LESHAN RADIO COMPANY, LTD.
M13–1/6
MAXIMUM RATINGS
Rating Symbol Value Unit
Collector–Emitter V oltage V CEO – 45 Vdc
Emitter–Base V oltage V EBO – 5.0 Vdc
Collector Current — Continuous I C– 100 mAdc
THERMAL CHARACTERISTICS
Characteristic Symbol Max Unit
Total Device Dissipation FR– 5 Board, (1) PD225 mW
TA = 25°C
Derate above 25°C 1.8 mW/°C
Thermal Resistance, Junction to Ambient RθJA 55 6 °C/W
Total Device Dissipation PD300 mW
Alumina Substrate, (2) TA = 25°C
Derate above 25°C 2.4 mW/°C
Thermal Resistance, Junction to Ambient RθJA 417 °C/W
Junction and Storage Temperature TJ , Tstg –55 to +150 °C
DEVICE MARKING
BCW69LT1 = H1; BCW70LT1 = H2,
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted.)
Characteristic Symbol Min Max Unit
OFF CHARACTERISTICS
Collector–Emitter Breakdown V oltage (IC = –2.0 mAdc, IB = 0 ) V (BR)CEO – 45 Vdc
Collector–Emitter Breakdown V oltage (IC = –100 µAdc, V EB = 0 ) V (BR)CES – 50 Vdc
Emitter–Base Breakdown Voltage (I E= –10 µAdc, I C = 0) V (BR)EBO – 5.0 Vdc
Collector Cutoff Current I CEO
(VCE = –20 Vdc, I E = 0 ) – 100 nAdc
(VCE = –20 Vdc, I E = 0 , TA = 100°C) – 10 µAdc
1. FR– 5 = 1.0 x 0.75 x 0.062 in.
2. Alumina = 0.4 x 0.3 x 0.024 in. 99.5% alumina.
1
3
2
General Purpose Transistors
PNP Silicon
BCW69LT1
BCW70LT1
2
EMITTER
3
COLLECTOR
1
BASE
CASE 318–08, STYLE 6
SOT–23 (TO–236AB)
LESHAN RADIO COMPANY, LTD.
M13–2/6
ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) (Continued)
Characteristic Symbol Min Max Unit
ON CHARACTERISTICS
DC Current Gain hFE
( IC= –2.0 mAdc, VCE = –5.0 Vdc ) BCW69LT1 120 260
BCW70LT1 215 500
Collector–Emitter Saturation V oltage V CE(sat) – 0.3 Vdc
( IC = – 10 mAdc, IB = –0.5 mAdc )
Base–Emitter On Voltage V BE(on) – 0.6 – 0.75 Vdc
( IC = – 2.0 mAdc, V CE = – 5.0Vdc )
SMALL–SIGNAL CHARACTERISTICS
Output Capacitance C obo 7.0 pF
( I E= 0 V CB = –10Vdc, f = 1.0 MHz)
Noise Figure NF—10dB
(V
CE
= 5.0 Vdc, I
C
= – 0.2 mAdc, R
S
= 2.0 k, f = 1.0 kHz, BW = 200 Hz)
BCW69LT1 BCW70LT1
LESHAN RADIO COMPANY, LTD.
M13–3/6
Noise Figure is Defined as:
NF = 20 log 10
(
–––––––––––––––)
1/ 2
e n= Noise Voltage of the T ransistor referred to the input. (Figure 3)
I n= Noise Current of the T ransistor referred to the input. (Figure 4)
K = Boltzman’s Constant (1.38 x 10 –23 j/°K)
T = Temperature of the Source Resistance (°K)
R s= Source Resistance ()
e n 2 + 4KTRS + I n2 R S2
4KTR S
BCW69LT1 BCW70LT1
TYPICAL NOISE CHARACTERISTICS
(V CE = – 5.0 Vdc, T A = 25°C)
f, FREQUENCY (Hz)
Figure 1. Noise Voltage f, FREQUENCY (Hz)
Figure 2. Noise Current
I C , COLLECTOR CURRENT (µA)
Figure 3. Narrow Band, 100 Hz
I C , COLLECTOR CURRENT (µA)
Figure 5. Wideband
I C , COLLECTOR CURRENT (µA)
Figure 4. Narrow Band, 1.0 kHz
e n , NOISE VOLTAGE (nV)
BANDWIDTH = 1.0 Hz
R S 0
IC=10 µA
100µA
30µA
300µA
1.0mA
I n , NOISE CURRENT (pA)
BANDWIDTH = 1.0 Hz
R S
IC=1.0mA
300µA
100µA
30µA
BANDWIDTH = 1.0 Hz BANDWIDTH = 1.0 Hz
NOISE FIGURE CONTOURS
(V CE = – 5.0 Vdc, T A = 25°C)
R S , SOURCE RESISTANCE ()
R S , SOURCE RESISTANCE ()
R S , SOURCE RESISTANCE ()
10
7.0
5.0
3.0
2.0
1.0
10 20 50 100 200 500 1.0k 2.0k 5.0k 10k 10 20 50 100 200 500 1.0k 2.0k 5.0k 10k
10.0
7.0
5.0
3.0
2.0
1.0
0.7
0.5
0.3
0.2
0.1
1.0M
500k
200k
100k
50k
20k
10k
5.0k
2.0k
1.0k
500
200
100
10 20 30 50 70 100 200 300 500 700 1.0K
10 20 30 50 70 100 200 300 500 700 1.0K
10 20 30 50 70 100 200 300 500 700 1.0K
0.5 dB
1.0 dB
2.0dB
3.0 dB
1.0dB
2.0 dB
3.0 dB 5.0 dB
0.5dB
1.0dB
2.0dB
3.0 dB
5.0 dB
10 Hz to 15.7KHz
10µA
0.5 dB
1.0M
500k
200k
100k
50k
20k
10k
5.0k
2.0k
1.0k
500
200
100
1.0M
500k
200k
100k
50k
20k
10k
5.0k
2.0k
1.0k
500
200
100
5.0 dB
~
~~
~
8
LESHAN RADIO COMPANY, LTD.
M13–4/6
TYPICAL STATIC CHARACTERISTICS
BCW69LT1 BCW70LT1
I B , BASE CURRENT (mA)
Figure 6. Collector Saturation Region
I C , COLLECTOR CURRENT (mA)
Figure 11. Temperature Coefficients
V CE , COLLECTOR–EMITTER VOLTAGE (VOLTS)
Figure 7. Collector Characteristics
I C , COLLECTOR CURRENT (mA)
Figure 10. “On” Voltages
I C , COLLECTOR CURRENT (mA)
V, VOLTAGE (VOLTS)
V
CE
, COLLECTOR– EMITTER VOL TAGE (VOL TS)
θ V , TEMPERATURE COEFFICIENTS (mV/°C)
θ VB for V BE
∗ θ VC for V CE(sat)
V
BE(on)
@ V
CE
= 1.0 V
V
CE(sat)
@ I
C
/I
B
= 10
V
BE(sat)
@ I
C
/I
B
= 10
T J=25°C
I
C
= 1.0 mA 50 mA 100 mA 10 mA
T
J
= 25°C
*APPLIES for I
C
/ I
B
<
h
FE
/ 2
T
A
= 25°C
PULSE WIDTH =300 µs
DUTY CYCLE
<
2.0%
I
B
= 400 mA
150 µA
200 µA
250 µA
350µA
–55°C to 25°C
–55°C to 25°C
25°C to 125°C
25°C to 125°C
1.4
1.2
1.0
0.8
0.6
0.4
0.2
00.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100
1.6
0.8
0
–0.8
–1.6
–2.4
0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100
1.0
0.8
0.6
0.4
0.2
0
0.002 0.0050.010.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 20
100
80
60
40
20
00 5.0 10 15 20 25 30 35 40
100 µA
50µA
300µA
LESHAN RADIO COMPANY, LTD.
M13–5/6
TYPICAL DYNAMIC CHARACTERISTICS
C, CAPACITANCE (pF)
I C , COLLECTOR CURRENT (mA)
Figure 10. Turn–On Time I C , COLLECT OR CURRENT (mA)
Figure 11. Turn–Off Time
I C , COLLECTOR CURRENT (mA)
Figure 12. Current–Gain — Bandwidth Product
V R , REVERSE VOLTAGE (VOLTS)
Figure 13. Capacitance
t, TIME (ns)
t, TIME (ns)
f
T
, CURRENT– GAIN — BANDWIDTH PRODUCT (MHz)
V CC= 3.0 V
IC /I B= 10
T J= 25°C
td @ V BE(off)= 0.5 V
t r
V
CC
= –3.0 V
I
C
/I
B
= 10
I
B1
=I
B2
T
J
= 25°C
t f
t s
T J = 25°C
5.0 V
C ib
C ob
T J= 25°C
500
300
200
100
70
50
30
20
10
7.0
5.01.0 2.0 3.0 5.0 7.0 10 20 30 50 70 100
1000
700
500
300
200
100
70
50
30
20
10 –1.0 –2.0 –3.0 –5.0 –7.0 10 –20 30 –50 –70 –100
500
300
200
100
70
50
0.5 0.7 1.0 2.0 3.0 5.0 7.0 10 20 30 50
10.0
7.0
5.0
3.0
2.0
1.0
0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50
BCW69LT1 BCW70LT1
V CE=20 V
t, TIME (ms)
Figure 14. Thermal Response
r( t) TRANSIENT THERMAL RESISTANCE(NORMALIZED)
D = 0.5
0.02
0.05
0.1
0.2
0.01 SINGLE PULSE
DUTY CYCLE, D = t 1 / t 2
D CURVES APPLY FOR POWER
PULSE TRAIN SHOWN
READ TIME AT t 1 (SEE AN–569)
Z θJA(t) = r(t) • RθJA
T J(pk) – T A = P (pk) Z θJA(t)
FIGURE 16
P(pk)
t 2
t 1
1.0
0.7
0.5
0.3
0.2
0.1
0.07
0.05
0.03
0.02
0.01
0.01 0.02 0.05 0.1 0.2 0.5 1.0 2.0 5.0 10 20 50 100 200 500 1.0k 2.0k 5.0k 10k 20k 50k 100k
LESHAN RADIO COMPANY, LTD.
M13–6/6
T J , JUNCTION TEMPERATURE (°C)
Figure 15. Typical Collector Leakage Current
V CC = 30 V
I C , COLLECTOR CURRENT (nA)
104
103
102
101
100
10–1
10–2
–4 2 0 +20 +40 +60 +80 +100 +120 +140 +160
I
CBO
AND
I
CEX
@ V
BE(off)
= 3.0 V
I CEO
DESIGN NOTE: USE OF THERMAL RESPONSE DATA
A train of periodical power pulses can be represented by the
model as shown in Figure 16. Using the model and the device
thermal response the normalized effective transient thermal resis-
tance of Figure 14 was calculated for various duty cycles.
To find Z θJA(t) , multiply the value obtained from Figure 14 by the
steady state value R θJA .
Example:
Dissipating 2.0 watts peak under the following conditions:
t 1 = 1.0 ms, t 2 = 5.0 ms. (D = 0.2)
Using Figure 14 at a pulse width of 1.0 ms and D = 0.2, the reading
of r(t) is 0.22.
The peak rise in junction temperature is therefore
T = r(t) x P (pk) x R θJA = 0.22 x 2.0 x 200 = 88°C.
For more information, see AN–569.
BCW69LT1 BCW70LT1