- Numerical Index 2N3962-2N4059 | > MAXIMUM RATINGS ELECTRICAL CHARACTERISTICS i= = aw = = z | =| REPLACE- | PAGE Py 1 Slt | Vee [Vel he @Ic Vorsan @ Io B) |= TRE (S| ment | numper| USE & 5 g alm (Bl ~2lB =)a @25C | S|} C | (volts) | (volts) 3 (min) (max) >] (velts) = 3 = 2 2N3962 S|P AFA 0,36W) Al 200 60 60} O} 100) 300 0.25 10M] 100 E 4oM) T 2 2 Ss |P AFA 0.36W] Aj 200 8&0 80) O; 100) 3900 0.25 LOM} 100 E 40M] T S]|P AFA 0.36W] Al 200 45 45) O} 250/ 500] 0.25 LOM} 250 E 50M] T S|P AFA 0.36W) Al 200 60 60] O} 250) 500 0.25 LOM} 250 E 50M 2N3966 thru Field Effect Transistors, sce Table on Page 1-166 2N3972 3973 S |N | 2N4400 5-34 MSG 0.36W| Al 150 60 30| 0 35! LOO! LOM 0.3! O.15A 200M! T S |N | 2N4401 5-34 MSC 0.36W) Al 150 60 30} 0 55) 200 LOM 0.3) O.15A 200M] T S |N } 2N4400 5-34 MSC O0.36W) A] 150 60 30) 0 35) 100. 10M 0.3] O.15A 200M! T S |N | 2N4401 5-34 MSC 0.36W) A] 150 60 30] 0 55] 200) 1OM 0.3) 0.154 200M] T S|P CHP O.4W] Al 200 15 10} Oo] 40 5.0M 0.1 5.0M 1.OM}) T S |[P CHP 0.4W; Al 200 25 20) 0 30 5.0M 0.15 5.0M 1.0M) T S }P CHP 0.4W] A] 200 40 35] 0 20 5.0M 0.15 5. 0M 1.0M| T Unijunction Transistor, see Table on Page 1-174 SIN HSS O.8WE Aj 200 60 30] 0 30) 120] 0O.15A 0.4) O.15A 250M| T SEN HSS 0,8W} AF 200 50 201 0 40] 140] 0.154 0.4) O.LSA 250M| T S |N RFC 0.2W) A} 150 30 12] 0 30 4.0M 500M] T 5S pN RFG 0.2W) A} 150 30 12) 0 20 4.0M 400M] T SIN RFG O.2W] A} 150 30 12}, 0 20 4.0M 300M] T Thyristors, sce Table on Page 1-154 Field Effect Transistor, see Table on Page 1-166 G |P |2N2929 9-33 RFA 0.3W{ A| 100 20 12] 0 40] 200 2.0M 150 E 0.66] T Ss |N PHS 2.0W] A) 200 100 80) 0 40] 120 1.0A 0.25 1.0A 40M| T Ss |N PHS 2,0W} A} 200) 100 80} O} 80} 240] 1.OA] 0.25 1.0A 40M! T S [N PHS 2,0W] A} 200 100 80] 0 40} 120 1.0A 0.25 1.0A 40M] T S |N PHS 2.0W} A} 200) 100 80] O} 80} 240 1.0A] 0.25 1.0A 40M] T SIN PHS 1.0W) A] 200 100 80] 30] 120 O.5A 0.3 O.5A 40M! Tt S |N PHS 1.QW) A} 200 126 100} oO 40] 120 0.54 0.3 O.5A 40M} T S |N LPA 4.0W] A 100 80) 0 20 80 15A 30 E 30M] B S |N LPA 4.0W] A 120 1001 0 20 80 15A 30 E 30M] B S |N LPA L.2W] A 100 80; 0 30) 150 104 30M] B 2N4005 S [N LPA 1,2Wl A 120 100] 0 30[ 150 10A 30M| B 2N4006 Ss |P AFA 400M} A| 200 LO 6.0] 0 40 E 20M| T 2N4007 S |e MSA 400Mf A] 200 20 15] 0 30 E 15M] T 2N4008 Ss |P MSA 400M} A] 200 35 30] 0 20 E 15M] T 2N4009 Matched Pair 2N4006 2N4010 Matched Pair 2N4&007 ON4011 Matched Pair 2N4008 2N4012 S IN 9-110 LPA 11.6W] Cj 200 65 40| O| 4.0 40 L.OA 1.0} 0.25A 400M] T 2N4013 SIN 8-257 HSS 360M] Al 200 60 40] 0 150 LOOM 300M] T 2N4014 S iN 8-257 HSS 360M| A; 200 80 50; 0 150 100M 300M] T 2R4015 S )P DFA 0.4W) Ay 200 60 60) 0) 135] 350 1.0M 0.25 SOM} 135 gE 200M} T 2N4016 Ss )P DFA 0.4W| A] 200 60 60] O|] 135} 350 1.0M 0.25 50M} 135 E 200M| T 2N4017 S |P AFA 600M} A] 200 80 80] O] 100] 500 1.0M 40M] T 2N4018 SEP AFA 400M} A] 200 60 60] 0 100 E 7,0M! E 2N4019 S ;P AFA 400M} A] 200 45 45t 0 250 E 5OM| T 2N4020 S }P DFA 0.4W) Al 200 45 45} O] 250} 500 1O* 0.25 10M] 250 E 50M] T 2N4021 S |P DFA O.4W] Ay 200 60 60] O}] 100) 350 10* 0.25 10M| 100 E 40M! T 2N4022 S |P DFA O.4W] Al 200 60 60] O}] 250) 500 1L0* 0.25 LOM] 250 E 50M| T 2N4023 S |P DFA O.4W] A} 200 45 45| O| 250} 500 1o* 0.25 LOM} 250 E 50M) T 2N4024 S |P DFA O.4W/ Al 200 60 6Q| QO} 100) 350 Lox 0.25 1oM} 100 E 40M! T 2N4025 S ]P DFA O.4W}] AJ] 200 60 60} O; 250} 500 Lo* 0.25 LOM] 250 E 50M] T 2N4026 S |P AFA O.5W] A} 200 60 60] 0 40| 120 O.1A 1.0 1.0A LOOM] T 2N4027 S |P AFA O.5Wy A] 200 80 801 0 40| 120 O.1A 0.5 0.54 100M} T 2N4028 S |P AFA O.5Wt Ay 200 60 60; O}] 100; 300 O.1A 1.0 1.0A ISOM] T 2N4029 S |P AFA O.5W| A} 200 80 8Of O} 100; 300 Q.1A 0.5 0.54 150M] T 2N4030 S |P AFA 0.8W] A] 200 60 60} O 40| 120 O.1A 1.0 1.0A LOOM] T 2N4031 S |P AFA 0.8W] A] 200 80 80| 0 40] 120 O.1A 0.5 O.5A LOOM] T 2N4032 S |P AFA 0.8W] Al} 200 60 60} Of 100) 300 O.1A 1.0 1.0A 150M] T 2N4033 S |P AFA 0.8W| Al 200 80 80| oO} 100| 300 O.1A 0.5 O.5A 150M] T 2N4034 S ]P HSS 0.36W)] Al 200 40 40| 0 70; 200 10M 0.13 1.OM 50 E 400M| T 2N4035 S [P HSS 0.36W{ A| 200 40 40] O| 150] 300 10M 0.13 1.0M] 150 E 450M| T 2N4.036 Ss |P MSS 5.OW} A] 200 90 65; 0 40{ 140] 0.154 ooM; T 2N4037 S IP MSS L.OW] Af 200 60 401 0 50; 250] O,15A 60M| T 2N4040 S [N HPA L7.5W] C] 200 60 40| 0 10 80 O.1A 2.0 1,0A 400M] T 2N4041 S IN HPA 10w] C]} 200 60 40; 0 10 80 75M 2.0 O.5A 400M] T 2N4042 S |N DFA 0.3W] C} 200 60 60] Of 200] 600 Lo* 0.35 1.OM 200M] T 2N4043 S |N DFA O.3Wy; C] 200 45 45] 0 80] 800 1O* 0.35 1.0M LSOM; T 2N4044 SIN DFA O.4W] Cj} 200 60 60] O] 200] 600 1o* 0.35 1.0M 200M; T 2N4045 S |N DFA O.4W) C) 200 45 454 0 80} 800 Lo* 0.35 1,.0M 150M) T 2N4046 Ss |N 8-296 HSS 800M] A} 200 50 30) 0 150 100M 250M] T 2N4047 S |N 8-296 HSS 800M} A] 200 80 50] a 150 100M 250M} T 2N4048 G |P 7-152 LPA 170W| Ci 110 45 30] 0 60] 120 1L5A 0.30 604 2.0K] E 2N4049 G |P 7-152 LPA 170W| Cc} 110 60 45| 0 60] 120 LA 0.30 60A 2.0K] E 2N4050 GP 7-152 LPA 170W] C} 110 75 60] 0 60] 120 15A 0,30 60A 2.0K] E 2N4051 GIP 7-152 LPA 170W;/ C} 110 45 30] 0 60; 180 15A 0.36 60A 2.0K] E 2N4052 G ftP 7-152 LPA 170w}] Cc} 110 60 454 0 60{ 180 15A 0.30 60A 2.0K] E 2N4053 G |P 7-152 LPA L7OW] C} 110 75 60}; 0 60| 180 15A 0.30 60A 2.0K] E 2N4054 Ss |N LPA 6.25W}] C}] 150 300 300] 0 30 90 50M 5.0 75M 15M} T 284055 SN LPA 6,25W} C} 150 250 250] 0 30 90 50M 5.0 75M 15M| T 2N4056 S |N LPA 6.25W] C] 150 200 200] 0 30 90 50M 5.0 75M 15M| T 2N4057 Ss |N LPA 6.25W] C} 150 150 150] 0 30 90 5.0 75M 15M] T 2N4058 S }P |MPS6522 [5-1 AFC Q.25W; AJ 150 30 30] O} 100] 400 O.1M 0.7 10M} 100 E 2N4059 S }P |Mps6516 |5-113 AFC O.25W] Al 150 30 30f oO 45, 660 1.0M 0.7 10M 45 E 1-145WA AK WGMWCWQ BC6CDWIK'W''';=).W'WYDQQD} BCWw@CiCK BCWwc 170W By me cTemnGicr2a | Va ) 45V | 60V | 75Vv | 90V = , 0.3 MHz | 70.36 50-100 2N2152 | 2N2153 | 2N2154 | 2N2155 80-160 2N2156 | 2N2157 | 2N2158 | 2N2159 O-AMP ~ HIGH-CURRENT, Veet LOW-SATURATION SWITCH bre ic= 504 O1V _ le = 20 A, Veg == 2 W=5A po= 170M | *7 (heg = 20 min @ te = 50 A} Vea 15V 10-36 40-130 2N2728 PSO" AMP sich Dc Gai h v asv | 6ov | 75V LOW. SATURATION SWITCH cishiaz2v LS Pp = 170W (hg = 15 min @ lc =60A) | Vee 45V 60V 75 fr 0.3 MHz | = ; 1036 60-120 2N4048 | 2N4049 | 2Na050 80-180 2N4051 | 2N4052 | 2N4053 p 6O-AMP bc CAIN LOW-SATURATION SWITCH extshtecoy PME SOV | 45 | OV | 75 Po = 170W {hye = 15 min @ ' = 60 A) Ves 30V 45V 60V 75V f 0.3 MHz eos 60-120 2N4276 | 2N4278 | 2N4280| 2N4282 10-3 80-180 2N4277 | 2N4279 | 2N4281 | 2N4283 6O- AMP HIGH-CURRENT HIGH GAR reWITCH _. be oy [ved 45 | sow | 75v | sv P,=170W (tye = 12 min ic=500) Ves 45V 60V 75V 90V fr 0.3 MHz 7 30-60 MP500 | MP501 | MP502| MP503 | TO-36 50-100 mp5o04 | MP505 | MP506| MP507 p 150-AMP POWER-PAC ASSEMBLY LOW-SATURATION SWITCH ca tbon Vex | _60V 75N P, = 250 W . ~ gy Va = 2.04 Veio 45V 60V 6, = 0.33C/W 7% a ie case 118 (Ox 15 min MP801 MP800 a tTo order units with soider lugs: (TO-41 Case): add the prefix MP" in place of 2N"' (i.e. MP2137). order odd numbered devices (i.e. 2N1163). #Alloy Diffused Epitaxial Process #For epoxy encapsulated PAC add 'A" to device type (i.e. MP801A) 7-10Power Transistors 2N4048 thru 2N4053 (GERMANIUM) Vero = 30-60 V c= P, = 170 W PNP germanium power transistors designed for high-current applications requiring high gain and ex- CASE 7 tremely low saturation voltage. (TO-36) MAXIMUM RATINGS . 2N4048 | 2N4049 | 2N4050 . Ratin Unit g Symbol | oN4051 | 2N4052 | 2N4053 Collector-Emitter Voltage Voro 30 45 60 Vde Collector-Emitter Voltage Vors 45 60 15 Vde Collector-Base Voltage Vop 45 60 75 Vdc Emitter-Base Voltage Vip 25 30 40 Vdc Collector Current Continuous I,* 60 Adc Total Device Dissipation @ Te = 25C Py 170 Watts Derate above 25C 2.0 w/c Operating and Storage Junction Ty T te (7 ~65 to +110 >} C Temperature Range Ste THERMAL CHARACTERISTICS Characteristic Symbol Max Unit Thermal Resistance, Junction to Case 0 0.5 c/w FIGURE 1 AVERAGE POWER-TEMPERATURE DERATING CURVE 200 _ FOR TRANSIENT THERMAL RESISTANCE AND @ 160 SAFE OPERATING AREA INFORMATION, = SEE FIGURES 2 & 3. S S 120 = 2 = 80 = 2 bh, a a 40 0 20 40 60 80 100 120 Tc, CASE TEMPERATURE (C) * JEDEC Registered Values, For True Capability See Figure 3 7-1522N4048 thru 2N4053 (continued) ELECTRICAL CHARACTERISTICS 1, = 25C unless otherwise noted) Power Transistors | Characteristic | Symbol | Min | Max Unit OFF CHARACTERISTICS Collector-Emitter Breakdown Voltage t BV ft Vde (Ig = 1.0 Ade, I, = 0) 2N4048, 2N4051 CEO 30 - 2N4049, 2N4052 45 - 2N4050, 2N4053 60 - Collector-Emitter Breakdown Voltage BV Vde (I, = 300 mAdc, Vg, = 0) 2N4048, 2N4051 CES 45 - 2N4049, 2N4052 60 - 2N4050, 2N4053 75 - Floating Potential Vesr Vde op = 45 Vdc, I = 0} 2N4048, 2N4051 - 0.5 (Vou = 60 Vdc, ly = 0) 2N4049, 2N4052 - 0.5 Von = 75 Vdc, I = 0) 2N4050, 2N4053 - 0.5 Collector Cutoff Current Torx mAdc Vor = 30 Vdc, VieR(oft) = 2.0 Vdc, To =+T1C) 2N4048, 2N4051 - 15 Vor = 45 Vde, Veg (off) = 2.0 Vde, To =+T1C) 2N4049, 2N4052 - 15 Vor = 60 Vdc, VieE(ott) = 2.0 Vdc, Te =+71C) 2N4050, 2N4053 - 15 Collector Cutoff Current lupo mAdc Wop = 2:0 Vde, I, = 0) - 0.2 (Vo = 45 Vdc, 1, = 0) 2N4048, 2N4051 - 4.0 Wop = 60 Vdc, L, = 0) 2N4049, 2N4052 - 4.0 (Vop 7 75 Vde, 1, = 0) 2N4050, 2N4053 - 4.0 Emitter Cutoff Current I Bo mAdc Vor = 25 Vdc, Io = 0) 2N4048, 2N4051 - 4.0 (op = 25 Vdc, L, = 0, To = +71C) - 15 (Ver = 30 Vdc, Io = 0) 2N4049, 2N4052 - 4.0 (Vig = 30 Vde, I, = 0, Ty = +71C) - 15 (Ver = 40 Vdc, In = 0) 2N4050, 2N4053 - 4.0 (Wap = 40 Ve, 1, = 0, Ty = 71C) - 15 ON CHARACTERISTICS DC Current Gaint hopt - (le = 15 Ade, Vor = 2.0 Vdc) 2N4048, 2N4049, 2N4050 60 120 2N4051, 2N4052, 2N4053 80 180 Xe = 60 Adc, Vor = 2.0 Vac) 15 - Collector-Emitter Saturation Voltage} v t Vde (I, =15 Adc, I = 1.0 Adc) CE(sat) - 0.15 Ml = 60 Adc, In = 6.0 Adc) - 0.3 Base-Emitter Saturation Voltage t v t Vde (I, = 15 Ade, I, = 1.0 Adc) BE(sat) - 0.6 Mg = 60 Ade, IB = 6.0 Adc) - 1.0 SMALL SIGNAL CHARACTERISTICS Common-Emitter Cutoff Frequency f kHz (Ig = 15 Adc, V, = 2.0 Vdc) we 2.0 - + To avoid excessive heating of the collector junction, perform test with pulse method. The switching performance of this transistor is determined primarily by the gain-bandwidth product, fy*, and the behavior of the base-spreading resistance, rg in the case of rise time, the base-spreading resistance plays a smal part, and the test circuit delivers a constant current step of turn-on current to the transistor (1;). Therefore, the curve of t, on Figure 6 follows theory closely, i.e.: . eatr From the curve, it can be seen that f; is roughly constant with current; using the equation, its large signal value can be calculated to be approximately 120 kH2 at the 20-Amp level. A tower supply voltage will increase rise time slightly. Turn-off time is slow because of conductivity modulation which occurs in the base region. When the transistor is held on"' in saturation, the base region becomes filled with excess charge; i.e., charge in excess of that Leos ie * fy = foe X Me 7-153 necessary to sustain the circuit limited value of Ic. As a result, the base resistivity and consequently re become very low. During turn off, as the excess charge is reduced, the accompanying increase in resistivity causes a marked reduction in the turn-off current, ig2, as can be seen from the wave- forms of Figure 5. During fall time, the ig: current is very low causing an extended fall time. Only a slight improvement in turn-off performance is achieved with a speed-up capacitor placed across Rp. This unusual behavior occurs be- cause fy" limits the amount of reverse current which can be achieved. Also, it seems evident that rs increases with applied reverse current, so that efforts to speed up the turnaff behavior are somewhat futile. In most applications, switching time will be close to the values shown on Figure 6. Delay time is not shown as it is negligible in comparison to the other times.Power Transistors 2N4048 thru 2N4053 (continued) FIGURE 2 TRANSIENT THERMAL RESISTANCE S 10 10 Zz 07 0.7 There are two limitations on the power han ~- Zz 05 05 dling ability ot a transistor: junction temperature 2 and secondary breakdown. Safe operating area ui og 03 curves indicate lc-Vc limits of the transistor that z must be observed for reliable operation; i.e. the B02 8ic(mea) = 0.2 transistor must not be subjected to greater dissipa- 8 i indicate. g 6 arc tion than the curves indicate. Zool 01 The data of Figure 3 is based on Typ.) = = 0.07 0.07 110C; Te is variable depending upon conditions. = we Pulse curves are valid for duty cycles to 10% pro- f 0.05 0.05 vided Tyipiy < 110C. T sink) may be calculated a lex P from the data in Figure 2. At high case tempera- 20.03 Tatpt) To = Bae rth} Pot 0.03 tures, thermal limitations will reduce the power Zoo SINGLE PULSE 002 that can be handled to values less than the limi- ~_ (D = 0) Tt , tations imposed by secondary breakdown. a rr Titpt) Te = Asc Mth. D) Pox S001 UTY CYCLE Q = 001 01 02 05 10 20 5.0 10 20 50 100 200 500 1000 2000 5000 10000 ty, PULSE WIDTH (ms) FIGURE 3 ACTIVE REGION SAFE-OPERATING AREA FIGURE 4 SAFE OPERATING AREA TEST CIRCUIT = 0040 0.25 mH *0.19,1% g J Adj for lc 60A 5 @vce= Wz = 1.0.0, 20W Wo, 20W = 3 100 = = ps ADJ FOR Into = 5.0A me om 2.0 8 z 1.0 ms 3 Ty = 110C CURVES APPLY 5.0 ms *NOT REQUIRED IF CURRENT PROBE ***ZENER SELECTED TO ESTABLISH BELOW RATED USED TO READ lyre SAFE OPERATING AREA VOLTAGE, de *PRE = 60 Hz le = 60 Ade: , NCE & INDUCTANG SNdo4S ONAOS? = a0 Vos 20 3. 5.0 7.0 SERIES IMPEDANCE & INDUCTANCE ) 2N4052 40 Vdc 10 30 10 20 30 5070100 MUST BE KEPT TO A MINIMUM. 2N4050, 2N4053 45 Vdc Ve, COLLECTOR-EMITTER VOLTAGE (VOLTS) FIGURE 5 SWITCHING TEST CIRCUIT FIGURE 6 ~ SWITCHING TIMES {-) Voce = 30 TO OBTAIN DATA FOR FIGURE 6, Re & Ry, WERE VARIED. Veo and Vy LEVELS REMAINED APPROXIMATELY Vee = 30 Ry Int = bef 10 ipa( ph) = Ia pti tih wt t, TIME (ys) ip; 10 20 3.0 5.0 7.0 10 20 30 50 70 100 Ic, COLLECTOR CURRENT (AMP) So - 7-154Power Transistors 2N4048 thru 2N4053 (continued) TYPICAL DC CHARACTERISTICS FIGURE 7 DC CURRENT GAIN FIGURE 8 COLLECTOR SATURATION REGION 26 20 Ty = 100C = 5 =30ATl ie =10A Io = S0A 3 S$ 16 S10 a le = 30A = = = 07 z Ty = 25C = e le (NOTE 1) z 0s = = a 3 Vor = 2.09 S 08 s (NOTE 1) 8 Za, 2 0.2 8 a y= 25C, le = 15 AMP 3 04 > a1 0 07 10 20 30 50 70 10 2 30 50 70 0.005 0.01 002 00 O1 O02 OF 10 20 50 ic, COLLECTOR CURRENT (AMP) FIGURE 9 EFFECTS OF BASE-EMITTER RESISTANCE Io = 10 Ices lo = 5.0 lees Io = 2.0 Ices Reg, EXTERNAL BASE-EMITTER RESISTANCE ({2) VALUES OF ices SEE FIGURE 11 20 40 60 Ty, JUNCTION TEMPERATURE (C) 80 FIGURE 11 COLLECTOR CUTOFF REGION Voce = 20 Jp, BASE CURRENT (AMP) FIGURE 10 ON VOLTAGES Ty = 25C @Vce = 2.0V V, VOLTAGE (VOLTS) Vee (sar) @ Ic/Ip = 10 1 @ le/ig = 10 50 70 10 lc, COLLECTOR CURRENT |AMP) 100 20 63.0 20 (30 50 70 FIGURE 12 TEMPERATURE COEFFICIENTS 10? 20V Locus +20 *APPLIES FOR lo/lp < Hre/2 = 20V WHERE Ic = Iceoy +10 2 e Vc. for a "Nc for Vee(uat) = > v z T, = 100C} = 9 3 Ty = 100 = 2 10 = S Ty = 60C Psp 2 = 5. 3 Ty = 60C S > ag Ve for Vee 2% ~2.0 T= 25% BIAS Ty = 25C 107! ~3.0 +0.6 +04 +0.2 0 0.2 1.0 20 30 50 70 10 20 30 50 70 Vee, BASE-EMITTER VOLTAGE (VOLTS) NOTE 1: Data is obtained from pulse tests and adjusted to nullify the effect of leva. liq, COLLECTOR CURRENT (AMP) 7-155