July 2003
The follo wing document specifies Spansi on memory p roducts t hat are now of fered by both Advanced
Micro Devices and Fujitsu. Although the document is marked with the name of the company that orig-
inally developed the specification, these products will be offered to customers of both AMD and
Fujitsu.
Continuity of Specifications
There is no change to this datasheet as a result of offering the device as a Spansion product. Any
changes that have been made are the re sult of normal datasheet improvement and are noted in the
document revis ion summary, where suppo rted. Future routine revisions will occur whe n appropriate,
and changes will be noted in a revision su mmary.
Continuity of Ordering Part Numbers
AMD and Fujitsu continue to support e xisting part numbers beginning with “Am” and “MBM”. To order
these products, please use only the Or dering Part Number s lis ted in this docu ment.
For More Information
Please contact your local AMD or Fujitsu sales office for additional information about Spansion
memory soluti ons.
Am29LV400B
Data Sheet
Publication Number 21523 Revision DAmendment +2 Issue Date October 30, 2003
THIS PAGE LEFT INTENTIONALLY BLANK.
This Data Sheet states AMD’s current technical specifications regarding the Product described herein. This Data
Sheet may be revised by subsequent versions or modifications due to changes in technical specifications.
Publication# 21523 Rev: DAmendment/+2
Issue Date: October 30, 2003
Am29LV400B
4 Megabit (512 K x 8-Bit/256 K x 16-Bit)
CMOS 3.0 Volt-only Boot Sector Flash Memory
DISTINCTIVE CHARACTERISTICS
Single power supply operation
Full voltage range: 2.7 to 3.6 volt read and write
operations for battery-powered applications
Regulated voltage range: 3.0 to 3.6 volt read and
write operations for compatibility with high
performance 3.3 volt microprocessors
Manufactured on 0.32 µm process technology
Compatible with 0.5 µm Am29LV400 device
High performance
Full voltage range: access times as fast as 70 ns
Regulated voltage range: access times as fast as
55 ns
Ultra low power consumption (typical values at
5 MHz)
200 nA Automatic Sleep mode current
200 nA standby mode current
7 mA read current
15 mA program/erase current
Flexible sector architecture
One 16 Kbyte, two 8 Kbyte, one 32 Kbyte, and
seven 64 Kbyte sectors (byte mode)
One 8 Kword, two 4 Kword, one 16 Kword, and
seven 32 Kword sectors (word mode)
Supports full chip erase
Sector Protection features:
A hardware method of locking a sector to prevent
any program or erase operations within that sector
Sectors can be locked in-system or via
programming equipment
Temporary Sector Unprotect feature allows code
changes in previously locked sectors
Unlock Bypass Program Command
Reduces overall programming time when issuing
multiple program command sequences
Top or bottom boot block configurations
available
Embedded Algorithms
Embedded Erase algorithm automatically
preprograms and erases the entire chip or any
combination of designated sectors
Embedded Program algorithm automatically
writes and verifies data at specified addresses
Minimum 1,000,000 write cycle guarantee per sector
20-year data retention at 125°C
Reliable operation for the life of the system
Package option
48-ball FBGA
48-pin TSOP
44-pin SO
Lead (Pb) - Free Packaging Available
Compatibility with JEDEC standards
Pinout and software compatible with
single-power supply Flash
Superior inadvertent write protection
Data# Polling and toggle bits
Provides a software method of detecting program
or erase operation completion
Ready/Busy# pin (RY/BY#)
Provides a hardware method of detecting
program or erase cycle completion
Erase Suspend/Erase Resume
Suspends an erase operation to read data from,
or program data to, a sector that is not being
erased, then resumes the erase operation
Hardware reset pin (RESET#)
Hardware method to reset the device to reading
array data
10/30/03 Am29LV400B 2
GENERAL DESCRIPTION
The Am29LV400B is a 4 Mbit, 3.0 volt-only Flash
memory organized as 524,288 bytes or 262,144 words.
The device is offered in 48-ball FBGA, 44-pin SO, and
48-pin TSOP packages. The word-wide data (x16)
appears on DQ15–DQ0; the byte-wide (x8) data
appears on DQ7–DQ0. This device is designed to be
programmed in-system using only a single 3.0 volt VCC
supply. No VPP is required for write or erase operations.
The device can also be programmed in standard
EPROM programmers.
This device is manufactured using AMD’s 0.32 µm
process technology, and offers all the features and ben-
efits of the Am29LV400, which was manufactured using
0.5 µm process technology. In addition, the
Am29LV400B features unlock bypass programming
and in-system sector protection/unprotection.
The standard device offers access times of 55, 70, 90
and 120 ns, allowing high speed microprocessors to
operate without wait states. To eliminate bus contention
the device has separate chip enable (CE#), write
enable (WE#) and output enable (OE#) controls.
The device requires only a single 3.0 volt power
supply for both read and write functions. Internally
generated and regulated voltages are provided for the
program and erase operations.
The device is entirely command set compatible with the
JEDEC single-power-supply Flash standard. Com-
mands are written to the command register using stan-
dard microprocessor write timings. Register contents
serve as input to an internal state-machine that con-
trols the erase and programming circuitry. Write cycles
also internally latch addresses and data needed for the
programming and erase operations. Reading data out
of the device is similar to reading from other Flash or
EPROM devices.
Device programming occurs by executing the program
command sequence. This initiates the Embedded
Program algorithm—an internal algorithm that auto-
matically times the program pulse widths and verifies
proper cell margin. The Unlock Bypass mode facili-
tates faster programming times by requiring only two
write cycles to program data instead of four.
Device erasure occurs by executing the erase
command sequence. This initiates the Embedded
Erase algorithm—an internal algorithm that automatically
pre-programs the array (if it is not already programmed)
before executing the erase operation. During erase, the
device automatically times the erase pulse widths and
verifies proper cell margin.
The host system can detect whether a program or
erase operation is complete by observing the RY/BY#
pin, or by reading the DQ7 (Data# Polling) and DQ6
(toggle) status bits. After a program or erase cycle has
been completed, the device is ready to read array data
or accept another command.
The sector erase architecture allows memory sectors
to be erased and reprogrammed without affecting the
data contents of other sectors. The device is fully
erased when shipped from the factory.
Hardware data protection measures include a low
VCC detector that automatically inhibits write operations
during power transitions. The hardware sector pro-
tection feature disables both program and erase oper-
ations in any combination of the sectors of memory.
This can be achieved in-system or via programming
equipment.
The Erase Suspend feature enables the user to put
erase on hold for any period of time to read data from,
or program data to, any sector that is not selected for
erasure. True background erase can thus be achieved.
The hardware RESET# pin terminates any operation
in progress and resets the internal state machine to
reading array data. The RESET# pin may be tied to the
system reset circuitry. A system reset would thus also
reset the device, enabling the system microprocessor
to read the boot-up firmware from the Flash memory.
The device offers two power-saving features. When
addresses have been stable for a specified amount of
time, the device enters the automatic sleep mode.
The system can also place the device into the standby
mode. Power consumption is greatly reduced in both
these modes.
AMD’s Flash technology combines years of Flash
memory manufacturing experience to produce the
highest levels of quality, reliability and cost effectiveness.
The device electrically erases all bits within a sector simul-
taneously via Fowler-Nordheim tunneling. The data is
programmed using hot electron injection.
3 Am29LV400B 10/30/03
TABLE OF CONTENTS
Product Selector Guide . . . . . . . . . . . . . . . . . . . . . 4
Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . 5
Special Handling Instructions for Fine Pitch
Ball Grid Array (FBGA) ...................................................................7
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . 8
Device Bus Operations . . . . . . . . . . . . . . . . . . . . . 9
Table 1. Am29LV400B Device Bus Operations ......................................9
Word/Byte Configuration ................................................................ 9
Requirements for Reading Array Data ...........................................9
Writing Commands/Command Sequences ..................................10
Program and Erase Operation Status ..........................................10
Standby Mode ..............................................................................10
Automatic Sleep Mode .................................................................10
RESET#: Hardware Reset Pin .....................................................10
Output Disable Mode ...................................................................11
Table 2. Am29LV400BT Top Boot Sector Address Table .....................11
Table 3. Am29LV400BB Bottom Boot Sector Address Table ...............11
Autoselect Mode .......................................................................... 12
Table 4. Am29LV400B Autoselect Codes (High Voltage Method) ........12
Sector Protection/Unprotection .................................................... 12
Figure 1. In-System Sector Protect/Unprotect Algorithms .................... 13
Temporary Sector Unprotect ........................................................ 14
Figure 2. Temporary Sector Unprotect Operation................................. 14
Hardware Data Protection ............................................................ 14
Low VCC Write Inhibit .................................................................... 14
Write Pulse “Glitch” Protection .....................................................14
Logical Inhibit ...............................................................................14
Power-Up Write Inhibit .................................................................14
Command Definitions . . . . . . . . . . . . . . . . . . . . . 15
Reading Array Data ......................................................................15
Reset Command .......................................................................... 15
Autoselect Command Sequence ..................................................15
Word/Byte Program Command Sequence ...................................15
Unlock Bypass Command Sequence ...........................................16
Figure 3. Program Operation ................................................................ 16
Chip Erase Command Sequence .................................................16
Sector Erase Command Sequence ..............................................17
Erase Suspend/Erase Resume Commands ................................17
Figure 4. Erase Operation..................................................................... 18
Table 5. Am29LV400B Command Definitions .......................................19
Write Operation Status . . . . . . . . . . . . . . . . . . . . 20
DQ7: Data# Polling ...................................................................... 20
Figure 5. Data# Polling Algorithm ......................................................... 20
RY/BY#: Ready/Busy# .................................................................21
DQ6: Toggle Bit I ..........................................................................21
DQ2: Toggle Bit II .........................................................................21
Reading Toggle Bits DQ6/DQ2 ....................................................21
DQ5: Exceeded Timing Limits ...................................................... 22
DQ3: Sector Erase Timer ............................................................. 22
Figure 6. Toggle Bit Algorithm .............................................................. 22
Table 6. Write Operation Status ........................................................... 23
Absolute Maximum Ratings. . . . . . . . . . . . . . . . . 24
Figure 7. Maximum Negative Overshoot Waveform ............................. 24
Figure 8. Maximum Positive Overshoot Waveform .............................. 24
DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 9. ICC1 Current vs. Time (Showing Active and Automatic
Sleep Currents)..................................................................................... 26
Figure 10. Typical ICC1 vs. Frequency................................................... 26
Test Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 11. Test Setup ........................................................................... 27
Table 7. Test Specifications .................................................................. 27
Figure 12. Input Waveforms and Measurement Levels ........................ 27
AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 28
Read Operations .......................................................................... 28
Figure 13. Read Operations Timings.................................................... 28
Hardware Reset (RESET#) .......................................................... 29
Figure 14. RESET# Timings ................................................................. 29
Word/Byte Configuration (BYTE#) .............................................30
Figure 15. BYTE# Timings for Read Operations .................................. 30
Figure 16. BYTE# Timings for Write Operations .................................. 30
Erase/Program Operations .......................................................... 31
Figure 17. Program Operation Timings ................................................ 32
Figure 18. Chip/Sector Erase Operation Timings ................................. 33
Figure 19. Data# Polling Timings (During Embedded Algorithms) ....... 34
Figure 20. Toggle Bit Timings (During Embedded Algorithms) ............ 34
Figure 21. DQ2 vs. DQ6 ....................................................................... 35
Figure 22. Temporary Sector Unprotect Timing Diagram..................... 35
Figure 23. Sector Protect/Unprotect Timing Diagram ........................... 36
Figure 24. Alternate CE# Controlled Write Operation Timings ............. 38
Erase And Programming Performance. . . . . . . . 39
BGA Ball Capacitance . . . . . . . . . . . . . . . . . . . . . 40
TS 048—48-Pin Standard TSOP ................................................. 41
TSR048—48-Pin Reverse TSOP .................................................42
FBA048—48-ball Fine-Pitch Ball Grid Array (FBGA)
6 x 8 mm package ........................................................................ 43
SO 044—44-Pin Small Outline Package .....................................44
Revision A (January 1998) ...........................................................45
Revision B (July 1998) .................................................................45
Revision B+1 (August 1998) ........................................................ 45
Revision C (January 1999) ...........................................................45
Revision C+1 (July 2, 1999) ......................................................... 45
Revision D (January 3, 1999) .......................................................45
Revision D+1 (November 8, 2000) ...............................................45
Revision D+2 (October 30, 2003) ................................................ 45
10/30/03 Am29LV400B 4
PRODUCT SELECTOR GUIDE
Note: See “AC Characteristics” for full specifications.
BLOCK DIAGRAM
Family Part Number Am29LV400B
Speed Options
Regulated Voltage Range: 3.0 – 3.6 V 55R
Full Voltage Range: 2.7 – 3.6 V 70 90 120
Max access time, ns (tACC) 55 70 90 120
Max CE# access time, ns (tCE) 55 70 90 120
Max OE# access time, ns (tOE)30303550
Input/Output
Buffers
X-Decoder
Y-Decoder
Chip Enable
Output Enable
Logic
Erase Voltage
Generator
PGM Voltage
Generator
Timer
VCC Detector
State
Control
Command
Register
VCC
VSS
WE#
BYTE#
CE#
OE#
STB
STB
DQ0
DQ15 (A-1)
Sector Switches
RY/BY#
RESET#
Data
Latch
Y-Gating
Cell Matrix
Address Latch
A0–A17
5 Am29LV400B 10/30/03
CONNECTION DIAGRAMS
A1
A15
NC
A14
A13
A12
A11
A10
A9
A8
NC
NC
WE#
RESET#
NC
NC
RY/BY#
A17
A7
A6
A5
A4
A3
A2
1
16
2
3
4
5
6
7
8
17
18
19
20
21
22
23
24
9
10
11
12
13
14
15
A16
DQ2
BYTE#
VSS
DQ15/A-1
DQ7
DQ14
DQ6
DQ13
DQ9
DQ1
DQ8
DQ0
OE#
VSS
CE#
A0
DQ5
DQ12
DQ4
VCC
DQ11
DQ3
DQ10
48
33
47
46
45
44
43
42
41
40
39
38
37
36
35
34
25
32
31
30
29
28
27
26
A1
A15
NC
A14
A13
A12
A11
A10
A9
A8
NC
NC
WE#
RESET#
NC
NC
RY/BY#
A17
A7
A6
A5
A4
A3
A2
1
16
2
3
4
5
6
7
8
17
18
19
20
21
22
23
24
9
10
11
12
13
14
15
A16
DQ2
BYTE#
VSS
DQ15/A-1
DQ7
DQ14
DQ6
DQ13
DQ9
DQ1
DQ8
DQ0
OE#
VSS
CE#
A0
DQ5
DQ12
DQ4
VCC
DQ11
DQ3
DQ10
48
33
47
46
45
44
43
42
41
40
39
38
37
36
35
34
25
32
31
30
29
28
27
26
Reverse TSOP
Standard TSOP
10/30/03 Am29LV400B 6
CONNECTION DIAGRAMS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
NC
RY/BY#
A17
A7
A6
A5
A4
A3
A2
A1
A0
CE#
V
SS
OE#
DQ0
DQ8
DQ1
DQ9
DQ2
DQ10
DQ3
DQ11
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
RESET#
WE#
A8
A9
A10
A11
A12
A13
A14
A15
A16
BYTE#
V
SS
DQ15/A-1
DQ7
DQ14
DQ6
DQ13
DQ5
DQ12
DQ4
V
CC
SO
A1 B1 C1 D1 E1 F1 G1 H1
A2 B2 C2 D2 E2 F2 G2 H2
A3 B3 C3 D3 E3 F3 G3 H3
A4 B4 C4 D4 E4 F4 G4 H4
A5 B5 C5 D5 E5 F5 G5 H5
A6 B6 C6 D6 E6 F6 G6 H6
DQ15/A-1 VSS
BYTE#A16A15A14A12A13
DQ13 DQ6DQ14DQ7A11A10A8A9
VCC DQ4DQ12DQ5NCNCRESET#WE#
DQ11 DQ3DQ10DQ2NCNCNCRY/BY#
DQ9 DQ1DQ8DQ0A5A6A17A7
OE# VSS
CE#A0A1A2A4A3
FBGA
Top View, Balls Facing Down
7 Am29LV400B 10/30/03
Special Handling Instructions for Fine
Pitch Ball Grid Array (FBGA)
Special handling is required for Flash Memory products
in FBGA packages.
The package and/or data integrity may be compro-
mised if the package body is exposed to temperatures
above 150°C for prolonged periods of time.
PIN CONFIGURATION
A0–A17 =18 addresses
DQ0–DQ14 =15 data inputs/outputs
DQ15/A-1 =DQ15 (data input/output, word mode),
A-1 (LSB address input, byte mode)
BYTE# =Selects 8-bit or 16-bit mode
CE# =Chip enable
OE# = Output enable
WE# =Write enable
RESET# =Hardware reset pin, active low
RY/BY# = Ready/Busy# output
VCC =3.0 volt-only single power supply
(see Product Selector Guide for speed
options and voltage supply tolerances)
VSS =Device ground
NC =Pin not connected internally
LOGIC SYMBOL
18
16 or 8
DQ0–DQ15
(A-1)
A0–A17
CE#
OE#
WE#
RESET#
BYTE# RY/BY#
10/30/03 Am29LV400B 8
ORDERING INFORMATION
Standard Products
AMD standard products are available in several packages and operating ranges. The order number (Valid Combi-
nation) is formed by a combination of the elements below.
Valid Combinations
Valid Combinations list configurations planned to be sup-
ported in volume for this device. Consult the local AMD sales
office to confirm availability of specific valid combinations and
to check on newly released combinations.
Am29LV400B T -55R E C
TEMPERATURE RANGE
D = Commercial (0°C to +70°C); Lead (Pb)-Free Package
C = Commercial (0°C to +70°C)
F = Industrial (-40°C to 85°C); Lead (Pb)-Free Package
I = Industrial (–40°C to +85°C)
K = Extended (–55°C to +125°C); Lead (Pb)-Free Package
E = Extended (–55°C to +125°C)
PACKAGE TYPE
E = 48-Pin Thin Small Outline Package (TSOP) Standard Pinout (TS 048)
F = 48-Pin Thin Small Outline Package (TSOP) Reverse Pinout (TSR048)
S = 44-Pin Small Outline Package (SO 044)
WA=48-Ball Fine Pitch Ball Grid Array (FBGA)
0.80 mm pitch, 6 x 8 mm package (FBA048)
SPEED OPTION
See Product Selector Guide and Valid Combinations
BOOT CODE SECTOR ARCHITECTURE
T = Top sector
B = Bottom sector
DEVICE NUMBER/DESCRIPTION
Am29LV400B
4 Megabit (512 K x 8-Bit/256 K x 16-Bit) CMOS Flash Memory
3.0 Volt-only Read, Program, and Erase
Valid Combinations for TSOP and SO Packages
AM29LV400BT55R,
AM29LV400BB55R
ED, EF, EK, EC, EI, FC, FD, FF, FK,
FI, SC, SI, SD, SF, SK
AM29LV400BT70,
AM29LV400BB70 EC, EI, EE,
FC, FI, FE,
SC, SI, SE,
ED, EF, EK, FD, FF, FK
SD, SF, SK
AM29LV400BT90,
AM29LV400BB90
AM29LV400BT120,
AM29LV400BB120
Valid Combinations for FBGA Packages
Order Number Package Marking
AM29LV400BT55R,
AM29LV400BB55R
WAC,WAI,
WAD,WAF,
WAK
L400BT55R,
L400BB55R
C, I, D,
F, K
AM29LV400BT70,
AM29LV400BB70
WAC, WAI,
WAE,WAD,
WAF,WAK
L400BT70V,
L400BB70V
C, I, E,
D, F, K
AM29LV400BT90,
AM29LV400BB90
L400BT90V,
L400BB90V
AM29LV400BT120,
AM29LV400BB120
L400BT12V,
L400BB12V
9 Am29LV400B 10/30/03
DEVICE BUS OPERATIONS
This section describes the requirements and use of the
device bus operations, which are initiated through the
internal command register. The command register
itself does not occupy any addressable memory loca-
tion. The register is composed of latches that store the
commands, along with the address and data informa-
tion needed to execute the command. The contents of
the register serve as inputs to the internal state
machine. The state machine outputs dictate the func-
tion of the device. Table 1 lists the device bus opera-
tions, the inputs and control levels they require, and the
resulting output. The following subsections describe
each of these operations in further detail.
Table 1. Am29LV400B Device Bus Operations
Legend:
L = Logic Low = V
IL
, H = Logic High = V
IH
, V
ID
= 12.0
±
0.5 V, X = Don’t Care, A
IN
= Addresses In, D
IN
= Data In, D
OUT
= Data Out
Notes:
1. Addresses are A17:A0 in word mode (BYTE# = V
IH
),
A17:A-1 in byte mode (BYTE# = V
IL
).
2. The sector protect and sector unprotect functions may
also be implemented via programming equipment. See
the “Sector Protection/Unprotection” section.
Word/Byte Configuration
The BYTE# pin controls whether the device data I/O
pins DQ15–DQ0 operate in the byte or word configura-
tion. If the BYTE# pin is set at logic ‘1’, the device is in
word configuration, DQ15–DQ0 are active and con-
trolled by CE# and OE#.
If the BYTE# pin is set at logic ‘0’, the device is in byte
configuration, and only data I/O pins DQ0–DQ7 are
active and controlled by CE# and OE#. The data I/O
pins DQ8–DQ14 are tri-stated, and the DQ15 pin is
used as an input for the LSB (A-1) address function.
Requirements for Reading Array Data
To read array data from the outputs, the system must
drive the CE# and OE# pins to VIL. CE# is the power
control and selects the device. OE# is the output
control and gates array data to the output pins. WE#
should remain at VIH. The BYTE# pin determines
whether the device outputs array data in words or
bytes.
The internal state machine is set for reading array data
upon device power-up, or after a hardware reset. This
ensures that no spurious alteration of the memory
content occurs during the power transition. No
command is necessary in this mode to obtain array
data. Standard microprocessor read cycles that assert
valid addresses on the device address inputs produce
valid data on the device data outputs. The device
remains enabled for read access until the command
register contents are altered.
Address access time (tACC) is the delay from stable
addresses to valid output data. The chip enable access
time (tCE) is the delay from stable addresses and stable
CE# to valid data at the output pins. The output enable
Operation CE# OE#
WE
# RESET#
Addresses
(Note 1)
DQ0–
DQ7
DQ8–DQ15
BYTE#
= VIH
BYTE#
= VIL
Read L L H H AIN DOUT DOUT DQ8–DQ14 =
High-Z, DQ15 = A-1
Write L H L H AIN DIN DIN
Standby VCC ±
0.3 V XXVCC ±
0.3 V X High-Z High-Z High-Z
Output Disable L H H H X High-Z High-Z High-Z
Reset X X X L X High-Z High-Z High-Z
Sector Protect (Note 2) L H L VID
Sector Address, A6 = L,
A1 = H, A0 = L DIN XX
Sector Unprotect (Note 2) L H L VID
Sector Address, A6 = H,
A1 = H, A0 = L DIN XX
Temporary Sector
Unprotect XXX V
ID AIN DIN DIN High-Z
10/30/03 Am29LV400B 10
access time (tOE) is the delay from the falling edge of
OE# to valid data at the output pins (assuming the
addresses have been stable for at least tACC–tOE time).
See “Reading Array Data” for more information. Refer
to the AC Read Operations table for timing specifica-
tions and to Figure 13 for the timing diagram. ICC1 in the
DC Characteristics table represents the active current
specification for reading array data.
Writing Commands/Command Sequences
To write a command or command sequence (which
includes programming data to the device and erasing
sectors of memory), the system must drive WE# and
CE# to VIL, and OE# to VIH.
For program operations, the BYTE# pin determines
whether the device accepts program data in bytes or
words. Refer to “Word/Byte Configuration” for more
information.
The device features an Unlock Bypass mode to facili-
tate faster programming. Once the device enters the
Unlock Bypass mode, only two write cycles are
required to program a word or byte, instead of four. The
“Word/Byte Program Command Sequence” section
has details on programming data to the device using
both standard and Unlock Bypass command
sequences.
An erase operation can erase one sector, multiple sec-
tors, or the entire device. Tables 2 and 3 indicate the
address space that each sector occupies. A sector
address” consists of the address bits required to
uniquely select a sector. The “Command Definitions”
section has details on erasing a sector or the entire
chip, or suspending/resuming the erase operation.
After the system writes the autoselect command
sequence, the device enters the autoselect mode. The
system can then read autoselect codes from the
internal register (which is separate from the memory
array) on DQ7–DQ0. Standard read cycle timings apply
in this mode. Refer to the Autoselect Mode and Autose-
lect Command Sequence sections for more informa-
tion.
ICC2 in the DC Characteristics table represents the
active current specification for the write mode. The “AC
Characteristics” section contains timing specification
tables and timing diagrams for write operations.
Program and Erase Operation Status
During an erase or program operation, the system may
check the status of the operation by reading the status
bits on DQ7–DQ0. Standard read cycle timings and ICC
read specifications apply. Refer to “Write Operation
Status” for more information, and to “AC Characteris-
tics” for timing diagrams.
Standby Mode
When the system is not reading or writing to the device,
it can place the device in the standby mode. In this
mode, current consumption is greatly reduced, and the
outputs are placed in the high impedance state, inde-
pendent of the OE# input.
The device enters the CMOS standby mode when the
CE# and RESET# pins are both held at VCC ± 0.3 V.
(Note that this is a more restricted voltage range than
VIH.) If CE# and RESET# are held at VIH, but not within
VCC ± 0.3 V, the device will be in the standby mode, but
the standby current will be greater. The device requires
standard access time (tCE) for read access when the
device is in either of these standby modes, before it is
ready to read data.
If the device is deselected during erasure or program-
ming, the device draws active current until the
operation is completed.
ICC3 in the DC Characteristics table represents the
standby current specification.
Automatic Sleep Mode
The automatic sleep mode minimizes Flash device
energy consumption. The device automatically enables
this mode when addresses remain stable for tACC + 30
ns. The automatic sleep mode is independent of the
CE#, WE#, and OE# control signals. Standard address
access timings provide new data when addresses are
changed. While in sleep mode, output data is latched
and always available to the system. ICC4 in the DC
Characteristics table represents the automatic sleep
mode current specification.
RESET#: Hardware Reset Pin
The RESET# pin provides a hardware method of reset-
ting the device to reading array data. When the
RESET# pin is driven low for at least a period of tRP
, the
device immediately terminates any operation in
progress, tristates all output pins, and ignores all
read/write commands for the duration of the RESET#
pulse. The device also resets the internal state
machine to reading array data. The operation that was
interrupted should be reinitiated once the device is
ready to accept another command sequence, to
ensure data integrity.
Current is reduced for the duration of the RESET#
pulse. When RESET# is held at VSS±0.3 V, the device
draws CMOS standby current (ICC4). If RESET# is held
at VIL but not within VSS±0.3 V, the standby current will
be greater.
If RESET# is asserted during a program or erase oper-
ation, the RY/BY# pin remains a “0” (busy) until the
internal reset operation is complete, which requires a
time of tREADY (during Embedded Algorithms). The
11 Am29LV400B 10/30/03
system can thus monitor RY/BY# to determine whether
the reset operation is complete. If RESET# is asserted
when a program or erase operation is not executing
(RY/BY# pin is “1”), the reset operation is completed
within a time of tREADY (not during Embedded Algo-
rithms). The system can read data tRH after the
RESET# pin returns to VIH.
Refer to the AC Characteristics tables for RESET#
parameters and to Figure 14 for the timing diagram.
Output Disable Mode
When the OE# input is at VIH, output from the device is
disabled. The output pins are placed in the high imped-
ance state.
Table 2. Am29LV400BT Top Boot Sector Address Table
Table 3. Am29LV400BB Bottom Boot Sector Address Table
Note for Tables 2 and 3: Address range is A17:A-1 in byte
mode and A17:A0 in word mode. See “Word/Byte
Configuration” section.
Sector A17 A16 A15 A14 A13 A12
Sector Size
(Kbytes/
Kwords)
Address Range (in hexadecimal)
(x8)
Address Range
(x16)
Address Range
SA0 0 0 0 X X X 64/32 00000h–0FFFFh 00000h–07FFFh
SA1 0 0 1 X X X 64/32 10000h–1FFFFh 08000h–0FFFFh
SA2 0 1 0 X X X 64/32 20000h–2FFFFh 10000h–17FFFh
SA3 0 1 1 X X X 64/32 30000h–3FFFFh 18000h–1FFFFh
SA4 1 0 0 X X X 64/32 40000h–4FFFFh 20000h–27FFFh
SA5 1 0 1 X X X 64/32 50000h–5FFFFh 28000h–2FFFFh
SA6 1 1 0 X X X 64/32 60000h–6FFFFh 30000h–37FFFh
SA71110XX 32/16 70000h77FFFh38000h3BFFFh
SA8111100 8/4 78000h79FFFh3C000h3CFFFh
SA9111101 8/4 7A000h7BFFFh3D000h3DFFFh
SA1011111X 16/8 7C000h7FFFFh3E000h3FFFFh
Sector A17 A16 A15 A14 A13 A12
Sector Size
(Kbytes/
Kwords)
Address Range (in hexadecimal)
(x8)
Address Range
(x16)
Address Range
SA000000X 16/8 00000h03FFFh00000h01FFFh
SA1000010 8/4 04000h05FFFh02000h02FFFh
SA2000011 8/4 06000h07FFFh03000h03FFFh
SA30001XX 32/16 08000h0FFFFh04000h07FFFh
SA4 0 0 1 X X X 64/32 10000h–1FFFFh 08000h–0FFFFh
SA5 0 1 0 X X X 64/32 20000h–2FFFFh 10000h–17FFFh
SA6 0 1 1 X X X 64/32 30000h–3FFFFh 18000h–1FFFFh
SA7 1 0 0 X X X 64/32 40000h–4FFFFh 20000h–27FFFh
SA8 1 0 1 X X X 64/32 50000h–5FFFFh 28000h–2FFFFh
SA9 1 1 0 X X X 64/32 60000h–6FFFFh 30000h–37FFFh
SA10 1 1 1 X X X 64/32 70000h–7FFFFh 38000h–3FFFFh
10/30/03 Am29LV400B 12
Autoselect Mode
The autoselect mode provides manufacturer and
device identification, and sector protection verification,
through identifier codes output on DQ7–DQ0. This
mode is primarily intended for programming equipment
to automatically match a device to be programmed with
its corresponding programming algorithm. However,
the autoselect codes can also be accessed in-system
through the command register.
When using programming equipment, the autoselect
mode requires VID (11.5 V to 12.5 V) on address pin
A9. Address pins A6, A1, and A0 must be as shown in
Table 4. In addition, when verifying sector protection,
the sector address must appear on the appropriate
highest order address bits (see Tables 2 and 3). Table
4 shows the remaining address bits that are don’t care.
When all necessary bits have been set as required, the
programming equipment may then read the corre-
sponding identifier code on DQ7–DQ0.
To access the autoselect codes in-system, the host
system can issue the autoselect command via the
command register, as shown in Table 5. This method
does not require VID. See “Command Definitions” for
details on using the autoselect mode.
Table 4. Am29LV400B Autoselect Codes (High Voltage Method)
L = Logic Low = V
IL
, H = Logic High = V
IH
, SA = Sector Address, X = Don’t care.
Sector Protection/Unprotection
The hardware sector protection feature disables both
program and erase operations in any sector. The hard-
ware sector unprotection feature re-enables both
program and erase operations in previously protected
sectors. Sector protection/unprotection can be imple-
mented via two methods.
The primary method requires VID on the RESET# pin
only, and can be implemented either in-system or via
programming equipment. Figure 1 shows the algo-
rithms and Figure 23 shows the timing diagram. This
method uses standard microprocessor bus cycle
timing. For sector unprotect, all unprotected sectors
must first be protected prior to the first sector unprotect
write cycle.
The alternate method intended only for programming
equipment requires VID on address pin A9 and OE#.
This method is compatible with programmer routines
written for earlier 3.0 volt-only AMD flash devices. Pub-
lication number 20873 contains further details; contact
an AMD representative to request a copy.
The device is shipped with all sectors unprotected.
AMD offers the option of programming and protecting
sectors at its factory prior to shipping the device
through AMDs ExpressFlash™ Service. Contact an
AMD representative for details.
It is possible to determine whether a sector is protected
or unprotected. See “Autoselect Mode” for details.
Description Mode CE# OE# WE#
A17
to
A12
A11
to
A10 A9
A8
to
A7 A6
A5
to
A2 A1 A0
DQ8
to
DQ15
DQ7
to
DQ0
Manufacturer ID: AMD L L H X X VID XLXLL X 01h
Device ID:
Am29LV400B
(Top Boot Block)
Word L L H
XXV
ID XLXLH
22h B9h
Byte L L H X B9h
Device ID:
Am29LV400B
(Bottom Boot Block)
Word L L H
XXV
ID XLXLH
22h BAh
Byte L L H X BAh
Sector Protection Verification L L H SA X VID XLXHL
X01h
(protected)
X00h
(unprotected)
13 Am29LV400B 10/30/03
Figure 1. In-System Sector Protect/Unprotect Algorithms
Sector Protect:
Write 60h to sector
address with
A6 = 0, A1 = 1,
A0 = 0
Set up sector
address
Wait 150 µs
Verify Sector
Protect: Write 40h
to sector address
with A6 = 0,
A1 = 1, A0 = 0
Read from
sector address
with A6 = 0,
A1 = 1, A0 = 0
START
PLSCNT = 1
RESET# = VID
Wait 1 µs
First Write
Cycle = 60h?
Data = 01h?
Remove VID
from RESET#
Write reset
command
Sector Protect
complete
Yes
Yes
No
PLSCNT
= 25?
Yes
Device failed
Increment
PLSCNT
Temporary Sector
Unprotect Mode
No
Sector Unprotect:
Write 60h to sector
address with
A6 = 1, A1 = 1,
A0 = 0
Set up first sector
address
Wait 15 ms
Verify Sector
Unprotect: Write
40h to sector
address with
A6 = 1, A1 = 1,
A0 = 0
Read from
sector address
with A6 = 1,
A1 = 1, A0 = 0
START
PLSCNT = 1
RESET# = VID
Wait 1 µs
Data = 00h?
Last sector
verified?
Remove VID
from RESET#
Write reset
command
Sector Unprotect
complete
Yes
No
PLSCNT
= 1000?
Yes
Device failed
Increment
PLSCNT
Temporary Sector
Unprotect Mode
No All sectors
protected?
Yes
Protect all sectors:
The indicated portion
of the sector protect
algorithm must be
performed for all
unprotected sectors
prior to issuing the
first sector
unprotect address
Set up
next sector
address
No
Yes
No
Yes
No
No
Yes
No
Sector Protect
Algorithm
Sector Unprotect
Algorithm
First Write
Cycle = 60h?
Protect another
sector?
Reset
PLSCNT = 1
10/30/03 Am29LV400B 14
Temporary Sector Unprotect
This feature allows temporary unprotection of previ-
ously protected sectors to change data in-system. The
Sector Unprotect mode is activated by setting the
RESET# pin to VID. During this mode, formerly pro-
tected sectors can be programmed or erased by
selecting the sector addresses. Once VID is removed
from the RESET# pin, all the previously protected
sectors are protected again. Figure 2 shows the algo-
rithm, and Figure 22 shows the timing diagrams, for this
feature.
Figure 2. Temporary Sector Unprotect Operation
Hardware Data Protection
The command sequence requirement of unlock cycles
for programming or erasing provides data protection
against inadvertent writes (refer to Table 5 for
command definitions). In addition, the following hard-
ware data protection measures prevent accidental
erasure or programming, which might otherwise be
caused by spurious system level signals during VCC
power-up and power-down transitions, or from system
noise.
Low VCC Write Inhibit
When VCC is less than VLKO, the device does not accept
any write cycles. This protects data during VCC
power-up and power-down. The command register and
all internal program/erase circuits are disabled, and the
device resets. Subsequent writes are ignored until VCC
is greater than VLKO. The system must provide the
proper signals to the control pins to prevent uninten-
tional writes when VCC is greater than VLKO.
Write Pulse “Glitch” Protection
Noise pulses of less than 5 ns (typical) on OE#, CE# or
WE# do not initiate a write cycle.
Logical Inhibit
Write cycles are inhibited by holding any one of OE# =
VIL, CE# = VIH or WE# = VIH. To initiate a write cycle,
CE# and WE# must be a logical zero while OE# is a
logical one.
Power-Up Write Inhibit
If WE# = CE# = VIL and OE# = VIH during power up, the
device does not accept commands on the rising edge
of WE#. The internal state machine is automatically
reset to reading array data on power-up.
START
Perform Erase or
Program Operations
RESET# = VIH
Temporary Sector
Unprotect Completed
(Note 2)
RESET# = VID
(Note 1)
Notes:
1. All protected sectors unprotected.
2. All previously protected sectors are protected once
again.
15 Am29LV400B 10/30/03
COMMAND DEFINITIONS
Writing specific address and data commands or
sequences into the command register initiates device
operations. Table 5 defines the valid register command
sequences. Writing incorrect address and data
values or writing them in the improper sequence may
place the device in an unknown state. A reset
command is then required to return the device to
reading array data.
All addresses are latched on the falling edge of WE# or
CE#, whichever happens later. All data is latched on
the rising edge of WE# or CE#, whichever happens
first. Refer to the appropriate timing diagrams in the
“AC Characteristics” section.
Reading Array Data
The device is automatically set to reading array data
after device power-up. No commands are required to
retrieve data. The device is also ready to read array
data after completing an Embedded Program or
Embedded Erase algorithm.
After the device accepts an Erase Suspend command,
the device enters the Erase Suspend mode. The
system can read array data using the standard read
timings, except that if it reads at an address within
erase-suspended sectors, the device outputs status
data. After completing a programming operation in the
Erase Suspend mode, the system may once again
read array data with the same exception. See “Erase
Suspend/Erase Resume Commands” for more infor-
mation on this mode.
The system
must
issue the reset command to
re-enable the device for reading array data if DQ5 goes
high, or while in the autoselect mode. See the “Reset
Command” section, next.
See also “Requirements for Reading Array Data” in the
“Device Bus Operations” section for more information.
The Read Operations table provides the read parame-
ters, and Figure 13 shows the timing diagram.
Reset Command
Writing the reset command to the device resets the
device to reading array data. Address bits are don’t
care for this command.
The reset command may be written between the
sequence cycles in an erase command sequence
before erasing begins. This resets the device to reading
array data. Once erasure begins, however, the device
ignores reset commands until the operation is com-
plete.
The reset command may be written between the
sequence cycles in a program command sequence
before programming begins. This resets the device to
reading array data (also applies to programming in
Erase Suspend mode). Once programming begins,
however, the device ignores reset commands until the
operation is complete.
The reset command may be written between the
sequence cycles in an autoselect command sequence.
Once in the autoselect mode, the reset command
must
be written to return to reading array data (also applies
to autoselect during Erase Suspend).
If DQ5 goes high during a program or erase operation,
writing the reset command returns the device to
reading array data (also applies during Erase Sus-
pend).
Autoselect Command Sequence
The autoselect command sequence allows the host
system to access the manufacturer and devices codes,
and determine whether or not a sector is protected.
Table 5 shows the address and data requirements. This
method is an alternative to that shown in Table 4, which
is intended for PROM programmers and requires VID
on address bit A9.
The autoselect command sequence is initiated by
writing two unlock cycles, followed by the autoselect
command. The device then enters the autoselect
mode, and the system may read at any address any
number of times, without initiating another command
sequence. A read cycle at address XX00h retrieves the
manufacturer code. A read cycle at address XX01h in
word mode (or 02h in byte mode) returns the device
code. A read cycle containing a sector address (SA)
and the address 02h in word mode (or 04h in byte
mode) returns 01h if that sector is protected, or 00h if it
is unprotected. Refer to Tables 2 and 3 for valid sector
addresses.
The system must write the reset command to exit the
autoselect mode and return to reading array data.
Word/Byte Program Command Sequence
The system may program the device by word or byte,
depending on the state of the BYTE# pin. Program-
ming is a four-bus-cycle operation. The program
command sequence is initiated by writing two unlock
write cycles, followed by the program set-up command.
The program address and data are written next, which
in turn initiate the Embedded Program algorithm. The
system is
not
required to provide further controls or tim-
ings. The device automatically generates the program
pulses and verifies the programmed cell margin. Table
5 shows the address and data requirements for the
byte program command sequence.
When the Embedded Program algorithm is complete,
the device then returns to reading array data and
addresses are no longer latched. The system can
10/30/03 Am29LV400B 16
determine the status of the program operation by using
DQ7, DQ6, or RY/BY#. See “Write Operation Status”
for information on these status bits.
Any commands written to the device during the
Embedded Program Algorithm are ignored. Note that a
hardware reset immediately terminates the program-
ming operation. The Byte Program command
sequence should be reinitiated once the device has
reset to reading array data, to ensure data integrity.
Programming is allowed in any sequence and across
sector boundaries. A bit cannot be programmed
from a “0” back to a “1”. Attempting to do so may halt
the operation and set DQ5 to “1”, or cause the Data#
Polling algorithm to indicate the operation was suc-
cessful. However, a succeeding read will show that the
data is still “0”. Only erase operations can convert a “0”
to a “1”.
Unlock Bypass Command Sequence
The unlock bypass feature allows the system to
program bytes or words to the device faster than using
the standard program command sequence. The unlock
bypass command sequence is initiated by first writing
two unlock cycles. This is followed by a third write cycle
containing the unlock bypass command, 20h. The
device then enters the unlock bypass mode. A
two-cycle unlock bypass program command sequence
is all that is required to program in this mode. The first
cycle in this sequence contains the unlock bypass
program command, A0h; the second cycle contains the
program address and data. Additional data is pro-
grammed in the same manner. This mode dispenses
with the initial two unlock cycles required in the stan-
dard program command sequence, resulting in faster
total programming time. Table 5 shows the require-
ments for the command sequence.
During the unlock bypass mode, only the Unlock
Bypass Program and Unlock Bypass Reset commands
are valid. To exit the unlock bypass mode, the system
must issue the two-cycle unlock bypass reset
command sequence. The first cycle must contain the
program address and the data 90h. The second cycle
need only contain the data 00h. The device then
returns to reading array data.
Figure 3 illustrates the algorithm for the program oper-
ation. See the Erase/Program Operations table in “AC
Characteristics” for parameters, and to Figure 17 for
timing diagrams.
Note: See Table 5 for program command sequence.
Figure 3. Program Operation
Chip Erase Command Sequence
Chip erase is a six bus cycle operation. The chip erase
command sequence is initiated by writing two unlock
cycles, followed by a set-up command. Two additional
unlock write cycles are then followed by the chip erase
command, which in turn invokes the Embedded Erase
algorithm. The device does
not
require the system to
preprogram prior to erase. The Embedded Erase algo-
rithm automatically preprograms and verifies the entire
memory for an all zero data pattern prior to electrical
erase. The system is not required to provide any con-
trols or timings during these operations. Table 5 shows
the address and data requirements for the chip erase
command sequence.
Any commands written to the chip during the
Embedded Erase algorithm are ignored. Note that a
hardware reset during the chip erase operation imme-
diately terminates the operation. The Chip Erase
command sequence should be reinitiated once the
START
Write Program
Command Sequence
Data Poll
from System
Verify Data? No
Yes
Last Address?
No
Yes
Programming
Completed
Increment Address
Embedded
Program
algorithm
in progress
17 Am29LV400B 10/30/03
device has returned to reading array data, to ensure
data integrity.
The system can determine the status of the erase oper-
ation by using DQ7, DQ6, DQ2, or RY/BY#. See “Write
Operation Status” for information on these status bits.
When the Embedded Erase algorithm is complete, the
device returns to reading array data and addresses are
no longer latched.
Figure 4 illustrates the algorithm for the erase opera-
tion. See the Erase/Program Operations tables in “AC
Characteristics” for parameters, and to Figure 18 for
timing diagrams.
Sector Erase Command Sequence
Sector erase is a six bus cycle operation. The sector
erase command sequence is initiated by writing two
unlock cycles, followed by a set-up command. Two
additional unlock write cycles are then followed by the
address of the sector to be erased, and the sector
erase command. Table 5 shows the address and data
requirements for the sector erase command sequence.
The device does
not
require the system to preprogram
the memory prior to erase. The Embedded Erase algo-
rithm automatically programs and verifies the sector for
an all zero data pattern prior to electrical erase. The
system is not required to provide any controls or
timings during these operations.
After the command sequence is written, a sector erase
time-out of 50 µs begins. During the time-out period,
additional sector addresses and sector erase com-
mands may be written. Loading the sector erase buffer
may be done in any sequence, and the number of
sectors may be from one sector to all sectors. The time
between these additional cycles must be less than 50
µs, otherwise the last address and command might not
be accepted, and erasure may begin. It is recom-
mended that processor interrupts be disabled during
this time to ensure all commands are accepted. The
interrupts can be re-enabled after the last Sector Erase
command is written. If the time between additional
sector erase commands can be assumed to be less
than 50 µs, the system need not monitor DQ3. Any
command other than Sector Erase or Erase
Suspend during the time-out period resets the
device to reading array data. The system must
rewrite the command sequence and any additional
sector addresses and commands.
The system can monitor DQ3 to determine if the sector
erase timer has timed out. (See the “DQ3: Sector Erase
Timer” section.) The time-out begins from the rising
edge of the final WE# pulse in the command sequence.
Once the sector erase operation has begun, only the
Erase Suspend command is valid. All other commands
are ignored. Note that a hardware reset during the
sector erase operation immediately terminates the
operation. The Sector Erase command sequence
should be reinitiated once the device has returned to
reading array data, to ensure data integrity.
When the Embedded Erase algorithm is complete, the
device returns to reading array data and addresses are
no longer latched. The system can determine the
status of the erase operation by using DQ7, DQ6, DQ2,
or RY/BY#. (Refer to “Write Operation Status” for infor-
mation on these status bits.)
Figure 4 illustrates the algorithm for the erase opera-
tion. Refer to the Erase/Program Operations tables in
the “AC Characteristics” section for parameters, and to
Figure 18 for timing diagrams.
Erase Suspend/Erase Resume Commands
The Erase Suspend command allows the system to
interrupt a sector erase operation and then read data
from, or program data to, any sector not selected for
erasure. This command is valid only during the sector
erase operation, including the 50 µs time-out period
during the sector erase command sequence. The
Erase Suspend command is ignored if written during
the chip erase operation or Embedded Program algo-
rithm. Writing the Erase Suspend command during the
Sector Erase time-out immediately terminates the
time-out period and suspends the erase operation.
Addresses are “don’t-cares” when writing the Erase
Suspend command.
When the Erase Suspend command is written during a
sector erase operation, the device requires a maximum
of 20 µs to suspend the erase operation. However,
when the Erase Suspend command is written during
the sector erase time-out, the device immediately ter-
minates the time-out period and suspends the erase
operation.
After the erase operation has been suspended, the
system can read array data from or program data to
any sector not selected for erasure. (The device “erase
suspends” all sectors selected for erasure.) Normal
read and write timings and command definitions apply.
Reading at any address within erase-suspended
sectors produces status data on DQ7–DQ0. The
system can use DQ7, or DQ6 and DQ2 together, to
determine if a sector is actively erasing or is erase-sus-
pended. See “Write Operation Status” for information
on these status bits.
After an erase-suspended program operation is com-
plete, the system can once again read array data within
non-suspended sectors. The system can determine
the status of the program operation using the DQ7 or
DQ6 status bits, just as in the standard program oper-
ation. See “Write Operation Status” for more informa-
tion.
10/30/03 Am29LV400B 18
The system may also write the autoselect command
sequence when the device is in the Erase Suspend
mode. The device allows reading autoselect codes
even at addresses within erasing sectors, since the
codes are not stored in the memory array. When the
device exits the autoselect mode, the device reverts to
the Erase Suspend mode, and is ready for another
valid operation. See “Autoselect Command Sequence”
for more information.
The system must write the Erase Resume command
(address bits are “don’t care”) to exit the erase suspend
mode and continue the sector erase operation. Further
writes of the Resume command are ignored. Another
Erase Suspend command can be written after the
device has resumed erasing.
Notes:
1. See Table 5 for erase command sequence.
2. See “DQ3: Sector Erase Timer” for more information.
Figure 4. Erase Operation
START
Write Erase
Command Sequence
Data Poll
from System
Data = FFh?
No
Yes
Erasure Completed
Embedded
Erase
algorithm
in progress
19 Am29LV400B 10/30/03
Command Definitions
Table 5. Am29LV400B Command Definitions
Legend:
X = Don’t care
RA = Address of the memory location to be read.
RD = Data read from location RA during read operation.
PA = Address of the memory location to be programmed.
Addresses latch on the falling edge of the WE# or CE# pulse,
whichever happens later.
PD = Data to be programmed at location PA. Data latches on the
rising edge of WE# or CE# pulse, whichever happens first.
SA = Address of the sector to be verified (in autoselect mode) or
erased. Address bits A17–A12 uniquely select any sector.
Notes:
1. See Table 1 for description of bus operations.
2. All values are in hexadecimal.
3. Except when reading array or autoselect data, all bus cycles
are write operations.
4. Data bits DQ15–DQ8 are don’t cares for unlock and
command cycles.
5. Address bits A17–A11 are don’t cares for unlock and
command cycles, except when SA or PA required.
6. No unlock or command cycles required when reading array
data.
7. The Reset command is required to return to reading array
data when device is in the autoselect mode, or if DQ5 goes
high (while the device is providing status data).
8. The fourth cycle of the autoselect command sequence is a
read cycle.
9. The data is 00h for an unprotected sector and 01h for a
protected sector. See “Autoselect Command Sequence” for
more information.
10. The Unlock Bypass command is required prior to the Unlock
Bypass Program command.
11. The Unlock Bypass Reset command is required to return to
reading array data when the device is in the unlock bypass
mode.
12. The system may read and program in non-erasing sectors, or
enter the autoselect mode, when in the Erase Suspend
mode. The Erase Suspend command is valid only during a
sector erase operation.
13. The Erase Resume command is valid only during the Erase
Suspend mode.
Command
Sequence
(Note 1)
Cycles
Bus Cycles (Notes 2–5)
First Second Third Fourth Fifth Sixth
Addr Data Addr Data Addr Data Addr Data Addr Data Addr Data
Read (Note 6) 1 RA RD
Reset (Note 7) 1 XXX F0
Manufacturer ID Word 4555 AA 2AA 55 555 90 X00 01
Byte AAA 555 AAA
Device ID,
Top Boot Block
Word 4555 AA 2AA 55 555 90 X01 22B9
Byte AAA 555 AAA X02 B9
Device ID,
Bottom Boot Block
Word 4555 AA 2AA 55 555 90 X01 22BA
Byte AAA 555 AAA X02 BA
Sector Protect Verify
(Note 9)
Word
4
555
AA
2AA
55
555
90
(SA)
X02
XX00
XX01
Byte AAA 555 AAA (SA)
X04
00
01
Program Word 4555 AA 2AA 55 555 A0 PA PD
Byte AAA 555 AAA
Unlock Bypass Word 3555 AA 2AA 55 555 20
Byte AAA 555 AAA
Unlock Bypass Program (Note 10) 2 XXX A0 PA PD
Unlock Bypass Reset (Note 11) 2 XXX 90 XXX 00
Chip Erase Word 6555 AA 2AA 55 555 80 555 AA 2AA 55 555 10
Byte AAA 555 AAA AAA 555 AAA
Sector Erase Word 6555 AA 2AA 55 555 80 555 AA 2AA 55 SA 30
Byte AAA 555 AAA AAA 555
Erase Suspend (Note 12) 1 XXX B0
Erase Resume (Note 13) 1 XXX 30
Autoselect (Note 8)
10/30/03 Am29LV400B 20
WRITE OPERATION STATUS
The device provides several bits to determine the
status of a write operation: DQ2, DQ3, DQ5, DQ6,
DQ7, and RY/BY#. Table 6 and the following subsec-
tions describe the functions of these bits. DQ7,
RY/BY#, and DQ6 each offer a method for determining
whether a program or erase operation is complete or in
progress. These three bits are discussed first.
DQ7: Data# Polling
The Data# Polling bit, DQ7, indicates to the host
system whether an Embedded Algorithm is in progress
or completed, or whether the device is in Erase Sus-
pend. Data# Polling is valid after the rising edge of the
final WE# pulse in the program or erase command
sequence.
During the Embedded Program algorithm, the device
outputs on DQ7 the complement of the datum pro-
grammed to DQ7. This DQ7 status also applies to pro-
gramming during Erase Suspend. When the
Embedded Program algorithm is complete, the device
outputs the datum programmed to DQ7. The system
must provide the program address to read valid status
information on DQ7. If a program address falls within a
protected sector, Data# Polling on DQ7 is active for
approximately 1 µs, then the device returns to reading
array data.
During the Embedded Erase algorithm, Data# Polling
produces a “0” on DQ7. When the Embedded Erase
algorithm is complete, or if the device enters the Erase
Suspend mode, Data# Polling produces a “1” on DQ7.
This is analogous to the complement/true datum output
described for the Embedded Program algorithm: the
erase function changes all the bits in a sector to “1”;
prior to this, the device outputs the “complement,” or
“0.” The system must provide an address within any of
the sectors selected for erasure to read valid status
information on DQ7.
After an erase command sequence is written, if all
sectors selected for erasing are protected, Data#
Polling on DQ7 is active for approximately 100 µs, then
the device returns to reading array data. If not all
selected sectors are protected, the Embedded Erase
algorithm erases the unprotected sectors, and ignores
the selected sectors that are protected.
When the system detects DQ7 has changed from the
complement to true data, it can read valid data at
DQ7–DQ0 on the
following
read cycles. This is
because DQ7 may change asynchronously with
DQ0–DQ6 while Output Enable (OE#) is asserted low.
Figure 19, Data# Polling Timings (During Embedded
Algorithms), in the “AC Characteristics” section illus-
trates this.
Table 6 shows the outputs for Data# Polling on DQ7.
Figure 5 shows the Data# Polling algorithm.
DQ7 = Data? Yes
No
No
DQ5 = 1?
No
Yes
Yes
FAIL PASS
Read DQ7–DQ0
Addr = VA
Read DQ7–DQ0
Addr = VA
DQ7 = Data?
START
Notes:
1. VA = Valid address for programming. During a sector
erase operation, a valid address is an address within any
sector selected for erasure. During chip erase, a valid
address is any non-protected sector address.
2. DQ7 should be rechecked even if DQ5 = “1” because
DQ7 may change simultaneously with DQ5.
Figure 5. Data# Polling Algorithm
21 Am29LV400B 10/30/03
RY/BY#: Ready/Busy#
The RY/BY# is a dedicated, open-drain output pin that
indicates whether an Embedded Algorithm is in
progress or complete. The RY/BY# status is valid after
the rising edge of the final WE# pulse in the command
sequence. Since RY/BY# is an open-drain output,
several RY/BY# pins can be tied together in parallel
with a pull-up resistor to VCC.
If the output is low (Busy), the device is actively erasing
or programming. (This includes programming in the
Erase Suspend mode.) If the output is high (Ready),
the device is ready to read array data (including during
the Erase Suspend mode), or is in the standby mode.
Table 6 shows the outputs for RY/BY#. Figures 14, 17
and 18 shows RY/BY# for reset, program, and erase
operations, respectively.
DQ6: Toggle Bit I
Toggle Bit I on DQ6 indicates whether an Embedded
Program or Erase algorithm is in progress or complete,
or whether the device has entered the Erase Suspend
mode. Toggle Bit I may be read at any address, and is
valid after the rising edge of the final WE# pulse in the
command sequence (prior to the program or erase
operation), and during the sector erase time-out.
During an Embedded Program or Erase algorithm
operation, successive read cycles to any address
cause DQ6 to toggle. The system may use either OE#
or CE# to control the read cycles. When the operation
is complete, DQ6 stops toggling.
After an erase command sequence is written, if all
sectors selected for erasing are protected, DQ6 toggles
for approximately 100 µs, then returns to reading array
data. If not all selected sectors are protected, the
Embedded Erase algorithm erases the unprotected
sectors, and ignores the selected sectors that are pro-
tected.
The system can use DQ6 and DQ2 together to deter-
mine whether a sector is actively erasing or is
erase-suspended. When the device is actively erasing
(that is, the Embedded Erase algorithm is in progress),
DQ6 toggles. When the device enters the Erase
Suspend mode, DQ6 stops toggling. However, the
system must also use DQ2 to determine which sectors
are erasing or erase-suspended. Alternatively, the
system can use DQ7 (see the subsection on DQ7:
Data# Polling).
If a program address falls within a protected sector,
DQ6 toggles for approximately 2 µs after the program
command sequence is written, then returns to reading
array data.
DQ6 also toggles during the erase-suspend-program
mode, and stops toggling once the Embedded
Program algorithm is complete.
Table 6 shows the outputs for Toggle Bit I on DQ6.
Figure 6 shows the toggle bit algorithm. Figure 20 in the
“AC Characteristics” section shows the toggle bit timing
diagrams. Figure 21 shows the differences between
DQ2 and DQ6 in graphical form. See also the subsec-
tion on DQ2: Toggle Bit II.
DQ2: Toggle Bit II
The “Toggle Bit II” on DQ2, when used with DQ6, indi-
cates whether a particular sector is actively erasing
(that is, the Embedded Erase algorithm is in progress),
or whether that sector is erase-suspended. Toggle Bit
II is valid after the rising edge of the final WE# pulse in
the command sequence.
DQ2 toggles when the system reads at addresses
within those sectors that have been selected for era-
sure. (The system may use either OE# or CE# to
control the read cycles.) But DQ2 cannot distinguish
whether the sector is actively erasing or is erase-sus-
pended. DQ6, by comparison, indicates whether the
device is actively erasing, or is in Erase Suspend, but
cannot distinguish which sectors are selected for era-
sure. Thus, both status bits are required for sector and
mode information. Refer to Table 6 to compare outputs
for DQ2 and DQ6.
Figure 6 shows the toggle bit algorithm in flowchart
form, and the section “DQ2: Toggle Bit II” explains the
algorithm. See also the DQ6: Toggle Bit I subsection.
Figure 20 shows the toggle bit timing diagram. Figure
21 shows the differences between DQ2 and DQ6 in
graphical form.
Reading Toggle Bits DQ6/DQ2
Refer to Figure 6 for the following discussion. When-
ever the system initially begins reading toggle bit
status, it must read DQ7–DQ0 at least twice in a row to
determine whether a toggle bit is toggling. Typically, the
system would note and store the value of the toggle bit
after the first read. After the second read, the system
would compare the new value of the toggle bit with the
first. If the toggle bit is not toggling, the device has com-
pleted the program or erase operation. The system can
read array data on DQ7–DQ0 on the following read
cycle.
However, if after the initial two read cycles, the system
determines that the toggle bit is still toggling, the
system also should note whether the value of DQ5 is
high (see the section on DQ5). If it is, the system
should then determine again whether the toggle bit is
toggling, since the toggle bit may have stopped tog-
gling just as DQ5 went high. If the toggle bit is no longer
toggling, the device has successfully completed the
10/30/03 Am29LV400B 22
program or erase operation. If it is still toggling, the
device did not completed the operation successfully,
and the system must write the reset command to return
to reading array data.
The remaining scenario is that the system initially
determines that the toggle bit is toggling and DQ5 has
not gone high. The system may continue to monitor the
toggle bit and DQ5 through successive read cycles,
determining the status as described in the previous
paragraph. Alternatively, it may choose to perform
other system tasks. In this case, the system must start
at the beginning of the algorithm when it returns to
determine the status of the operation (top of Figure 6).
DQ5: Exceeded Timing Limits
DQ5 indicates whether the program or erase time has
exceeded a specified internal pulse count limit. Under
these conditions DQ5 produces a “1.” This is a failure
condition that indicates the program or erase cycle was
not successfully completed.
The DQ5 failure condition may appear if the system
tries to program a “1” to a location that is previously pro-
grammed to “0.Only an erase operation can change
a “0” back to a 1. Under this condition, the device
halts the operation, and when the operation has
exceeded the timing limits, DQ5 produces a “1.
Under both these conditions, the system must issue the
reset command to return the device to reading array
data.
DQ3: Sector Erase Timer
After writing a sector erase command sequence, the
system may read DQ3 to determine whether or not an
erase operation has begun. (The sector erase timer
does not apply to the chip erase command.) If addi-
tional sectors are selected for erasure, the entire
time-out also applies after each additional sector erase
command. When the time-out is complete, DQ3
switches from “0” to “1.” If the time between additional
sector erase commands from the system can be
assumed to be less than 50 µs, the system need not
monitor DQ3. See also the “Sector Erase Command
Sequence” section.
After the sector erase command sequence is written,
the system should read the status on DQ7 (Data#
Polling) or DQ6 (Toggle Bit I) to ensure the device has
accepted the command sequence, and then read DQ3.
If DQ3 is “1”, the internally controlled erase cycle has
begun; all further commands (other than Erase Sus-
pend) are ignored until the erase operation is complete.
If DQ3 is “0”, the device will accept additional sector
erase commands. To ensure the command has been
accepted, the system software should check the status
of DQ3 prior to and following each subsequent sector
erase command. If DQ3 is high on the second status
check, the last command might not have been
accepted. Table 6 shows the outputs for DQ3.
START
No
Yes
Yes
DQ5 = 1?
No
Yes
Toggle Bit
= Toggle?
No
Program/Erase
Operation Not
Complete, Write
Reset Command
Program/Erase
Operation Complete
Read DQ7–DQ0
Toggle Bit
= Toggle?
Read DQ7–DQ0
Twice
Read DQ7–DQ0
Notes:
1. Read toggle bit twice to determine whether or not it is
toggling. See text.
2. Recheck toggle bit because it may stop toggling as DQ5
changes to “1” . See text.
Figure 6. Toggle Bit Algorithm
(Notes
1, 2)
(Note 1)
23 Am29LV400B 10/30/03
Table 6. Write Operation Status
Notes:
1. DQ5 switches to ‘1’ when an Embedded Program or Embedded Erase operation has exceeded the maximum timing limits.
See “DQ5: Exceeded Timing Limits” for more information.
2. DQ7 and DQ2 require a valid address when reading status information. Refer to the appropriate subsection for further details.
Operation
DQ7
(Note 2) DQ6
DQ5
(Note 1) DQ3
DQ2
(Note 2) RY/BY#
Standard
Mode
Embedded Program Algorithm DQ7# Toggle 0 N/A No toggle 0
Embedded Erase Algorithm 0 Toggle 0 1 Toggle 0
Erase
Suspend
Mode
Reading within Erase
Suspended Sector 1 No toggle 0 N/A Toggle 1
Reading within Non-Erase
Suspended Sector Data Data Data Data Data 1
Erase-Suspend-Program DQ7# Toggle 0 N/A N/A 0
10/30/03 Am29LV400B 24
ABSOLUTE MAXIMUM RATINGS
Storage Temperature
Plastic Packages . . . . . . . . . . . . . . . –65°C to +150°C
Ambient Temperature
with Power Applied. . . . . . . . . . . . . . 65°C to +125°C
Voltage with Respect to Ground
VCC (Note 1). . . . . . . . . . . . . . . . .–0.5 V to +4.0 V
A9, OE#, and
RESET# (Note 2). . . . . . . . . . . .–0.5 V to +12.5 V
All other pins (Note 1) . . . . . .–0.5 V to VCC+0.5 V
Output Short Circuit Current (Note 3) . . . . . . 200 mA
Notes:
1. Minimum DC voltage on input or I/O pins is –0.5 V. During
voltage transitions, input or I/O pins may overshoot V
SS
to
–2.0 V for periods of up to 20 ns. See Figure 7. Maximum
DC voltage on input or I/O pins is V
CC
+0.5 V. During
voltage transitions, input or I/O pins may overshoot to V
CC
+2.0 V for periods up to 20 ns. See Figure 8.
2. Minimum DC input voltage on pins A9, OE#, and RESET#
is –0.5 V. During voltage transitions, A9, OE#, and
RESET# may overshoot V
SS
to –2.0 V for periods of up to
20 ns. See Figure 7. Maximum DC input voltage on pin A9
is +12.5 V which may overshoot to 14.0 V for periods up
to 20 ns.
3. No more than one output may be shorted to ground at a
time. Duration of the short circuit should not be greater
than one second.
Stresses above those listed under “Absolute Maximum
Ratings” may cause permanent damage to the device. This is
a stress rating only; functional operation of the device at
these or any other conditions above those indicated in the
operational sections of this data sheet is not implied.
Exposure of the device to absolute maximum rating
conditions for extended periods may affect device reliability.
OPERATING RANGES
Commercial (C) Devices
Ambient Temperature (TA) . . . . . . . . . . . C to +70°C
Industrial (I) Devices
Ambient Temperature (TA) . . . . . . . . . 40°C to +85°C
Extended (E) Devices
Ambient Temperature (TA) . . . . . . . . –55°C to +125°C
VCC Supply Voltages
VCC for regulated voltage range . . . . .+3.0 V to +3.6 V
VCC for full voltage range . . . . . . . . . .+2.7 V to +3.6 V
Operating ranges define those limits between which the
functionality of the device is guaranteed.
20 ns
20 ns
+0.8 V
–0.5 V
20 ns
–2.0 V
Figure 7. Maximum Negative
Overshoot Waveform
20 ns
20 ns
VCC
+2.0 V
VCC
+0.5 V
20 ns
2.0 V
Figure 8. Maximum Positive
Overshoot Waveform
25 Am29LV400B 10/30/03
DC CHARACTERISTICS
CMOS Compatible
Notes:
1. The I
CC
current listed is typically less than 2 mA/MHz, with
OE# at V
IH
. Typical V
CC
is 3.0 V.
2. Maximum I
CC
specifications are tested with V
CC
= V
CCmax
.
3. I
CC
active while Embedded Erase or Embedded Program is in progress.
4. Automatic sleep mode enables the low power mode when addresses remain stable for t
ACC
+ 30 ns.
5. Not 100% tested.
Parameter Description Test Conditions Min Typ Max Unit
ILI Input Load Current VIN = VSS to VCC,
VCC = VCC max
±1.0 µA
ILIT A9 Input Load Current VCC = VCC max; A9 = 12.5 V 35 µA
ILO Output Leakage Current VOUT = VSS to VCC,
VCC = VCC max
±1.0 µA
ILR RESET Input Load Current VCC = VCC max, RESET# = 12.5 V 35 µA
ICC1
VCC Active Read Current
(Note 1)
CE# = VIL, OE# = VIH,
Byte Mode
5 MHz 7 12
mA
1 MHz 2 4
CE# = VIL, OE# = VIH,
Word Mode
5 MHz 7 12
1 MHz 2 4
ICC2
VCC Active Write Current
(Notes 2, 3, 5) CE# = VIL, OE# = VIH 15 30 mA
ICC3 VCC Standby Current (Note 2) CE#, RESET# = VCC±0.3 V 0.2 5 µA
ICC4 VCC Reset Current (Note 2) RESET# = VSS ± 0.3 V 0.2 5 µA
ICC5
Automatic Sleep Mode
(Notes 2, 4) VIH = VCC ± 0.3 V; VIL = VSS ± 0.3 V 0.2 5 µA
VIL Input Low Voltage –0.5 0.8 V
VIH Input High Voltage 0.7 x VCC VCC + 0.3 V
VID
Voltage for Autoselect and
Temporary Sector Unprotect VCC = 3.3 V 11.5 12.5 V
VOL Output Low Voltage IOL = 4.0 mA, VCC = VCC min 0.45 V
VOH1 Output High Voltage
IOH = –2.0 mA, VCC = VCC min 0.85 VCC V
VOH2 IOH = –100 µA, VCC = VCC min V
CC–0.4
VLKO
Low VCC Lock-Out Voltage
(Note 4) 2.3 2.5 V
10/30/03 Am29LV400B 26
DC CHARACTERISTICS
Zero Power Flash
20
15
10
5
0
0 500 1000 1500 2000 2500 3000 3500 4000
Supply Current in mA
Time in ns
Note: Addresses are switching at 1 MHz
Figure 9. ICC1 Current vs. Time (Showing Active and Automatic Sleep Currents)
10
8
2
0
12345
Frequency in MHz
Supply Current in mA
Note: T = 25
°
C
Figure 10. Typical ICC1 vs. Frequency
2.7 V
3.6 V
4
6
27 Am29LV400B 10/30/03
TEST CONDITIONS
Table 7. Test Specifications
Key To Switching Waveforms
2.7 k
CL6.2 k
3.3
Device
Under
Te s t
Figure 11. Test Setup
Note:Diodes are IN3064 or equivalent
Test Condition
55R,
70,
90,
120 Unit
Output Load 1 TTL gate
Output Load Capacitance, CL
(including jig capacitance) 30 100 pF
Input Rise and Fall Times 5 ns
Input Pulse Levels 0.0–3.0 V
Input timing measurement
reference levels 1.5 V
Output timing measurement
reference levels 1.5 V
WAVEFORM INPUTS OUTPUTS
Steady
Changing from H to L
Changing from L to H
Don’t Care, Any Change Permitted Changing, State Unknown
Does Not Apply Center Line is High Impedance State (High Z)
3.0 V
0.0 V
1.5 V 1.5 V OutputMeasurement LevelInput
Figure 12. Input Waveforms and Measurement Levels
10/30/03 Am29LV400B 28
AC CHARACTERISTICS
Read Operations
Notes:
1. Not 100% tested.
2. See Figure 11 and Table 7 for test specifications.
Parameter
Description
Speed Options
JEDEC Std Test Setup 55R 70 90 120 Unit
tAVAV tRC Read Cycle Time (Note 1) Min 55 70 90 120 ns
tAVQV tACC Address to Output Delay CE# = VIL
OE# = VIL
Max 55 70 90 120 ns
tELQV tCE Chip Enable to Output Delay OE# = VIL Max 55 70 90 120 ns
tGLQV tOE Output Enable to Output Delay Max 30 30 35 50 ns
tEHQZ tDF Chip Enable to Output High Z (Note 1) Max 16 ns
tGHQZ tDF Output Enable to Output High Z (Note 1) Max 16 ns
tOEH
Output Enable
Hold Time (Note 1)
Read Min 0 ns
Toggle and
Data# Polling Min 10 ns
tAXQX tOH
Output Hold Time From Addresses, CE# or
OE#, Whichever Occurs First (Note 1) Min 0 ns
tCE
Outputs
WE#
Addresses
CE#
OE#
HIGH Z
Output Valid
HIGH Z
Addresses Stable
tRC
tACC
tOEH
tOE
0 V
RY/BY#
RESET#
tDF
tOH
Figure 13. Read Operations Timings
29 Am29LV400B 10/30/03
AC CHARACTERISTICS
Hardware Reset (RESET#)
Note: Not 100% tested.
Parameter
Description All Speed OptionsJEDEC Std Test Setup Unit
tREADY
RESET# Pin Low (During Embedded
Algorithms) to Read or Write (See Note) Max 20 µs
tREADY
RESET# Pin Low (NOT During Embedded
Algorithms) to Read or Write (See Note) Max 500 ns
tRP RESET# Pulse Width Min 500 ns
tRH RESET# High Time Before Read (See Note) Min 50 ns
tRPD RESET# Low to Standby Mode Min 20 µs
tRB RY/BY# Recovery Time Min 0 ns
RESET#
RY/BY#
RY/BY#
tRP
tReady
Reset Timings NOT during Embedded Algorithms
tReady
CE#, OE#
tRH
CE#, OE#
Reset Timings during Embedded Algorithms
RESET#
tRP
tRB
Figure 14. RESET# Timings
10/30/03 Am29LV400B 30
AC CHARACTERISTICS
Word/Byte Configuration (BYTE#)
Parameter Speed Options
JEDEC Std Description 55R 70 90 120 Unit
tELFL/tELFH CE# to BYTE# Switching Low or High Max 5 ns
tFLQZ BYTE# Switching Low to Output HIGH Z Max 16 ns
tFHQV BYTE# Switching High to Output Active Min 55 70 90 120 ns
DQ15
Output
Data Output
(DQ0–DQ7)
CE#
OE#
BYTE#
tELFL
DQ0–DQ14 Data Output
(DQ0–DQ14)
DQ15/A-1 Address
Input
tFLQZ
BYTE#
Switching
from word
to byte
mode
DQ15
Output
Data Output
(DQ0–DQ7)
BYTE#
tELFH
DQ0–DQ14 Data Output
(DQ0–DQ14)
DQ15/A-1 Address
Input
tFHQV
BYTE#
Switching
from byte
to word
mode
Figure 15. BYTE# Timings for Read Operations
Note: Refer to the Erase/Program Operations table for t
AS
and t
AH
specifications.
Figure 16. BYTE# Timings for Write Operations
CE#
WE#
BYTE#
The falling edge of the last WE# signal
tHOLD (tAH)
tSET
(tAS)
31 Am29LV400B 10/30/03
AC CHARACTERISTICS
Erase/Program Operations
Notes:
1. Not 100% tested.
2. See the “Erase And Programming Performance” section for more information.
Parameter Speed Options
JEDEC Std Description 55R 70 90 120 Unit
tAVAV tWC Write Cycle Time (Note 1) Min 55 70 90 120 ns
tAVWL tAS Address Setup Time Min 0 ns
tWLAX tAH Address Hold Time Min 45 45 45 50 ns
tDVWH tDS Data Setup Time Min 35 35 45 50 ns
tWHDX tDH Data Hold Time Min 0 ns
tOES Output Enable Setup Time Min 0 ns
tGHWL tGHWL
Read Recovery Time Before Write
(OE# High to WE# Low) Min 0 ns
tELWL tCS CE# Setup Time Min 0 ns
tWHEH tCH CE# Hold Time Min 0 ns
tWLWH tWP Write Pulse Width Min 35 35 35 50 ns
tWHWL tWPH Write Pulse Width High Min 30 ns
tWHWH1 tWHWH1 Programming Operation (Note 2)
Byte Typ 9
µs
Word Typ 11
tWHWH2 tWHWH2 Sector Erase Operation (Note 2) Typ 0.7 sec
tVCS VCC Setup Time (Note 1) Min 50 µs
tRB Recovery Time from RY/BY# Min 0 ns
tBUSY Program/Erase Valid to RY/BY# Delay Min 90 ns
10/30/03 Am29LV400B 32
AC CHARACTERISTICS
OE#
WE#
CE#
VCC
Data
Addresses
t
DS
t
AH
t
DH
t
WP
PD
t
WHWH1
t
WC
t
AS
t
WPH
t
VCS
555h PA PA
Read Status Data (last two cycles)
A0h
t
CS
Status D
OUT
Program Command Sequence (last two cycles)
RY/BY#
t
RB
tBUSY
t
CH
PA
Notes:
1. PA = program address, PD = program data, D
OUT
is the
true data at the program address.
2. Illustration shows device in word mode.
Figure 17. Program Operation Timings
33 Am29LV400B 10/30/03
AC CHARACTERISTICS
OE#
CE#
Addresses
V
CC
WE#
Data
2AAh SA
t
AH
t
WP
t
WC
t
AS
t
WPH
555h for chip erase
10 for Chip Erase
30h
t
DS
t
VCS
t
CS
t
DH
55h
t
CH
In
Progress Complete
t
WHWH2
VA
VA
Erase Command Sequence (last two cycles) Read Status Data
RY/BY#
t
RB
t
BUSY
Notes:
1. SA = sector address (for Sector Erase), VA = Valid Address
for reading status data (see “Write Operation Status”).
2. Illustration shows device in word mode.
Figure 18. Chip/Sector Erase Operation Timings
10/30/03 Am29LV400B 34
AC CHARACTERISTICS
WE#
CE#
OE#
High Z
tOE
High Z
DQ7
DQ0–DQ6
RY/BY#
tBUSY
Complement True
Addresses VA
tOEH
tCE
tCH
tOH
tDF
VA VA
Status Data
Complement
Status Data True
Valid Data
Valid Data
tACC
tRC
Note: VA = Valid address. Illustration shows first status cycle after command sequence, last status read cycle, and array data read cycle.
Figure 19. Data# Polling Timings (During Embedded Algorithms)
WE#
CE#
OE#
High Z
t
OE
DQ6/DQ2
RY/BY#
t
BUSY
Addresses VA
t
OEH
t
CE
t
CH
t
OH
t
DF
VA VA
t
ACC
t
RC
Valid DataValid StatusValid Status
(first read) (second read) (stops toggling)
Valid Status
VA
Note: VA = Valid address; not required for DQ6. Illustration shows first two status cycle after command sequence, last status read
cycle, and array data read cycle.
Figure 20. Toggle Bit Timings (During Embedded Algorithms)
35 Am29LV400B 10/30/03
AC CHARACTERISTICS
Temporary Sector Unprotect
Note: Not 100% tested.
Note: The system may use OE# and CE# to toggle DQ2 and DQ6. DQ2 toggles only when read at an address within an
erase-suspended sector.
Figure 21. DQ2 vs. DQ6
Enter
Erase
Erase
Erase
Enter Erase
Suspend Program
Erase Suspend
Read Erase Suspend
Read
Erase
WE#
DQ6
DQ2
Erase
Complete
Erase
Suspend
Suspend
Program
Resume
Embedded
Erasing
Parameter
All Speed OptionsJEDEC Std Description Unit
tVIDR VID Rise and Fall Time (See Note) Min 500 ns
tRSP
RESET# Setup Time for Temporary Sector
Unprotect Min 4 µs
RESET#
tVIDR
12 V
0 or 3 V
CE#
WE#
RY/BY#
tVIDR
tRSP
Program or Erase Command Sequence
0 or 3 V
Figure 22. Temporary Sector Unprotect Timing Diagram
10/30/03 Am29LV400B 36
AC CHARACTERISTICS
Sector Protect: 150 µs
Sector Unprotect: 15 ms
1 µs
RESET#
SA, A6,
A1, A0
Data
CE#
WE#
OE#
60h 60h 40h
Valid* Valid* Valid*
Status
Sector Protect/Unprotect Verify
VID
VIH
* For sector protect, A6 = 0, A1 = 1, A0 = 0. For sector unprotect, A6 = 1, A1 = 1, A0 = 0.
Figure 23. Sector Protect/Unprotect Timing Diagram
37 Am29LV400B 10/30/03
AC CHARACTERISTICS
Alternate CE# Controlled Erase/Program
Operations
Notes:
1. Not 100% tested.
2. See the “Erase And Programming Performance” section for more information.
Parameter Speed Options
JEDEC Std Description 55R 70 90 120 Unit
tAVAV tWC Write Cycle Time (Note 1) Min 55 70 90 120 ns
tAVEL tAS Address Setup Time Min 0 ns
tELAX tAH Address Hold Time Min 45454550ns
tDVEH tDS Data Setup Time Min 35354550ns
tEHDX tDH Data Hold Time Min 0 ns
tOES Output Enable Setup Time Min 0 ns
tGHEL tGHEL
Read Recovery Time Before Write
(OE# High to WE# Low) Min 0 ns
tWLEL tWS WE# Setup Time Min 0 ns
tEHWH tWH WE# Hold Time Min 0 ns
tELEH tCP CE# Pulse Width Min 35 35 35 50 ns
tEHEL tCPH CE# Pulse Width High Min 30 ns
tWHWH1 tWHWH1
Programming Operation
(Note 2)
Byte Typ 9
µs
Word Typ 11
tWHWH2 tWHWH2 Sector Erase Operation (Note 2) Typ 0.7 sec
10/30/03 Am29LV400B 38
AC CHARACTERISTICS
tGHEL
tWS
OE#
CE#
WE#
RESET#
tDS
Data
tAH
Addresses
tDH
tCP
DQ7# D
OUT
tWC tAS
tCPH
PA
Data# Polling
A0 for program
55 for erase
tRH
tWHWH1 or 2
RY/BY#
tWH
PD for program
30 for sector erase
10 for chip erase
555 for program
2AA for erase
PA for program
SA for sector erase
555 for chip erase
tBUSY
Notes:
1. PA = program address, PD = program data, DQ7# =
complement of the data written to the device, DOUT = data
written to the device.
2. Figure indicates the last two bus cycles of the command sequence.
3. Word mode address used as an example.
Figure 24. Alternate CE# Controlled Write Operation Timings
39 Am29LV400B 10/30/03
ERASE AND PROGRAMMING PERFORMANCE
Notes:
1. Typical program and erase times assume the following
conditions: 25
°
C, 3.0 V V
CC
, 1,000,000 cycles.
Additionally, programming typicals assume checkerboard
pattern.
2. Under worst case conditions of 90°C, V
CC
= 2.7 V (3.0 V for regulated speed options), 1,000,000 cycles.
3. The typical chip programming time is considerably less than the maximum chip programming time listed, since most bytes
program faster than the maximum program times listed.
4. In the pre-programming step of the Embedded Erase algorithm, all bytes are programmed to 00h before erasure.
5. System-level overhead is the time required to execute the two- or four-bus-cycle sequence for the program command. See
Table 5 for further information on command definitions.
6. The device has a minimum erase and program cycle en-
durance of 1,000,000 cycles.
LATCHUP CHARACTERISTICS
Includes all pins except V
CC
. Test conditions: V
CC
= 3.0 V, one
pin at a time.
TSOP AND SO PIN CAPACITANCE
Notes:
1. Sampled, not 100% tested.
2. Test conditions T
A
= 25°C, f = 1.0 MHz.
Parameter Typ (Note 1) Max (Note 2) Unit Comments
Sector Erase Time 0.7 15 s Excludes 00h programming
prior to erasure (Note 4)
Chip Erase Time 11 s
Byte Programming Time 9 300 µs
Excludes system level
overhead (Note 5)
Word Programming Time 11 360 µs
Chip Programming Time
(Note 3)
Byte Mode 4.5 13.5 s
Word Mode 2.9 8.7 s
Description Min Max
Input voltage with respect to VSS on all pins except I/O pins
(including A9, OE#, and RESET#) –1.0 V 12.5 V
Input voltage with respect to VSS on all I/O pins –1.0 V VCC + 1.0 V
VCC Current –100 mA +100 mA
Parameter
Symbol Parameter Description Test Setup Typ Max Unit
CIN Input Capacitance VIN = 0 6 7.5 pF
COUT Output Capacitance VOUT = 0 8.5 12 pF
CIN2 Control Pin Capacitance VIN = 0 7.5 9 pF
10/30/03 Am29LV400B 40
BGA BALL CAPACITANCE
Notes:
1. Sampled, not 100% tested.
2. Test conditions TA = 25°C, f = 1.0 MHz.
DATA RETENTION
Parameter
Symbol Parameter Description Test Setup Typ Max Unit
CIN Input Capacitance VIN = 0 4.2 5.0 pF
COUT Output Capacitance VOUT = 0 5.4 6.5 pF
CIN2 Control Pin Capacitance VIN = 0 3.9 4.7 pF
Parameter Test Conditions Min Unit
Minimum Pattern Data Retention Time
150°C 10 Years
125°C 20 Years
41 Am29LV400B 10/30/03
PHYSICAL DIMENSIONS*
TS 048—48-Pin Standard TSOP
Dwg rev AA; 10/99
10/30/03 Am29LV400B 42
PHYSICAL DIMENSIONS
TSR048—48-Pin Reverse TSOP
* For reference only. BSC is an ANSI standard for Basic Space Centering.
Dwg rev AA; 10/99
43 Am29LV400B 10/30/03
PHYSICAL DIMENSIONS
FBA048—48-ball Fine-Pitch Ball Grid Array (FBGA)
6x8mm package
Dwg rev AF; 10/99
10/30/03 Am29LV400B 44
PHYSICAL DIMENSIONS
SO 044—44-Pin Small Outline Package
Dwg rev AC; 10/99
45 Am29LV400B 10/30/03
REVISION SUMMARY
Revision A (January 1998)
First release.
Revision B (July 1998)
Expanded data sheet from Advanced Information to
Preliminary version.
Distinctive Characteristics
Changed “Manufactured on 0.35 µm process technology”
to “Manufactured on 0.32 µm process technology”.
General Description
Second paragraph:
Changed “This device is manufac-
tured using AMD’s 0.35 µm process technology” to
“This device is manufactured using AMD’s 0.32 µm
process technology”.
Revision B+1 (August 1998)
Global
Added the 55 ns speed option.
Connection Diagrams
Corrected the orientation identifiers on the reverse
TSOP package. Changed the FBGA drawing to top
view, balls facing down.
Revision C (January 1999)
Global
Added -50R speed option.
Ordering Information
Valid Combinations
: Deleted the Am29LV400BT80 and
Am29LV400BB80 entries.
Erase and Programming Performance
Note 2: Changed “(3.0 V for 55R)’ to “(3.0 V for regu-
lated speed options)”.
Revision C+1 (July 2, 1999)
Global
Deleted references to the 50R speed option.
Revision D (January 3, 1999)
AC Characteristics—Figure 17. Program
Operations Timing and Figure 18. Chip/Sector
Erase Operations
Deleted tGHWL and changed OE# waveform to start at
high.
Physical Dimensions
Replaced figures with more detailed illustrations. The
FBGA package OPN designation is now FBA048.
Revision D+1 (November 8, 2000)
Global
Added table of contents. Deleted burn-in option from
Ordering Information section.
Revision D+2 (October 30, 2003)
Package Options
Added Lead (Pb) - Free Packaging Available option.
Special Handling Instructions for Fine Pitch Ball
Grid Array (FBGA)
Removed first sentence of second paragraph.
Standard Products - Temperature Range
Added new D, F, and K temperature ranges, and
included this new information in the valid combinations
for TSOP, SO, and FBGA Packages
DC Characteristics - CMOS Compatible
Added ILR.
AC Characteristics - Read Operations
Modified speed options for tEHQZ and tGHQZ.
AC Characteristics - Word/Byte Configuration
(BYTE#)
Modified speed options for tFLQZ.
BGA Capacitance
Added new table with specified information.
Trademarks
Updated.
Trademarks
Copyright © 2003 Advanced Micro Devices, Inc. All rights reserved.
AMD, the AMD logo, and combinations thereof are registered trademarks of Advanced Micro Devices, Inc.
ExpressFlash is a trademark of Advanced Micro Devices, Inc.
Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.
©2003 Advanced Micro Devices, Inc.
01/03
Printed in USA
One AMD Place, P.O. Box 3453, Sunnyvale, CA 94088-3453 408-732-2400
TWX 910-339-9280 TELEX 34-6306 800-538-8450 http://www.amd.com
Advanced Micro Devices reserves the right to make changes in its product without notice
in order to improve design or performance characteristics.The performance
characteristics listed in this document are guaranteed by specific tests, guard banding,
design and other practices common to the industry. For specific testing details, contact
your local AMD sales representative.The company assumes no responsibility for the use of
any circuits described herein.
© Advanced Micro Devices, Inc. All rights reserved.
AMD, the AMD Arrow logo and combination thereof, are trademarks of
Advanced Micro Devices, Inc. Other product names are for informational purposes only
and may be trademarks of their respective companies.
North America
ALABAMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (256)830-9192
ARIZONA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (602)242-4400
CALIFORNIA,
Irvine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .( 949)450-7500
Sunnyvale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(408)732-2400
COLORADO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (303)741-2900
CONNECTICUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(203)264-7800
FLORIDA,
Clearwater . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 7 27)793-0055
Miami (Lakes) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (305)820-1113
GEORGIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(770)814-0224
ILLINOIS,
Chicago . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (630)773-4422
MASSACHUSETTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (781)213-6400
MICHIGAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 248)471-6294
MINNESOTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (612)745-0005
NEW JERSEY,
Chatham . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 9 73)701-1777
NEW YORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(716)425-8050
NORTH CAROLINA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(919)840-8080
OREGON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (503)245-0080
PENNSYLVANIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (215)340-1187
SOUTH DAKOTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (605)692-5777
TEXAS,
Austin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (512)346-7830
Dallas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 9 7 2)985-1344
Houston . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (281)376-8084
VIRGINIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (703)736-9568
International
AUSTRALIA, North Ryde . . . . . . . . . . . . . . . . . . . . . . .TEL(61)2-88-777-222
BELGIUM,Antwerpen . . . . . . . . . . . . . . . . . . . . . . . .TEL(32)3-248-43-00
BRAZIL, San Paulo . . . . . . . . . . . . . . . . . . . . . . . . . . TEL(55)11-5501-2105
CHINA,
Beijing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TEL(86)10-6510-2188
Shanghai . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TEL(86)21-635-00838
Shenzhen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TEL(86)755-246-1550
FINLAND, Helsinki . . . . . . . . . . . . . . . . . . . . . . TEL(358)881-3117
FRANCE, Paris . . . . . . . . . . . . . . . . . . . . . . . . . . . . TEL(33)-1-49751010
GERMANY,
Bad Homburg . . . . . . . . . . . . . . . . . . . . . . . . . . . TEL(49)-6172-92670
Munich . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TEL(49)-89-450530
HONG KONG, Causeway Bay . . . . . . . . . . . . . . . . . . . TEL(85)2-2956-0388
ITALY, Milan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TEL(39)-02-381961
INDIA, New Delhi . . . . . . . . . . . . . . . . . . . . . . . . . . TEL(91)11-623-8620
JAPAN,
Osaka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TEL(81)6-6243-3250
Tokyo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TEL(81)3-3346-7600
KOREA, Seoul . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TEL(82)2-3468-2600
RUSSIA, Moscow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TEL(7)-095-795-06-22
SWEDEN, Stockholm . . . . . . . . . . . . . . . . . . . . . . . . . . . TEL(46)8-562-540-00
TAIWAN,Taipei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TEL(886)2-8773-1555
UNITED KINGDOM,
Frimley . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TEL(44)1276-803100
Haydock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .TEL(44)1942-272888
Representatives in U.S. and Canada
ARIZONA,
Tempe - Centaur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (480)839-2320
CALIFORNIA,
Calabasas - Centaur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (818)878-5800
Irvine - Centaur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 9 49)261-2123
San Diego - Centaur. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (858)278-4950
Santa Clara - Fourfront. . . . . . . . . . . . . . . . . . . . . . . . . . . . (408)350-4800
CANADA,
Burnaby, B.C. - Davetek Marketing. . . . . . . . . . . . . . . . . . . . (604)430-3680
Calgary, Alberta - Davetek Marketing. . . . . . . . . . . . . . . . . (403)283-3577
Kanata, Ontario - J-Squared Tech. . . . . . . . . . . . . . . . . . . . (613)592-9540
Mississauga, Ontario - J-Squared Tech. . . . . . . . . . . . . . . . . . (905)672-2030
St Laurent, Quebec - J-Squared Tech. . . . . . . . . . . . . . . . (514)747-1211
COLORADO,
Golden - Compass Marketing . . . . . . . . . . . . . . . . . . . . . . (303)277-0456
FLORIDA,
Melbourne - Marathon Technical Sales . . . . . . . . . . . . . . . . (321)728-7706
Ft. Lauderdale - Marathon Technical Sales . . . . . . . . . . . . . . (954)527-4949
Orlando - Marathon Technical Sales . . . . . . . . . . . . . . . . . . (407)872-5775
St. Petersburg - Marathon Technical Sales . . . . . . . . . . . . . . (7 2 7)894-3603
GEORGIA,
Duluth - Quantum Marketing . . . . . . . . . . . . . . . . . . . . . ( 6 78)584-1128
ILLINOIS,
Skokie - Industrial Reps, Inc. . . . . . . . . . . . . . . . . . . . . . . . . (8 4 7)967-8430
INDIANA,
Kokomo - SAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .( 765)457-7241
IOWA,
Cedar Rapids - Lorenz Sales . . . . . . . . . . . . . . . . . . . . . . (319)294-1000
KANSAS,
Lenexa - Lorenz Sales . . . . . . . . . . . . . . . . . . . . . . . . . (913)469-1312
MASSACHUSETTS,
Burlington - Synergy Associates . . . . . . . . . . . . . . . . . . . . . (781)238-0870
MICHIGAN,
Brighton - SAI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (810)227-0007
MINNESOTA,
St. Paul - Cahill, Schmitz & Cahill, Inc. . . . . . . . . . . . . . . . . .(651)699-0200
MISSOURI,
St. Louis - Lorenz Sales . . . . . . . . . . . . . . . . . . . . . . . . . . (314)997-4558
NEW JERSEY,
Mt. Laurel - SJ Associates . . . . . . . . . . . . . . . . . . . . . . . . . (856)866-1234
NEW YORK,
Buffalo - Nycom, Inc. . . . . . . . . . . . . . . . . . . . . . . . . .(716)741-7116
East Syracuse - Nycom, Inc. . . . . . . . . . . . . . . . . . . . . . . (315)437-8343
Pittsford - Nycom, Inc. . . . . . . . . . . . . . . . . . . . . . . . . . . (716)586-3660
Rockville Centre - SJ Associates . . . . . . . . . . . . . . . . . . . .(516)536-4242
NORTH CAROLINA,
Raleigh - Quantum Marketing . . . . . . . . . . . . . . . . . . . . . . (919)846-5728
OHIO,
Middleburg Hts - Dolfuss Root & Co. . . . . . . . . . . . . . . . . (440)816-1660
Powell - Dolfuss Root & Co. . . . . . . . . . . . . . . . . . . . . . . (614)781-0725
Vandalia - Dolfuss Root & Co. . . . . . . . . . . . . . . . . . . . . .(937)898-9610
Westerville - Dolfuss Root & Co. . . . . . . . . . . . . . . . . . . (614)523-1990
OREGON,
Lake Oswego - I Squared, Inc. . . . . . . . . . . . . . . . . . . . . . . (503)670-0557
UTAH,
Murray - Front Range Marketing . . . . . . . . . . . . . . . . . . . . (801)288-2500
VIRGINIA,
Glen Burnie - Coherent Solution, Inc. . . . . . . . . . . . . . . . . (410)761-2255
WASHINGTON,
Kirkland - I Squared,Inc. . . . . . . . . . . . . . . . . . . . . . . . . . .(425)822-9220
WISCONSIN,
Pewaukee - Industrial Representatives . . . . . . . . . . . . . . . . ( 2 6 2)574-9393
Representatives in Latin America
ARGENTINA,
Capital Federal Argentina/WW Rep. . . . . . . . . . . . . . . . . . . .54-11)4373-0655
CHILE,
Santiago - LatinRep/WWRep. . . . . . . . . . . . . . . . . . . . . . . . . .(+562)264-0993
COLUMBIA,
Bogota - Dimser. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .(571)410-4182
MEXICO,
Guadalajara - LatinRep/WW Rep. . . . . . . . . . . . . . . . . . . . ( 5 23)817-3900
Mexico City - LatinRep/WW Rep. . . . . . . . . . . . . . . . . . . . ( 5 25)752-2727
Monterrey - LatinRep/WW Rep. . . . . . . . . . . . . . . . . . . . .(528)369-6828
PUERTO RICO,
Boqueron - Infitronics. . . . . . . . . . . . . . . . . . . . . . . . . . . .(787)851-6000
Sales Offices and Representatives
es