Overview
The AN3861SA is a sensor-less motor drive IC for VTR
movie cylinder. It uses both sensor-less and sine wave drive,
thus excellent for low-noise applications.
Features
Operating supply voltage range : VCC=3.0 to 5.5V, VB=4.0 to
10.5V
Reduced magnetosound using 3-phase full-wave overlap
drive. Built-in power transistor.
Standby mode for minimizing power consumption
Voltage output for controlling SW power supply
Motor neutral point input terminal
AN3861SA
Sensor-less Motor Drive IC for VTR Movie Cylinder
1.5±0.2
0.65±0.1
0.2 +0.1
– 0.05
116
32 17
Unit : mm
SEATING PLANE
SEATING PLANE
32-pin SSOP Package (SSOP032-P-0300)
11.0±0.3
8.1±0.3
0.1±0.1
(0.5)
(0.625) 0.3+0.1
– 0.05
0.65
6.1±0.3
Pin Descriptions
Pin No. Pin No.
DescriptionSymbol DescriptionSymbol
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
U
CS
VSC
WIN
VIN
UIN
PCV
SG
SL3
SL2
SL1
FC
BR
FR
HSL
STB
VCC
IN2H
OUT2
IN1
IN1+
MM
OUT1
Vref
PCI
VS
VB
CS
W
PG
V
PG
U-phase drive output terminal
Drive current output terminal
Switching power supply control output terminal
W-phase detection terminal
V-phase detection terminal
U-phase detection terminal
Voltage feedback system compensation terminal
Signal ground
Slope waveform generate terminal (3)
Slope waveform generate terminal (2)
Slope waveform generate terminal (1)
Oscillation terminal
Short brake control terminal
Forward/Reverse change-over terminal
Slope current change-over terminal
Stand-by input terminal
Power supply terminal
Operational amplifier 2 input terminal
Operational amplifier 2 output terminal
Operational amplifier 1 reverse phase input terminal
Operational amplifier 1 normal phase input terminal
Motor neutral point input terminal
Operational amplifier 1 output terminal
Servo reference voltage input terminal
Current feedback system phase compensation terminal
Motor drive power supply terminal
Unregulated power supply terminal
Drive current output terminal
W-phase drive output terminal
Power ground
V-phase drive output terminal
Power ground
Block Diagram
+
+
+
+
+
0.1µF
0.047µF
0.1µF
0.1µF
0.1µF
A3
0.25
0.022µF × 3
0.022µF0.022µF
0.022µF
8 22 27 26 28 3
7
1
31
29
4
5
6
30 321391011
15
12
14
16
18
19
21
20
23
24
17
Vbatt
VCC
SW Power Block
SG MM VB PC1 VS CS
2
VSC (Output for VS Control)
U
V
W
UIN
VIN
WIN
VS
25
PCV
VCE Detection
Amplifier
Distributor
Source Side
Drive Tr
SW Power
Control
Block
Reference
Power Supply
BEMF Detection
Comparator
Sink Side
Drive Tr
Conducting Phase
Switch Logic
Short Brake
PG PG
BR (High : Brake)
Note) Values of all external C and R are nominal one.
SL 3SL 2SL 1
HSL
560pF
Vref
OUT 1
OUT 2
IN 1
IN 1+
IN 2+
STB
(Low : Stand-by)
Forward/Reverse
Control
FR
(High : Forward)
FC
VCC
VB
VS
Vn
IOn
PD
Topr
Tstg
V
V
V
V
mA
mW
˚C
˚C
Symbol Rating Unit
6.0
11
11
11
1000
400
–25 to + 70
–55 to + 150
Supply voltage
Unregulated voltage
Motor power supply voltage (under VB)
Output terminal voltage
Output current
Power dissipation Note 1)
Operating ambient temperature
Storage temperature
n=1, 29, 31
n=1, 29, 31
Absolute Maximum Rating (Ta=25˚C)
Parameter
Note 1) Package power dissipation when Ta=75˚C
Parameter Symbol Range
Recommended Operating Range (Ta=25˚C)
Operating supply voltage
VCC
VB
VS
3.0V to 5.5V
4.0V to 10.5V
1.5V to VB
Power Dissipation PD (mW)
1400
1200
1000
800
668
600
400
200
0
1290
0 150125100755025 Ambient Temperature Ta (˚C)
Glass epoxy board (50 × 50 × 0.8tmm)
Rthj – a = 96.9˚C/W
PD=1290mW (25˚C)
Single unit
Rthj– a = 187.1˚C/W
PD= 668mW (25˚C)
PD –Ta
Package Power Dissipation
Parameter Symbol Condition min typ max
Electrical Characteristics (VCC=3.3V, VB=6V, VS=6V, Ta=25±2˚C)
Drive gain Gio 0.170.14
Drive amplifier offset ViOCS 100 mV
OUT1
VCS
Output maximum current 625IOMAX mA
Input offset voltage of
Vref and OUT1
Brake current IBR mA
RCS=0.25
Sink-side output voltage VCE V0.25
IO=100mA
Sink-side saturation voltage VSAT (1) V0.25
IO=500mA
Source-side saturation voltage VSAT (2) V0.90
Bemf Detection Block
Drive Block
IO=500mA
Comparator hysteresis width VHCOM mV16
875
0.35
0.35
1.3
29
6
750
500
4
0.11
–100
200
0.15
Unit
Operating power supply current
Power Supply Current
ICC (1) mA
STB : H
STB power supply current ICC (2) mA
STB : L
Unregulated power supply current (1) IBB (1) µA0.1
VCC=0V
Unregulated power supply current (2) IBB (2) mA0.3
VCC=3.3V, In2+=0V
15
10
10
1.5
10
6
Parameter Symbol Condition min typ max
Electrical Characteristics (cont.) (VCC=3.3V, VB=6V, VS=6V, Ta=25±2˚C)
VS–U for VSC=1.6V
when OUT1=Vref
Oscillator
Slope
Operational Amp. 1 only
Operational Amp. 2 only
Operational Amp. 1 and 2
Mode Switch=HSL, STB, FR, BR
Motor Power Supply Control
22.8
Common-mode input voltage range 0.2VICR (1) V
VB –1.4
or VCC
Input offset current –50IIOAI nA5 50
Input offset voltage –20VIOA1, 2 mV–3 20
Output sink current 1– (2) 1.8IOSI 1 (2) mA4
Output sink current 2– (2) 2IOSI 2 (2) mA4
Output source current (2) IOSA 1, 2 mA–15 –2
Input high level 2.0VSWH V
Input low level VSWL V0.6
Input bias current IBSW µA25
VSW=2V 100
Voltage gain 60GAI dB67
Output sink current (1) 20IOSI1 (1) µA140
OUT1=0.2V
Common-mode input voltage range 0VICR (2) VVB–1.4
11.0
Input/output gain GIOS 2.6 Times2.0
U
VSC 1.4
Triangular wave oscillation frequency fFC kHz16.3
–14–26
Slope terminal charging current (1) ISLC (1) µA–20
2614
Slope terminal discharging current (1) ISLD (1) µA20
–28–52
Slope terminal charging current (2) ISLC (2) µA–40
5228
Slope terminal discharging current (2) ISLD (2) µA40
–28–52
Slope terminal charging current (3) ISLC (3) µA–40
5228
Slope terminal discharging current (3) ISLD (3) µA40
–42–78
Slope terminal charging current (4) ISLC (4) µA–60
7842
Slope terminal discharging current (4) ISLD (4) µA60
CFC=560PF
HSL : L CFC=560pF
femf < 160Hz
HSL : L CFC=560pF
femf > 181Hz
HSL : H CFC=560pF
femf < 160Hz
HSL : H CFC=560pF
femf > 181Hz
Unit
Output impedance 12ZOS k18 24
Operation point (1) 0.1VS – U (1) V0.35 0.6
VS–U for VSC=1.6V
when OUT1=Vref + 1
Operation point (2) 0.35VS – U (2) V0.63 0.9
Parameter Symbol Condition Reference value
Electrical Characteristics [Reference Values] (Ta=25±2˚C)
Thermal protection circuit operation temperature
This is design reference value, and not guaranted one.
TSD ˚C
VCC=3.3V 175
Unit
Pin Descriptions
Equivalent circuit
Description
Standard waveform
Pin No. Pin name
1U :
U-phase drive output
2CS :
Drive power
supply output
4WIN :
W-phase detection
5VIN :
V-phase detection
6UIN :
U-phase detection
8SG :
Signal ground
7
PCV :
Voltage feedback
system phase
compensation
3VSC :
Switching power
supply control output
Terminal detecting the W-phase
Terminal outputting the control
voltage of the switching power
supply
Terminal driving the U-phase
of motor
Terminal outputting the drive
current of motor
Terminal detecting the V-phase
Terminal detecting the U-phase
Terminal attaching the capaci-
tor for phase compensation of
the voltage feedback system
Grounding terminal for signal
system
1
GND
VBCS
GND2
Vcc
GND
150µA
150µA
100µA
18k
1k
8kW
VB
GND
1k
GND
GND
GND
GND
Vs
GN
3
8k
4
150µA
8kV
VB
GND
1k
5
150µA
8kU
VB
GND
1k
6
VCC
GND 1k
507
Pin Descriptions (cont.)
Equivalent circuit
Description
Standard waveform
Pin No. Pin name
9SL3 :
Slope waveform
generation (3)
SL2 :
Slope waveform
generation (2)
10
12 FC :
Oscillation
13 BR :
Short brake control
14 FR :
Forward/Reverse
switching terminal
16 STB :
Stand-by input
15 HSL :
Slope current
control terminal
11 SL1 :
Slope waveform
generation (1)
Terminal determining the phase
switching frequency at motor
start
Terminal generating the wave-
form of the motor drive current
Terminal generating the wave-
form of the motor drive current
Terminal generating the wave-
form of the motor drive current
Terminal controlling the short
brake
Terminal switching the nor-
mal/reverse rotation of motor
Terminal controls the charg-
ing/discharging current of the
slope waveform generating ter-
minal
Terminal controls the opera-
tion/stand-by condition
50k
50k
50k
50k
50k
VCC
GND
9
VCC or GND
VCC or GND
VCC or GND
VCC or GND
I2I
VCC
GND
10
I2I
VCC
GND
11
I2I
VCC
VCC
GND
GND GND2
12
13
VCC
GND GND2
15
VCC
GND GND2
14
50k
50k
VCC
GND GND2
16
Pin Descriptions (cont.)
Equivalent circuit
Description
Standard waveform
Pin No. Pin name
17
IN2H :
Operational
amp. 2 input
IN1– :
Operational amp. 1
reverse phase input
VCC :
Power supply
18
20
21 IN1+ :
Operational amp. 1
normal phase input
22 MM :
Motor neutral point
input terminal
24 Vref :
Servo reference
voltage input
23 OUT1 :
Operational
amp. 1 output
19 OUT2 :
Operational
amp. 2 output
Terminal inputting the reverse
phase voltage of operational
amp. 1
Terminal inputting the normal
phase voltage of operational
amp. 1
Terminal inputting the VCC
power supply
Input terminal for operational
amp. 2
Output terminal for operational
amp. 2
Terminal inputting the motor
neutral point
Terminal outputting the output
voltage of operational amp. 1
Terminal inputting the servo
reference voltage
19
VB
30k5k
GND
1k
3k
125µA
VB
GND GND2
18
1k
1.5k
12k
VB
GND GND2
20
GND
Vref
23
VCC
25µA
1k
1.5k
VB
GND GND2
21
22
25µA
1k
VCC
GND GND2
24
100µA100µA
VB
Pin Descriptions (cont.)
Equivalent circuit
Description
Standard waveform
Pin No. Pin name
25
PCI :
Current feedback
system phase
compensation
26 VS :
Motor drive
power supply
28 CS :
Drive current output
29 W :
W-phase drive output
30 PG :
Power block
grounding
32 PG :
Power block grounding
31 V :
V-phase drive output
27 VB :
Unregulated
power supply
Terminal inputting the VB
unregulated power supply
Terminal outputting the motor
drive current
Terminal driving the W-phase
of motor
Terminal connecting the power
transistor block to GND
Terminal attaching the capaci-
tor for phase compensation of
current feedback system
Terminal inputting the VS
motor drive power supply
Terminal driving the V-phase
of motor
Terminal connecting the power
transistor block to GND
VB
GND 1k
50
VB
GND
1k
8k
1.5k
GND
GND
GND
CS
Vs
25
28
29
CS VB
GND2 GND
8k
31
CS VB
GND2 GND
STB input
L Note)
H
Condition of the IC internal circuit
AMP2 and sensor-less block only operating
All circuit operating
gm = =
Gio
Rcs 0.14
Rcs
Ia = VS – CS
Rcs
Ia max = 140mV
Rcs
Vref
OUT1
OUT1
0.2V
0.5V
Vref Vref + 1.35V
Fig.2 OUT1 and VCE of Sink-side Output Transistor
Operation Descriptions
(1) STB terminal
The operating condition of the IC internal circuit is shown in the following table :
Note) Since the sensor-less block operates, if the motor rotates, it detects the inductive voltage and synthesizes the energization
switching signal which is synchronized with the motor rotation phase.
(2) FR, BR terminal
FR terminal H : Forward rotation
L : Reverse rotation
BR terminal H : Short brake circuit operation
L : Short brake circuit stop
(3) Drive amplifier
The AN3861SA is an IC of current drive type, and the motor drive current Ia is determined by the voltage of OUT1 terminal,
as shown in Fig.1.
The collector voltage value is controlled as shown in Fig.2 since the sink-side output transistor is operated with non-saturation
voltage.
Fig.1 Drive Characteristics
U, V, W
VSC
VS – U
VS – V
VS – W
OUT1 increases
OUT1=Vref OUT1 > Vref + 1.0V
1.6V
0.35V
gm=–2
0.63V
Fig.4 VSC Characteristics
Fig.3 Switching Regulater System with VSC Terminal
+
VS CS
VSC AN3861
1.6V
(4) VCS terminal
For the AN3861SA, since the collector voltage of the sink-side output transistor is controlled to a certain value. Therefore,
when the VB is high enough, extra voltage is applied to the VCE of source side output transistor. This loss voltage of VCE can be
reduced by the VSC voltage through the circuit as shown in the following figure.
VSL = Ich
6 femf × CSL
VSL
GND
Fig.5 Waveform of SL1, SL2 and SL3
(5) FC terminal
This is an oscillation terminal which determines the commutation frequency at operation start and the frequency femf of induc-
tive voltage for switching over the charging/discharging current of the SL terminal (Refer to (6) below). Normally, fFC=16.3kHz
when CFC=560pF and the frequency at operation start is approx. 4Hz.
(6) SL1, SL2, SL3 terminal
The SL1, SL2 and SL3 are terminals producing the slope waveform for synthesizing the trapezoidal wave current. Since the
slope waveform is synthesized by charging/discharging the external capacitor with the constant current, the amplitude VSL
becomes as follows :
Where, Ich : Charging/Discharging current
CSL : Capacitance value
femf : Frequency of motor inductive voltage
The value of Ich is changed according to the relationship between the frequency of the motor inductive voltage and the oscilla-
tion frequency of the FC terminal, as shown in Fig.6 in the next page. Therefore, the capacitance value of external capacitor CSL
should be selected so that the value of VSL could fall in the range from 0.5 to 1.5V during constant rotation.
Since the relative dispersion of three external capacitors may cause increase of motor noise, the capacitor with high accuracy
should be used.
(7) Capacitance value of Uin, Vin, Win
The capacitor of Uin, Vin and Win prevents the malfunction of the comparator due to spike-shaped voltage which is generated
in the motor coil at operation start. For this reason, it should be used as necessary for large motor of large L such as winding coil.