ASMT-Mx00 MoonstoneTM 1 W Power LED Light Source Data Sheet Description Features The Moonstone 1W Power LED Light Source is a high performance energy efficient device which can handle high thermal and high driving current. The exposed pad design has excellent heat transfer from the package to the motherboard. TM The Cool White Power LED is available in various color temperature ranging from 4000K to 10000K and Warm White Power LED ranging from 2600K to 4000K. The low profile package design is suitable for a wide variety of applications especially where height is a constraint. The package is compatible with reflow soldering process. This will give more freedom and flexibility to the light source designer. Applications * Portable (flash light, bicycle head light) * Reading light * Architectural lighting * Garden lighting * Decorative lighting * Available in Red, Amber, Green, Blue, Cool White and Warm White color * Energy efficient * Exposed pad for excellent heat transfer * Suitable for reflow soldering process * High current operation * Long operation life * Wide viewing angle * Silicone encapsulation * ESD Class HBM Class 3B (threshold > 8 kV) * MSL 2A for InGaN products * MSL 4 for AlInGaP products Specifications * AlInGaP technology for Red and Amber * 2.4 V (typ) at 350 mA for AlInGaP * InGaN technology for Green, Blue, Cool White and Warm White * 3.6 V (typ) at 350 mA for InGaN * 120 viewing angle Package Dimensions 10.00 1 Anode 2 Cathode 3 Heat Sink 3.30 8.50 1.27 Metal Slug 3 O 5.26 LED 10.60 + - 8.50 ZENER O 8.00 2.00 5.25 1.30 2 1 5.08 0.81 Notes: 1. All dimensions are in millimeters. 2. Tolerance is 0.1 mm unless otherwise specified. 3. Metal slug is connected to anode for electrically non-isolated option. Device Selection Guide ( Tj = 25C) Luminous Flux, fV[1,2] (lm) Part Number Color Min. Typ. Max. Test Current (mA) Dice Technology ASMT-MR00-AGH00 Red 25.5 35.0 43.0 350 AlInGaP 33.0 40.0 56.0 350 AlInGaP ASMT-MR00-AHJ00 ASMT-MA00-AGH00 Amber 25.5 35.0 43.0 350 AlInGaP ASMT-MG00 Green 43.0 60.0 73.0 350 InGaN ASMT-MB00 Blue 11.5 15.0 25.5 350 InGaN ASMT-MW00 Cool White 43.0 60.0 73.0 350 InGaN ASMT-MY00 Warm White 43.0 50.0 73.0 350 InGaN ASMT-MWB1 Cool White Diffused 43.0 55.0 73.0 350 InGaN ASMT-MYB1 Warm White Diffused 43.0 46.0 73.0 350 InGaN Notes 1. fV is the total luminous flux output as measured with an integrating sphere at 25 ms mono pulse condition. 2. Flux tolerance is 10%. 2 Part Numbering System ASMT-M x xx - x x1 x2 x3 x4 Packaging Option Color Bin Selection Maximum Flux Bin Selection Minimum Flux Bin Selection Dice Type N - InGaN A - AllnGaP Silicone Type 00 - Non-diffused B1 - Diffused Color R - Red A - Amber G - Green B - Blue W - Cool White Y - Warm White Note: 1. Please refer to Page 8 for selection details. Absolute Maximum Ratings (TA = 25C) Parameter ASMT-Mx00 / ASMT-MxB1 Units 350 mA 1000 mA Power Dissipation for AlInGaP 1050 mW Power Dissipation for InGaN 1400 mW LED Junction Temperature for AlInGaP 125 C LED Junction Temperature for InGaN 110 C Operating Ambient Temperature Range -40 to +100 C Storage Temperature Range -40 to +120 C DC Forward Current [1] Peak Pulsing Current [2] Notes: 1. DC forward current - derate linearly based on Figure 5 for AlInGaP & Figure 11 for InGaN. 2. Pulse condition duty factor = 10%, Frequency = 1kHz. 3 Optical Characteristics at 350 mA (TJ = 25C) Dominant Wavelength lD [1] (nm) Typ. Viewing Angle 2q1/2 [2] () Typ. Luminous Efficiency (lm/W) Typ. Part Number Color Peak Wavelength lPEAK (nm) Typ. ASMT-MR00-AGH00 Red 635 625 120 42 ASMT-MR00-AHJ00 Red 635 625 120 48 ASMT-MA00-AGH00 Amber 598 590 120 42 ASMT-MG00 Green 519 525 120 48 ASMT-MB00 Blue 460 467 120 12 Correlated Color Temperature, CCT (Kelvin) Viewing Angle 2q1/2 [2] () Luminous Efficiency (lm/W) Part Number Color Min. Max. Typ. Typ. ASMT-MW00 Cool White 4000 10000 110 48 ASMT-MY00 Warm White 2600 4000 110 40 ASMT-MWB1 Cool White Diffused 4000 10000 110 44 ASMT-MYB1 Warm White Diffused 2600 4000 110 37 Notes: 1. The dominant wavelength, D, is derived from the CIE Chromaticity Diagram and represents the color of the device. 2. 1/2 is the off-axis angle where the luminous intensity is 1/2 the peak intensity. Electrical Characteristic at 350 mA (TJ = 25C) Forward Voltage VF (Volts) at IF = 350mA Reverse Voltage VR (Volts) Thermal Resistance Rqj-ms (C/W) [1] Dice Type Min Typ. Max. Max. Typ. AlInGaP 2.0 2.4 3.0 5 12 InGaN 3.2 3.6 4.0 5 10 Notes: 1. RqJ-ms is Thermal Resistance from LED junction to metal slug. 4 RED AMBER FORWARD CURRENT - mA RELATIVE INTENSITY 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 380 430 480 530 580 630 WAVELENGTH - nm 680 730 780 Figure 1. Relative Intensity vs. Wavelength for AlInGaP 500 450 400 350 300 250 200 150 100 50 0 0.00 1.0 RELATIVE INTENSITY RELATIVE LUMINOUS FLUX (-v) - lm 1.2 0.8 0.6 0.4 0.2 0 50 100 150 200 250 300 350 400 MONO PULSE CURRENT - mA 450 500 Figure 3. Relative Luminous Flux vs. Mono Pulse Current for AlInGaP RELATIVE LOP (Normalized at 25C) I F - MAX FORWARD CURRENT - mA 3.00 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -90 -70 -50 -30 -10 10 30 OFF-AXIS ANGLE() 50 70 90 2 350 R JA = 60C/W 300 R JA = 50C/W 250 R JA = 40C/W 200 150 100 50 0 10 20 30 40 50 60 T A - AMBIENT TEMPERATURE - C 70 80 90 Figure 5. Maximum forward current vs. ambient temperature for AlInGaP Derated based on TJMAX = 125C, RJA = 40C/W / 50C/W and 60C/W 5 2.50 Figure 4. Radiation Pattern for AlInGaP 400 0 1.00 1.50 2.00 FORWARD VOLTAGE - V Figure 2. Forward Current vs Forward Voltage for AlInGaP 1.4 0.0 0.50 RED AMBER 1.5 1 0.5 0 -40 -25 -10 5 20 35 50 65 80 JUNCTION TEMPERATURE - C 95 110 125 Figure 6. Relative LOP (Normalized at 25C) vs. junction temperature for AlInGaP GREEN BLUE COOL WHITE WARM WHITE 430 480 530 580 630 WAVELENGTH - nm 680 730 FORWARD CURRENT - mA RELATIVE INTENSITY 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 380 780 1.2 1.0 RELATIVE INTENSITY RELATIVE LUMINOUS FLUX (V) - lm 1.4 0.8 0.6 0.4 0.2 0 50 100 150 200 250 300 350 400 450 500 MONO PULSE CURRENT - mA 540 350 530 RJA = 50 C/W RJA = 40 C/W 200 RJA = 30 C/W 150 100 50 0 0 10 20 30 40 50 60 70 T A - AMBIENT TEMPERATURE - C 80 90 Figure 11. Maximum Forward Current vs. Ambient Temperature for InGaN Derated based on TJMAX = 110C, RJA = 30C/W, 40C/W and 50C/W 6 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 -90 400 250 1.00 1.50 2.00 2.50 3.00 FORWARD VOLTAGE - V 3.50 4.00 70 90 GREEN BLUE COOL WHITE WARM WHITE -70 -50 -30 -10 10 30 OFF-AXIS ANGLE () 50 Figure 10. Radiation Pattern for InGaN DOMINANT WAVELENGTH - nm I F - MAXIMUM FORWARD CURRENT - mA Figure 9. Relative Luminous Flux vs Mono Pulse Current for InGaN 300 0.50 Figure 8. Forward Current vs. Forward Voltage for InGaN Figure 7. Relative Intensity vs. Wavelength for InGaN 0.0 500 450 400 350 300 250 200 150 100 50 0 0.00 GREEN 520 510 500 490 480 BLUE 470 460 450 100 150 200 250 300 FORWARD CURRENT - mA 350 Figure 12. Dominant wavelength vs. forward current - InGaN devices 400 0.016 100 mA 0.014 150 mA Y-COORDINATES 0.012 0.01 0.008 250 mA 0.006 0.004 300 mA 0.002 0 0 350 mA 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 X-COORDINATES Figure 13. Chromaticity shift vs. current *Note: (x,y) values @ 350 mA reference to (0.0) 10.70 0.10 TEMPERATURE 10 - 30 SEC. 217 C 200 C 255 - 260 C 3 C/SEC. MAX. 8.40 0.10 -6 C/SEC. MAX. 17.00 0.20 150 C 3 C/SEC. MAX. 1.00 0.10 60 - 120 SEC. (Acc. to J-STD-020C) 100 SEC. MAX. 3.1 0.10 5.08 0.10 TIME 300 250 200 150 100 50 0 -50 -100 -150 -200 -250 -300 -40 Figure 15. Recommended soldering land pattern 100 90 80 70 60 50 40 30 20 10 0 25 30 35 40 45 50 55 60 65 70 75 80 85 90 JUNCTION TEMPERATURE (C) RELATIVE LOP (%) RELATIVE FORWARD VOLTAGE SHIFT (mV) Figure 14. Recommended reflow soldering profile -15 10 35 TEMPERATURE - C Figure 16. Temperature vs. relative forward voltage shift 60 85 GREEN BLUE COOL WHITE WARM WHITE 95 100105110 Figure 17. Relative LOP vs Junction Temperature for InGaN Devices Note: For detail information on reflow soldering of Avago surface mount LEDs, do refer to Avago Application Note AN1060 Surface Mounting SMT LED Indicator Components. 7 Option Selection Details ASMT-Mxxx - x x1 x2 x3 x4 x1 - Minimum Flux Bin Selection x2 - Maximum Flux Bin Selection x3 - Color Bin Selection x4 - Packaging Option Flux Bin Limit [x1 x2] Bin Luminous Flux (lm) at IF = 350mA Min. Max. D 11.5 15.0 E 15.0 19.5 F 19.5 25.5 G 25.5 33.0 H 33.0 43.0 J 43.0 56.0 K 56.0 73.0 Tolerance for each bin limits is 10% Color Bin Selection [x3] Individual reel will contain parts from one full bin only. Cool White Warm White 0 Full Distribution 0 Full Distribution A A only A A only B B only B B only C C only C C only D D only D D only E E only E E only F F only F F only N A and C only G G only P B and D only H H only Q E and C only L A and G only R F and D only M B and H only U E and F only N A and C only W C and D only P B and D only Z A and B only Q E and C only 1 A, B, C and D only R F and D only 4 C, D, E and F only S G and H only U E and F only W C and D only Other Colors 0 Full Distribution Z A and B only Z A and B 1 A, B, C and D only Y B and C 2 G, H, A and B only W C and D 4 C, D, E and F only V D and E Q A, B and C P B, C and D N C, D and E 8 0.44 0.48 0.42 0.46 0.40 G A 0.36 C 0.34 5.6k 0.32 4.0k 4.5k H 7k D E 0.30 B 0.44 Y - COORDINATE Y - COORDINATE 0.38 Black Body Curve 0.40 E 0.38 3.5k D 4.0k F 2.6k 3.0k B Black Body Curve 0.34 0.26 0.24 0.24 C 0.36 10k F 0.28 A 0.42 0.26 0.28 0.30 0.32 0.34 0.36 X - COORDINATE 0.38 0.40 0.42 0.44 0.32 0.34 0.36 0.38 0.40 0.42 0.44 X - COORDINATE 0.46 0.48 0.50 Figure 19. Color bins (Warm White). Figure 18. Color bins (Cool White). Color Bin Limits Warm White Color Limits (Chromaticity Coordinates) Cool White Color Limits (Chromaticity Coordinates) Bin A x y 0.452 0.434 0.488 0.447 0.470 0.414 0.438 0.403 Bin A x y 0.367 0.400 0.362 0.372 0.329 0.345 0.329 0.369 Bin B x y 0.438 0.403 0.470 0.414 0.452 0.384 0.424 0.376 Bin B x y 0.362 0.372 0.356 0.330 0.329 0.302 0.329 0.345 Bin C x y 0.407 0.393 0.418 0.422 0.452 0.434 0.438 0.403 Bin C x y 0.329 0.369 0.329 0.345 0.305 0.322 0.301 0.342 Bin D x y 0.395 0.362 0.407 0.393 0.438 0.403 0.424 0.376 Bin D x y 0.329 0.345 0.329 0.302 0.311 0.285 0.305 0.322 Bin E x y 0.381 0.377 0.387 0.404 0.418 0.422 0.407 0.393 Bin E x y 0.303 0.333 0.307 0.311 0.283 0.284 0.274 0.301 Bin F x y 0.373 0.349 0.381 0.377 0.407 0.393 0.395 0.362 Bin F x y 0.307 0.311 0.311 0.285 0.290 0.265 0.283 0.284 Bin G x y 0.388 0.417 0.379 0.383 0.362 0.372 0.367 0.400 Bin H x y 0.379 0.383 0.369 0.343 0.356 0.330 0.362 0.372 Tolerance: 0.01 Color Bin Min. Max. Red Full Distribution 620.0 635.0 Amber A 582.0 584.5 B 584.5 587.0 C 587.0 589.5 D 589.5 592.0 E 592.0 594.5 A 460.0 465.0 B 465.0 470.0 C 470.0 475.0 D 475.0 480.0 A 515.0 520.0 B 520.0 525.0 C 525.0 530.0 D 530.0 535.0 Blue Green Tolerance: 1 nm 9 Tolerance: 0.01 0.52 Sub-Color Binning (Only Applicable for Color Bin A to Bin D and Bin G to Bin H) Color Limits Cool White (Chromaticity Coordinates) Bin A1 X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y Bin A2 Bin A3 Bin A4 Bin B1 Bin B2 Bin B3 Bin B4 Bin B5 Bin B6 Bin C1 Bin C2 Bin C3 Bin C4 0.364 0.383 0.364 0.383 0.329 0.357 0.329 0.345 0.362 0.372 0.360 0.357 0.358 0.343 0.329 0.331 0.329 0.331 0.343 0.331 0.329 0.369 0.329 0.357 0.314 0.355 0.315 0.344 0.367 0.400 0.362 0.372 0.329 0.369 0.329 0.357 0.360 0.357 0.358 0.343 0.356 0.330 0.329 0.345 0.344 0.344 0.341 0.314 0.329 0.357 0.329 0.345 0.315 0.344 0.316 0.333 0.348 0.385 0.346 0.359 0.348 0.385 0.347 0.372 0.344 0.344 0.343 0.331 0.341 0.314 0.346 0.359 0.343 0.331 0.329 0.302 0.315 0.344 0.316 0.333 0.303 0.333 0.305 0.322 0.347 0.372 0.347 0.372 0.347 0.372 0.346 0.359 0.346 0.359 0.344 0.344 0.343 0.331 0.344 0.344 0.329 0.320 0.329 0.320 0.314 0.355 0.315 0.344 0.301 0.342 0.303 0.333 Cool White (Chromaticity Coordinates) Bin D1 X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y X Y Bin D2 Bin D3 Bin D4 Bin D5 Bin D6 Bin G1 Bin G2 Bin H1 Bin H2 Bin H3 Tolerances 0.01 0.44 0.42 0.40 G1 0.38 Y - COORDINATE G2 A1 A3 0.36 C3 0.34 C4 0.32 7k C2 B4 5.6k B5 D1 D2 D4 0.30 C1 A4 D5 D6 H1 A2 B1 B2 4.5k 4.0k H2 H3 Black Body Curve B3 B6 D3 10k 0.28 0.26 0.24 0.24 0.26 0.28 0.30 0.32 0.34 X - COORDINATE Figure 20. Sub-color bins (Cool White) 10 0.36 0.38 0.40 0.42 0.44 0.329 0.345 0.329 0.331 0.329 0.320 0.316 0.333 0.317 0.320 0.318 0.310 0.392 0.421 0.386 0.400 0.382 0.385 0.378 0.370 0.375 0.358 0.329 0.331 0.329 0.320 0.329 0.302 0.317 0.320 0.318 0.310 0.320 0.293 0.386 0.400 0.382 0.385 0.378 0.370 0.375 0.358 0.371 0.344 0.317 0.320 0.318 0.310 0.320 0.293 0.307 0.311 0.309 0.300 0.311 0.285 0.364 0.383 0.362 0.372 0.360 0.357 0.358 0.343 0.356 0.330 0.316 0.333 0.317 0.320 0.318 0.310 0.305 0.322 0.307 0.311 0.309 0.300 0.367 0.400 0.364 0.383 0.362 0.372 0.360 0.357 0.358 0.343 Example Packaging option [x4] Selection Option ASMT-MR00-AHJ00 0 Tube 1 Tape & Reel ASMT-MR00-Axxxx x1 = H x2 = J x3 = 0 x4 = 0 - - - - - AllnGaP Red, Non-diffused Minimum Flux Bin H Maximum Flux Bin J Full Distribution Tube Option Packing Tube - Option 0 1.00 5.80 4.65 5.50 37.00 5.45 10.10 8.30 535.00 SIDE VIEW TOP VIEW Figure 21. Tube dimensions Tape & Reel - Option 1 Tape Dimension B Bo W F E A 2.5 B A Ko P SECTION A Ao SECTION B Figure 22. Carrier tape dimensions Dim Value A0 8.800.10 B0 16.450.10 K0 3.600.10 W 24.00.10 P 16.00.10 Qty/Reel 250EA Unit: mm Tape & Reel - Option 1 (Cont.) Tape Dimension END START THERE SHALL BE A MINIMUM OF 160 mm OF EMPTY COMPONENT POCKETS SEALED WITH COVER TAPE. MOUNTED WITH COMPONENTS THERE SHALL BE A MINIMUM OF 390 mm OF EMPTY COMPONENT POCKETS SEALED WITH COVER TAPE. Figure 23. Carrier tape leader and trailer dimensions Reel Dimensions +1.00 24.0 -0.00 2.30 2.30 0 2.50 0.50 0 60. 99.50 1.00 R10.0 .50 268.00 R10 13.50 330.00 1.00 Figure 24. Reel dimensions 0 0.5 120.0 0.50 Handling Precaution The encapsulation material of the product is made of silicone for better reliability of the product. As silicone is a soft material, please do not press on the silicone or poke a sharp object onto the silicone. These might damage the product and cause premature failure. During assembly or handling, the unit should be held on the body only. Please refer to Avago Application Note AN5288 for detail information. B. Control after opening the MBB Moisture Sensitivity C. Control for unfinished reel This product is qualified as Moisture Sensitive Level 2a for InGaN devices and MSL 4 for AlInGaP devices per Jedec J-STD-020. Precautions when handling this moisture sensitive product is important to ensure the reliability of the product. Do refer to Avago Application Note AN5305 Handling of Moisture Sensitive Surface Mount Devices for details. A. Storage before use * Unopen moisture barrier bag (MBB) can be stored at <40C/90%RH for 12 months. If the actual shelf life has exceeded 12 months and the humidity indicator card (HIC) indicates that baking is not required, then it is safe to reflow the LEDs per the original MSL rating. * It is not recommended to open the MBB prior to assembly (e.g. for IQC). * The humidity indicator card (HIC) shall be read immediately upon opening of MBB. * The LEDs must be kept at <30C/60%RH at all time and all high temperature related process including soldering, curing or rework need to be completed within 672 hours for MSL 2a and 72 hours for MSL 4. * For any unused LEDs, they need to be stored in sealed MBB with desiccant or desiccator at <5%RH. D. Control of assembly boards * If the PCB soldered with the LEDs is to be subjected to other high temperature processes, the PCB need to be stored in sealed MBB with desiccant or desiccator at <5%RH to ensure no LEDs have exceeded their floor life of 672 hours for MSL 2a and 72 hours for MSL 4. E. Baking is required if * HIC "10%" indicator is not blue and "5%" indicator is pink. - The LEDs are exposed to condition of >30C/60% RH at any time. * The LEDs floor life exceeded 672 hours for MSL 2a and 72 hours for MSL 4. Recommended baking condition: 605C for 20hrs. DISCLAIMER AVAGO'S PRODUCTS AND SOFTWARE ARE NOT SPECIFICALLY DESIGNED, MANUFACTURED OR AUTHORIZED FOR SALE AS PARTS, COMPONENTS OR ASSEMBLIES FOR THE PLANNING, CONSTRUCTION, MAINTENANCE OR DIRECT OPERATION OF A NUCLEAR FACILITY OR FOR USE IN MEDICAL DEVICES OR APPLICATIONS. CUSTOMER IS SOLELY RESPONSIBLE, AND WAIVES ALL RIGHTS TO MAKE CLAIMS AGAINST AVAGO OR ITS SUPPLIERS, FOR ALL LOSS, DAMAGE, EXPENSE OR LIABILITY IN CONNECTION WITH SUCH USE. For product information and a complete list of distributors, please go to our web site: www.avagotech.com Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright (c) 2005-2009 Avago Technologies. All rights reserved. Obsoletes AV01-0668EN AV02-0129EN - September 2, 2009