NEC

PNP SILICON POWER TRANSISTOR 2SA1396

DESCRIPTION

The 2SA1396 is PNP silicon epitaxial transistor designed for switch-

ing regulator, DC-DC converter and high frequency power amplifier

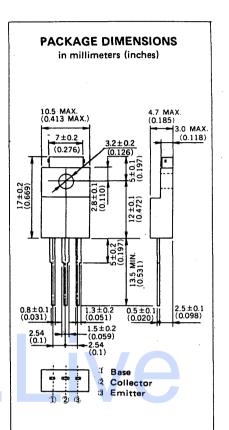
application.

FEATURES

- Easy mount by eliminating Insulation Sheet and Bushing.
- Low Collector Saturation Voltage.
- High Switching Speed.
- Complementary to 2SC3568.

ABSOLUTE MAXIMUM RATINGS

Maximum Temperatures


Storage Temperature -55 to + 150 °C Junction Temperature 150 °C Maximum

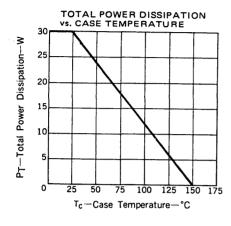
Maximum Power Dissipation (T_c = 25 °C)

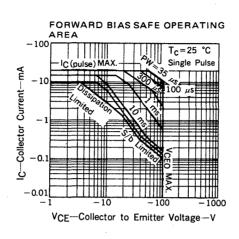
Maximum Voltages and Currents (Ta=25 °C)

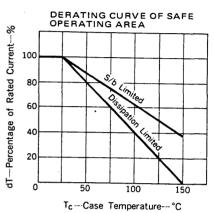
Collector to Base Voltage -100 V V_{CBO} Collector to Emitter Voltage -100 V **V_{CEO}** Emitter to Base Voltage -7.0 V **V**EBO Collector Current (DC) -10 A (C(DC) C(pulse) Collector Current (pulse)* Base Current (DC) -5.0 A

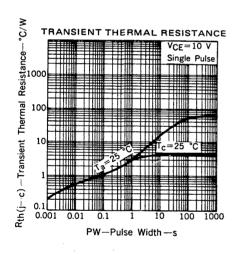
* PW \leq 300 μ s, Duty Cycle \leq 10 %

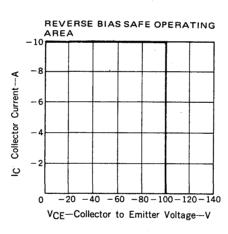
EI ECTRICAL CHARACTERISTICS (T. = 25 °C)

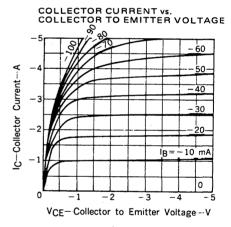

SYMBOL	CHARACTERISTIC	MIN.	TYP.	MAX.	UNIT.	TEST CONDITIONS	
ton	Turn-on Time			0.5	μs	$I_{C} = -5.0 \text{ A}, I_{B1} = -I_{B2} = -0.5 \text{ A}$	
tstq	Storage Time			1.5	μs	$R_L = 10 \Omega$, $V_{CC} = 50 V$	
tf	Fall Time			0.5	μs		
hpei	DC Current Gain**	40		200		$V_{CE} = -5.0 \text{ V, } I_{C} = -0.5 \text{ A}$	
hFE2	DC Current Gain**	40		200	-	$V_{CE} = -5.0 \text{ V, } I_{C} = -3.0 \text{ A}$	
h _E 3	DC Current Gain**	20			_	$V_{CE} = -5.0 \text{ V, } I_{C} = -5.0 \text{ A}$	
VCE(sat)	Collector Saturation Voltage**			-0.6	V	$I_C = -5.0 \text{ A}, I_B = -0.5 \text{ A}$	
V _{BE} (sat)	Base Saturation Voltage**			-1.5	V	$I_C = -5.0 \text{ A}, I_B = -0.5 \text{ A}$	
VCEO (SUS)	Collector to Emitter Sustaining Voltage	-100			V	$I_C = -5.0 \text{ A}, I_B = -0.5 \text{ A}, L = 1 \text{ mH}$	
VCEX (SUS)1	Collector to Emitter Sustaining Voltage	-100			V	$I_C = -5.0 \text{ A}$, $I_{B1} = -I_{B2} = -0.5 \text{ A}$, $T_a = 125^\circ$ L = 180 μ H, Clamped	
VCEX (SUS)2	Collector to Emitter Sustaining Voltage	-100			V	I _C = -10 A, I _{B1} = -1.0 A, - ¹ B2 = 0.5 A, L = 180 µH, Clamped	
ICBO	Collector Cutoff Current			-10	μΑ	$V_{CB} = -100 \text{ V, } I_{E} = 0$	
ICER	Collector Cutoff Current			-1.0	mA	$V_{CE} = -100 \text{ V, R}_{BE} = 51 \Omega, T_a = 125 ^{\circ}\text{C}$	
ICEX1	Collector Cutoff Current			-10	μΑ	$V_{CE} = -100 \text{ V}, V_{BE(OFF)} = 1.5 \text{ V}$	
ICEX2	Collector Cutoff Current			-1.0	_. mA	$V_{CE} = -100 \text{ V, } V_{BE(OFF)} = 1.5 \text{ V, } T_a = 125 ^{\circ}$	
IEBO	Emitter Cutoff Current			-10	μΑ	$V_{EB} = -5.0 \text{ V, } I_{C} = 0$	

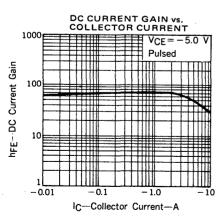

Classification of heep

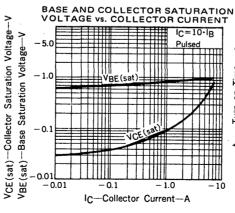

Rank	M	L	Ķ
Range	40 to 80	60 to 120	100 to 200

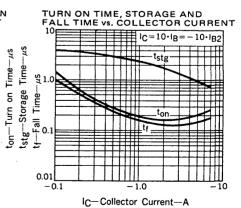

Test Conditions: $V_{CE} = -5.0 \text{ V}$, $I_{C} = -3.0 \text{ A}$

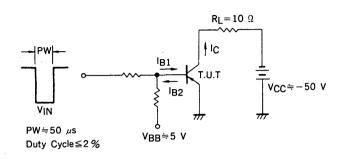

TYPICAL CHARACTERISTICS (Ta = 25 °C)

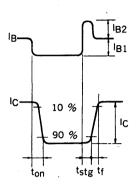












SWITCHING TIME (t_{on} , t_{stg} , t_{f}) TEST CIRCUIT

