 oz. copper. Copper foil area on the reverse side of PCB : 74.2 mm x 74.2 mm, 2 oz. copper. Condition: JA = 136 C / W, JT (top center) = 17 C / W Condition: JA = 23 C / W, JT (top center) = 3 C / W www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ2211115001 15/27 TSZ02201-0G7G0AN00550-1-2 29.Dec.2016 Rev.003 BD42530xxx-C Series Power Dissipation - continued TO263-5 10.0 IC mounted on ROHM standard board based on JEDEC. : 1 - layer PCB (Copper foil area on the reverse side of PCB: 0 mm x 0 mm) Board material: FR4 Board size: 114.3 mm x 76.2 mm x 1.57 mm Mount condition: PCB and exposed pad are soldered. Top copper foil: ROHM recommended footprint + wiring to measure, 2 oz. copper. Power Dissipation: Pd[W] 8.0 5.95 W 6.0 4.0 1.54 W 2.0 0.0 0 25 50 75 100 125 Ambient Temperature: Ta [C] Figure 22. TO263-5 Package Data 150 : 4 - layer PCB (2 inner layers and Copper foil area on the reverse side of PCB: 74.2 mm x 74.2 mm) Board material: FR4 Board size: 114.3 mm x 76.2 mm x 1.60 mm Mount condition: PCB and exposed pad are soldered. Top copper foil: ROHM recommended footprint + wiring to measure, 2 oz. copper. 2 inner layers copper foil area of PCB : 74.2 mm x 74.2 mm, 1 oz. copper. Copper foil area on the reverse side of PCB : 74.2 mm x 74.2 mm, 2 oz. copper. Condition: JA = 81 C / W, JT (top center) = 8 C / W Condition: JA = 21 C / W, JT (top center) = 2 C / W www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ2211115001 16/27 TSZ02201-0G7G0AN00550-1-2 29.Dec.2016 Rev.003 BD42530xxx-C Series Thermal Design Within this product, the power consumption is decided by the dropout voltage condition, the load current and the circuit current. Refer to Package Data illustrated in Figure 20, 21, 22 when using the IC in an environment of Ta 25 C. Even if the ambient temperature Ta is at 25 C, depending on the input voltage and the load current, chip junction temperature can be very high. Consider the design to be Tj Tjmax = 150 C in all possible operating temperature range. On the reverse side of the package (HTSOP-J8, TO252-J5, TO263-5) there is exposed heat pad for improving the heat dissipation. Should by any condition the maximum junction temperature Tjmax = 150 C rating be exceeded by the temperature increase of the chip, it may result in deterioration of the properties of the chip. The thermal impedance in this specification is based on recommended PCB and measurement condition by JEDEC standard. Verify the application and allow sufficient margins in the thermal design by the following method is used to calculate the junction temperature Tj. Tj can be calculated by either of the two following methods. 1. The following method is used to calculate the junction temperature Tj. Tj = Ta + PC x JA Where: Tj Ta PC JA : Junction Temperature : Ambient Temperature : Power Consumption : Thermal Impedance (Junction to Ambient) 2. The following method is also used to calculate the junction temperature Tj. Tj = TT + PC x JT Where: Tj TT PC JT : Junction Temperature : Top Center of Case's (mold) Temperature : Power consumption : Thermal Impedance (Junction to Top Center of Case) The following method is used to calculate the power consumption Pc (W). Pc = (VCC - VO) x IO + VCC x ICC Where: PC VCC VO IO ICC : Power Consumption : Input Voltage : Output Voltage : Load Current : Circuit Current www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ2211115001 17/27 TSZ02201-0G7G0AN00550-1-2 29.Dec.2016 Rev.003 BD42530xxx-C Series Calculation Example (HTSOP-J8) If VCC = 13.5 V, VO = 5.0 V, IO = 50 mA, ICC = 40 A, the power consumption Pc can be calculated as follows: PC = (VCC - VO) x IO + VCC x ICC = (13.5 V - 5.0 V) x 50 mA + 13.5 V x 40 A = 0.43 W At the ambient temperature Tamax = 125C, the thermal Impedance (Junction to Ambient) JA = 34 C / W ( 4-layer PCB ), Tj = Tamax + PC x JA = 125 C + 0.43 W x 34 C / W = 139.6C When operating the IC, the top center of case's (mold) temperature TT = 100 C, JT = 15 C / W (1-layer PCB), Tj = TT + PC x JT = 100 C + 0.43 W x 15 C / W = 106.5 C For optimum thermal performance, it is recommended to expand the copper foil area of the board, increasing the layer and thermal via between thermal land pad. www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ2211115001 18/27 TSZ02201-0G7G0AN00550-1-2 29.Dec.2016 Rev.003 BD42530xxx-C Series Application Examples Applying positive surge to the VCC If the possibility exists that surges higher than 45 V will be applied to the VCC, a Zener Diode should be placed between the VCC and GND as shown in the figure below. VCC VO GND Applying negative surge to the VCC If the possibility exists that negative surges lower than the GND are applied to the VCC, a Shottky Diode should be place between the VCC and GND as shown in the figure below. VCC VO GND Implementing a Protection Diode If the possibility exists that a large inductive load is connected to the output pin resulting in back-EMF at time of startup and shutdown, a protection diode should be placed as shown in the figure below. VCC VO GND Reverse Polarity Protection Diode In some applications, the VCC and pin potential might be reversed, possibly resulting in damage to internal circuit or damage to the element. In instance, when VCC shorts to GND while external capacitor at VO is charged. Reverse current in case of point A described in below diagram can be prevented by inserting Reverse polarity protection diode in series to the VCC. When a short of the point B and the GND is concerned after having reverse polarity protection diode inserted, we recommend inserting a bypass diode between the VCC and the VO. If the reverse polarity protection diode and bypass diode cannot be inserted due to any reasons, use a capacitor with a capacitance with less than 1000F at VADJ / EN = 5V and 100F at VADJ / EN = 16V to avoid damage to the internal circuits or the elements. Reverse Polarity Protection Diode A Bypass Diode B VCC VO GND www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ2211115001 19/27 TSZ02201-0G7G0AN00550-1-2 29.Dec.2016 Rev.003 BD42530xxx-C Series I/O equivalence circuits 1 VCC 2 ADJ/EN ADJ/EN 3 VO 10 k (Typ) VCC VCC VO IC 10 k (Typ) 1 k (Typ) www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ2211115001 10 k (Typ) 1900 k (Typ) 20/27 TSZ02201-0G7G0AN00550-1-2 29.Dec.2016 Rev.003 BD42530xxx-C Series Operational Notes 1. Reverse Connection of Power Supply Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when connecting the power supply, such as mounting an external diode between the power supply and the IC's power supply pins. 2. Power Supply Lines Design the PCB layout pattern to provide low impedance supply lines. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic capacitors. 3. Ground Voltage Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition. 4. Ground Wiring Pattern When using both small-signal and large-current ground traces, the two ground traces should be routed separately but connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal ground caused by large currents. Also ensure that the ground traces of external components do not cause variations on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance. 5. Thermal Consideration Should by any chance the maximum junction temperature rating be exceeded the rise in temperature of the chip may result in deterioration of the properties of the chip. In case of exceeding this absolute maximum rating, increase the board size and copper area to prevent exceeding the maximum junction temperature rating. 6. Recommended Operating Conditions These conditions represent a range within which the expected characteristics of the IC can be approximately obtained. The electrical characteristics are guaranteed under the conditions of each parameter. 7. Inrush Current When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing of connections. 8. Testing on Application Boards When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject the IC to stress. Always discharge capacitors completely after each process or step. The IC's power supply should always be turned off completely before connecting or removing it from the test setup during the inspection process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and storage. 9. Inter-pin Short and Mounting Errors Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin. Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and unintentional solder bridge deposited in between pins during assembly to name a few. 10. Unused Input Terminals Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power supply or ground line. www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ2211115001 21/27 TSZ02201-0G7G0AN00550-1-2 29.Dec.2016 Rev.003 BD42530xxx-C Series Operational Notes - continued 11. Regarding the Input Pin of the IC This monolithic IC contains P+ isolation and P substrate layers between adjacent elements in order to keep them isolated. P-N junctions are formed at the intersection of the P layers with the N layers of other elements, creating a parasitic diode or transistor. For example (refer to figure below): When GND > Pin A and GND > Pin B, the P-N junction operates as a parasitic diode. When GND > Pin B, the P-N junction operates as a parasitic transistor. Parasitic diodes inevitably occur in the structure of the IC. The operation of parasitic diodes can result in mutual interference among circuits, operational faults, or physical damage. Therefore, conditions that cause these diodes to operate, such as applying a voltage lower than the GND voltage to an input pin (and thus to the P substrate) should be avoided. Resistor Transistor (NPN) Pin A Pin B C E Pin A N P+ P N N P+ N Parasitic Elements N P+ N P N P+ B N C E Parasitic Elements P Substrate P Substrate GND GND Parasitic Elements 12. Pin B B Parasitic Elements GND GND N Region close-by Ceramic Capacitor When using a ceramic capacitor, determine the dielectric constant considering the change of capacitance with temperature and the decrease in nominal capacitance due to DC bias and others. 13. Thermal Shutdown Circuit(TSD) This IC has a built-in thermal shutdown circuit that prevents heat damage to the IC. Normal operation should always be within the IC's maximum junction temperature rating. If however the rating is exceeded for a continued period, the junction temperature (Tj) will rise which will activate the TSD circuit that will turn OFF all output pins. When the Tj falls below the TSD threshold, the circuits are automatically restored to normal operation. Note that the TSD circuit operates in a situation that exceeds the absolute maximum ratings and therefore, under no circumstances, should the TSD circuit be used in a set design or for any purpose other than protecting the IC from heat damage. 14. Over Current Protection Circuit (OCP) This IC incorporates an integrated overcurrent protection circuit that is activated when the load is shorted. This protection circuit is effective in preventing damage due to sudden and unexpected incidents. However, the IC should not be used in applications characterized by continuous operation or transitioning of the protection circuit. www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ2211115001 22/27 TSZ02201-0G7G0AN00550-1-2 29.Dec.2016 Rev.003 BD42530xxx-C Series Physical Dimension, Tape and Reel Information (HTSOP-J8) Package Name www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ22111 * 15 * 001 HTSOP-J8 23/27 TSZ02201-0G7G0AN00550-1-2 29.Dec.2016 Rev.003 BD42530xxx-C Series Physical Dimension, Tape and Reel Information(TO252-J5) Package Name www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ22111 * 15 * 001 TO252-J5 24/27 TSZ02201-0G7G0AN00550-1-2 29.Dec.2016 Rev.003 BD42530xxx-C Series Physical Dimension, Tape and Reel Information (TO263-5) Package Name www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ22111 * 15 * 001 TO263-5 25/27 TSZ02201-0G7G0AN00550-1-2 29.Dec.2016 Rev.003 BD42530xxx-C Series Marking Diagrams (Top View) HTSOP-J8 TO252-J5 Part Number Marking Part Number Marking Lot Number Lot Number 1PIN MARK TO263-5 1PIN Part Number Marking Lot Number 1PIN Part Number Package Part Number Marking BD42530EFJ-C HTSOP-J8 42530 BD42530FPJ-C TO252-J5 BD42530 BD42530FP2-C TO263-5 BD42530 www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ22111 * 15 * 001 26/27 TSZ02201-0G7G0AN00550-1-2 29.Dec.2016 Rev.003 BD42530xxx-C Series Revision History Date Revision 20.Apr.2016 001 New Release 1.Dec.2016 002 Page 1, 6 and 14, change value of minimum output capacitor and maximum ESR Page 1, 6 and 14, add comment of [ recommended ceramic capacitor for output pin] Page 7, change format for Thermal Resistance 29.Dec.2016 003 Add TO252-J5 Package www.rohm.com (c) 2016 ROHM Co., Ltd. All rights reserved. TSZ22111 * 15 * 001 Changes 27/27 TSZ02201-0G7G0AN00550-1-2 29.Dec.2016 Rev.003 Notice Precaution on using ROHM Products 1. (Note 1) If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment , aircraft/spacecraft, nuclear power controllers, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property ("Specific Applications"), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM's Products for Specific Applications. (Note1) Medical Equipment Classification of the Specific Applications JAPAN USA EU CHINA CLASS CLASSb CLASS CLASS CLASS CLASS 2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures: [a] Installation of protection circuits or other protective devices to improve system safety [b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure 3. Our Products are not designed under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM's Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary: [a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents [b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust [c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2 [d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves [e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items [f] Sealing or coating our Products with resin or other coating materials [g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering [h] Use of the Products in places subject to dew condensation 4. The Products are not subject to radiation-proof design. 5. Please verify and confirm characteristics of the final or mounted products in using the Products. 6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability. 7. De-rate Power Dissipation depending on ambient temperature. When used in sealed area, confirm that it is the use in the range that does not exceed the maximum junction temperature. 8. Confirm that operation temperature is within the specified range described in the product specification. 9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document. Precaution for Mounting / Circuit board design 1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability. 2. In principle, the reflow soldering method must be used on a surface-mount products, the flow soldering method must be used on a through hole mount products. If the flow soldering method is preferred on a surface-mount products, please consult with the ROHM representative in advance. For details, please refer to ROHM Mounting specification Notice-PAA-E (c) 2015 ROHM Co., Ltd. All rights reserved. Rev.003 Precautions Regarding Application Examples and External Circuits 1. If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics. 2. You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information. Precaution for Electrostatic This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control). Precaution for Storage / Transportation 1. Product performance and soldered connections may deteriorate if the Products are stored in the places where: [a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2 [b] the temperature or humidity exceeds those recommended by ROHM [c] the Products are exposed to direct sunshine or condensation [d] the Products are exposed to high Electrostatic 2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period. 3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton. 4. Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period. Precaution for Product Label A two-dimensional barcode printed on ROHM Products label is for ROHM's internal use only. Precaution for Disposition When disposing Products please dispose them properly using an authorized industry waste company. Precaution for Foreign Exchange and Foreign Trade act Since concerned goods might be fallen under listed items of export control prescribed by Foreign exchange and Foreign trade act, please consult with ROHM in case of export. Precaution Regarding Intellectual Property Rights 1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data. 2. ROHM shall not have any obligations where the claims, actions or demands arising from the combination of the Products with other articles such as components, circuits, systems or external equipment (including software). 3. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the Products or the information contained in this document. Provided, however, that ROHM will not assert its intellectual property rights or other rights against you or your customers to the extent necessary to manufacture or sell products containing the Products, subject to the terms and conditions herein. Other Precaution 1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM. 2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM. 3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons. 4. The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties. Notice-PAA-E (c) 2015 ROHM Co., Ltd. All rights reserved. Rev.003 Datasheet General Precaution 1. Before you use our Pro ducts, you are requested to care fully read this document and fully understand its contents. ROHM shall n ot be in an y way responsible or liabl e for fa ilure, malfunction or acci dent arising from the use of a ny ROHM's Products against warning, caution or note contained in this document. 2. All information contained in this docume nt is current as of the issuing date and subj ect to change without any prior notice. Before purchasing or using ROHM's Products, please confirm the la test information with a ROHM sale s representative. 3. The information contained in this doc ument is provi ded on an "as is" basis and ROHM does not warrant that all information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or liable for an y damages, expenses or losses incurred b y you or third parties resulting from inaccur acy or errors of or concerning such information. Notice - WE (c) 2015 ROHM Co., Ltd. All rights reserved. Rev.001 Datasheet bd42530efj-c - Web Page Buy Distribution Inventory Part Number Package Unit Quantity Minimum Package Quantity Packing Type Constitution Materials List RoHS bd42530efj-c HTSOP-J8 2500 2500 Taping inquiry Yes