19-3710; Rev 1; 8/05 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor Features The MAX1358/MAX1359/MAX1360 smart data-acquisition systems (DAS) are each based on a 16-bit, sigma-delta analog-to-digital converter (ADC) and system-support functionality for a microprocessor (P)-based system. These devices integrate an ADC, DACs, operational amplifiers, internal 1.25V/2.048V/2.5V selectable reference, temperature sensors, analog switches, a 32kHz oscillator, a real-time clock (RTC) with alarm, a high-frequency-locked loop (FLL) clock, four user-programmable I/Os, an interrupt generator, and 1.8V and 2.7V voltage monitors in a single chip. The MAX1358/MAX1359/MAX1360 have dual 10:1 differential input multiplexers (muxes) that accept signal levels from 0 to AVDD. An on-chip 1x to 8x programmable-gain amplifier (PGA) measures low-level signals and reduces external circuitry required. The MAX1358/MAX1359/MAX1360 operate from a single +1.8V to +3.6V supply and consume only 1.4mA in normal mode and only 6.1A in sleep mode. The MAX1358 has two DACs with one uncommitted op amp; the MAX1359 has one DAC with two uncommitted op amps; and the MAX1360 has three uncommitted op amps. +1.8V to +3.6V Single-Supply Operation Multichannel 16-Bit Sigma-Delta ADC 10sps to 512sps Programmable Conversion Rate Self and System Offset and Gain Calibration PGA with Gains of 1, 2, 4, or 8 Unipolar and Bipolar Modes 10-Input Differential Multiplexer 10-Bit Force-Sense DACs Uncommitted Op Amps Dual SPDT Analog Switches 1.25V, 2.048V, or 2.5V Selectable Voltage Reference Internal Charge Pump System Support Real Time Clock and Alarm Register Internal/External Temperature Sensor Internal Oscillator with Clock Output User-Programmable I/O and Interrupt Generator VDD Monitors SPI/QSPI/MICROWIRE, 4-Wire Serial Interface Space-Saving (6mm x 6mm x 0.8mm) 40-Pin TQFN Package The serial interface is compatible with either SPITM/QSPITM or MICROWIRETM, and is used to power up, configure, and check the status of all functional blocks. The MAX1358/MAX1359/MAX1360 are available in a space-saving 40-pin TQFN package and are specified over the commercial (0C to +70C) and the extended (-40C to +85C) temperature ranges. Applications Ordering Information PART TEMP RANGE PINPACKAGE PKG CODE MAX1358AETL* -40C to +85C 40 TQFN-EP** T4066-4 MAX1358BETL -40C to +85C 40 TQFN-EP** T4066-4 MAX1358ACTL* 0C to +70C 40 TQFN-EP** T4066-4 MAX1358BCTL* 0C to +70C 40 TQFN-EP** T4066-4 MAX1359AETL* -40C to +85C 40 TQFN-EP** T4066-4 Battery-Powered and Portable Devices MAX1359BETL -40C to +85C 40 TQFN-EP** T4066-4 Electrochemical and Optical Sensors MAX1359ACTL* 0C to +70C 40 TQFN-EP** T4066-4 Medical Instruments MAX1359BCTL 0C to +70C 40 TQFN-EP** T4066-4 Industrial Control MAX1360AETL* -40C to +85C 40 TQFN-EP** T4066-4 Data-Acquisition Systems MAX1360BETL* -40C to +85C 40 TQFN-EP** T4066-4 MAX1360ACTL* 0C to +70C 40 TQFN-EP** T4066-4 MAX1360BCTL* 0C to +70C 40 TQFN-EP** T4066-4 SPI/QSPI are trademarks of Motorola, Inc. MICROWIRE is a trademark of National Semiconductor Corp. *Future product--contact factory for availability. **EP = Exposed pad. Pin Configurations appear at end of data sheet. Selector Guide PART DACs OP AMPs SPDT/SPST SWITCHES EXTERNAL ADC INPUTS UPIOs MAX1358 2 1 2/2 2 4 MAX1359 1 2 2/1 2 4 MAX1360 0 3 2/0 2 4 ________________________________________________________________ Maxim Integrated Products For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim's website at www.maxim-ic.com. 1 MAX1358/MAX1359/MAX1360 General Description MAX1358/MAX1359/MAX1360 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor ABSOLUTE MAXIMUM RATINGS AVDD to AGND .........................................................-0.3V to +4V DVDD to DGND.........................................................-0.3V to +4V AVDD to DVDD ............................................................-4V to +4V AGND to DGND.....................................................-0.3V to +0.3V CLK32K to DGND ....................................-0.3V to (DVDD + 0.3V) UPIO_ to DGND........................................................-0.3V to +4V Digital Inputs to DGND ............................................-0.3V to +4V Analog Inputs to AGND ...........................-0.3V to (AVDD + 0.3V) Digital Output to DGND...........................-0.3V to (DVDD + 0.3V) Analog Outputs to AGND.........................-0.3V to (AVDD + 0.3V) Continuous Current Into Any Pin.........................................50mA Continuous Power Dissipation (TA = +70C) 40-Pin TQFN (derate 25.6mW/C above +70C) ....2051.3mW Operating Temperature Range MAX13_ _ CTL ....................................................0C to +70C MAX13_ _ ETL .................................................-40C to +85C Junction Temperature ......................................................+150C Storage Temperature Range .............................-65C to +150C Lead Temperature (soldering, 10s) .................................+300C Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (AVDD = DVDD = +1.8V to +3.6V, VREF = +1.25V, external reference, CLK32K = 32.768kHz (external clock), CREG = 10F, CCPOUT = 10F, 10F between CF+ and CF-, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS ADC DC ACCURACY Data rate = 10sps, PGA gain = 2; data rate = 10sps to 60sps, PGA gain = 1; no missing codes, Table 1 (Note 2) 16 Conversion Rate No missing codes, Table 1 10 Output Noise No missing codes Noise-Free Resolution Integral Nonlinearity INL Unipolar mode, AVDD = 3V, data rate = 40sps, PGA gain = 1, TA = +25C Bits 512 Table 1 0.003 A grade B grade 0.004 1.0 Unipolar Offset Error or Bipolar Zero Error (Note 3) Uncalibrated Unipolar Offset-Error or Bipolar Zero-Error Temperature Drift (Note 4) Bipolar 2.0 Unipolar 10 %FSR %FSR V/C Uncalibrated Gain Error (Notes 3, 5) Data rate = 10sps, PGA = 1, calibrated Gain-Error Temperature Coefficient DC Positive Power-Supply Rejection Ratio 0.003 Data rate = 10sps, PGA gain = 1, calibrated sps VRMS (Notes 4, 6) 0.6 0.003 % FSR 1.0 ppm/ C PSRR PGA gain = 1, unipolar mode, measured by full-scale error with AVDD = 1.8V to 3.6V 73 dB CMRR PGA gain = 1, unipolar mode 85 dB ADC ANALOG INPUTS (AIN1, AIN2) DC Input Common-Mode Rejection Ratio 2 _______________________________________________________________________________________ 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor (AVDD = DVDD = +1.8V to +3.6V, VREF = +1.25V, external reference, CLK32K = 32.768kHz (external clock), CREG = 10F, CCPOUT = 10F, 10F between CF+ and CF-, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS Normal-Mode 60Hz Rejection Ratio Data rate = 10sps or 60sps, PGA gain = 1, unipolar mode (Note 2) 100 dB Normal-Mode 50Hz Rejection Ratio Data rate = 10sps or 50sps, PGA gain = 1, unipolar mode (Note 2) 100 dB Absolute Input Range AGND AVDD Unipolar mode -0.05 / Gain VREF / Gain Bipolar mode -VREF / Gain VREF / Gain Differential Input Range V DC Input Current (Note 7) Input Sampling Capacitance Input Sampling Rate V ADC not in measurement mode, mux enabled, TA +55C, inputs = +0.1V to (AVDD - 0.1V) 1 TA = +85C 5 nA CIN 5 pF fSAMPLE 21.84 kHz Table 3 k External Source Impedance at Input See Table 3 FORCE-SENSE DAC (MAX1358/MAX1359 only, RL = 10k and CL = 200pF, FBA = OUTA and FBB = OUTB, unless otherwise noted) Resolution Guaranteed monotonic 10 Differential Nonlinearity DNL Code 3D hex to 3FF hex Integral Nonlinearity INL Code 3D hex to 3FF hex Offset Error Bits 1 A grade 2 B grade 4 20 Reference to code 52 hex Offset-Error Tempco 4.4 Gain Error Excludes offset and voltage reference error Gain-Error Tempco Excludes offset and reference drift Input Leakage Current at SWA/B SWA/B switches open (Notes 7, 8) Input Leakage Current at FBA/B VFBA/B = +0.3V to (AVDD - 0.3V) (Note 7) nA 1 nA 400 At FBA and FBB Line Regulation AVDD = +1.8V to +3.6V Load Regulation IOUT = 2mA, CL = 1000pF (Note 2) 0 40 AGND LSB 1 TA = 0C to +50C Input Common-Mode Voltage mV ppm/C 600 DAC buffer disabled (Note 7) Output Voltage Range 5 TA = 0C to +70C DAC Output Buffer Leakage Current LSB V/C 1 TA = -40C to +85C LSB pA 75 nA AVDD 0.35 V 175 V/V 0.5 V/A AVDD V _______________________________________________________________________________________ 3 MAX1358/MAX1359/MAX1360 ELECTRICAL CHARACTERISTICS (continued) MAX1358/MAX1359/MAX1360 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor ELECTRICAL CHARACTERISTICS (continued) (AVDD = DVDD = +1.8V to +3.6V, VREF = +1.25V, external reference, CLK32K = 32.768kHz (external clock), CREG = 10F, CCPOUT = 10F, 10F between CF+ and CF-, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS Output Slew Rate 52 hex to 3FF hex code swing rising or falling, RL = 10k, CL = 100pF 40 V/ms Output-Voltage Settling Time 10% to 90% rising or falling to 0.5 LSB 65 s f = 0.1Hz to 10Hz 80 f = 10Hz to 10kHz 200 Referred to FBA/B, excludes reference noise Input Voltage Noise Output Short-Circuit Current VP-P OUTA/B shorted to AGND 20 OUTA/B shorted to AVDD 15 mA Input-Output SWA/SWB Switch Resistance Between SWA and OUTA, or SWB and OUTB, HFCK enabled SWA/SWB Switch Turn-On/Off Time HFCK enabled 100 ns Power-On Time Excluding reference 18 s 150 EXTERNAL REFERENCE (REF) Input Voltage Range AGND Input Resistance DAC on, internal REF and ADC off DC Input Leakage Current Internal REF, DAC, and ADC off (Note 7) AVDD 2.5 V M 100 nA INTERNAL VOLTAGE REFERENCE (CREF = 4.7F) AVDD +1.8V, TA = +25C Reference Output Voltage VREF AVDD +2.2V, TA = +25C AVDD +2.7V, TA = +25C A grade 1.237 1.25 1.263 B grade 1.213 1.25 1.288 A grade 2.027 2.048 2.068 B grade 1.987 2.048 2.109 A grade 2.475 2.5 2.525 B grade 2.425 2.5 2.575 15 50 VREF = 1.25V Output-Voltage Temperature Coefficient (Note 7) TC A grade VREF = 2.048V, 2.5V B grade Output Short-Circuit Current IRSC ppm/oC 15 REF shorted to AGND 18 mA REF shorted to AVDD 90 A Line Regulation TA = +25C Load Regulation TA = +25C, VREF = 1.25V 4 65 V A grade B grade ISOURCE = 0 to 500A ISINK = 0 to 50A 100 25 V/V 1.2 V/A 1.7 _______________________________________________________________________________________ 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor (AVDD = DVDD = +1.8V to +3.6V, VREF = +1.25V, external reference, CLK32K = 32.768kHz (external clock), CREG = 10F, CCPOUT = 10F, 10F between CF+ and CF-, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25C.) (Note 1) PARAMETER SYMBOL Long-Term Stability Output Noise Voltage Turn-On Settling Time CONDITIONS MIN TYP MAX UNITS ppm/ 1000hrs (Note 9) 35 f = 0.1Hz to 10Hz, AVDD = 3V 50 f = 10Hz to 10kHz, AVDD = 3V 400 Buffer only, settle to 0.1% of final value 100 s ADC resolution is 16-bit, 10sps 0.11 C/LSB VP-P TEMPERATURE SENSOR Temperature Measurement Resolution A grade Internal Temperature-Sensor Measurement Error B grade 0.5 TA = 0C to +70C 1 o TA = -40 C to +85C 1 TA = -40C to +85C 0.50 TA = +25C A grade External Temperature-Sensor Measurement Error (Note 10) B grade C 0.5 TA = 0C to +70C TA = 0C to +70C 1 TA = -40C to +85C 2 TA = +32C to +43C 0.50 TA = +10C to +50C 0.5 TA = 0C to +70C 0.5 C 1 TA = -40C to +85C Temperature Measurement Noise 0.18 CRMS Temperature Measurement Power-Supply Rejection Ratio 0.2 C/V OP AMP (RL = 10k connected to AVDD / 2) Input Offset Voltage VOS 15 VCM = 0.5V Offset-Error Tempco 0.006 1 TA = 0C to +70C 4 300 TA = 0C to +50C 2 200 0.025 1 20 600 TA = -40C to +85C IN1+, IN2+, IN3+ Input Bias Current (Note 7) IBIAS TA = -40C to +85C IN1-, IN2-, IN3- TA = 0C to +70C 400 TA = 0C to +50C Input Offset Current IOS Input Common-Mode Voltage Range CMVR Common-Mode Rejection Ratio CMRR VIN1_, IN2_ = +0.3V to (AVDD - 0.3V) (Note 7) 0 0 VCM 75mV 75mV < VCM AVDD - 0.35V 60 60 75 mV V/oC 3 nA pA nA pA 1 nA AVDD 0.35 V dB _______________________________________________________________________________________ 5 MAX1358/MAX1359/MAX1360 ELECTRICAL CHARACTERISTICS (continued) MAX1358/MAX1359/MAX1360 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor ELECTRICAL CHARACTERISTICS (continued) (AVDD = DVDD = +1.8V to +3.6V, VREF = +1.25V, external reference, CLK32K = 32.768kHz (external clock), CREG = 10F, CCPOUT = 10F, 10F between CF+ and CF-, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25C.) (Note 1) PARAMETER SYMBOL CONDITIONS Power-Supply Rejection Ratio PSRR AVDD = +1.8V to +3.6V Large-Signal Voltage Gain AVOL 100mV VOUT_ AVDD - 100mV (Note 11) Sourcing Maximum Current Drive MIN TYP 76.5 100 dB 90 116 dB ISOURCE = 10A 0.005 ISOURCE = 50A 0.025 ISOURCE = 100A 0.05 ISOURCE = 500A 0.25 ISOURCE = 2mA VOUT Sinking 0.5 ISINK = 10A 0.005 ISINK = 50A 0.025 ISINK = 100A 0.05 ISINK = 500A 0.25 ISINK = 2mA Gain Bandwidth Product GBW Phase Margin Output Slew Rate SR Output Short-Circuit Current UNITS V 0.5 Unity-gain configuration, CL = 1nF 80 kHz Unity-gain configuration, CL = 1nF (Note 11) 60 Degrees 0.04 V/s CL = 200pF Unity-gain configuration Input Voltage Noise MAX f = 0.1Hz to 10Hz 80 f = 10Hz to 10kHz 200 VOUT_ shorted to AGND 20 VOUT_ shorted to AVDD 15 Power-On Time VP-P mA 15 s SPDT SWITCHES (SNO_, SNC_, SCM_, HFCK enabled) On-Resistance RON VSCM_ = 0V TA = 0C to +50C VSCM_ = 0.5V TA = 0C to +50C 45 50 VSCM_ = 0.5V to AVDD SNO_, SNC_ Off-Leakage Current (Note 7) SNO_, SNC_ = +0.5V, TA = -40C to +85C ISNO_(OFF) +1.5V; SCM_ = +1.5V, TA = 0C to +70C ISNC_(OFF) +0.5V TA = 0C to +50C SCM_ Off-Leakage Current (Note 7) SNO_, SNC_ = +0.5V, TA = -40C to +85C ISCM_(OFF) +1.5V; SCM_ = +1.5V, TA = 0C to +70C +0.5V TA = 0C to +50C SCM_ On-Leakage Current (Note 7) SNO_, SNC_ = +0.5V, TA = -40C to +85C TA = 0C to +70C +1.5V, or floating; SCM_ = +1.5V, +0.5V TA = 0C to +50C ISCM_(ON) Input Voltage Range Turn-On/Off Time 6 1 600 400 Break-before-make nA pA 2 1.2 nA 0.8 2 1.2 nA 0.8 AGND tON/tOFF 150 AVDD 100 _______________________________________________________________________________________ V ns 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor (AVDD = DVDD = +1.8V to +3.6V, VREF = +1.25V, external reference, CLK32K = 32.768kHz (external clock), CREG = 10F, CCPOUT = 10F, 10F between CF+ and CF-, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN SNO_, SNC_, or SCM_ = AVDD or AGND; switch connected to enabled mux input Input Capacitance TYP MAX 5 UNITS pF CHARGE PUMP (10F at REG and 10F external capacitor between CF+ and CF-) Maximum Output Current Output Voltage IOUT 10 No load 3.2 IOUT = 10mA 3.0 Output Voltage Ripple 10F external capacitor between CPOUT and DGND, IOUT = 10mA, excluding ESR of external capacitor Load Regulation IOUT = 10mA, excluding ESR of external capacitor mA 3.3 15 REG Input Voltage Range Internal linear regulator disabled REG Input Current Linear regulator off, charge pump off 1.6 CPOUT Input Voltage Range Charge pump disabled CPOUT Input Leakage Current Charge pump disabled 2 TSEL[2:0] = 0 hex 0 3.6 50 mV 20 mV/mA 1.8 3 1.8 V V nA 3.6 V nA SIGNAL-DETECT COMPARATOR Differential Input-Detection Threshold Voltage TSEL[2:0] = 4 hex 50 TSEL[2:0] = 5 hex 100 TSEL[2:0] = 6 hex 150 TSEL[2:0] = 7 hex 200 Differential Input-Detection Threshold Error mV 10 Common-Mode Input Voltage Range AGND Turn-On Time mV AVDD 50 V s VOLTAGE MONITORS DVDD Monitor Supply Voltage Range Trip Threshold (DVDD Falling) For valid reset 1.0 A grade 1.80 1.85 1.90 B grade 1.80 1.85 1.95 DVDD Monitor Timeout Reset Period DVDD Monitor Hysteresis 3.6 1.5 HYSE bit set to logic 1 200 HYSE bit set to logic 0 35 V V s mV _______________________________________________________________________________________ 7 MAX1358/MAX1359/MAX1360 ELECTRICAL CHARACTERISTICS (continued) MAX1358/MAX1359/MAX1360 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor ELECTRICAL CHARACTERISTICS (continued) (AVDD = DVDD = +1.8V to +3.6V, VREF = +1.25V, external reference, CLK32K = 32.768kHz (external clock), CREG = 10F, CCPOUT = 10F, 10F between CF+ and CF-, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN DVDD Monitor Turn-On Time TYP MAX 5 CPOUT Monitor Supply Voltage Range 1.0 CPOUT Monitor Trip Threshold 2.7 ms 3.6 2.8 CPOUT Monitor Hysteresis 35 CPOUT Monitor Turn-On Time 5 Internal Power-On Reset Voltage UNITS 2.9 V V mV ms 1.7 V 32kHz Oscillator (32KIN, 32KOUT) Clock Frequency DVDD = 2.7V Stability DVDD = 1.8V to 3.6V, excluding crystal Oscillator Startup Time Crystal Load Capacitance 32.768 kHz 25 ppm 1500 ms 6 pF 32.768 kHz 5 ns LOW-FREQUENCY CLOCK INPUT/OUTPUT (CLK32K) Output Clock Frequency Absolute Input to Output Clock Jitter Cycle to cycle Input to Output Rise/Fall Time 10% to 90%, 30pF load Input/Output Duty Cycle 5 40 ns 60 % HIGH-FREQUENCY CLOCK OUTPUT (CLK) FLL Output Clock Frequency Absolute Clock Jitter Rise and Fall Time tR/tF Duty Cycle Uncalibrated CLK Frequency Error fOUT = fFLL 4.8660 4.9152 4.9644 fOUT = fFLL / 2, power-up default 2.4330 2.4576 2.4822 fOUT = fFLL / 4 1.2165 1.2288 1.2411 fOUT = fFLL / 8 608.25 614.4 620.54 Cycle to cycle, FLL off 0.15 Cycle to cycle, FLL on 1 10% to 90%, 30pF load kHz ns 10 fOUT = 4.9152MHz 40 60 fOUT = 2.4576MHz, 1.2288MHz, 614.4kHz 45 55 35 FLL calibration not performed MHz ns % % DIGITAL INPUTS (SCLK, DIN, CS, UPIO_, CLK32K) Input High Voltage VIH Input Low Voltage VIL 8 0.7 x DVDD _______________________________________________________________________________________ V 0.3 x DVDD V 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor (AVDD = DVDD = +1.8V to +3.6V, VREF = +1.25V, external reference, CLK32K = 32.768kHz (external clock), CREG = 10F, CCPOUT = 10F, 10F between CF+ and CF-, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25C.) (Note 1) PARAMETER SYMBOL CONDITIONS DVDD supply voltage UPIO_ Input High Voltage CPOUT supply voltage MIN TYP V 0.3 x DVDD UPIO_ Input Low Voltage VHYS IIN Input Capacitance DVDD = 3.0V 200 0.01 VIN = DGND or DVDD (Note 7) VIN = DGND or DVDD VIN = DVDD or CPOUT or 0V, pullup disabled VIN = 0V, pullup enabled, floating UPIO inputs are pulled up to DVDD or CPOUT with pullup enabled UPIO_ Pullup Current mV 100 10 0.01 VIN = DVDD or CPOUT, pullup enabled UPIO_ Input Current V 0.3 x CPOUT CPOUT supply voltage Input Current UNITS 0.7 x CPOUT DVDD supply voltage Input Hysteresis MAX 0.7 x DVDD pF 1 1 0.5 2 nA A 5 A 0.4 V DIGITAL OUTPUTS (DOUT, RESET, UPIO_, CLK32K, INT, CLK) Output Low Voltage VOL ISINK = 1mA Output High Voltage VOH ISOURCE = 500A DOUT Tri-State Leakage Current DOUT Tri-State Output Capacitance RESET Output Low Voltage UPIO_ Output High Voltage V IL 0.01 COUT 15 VOL RESET Output Leakage Current UPIO_ Output Low Voltage 0.8 x DVDD VOL VOH ISINK = 1mA 1 pF 0.4 V A Open-drain output, RESET deasserted 0.1 ISINK = 1mA, UPIO_ referenced to DVDD 0.4 ISINK = 4mA, UPIO_ referenced to CPOUT 0.4 ISOURCE = 500A, UPIO_ referenced to DVDD ISOURCE = 4mA, UPIO_ referenced to CPOUT A 0.8 x DVDD V V VCPOUT - 0.4 POWER REQUIREMENT Analog Supply Voltage Range AVDD 1.8 3.6 V Digital Supply Voltage Range DVDD 1.8 3.6 V _______________________________________________________________________________________ 9 MAX1358/MAX1359/MAX1360 ELECTRICAL CHARACTERISTICS (continued) MAX1358/MAX1359/MAX1360 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor ELECTRICAL CHARACTERISTICS (continued) (AVDD = DVDD = +1.8V to +3.6V, VREF = +1.25V, external reference, CLK32K = 32.768kHz (external clock), CREG = 10F, CCPOUT = 10F, 10F between CF+ and CF-, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25C.) (Note 1) PARAMETER SYMBOL IMAX Total Supply Current INORMAL CONDITIONS Everything on, charge pump unloaded, max internal temp-sensor current, clock output buffers unloaded, ADC at 512sps TA = -45C to +85C Sleep-Mode Supply Current ISLEEP TA = +25C Shutdown Supply Current ISHDN TYP MAX AVDD = DVDD = 3.6V 1.36 2.0 AVDD = DVDD = 3.3V 1.15 1.7 1.17 1.3 AVDD = DVDD = 3.0V 5.18 6.5 AVDD = DVDD = 3.6V 6.15 9 AVDD = DVDD = 3.0V 4.42 5.19 AVDD = DVDD = 3.6V 5.56 8.3 All on except charge pump and temp sensor, ADC at 512sps, CLK output buffer enabled, clock output buffers unloaded All off MIN TA = -40C to +85C TA = +25C 4 1.6 UNITS mA A A Devices are production tested at TA = +25C and TA = +85C. Specifications to TA = -40C are guaranteed by design. Guaranteed by design or characterization. The offset and gain errors are corrected by self-calibration. The calibration process requires measurement to be made at the selected data rate. The calibration error is therefore in the order of peak-to-peak noise for the selected rate. Note 4: Eliminate drift errors by recalibration at the new temperature. Note 5: The gain error excludes reference error, offset error (unipolar), and zero error (bipolar). Note 6: Gain-error drift does not include unipolar offset drift or bipolar zero-error drift. It is effectively the drift of the part if zeroscale error is removed. Note 7: These specs are obtained from characterization during design or from initial product evaluation. Not production tested or guaranteed. Note 8: OUTA/B = +0.5V or +1.5V, SWA/B = +1.5V or +0.5V, TA = 0C to +50C. Note 9: Long-term stability is characterized using five to six parts. The bandgaps are turned on for 1000hrs at room temperature with the parts running continuously. Daily measurements are taken and any obvious outlying data points are discarded. Note 10: All of the stated temperature accuracies assume that 1) the external diode characteristic is precisely known (i.e., ideal) and 2) the ADC reference voltage is exactly equal to 1.25V. Any variations to this known reference characteristic and voltage caused by temperature, loading, or power supply results in errors in the temperature measurement. The actual temperature calculation is performed externally by the microcontroller (C). Note 11: Values based on simulation results and are not production tested or guaranteed. Note 1: Note 2: Note 3: 10 ______________________________________________________________________________________ 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor OUTPUT NOISE (VRMS) RATE (sps) GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 10 1.820 3.286 1.345 0.660 40 3.845 3.257 1.928 0.630 50 3.065 2.317 1.631 0.625 60 2.873 2.662 1.519 0.728 200 4.525 2.910 1.397 0.519 240 6.502 2.954 1.596 0.629 400 5.300 80.068 1.686 0.436 512 119.078 282.959 281.056 28.470 Note 12: VREF = 1.25V, bipolar mode, VIN = 1.24912, PGA gain = 1, TA = +85C. Note 13: CIN = 5pF, op-amp noise is considered to be the same as the switching noise. The increase of the op amp's noise contribution is due to large input swing (0 to 3.6V). Note 14: Assume 3 sigma peak-to-peak variation; noise-free resolution means no code flicker at given bits' LSB. Table 2. Peak-to-Peak Resolution PEAK-TO-PEAK RESOLUTION (Bits) RATE (sps) GAIN = 1 GAIN = 2 GAIN = 4 GAIN = 8 10 16.7 14.8 15.1 15.1 40 15.6 14.8 14.6 15.2 50 15.9 15.3 14.8 15.2 60 16.0 15.1 14.9 15.0 200 15.4 15.0 15.0 15.5 240 14.8 15.0 14.9 15.2 400 15.1 10.2 14.8 15.7 512 10.6 8.4 7.4 9.7 Table 3. Maximum External Source Impedance Without 16-Bit Gain Error PARAMETER Resistance (k) EXTERNAL CAPACITANCE (pF) 0 (Note 15) 50 100 500 1000 5000 350 60 30 10 4 1 Note 15: 2pF parasitic capacitance is assumed, which represents pad and any other parasitic capacitance. ______________________________________________________________________________________ 11 MAX1358/MAX1359/MAX1360 Table 1. Output Noise (Notes 12, 13, and 14) MAX1358/MAX1359/MAX1360 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor TIMING CHARACTERISTICS (Figures 1 and 21) (AVDD = DVDD = +1.8V to +3.6V, external VREF = +1.25V, CLK32K = 32.768kHz (external clock), CREG = 10F, CCPOUT = 10F, 10F between CF+ and CF-, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS 10 MHz SCLK Operating Frequency fSCLK 0 SCLK Cycle Time tCYC 100 ns SCLK Pulse-Width High tCH 40 ns SCLK Pulse-Width Low tCL 40 ns DIN to SCLK Setup tDS 30 ns DIN to SCLK Hold tDH SCLK Fall to DOUT Valid tDO CL = 50pF, Figure 2 40 ns CS Fall to Output Enable tDV CL = 50pF, Figure 2 48 ns tTR CL = 50pF, Figure 2 48 ns CS Rise to DOUT Disable 0 ns CS to SCLK Rise Setup tCSS 20 ns CS to SCLK Rise Hold tCSH 0 ns DVDD Monitor Timeout Period tDSLP (Note 16) 1.5 s Wake-Up (WU) Pulse Width tWU Minimum pulse width required to detect a wake-up event 1 s Shutdown Delay tDPU The delay for SHDN to go high after a valid wake-up event 1 s HFCK Turn-On Time CRDY to INT Delay tDFON tDFI The turn-on time for the high-frequency clock and FLL (FLLE = 1) (Note 17) 10 ms If FLLE = 0, the turn-on time for the highfrequency clock (Note 18) 10 s The delay for CRDY to go low after the HFCK clock output has been enabled (Note 19) 7.82 ms HFCK Disable Delay tDFOF The delay after a shutdown command has asserted and before HFCK is disabled (Note 20) 1.95 ms SHDN Assertion Delay tDPD (Note 21) 2.93 ms Note 16: The delay for the sleep voltage monitor output, RESET, to go high after VDD rises above the reset threshold. This is largely driven by the startup of the 32kHz oscillator. Note 17: It is gated by an AND function with three inputs--the external RESET signal, the internal DVDD monitor output, and the external SHDN signal. The time delay is timed from the internal LOVDD going high or the external RESET going high, whichever happens later. HFCK always starts in the low state. Note 18: If FLLE = 0, the internal signal CRDY is not generated by the FLL block and INT or INT are deasserted. Note 19: CRDY is used as an interrupt signal to inform the C that the high-frequency clock has started. Only valid if FLLE = 1. Note 20: tDFOF gives the C time to clean up and go into sleep-override mode properly. Note 21: tDPD is greater than the HFCK delay for the MAX1358/MAX1359/MAX1360 chip to clean up before losing power. 12 ______________________________________________________________________________________ 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor MAX1358/MAX1359/MAX1360 CS tCSH tCH tCYC tCSH tCSS tCL SCLK tDS tDH DIN tDV tDO tTR DOUT Figure 1. Detailed Serial-Interface Timing DVDD 6k DOUT DOUT 6k CLOAD = 50pF CLOAD = 50pF a) FOR ENABLE, HIGH IMPEDANCE b) FOR ENABLE, HIGH IMPEDANCE TO VOH AND VOL TO VOH TO VOL AND VOH TO VOL FOR DISABLE, VOH TO HIGH IMPEDANCE FOR DISABLE, VOL TO HIGH IMPEDANCE Figure 2. DOUT Enable and Disable Time Load Circuits Typical Operating Characteristics (DVDD = AVDD = 1.8V, REF = +1.25V CCPOUT = 10F, TA = +25C, unless otherwise noted.) 500 400 SLEEP MODE, CLK BUFFER DISABLED 32kHz OSC, RTC, DVDD MONITOR ENABLED 3.5 3.0 2.5 2.0 1.5 1.0 300 1.0 SLEEP MODE, ALL FUNCTIONS DISABLED 0.8 SUPPLY CURRENT (A) SUPPLY CURRENT (A) 600 4.0 MAX1358/59/60 toc02 NORMAL MODE CLK BUFFER DISABLED SUPPLY CURRENT (A) MAX1358/59/60 toc01 700 DVDD SUPPLY CURRENT vs. DVDD SUPPLY VOLTAGE DVDD SUPPLY CURRENT vs. DVDD SUPPLY VOLTAGE MAX1358/59/60 toc03 DVDD SUPPLY CURRENT vs. DVDD SUPPLY VOLTAGE 0.6 0.4 0.2 0.5 200 0 0 1.8 2.1 2.4 2.7 DVDD (V) 3.0 3.3 3.6 1.8 2.1 2.4 2.7 DVDD (V) 3.0 3.3 3.6 1.8 2.1 2.4 2.7 3.0 3.3 3.6 DVDD (V) ______________________________________________________________________________________ 13 Typical Operating Characteristics (continued) (DVDD = AVDD = 1.8V, REF = +1.25V CCPOUT = 10F, TA = +25C, unless otherwise noted.) DVDD = 1.8V 300 1.5 1.0 DVDD = 1.8V 0.8 -15 10 35 85 60 DVDD = 1.8V 0.4 0 0 -40 -15 10 35 60 -40 85 -15 10 35 60 TEMPERATURE (C) TEMPERATURE (C) TEMPERATURE (C) AVDD SUPPLY CURRENT vs. AVDD SUPPLY VOLTAGE AVDD SUPPLY CURRENT vs. AVDD SUPPLY VOLTAGE AVDD SUPPLY CURRENT vs. AVDD SUPPLY VOLTAGE NORMAL MODE 425 400 375 350 325 4.0 SLEEP MODE, 32kHz OSC, RTC, DVDD MONITOR ENABLED 3.5 300 3.0 2.5 2.0 SLEEP MODE, ALL FUNCTIONS DISABLED 1.8 SUPPLY CURRENT (A) MAX1358/59/60 toc07 450 SUPPLY CURRENT (A) -40 DVDD = 3.0V 0.6 0.2 0.5 200 SUPPLY CURRENT (A) DVDD = 3.0V SLEEP MODE, ALL FUNCTIONS DISABLED 85 MAX1358/59/60 toc09 400 2.0 1.0 SUPPLY CURRENT (A) DVDD = 3.0V 2.5 SLEEP MODE, CLK BUFFER DISABLED 32kHz OSC, RTC, DVDD MONITOR ENABLED MAX1358/59/60 toc08 SUPPLY CURRENT (A) 600 3.0 MAX1358/59/60 toc05 NORMAL MODE CLK BUFFER DISABLED SUPPLY CURRENT (A) MAX1358/59/60 toc04 700 500 DVDD SUPPLY CURRENT vs. TEMPERATURE DVDD SUPPLY CURRENT vs. TEMPERATURE MAX1358/59/60 toc06 DVDD SUPPLY CURRENT vs. TEMPERATURE 1.6 1.4 1.2 2.0 275 1.0 1.5 250 2.1 2.4 2.7 3.0 3.3 3.6 1.8 2.1 2.4 2.7 3.0 3.3 2.4 2.7 3.0 3.3 AVDD SUPPLY CURRENT vs. TEMPERATURE AVDD SUPPLY CURRENT vs. TEMPERATURE AVDD SUPPLY CURRENT vs. TEMPERATURE AVDD = 3.0V 325 300 AVDD = 1.8V 275 AVDD = 3.0V 3.0 2.5 2.0 AVDD = 1.8V 250 -15 10 35 TEMPERATURE (C) 60 85 1.8 1.6 AVDD = 3.0V 1.4 AVDD = 1.8V 1.0 1.0 200 SLEEP MODE, ALL FUNCTIONS DISABLED 1.2 1.5 225 2.0 3.6 MAX1358/59/60 toc12 3.5 SLEEP MODE, 32kHz OSC, RTC, DVDD MONITOR ENABLED SUPPLY CURRENT (A) 350 SUPPLY CURRENT (A) 375 4.0 MAX1358/59/60 toc11 AVDD (V) NORMAL MODE 14 2.1 AVDD (V) 400 -40 1.8 3.6 AVDD (V) MAX1358/59/60 toc10 1.8 SUPPLY CURRENT (A) MAX1358/MAX1359/MAX1360 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor -40 -15 10 35 TEMPERATURE (C) 60 85 -40 -15 10 35 TEMPERATURE (C) ______________________________________________________________________________________ 60 85 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor B A 2.3 2.2 CLK = 2.4576MHz 2.1 2.45 FLL ENABLED 2.40 2.35 2.30 2.25 -15 10 35 60 85 2.1 REFERENCE OUTPUT VOLTAGE vs. OUTPUT CURRENT 2.4 3.3 2.0 B 1.5 A 1.8 3.6 2.1 2.4 2.7 3.0 3.3 3.6 AVDD, DVDD (V) AVDD (V) REFERENCE OUTPUT VOLTAGE vs. OUTPUT CURRENT REFERENCE OUTPUT VOLTAGE vs. OUTPUT CURRENT 2.0484 2.5050 2.5048 2.5046 2.5044 VREF (V) 2.0482 2.0480 2.0478 2.5042 2.5040 2.5038 2.5036 2.0476 1.2495 2.5034 2.0474 AVDD = 1.8V VREF = 1.25V AVDD = 2.5V VREF = 2.048V 50 150 250 350 50 150 250 350 450 -50 150 250 350 450 OUTPUT CURRENT (A) OUTPUT CURRENT (A) NORMALIZED REFERENCE OUTPUT VOLTAGE vs. TEMPERATURE NORMALIZED REFERENCE OUTPUT VOLTAGE vs. TEMPERATURE NORMALIZED REFERENCE OUTPUT VOLTAGE vs. TEMPERATURE 0.9995 0.9990 0.9985 0.9980 VREF = 1.25V 0.9970 1.0005 1.0000 0.9995 0.9990 0.9985 0.9980 0.9975 VREF = 2.048V 0.9970 -15 10 35 TEMPERATURE (C) 60 85 1.0010 MAX1358/59/60 toc21 MAX1358/59/60 toc20 1.0000 1.0010 NORMALIZED REFERENCE VOLTAGE (V) MAX1358/59/60 toc19 1.0005 -40 50 OUTPUT CURRENT (A) 1.0010 0.9975 2.5030 -50 450 NORMALIZED REFERENCE VOLTAGE (V) -50 AVDD = 3.0V VREF = 2.5V 2.5032 2.0472 1.2490 NORMALIZED REFERENCE VOLTAGE (V) 3.0 MAX1358/59/60 toc17 MAX1358/59/60 toc16 1.2500 2.7 2.0486 VREF (V) VREF (V) 1.2505 C 1.0 1.8 TEMPERATURE (C) A: FLL DISABLED; AVDD, DVDD = 1.8V B: FLL ENABLED C: FLL DISABLED; AVDD, DVDD = 3.0V 1.2510 2.5 CLK = 2.4576MHz 2.20 -40 A: VREF = 1.25V B: VREF = 2.048V C: VREF = 2.5V MAX1358/59/60 toc18 2.4 FLL DISABLED 2.50 REFERENCE OUTPUT VOLTAGE (V) 2.5 2.55 3.0 MAX1358/59/60 toc14 C INTERNAL OSCILLATOR FREQUENCY (MHz) 2.7 2.6 2.60 MAX1358/59/60 toc13 INTERNAL OSCILLATOR FREQUENCY (MHz) 2.8 REFERENCE OUTPUT VOLTAGE vs. SUPPLY VOLTAGE INTERNAL OSCILLATOR FREQUENCY vs. SUPPLY VOLTAGE MAX1358/59/60 toc15 INTERNAL OSCILLATOR FREQUENCY vs. TEMPERATURE 1.0005 1.0000 0.9995 0.9990 0.9985 0.9980 0.9975 VREF = 2.5V 0.9970 -40 -15 10 35 TEMPERATURE (C) 60 85 -40 -15 10 35 60 85 TEMPERATURE (C) ______________________________________________________________________________________ 15 MAX1358/MAX1359/MAX1360 Typical Operating Characteristics (continued) (DVDD = AVDD = 1.8V, REF = +1.25V CCPOUT = 10F, TA = +25C, unless otherwise noted.) Typical Operating Characteristics (continued) (DVDD = AVDD = 1.8V, REF = +1.25V CCPOUT = 10F, TA = +25C, unless otherwise noted.) VREF = 1.25V 10,000 NOISE (nV/Hz) 50V/div NOISE (nV/Hz) 10,000 1000 VREF = 2.048V MAX1358/59/60 toc24 MAX1358/59/60 toc22 REFERENCE VOLTAGE OUTPUT NOISE vs. FREQUENCY MAX1358/59/60 toc23 REFERENCE VOLTAGE OUTPUT NOISE vs. FREQUENCY REFERENCE VOLTAGE OUTPUT NOISE (0.1Hz TO 10Hz) 1000 VREF = +1.25V AVDD = +1.8V 100 100 10 100 10k 1k 1 10 FREQUENCY (Hz) REFERENCE VOLTAGE OUTPUT NOISE vs. FREQUENCY 1000 AVDD = 1.8V VAIN = 0.5V 0 0.25 -2 10k -4 -6 AVDD = 1.8V VREF = 1.25V 0.15 INL (LSB) VREF = 2.5V 1k DAC INL vs. OUTPUT CODE 2 MAX1358/59/60 toc26 MAX1358/59/60 toc25 ADC MUX INPUT DC CURRENT vs. TEMPERATURE INPUT CURRENT (A) NOISE (nV/Hz) 10,000 100 FREQUENCY (Hz) MAX1358/59/60 toc27 1 1s/div 0.05 -0.05 -8 -0.15 -10 -12 100 100 1k -0.25 -40 10k -15 FREQUENCY (Hz) 10 35 60 85 0 DAC INL vs. OUTPUT CODE AVDD = 3.0V VREF = 2.5V 0.15 INL (LSB) 0.05 0.05 -0.05 -0.05 -0.15 -0.15 0.10 0.05 0 -0.05 -0.10 -0.25 200 400 600 OUTPUT CODE 16 800 1000 1000 0.15 AVDD = 1.8V VREF = 1.25V -0.15 -0.25 800 0.20 DNL (LSB) 0.15 600 DAC DNL vs. OUTPUT CODE 0.25 MAX1358/59/60 toc28 AVDD = 2.5V VREF = 2.048V 400 OUTPUT CODE DAC INL vs. OUTPUT CODE 0.25 0 200 TEMPERATURE (C) MAX1358/59/60 toc30 10 MAX1358/59/60 toc29 1 INL (LSB) MAX1358/MAX1359/MAX1360 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor -0.20 0 200 400 600 OUTPUT CODE 800 1000 0 200 400 600 OUTPUT CODE ______________________________________________________________________________________ 800 1000 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor 0 -0.05 0 -0.05 -0.10 -0.10 AVDD = 2.5V VREF = 2.048V 200 400 600 800 1000 1.240 0 200 400 600 800 0 1000 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 OUTPUT CODE OUTPUT CODE SOURCE CURRENT (mA) DAC OUTPUT VOLTAGE vs. OUTPUT SINK CURRENT DAC OUTPUT VOLTAGE vs. ANALOG SUPPLY VOLTAGE DAC OUTPUT VOLTAGE vs. TEMPERATURE 0.15 0.10 AVDD = 3.0V 640 630 620 630 DAC OUTPUT VOLTAGE (mV) AVDD = 1.8V 0.20 MAX1358/59/60 toc35 MAX1358/59/60 toc34 0.25 650 DAC OUTPUT VOLTAGE (mV) 0.30 610 0.05 628 AVDD = 1.8V 626 AVDD = 3.0V 624 622 VREF = 1.25V CODE = 200 hex CODE = 200 hex CODE = 020 hex 0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 620 600 1.8 2.1 2.4 2.7 3.0 3.3 3.6 -40 -15 10 35 60 SOURCE CURRENT (mA) AVDD (V) TEMPERATURE (C) DAC FBA/B INPUT BIAS CURRENT vs. TEMPERATURE DAC OUTPUT NOISE (0.1Hz TO 10Hz) DAC OUTPUT NOISE vs. FREQUENCY AVDD = 1.8V VAIN = 0.5V 1 0 MAX1358/59/60 toc38 10,000 -1 50V/div -2 NOISE (nV/Hz) 2 MAX1358/59/60 toc37 0 1.242 CODE = 3FF hex AVDD = 1.8V, 3.0V -0.20 0 1.244 AVDD = 3.0V VREF = 2.5V -0.15 -0.20 1.246 MAX1358/59/60 toc36 -0.15 DAC OUTPUT VOLTAGE (V) 0.05 MAX1358/59/60 toc33 0.10 DNL (LSB) 0.05 0.15 1.248 85 DAC CODE = 3FF hex VREF = 2.5V MAX1358/59/60 toc39 0.10 MAX1358/59/60 toc32 0.15 DNL (LSB) 0.20 MAX1358/59/60 toc31 0.20 INPUT BIAS CURRENT (A) DAC OUTPUT VOLTAGE vs. OUTPUT SOURCE CURRENT DAC DNL vs. OUTPUT CODE DAC OUTPUT VOLTAGE (V) DAC DNL vs. OUTPUT CODE 1000 -3 AVDD = +1.8V VREF = +1.25V DAC CODE = 3FF hex -4 100 -5 -40 -15 10 35 TEMPERATURE (C) 60 85 1s/div 1 10 100 1k 10k FREQUENCY (Hz) ______________________________________________________________________________________ 17 MAX1358/MAX1359/MAX1360 Typical Operating Characteristics (continued) (DVDD = AVDD = 1.8V, REF = +1.25V CCPOUT = 10F, TA = +25C, unless otherwise noted.) Typical Operating Characteristics (continued) (DVDD = AVDD = 1.8V, REF = +1.25V CCPOUT = 10F, TA = +25C, unless otherwise noted.) DAC LARGE-SIGNAL OUTPUT STEP RESPONSE 7.5 CS 2V/div OUT_ 1V/div INPUT OFFSET VOLTAGE (mV) VCM = 0.5V 7.2 MAX1358/59/60 toc41 OP-AMP INPUT OFFSET VOLTAGE vs. TEMPERATURE MAX1358/59/60 toc40 AVDD = 3.0V 6.9 6.6 AVDD = 1.8V 6.3 VREF = +1.25V AVDD = +3.0V 6.0 40s/div -40 -15 10 35 60 85 TEMPERATURE (C) 8 6 4 AVDD = 3.0V VCM = 0.5V 12 2 10 8 6 4 2 0 0 -2 -15 10 35 60 -40 10 35 60 TEMPERATURE (C) OP-AMP OUTPUT VOLTAGE vs. OUTPUT SINK CURRENT OP-AMP OUTPUT VOLTAGE vs. OUTPUT SOURCE CURRENT 150 AVDD = 1.8V 100 3.00 2.96 OUTPUT VOLTAGE (V) AVDD = 3.0V 50 85 2.92 2.88 2.84 AVDD = 3.0V UNITY GAIN, VIN_+ = AVDD UNITY GAIN, VIN_+ = 0V 0 2.80 0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 SINK CURRENT (mA) 18 -15 TEMPERATURE (C) 250 200 85 MAX1358/59/60 toc44 -40 MAX1358/59/60 toc45 INPUT BIAS CURRENT (pA) 10 14 INPUT BIAS CURRENT (pA) AVDD = 1.8V VCM = 0.5V MAX1358/59/60 toc42 12 MAX1358/59/60 toc43 OP-AMP INPUT BIAS CURRENT vs. TEMPERATURE OP-AMP INPUT BIAS CURRENT vs. TEMPERATURE OUTPUT VOLTAGE (mV) MAX1358/MAX1359/MAX1360 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor 0 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 SOURCE CURRENT (mA) ______________________________________________________________________________________ 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor 1.75 1.70 501.0 UNITY GAIN, VIN_+ = 0.5V RL = 10k 500.8 OUTPUT VOLTAGE (mV) MAX1358/59/60 toc46 1.65 500.4 AVDD = 1.8V 500.2 UNITY GAIN, VIN_+ = AVDD AVDD = 1.8V 500.0 1.60 -40 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 -15 10 35 60 SOURCE CURRENT (mA) TEMPERATURE (C) OP-AMP OUTPUT VOLTAGE vs. AVDD SUPPLY VOLTAGE OP-AMP OUTPUT NOISE vs. FREQUENCY 501.0 UNITY GAIN, VIN_+ = 0.5V RL = 10k 10,000 UNITY GAIN, VIN_+ = 0.5V NOISE (nV/Hz) 500.8 MAX1358/59/60 toc48 0 OUTPUT VOLTAGE (mV) AVDD = 3.0V 500.6 500.6 500.4 85 MAX1358/59/60 toc49 OUTPUT VOLTAGE (V) 1.80 MAX1358/59/60 toc47 OP-AMP OUTPUT VOLTAGE vs. TEMPERATURE OP-AMP OUTPUT VOLTAGE vs. OUTPUT SOURCE CURRENT 1000 500.2 100 500.0 2.1 2.4 2.7 3.0 3.3 10 100 FREQUENCY (Hz) SPDT ON-RESISTANCE vs. VCOM VOLTAGE SPST ON-RESISTANCE vs. VCOM VOLTAGE 150 MAX1358/59/60 toc50 65 AVDD = 3.0V 45 130 RON () 55 10k 1k AVDD (V) 75 RON () 1 3.6 MAX1358/59/60 toc51 1.8 110 AVDD = 3.0V 90 35 AVDD = 1.8V 70 AVDD = 1.8V 25 50 0 0.5 1.0 1.5 VCOM (V) 2.0 2.5 3.0 0 0.5 1.0 1.5 2.0 2.5 3.0 VCOM (V) ______________________________________________________________________________________ 19 MAX1358/MAX1359/MAX1360 Typical Operating Characteristics (continued) (DVDD = AVDD = 1.8V, REF = +1.25V CCPOUT = 10F, TA = +25C, unless otherwise noted.) Typical Operating Characteristics (continued) (DVDD = AVDD = 1.8V, REF = +1.25V CCPOUT = 10F, TA = +25C, unless otherwise noted.) SPDT ON-RESISTANCE vs. TEMPERATURE SPST ON-RESISTANCE vs. TEMPERATURE ICOM = 1mA 42 MAX1358/59/60 toc53 100 MAX1358/59/60 toc52 45 AVDD = 1.8V, 3.0V ICOM = 1mA 97 39 RON () RON () 94 AVDD = 3.0V 91 36 88 33 85 AVDD = 1.8V 30 82 -15 10 35 60 -40 -15 10 35 60 TEMPERATURE (C) TEMPERATURE (C) SPDT/SPST ON/OFF-LEAKAGE CURRENT vs. TEMPERATURE SPDT/SPST SWITCHING TIME vs. AVDD SUPPLY VOLTAGE AVDD = 1.8V VCM = 0V ON-LEAKAGE 10 OFF-LEAKAGE 1 85 45 MAX1358/59/60 toc55 MAX1358/59/60 toc54 100 LEAKAGE CURRENT (pA) 85 40 SWITCHING TIMES (ns) -40 35 tON 30 25 tOFF 20 15 0.1 -15 10 35 60 1.8 85 2.1 2.4 SPDT/SPST SWITCHING TIME vs. TEMPERATURE tON 42 tOFF 34 3.6 AVDD = 3.0V 31 tON 27 23 tOFF 19 30 15 -40 -15 10 35 TEMPERATURE (C) 20 3.3 35 SWITCHING TIMES (ns) AVDD = 1.8V 38 3.0 SPDT/SPST SWITCHING TIME vs. TEMPERATURE MAX1358/59/60 toc56 50 46 2.7 AVDD (V) TEMPERATURE (C) MAX1358/59/60 toc57 -40 SWITCHING TIMES (ns) MAX1358/MAX1359/MAX1360 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor 60 85 -40 -15 10 35 60 85 TEMPERATURE (C) ______________________________________________________________________________________ 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor CHARGE-PUMP OUTPUT VOLTAGE vs. OUTPUT CURRENT VOLTAGE SUPERVISOR THRESHOLD vs. TEMPERATURE % DEVIATION DVDD SUPERVISOR 0 -0.05 -0.10 MAX1358/59/60 toc59 0.05 3.6 3.5 CPOUT VOLTAGE (V) MAX1358/59/60 toc58 0.10 CPOUT SUPERVISOR 3.4 3.3 3.2 -0.15 3.1 -0.20 3.0 DVDD = 1.8V -15 10 35 60 4 6 8 10 CHARGE-PUMP OUTPUT VOLTAGE vs. TEMPERATURE CHARGE-PUMP OUTPUT RESISTANCE vs. CAPACITANCE DVDD = 3.0V 3.22 DVDD = 1.8V 3.18 100 MAX1358/59/60 toc61 MAX1358/59/60 toc60 3.26 80 60 40 20 3.14 DVDD = 1.8V IOUT = 10mA IOUT = 10mA 0 3.10 -15 10 35 60 85 0 4 8 12 16 TEMPERATURE (C) CF (F) CHARGE-PUMP OUTPUT VOLTAGE RIPPLE vs. OUTPUT CURRENT CHARGE-PUMP OUTPUT VOLTAGE RIPPLE 50 DVDD = 1.8V 40 20 MAX1358/59/60 toc63 MAX1358/59/60 toc62 -40 OUTPUT VOLTAGE RIPPLE (mV) 2 OUTPUT CURRENT (mA) 3.30 CPOUT VOLTAGE (V) 0 85 TEMPERATURE (C) OUTPUT RESISTANCE () -40 30 CPOUT 20mV/div AC-COUPLED 20 10 DVDD = +1.8V ILOAD = 10mA 0 0 2 4 6 8 10 20s/div OUTPUT CURRENT (mA) ______________________________________________________________________________________ 21 MAX1358/MAX1359/MAX1360 Typical Operating Characteristics (continued) (DVDD = AVDD = 1.8V, REF = +1.25V CCPOUT = 10F, TA = +25C, unless otherwise noted.) MAX1358/MAX1359/MAX1360 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor Pin Description PIN NAME FUNCTION MAX1358 MAX1359 MAX1360 1 1 1 CLK 2 2 2 UPIO2 User-Programmable Input/Output 2. See the UPIO2_CTRL Register section for functionality. 3 3 3 UPIO3 User-Programmable Input/Output 3. See the UPIO3_CTRL Register section for functionality. 4 4 4 UPIO4 User-Programmable Input/Output 4. See the UPIO4_CTRL Register section for functionality. 5 5 5 DOUT Serial-Data Output. Data is clocked out on SCLK's falling edge. High impedance when CS is high, when UPIO/SPI passthrough mode is enabled, DOUT mirrors the state of UPIO1. 6 6 6 SCLK 7 7 7 DIN Serial-Data Input. Data is clocked in on SCLK's rising edge. 8 8 8 CS Active-Low Chip-Select Input. Data is not clocked into DIN unless CS is low. When CS is high, DOUT is high impedance. High impedance when CS is high, when UPIO/SPI passthrough mode is enabled, DOUT mirrors the state of UPIO1. 9 9 9 INT Programmable Active-High/Low Interrupt Output. ADC, UPIO wake-up, alarm, and voltage-monitor events. 22 Clock Output. Default is 2.457MHz output clock for C. Serial-Clock Input. Clocks data in and out of the serial interface. 32kHz Clock Input/Output. Outputs 32kHz clock for C. Can be programmed as an input by enabling the IO32E bit to accept an external 32kHz input clock. The RTC, PWM, and watchdog timer always use the internal 32kHz clock derived from the 32kHz crystal. Active-Low Open-Drain Reset Output. Remains low while DVDD is below the 1.8V voltage threshold and stays low for a timeout period (tDSLP) after DVDD rises above the 1.8V threshold. RESET also pulses low when the watchdog timer times out and holds low during POR until the 32kHz oscillator stabilizes. 10 10 10 CLK32K 11 11 11 RESET 12 12 12 32KOUT 13 13 13 32KIN 32kHz Crystal Input. Connect external 32kHz watch crystal between 32KIN and 32KOUT. 14 14 14 SNO1 Analog Switch 1 Normally Open Terminal. Analog input to mux. 15 15 15 SCM1 Analog Switch 1 Common Terminal. Analog input to mux. 16 16 16 SNC1 Analog Switch 1 Normally Closed Terminal. Analog input to mux (open on POR). 17 17 17 SNO2 Analog Switch 2 Normally Open Terminal. Analog input to mux. 18 18 18 SCM2 Analog Switch 2 Common Terminal. Analog input to mux (open on POR). 19 19 19 SNC2 Analog Switch 2 Normally Closed Terminal. Analog input to mux. 20 20 20 OUT1 21 21 21 IN1- Amplifier 1 Inverting Input. Analog input to mux. 22 22 22 IN1+ Amplifier 1 Noninverting Input 23 23 -- SWA DACA SPST Shunt Switch Input. Connects to OUTA through a SPST switch. 24 24 -- FBA DACA Force-Sense Feedback Input. Analog input to mux. 32kHz Crystal Output. Connect external 32kHz watch crystal between 32KIN and 32KOUT. Amplifier 1 Output. Analog input to mux. ______________________________________________________________________________________ 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor PIN NAME FUNCTION MAX1358 MAX1359 MAX1360 25 25 -- OUTA DACA Force-Sense Output. Analog input to mux. 26 26 26 AGND Analog Ground 27 27 27 AVDD Analog Supply Voltage. Also ADC reference voltage during AVDD measurement. Bypass to AGND with 10F and 0.1F capacitors in parallel as close to the pin as possible. 28 -- -- SWB DACB SPST Shunt Switch Input. Connects to OUTB through an SPST switch. 29 -- -- FBB DACB Force-Sense Feedback Input. Analog input to mux. 30 -- -- OUTB Force-Sense DACB Ouput. Analog input to mux. 31 31 31 AIN2 Analog Input 2. Analog input to mux. Inputs have internal programmable current source for external temperature measurement. 32 32 32 AIN1 Analog Input 1. Analog input to mux. Inputs have internal programmable current source for external temperature measurement. 33 33 33 REF Reference Input/Output. Output of the reference buffer amplifier or external reference input. Disabled at power-up to allow external reference. Reference voltage for ADC and DACs. 34 34 34 REG Linear Voltage-Regulator Output. Charge-pump-doubler input voltage. Bypass REG with a 10F capacitor to DGND for charge-pump regulation. 35 35 35 CF- 36 36 36 CF+ 37 37 37 CPOUT Charge-Pump Output. Connect an external 10F (typ) reservoir capacitor between CPOUT and DGND. There is a low threshold diode between DVDD and CPOUT. When the charge pump is disabled, CPOUT is pulled up within 300mV (typ) of DVDD. 38 38 38 DVDD Digital Supply Voltage. Bypass to DGND with 10F and 0.1F capacitors in parallel as close to the pin as possible. 39 39 39 DGND Digital Ground. Also ground for cascaded linear voltage regulator and chargepump doubler. 40 40 40 UPIO1 User-Programmable Input/Output 1. See the UPIO1_CTRL Register for functionality. -- -- 23 IN3+ Amplifier 3 Noninverting Input -- -- 24 IN3- Amplifier 3 Inverting Input. Analog input to mux. -- -- 25 OUT3 -- 28 28 IN2+ Amplifier 2 Noninverting Input -- 29 29 IN2- Amplifier 2 Inverting Input. Analog input to mux. -- 30 30 OUT2 -- -- -- EP Charge-Pump Flying Capacitor Terminals. Connect an external 10F (typ) capacitor between CF+ and CF-. Amplifier 3 Output. Analog input to mux. Amplifier 2 Output. Analog input to mux. Exposed Pad. Leave unconnected or connect to AGND. ______________________________________________________________________________________ 23 MAX1358/MAX1359/MAX1360 Pin Description (continued) MAX1358/MAX1359/MAX1360 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor The DAS directly interfaces to various sensor outputs and, once configured, provides the stimulus, signal conditioning, and data conversion, as well as P support. See the Applications section for sample MAX1358/MAX1359/MAX1360 applications. The 16-bit ADC features programmable continuous conversion rates as shown in Table 4, and gains of 1, 2, 4, and 8 (Table 5) to suit applications with different power Detailed Description The MAX1358/MAX1359/MAX1360 DAS feature a multiplexed differential 16-bit ADC, 10-bit force-sense DACs, an RTC with an alarm, a selectable bandgap voltage reference, a signal-detect comparator, 1.8V and 2.7V voltage monitors, and wake-up control circuitry, all controlled by a 4-wire serial interface. (See Figures 3, 4, and 5 for the functional diagrams). CS SCLK DIN 32.768kHz OSCILLATOR CLK INT 4.9152MHz HF OSCILLATOR AND FLL INTERRUPT CLK32K 32KOUT 32KIN DVDD CLK32K M32K INPUT/OUTPUT CONTROL SERIAL INTERFACE DOUT 32K UPIO2 CRDY UPR<4:1> UPF<4:1> STATUS ALD SDC ADD ADOU LDVD LCPD PWM RTC AND ALARM WATCHDOG TIMER TEMP SENSOR AIN1 AIN2 SNO1 SNC1 SCM1 SPDT1 SNC2 SPDT2 TEMPSNO2 OUTA SCM2 OUTB SNC2 OUT1 AIN2 REF AGND UPIO4 DVDD (1.8V) VOLTAGE MONITOR CHARGEPUMP DOUBLER LINEAR 1.65V VOLTAGE REGULATOR M32K CF+ CFREG PROG. Vos PGA 1.25V BANDGAP 10:1 MUX POS REF CMP Av = 1, 1.6384, 2 V/V REF POLARITY FLIPPER REF IN+ 16-BIT ADC IN- 10-BIT DAC OUTA BUF HFCLK SWA Av = 1, 2, 4, 8 V/V FBA REF 10:1 MUX NEG DGND 10-BIT DAC OUTB BUF SWB OP1 FBB IN1+ IN1- OUT1 AGND Figure 3. MAX1358 Functional Diagram 24 RESET CPOUT DVDD M32K MAX1358 PGA SNO2 SCM2 TEMP+ TEMP- UPIO3 4 4 CPOUT (2.7V) VOLTAGE MONITOR AIN2 AIN1 SNO1 FBA SCM1 FBB SNC1 INM1 TEMP+ REF AGND UPIO WDTO AIN1 PROG CURRENT SOURCE UPIO1 16 HFCLK CONTROL LOGIC AVDD ______________________________________________________________________________________ 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor 32.768kHz OSCILLATOR CS SCLK DIN CLK INT 4.9152MHz HF OSCILLATOR AND FLL INTERRUPT CLK32K 32KOUT 32KIN DVDD Analog-to-Digital Converter (ADC) The MAX1358/MAX1359/MAX1360 include a sigmadelta ADC with programmable conversion rate, a PGA, and a dual 10:1 input mux. When performing continu- CLK32K M32K INPUT/OUTPUT CONTROL 32K CRDY UPR<4:1> UPF<4:1> STATUS ALD SDC ADD ADOU LDVD LCPD PWM RTC AND ALARM WATCHDOG TIMER AIN1 SNO1 FBA SCM1 IN2SNC1 INM1 TEMP+ REF AGND AIN2 SNO1 SNC1 SCM1 SPDT1 SNC2 SPDT2 TEMPSNO2 OUTA SCM2 OUT2 SNC2 OUT1 AIN2 REF AGND UPIO4 DVDD (1.8V) VOLTAGE MONITOR CHARGEPUMP DOUBLER LINEAR 1.65V VOLTAGE REGULATOR M32K RESET CPOUT DVDD M32K MAX1359 CF+ CFREG PROG. Vos PGA 1.25V BANDGAP 10:1 MUX POS REF CMP Av = 1, 1.6384, 2 V/V REF REF IN+ 16-BIT ADC IN- PGA SNO2 SCM2 TEMP+ TEMP- UPIO3 4 CPOUT (2.7V) VOLTAGE MONITOR AIN2 TEMP SENSOR AIN1 4 WDTO AIN1 PROG CURRENT SOURCE UPIO 16 HFCLK DOUT UPIO1 UPIO2 SERIAL INTERFACE CONTROL LOGIC AVDD POLARITY FLIPPER 10-BIT DAC SWA Av = 1, 2, 4, 8 V/V FBA 10:1 MUX NEG DGND OUTA BUF HFCLK OP2 OUT2 OP1 IN1+ IN1- OUT1 IN2+ IN2- AGND Figure 4. MAX1359 Functional Diagram ______________________________________________________________________________________ 25 MAX1358/MAX1359/MAX1360 RESET. The MAX1358/MAX1359/MAX1360 use a 4-wire serial interface to communicate directly between SPI, QSPI, or MICROWIRE devices for system configuration and readback functions. and dynamic range constraints. The force-sense DACs provide 10-bit resolution for precise sensor applications. The ADCs and DACs both utilize a low-drift 1.25V internal bandgap reference for conversions and fullscale range setting. The RTC has a 138-year range and provides an alarm function that can be used to wake up the system or cause an interrupt at a predefined time. The power-supply voltage monitor detects when DVDD falls below a trip threshold voltage of +1.8V, asserting MAX1358/MAX1359/MAX1360 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor ous conversions at 10sps or single conversions at the 40sps setting (effectively 10sps due to four sample sigma-delta settling), the ADC has 16-bit noise-free resolution. The noise-free resolution drops to 10 bits at the maximum sampling rate of 512sps. Differential inputs support unipolar (between 0 and V REF) and bipolar (between V REF ) modes of operation. Note: Avoid combinations of input signal and PGA gains that exceed the reference range at the ADC input. The CS SCLK DIN 32.768kHz OSCILLATOR CLK INT 4.9152MHz HF OSCILLATOR AND FLL INTERRUPT CLK32K 32KOUT 32KIN DVDD ADOU bit in the status register indicates if the ADC has over-ranged or under-ranged. Zero-scale and full-scale calibrations remove offset and gain errors. Direct access to gain and zero-scale calibration registers allows system-level offset and gain calibration. The zero-scale adjustment register allows intentional positive offset skewing to preserve unipolarmode resolution for signals that have a slight negative CLK32K M32K INPUT/OUTPUT CONTROL SERIAL INTERFACE HFCLK CONTROL LOGIC DOUT 32K RTC AND ALARM WATCHDOG TIMER AIN1 SNO1 IN3SCM1 IN2SNC1 INM1 TEMP+ REF AGND AIN2 SNO1 SNC1 SCM1 SNO2 SNC2 SCM2 TEMP+ TEMP- SPDT2 TEMPSNO2 OUT3 SCM2 OUT2 SNC2 OUT1 AIN2 REF AGND UPIO4 DVDD (1.8V) VOLTAGE MONITOR CHARGEPUMP DOUBLER CF+ CFREG PROG. Vos PGA 1.25V BANDGAP 10:1 MUX POS REF CMP Av = 1, 1.6384, 2 V/V IN3+ REF POLARITY FLIPPER IN+ 16-BIT ADC IN- HFCLK OUT3 OP3 Av = 1, 2, 4, 8 V/V IN3- 10:1 MUX NEG DGND OP2 OP1 IN1+ IN1- OUT1 IN2+ IN2- AGND Figure 5. MAX1360 Functional Diagram 26 RESET CPOUT LINEAR 1.65V VOLTAGE REGULATOR M32K UPIO2 UPIO3 4 DVDD M32K MAX1360 PGA SPDT1 4 CPOUT (2.7V) VOLTAGE MONITOR AIN2 TEMP SENSOR AIN1 UPIO WDTO AIN1 PROG CURRENT SOURCE UPIO1 16 CRDY UPR<4:1> UPF<4:1> STATUS ALD SDC ADD ADOU LDVD LCPD PWM AVDD ______________________________________________________________________________________ OUT2 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor ADC Modulator The MAX1358/MAX1359/MAX1360 perform analog-todigital conversions using a single-bit, 3rd-order, switched-capacitor sigma-delta modulator. The sigmadelta modulation converts the input signal into a digital pulse train whose average duty cycle represents the digitized signal information. The pulse train is then processed by a digital decimation filter. The modulator provides 2nd-order frequency shaping of the quantization noise resulting from the single-bit quantizer. The modulator is fully differential for maximum signal-to-noise ratio and minimum susceptibility to power-supply noise. Signal-Detect Comparator INT asserts (and remains asserted) within 30s when the differential voltage on the selected analog inputs exceeds the signal-detect comparator trip threshold. The signal-detect comparator's differential input trip threshold (i.e., offset) is user selectable and can be programmed to the following values: 0mV, 50mV, 100mV, 150mV, or 200mV. Analog Inputs The ADC provides two external analog inputs: AIN1 and AIN2. The rail-to-rail inputs accept differential or single-ended voltages, or external temperature-sensing diodes. The unused op amps, switches, or DAC inputs and output pins can also be used as rail-to-rail analog inputs if the associated function is disabled. Analog Input Protection Internal protection diodes clamp the analog inputs to AVDD and AGND, and allow the channel input to swing from (AGND - 0.3V) to (AVDD + 0.3V). For accurate conversions near full scale, the inputs must not exceed AVDD by more than 50mV or be lower than AGND by 50mV. If the inputs exceed (AGND - 0.3V) to (AVDD + 0.3V), limit the current to 50mA. Digital Filtering The MAX1358/MAX1359/MAX1360 contain an on-chip digital lowpass filter that processes the data stream from the modulator using a SINC4 (sinx/x)4 response. The SINC4 filter has a settling time of four output data periods (4 x 200ms). The MAX1358/MAX1359/MAX1360 have 25% overrange capability built into the modulator and digital filter: 4 f SIN N fm 1 H(f) = N f SIN fm Figure 6 shows the filter frequency response. The SINC4 characteristic -3dB cutoff frequency is 0.228 times the first notch frequency. The output data rate for the digital filter corresponds with the positioning of the first notch of the filter's frequency response. The notches of the SINC4 filter are repeated at multiples of the first notch frequency. The SINC 4 filter provides an attenuation of better than 100dB at these notches. For example, 50Hz is equal to five times the first notch frequency and 60Hz is equal to six times the first notch frequency. 0 -40 GAIN (dB) PGA Gain An integrated PGA provides four selectable gains: +1V/V, +2V/V, +4V/V, and +8V/V to maximize the dynamic range of the ADC. Bits GAIN1 and GAIN0 set the gain (see the ADC Register for more information). The PGA gain is implemented in the digital filter of the ADC. Figures 3, 4, and 5 illustrate which signals are present at the inputs of each mux for the MAX1358/MAX1359/ MAX1360. The MUXP[3:0] and MUXN[3:0] bits of the mux register select the input to the ADC and the signal-detect comparator (Tables 8 and 9). See the mux register description in the Register Definitions section for multiplexer functionality. The POL bit of the ADC register swaps the polarity of mux output signals to the ADC. -80 -120 -160 -200 0 Analog Mux The MAX1358/MAX1359/MAX1360 include a dual 10:1 mux for the positive and negative inputs of the ADC. 20 40 60 80 100 120 FREQUENCY (Hz) Figure 6. Filter Frequency Response ______________________________________________________________________________________ 27 MAX1358/MAX1359/MAX1360 offset (i.e., unipolar clipping near zero can be removed). Perform ADC calibration whenever the ADC configuration, temperature, or AVDD changes. The ADC-done status can be programmed to provide an interrupt on INT or on any UPIO_. MAX1358/MAX1359/MAX1360 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor DVDD LDOE CPE 1.22V OP M32K 1.65V REG CPOUT NONOVERLAP CLOCK GENERATOR CF+ REG CF- LDOE CHARGE-PUMP DOUBLER LINEAR 1.65V VOLTAGE REGULATOR Figure 8. Charge-Pump Block Diagram Figure 7. Linear-Regulator Block Diagram Force-Sense DAC (MAX1358/MAX1359) The MAX1358 incorporates two 10-bit force-sense DACs and the MAX1359 has one. The DACs' reference voltage sets the full-scale range. Program the DACA_OP and DACB_OP registers using the serial interface to set the output voltages of the DACs at OUTA and OUTB. Shorting FBA/B and OUTA/B configures the DAC in a unity-gain setting. Connecting resistors in a voltage-divider configuration between OUTA/B, FBA/B, and GND sets a different closed-loop gain for the output amplifier (see the Applications Information section). The DAC output amplifier typically settles to 0.5 LSB from a full-scale transition within 50s (unity gain and loaded with 10k in parallel with 200pF). Loads of less than 1k may degrade performance. See the Typical Operating Characteristics for the source-and-sink capability of the DAC output. The MAX1358/MAX1359 feature a software-programmable shutdown mode for the DACs. Power down DACA or DACB independently or simultaneously by clearing the DAE and DBE bits (see the DACA_OP Registers and DACB_OP Registers sections). DAC outputs OUTA and OUTB go high impedance when powered down. The DACs are normally powered down at power-on reset. Charge Pump The charge pump provides >3V at CPOUT with a maximum 10mA load. Enable the charge pump through the PS_VMONS register. The charge pump is powered 28 from DVDD. See Figures 7 and 8 for block diagrams of the charge pump and linear regulator. The charge pump is disabled at power-on reset. An internal clock drives the charge-pump clock and ADC clock. The charge pump delivers a maximum 10mA of current to external devices. The droop and the ripple depend on the clock frequency (f CLK = 32.768kHz / 2), switch resistances (R SWITCH = 5), and the external capacitors (10F) along with their respective ESRs, as shown below. VDROOP = IOUTROUT 1 + 2RSWITCH + 4ESRCF + ESRCCPOUT fCLKCF IOUT VRIPPLE = + 2IOUTESRCCPOUT fCLKCCPOUT ROUT = Voltage Supervisors The MAX1358/MAX1359/MAX1360 provide voltage supervisors to monitor DVDD and CPOUT. The first supervisor monitors the DVDD supply voltage. RESET asserts and sets the corresponding LDVD status bit when DVDD falls below the 1.8V threshold voltage. When the DVDD supply voltage rises above the threshold during power-up, RESET deasserts after a nominal 1.5s timeout period to give the crystal oscillator time to stabilize. Set the threshold hysteresis using the HYSE bit of the PS_VMONS register. See the PS_VMONS Register section for configuring hysteresis. There is no separate voltage monitor for AVDD, but the analog supply is cov- ______________________________________________________________________________________ 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor DVDD HYSE POR LSDE 1.8VTH ANALOG 2:1 MUX CMP 2.0VTH RSTE RESET CONTROL LOGIC 1.25V LDVD LSDE DVDD (1.8V) VOLTAGE MONITOR Figure 9. DVDD Voltage-Supervisor Block Diagram to monitor AVDD. See Figure 10 for a block diagram of the CPOUT voltage supervisor. CPOUT Interrupt Generator (INT) CPDE 2.7VTH CMP LCPD 1.25V CPDE CPOUT (2.7V) VOLTAGE MONITOR The interrupt generator provides an interrupt to an external C. The source of the interrupt is generated by the status register and can be masked and unmasked through the IMSK register. CRDY is unmasked by default and INT is active-high at power-on reset. INT is programmable as active-high and active-low. Possible sources include a rising or falling edge of UPIO_, an RTC alarm, an ADC conversion completion, or the voltage-supervisor outputs. The interrupt causes INT to assert when configured as an interrupt output. Crystal Oscillator Figure 10. CPOUT Voltage-Supervisor Block Diagram ered by the DVDD monitor in many applications where DVDD and AVDD are externally connected together. Multiple supply applications where AVDD and DVDD are not connected together require a separate external voltage monitor for AVDD. See Figure 9 for a block diagram of the DVDD voltage supervisor. The second voltage monitor tracks the charge-pump output voltage, CPOUT. If CPOUT falls below the 2.7V threshold, a corresponding register status bit (LCPD) is set to flag the condition. The CPOUT monitor output can also be mapped to the interrupt generator and output on INT. The CPOUT monitor can be used as a 3V AVDD monitor in applications where the charge pump is disabled and CPOUT is connected to AV DD . AV DD must be greater or equal to DVDD when CPOUT is used The on-chip oscillator requires an external crystal (or resonator) connected between 32KIN and 32KOUT with a 32.768kHz operating frequency. This oscillator is used for the RTC, alarm, PWM, watchdog, charge pump, and FLL. In any crystal-based oscillator circuit, the oscillator frequency is sensitive to the capacitive load (CL). CL is the capacitance that the crystal needs from the oscillator circuit and not the capacitance of the crystal. The input capacitance across the 32KIN and 32KOUT is 6pF. Choose a crystal with a 32.768kHz oscillation frequency and a 6pF capacitive load such as the C-002RX32-E from Epson Crystal. Using a crystal with a CL that is larger than the load capacitance of the oscillator circuit causes the oscillator to run faster than the specified nominal frequency of the crystal or to not start up. See Figures 11 and 12 for block diagrams of the crystal oscillator and the CLK32K I/O. ______________________________________________________________________________________ 29 MAX1358/MAX1359/MAX1360 WDTO MAX1358/MAX1359/MAX1360 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor OSCE 32K OSCE CK32E IO32E 32KOUT 32kHz OSCILLATOR IO32E 32K 0 IO32E 32KIN 2:1 MUX CLK32K M32K 1 32.768kHz OSCILLATOR CLK32K I/O CONTROL Figure 11. 32kHz Crystal-Oscillator Block Diagram Figure 12. CLK32K I/O Block Diagram POR PULSES HIGH DURING POWER-UP. WDW PULSES HIGH DURING WATCHDOG REGISTER WRITE. WDTO 32K DIVIDEBY-8192 WDE D Q CK Q 4Hz R D Q CK Q R POR WDW WATCHDOG TIMER Figure 13. Watchdog Timer Block Diagram Real-Time Clock (RTC) The integrated RTC provides the current time information from a 32-bit counter and subsecond counts from an 8bit ripple counter. An internally generated reference clock of 256Hz (derived from the 32.768kHz crystal) drives the 8-bit subsecond counter. An overflow of the 8-bit subsecond counter inputs a 1Hz clock to increment the 32-bit second counter. The RTC 32-bit second counter is translatable to calendar format with firmware. All 40 bits (32-bit second counter and 8-bit subsecond counter) must be clocked in or out for valid data. The RTC and the 32.768kHz crystal oscillator consume less than 1A when the rest of the IC is powered down. Time-of-Day Alarm Program the AL_DAY register with a 20-bit value, which corresponds to a time 1s to 12 days later than the cur- 30 rent time with a 1s resolution. The alarm status bit, ALD, asserts when the 20 bits of the AL_DAY register matches the 20 LSBs of the 32-bit second counter. The ADE bit automatically clears when the time-of-day alarm trips. The time-of-day alarm causes the device to exit sleep mode. Watchdog Enable the watchdog timer by writing a 1 to the WDE bit in the CLK_CTRL register. After enabling the watchdog timer, the device asserts RESET for 250ms, if the watchdog address register is not written every 500ms. Due to the asynchronous nature of the watchdog timer, the watchdog timeout period varies between 500ms and 750ms. Write a 0 to the WDE bit to disable the watchdog timer. See Figure 13 for a block diagram of the watchdog timer. ______________________________________________________________________________________ 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor MAX1358/MAX1359/MAX1360 32.768kHz CKSEL2 CKSEL<1:0> HFCE FLLE M32K FREQUENCY COMPARE FREQ ERROR FREQUENCY INTEGRATOR TUNE<8:0> DIGITALLY CONTROLLED OSCILLATOR CLKE 0 2:1 MUX 1, 2, 4, 8 DIVIDER CLK 1 4.9152MHz HFCLK CRDY 4.9152MHz HF OSCILLATOR AND FLL Figure 14. High-Frequency Clock and FLL Block Diagram High-Frequency Clock An internal oscillator and a frequency-locked loop (FLL) are used to generate a 4.9152MHz 1% high-frequency clock. This clock and derivatives are used internally by the ADC, analog switches, and PWM. This clock signal outputs to CLK. When the FLL is enabled, the highfrequency clock is locked to the 32.768kHz reference. If the FLL is disabled, the high-frequency clock is freerunning. At power-up, the CLK pin defaults to a 2.4576MHz clock output, which is compatible with most Cs. See Figure 14 for a block diagram of the high-frequency clock. PROGRAMMABLE CURRENT SOURCE IVAL<1:0> CURRENT SOURCE IMUX<1:0> 1:3 DEMUX AIN1 AIN1 AIN2 AIN2 User-Programmable I/Os The MAX1358/MAX1359/MAX1360 provide four digital programmable I/Os (UPIO1-UPIO4). Configure UPIOs as logic inputs or outputs using the UPIO control register. Configure the internal pullups using the UPIO setup register, if required. At power-up, the UPIO's are internally pulled up to DVDD. UPIO_ outputs can be referenced to DV DD or CPOUT. See the UPIO__CTRL Register and UPIO_SPI Register sections for more details on configuring the UPIO_ pins. TEMP+ TEMP- Program each UPIO1-UPIO4 as one of the following: * General-purpose input TEMP SENSOR * Power-mode control * Analog switch (SPST) and SPDT control input * ADC data-ready output Figure 15. Temperature-Sensor Measurement Block Diagram * General-purpose output * PWM output * Alarm output * SPI passthrough ______________________________________________________________________________________ 31 MAX1358/MAX1359/MAX1360 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor CS SCLK X DIN 1 0 A5 A4 A3 A2 A1 A0 DN DN -1 DN-2 DN-3 D2 D1 D0 X DOUT X = DON'T CARE. Figure 16. Serial-Interface Register Write with 8-Bit Control Word, Followed by a Variable Length Data Write CS SCLK DIN X 1 1 A5 A4 A3 A2 A1 A0 DOUT X X X X X X X DN DN-1 DN-2 DN-3 D2 D1 D0 X X = DON'T CARE. Figure 17. Serial-Interface Register Read with 8-Bit Control Word Followed by a Variable Length Data Read CS SCLK DIN 1 DOUT 0 A4 A3 A2 A1 A0 X D7 D6 D5 D4 D3 D2 D1 D0 1 ADC CONV 1 A4 A3 A2 A1 A0 X D15D14 D13D12 D11D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 CHANGES DRDY X = DON'T CARE. Figure 18. Performing an ADC Conversion (DRDY Function can be Accessed at UPIO Pins) Temperature Sensor The internal temperature sensor measures die temperature and the external temperature sensor measures remote temperatures. Use the internal temperature sensor or external temperature sensor (remote transistor/ diode) with the ADC and internal current sources to 32 measure the temperature. For either method, two to four currents are passed through a p-n junction and sense resistor, and its temperature is calculated by a C using the diode equation and the forward-biased junction voltage drops measured by the ADC. The temperature offset between the internal p-n junction and ______________________________________________________________________________________ 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor Two-Current Method For the two-current method, currents I 1 and I 2 are passed through a p-n junction. This requires two VBE measurements. Temperature measurements can be performed using I1 and I2. TMEAS = q(VBE2 - VBE1) I nk ln 1 I2 where k is Boltzman's constant. A four-measurement procedure is adopted to improve accuracy by precisely measuring the ratio of I1 and I2: 1) Current I1 is driven through the diode and the series resistor R, and the voltage across the diode is measured as VBE1. 2) For the same current, the voltage across the diode and R is measured as V1. 3) Repeat steps 1 and 2 with I2. I1 is typically 4A and I2 is typically 60A (see Table 22). Since only four integer numbers are accessible from the ADC conversions at a certain voltage reference, the previous equation can be represented in the following manner: V q(NVBE2 - NVBE1) x REF TMEAS = N -N 216 nk ln V1 VBE1 NV 2 - NVBE2 where NV1, NV2, NVBE1, and NVBE2 are the measurement results in integer format and VREF is the reference voltage used in the ADC measurements. Four-Current Method The four-current method is used to account for the diode series resistance and trace resistance. The four currents are defined as follows; I1, I2, M1I1, and M2I2. If the currents are selected so (M1 - 1)I1 = (M2 - 1)I2, the effect of the series resistance is eliminated from the temperature measurements. For the currents I1 = 4A and I2 = 60A, the factors are selected as M1 = 16 and M2 = 2. This results in the currents I3 = M1I1 = 64A and I4 = M2I2 = 120A (typ). As in the case of the twocurrent method, two measurements per current are used to improve accuracy by precisely measuring the values of the currents. 1) Current I1 is driven through the diode and the series resistor R, and the voltage is measured across the diode using the ADC as NVBE1. 2) For the same current, the voltage across the diode and the series resistor is measured by the ADC as NV1. 3) Repeat steps 1 and 2 with I2, I3, and I4. The measured temperature is defined as follows: TMEAS = q(NVBE3 - NVBE1) - q(NVBE4 - NVBE2 ) M nkIn 1 M2 V x REF 216 where VREF is the reference voltage used and: M1 NV 3 - NVBE3 NV 2 - NVBE2 = M2 NV1 - NVBE1 NV 4 - NVBE4 External Temperature Sensor For an external temperature sensor, either the two-current or four-current method can be used. Connect an external diode (such as 2N3904 or 2N3906) between pins AIN1 and AGND (or AIN2 and AGND). Connect a sense resistor R between AIN1 and AIN2. Maximize R so the IR drop plus V BE of the p-n junction [(R x 60A)+VBE] is the smaller of the ADC reference voltage or (AVDD - 400mV). The same procedure as the internal temperature sensor can be used for the external temperature sensor, by routing the currents to AIN1 (or AIN2) (see Table 21). For the two-current method, if the external diode's series resistance (RS) is known, then the temperature measurement can be corrected as shown below: 9 9 V R ( ) ( ) N - N - N - N V VBE V VBE REF S 2 2 1 1 x x TACTUAL = TMEAS - 16 R N - NVBE1 2 nkIn V 2 NV1 - NVBE1 Temperature-Sensor Calibration To account for various error sources during the temperature measurement, the internal temperature sensor is calibrated at the factory. The calibrated temperature equation is shown below: TA = g x TMEAS + b where g and b are the gain and offset calibration values, respectively. These calibration values are available for reading from the TEMP_CAL register. Voltage Reference and Buffer An internal 1.25V bandgap reference has a buffer with a selectable 1.0V/V, 1.638V/V, or 2.0V/V gain, resulting ______________________________________________________________________________________ 33 MAX1358/MAX1359/MAX1360 ambient is negligible. For the four and eight measurement methods, the ratio of currents used in the diode calculations is precisely known since the ADC measures the resulting voltage across the same sense resistor. See Figure 15 for a block diagram of the temperature sensor. MAX1358/MAX1359/MAX1360 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor in a respective 1.25V, 2.048V, or 2.5V reference voltage at REF. The ADC and DACs use this reference voltage. The state of the internal voltage reference output buffer at POR is disabled so it can be driven, at REF, with an external reference between AGND and AVDD. The A-grade reference has an initial tolerance of 1%. The B-grade reference has an initial tolerance of 3%. Program the reference buffer through the serial interface. Bypass REF with a 4.7F capacitor to AGND. cy-divided versions of each. Although most Cs have built-in PWM functions, the MAX1358/MAX1359/ MAX1360 PWM is more flexible by allowing the UPIO outputs to be driven to DV DD or regulated CPOUT logic-high voltage levels. For duty-cycled power-control schemes, use the 32kHz-derived input clock. The PWM output is available independent of C power state. The FLL is typically disabled in sleep-override mode. Operational Amplifiers (Op Amps) The MAX1358/MAX1359/MAX1360 feature a 4-wire serial interface consisting of a chip select (CS), serial clock (SCLK), data in (DIN), and data out (DOUT). CS must be low to allow data to be clocked into or out of the device. DOUT is high impedance while CS is high. The data is clocked in at DIN on the rising edge of SCLK. Data is clocked out at DOUT on the falling edge of SCLK. The serial interface is compatible with SPI modes CPOL = 0, CPHA = 0 and CPOL = 1, CPHA = 1. A write operation to the MAX1358/MAX1359/MAX1360 takes effect on the last rising edge of SCLK. If CS goes high before the complete transfer, the write is ignored. Every data transfer is initiated by the command byte. The command byte consists of a start bit (MSB), R/W bit, and 6 address bits. The start bit must be 1 to perform data transfers to the device. Zeros clocked in are ignored. For SPI passthrough mode, see the UPIO_SPI register. An address byte identifies each register. Table 4 shows the complete register address map for this family of DAS. Figures 16, 17, and 18 provide timing diagrams for read and write commands. The MAX1358 includes one uncommitted op amp; the MAX1359 includes two op amps; and the MAX1360 includes three op amps. These op amps feature rail-to-rail outputs, near rail-to-rail inputs, and have an 80kHz (1nF load) input bandwidth. The DACA_OP (DACB_OP) register controls the power state of the op amps. When powered down, the outputs of the op amps are high impedance. Single-Pole/Double-Throw (SPDT) Switches The MAX1358/MAX1359/MAX1360 provide two uncommitted SPDT switches. Each switch has a typical on-resistance of 35. Control the switches through the SW_CTRL register, the PWM output, and/or a UPIO port configured to control the switches (UPIO1-UPIO4_CTRL register). Pulse-Width Modulator (PWM) A single 8-bit PWM is available for various system tasks such as LCD bias control, sensor bias voltage trim, buzzer drive, and duty-cycled sleep-mode power-control schemes. PWM input clock sources include the 4.9512MHz FLL output, the 32kHz clock, and frequen- 34 Serial Interface ______________________________________________________________________________________ 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor Table 4. Register Address Map REGISTER NAME START CTL (R/W) ADR<5:0> (ADDRESS) ADC 1 R/W 0 0 0 0 0 MUX DATA OFFSET CAL GAIN CAL RESERVED 1 1 1 1 1 R/W R R/W R/W R/W 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 1 0 1 0 1 DACA_OP 1 R/W 0 0 1 1 0 DACB_OP 1 R/W 0 0 1 1 1 REF_SDC 1 R/W 0 1 0 0 0 AL_DAY 1 R/W 0 1 0 0 1 RESERVED 1 R/W 0 1 0 1 0 CLK_CTRL 1 R/W 0 1 0 1 1 RTC 1 R/W 0 1 1 0 0 PWM_CTRL 1 R/W 0 1 1 0 1 PWM_THTP 1 R/W 0 1 1 1 0 WATCHDOG NORM_MD SLEEP SLEEP_CFG UPIO4_CTRL UPIO3_CTRL UPIO2_CTRL UPIO1_CTRL UPIO_SPI SW_CTRL TEMP_CTRL TEMP_CAL 1 1 1 1 1 1 1 1 1 1 1 1 W W W R/W R/W R/W R/W R/W R/W R/W R/W R 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 IMSK 1 R/W 1 1 0 1 1 RESERVED PS_VMONS RESERVED 1 1 1 R/W R/W R/W 1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 STATUS 1 R 1 1 1 1 1 D<39:0>, D<23:0>, D<15:0> OR D<7:0> (DATA) ADCE STRT BIP POL CONT ADCREF GAIN<1:0> X RATE<2:0> MODE<2:0> X X S MUXP<3:0> MUXN<3:0> X ADC<15:0> X OFFSET<23:0> X GAIN<23:0> X Reserved. Do not use. DAE/ DBE/ X X X DACA<9:8> OP1E OP3E OP2E X DACA<7:0> DAE/ DBE/ X X X DACB<9:8> OP1E OP3E OP2E X DACB<7:0> X REFV<1:0> AOFF AON SDCE TSEL<2:0> ASEC<19:4> X ASEC<3:0> X X X X X Reserved. Do not use. AWE ADE X RWE RTCE OSCE FLLE HFCE X CKSEL<2:0> IO32E CK32E CLKE INTP WDE SEC<31:0> X SUB<7:0> PWME FSEL<2:0> SWAH SWAL SWBH SWBL X SPD1 SPD2 X X X X X X PWMTH<7:0> X PWMTP<7:0> X X X X X X X X X X X X X X X X X X X X X X X X X X X SLP SOSCE SCK32E SPWME SHDN X X X X X UP4MD<3:0> PUP4 SV4 ALH4 LL4 X UP3MD<3:0> PUP3 SV3 ALH3 LL3 X UP2MD<3:0> PUP2 SV2 ALH2 LL2 X UP1MD<3:0> PUP1 SV1 ALH1 LL1 X UP4S UP3S UP2S UP1S X X X X X SWA SWB SPDT1<1:0> SPDT2<1:0> X X X IMUX<1:0> IVAL<1:0> X X X X X TGAIN<7:0> TOFFS<5:0> X X MLDVD MLCPD MADO MSDC MCRDY MADD MALD X X MUPR<4:1> MUPF<4:1> X Reserved. Do not use. X LDOE CPE LSDE CPDE HYSE RSTE X X X Reserved. Do not use. LDVD LCPD ADOU SDC CRDY ADD ALD X X UPR<4:1> UPF<4:1> X = Don't care. ______________________________________________________________________________________ 35 MAX1358/MAX1359/MAX1360 Register Definitions MAX1358/MAX1359/MAX1360 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor Register Bit Descriptions ADC Register (Power-On State: 0000 0000 0000 00XX) MSB ADCE LSB STRT BIP RATE<2:0> The ADC register configures the ADC and starts a conversion. ADCE: ADC power-enable bit. ADCE = 1 powers up the ADC, and ADCE = 0 powers down the ADC. STRT: ADC start bit. STRT = 1 resets the registers inside the ADC filter and initiates a conversion or calibration. The conversion begins immediately after the 16th ADC control bit is clocked by the rising edge of SCLK. The initial conversion requires four conversion cycles for valid output data. If CONT = 0 when STRT is asserted, the ADC stops after a single conversion and holds the result in the DATA register. If CONT = 1 when STRT is asserted, the ADC performs continuous conversions at the rate specified by the RATE<2:0> bits until CONT is deasserted or ADCE is deasserted, powering down the ADC. The STRT bit is automatically deasserted after the initial conversion is complete (four conversion cycles, the ADC status bit ADD in the STATUS register asserts.) The current ADC configurations are not affected if the ADC register is written with STRT = 0. This allows the ADC and mux configurations to be updated simultaneously with the S bit in the MUX register. BIP: Unipolar/bipolar bit. Set BIP = 0 for unipolar mode and BIP = 1 for bipolar mode. Unipolar-mode data is unsigned binary format and bipolar is two's complement. See the ADC Transfer Functions section for more details. POL: Polarity flipper bit. POL = 1 flips the polarity of the differential signal to the ADC and the input to the signaldetect comparator (SDC). POL = 0 sets the positive mux output to the positive ADC and SDC inputs, and the negative mux output to the negative ADC and SDC inputs. POL = 1 sets the positive mux output to the negative ADC and SDC inputs, and the negative mux output to the positive ADC and SDC inputs. 36 POL CONT ADCREF MODE<2:0> GAIN<1:0> X X CONT: Continuous conversion bit. CONT = 1 enables continuous conversions following completion of the first conversion or calibration(s) initiated by the STRT or S bit. Set CONT = 0 while asserting the STRT bit, or prior to asserting the S bit to perform a single conversion or to prevent conversions following a calibration. Set CONT = 0 to abort continuous conversions already in progress. When the ADC is stopped in this way, the last complete conversion result remains in the DATA register and the internal ADC state information is lost. Asserting the CONT bit does not restart the ADC, but results in continuous conversions once the ADC is restarted with the STRT or S bit. ADCREF: ADC reference source bit. Set ADCREF = 0 to select REF as the ADC reference. Set ADCREF = 1 to select AVDD as the ADC reference. To measure the AVDD voltage without having to attenuate the supply voltage, select REF and AGND as the differential inputs to the ADC, with POL = 0 and while ADCREF = 1. GAIN<1:0>: ADC gain-setting bits. These two bits select the gain of the ADC as shown in Table 5. Table 5. Setting the Gain of the ADC GAIN SETTING (V/V) GAIN1 GAIN0 1 0 0 2 0 1 4 1 0 8 1 1 ______________________________________________________________________________________ 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor CONTINUOUS CONVERSION RATE (sps) SINGLE CONVERSION RATE (sps) RATE2 RATE1 RATE0 10 2.5 0 0 0 40 10 0 0 1 50 12.5 0 1 0 60 15 0 1 1 200 50 1 0 0 240 60 1 0 1 400 100 1 1 0 512 128 1 1 1 The actual rates are: NOMINAL CONTINUOUS CONVERSION RATE (sps) 10 1096 ACTUAL CONTINUOUS CONVERSION RATE (sps) 10.01042142 40 274 40.04168568 50 220 49.87009943 60 183 59.953125 200 55 199.4803977 240 46 238.5091712 400 27 406.3489583 512 23 477.0183424 DECIMATION RATIO *Calculate the ADC sampling rate using the following equation: fS = fHFCLK 448 x decimation ratio where fHFCLK = 4.9152MHz nominally. RATE<2:0>: ADC conversion-rate-setting bits. These three bits set the conversion rate of the ADC as shown in Table 6. The initial conversion requires four conversion cycles for valid data and subsequent conversions require only one cycle (if CONT = 1). A full-scale input change can require up to five cycles for valid data if the digital filter is not reset with the STRT or S bit. MODE<2:0>: Conversion-mode bits. These three bits determine the type of conversion for the ADC as shown in Table 7. When the ADC finishes an offset calibration and/or gain calibration, the MODE<2:0> bits clear to 0 hex, the ADD bit in the STATUS register asserts, and an interrupt asserts on INT (or UPIO_ if programmed as DRDY) if MADD is unmasked. Perform a gain calibration after achieving the desired offset (calibrated or not). If an offset and gain calibration are performed together (MODE<2:0> = 7 hex), the offset calibration is performed first followed by the gain calibration, and the C is interrupted by INT (or UPIO_ if programmed as DRDY) if MADD is unmasked only upon completion of both offset and gain calibration. After power-on or calibration, the ADC does not begin conversions until initiated by the user (see the ADCE and STRT bit descriptions in this section and see the S bit descriptions in the MUX Register section). See the GAIN CAL Register and OFFSET CAL Register sections for details on system calibration. Table 7. Setting the ADC Conversion Mode MODE2 MODE1 MODE0 Normal CONVERSION MODE 0 0 0 System Offset Calibration 0 0 1 System Gain Calibration 0 1 0 Normal 0 1 1 Normal 1 0 0 Self Offset Calibration 1 0 1 Self Gain Calibration 1 1 0 Self Offset and Gain Calibration 1 1 1 ______________________________________________________________________________________ 37 MAX1358/MAX1359/MAX1360 Table 6. Setting the ADC Conversion Rate* MAX1358/MAX1359/MAX1360 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor MUX Register (Power-On State: 0000 0000) MSB S (ADR0) MUXP3 LSB MUXP2 MUXP1 MUXP0 The MUX register configures the positive and negative mux inputs and can start an ADC conversion. S (ADR0): Conversion start bit. The S bit is the LSB of the MUX register address byte. S = 1 resets the registers inside the ADC filter and initiates a conversion or calibration. The conversion begins immediately after the eighth MUX register data bit, when S = 1 and when writing to the MUX register. This allows the new MUX and ADC register settings to take effect simultaneously for a new conversion, if STRT = 0 during the last write to the ADC register. If the S bit is asserted and the command is a read from the MUX register, the conversion starts immediately after the S bit (ADR0) is clocked in by the rising edge of SCLK. Read the MUX register with S = 1 for the fastest method of initiating a conversion because only 8 bits are required. The subsequent MUX register read is valid, but can be aborted by raising CS with no harmful side effects. The initial conversion requires four conversion cycles for valid output data. If CONT = 0 and S = 1, the ADC stops after a single conversion and holds the result in the DATA register. If CONT = 1 and S = 1, the ADC performs continuous conversions at the rate spec- MUXN3 MUXN2 MUXN1 MUXN0 ified by the RATE<2:0> bits until CONT deasserts or ADCE deasserts, powering down the ADC. When a conversion initiates using the S bit, the STRT bit asserts and deasserts automatically after the initial conversion completes. Writing to the MUX register with S = 0 causes the MUX settings to change immediately and the ADC continues in its prior state with its settings unaffected. When the ADC is powered down, MUX inputs are open. MUXP<3:0>: MUX positive input bits. These four bits select one of ten inputs from the positive MUX to go to the positive output of the MUX as shown in Table 8. Any writes to the MUX register take effect immediately once the LSB (MUXN0) is clocked by the rising edge of SCLK. MUXN<3:0> MUX negative input bits. These four bits select one of ten inputs from the negative MUX to go to the negative output of the MUX as shown in Table 9. Any writes to the MUX register take effect immediately once the LSB (MUXN0) is clocked by the rising edge of SCLK. The DATA register contains the data from the most recently completed conversion. Table 8. Selecting the Positive MUX Inputs POSITIVE MUX INPUT MAX1358 MAX1359 MAX1360 MUXP3 MUXP2 MUXP1 AIN1 AIN1 AIN1 0 0 0 0 SNO1 SNO1 SNO1 0 0 0 1 FBA FBA IN3- 0 0 1 0 SCM1 SCM1 SCM1 0 0 1 1 FBB IN2- IN2- 0 1 0 0 SNC1 SNC1 SNC1 0 1 0 1 IN1- IN1- IN1- 0 1 1 0 TEMP+ TEMP+ TEMP+ 0 1 1 1 0 REF REF REF 1 0 0 AGND AGND AGND 1 0 0 1 1 0 1 X 1 1 X X Open Open Open X = Don't care. 38 MUXP0 ______________________________________________________________________________________ 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor MAX1358/MAX1359/MAX1360 Table 9. Selecting the Negative MUX Inputs NEGATIVE MUX INPUT MUXN3 MUXN2 MUXN1 MUXN0 TEMP- 0 0 0 0 MAX1358 MAX1359 MAX1360 TEMP- TEMP- SNO2 SNO2 SNO2 0 0 0 1 OUTA OUTA OUT3 0 0 1 0 SCM2 SCM2 SCM2 0 0 1 1 OUTB OUT2 OUT2 0 1 0 0 SNC2 SNC2 SNC2 0 1 0 1 OUT1 OUT1 OUT1 0 1 1 0 AIN2 AIN2 AIN2 0 1 1 1 REF REF REF 1 0 0 0 AGND AGND AGND 1 0 0 1 Open Open Open 1 0 1 X 1 1 X X ADC10 ADC9 X = Don't care. DATA Register (Power-On State: 0000 0000 0000 0000) MSB ADC15 ADC14 ADC13 ADC12 ADC11 ADC8 LSB ADC7 ADC6 ADC5 ADC4 ADC3 ADC2 ADC1 ADC0 ADC<15:0> Analog-to-digital conversion data bits. These 16 bits are the results from the most recently completed conversion. The data format is unsigned, binary for unipolar mode, and two's complement for bipolar mode. ______________________________________________________________________________________ 39 MAX1358/MAX1359/MAX1360 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor OFFSET CAL Register (Power-On State: 0000 0000 0000 0000 0000 0000) MSB OFFSET23 OFFSET22 OFFSET21 OFFSET20 OFFSET19 OFFSET18 OFFSET17 OFFSET16 OFFSET15 OFFSET14 OFFSET13 OFFSET12 OFFSET11 OFFSET10 OFFSET9 OFFSET8 OFFSET7 OFFSET6 OFFSET5 OFFSET4 OFFSET3 OFFSET2 OFFSET1 OFFSET0 LSB The OFFSET CAL register contains the 24-bit data of the most recently completed offset calibration. OFFSET<23:0>: Offset-calibration bits. The data format is two's complement and is subtracted from the ADC output before being written to the DATA register. The offset calibration allows input offset errors between VREF 50% to be corrected in unipolar or bipolar mode. The MAX1358/MAX1359/MAX1360 can perform system offset calibration or self offset calibration. Self-calibration performs a calibration for the entire signal path. See the ADC Calibration section for more details. The ADC input voltage range specifications must always be obeyed and the OFFSET CAL register effectively offsets the ADC digital scale to a "zero" value determined by the calibration. GAIN CAL Register (Power-On State: 1000 0000 0000 0000 0000 0000) MSB GAIN23 GAIN22 GAIN21 GAIN20 GAIN19 GAIN18 GAIN17 GAIN16 GAIN15 GAIN14 GAIN13 GAIN12 GAIN11 GAIN10 GAIN9 GAIN8 LSB GAIN7 GAIN6 GAIN5 GAIN4 GAIN<23:0>: Gain-calibration bits. The data format is unsigned binary with 23 bits to the right of the decimal point and scales the ADC output before being written to the DATA register. The gain calibration allows full-scale errors between -VREF / 2 and +VREF / 2 to be corrected in unipolar mode, and full-scale errors between (+50% x V REF ) and (+200% x V REF ) in unipolar or bipolar mode. The MAX1358/MAX1359/MAX1360 can perform system gain calibration or self gain calibration. Self-calibration performs a calibration for offsets in the ADC and 40 GAIN3 GAIN2 GAIN1 GAIN0 system calibration performs a calibration for the entire signal path. See the ADC Calibration section for more details. The ADC input voltage range specifications must always be obeyed and the GAIN CAL register effectively scales the ADC digital output to a full-scale value determined by the calibration. The usable gain-calibration range is limited to less than the full GAIN CAL register digitalscaling range by the internal noise of the ADC. ______________________________________________________________________________________ 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor where VREF is the reference voltage for the DAC. N is the integer value of DACA<9:0> output register. The output buffer is in unity gain. The DACA data is 10 bits long and right justified. MAX1358 (Power-On State: 000X XX00 0000 0000) MSB DAE DBE OP1E X X X DACA9 DACA8 DACA7 DACA6 DACA5 DACA4 DACA3 DACA2 DACA1 DACA0 LSB MAX1359 (Power-On State: 000X XX00 0000 0000) MSB DAE OP2E OP1E X X X DACA9 DACA8 DACA7 DACA6 DACA5 DACA4 DACA3 DACA2 DACA1 DACA0 X X X LSB MAX1360 (Power-On State: 000X XXXX XXXX XXXX) MSB OP3E OP2E OP1E X X LSB X X X X X X X X DAE: DACA enable bit. Set DAE = 1 to power up the DACA and the DACA output buffer in the MAX1358/ MAX1359. This bit is mirrored in the DACB_OP register. DBE: DACB enable bit. Set DBE = 1 to power up DACB and the DACB output buffer in the MAX1358. This bit is mirrored in the DACB_OP register. OP2E: OP2 power-enable bit. Set OP2E = 1 to power up OP2 in the MAX1359/MAX1360. This bit is mirrored in the DACB_OP register. OP3E: OP3 power-enable bit. Set OP3E = 1 to power up OP3 in the MAX1360. This bit is mirrored in the DACB_OP register. OP1E: OP1 power-enable bit. Set OP1E = 1 to power up OP1 in the MAX1358/MAX1359/MAX1360. This bit is mirrored in the DACB_OP register. DACA<9:0>: DACA data bits. ______________________________________________________________________________________ 41 MAX1358/MAX1359/MAX1360 DACA_OP Registers Writing to the DACA_OP output register updates DACA on the rising SCLK edge of the LSB data bit. The output voltage can be calculated as follows: VOUTA = VREF x N / 210 MAX1358/MAX1359/MAX1360 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor DACB_OP Registers Writing to the DACB_OP output register updates DACB on the rising SCLK edge of the LSB. The output voltage can be calculated as follows: VOUTB = VREF x N / 210 where VREF is the reference voltage for the DAC. N is the integer value of DACB<9:0> output register. The output buffer is in unity gain. The DACB data is 10 bits long and right justified. MAX1358 (Power-On State: 000X XX00 0000 0000) MSB DAE DBE OP1E X X X DACB9 DACB8 DACB7 DACB6 DACB5 DACB4 DACB3 DACB2 DACB1 DACBD X LSB MAX1359 (Power-On State: 000X XXXX XXXX XXXX) MSB DAE OP2E OP1E X X X X X X X X X X X X X LSB MAX1360 (Power-On State: 000X XXXX XXXX XXXX) MSB OP3E OP2E OP1E X X X X X X X X X X X LSB DAE: DACA enable bit. Set DAE = 1 to power up DACA and the DACA output buffer in the MAX1358/MAX1359. This bit is mirrored in the DACA_OP register. DBE: DACB enable bit. Set DBE = 1 to power up DACB and the DACB output buffer in the MAX1358. This bit is mirrored in the DACA_OP register. OP1E: OP1 power-enable bit. Set OP1E = 1 to power up OP1 in the MAX1358/MAX1359/MAX1360. This bit is mirrored in the DACA_OP register. OP2E: OP2 power-enable bit. Set OP2E = 1 to power up OP2 in the MAX1359/MAX1360. This bit is mirrored in the DACA_OP register. 42 X OP3E: OP3 power-enable bit. Set OP3E = 1 to power up OP3 in the MAX1360. This bit is mirrored in the DACA_OP register. DACB<9:0>: DACB data bits. ______________________________________________________________________________________ 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor MSB REFV1 LSB REFV0 AOFF AON The REF_SDC register contains bits to control the reference voltage and signal-detect comparator. REFV<1:0>: Reference buffer voltage gain and enable bits. Enables the output buffer, sets the gain and the voltage at the REF pin as shown in Table 10. Power-on state is off to enable an external reference to drive the REF pin without contention. AOFF: ADC and DAC/op-amp power-off bit. This bit provides a method for turning off several analog functions with a single write. Setting AOFF = 1 deasserts the ADCE in the ADC register and DAE/OP3E, DBE/OP2E, and OP1E bits in the DACA_OP and DACB_OP registers, powering down these analog blocks. Setting AOFF = 0 has no effect. The AON bit has priority when both AON and AOFF bits are asserted. Most of the analog functions can be disabled with a single write to the REF_SDC register by using AOFF, REFV<1:0>, and SDCE. Table 10. Setting the Reference Output Voltage REFERENCE BUFFER GAIN (V/V) REF OUTPUT VOLTAGE (V) REFV1 REFV0 Disabled Off (High Impedance at REF) 0 0 SDCE TSEL2 TSEL1 TSEL0 AON: ADC and DAC/op-amp power-on bit. This bit provides a method of turning on several analog functions with a single write. Setting AON = 1 asserts the ADCE bit in the ADC register and DAE/OP3E, DBE/OP2E, and OP1E bits in the DACA_OP and DACB_OP registers, powering up these blocks. Setting AON = 0 has no effect. The AON bit has priority when both AON and AOFF bits are asserted. Most of the analog functions can be enabled with a single write to the REF_SDC register using AON, REFV<1:0>, and SDCE. SDCE: Signal-detect comparator power-enable bit. Set SDCE = 1 to power up the signal-detect comparator and set SDCE = 0 to power down the signal-detect comparator. The ADCE bit in the ADC register must be set to 1 to use the signal-detect comparator. TSEL<2:0>: Threshold-select bits. These bits select the threshold for the signal-detect comparator as shown in Table 11. Table 11. Setting the Signal-Detect Comparator Threshold NOMINAL THRESHOLD (mV) TSEL2 TSEL1 TSEL0 0 0 X X 50 1 0 0 1.0 1.25 0 1 100 1 0 1 1.638 2.048 1 0 150 1 1 0 2.0 2.5 1 1 200 1 1 1 X = Don't care. ______________________________________________________________________________________ 43 MAX1358/MAX1359/MAX1360 REF_SDC Register (Power-On State: 0000 0000) MAX1358/MAX1359/MAX1360 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor AL_DAY Register (Power-On State: 0000 0000 0000 0000 0000 XXXX) MSB ASEC19 ASEC18 ASEC17 ASEC16 ASEC15 ASEC14 ASEC13 ASEC12 ASEC11 ASEC10 ASEC9 ASEC8 ASEC7 ASEC6 ASEC5 ASEC4 ASEC3 ASEC2 ASEC1 ASEC0 X X X LSB The AL_DAY register stores the second information of the time-of-day alarm. ASEC<19:0>: Alarm-second bits. These 20 bits store the time-of-day alarm, which corresponds to the lower 20 bits of the RTC second counter or SEC<19:0>. Program the time-of-day alarm trigger between 1s to just over 12 days beyond the current RTC second counter value in increments of 1s. Assert the AWE bit in the CLK_CTRL register (see the CLK_CTRL Register section) to enable writing to the AL_DAY register. Enabling the time-of-day alarm requires two writes to the CLK_CTRL register. Write the 20 alarmsecond bits in 3 bytes, MSB first. If CS is raised before the LSB is written, the alarm write is aborted, and the existing value remains. When the lower 20 bits in the RTC 44 X second counter match the contents of this register, the alarm triggers and asserts ALD in the STATUS register. It also asserts an interrupt on the INT pin unless masked by the MALD bit in the IMSK register. The part enters normal mode if an alarm triggers while in sleep mode. The timeof-day alarm is intended to trigger single events. Therefore, once it triggers, in the CLK_CTRL register, the ADE bit is automatically cleared, disabling the time-ofday alarm. Implement a recurring alarm with repeated software writes over the serial interface each time the time-of-day alarm triggers. The time-of-day alarm can also be programmed to output at the UPIO pins. When configured this way the MALD bit does not mask the UPIO alarm output. ______________________________________________________________________________________ 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor MSB AWE ADE X RWE RTCE OSCE FLLE HFCE CKSEL2 CKSEL1 CKSEL0 IO32E CK32E CLKE INTP WDE LSB The CLK_CTR register contains the control bits for the RTC alarms and clocks. AWE: Alarm write-enable bit. Set AWE = 1 to write data to the AL_DAY register as well as the ADE bit in this register. When AWE = 0, all writes are prevented to the AL_DAY register and the ADE bit in this register. A second write to this register is required to change the value of the ADE bit. The power-on default state is 0. ADE: Alarm (time-of-day) enable bit. Set ADE = 1 to enable the time-of-day alarm and set ADE = 0 to disable the time-of-day alarm. When enabled, the ALD bit in the STATUS register asserts when the RTC second counter time matches AL_DAY register. The device wakes up from sleep to normal mode if not already awake. The ADE bit can only be written if the AWE = 1 from a previous write. The power-on default state is 0. RWE: RTC write-enable bit. Set RWE = 1 prior to writing to the RTC register and the RTCE bit in this register. If RWE = 0, all writes are prevented to the RTC register as well as the RTCE bit in this register. The RWE signal takes effect after the rising edge of the 16th clock; therefore, a second write to this register is required to change the value of the RTCE bit. The power-on default state is 0. RTCE: Real-time-clock enable bit. Set RTCE = 1 to enable the RTC, and set RTCE = 0 to disable the RTC. The RTC has a 32-bit second and an 8-bit subsecond counter. The power-on default state is 1. OSCE: 32kHz crystal-oscillator enable bit. Set OSCE = 1 to power up the 32kHz oscillator and set OSCE = 0 to power down the oscillator. The power-on default state is 1. FLLE: Frequency-locked-loop enable bit. Set FLLE = 1 to enable the FLL, and set FLLE = 0 to disable the FLL. If HFCE = 1 and FLLE = 0, the internal high-frequency oscillator is enabled but it is not frequency-locked to the 32kHz clock. When FLLE is asserted, it typically takes 3.5ms for the high-frequency clock to settle to within 1% of the 32kHz reference clock frequency. Switching the FLL on or off with this bit does not cause high-frequency clock glitching. The power-on default state is 1. ______________________________________________________________________________________ 45 MAX1358/MAX1359/MAX1360 CLK_CTRL Register (Power-On State: 00X0 1111 0010 1110) MAX1358/MAX1359/MAX1360 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor HFCE: High-frequency-clock enable bit. Set HFCE = 1 to enable the internal high-frequency clock source, and set HFCE = 0 to disable the high-frequency clock source. If HFCE = 1 and CLKE = 1, the internal high-frequency oscillator is enabled and is present at CLK. The poweron default state is 1. CKSEL<2:0>: Clock selection bits. These bits select the FLL-based output clock frequency at the high-frequency CLK pin as shown in Table 12. The power-on default state is 001. IO32E: Input/output 32kHz clock select bit. Set IO32E = 0 to configure the CLK32K pin as an output and set IO32E = 1 to configure the CLK32K pin as an input, regardless of the signal on the 32KIN pin as shown in Table 13. External clock frequencies applied to CLK32K are clock sources to the FLL, charge pump, and the signaldetect comparator. The default power-on state is 0. CK32E: CLK32K output-buffer enable bit. Set CK32E = 1 to enable the CLK32K output buffer as long as OSCE = 1 and IO32E = 0, otherwise the CK32E bit will not be asserted. Set CK32E = 0 to disable the CLK32K output buffer. The power-on default state is 1. CLKE: CLK output-buffer enable bit. Set CLKE = 1 to enable the CLK output buffer. Set CLKE = 0 to disable the buffer. Disabling the buffer is useful for saving power in cases where the high-frequency clock is used Table 12. Setting the CLK Frequency CLOCK FREQUENCY (kHz) CKSEL2 CKSEL1 CKSEL0 4915.2 0 0 0 2457.6 0 0 1 1228.8 0 1 0 614.4 0 1 1 32.768 1 0 0 16.384 1 0 1 8.192 1 1 0 4.096 1 1 1 internally but is not needed externally. If HFCE = 0, or if CLKE = 0, CLK remains low. The power-on default state is 1. INTP: Interrupt pin polarity bit. Set INTP = 1 to make INT an active-high output when asserted and set INTP = 0 to make INT an active-low output when asserted. The power-on default state is 1. WDE: Watchdog-enable bit. Set WDE = 1 to enable the watchdog timer, which asserts RESET low within 500ms if the WATCHDOG register is not written. Set WDE = 0 to disable the watchdog timer. The power-on default state is 0. Table 13. Configuring the CLK32K as an Input or Output CLK32K 46 CLK32K IO32E 32KIN, 32KOUT RTC, PWM, WDT CLOCK SOURCE FLL, C/P, SDC INPUT SOURCE ADC CLOCK SOURCE Output 1 0 XTAL attached XTAL XTAL FLL/HFCLK Input 0 1 XTAL attached XTAL CLK32K FLL/HFCLK ______________________________________________________________________________________ 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor MSB SEC31 SEC30 SEC29 SEC28 SEC27 SEC26 SEC25 SEC24 SEC23 SEC22 SEC21 SEC20 SEC19 SEC18 SEC17 SEC16 SEC15 SEC14 SEC13 SEC12 SEC11 SEC10 SEC9 SEC8 SEC7 SEC6 SEC5 SEC4 SEC3 SEC2 SEC1 SEC0 SUB7 SUB6 SUB5 SUB4 SUB3 SUB2 SUB1 SUB0 LSB The RTC register stores the 40-bit second and subsecond count of the respective time-of-day and system clocks. SEC<31:0>: The second bits store the time-of-day clock settings. It is a 32-bit binary counter with 1s resolution that can keep time for a span of over 136 years. Firmware in the C can translate this time count to units that are meaningful to the system (i.e., translate to calendar time or as an elapsed time from some predefined time = 0, such as January 1, 2000). The RTC runs continuously as long as RTCE = 1 (see the CLK_CNTL Register section) and does not stop for reads or writes. The counter increments when the subsecond counter overflows. Set RWE = 1 to enable writing to the RTC register. After writing to RWE, perform another write and set RTCE = 1 to enable the RTC. A 40-bit burst write operation, starting with SEC31 and finishing with SUB0 is required to set the RTC second and subsecond bits. If CS is brought high before the 40th rising SCLK edge, the write is aborted and the RTC contents are unchanged. The RTC register is loaded on the rising SCLK edge of the 40th bit (SUB0). A 40-bit burst read operation, starting with SEC31 and finishing with SUB0, is required to retrieve the current RTC second and subsecond counts. The read command can be aborted prior to receiving the 40th bit (SUB0) by raising CS and any RTC data read to that point is valid. When the read command is received, a snapshot of a valid RTC second count is latched to avoid reading an erroneous, transitioning RTC value. Due to the asynchronous nature of RTC reads, it is possible to have a maximum 1s error between the actual and reported times from the time-of-day clock. To prevent the data from changing during a read operation, complete reads of the RTC register in less than 1ms. The power-on default state is 0000 0000 hex. SUB<7:0>: The subsecond bits store the system clock. This 8-bit binary counter has 3.9ms resolution (1/256Hz) and a span of 1s. The subsecond counter increments in single counts from 00 hex to FF hex before rolling over again to 00 hex, at which time, the RTC second counter (SEC<31:0>) increments. The RTC runs continuously (as long as RTCE = 1) and does not stop for reads or writes. A 256Hz clock, derived from the 32kHz crystal, increments this counter. Set the RWE = 1 bit to enable writing to the RTC register. After writing to RWE, perform another write, setting RTCE = 1, to enable the RTC. A 40-bit burst write operation, starting with SEC31 and finishing with SUB0, is required to set the RTC second and subsecond bits. If CS is brought high before the 40th rising SCLK edge, the write is aborted and the RTC contents are unchanged. The RTC register is loaded on the rising SCLK edge of the 40th bit (SUB0). A 40-bit burst read operation, starting with SEC31 and finishing with SUB0, is required to retrieve the current RTC second and subsecond counts. The read command can be aborted prior to receiving the 40th bit (SUB0) by raising CS and any RTC data read to that point is valid. When the read command is received, a snapshot of a valid RTC second count is latched to avoid reading an erroneous, transitioning RTC value. Due to the asynchronous nature of RTC reads, it is possible to have a maximum 1s error between the actual and reported times from the time-of-day clock. To prevent the data from changing during a read operation, complete reads of the RTC registers occur in less than 1ms. The poweron default state is 00 hex. ______________________________________________________________________________________ 47 MAX1358/MAX1359/MAX1360 RTC Register (Power-On State: 0000 0000 0000 0000 0000 0000 0000 0000 0000 0000) MAX1358/MAX1359/MAX1360 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor PWM_CTRL Register (Power-On State: 0000 0000 00XX XXXX) MSB PWME FSEL2 FSEL1 FSEL0 SWAH SWAL SWBH SPD1 SPD2 X X X X X SWBL LSB The PWM_CTRL register contains control bits for the 8bit PWM. PWME: PWM-enable bit. Set PWME = 1 to enable the internal PWM and set PWME = 0 to disable the internal PWM. Enable the high frequency clock before enabling the PWM when using input clock frequencies above 32.768kHz. The power-on default state is 0. FSEL<2:0>: Frequency selection bits. Selects the PWM input clock frequency as shown in Table 14. The power-on default is 000. SWAH: SWA-switch PWM-high control bit. Set SWAH = 1 to enable the PWM output to directly control the SWA switch. When SWAH = SWAL, the PWM output is disabled from controlling the SWA switch. When SWAH = 1, a PWM high output closes the SWA switch and a PWM low output opens the SWA switch. The PWM high output refers to the beginning of the period when the output is logic-high. See Table 17 for more details. The power-on default is 0. SWAL: SWA-switch PWM-low control bit. Set SWAL = 1 to enable the inverted PWM output to directly control the SWA switch. When SWAH = SWAL, the PWM output is disabled from controlling the SWA switch. When SWAL = 1, a PWM low output closes the SWA switch and a PWM high output opens the SWA switch. The Table 14. Setting the PWM Frequency PWM INPUT FREQUENCY* FSEL2 FSEL1 FSEL0 (kHz) 4915.2** 0 0 0 2457.6** 0 0 1 1228.8** 0 1 0 32.768 0 1 1 8.192 1 0 0 1.024 1 0 1 0.256 1 1 0 0.032 1 1 1 *The lower PWM frequencies are useful for power-supply duty cycling to conserve battery life and enable a single battery cellpowered system. The higher frequencies allow reasonably small, external components for RC filtering when used as a DAC for bias adjustments. **When the part is in sleep mode, the HFCK is shut down. In this case, PWM frequencies above 32kHz are not available (see SPWME in the SLEEP_CFG Register section). 48 X PWM low output refers to the end of the period when the output is logic-low. See Table 17 for more details. The power-on default is 0. SWBH: SWB-switch PWM-high control bit. Set SWBH = 1 to enable the PWM output to directly control the SWB switch. When SWBH = SWBL, the PWM output is disabled from controlling the SWB switch. When SWBH = 1, a PWM high output closes the SWB switch and a PWM low output opens the SWB switch. The PWM high output refers to the beginning of the period when the output is logic-high. See Table 18 for more details. The power-on default is 0. SWBL: SWB-switch PWM-low control bit. Set SWBL = 1 to enable the inverted PWM output to directly control the SWB switch. When SWBH = SWBL the PWM output is disabled from controlling the SWB switch. When SWBL = 1, a PWM low output closes the SWB switch and a PWM high output opens the SWB switch. The PWM low output refers to the end of the period when the output is logic-low. See Table 18 for more details. The power-on default is 0. SPD1: SPDT1-switch PWM drive control bit. Set SPD1 = 1 to enable the PWM output to directly control the SPDT1 switch and set SPD1 = 0 to disable the PWM output controlling the SPDT1 switch. The SPDT1<1:0> bits, the UPIO pins (if programmed), and the PWM output (if enabled), determine the SPDT1-switch state. See Table 19 for more details. The power-on default is 0. SPD2: SPDT2-switch PWM drive control bit. Set SPD2 = 1 to enable the PWM output to directly control the SPDT2 switch and set SPD2 = 0 to disable the PWM output controlling the SPDT2 switch. The SPDT2<1:0> bits, the UPIO pins (if programmed), and the PWM output (if enabled), determine the SPDT2-switch state. See Table 20 for more details. The power-on default is 0. ______________________________________________________________________________________ 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor MSB PWMTH7 PWMTH6 PWMTH5 PWMTH4 PWMTH3 PWMTH2 PWMTH1 PWMTH0 PWMTP7 PWMTP6 PWMTP5 PWMTP4 PWMTP3 PWMTP2 PWMTP1 PWMTP0 LSB The PWM_THTP register contains the bits that set the PWM on-time and period. PWMTH<7:0>: PWM time high bits. These bits define the PWM on (or high) time and when combined with the PWMTP<7:0> bits, they determine the duty cycle and period. The on-time duty cycle is defined as: (PWMTH<7:0> + 1) / (PWMTP<7:0> + 1) To get 50% duty cycle, set PWMTH<7:0> to 127 decimal and PWMTP<7:0> to 255 decimal. A 100% duty cycle (i.e., always on) is possible with a value of PWMTH<7:0> PWMTP<7:0> > 0. A 0% duty cycle is possible by setting PWMTH<7:0> = 0 or PWME = 0 in the PWM_CTRL register. If the PWM is selected to drive the UPIO_ pin(s), the ALH_ bit(s) (UPIO_CTRL register) determine the on-time polarity at the beginning of the PWM cycle. If ALH_= 1, the on-time at the start of the PWM period causes a logic-high level (DV DD or CPOUT) at the UPIO_ pin and when ALH_= 0, it causes a logic-low level (DGND) during the on-time. When the PWM output drives the SWA/B switches, the SWA(B)H or SWA(B)L bits in the PWM_CTRL register, determine which PWM phase closes these switches. The SPDT1 and SPDT2 switches do not have PWM polarity inversion bits (see the SPDT1<1:0> and SPDT2<1:0> bit descriptions in the SW_CTRL Register section) but their effective polarity is set by how the switches are connected externally. The power-on default is 00 hex. PWMTP<7:0>: PWM time period bits. These bits control the PWM output period defined. The PWM output period is defined as: (PWMTP<7:0> + 1) / (PWM input frequency) Set the PWM input frequency by selecting the FSEL<2:0> bits as described in Table 14. The poweron default is 00 hex. WATCHDOG Register (Power-On State: N/A) Writing to the WATCHDOG register address sets the watchdog timer to 0ms. If the watchdog is enabled (WDE = 1) and the WATCHDOG register is not written to before the 750ms expiration, RESET asserts low for 250ms and the watchdog timer restarts at 0ms when the watchdog timer is enabled. There are no data bits for this register and the watchdog timer is reset on the rising edge of SCLK during the ADR0 bit in the WATCHDOG register address control byte. Figure 19 shows an example of watchdog timing. NORM_MD Register (Power-On State: N/A) Exit sleep mode and enter normal mode by writing to the NORM_MD register. The specific normal-mode state of all circuit blocks is set by the user, who must configure the individual power-enable bits before entering sleep mode (Table 15). There are no data bits for this register and normal mode begins on the rising edge of SCLK during the ADR0 bit in the NORM_MD register address control byte. SLEEP Register (Power-On State: N/A) Enter sleep mode by writing to the SLEEP register. This low-power state overrides most of the normal powercontrol bits. Table 15 shows which functions are off, which functions are unaffected (ADE, RTCE, LSDE, and HYSE), and which functions are controlled by special sleep-mode bits (SOSCE, SCK32E, and SPWME) while in sleep mode. There are no data bits for this register and sleep mode begins on the rising edge of SCLK during the ADR0 bit in the SLEEP register address control byte. ______________________________________________________________________________________ 49 MAX1358/MAX1359/MAX1360 PWM_THTP Register (Power-On State: 0000 0000 0000 0000) MAX1358/MAX1359/MAX1360 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor Table 15. Normal-Mode and Sleep-Register Summary REGISTER NAME CIRCUIT BLOCK DESCRIPTION POR DEFAULT NORMAL MODE SLEEP ADC ADC DACA/OP3 DACB/OP2 OP1 ADCE = 0 DAE/OP3E = 0 DBE/OP2E = 0 OP1E = 0 ADCE DAE/OP3E DBE/OP2E OP1E OFF OFF OFF OFF Reference Buffer Gain and Enable REFV<1:0> = 00 REFV<1:0> OFF Signal-Detect Comparator SDCE = 0 SDCE OFF Time-of-Day Alarm Enable ADE = 0 ADE ADE RTC RTCE = 1 RTCE RTCE CK32 Xtal Oscillator OSCE = 1 OSCE SOSCE CK32 Output Buffer CK32E = 1 CK32E SCK32E High-Frequency Clock HFCE = 1 HFCE OFF CLKE = 1 CLKE OFF FLLE = 1 WDE = 0 FLLE WDE OFF OFF PWM PWME = 0 PWME SPWME Linear Regulator Charge-Pump Doubler CPOUT Voltage Monitor 1.8V DVDD Monitor 1.8V Monitor Hysteresis Temperature Sense Source UPIO_ Function UPIO_ Pullup UPIO_ Supply Voltage UPIO_ Assertion Level LDOE = 0 CPE = 0 CPDE = 0 LSDE = 1 HYSE = 0 IMUX<1:0> = 00 UP_MD<3:0> = 0 hex PUP_ = 1 SV_ = 0 ALH_ = 0 LDOE CPE CPDE LSDE HYSE IMUX<1:0> UP_MD<3:0> PUP_ SV_ ALH_ OFF OFF OFF LSDE HYSE OFF UP_MD<3:0> PUP_ SV_ ALH_ DACA_OP, DACB_OP REF_SDC CLK_CTRL High-Frequency Clock Output Buffer FLL Enable Watchdog Timer PWM_CTRL PS_VMONS TEMP_CTRL UPIO_CTRL 50 ______________________________________________________________________________________ 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor MSB SLP (ADR0) SOSCE LSB SCK32E SPWME SHDN The SLEEP_CFG register allows users to program specific behavior for the 32kHz oscillator, buffer, and PWM in sleep mode. It also contains a sleep-control bit (SLP) to enable sleep mode. SLP (ADR0): Sleep bit. The SLP bit is the LSB in the SLEEP_CFG address control byte. Set SLP = 1 to assert the SHDN bit and enter sleep mode. Writing the register with SLP = 0 or reading with SLP = 0 or SLP = 1 has no effect on the SHDN bit. SOSCE: Sleep mode 32kHz crystal oscillator enable bit. SOSCE = 1 enables the 32kHz oscillator in sleep mode and SOSCE = 0 disables it in sleep mode, regardless of the state of the OSCE bit. The power-on default is 1. SCK32E: Sleep-mode CK32K-pin output-buffer enable bit. SCK32E = 1 enables the 32kHz output buffer in sleep mode and SCK32E = 0 disables it in sleep mode, regardless of the state of the CK32E bit. The power-on default is 1. X X X X SPWME: Sleep mode PWM enable bit. SPWME = 1 enables the internal PWM in sleep mode and SPWME = 0 disables it in sleep mode, regardless of the state of the PWME bit. Input frequencies are limited to 32.768kHz or lower since the high-frequency clock is disabled in sleep mode. SOSCE must be asserted to have 32kHz available as an input to the PWM. The power-on default is 0. SHDN: Shutdown bit. This bit is read only. SHDN is asserted by writing to the SLEEP register address or by writing to the SLEEP_CFG register with SLP = 1. When SHDN is asserted, the device is in sleep mode even if the SLEEP or SLEEP function on the UPIO is deasserted. The SHDN bit is deasserted by writing to the NORM_MD register or by other defined events. Events that cause SHDN to be deasserted are a day alarm or an edge on the UPIO wake-up pin causing wake-up to be asserted. The power-on default is 0. RESET 32K DIVIDEBY-8192 WDE D Q CK Q 4Hz Q D Q CK R R POR WDW WATCHDOG TIMER 750ms 4Hz CLOCK 2-BIT COUNTER X 0 1 2 0 1 0 1 2 3 0 1 2 0 SPI WRITES RESET WDE = 1 WATCHDOG ADDRESS WATCHDOG ADDRESS WATCHDOG ADDRESS 250ms Figure 19. Watchdog Timer Architecture ______________________________________________________________________________________ 51 MAX1358/MAX1359/MAX1360 SLEEP_CFG Register (Power-On State: 1100 XXXX) MAX1358/MAX1359/MAX1360 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor UPIO4_CTRL Register (Power-On State: 0000 1000) MSB UP4MD3 LSB UP4MD2 UP4MD1 UP4MD0 UPIO4_CTRL register. This register configures the UPIO4 pin functionality. UP4MD<3:0>: UPIO4-mode selection bits. These bits configure the mode for the UPIO4 pin. See Table 16 for a detailed description. The power-on default is 0 hex. PUP4: Pullup UPIO4 control bit. Set PUP4 = 1 to enable a weak pullup resistor on the UPIO4 pin and set PUP4 = 0 to disable it. The pullup resistor is connected to either DVDD or CPOUT as programmed by the SV4 bit. The pullup is enabled only when UPIO4 is configured as an input. Open-drain behavior can be simulated at UPIO4 by setting the mode to GPO with LL4 = 0 and by changing the mode to GPI with PUP4 = 0, allowing external high pullup. The power-on default is 1. SV4: Supply-voltage UPIO4 selection bit. Set SV4 = 0 to select DVDD as the supply voltage for the UPIO4 pin and set SV4 = 1 to select CPOUT as the supply voltage. The selected supply voltage applies to all modes for the UPIO4 pin. The power-on default is 0. PUP4 SV4 ALH4 LL4 ALH4: Active logic-level assertion high UPIO4 bit. Set ALH4 = 0 to define the input or output assertion level for UPIO4 as low except when in GPI and GPO modes. Set ALH4 = 1 to define the input or output assertion level as high. For example, asserting ALH4 defines the UPIO4 output signal as ALARM, while deasserting ALH4 defines it as ALARM. Similarly, asserting ALH4 defines the UPIO4 input signal as WU, while deasserting ALH4 defines it as WU. The power-on default is 0. LL4: Logic-level UPIO4 bit. When UPIO4 is configured as GPO, LL4 = 0 sets the output to a logic-low and LL4 = 1 sets the output to a logic-high. A read of LL4 returns the voltage level at the UPIO4 pin at the time of the read regardless of how it is programmed. The power-on default is 0. UPIO3_CTRL Register (Power-On State: 0000 1000) MSB UP3MD3 LSB UP3MD2 UP3MD1 UP3MD0 UPIO3_CTRL register. This register configures the UPIO3 pin functionality. UP3MD<3:0>: UPIO3-mode selection bits. These bits configure the mode for the UPIO3 pin. See Table 16 for a detailed description. The power-on default is 0 hex. PUP3: Pullup UPIO3 control bit. Set PUP3 = 1 to enable a weak pullup resistor on the UPIO3 pin and set PUP3 = 0 to disable it. The pullup resistor is connected to either DVDD or CPOUT as programmed by the SV3 bit. The pullup is enabled only when UPIO3 is configured as an input. Open-drain behavior can be simulated at UPIO3 by setting the mode to GPO with LL3 = 0 and by changing the mode to GPI with PUP3 = 0, allowing external high pullup. The power-on default is 1. SV3: Supply-voltage UPIO3 selection bit. Set SV3 = 0 to select DVDD as the supply voltage for the UPIO3 pin and set SV3 = 1 to select CPOUT as the supply voltage. The selected supply voltage applies to all modes for the UPIO3 pin. The power-on default is 0. 52 PUP3 SV3 ALH3 LL3 ALH3: Active logic-level assertion high UPIO3 bit. Set ALH3 = 0 to define the input or output assertion level for UPIO3 as low except when in GPI and GPO modes and set ALH3 = 1 to define the input or output assertion level as high. For example, asserting ALH3 defines the UPIO3 output signal as ALARM, while deasserting ALH3 defines it as ALARM. Similarly, asserting ALH3 defines the UPIO3 input signal as WU, while deasserting ALH3 defines it as WU. The power-on default is 0. LL3: Logic-level UPIO3 bit. When UPIO3 is configured as GPO, LL3 = 0 sets the output to a logic-low and LL3 = 1 sets the output to a logic-high. A read of LL3 returns the voltage level at the UPIO3 pin at the time of the read regardless of how it is programmed. The power-on default is 0. ______________________________________________________________________________________ 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor MSB UP2MD3 LSB UP2MD2 UP2MD1 UP2MD0 UPIO2_CTRL register. This register configures the UPIO2 pin functionality. UP2MD<3:0>: UPIO2-mode selection bits. These bits configure the mode for the UPIO2 pin. See Table 16 for a detailed description. The power-on default is 0 hex. PUP2: Pullup UPIO2 control bit. Set PUP2 = 1 to enable a weak pullup resistor on the UPIO2 pin and set PUP2 = 0 to disable it. The pullup resistor is connected to either DVDD or CPOUT as programmed by the SV2 bit. The pullup is enabled only when UPIO2 is configured as an input. Open-drain behavior can be simulated at UPIO2 by setting the mode to GPO with LL2 = 0 and by changing the mode to GPI with PUP2 = 0, allowing external high pullup. The power-on default is 1. SV2: Supply-voltage UPIO2 selection bit. Set SV2 = 0 to select DVDD as the supply voltage for the UPIO2 pin and set SV2 = 1 to select CPOUT as the supply voltage. The selected supply voltage applies to all modes for the UPIO2 pin. The power-on default is 0. PUP2 SV2 ALH2 LL2 ALH2: Active logic-level assertion high UPIO2 bit. Set ALH2 = 0 to define the input or output assertion level for UPIO2 as low except when in GPI and GPO modes and set ALH2 = 1 to define the input or output assertion level as high. For example, asserting ALH2 defines the UPIO2 output signal as ALARM, while deasserting ALH2 defines it as ALARM. Similarly, asserting ALH2 defines the UPIO2 input signal as WU, while deasserting ALH2 defines it as WU. The power-on default is 0. LL2: Logic-level UPIO2 bit. When UPIO2 is configured as GPO, LL2 = 0 sets the output to a logic-low and LL2 = 1 sets the output to a logic-high. A read of LL2 returns the voltage level at the UPIO2 pin at the time of the read regardless of how it is programmed. The power-on default is 0. UPIO1_CTRL Register (Power-On State: 0000 1000) MSB UP1MD3 LSB UP1MD2 UP1MD1 UP1MD0 UPIO1_CTRL register. This register configures the UPIO1 pin functionality. UP1MD<3:0>: UPIO1-mode selection bits. These bits configure the mode for the UPIO1 pin. See Table 16 for a detailed description. The power-on default is 0 hex. PUP1: Pullup UPIO1 control bit. Set PUP1 = 1 to enable a weak pullup resistor on the UPIO1 pin and set PUP1 = 0 to disable it. The pullup resistor is connected to either DVDD or CPOUT as programmed by the SV1 bit. The pullup is enabled only when UPIO1 is configured as an input. Open-drain behavior can be simulated at UPIO1 by setting the mode to GPO with LL1 = 0 and by changing the mode to GPI with PUP1 = 0, allowing external high pullup. The power-on default is 1. SV1: Supply-voltage UPIO1 selection bit. Set SV1 = 0 to select DVDD as the supply voltage for the UPIO1 pin and set SV1 = 1 to select CPOUT as the supply voltage. The selected supply voltage applies to all modes for the UPIO1 pin. The power-on default is 0. PUP1 SV1 ALH1 LL1 ALH1: Active logic-level assertion high UPIO1 bit. Set ALH1 = 0 to define the input or output assertion level for UPIO1 as low except when in GPI and GPO modes and set ALH1 = 1 to define the input or output assertion level as high. For example, asserting ALH1 defines the UPIO1 output signal as ALARM, while deasserting ALH1 defines it as ALARM. Similarly, asserting ALH1 defines the UPIO1 input signal as WU, while deasserting ALH1 defines it as WU. The power-on default is 0. LL1: Logic-level UPIO1 bit. When UPIO1 is configured as GPO, LL1 = 0 sets the output to a logic-low and LL1 = 1 sets the output to a logic-high. A read of LL1 returns the voltage level at the UPIO1 pin at the time of the read regardless of how it is programmed. The power-on default is 0. ______________________________________________________________________________________ 53 MAX1358/MAX1359/MAX1360 UPIO2_CTRL Register (Power-On State: 0000 1000) MAX1358/MAX1359/MAX1360 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor Table 16. UPIO Mode Configuration UP4MD<3:0>, UP3MD<3:0>, UP2MD<3:0>, UP1MD<3:0> MODE MAX1358 MAX1359 MAX1360 DESCRIPTION 0 0 0 0 GPI GPI GPI General-purpose digital input. Active edges detected by UPR_ or UPF_ status register bits. ALH_ has no effect with this setting. 0 0 0 1 GPO GPO GPO General-purpose digital output. Logic level set by LL_ bit. ALH_ has no effect with this setting. 0 0 1 0 SWA or SWA SWA or SWA X Digital input. DAC A buffer switch control. See the SWA bit description in the SW_CTRL Register section. 0 0 1 1 SWB or SWB X X Digital input. DAC B buffer switch control. See the SWB bit description in the SW_CTRL Register section. 0 1 0 0 SPDT1 or SPDT1 SPDT1 or SPDT1 SPDT1 or SPDT1 Digital input. SPDT1 switch control. See the SPDT1<1:0> bit description in the SW_CTRL Register section. 0 1 0 1 SPDT2 or SPDT2 SPDT2 or SPDT2 SPDT2 or SPDT2 Digital input. SPDT2 switch control. See the SPDT2<1:0> bit description in the SW_CTRL Register section. SLEEP or SLEEP SLEEP or SLEEP Sleep-mode digital input. Overrides power-control register and puts the part into sleep mode when asserted. When deasserted, power mode is determined by the SHDN bit. 0 1 1 0 SLEEP or SLEEP 0 1 1 1 WU or WU WU or WU WU or WU Wake-up digital input. Asserted edge clears SHDN bit. 1 0 0 0 1 0 0 1 Reserved Reserved Reserved Reserved. Do not use these settings. 1 0 1 0 1 0 1 1 PWM or PWM PWM or PWM PWM or PWM PWM digital output. Signal defined by the PWM_CTRL register. PWM on (or high or "1"); assertion level defined by the ALH_ bit. When PWM is disabled (PWME = 0), the UPIO pin idles high (DVDD or CPOUT) if ALH = 1, and low (DGND) if ALH = 0. SHDN or SHDN SHDN or SHDN Power-supply shutdown digital output. Equivalent to SHDN bit. Power-on default of GPI with pullup ensures initial power-supply turn-on when UPIO is connected to a power supply with a SHDN input. RTC alarm digital output. Asserts for time-of-day alarm events; equivalent to ALD in STATUS register. 1 1 0 0 SHDN or SHDN 1 1 0 1 AL_DAY or AL_DAY AL_DAY or AL_DAY AL_DAY or AL_DAY 1 1 1 0 Reserved Reserved Reserved Reserved. Do not use these settings. DRDY or DRDY ADC data-ready digital output. Asserts when analog-todigital conversion or calibration completes. Not masked by MADD bit. 1 1 1 1 DRDY or DRDY DRDY or DRDY Note: When multiple UPIO inputs are configured for the same input function, the inputs are OR'ed together. 54 ______________________________________________________________________________________ 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor MSB LSB UP4S UP3S UP2S UP1S X UPIO SPI pass-through control register. These bits map the serial interface signals to the UPIO pins, allowing the DAS (MAX1358/MAX1359/MAX1360) to drive other devices at CPOUT or DVDD voltage levels, depending on the SV_ bit setting found in the UPIO_CTRL register. Individual bits are provided to set only the desired UPIO inputs to the SPI pass-through mode. This mode becomes active when CS is driven high to complete the write to this register, and remains active as long as CS stays high (i.e., multiple pass-through writes are possible). The SPI pass-through mode is deactivated immediately when CS is pulled low for the next DAS (MAX1358/MAX1359/MAX1360) write. WRITE TO DAS TO ENABLE SPI MODE X X UP4S: UPIO4 SPI pass-through-mode enable bit. A logic 1 maps the inverted CS signal to the UPIO4 pin. Therefore, UPIO4 is low (near DGND) when SPI passthrough mode is active, and is high (near DV DD or CPOUT) when the mode is inactive. A logic 0 disables the UPIO4 SPI pass-through mode. The power-on default is 0. UP3S: UPIO3 SPI pass-through-mode enable bit. A logic 1 maps the SCLK signal to UPIO3 (directly with no inversion), while a logic 0 disables the UPIO3 SPI passthrough mode. The power-on default is 0. UP2S: UPIO2 SPI pass-through-mode enable bit. A logic 1 maps the DIN signal to UPIO2 (directly with no inversion), while a logic 0 disables the UPIO2 SPI passthrough mode. The power-on default is 0. UP1S: UPIO1 SPI pass-through-mode enable bit. A logic 1 maps the UPIO1 input signal to DOUT (directly with no inversion), while a logic 0 disables the UPIO1 SPI pass-through mode. The power-on default is 0. The UPIO_ state (both before and after the SPI passthrough mode) is set by the UP_MD<3:0> and LL_ bits. When a UPIO is configured for SPI pass-through mode and the CS is high, UPR_, UPF_, and LL_ continue to detect UPIO_ edges, which can still generate interrupts. See Figure 20 for an SPI pass-through timing diagram. CS X NORMAL WRITE TO DAS WRITE THROUGH DAS TO UPIO DEVICE SCLK DIN DN DN-1 DN-2 DN-3 D3 D2 D1 D0 EN EN-1 EN-2 EN-3 DOUT X X X X E3 E2 E1 E0 D7 D6 D5 D4 D3 D2 UPIO4 SET BY UPIO4_CTRL REGISTER SET BY UPIO4_CTRL REGISTER UPIO3 SET BY UPIO3_CTRL REGISTER SET BY UPIO3_CTRL REGISTER UPIO2 SET BY UPIO2_CTRL REGISTER UPIO1 SET BY UPIO1_CTRL REGISTER EN EN-1 EN-2 EN-3 X X X X SET BY UPIO2_CTRL REGISTER E3 E2 E1 E0 SET BY UPIO1_CTRL REGISTER D1 D0 Figure 20. SPI Pass-Through Timing Diagram ______________________________________________________________________________________ 55 MAX1358/MAX1359/MAX1360 UPIO_SPI Register (Power-On State: 0000 XXXX) MAX1358/MAX1359/MAX1360 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor SW_CTRL Register (Power-On State: 0000 00XX) MSB LSB SWA SWB SPDT11 SPDT10 The switch-control register controls the two SPDT switches (SPDT1 and SPDT2) and the two DACA and DACB output buffer SPST switches (SWA and SWB). Control these switches by the serial bits in this register, by any of the UPIO pins that are enabled for that function, or by the PWM. SWA: (MAX1358/MAX1359) DACA output buffer SPSTswitch A control bit. The SWA bit, the UPIO inputs (if configured), and the PWM (if configured) control the state of the SWA switch as shown in Table 17. The UPIO_ states of 0 and 1 in the table below correspond to respective deasserted and asserted logic states as defined by the ALH_ bit of the UPIO_CTRL register. If a UPIO is not configured for this mode, its value applied to the table below is 0. The PWM states of 0 and 1 in the table below correspond to the respective PWM off (or low) and on (or high) states defined by the SWAH and SWAL bits (see the PWM_CTRL Register section). If the PWM is not configured for this mode, its value applied to the table below is 0. The power-on default is 0. Table 17. SWA States SWA BIT* UPIO_* PWM* SWA SWITCH STATE 0 0 0 Switch open X X 1 Switch closed X 1 X Switch closed 1 X X Switch closed X = Don't care. *Switch SWA control is effectively an OR of the SWA bit, UPIO pins, and PWM. SWB: (MAX1358 only) DACB output buffer SPST-switch B control bit. The SWB bit, the UPIO inputs (if configured), and the PWM (if configured) control the state of the SWB switch as shown in Table 18. The UPIO_ states of 0 and 1 in the table correspond to respective deasserted and asserted logic states as defined by the ALH_ bit (see the UPIO_CTRL Register section). If a UPIO is not configured for this mode, its value applied to the table is 0. The PWM states of 0 and 1 in the table correspond to the respective PWM off (or low) and on (or high) states defined by the SWBH and SWBL bits (see the PWM_CTRL Register section). If the PWM is not configured for this mode, its value applied to the table is 0. The power-on default is 0. 56 SPDT21 SPDT20 X X Table 18. SWB States (MAX1358 Only) SWB BIT* UPIO_* PWM* SWB SWITCH STATE 0 0 0 Switch open X X 1 Switch closed X 1 X Switch closed 1 X X Switch closed X = Don't care. *Switch SWB control is effectively an OR of the SWB bit, UPIO pins, and PWM. SPDT1<1:0>: Single-pole double-throw switch 1 control bits. The SPDT1<1:0> bits, the UPIO pins (if configured), and the PWM (if configured) control the state of the switch as shown in Table 19. The UPIO_ states of 0 and 1 in the table below correspond to respective deasserted and asserted logic states as defined by the ALH_ bit of the UPIO_CTRL register. If a UPIO is not configured for this mode, its value applied to Table 19 is 0. The PWM states of 0 and 1 in Table 19 below correspond to the respective PWM off (low) and on (high) states defined by the SPD1 bit in the PWM_CTRL register. If the PWM is not configured for this mode, its value applied to Table 19 is 0. The power-on default is 00. Table 19. SPDT Switch 1 States SPDT1<1:0> UPIO_* PWM* SPDT1 SWITCH STATE 0 0 0 0 SNO1 open, SNC1 open 0 X X 1 SNO1 closed, SNC1 closed 0 X 1 X SNO1 closed, SNC1 closed 0 1 X X SNO1 closed, SNC1 closed 1 0 0 0 SNC1 closed, SNO1 open 1 X X 1 SNC1 open, SNO1 closed 1 X 1 X SNC1 open, SNO1 closed 1 1 X X SNC1 open, SNO1 closed X = Don't care. *Switch SPDT1 control is effectively an OR of the SPDT10 bit, the UPIO pins, and the PWM output. The SPDT11 bit determines if the switches open and close together or if they toggle. ______________________________________________________________________________________ 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor Table 20. SPDT Switch 2 States SPDT2<1:0> 0 0 0 X 0 X 0 1 1 0 1 X 1 X 1 1 UPIO_* PWM* SPDT2 SWITCH STATE 0 0 SNO2 open, SNC2 open X 1 SNO2 closed, SNC2 closed 1 X SNO2 closed, SNC2 closed X X SNO2 closed, SNC2 closed 0 0 SNC2 closed, SNO2 open X 1 SNC2 open, SNO2 closed 1 X SNC2 open, SNO2 closed X X SNC2 open, SNO2 closed X = Don't care. *Switch SPDT2 control is effectively an OR of the SPDT20 bit, the UPIO pins, and the PWM output. The SPDT21 bit determines if the switches open and close together or if they toggle. TEMP_CTRL Register (Power-On State: 0000 XXXX) MSB IMUX1 LSB IMUX0 IVAL1 IVAL0 X X X X The temperature-sensor control register controls the internal and external temperature measurement. IMUX<1:0>: Internal current-source MUX bits. Selects the pin to be driven by the internal current sources as shown in Table 21. The power-on default is 00. IVAL<1:0>: Internal current-source value bits. Selects the value of internal current source as shown in Table 22. The power-on default is 00. Table 21. Selecting Internal Current Source Table 22. Setting the Current Level CURRENT SOURCE Disabled Internal temperature sensor AIN1 AIN2 IMUX1 0 0 1 1 IMUX0 0 1 0 1 CURRENT TYPICAL CURRENT (A) IVAL1 IVAL0 I1 I2 I3 I4 4 60 64 120 0 0 1 1 0 1 0 1 TEMP_CAL Register (Power-On State: Varies By Factory Calibration) MSB TGAIN7 TGAIN6 TGAIN5 TGAIN4 TGAIN3 TGAIN2 TGAIN1 TGAIN0 LSB TOFFS5 TOFFS4 TOFFS3 TOFFS2 This register is the internal temperature sensor calibration register. TGAIN<7:0>: Factory-preset temperature gain correction coefficient bits. This is the linear scaling factor used to derive absolute temperature values from temperature values measured with the internal temperature sensor (TACTUAL = TMEAS x TGAIN + TOFFS). This method does not correct for delta VBE absolute voltage measurement errors, and assumes the measurement is taken with a reference voltage that is either exactly 1.250V, or an exact value known by the user. The errors being corrected by this factor are variables in the internal temperature-sensing diode. This factor is programmed to typical values. The power-on default varies. TOFFS1 TOFFS0 X X TOFFS<5:0>: Factory-preset temperature offset correction coefficient bits. This is the linear offset factor used to derive absolute temperature values from temperature values measured with the internal temperature sensor (T ACTUAL = T MEAS x T GAIN + T OFFS ). This method does not correct for delta VBE absolute voltage measurement errors, and assumes the measurement was taken with a reference voltage that is either exactly 1.250V, or an exact value known by the user. The errors being corrected by this factor are variables in the internal temperature-sensing diode. This factor is based on characterization data. The power-on default varies. ______________________________________________________________________________________ 57 MAX1358/MAX1359/MAX1360 SPDT2<1:0>: Single-pole double-throw switch 2 control bits. The SPDT2<1:0> bits, the UPIO pins (if configured), and the PWM (if configured) control the state of the switch as shown in Table 20. The UPIO_ states of 0 and 1 in the table correspond to respective deasserted and asserted logic states as defined by the ALH_ bit in the UPIO_CTRL register. If a UPIO is not configured for this mode, its value applied to Table 20 is 0. The PWM states of 0 and 1 in Table 20 correspond to the respective PWM off (low) and on (high) states defined by the SPD2 bit in the PWM_CTRL register. If the PWM is not configured for this mode, its value applied to Table 20 is 0. The power-on default is 00. MAX1358/MAX1359/MAX1360 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor IMSK Register (Power-On State: 1111 011X 1111 1111) MSB MLDVD MLCPD MADO MSDC MCRDY MADD MALD X MUPR4 MUPR3 MUPR2 MUPR1 MUPF4 MUPF3 MUPF2 MUPF1 LSB The IMSK register determines which bits of the STATUS register generate an interrupt on INT. The bits in this register do not mask output signals routed to UPIO since the output signals are masked by disabling that UPIO function. MLDVD: LDVD status bit mask. Set MLDVD = 0 to enable the LDVD status bit interrupt to INT and set MLDVD = 1 to mask the LDVD status bit interrupt. The power-on default value is 1. MLCPD: LCP status bit mask. Set MLCP = 0 to enable the LCP status bit interrupt to INT and set MLCP = 1 to mask the LCP status bit interrupt. The power-on default value is 1. MADO: ADO status bit mask. Set MADO = 0 to enable the ADO status bit interrupt to INT and set MADO = 1 to mask the ADO status bit interrupt. The power-on default value is 1. MSDC: SDC status bit mask. Set MSDC = 0 to enable the SDC status bit interrupt to INT and set MSDC = 1 to mask the SDC status bit interrupt. The power-on default value is 1. MCRDY: CRD status bit mask. Set MCRDY = 0 to enable the CRDY status bit interrupt to INT and set MCRDY = 1 to mask the CRDY status bit interrupt. The power-on default value is 0. MADD: ADD status bit mask. Set MADD = 0 to enable the ADD status bit interrupt to INT and set MADD = 1 to mask the ADD status bit interrupt. The power-on default value is 1. MALD: ALD status bit mask. Set MALD = 0 to enable the ALD status bit interrupt to INT and set MALD = 1 to mask the ALD status bit interrupt. The power-on default value is 1. MUPR<4:1>: UPR<4:1> status bits mask. Set MUPR_ = 0 to enable the UPR_ status bit interrupt to INT and set MUPR_ = 1 to mask the UPR_ status bit interrupt. (_ = 1, 2, 3, or 4 and corresponds to the UPIO1, UPIO2, UPIO3, or UPIO4 pins, respectively.) The power-on default value is F hex. MUPF<4:1>: UPF<4:1> status bits mask. Set MUPF_ = 0 to enable the UPF_ status bit interrupt to INT and set MUPF_ = 1 to mask the UPF_ status bit interrupt. (_ = 1, 2, 3, or 4 and corresponds to the UPIO1, UPIO2, UPIO3, or UPIO4 pins, respectively.) The power-on default value is F hex. PS_VMONS Register (Power-On State: 0010 01XX) MSB LDOE LSB CPE LSDE CPDE This register is the power-supply and voltage monitors control register. LDOE: Low-dropout linear-regulator enable bit. Set LDOE = 1 to enable the low-dropout linear regulator to provide the internal source voltage for the charge pump. Set LDOE = 0 to disable the LDO, allowing an external drive to the charge pump input through REG. The power-on default value is 0. CPE: Charge-pump enable bit. Set CPE = 1 to enable the charge-pump doubler and set CPE = 0 to disable the charge-pump doubler. The power-on default value is 0. LSDE: DV DD low-supply voltage-detector powerenable bit. Set LSDE = 1 to enable the +1.8V (DVDD) low-supply-voltage detector and set LSDE = 0 to dis- 58 HYSE RSTE X X able the DVDD low-supply-voltage detector. The poweron default value is 1. CPDE: CPOUT low-supply voltage-detector powerenable bit. Set CPDE = 1 to enable the +2.7V CPOUT low-supply voltage-detector comparator and set CPDE = 0 to disable the CPOUT low-supply voltage-detector comparator. The power-on default value is 0. HYSE: DVDD low-supply voltage-detector hysteresisenable bit. Set HYSE = 1 to set the hysteresis for the +1.8V (DVDD) low-supply-voltage detector to +200mV and set HYSE = 0 to set the hysteresis to +20mV. On initial power-up, the hysteresis is +20mV and can be programmed to 200mV once RESET goes high. Once programmed to +200mV, the DVDD falling threshold is +1.8V ______________________________________________________________________________________ 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor RSTE: RESET output enable bit. Set RSTE = 1 to enable RESET to be controlled by the +1.8V DVDD lowsupply-voltage detector and set RSTE = 0 to disable this control. The power-on default is 1. STATUS Register (Power-On State: 0000 000X 0000 0000) MSB LDVD LCPD ADOU SDC CRDY ADD ALD X UPR4 UPR3 UPR2 UPR1 UPF4 UPF3 UPF2 UPF1 LSB The STATUS register contains the status bits of events in various system blocks. Any status bits not masked in the IMSK register cause an interrupt on INT. Some of the status bit setting events (GPI, WAKEUP, ALARM, DRDY) can be directed to UPIO_ to provide multiple C interrupt inputs. There are no specific mask bits for the UPIO interrupt signals since the bits are effectively masked by selecting a different function for UPIO. The STATUS bits always record the triggering event(s), even for masked bits, which do not generate an interrupt on INT. It is possible to set multiple STATUS bits during a single INT interrupt event. Clear all status bits except for ADD and ADOU by reading the STATUS register. During a STATUS register read, INT deasserts when the first STATUS data bit (LDVD) reads out (9th rising SCLK) and remains deasserted until shortly after the last STATUS data bit (~15ns). At this point, INT reasserts if any status bit is set during the STATUS register read. If the STATUS register is partially read (i.e., the read is aborted midway), none of the status bits are cleared. New events occurring during a STATUS register read, or events that persist after reading the STATUS bits result in another interrupt immediately after the STATUS register read finishes. This is a read-only register. LDVD: Low DVDD voltage-detector status bit. LDVD = 1 indicates DVDD is below the +1.8V threshold, otherwise LDVD = 0. LDVD clears during the STATUS register read as long as the condition does not persist. Otherwise, the LDVD bit reasserts immediately. If the DVDD low voltage detector is disabled, LDVD = 0. The power-on default is 0. LCPD: Low CPOUT voltage-detector status bit. LCPD = 1 indicates CPOUT is below the +2.7V threshold, otherwise LCPD = 0. LCPD clears during the STATUS register read as long as the condition does not persist. Otherwise the LCPD bit reasserts immediately. LCPD = 0 when the CPOUT low voltage detector is disabled. The power-on default is 0. ADOU: ADC overflow/underflow status bit. ADOU = 1 indicates an ADC underflow or overflow condition in the current ADC result. New conversions that are valid clear the ADOU bit. ADOU = 0 when the ADC data is valid or the ADC is disabled (ADCE = 0). An underflow condition occurs when the ADC data is theoretically less than 0000 hex in unipolar mode and less than 8000 hex in bipolar mode. An overflow condition occurs when the ADC data is theoretically greater than FFFF hex in unipolar mode and greater than 7FFF hex in bipolar mode. Use this bit to determine the validity of an ADC result at the maximum or minimum code values (i.e., 0000 hex or FFFF hex for unipolar mode and 8000 hex and 7FFF hex for bipolar mode). The power-on default is 0. Reading the STATUS register does not clear the ADOU bit. SDC: Signal-detect comparator status bit. When SDC = 1, the positive input to the signal-detect comparator exceeds the negative input plus the programmed threshold voltage. The SDC bit clears during the STATUS register read unless the condition remains true. The SDC bit also deasserts when the signal-detect comparator powers down (SDCE = 0). The power-on default is 0. CRDY: High-frequency-clock ready status bit. CRDY = 1 indicates a locked high-frequency clock to the 32kHz reference frequency by the FLL. The CRDY bit clears during the STATUS register read. This bit only asserts after power-up or after enabling the FLL using the FLLE bit. The power-on default is 0. ADD: ADC-done status bit. ADD = 1 indicates a completed ADC conversion or calibration. Clear the ADD bit by reading the appropriate ADC data, offset, or gain-calibration registers. The ADC status bit also clears when a new ADC result updates to the data or calibration registers (i.e., it follows the assertion level of the UPIO = DRDY signal). Reading the STATUS register does not clear this bit. This bit is equivalent to the DRDY signal available through UPIO_. The power-on default is 0. ______________________________________________________________________________________ 59 MAX1358/MAX1359/MAX1360 nominally and the rising threshold is +2.0V nominally. The hysteresis helps eliminate chatter when running directly off unregulated batteries. If DVDD falls below +1.3V (typ), the power-on reset circuitry is enabled and the HYSE bit is deasserted setting the hysteresis back to +20mV. The power-on default is 0. MAX1358/MAX1359/MAX1360 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor ALD: Alarm (day) status bit. ALD = 1 when the value programmed in ASEC<19:0> in the AL_DAY register matches SEC<19:0> in the RTC register. Clear the ALD bit by reading the STATUS register or by disabling the day alarm (ADE = 0). The power-on default is 0. UPR<4:1>: User-programmable I/O rising-edge status bits. UPR_ = 1 indicates a rising edge on the respective UPIO_ pin has occurred. Clear UPR_ by reading the STATUS register. Rising edges are detected independent of UPIO_ configuration, providing the ability to capture and record rising input (e.g., WU) or output (e.g., PWM) edge events on the UPIO_. Set the appropriate mask to determine if the edge will generate an interrupt on INT. If the UPIO_ is configured as an output, INT provides confirmation that an intended rising edge output occurred and has reached the desired DVDD or CPOUT level (i.e., was not loaded down externally). The power-on default is 0. UPF<4:1>: User-programmable I/O falling-edge status bit. UPF_= 1 indicates a falling edge on the respective UPIO_ has occurred. Clear UPF_ by reading the STATUS register. Falling edges are detected independent of UPIO_ configuration, providing the ability to capture and record falling input (e.g., WU) or output (e.g., PWM) edge events on the UPIO_. Set the appropriate mask to determine if that edge should generate an interrupt on the INT pin. If the UPIO is configured as an output, the INT provides confirmation that an intended falling edge output occurred at the pin and it reached the desired DGND level. The power-on default is 0. Applications Information Analog Filtering The internal digital filter does not provide rejection close to the harmonics of the modulator sample frequency. However, due to high oversampling ratios in the MAX1358/MAX1359/MAX1360, these bands typically occupy a small fraction of the spectrum and most broadband noise is filtered. Therefore, the analog filtering requirements in front of the MAX1358/MAX1359/ MAX1360 are considerably reduced compared to a conventional converter with no on-chip filtering. In addition, because the device's common-mode rejection (60dB) extends out to several kHz, the common-mode noise susceptibility in this frequency range is substantially reduced. Depending on the application, provide filtering prior to the MAX1358/MAX1359/MAX1360 to eliminate unwanted frequencies the digital filter does not reject. Providing additional filtering in some applications ensures that differential noise signals outside the frequency band of interest do not saturate the analog modulator. 60 When placing passive components in front of the MAX1358/MAX1359/MAX1360, ensure a low enough source impedance to prevent introducing gain errors to the system. This configuration significantly limits the amount of passive anti-aliasing filtering that can be applied in front of the MAX1358/MAX1359/MAX1360. See Table 3 for acceptable source impedances. Power-On Reset or Power-Up After a power-on reset, the DVDD voltage supervisor is enabled and all UPIOs are configured as inputs with pullups enabled. The internal oscillators are enabled and are output at CLK and CLK32K once the DVDD voltage supervisor is cleared and the subsequent timeout period has expired. All interrupts are masked except CRDY. Figure 21 illustrates the timing of various signals during initial power-up, sleep mode, and wakeup events. The ADC, charge pump, internal reference, op amp(s), DAC(s), and switches are disabled after power-up. Power Modes Two power modes are available for the MAX1358/ MAX1359/MAX1360; sleep and normal mode. In sleep mode, all functional blocks are powered down except the serial interface, data registers, internal bandgap, wake-up circuitry (if enabled), DVDD voltage supervisor (if enabled), and the 32kHz oscillator (if enabled), which remain active. See Table 15 for details of the sleep-mode and normal-mode power states of the various internal blocks. Each analog block can be shut down individually through its respective control register with the exception of the bandgap reference. Sleep Mode Sleep mode is entered one of three ways: * Writing to the SLEEP register address. The result is the SHDN bit is set to 1. * Asserting the SLEEP or SLEEP function on a UPIO (SLEEP takes precedence over software writes or wake-up events). The SHDN bit is unaffected. * Asserting the SHDN bit by writing SLP = 1 in the SLEEP_CFG register. Entering sleep mode is an OR function of the UPIO or SHDN bit. Before entering sleep mode, configure the normal mode conditions. Exit sleep mode and enter normal mode by one of the following methods: ______________________________________________________________________________________ 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor AVDD MAX1358/MAX1359/MAX1360 2 INITIAL POWER, WAKE-UP, AND SLEEP XTAL B/W 32KIN AND 32KOUT PIN 1.8V 1 0v 2 DVDD 1.8V 1 0v POR HI LO OSCE = 1 SOSCE = 1 OSCE = 1 XIN, XOUT HI (32kHz) LO CK32E = 1 RESET HI (OPEN-DRAIN) LO INTERNAL EXTERNAL OUTPUT DISABLED, BUT PULLED LOW HI INTERNAL LOW DVDD DETECTOR LO CK32E = 1 SCK32E = 0 BUFFER DISABLED HI CK32K (32kHz) LO OUTPUT ENABLED UPIO(WU) HI (INT. PULLUP) LO tWU tDPU HI UPIO(SHDN) INTERNAL LO tDPD CLK HI INTERNAL LO tDFON INTERNAL HI CRDY HFCE = 1, FLLE = 1 LO tDFON tDFOF IF FLLE = 0, CRDY WILL STAY LOW, DFON = 0 ) tDFI INT tDFI HI LO PWME = 0 UPIO(PWM) HI TIED TO POWER SUPPLY SHDN PIN LO INTERNAL DRDY DOUT POWER SUPPLY OFF PWME = 0 POWER SUPPLY OFF HI LO HI LO CS SPWME = 1 HI LO TRI-STATED SLEEP WRITE HI SCLK, DIN LO Figure 21. Initial Power-Up, Sleep Mode, and Wake-Up Timing Diagram with AVDD > 1.8V ______________________________________________________________________________________ 61 VREF/GAIN 1111 1111 1111 1111 VREF/GAIN VREF/GAIN 0111 1111 1111 1111 FULL-SCALE TRANSITION 1111 1111 1111 1110 VREF/GAIN 0111 1111 1111 1110 1111 1111 1111 1101 VREF/GAIN 1 LSB = VREF x2 (GAIN x 65,536) 0000 0000 0000 0001 0000 0000 0000 0000 1111 1111 1111 1111 VREF/GAIN VREF 1 LSB = (GAIN x 65,536) BINARY OUTPUT CODE 0111 1111 1111 1101 1111 1111 1111 1100 BINARY OUTPUT CODE MAX1358/MAX1359/MAX1360 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor 0000 0000 0000 0011 0000 0000 0000 0010 1000 0000 0000 0010 0000 0000 0000 0001 1000 0000 0000 0001 0000 0000 0000 0000 0 1 2 65,533 3 65,535 1000 0000 0000 0000 -32,768 -32,766 INPUT VOLTAGE (LSB) -1 0 +1 +32,765 +32,767 INPUT VOLTAGE (LSB) Figure 22. ADC Unipolar Transfer Function Figure 23. ADC Bipolar Transfer Function * With the SHDN bit = 0, deassert the SLEEP or SLEEP function on UPIO, only if SLEEP or SLEEP function is used for entering sleep mode. * With the SLEEP or SLEEP function deasserted on UPIO, clear the SHDN bit by writing to the normalmode register address control byte. Driving UPIO Outputs to AVDD Levels UPIO outputs can be driven to AVDD levels in systems with separate AVDD and DVDD supplies. Disable the charge-pump doubler by setting CPE = 0 in the PS_VMONS register, and connect the system's analog supply to AVDD and CPOUT. Setting UPIO outputs to drive to CPOUT results in AVDD-referenced logic levels. * With the SLEEP or SLEEP function deasserted, assert WU or WU (wake-up) function on UPIO. * With the SLEEP or SLEEP function deasserted, the day alarm triggers. Wake-Up Supply Voltage Measurement The AVDD supply voltage can be measured with the ADC by reversing the normal input and reference signals. The REF voltage is applied to one multiplexer input and AGND is selected in the other. The AVDD sig- A wake-up event, such as an assertion of a UPIO configured as WU or a time-of-day alarm causes the MAX1358/MAX1359/MAX1360 to exit sleep mode, if in sleep mode. A wake-up event in normal mode results only in a wake-up event being recorded in the STATUS register. RESET The RESET output pulls low for any one of the following cases: power-on reset, DVDD monitor trips and RSTE = 0, watchdog timer expires, crystal oscillator is attached, and 32kHz clock not ready. The RESET output can be turned off through the RSTE bit in the PS_VMONS register, causing DVDD low supply voltage events to issue an interrupt or poll through the LDVD status bit. This allows brownout detection Cs that operate with DVDD < 1.8V. MAX1358 MAX1359 OUTA DAC A REF FBB DAC B THE MAX1359 HAS ONE DAC. Figure 24. DAC Unipolar Output Circuit 62 FBA ______________________________________________________________________________________ OUTB 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor R1 MAX1358 MAX1359 FBA R2 10k +3.3V FB_ 10k VOUT OUTA DAC A DAC_ OUT_ REF FBB -3.3V 10k 10k DAC B R2 = R 1 VREF = 1.25V MAX1358 MAX1359 OUTB Figure 26. DAC Bipolar Output Circuit ceramic capacitor. For improved performance, place the bypass capacitors as close to the device as possible. THE MAX1359 HAS ONE DAC. VREF = 1.25V ADC Transfer Functions Power Supplies Figures 22 and 23 provide the ADC transfer functions for unipolar and bipolar mode. The digital output code format is binary for unipolar mode and two's complement for bipolar mode. Calculate 1 LSB using the following equations: 1 LSB (Unipolar Mode) = VREF / (Gain x 65,536) 1 LSB (Bipolar Mode) = 2VREF / (Gain x 65,536) where VREF equals the reference voltage at REF and Gain equals the PGA gain. In unipolar mode, the output code ranges from 0 to 65,535 for inputs from zero to full-scale. In bipolar mode, the output code ranges from -32,768 to +32,767 for inputs from negative full-scale to positive full-scale. AV DD and DV DD provide power to the MAX1358/ MAX1359/MAX1360. The AVDD powers up the analog section, while the DVDD powers up the digital section. The power supply for both AVDD and DVDD ranges from +1.8V to +3.6V. Both AVDD and DVDD must be greater than +1.8V for device operation. AVDD and DVDD can connect to the same power supply. Bypass AV DD to AGND with a 10F electrolytic capacitor in parallel with a 0.1F ceramic capacitor and bypass DVDD to DGND with a 10F electrolytic capacitor in parallel with a 0.1F For a unipolar output, the output voltages and the reference have the same polarity. Figure 24 shows the MAX1358/MAX1359's unipolar output circuit, which is also the typical operating circuit for the DACs. Table 23 lists some unipolar input codes and their corresponding output voltages. For larger output swing, see Figure 25. This circuit shows the output amplifiers configured with a closed- Table 23. Unipolar Code Table Table 24. Bipolar Code Table Figure 25. DAC Unipolar Rail-to-Rail Output Circuit nal is then switched in as the ADC reference voltage and a conversion is performed. The AVDD value can then be calculated directly as: VAVDD = (VREF x Gain x 65536) / N where VREF is the reference voltage for the ADC, Gain is the PGA gain before the ADC, and N is the ADC result. Note the AVDD voltage must be greater than the gained-up REF voltage (AV DD > VREF x GAIN). This measurement must be done in unipolar mode. DAC CONTENTS MSB LSB 1111 1111 11 1000 0000 01 1000 0000 00 0111 1111 11 0000 0000 01 0000 0000 00 ANALOG OUTPUT +VREF (1023/1024) +VREF (513/1024) +VREF (512/1024) = +VREF / 2 +VREF (511/1024) +VREF (1/1024) 0 DAC Unipolar Output DAC CONTENTS MSB LSB 1111 1111 11 1000 0000 01 1000 0000 00 0111 1111 11 0000 0000 01 0000 0000 00 ANALOG OUTPUT +VREF (511/512) +VREF (1/512) 0 -VREF (1/512) -VREF (511/512) -VREF (512/512) = -VREF ______________________________________________________________________________________ 63 MAX1358/MAX1359/MAX1360 VREF MAX1358/MAX1359/MAX1360 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor loop gain of +2V/V to provide 0 to 2.5V full-scale range with the 1.25V reference. DAC Bipolar Output The MAX1358/MAX1359 DAC outputs can be configured for bipolar operation using the application circuit in Figure 26: 2N VOUT = VREF - 1 1024 where N is the decimal value of the DAC's binary input code. Table 24 shows digital codes (offset binary) and corresponding output voltages for Figure 26 assuming R1 = R2. Optical Reflectometry Application with Dual LED and Single Photodiode Figure 27 illustrates the MAX1359 in a complete optical reflectometry application with two transmitting LEDs and one receiving photodiode. The LEDs transmit light at a specific wavelength onto the sample strip and the photodiode receives the reflections from the strip. Set the DAC to provide appropriate bias currents for the LEDs. Always keep the photodiodes reverse-biased or zero-biased. SPDT1 and SPDT2 switch between the two LEDs. Electrochemical Sensor Operation The MAX1358/MAX1359/MAX1360 family interface with electrochemical sensors. The 10-bit DACs with the force-sense buffers have the flexibility to connect to many different types of sensors. Figure 28 shows how to interface the MAX1360 in a self-biased electrochemical meter application. An external precision resistor completes the transimpedance amplifier configuration to convert the current generated by the sensor to a voltage measurement using the ADC. The induced error from this source is negligible due to FBA's extremely low input bias current. Internally, the ADC 64 can differentially measure directly across the external transimpedance resistor, RF, eliminating any errors due to voltages drifting over time, temperature, or supply voltage. Figure 29 shows a traditional electrochemical meter application. Temperature Measurement with Two Remote Sensors Use two diode-connected 2N3904 transistors for external temperature sensing in Figure 30. Select AIN1 and AIN2 through the positive and negative mux, respectively. For internal temperature sensor measurements, set MUXP<3:0> to 0111, and set MUXN<3:0> to 0000. The analog input signals feed through a PGA to the ADC for conversion. Strain-Gauge Measurement with Remote Temperature Sensor Figure 31 shows the MAX1360 in a strain-gauge measurement application with a remote diode-connected 2N3904 transistor temperature sensor. Rs is the sense resistor used for making temperature measurements. See the Temperature with two Remote Sensors section for more details. Programmable-Gain Instrumentation Amplifier Use two op amps and two SPDT switches to implement a programmable-gain instrumentation amplifier as shown in Figure 32. PWM Applications The MAX1358/MAX1359/MAX1360 integrated PWM is available for LCD bias control, sensor-bias voltage trimming, buzzer drive, and duty-cycled sleep-mode power-control schemes. Figure 33 shows the MAX1358/MAX1359/MAX1360 performing LCD bias control. A sensor-bias voltage trimming application is shown in Figure 34. Figures 36 and 37 show the PWM circuitry being used in a single-ended and differential piezoelectric buzzer-driving application. ______________________________________________________________________________________ 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor MAX1358/MAX1359/MAX1360 VCP SERIAL-PORT INTERFACE TXD RXD VSS VSS C VBAT EEPROM VSS MOSI SI MISO SO SCK SCK CS1 CS VCC GND VSS VCP MAX1359 BDOUT UPIO2 DIN LCD MODULE BDIN UPIO1 BSCLK UPIO3 DOUT BCS2 UPIO4 SCLK CS2 MEM UP DOWN INPUT RESET INPUT INPUT INPUT X2IN 32KIN CS2 VSS CS IN2- RESET IN2+ INT HIGH-FREQUENCY MICRO CLOCK 32kHz MICRO CLOCK CLK IN1- CLK32K VSS VBAT VDD OUT2 AVDD IN1+ DVDD OUT1 2 AAA OR 1 LITHIUM COIN CELL VSS 1nF SNO2 ADC VSS TEST STRIP SCM2 VSS AGND SNC2 VSS DGND PWM VSS AMBIENT LIGHT AIN1 AIN2 DACA LED SOURCES VCP OUTA 32KIN LED SWA FBA SNO1 32.768kHz VCP LED SCM1 32KOUT DVDD SNC1 LINEAR REG REG CF+ VSS CF- CHARGEPUMP DOUBLER REF BG CPOUT VCP VSS VSS VSS Figure 27. Optical Reflectometry Application with Dual LED and Single Photodiode ______________________________________________________________________________________ 65 MAX1358/MAX1359/MAX1360 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor C VCP LCD GLASS COM<3:0> SEG<23:0> LCDBIAS VCP SERIAL-PORT INTERFACE TXD RXD LCD DRIVERS VSS VSS VSS VBAT EEPROM VSS MOSI SI MISO SO SCK SCK CS1 CS VCC GND VSS MAX1360 CPOUT DIN UPIO2 PWM LCDBIAS PWRON DOUT FREQOUT CS2 MEM UP DOWN INPUT RESET INPUT INPUT INPUT X2IN 32KIN CPOUT UPIO1 VSS VSS UPIO3 SCLK PIEZO ALARM CS2 HIGH-FREQUENCY MICRO CLOCK 32kHz MICRO CLOCK VSS VBAT VDD CS UPIO4 RESET SNO1 INT SCM1 CLK SNC1 CLK32K SNO2 AVDD SCM2 DVDD SNC2 STRIP INSERTED VSS TEST STRIP OUT1 2 AAA OR 1 LITHIUM COIN CELL IN1- VSS AGND VSS VSS IN1+ DGND OUT2 IN2- ADC 32KIN IN2+ OUT3 32.768kHz IN332KOUT DVDD IN3+ LINEAR REG BG REF REG VSS CF+ VSS CF- CHARGEPUMP DOUBLER CPOUT VCP AIN1 REMOTE TEMPERATUREMEASUREMENT DIODE AIN2 VSS VSS Figure 28. MAX1360 Self-Biased Electrochemical Meter Application Circuit 66 ______________________________________________________________________________________ 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor MAX1358/MAX1359/MAX1360 C VCP LCD GLASS COM<3:0> SEG<23:0> LCDBIAS RX_WAKEUP SERIAL-PORT INTERFACE RXD VSS LCD DRIVERS VSS BUZ_HI PIEZO ALARM BUZ_LO VBAT EEPROM VSS MOSI SI MISO SO SCK SCK CS1 CS VCC GND VSS MAX1358 CPOUT UPIO2 DIN TXD DOUT SCLK CS2 MEM UP DOWN INPUT RESET INPUT INPUT INPUT X2IN 32KIN CS2 HIGH-FREQUENCY MICRO CLOCK 32kHz MICRO CLOCK CPOUT PWM CS UPIO4 RESET OUTA INT SWA CLK FBA LCDBIAS STRIP INSERTED VSS TEST STRIP CLK32K VSS AVDD VBAT DVDD VDD RX_WAKEUP UPIO1 UPIO3 VSS DACA OUTB 2 AAA OR 1 LITHIUM COIN CELL SWB FBB VSS AGND VSS ADC DGND DACB SNO1 SCM1 SNC1 32KIN OUT1 32.768kHz IN132KOUT DVDD IN1+ LINEAR REG BG REF REG CF+ VSS CFCPOUT VCP VSS CHARGEPUMP DOUBLER SNO2 SCM2 SNC2 AIN1 REMOTE TEMPERATUREMEASUREMENT DIODE VSS AIN2 VSS Figure 29. MAX1358 Electrochemical Meter Application Circuit (Traditional and Counter Configuration) ______________________________________________________________________________________ 67 MAX1358/MAX1359/MAX1360 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor ADC Calibration Grounding and Layout Internal to the MAX1358/MAX1359/MAX1360, the ADC is 24 bits and is always in bipolar mode. The OFFSET CAL and GAIN CAL data are also 24 bits. The conversion to unipolar and the gain are performed digitally. The default values for the OFFSET CAL and GAIN CAL registers in the MAX1358/MAX1359/MAX1360 are 00 0000h and 80 0000h, respectively. For best performance, use PC boards with separate analog and digital ground planes. The calibration works as follows: ADC = (RAW - OFFSET) x Gain x PGA where ADC is the conversion result in the DATA register, RAW is the output of the decimation filter internal to the MAX1358/MAX1359/MAX1360, OFFSET is the value stored in the OFFSET CAL register, Gain is the value stored in the GAIN CAL register, and PGA is the selected PGA gain found in the ADC register as GAIN<1:0>. In unipolar mode, all negative values return a zero result and an additional gain of 2 is added. For self-calibration, the offset value is the RAW result when the inputs are shorted internally and the gain value is 1 / (RAW - OFFSET) with the reference connected to the input. This is done automatically when these modes are selected. The self offset and gain calibration corrects for errors internal to the ADC and the results are stored and used automatically in the OFFSET CAL and GAIN CAL registers. For best results, use the ADC in the same configuration as the calibration. This pertains to conversion rate only because the PGA gain and unipolar/bipolar modes are performed digitally. For system calibration, the offset and gain values correct for errors in the whole signal path including the internal ADC and any external circuits in the signal path. For the system calibration, a user-provided zeroinput condition is required for the offset calibration and a user-provided full-scale input is required for the gain calibration. These values are automatically written to the OFFSET CAL and GAIN CAL registers. The order of the calibrations should be offset followed by gain. The offset correction value is in two's complement. The default value is 000000h, 00...00b, or 0 decimal. The gain correction value is an unsigned binary number with 23 bits to the right of the decimal point. The largest number is therefore 1.1111...1b = 2 - 2-23 and the smallest is 0.000...0b = 0, although it does not make sense to use a number smaller than 0.1000...0b = 0.5. The default value is 800000h, 1.000...0b or 1 decimal. Changing the offset or gain calibration values does not affect the value in the DATA register until a new conversion has completed. This applies to all the mode bits for PGA gain, unipolar/bipolar, etc. 68 Design the PC board so that the analog and digital sections are separated and confined to different areas of the board. Join the digital and analog ground planes at one point. If the DAS (MAX1358/MAX1359/MAX1360) is the only device requiring an AGND-to-DGND connection, connect planes to the AGND pin of the DAS. In systems where multiple devices require AGND-toDGND connections, the connection should still be made at only one point. Make the star ground as close to the MAX1358/MAX1359/MAX1360 as possible. Avoid running digital lines under the device because these may couple noise onto the device. Run the analog ground plane under the MAX1358/MAX1359/ MAX1360 to minimize coupling of digital noise. Make the power-supply lines to the MAX1358/MAX1359/ MAX1360 as wide as possible to provide low-impedance paths and reduce the effects of glitches on the power-supply line. Shield fast-switching signals such as clocks with digital ground to avoid radiating noise to other sections of the board. Avoid running clock signals near the analog inputs. Avoid crossover of digital and analog signals. Good decoupling is important when using high-resolution ADCs. Decouple all analog supplies with 10F capacitors in parallel with 0.1F HF ceramic capacitors to AGND. Place these components as close to the device as possible to achieve the best decoupling. Crystal Layout Follow basic layout guidelines when placing a crystal on a PC board with a DAS to avoid coupled noise. 1) Place the crystal as close as possible to 32KIN and 32KOUT. Keeping the trace lengths between the crystal and inputs as short as possible reduces the probability of noise coupling by reducing the length of the "antennae". Keep the 32KIN and 32KOUT lines close to each other to minimize the loop area of the clock lines. Keeping the trace lengths short also decreases the amount of stray capacitance. 2) Keep the crystal solder pads and trace width to 32KIN and 32KOUT as small as possible. The larger these bond pads and traces are, the more likely it is that noise will couple from adjacent signals. 3) Place a guard ring (connect to ground) around the crystal to isolate the crystal from noise coupled from adjacent signals. 4) Ensure that no signals on other PC board layers run directly below the crystal or below the traces to ______________________________________________________________________________________ 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor MUX PGA 16-BIT ADC REF AGND 2N3904 AV = 1, 2, 4, 8 AIN2 MAX1358 MAX1359 MAX1360 MUX AGND AV = 1, 1.638, 2 2N3904 TEMP SENSOR CREF REF 1.25V REF Figure 30. Temperature Measurement with Two Remote Sensors AIN1 MAX1360 VIN+ OUT1 VOUT IN1- AIN2 AV = 1, 1.638, 2 1.25V REF R3 CREF REF AGND 2N3904 IN1+ SNO1 R IN1+ SCM1 R2 OUT1 IN1- SNC1 R VIN- IN3+ R1 IN2+ OUT2 IN2- OUT3 AVDD R1 R IN3RA SNO2 SCM2 RB R2 R IN2+ SNC2 OUT2 RD RC IN2- Figure 31. Strain-Gauge Measurement with Remote Temperature Sensor 32KIN and 32KOUT. The more the crystal is isolated from other signals on the board, the less likely it is that noise will be coupled into the crystal. Maintain a minimum distance of 5mm between any digital signal and any trace connected to 32KIN or 32KOUT. MAX1359 MAX1360 R3 Figure 32. Programmable-Gain Instrumentation Amplifier 5) Place a local ground plane on the PC board layer immediately below the crystal guard ring. This helps to isolate the crystal from noise coupling from signals on other PC board layers. Note: The ground plane must be in the vicinity of the crystal only and not on the entire board. ______________________________________________________________________________________ 69 MAX1358/MAX1359/MAX1360 AIN1 MAX1358/MAX1359/MAX1360 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor MAX1358 MAX1359 MAX1360 DVDD CPOUT SV_ CPOUT MUX 100k UPIO_ PWM 200k 0.01F C (1.8V TO 2.6V) 100k EN_ SEG ALH_ LCD DRIVERS 100k n LCD COM m 100k Figure 33. LCD Contrast-Adjustment Application Parameter Definitions INL Integral nonlinearity (INL) is the deviation of the values on an actual transfer function from a straight line. This straight line is either a best-straight-line fit or a line drawn between the endpoints of the transfer function, once offset and gain errors have been nulled. INL for the MAX1358/MAX1359/MAX1360 is measured using the endpoint method. ~1.25V REF ~19kHz VOLTAGE RIPPLE <1mV 350k MAX1360 SNO1 SCM1 PWM 240k ~0.3V SNC1 SPDT1 0.1F 60k AGND DNL Differential nonlinearity (DNL) is the difference between an actual step width and the ideal value of 1 LSB. A DNL error specification of greater than -1 LSB guarantees no missing codes and a monotonic transfer function. Gain Error IN1+ OUT1 IN1IT TRANSDUCER 0.300V (1mV) Gain error is the amount of deviation between the measured full-scale transition point and the ideal full-scale transition point. Figure 34. Sensor-Bias Voltage Trim Application 70 ______________________________________________________________________________________ 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor MAX1358/MAX1359/MAX1360 VDD AVDD DVDD MAX1358 MAX1359 MAX1360 DVDD <10A CPOUT VIN SV_ MUX VBATT 10M VDD VOUT 100F POWER SUPPLY C UPIO_ PWM SHDN PSCTL ON-TIME <100ms TYP 10s PERIOD TYP EN_ ALH_ PSCTL +3.3V VDD +2.3V Figure 35. Power-Supply Sleep-Mode Duty-Cycle Control Common-Mode Rejection Common-mode rejection (CMR) is the ability of a device to reject a signal that is common to both input terminals. The common-mode signal can be either an AC or a DC signal or a combination of the two. CMR is often expressed in decibels. MAX1358 MAX1359 MAX1360 DVDD SV_ MUX CPOUT(+3.2V) 0V Power-Supply Rejection Ratio (PSRR) Power-supply rejection ratio (PSRR) is the ratio of the input supply change (in volts) to the change in the converter output (in volts). It is typically measured in decibels. CPOUT UPIO_ 1 TO 8kHz TYP 1k PWM ~10,000pF Chip Information PROCESS: BiCMOS ALH_ Figure 36. Single-Ended Piezoelectric Buzzer Drive ______________________________________________________________________________________ 71 MAX1358/MAX1359/MAX1360 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor MAX1358 MAX1359 MAX1360 DVDD CPOUT CPOUT(+3.2V) MUX SV_ 0V UPIO_ PWM 1 TO 8kHz TYP 1k ~10,000pF ALH_ DVDD CPOUT SV_ CPOUT + 6.4V DIFF -CPOUT MUX UPIO_ 1k CPOUT(~+3.2V) 0V 1 TO 8kHz TYP ALH_ Figure 37. Differential Piezoelectric Buzzer Drive 72 ______________________________________________________________________________________ 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor AIN2 AIN1 31 20 32 19 IN1- IN1+ SWA FBA OUTA AGND AVDD IN2+ OUT1 AIN2 31 20 OUT1 SNC2 AIN1 32 19 SNC2 18 SCM2 17 SNO2 REF 33 18 SCM2 REF 33 REG 34 17 SNO2 REG 34 SNC1 CF- 35 SCM1 CF+ 36 CF- IN2- OUT2 IN1+ SWA FBA OUTA AGND AVDD SWB FBB OUTB IN1- 30 29 28 27 26 25 24 23 22 21 30 29 28 27 26 25 24 23 22 21 16 35 MAX1358 15 16 SNC1 MAX1359 15 SCM1 12 32KOUT 40 11 RESET 2 3 4 5 6 7 8 9 10 CLK32K 1 CS UPIO1 INT RESET DIN 11 SCLK 40 DOUT UPIO1 UPIO4 32KOUT UPIO3 12 CLK 39 UPIO2 DGND 1 2 3 4 5 6 7 8 9 10 CLK32K 13 32KIN 39 DGND INT 14 SNO1 38 CS 37 DVDD DIN CPOUT 32KIN SCLK SNO1 13 DOUT 14 38 UPIO4 37 DVDD UPIO3 CPOUT CLK 36 UPIO2 CF+ TQFN IN1- IN1+ IN3+ IN3- OUT3 AGND AVDD IN2+ IN2- OUT2 TQFN 30 29 28 27 26 25 24 23 22 21 AIN2 31 20 OUT1 AIN1 32 19 SNC2 REF 33 18 SCM2 REG 34 17 SNO2 CF- 35 16 SNC1 CF+ 36 15 SCM1 CPOUT 37 14 SNO1 DVDD 38 13 32KIN DGND 39 12 32KOUT UPIO1 40 11 RESET UPIO4 7 8 9 10 CLK32K UPIO3 6 CS UPIO2 5 INT 4 DIN 3 SCLK 2 DOUT 1 CLK MAX1360 TQFN ______________________________________________________________________________________ 73 MAX1358/MAX1359/MAX1360 Pin Configurations Package Information (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.) QFN THIN 6x6x0.8.EPS MAX1358/MAX1359/MAX1360 16-Bit Data-Acquisition Systems with ADC, DACs, UPIOs, RTC, Voltage Monitors, and Temp Sensor D2 D CL D/2 b D2/2 k E/2 E2/2 (NE-1) X e E CL E2 k e L (ND-1) X e e L CL CL L1 L L e A1 A2 e A PACKAGE OUTLINE 36, 40, 48L THIN QFN, 6x6x0.8mm 21-0141 E 1 2 NOTES: 1. DIMENSIONING & TOLERANCING CONFORM TO ASME Y14.5M-1994. 2. ALL DIMENSIONS ARE IN MILLIMETERS. ANGLES ARE IN DEGREES. 3. N IS THE TOTAL NUMBER OF TERMINALS. 4. THE TERMINAL #1 IDENTIFIER AND TERMINAL NUMBERING CONVENTION SHALL CONFORM TO JESD 95-1 SPP-012. DETAILS OF TERMINAL #1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE INDICATED. THE TERMINAL #1 IDENTIFIER MAY BE EITHER A MOLD OR MARKED FEATURE. 5. DIMENSION b APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.25 mm AND 0.30 mm FROM TERMINAL TIP. 6. ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY. 7. DEPOPULATION IS POSSIBLE IN A SYMMETRICAL FASHION. 8. COPLANARITY APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS. 9. DRAWING CONFORMS TO JEDEC MO220, EXCEPT FOR 0.4mm LEAD PITCH PACKAGE T4866-1. 10. WARPAGE SHALL NOT EXCEED 0.10 mm. PACKAGE OUTLINE 36, 40, 48L THIN QFN, 6x6x0.8mm 21-0141 E 2 2 Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 74 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 (c) 2005 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products, Inc.