Data Sheet
June 2002
TMXF28155 Supermapper
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
1 Feat ures
Versatile IC supports 155/51 Mbits/s SONET/SDH
interface solutions for T3, DS2, T1/E1/J1, and DS0/
E0/J0 applications.
Implementation supports both linear (1 + 1, unpro-
tected) and ring (U PS R) networ k topolog ies .
Provides full termination of up to 21 E1, 28 T1, or
28 J1.
Low-power 3.3 V supply.
–40 °C to +85 °C industrial temperature range.
456-pin ball grid array (PBGA) package, 35 mm2 with
a 1.27 mm ball pitch.
Complies with Telcordia ™, ITU, ANSI ®, ETSI, and
Japanese TTC standards: GR-253-CORE, GR-499,
(ATT) TR-6241 1, ITU-T G.707, G.704, G.706, G.783,
G.962, G.964, G.965, Q.542, T1.105, JT-G704,
JT-G706, JT-G707, JT-I431-a, ETS 300 417-1-1,
ETS 300 011, T1.107, T1.404.
1.1 SONET/SDH Interface
Termination of a single 155 Mbits/s STS-3/STM-1 or
single 51 Mbits/s STS-1/STM-0.
Built-in clock and data recovery circuit at
155 Mbits/s STS-3/STM-1 interface (can be dese-
lected if external clock recovery is provided).
Supports overhead processing for all transport and
path overhead bytes.
Optional insertion and extraction of overhead bytes
via a serial transport overhead access channel. Con-
figurable as dedicated DCC channels.
Software-controlled linear 1 + 1 protection via dedi-
cated interface to protection card.
Full path termination and SPE extraction/insertion.
SON ET/SDH compliant condition and alarm report-
ing.
Built-in diagnostic loopback modes.
8 kHz line frame sync output.
1.2 STS/STM Pointer Interpreter
Interprets STS/AU/TU-3 pointers.
Synchronizes 8 kHz frame and 2 kHz superframe to
system/shelf timing reference by setting the transmit
STS-3/STM-1 pointers to a fixed value of 522.
Monitors/terminates SPE path overhead.
1.3 Telecom Bus Interface
Telecom bus interface to mate devices including
clock, data[8 ], pari ty, SPE-, J0-, J1-, and V1 tim ing
indicator.
Line and path RDI and REI signals passed to mate
devices.
Three Supermapper devices, two configured as mate
devices, provide full termination of an
STS-3/STM-1. A three-chip solution to terminate
84 DS1s/J1s or 63 E1s.
1.4 VT Termination/Generation (x28/x21)
Monitors/terminates VT path overhead for
28 VT1.5/TU-11 or 21 VT2/TU-12.
Synchronizes VT/TU SPE to system/shelf timing ref-
erence by setting the transmit VT/TU pointers to
fixed values for asynchronous mapping or by dynam-
ically changing the transmit VT/TU pointers for byte
synchronous mapping.
Fixed pointer generation in transmit side for asyn-
chronous mapping.
Dynamic pointer generation in transmit side for byte-
synchronous mapping.
1.5 Mapping/Multiplex ing M odes (x28/x21)
Maps DS3 clear channel or framed signal into STS-1
or TUG-3.
Maps T1/E1/J1 into VT/TU (including DS1 into
TU-12).
Supports asynchronous, byte-synchronous, and bit-
synchronous mapping.
2Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
1 Features (continued)
Supports UPSR applications via the dedicated ring
interface and an external tributary selector.
Supports all valid T1/E1/J1 multiplexing structures
into STS-1 and STS-3/STM-1:
— STS-3/STS-1/SPE/VTG/VTx
— STM-1/AU-3/TUG-2/TU-1x/VC-1x
— STM-1/AU-4/TUG-3/TUG-2/TU-1x/VC-1x
Allows grooming of VTs/TUs in granularity of TUG-2s
within the STS-3/STM-1 signal.
Supports J2 trace identifier monitoring/insertion.
Configurable VT/TU slot selection for DS1, E1, and
J1 insertion and drop.
Automatic receive monitor functions include VT/TU
RDI-V, REI-V, BIP-2 errors, AIS-V, LOP-V.
Complies with GR-253-CORE, GR-499, ITU-T
G.707, G.704, G.783, T1.105, JT-G707, ETS 300
417-1-1.
1.6 M13 Features
Configurable multiplexer/demultiplexer for 28 DS1
signals, 21 E1 signals, or 7 DS2 signals to/from a
DS3 signal.
Operates in either M23 or C-bit parity mode.
Provisionable time-slot selection for DS1, E1, and
DS2 insertion or drop.
Full alarm monitoring and generation (LOS, BPV,
EXZ, OOF, SEF, AIS, RAI, FEAC, P-bit and C-bit
parity er rors , FEBE ) .
HDLC transmitter with 128-byte data buffer and
HDLC receiver with 128-byte data FIFO for the C-bit
parity path maintenance data link.
DS3, DS2, DS1, and E1 loopback and loopback
request generation.
Complies with T1.102, T1.107, T1.231, T1.403,
T1.404, GR 499, G.747, and G.775.
1.7 DS3/DS2/DS1/E1 Cross Connect
Highly configurable interconnect for up to 28 DS1 or
21 E1 signals to/from the framer, external pins, M13,
or VT mappers.
Supports up to seven DS2 signals to/from the exter-
nal pins or M13.
Sources may be broadcast, looped back, or routed
to/from a test-pattern generator or monitor.
Any DS1 or E1 channel may be routed through the
jitter attenuator.
DS3 may be configured for the M13 to interconnect
with the SPE, or for the external I/O to interconnect
with the M13 or SPE.
1.8 Jitter Attenuation
PLL-free receive operation using built-in digital jitter
attenuator (in VT/VC mode or M13 mode).
Configurable to meet jitter and MTIE requirements.
1.9 PDH Interfaces
One DS3, 7x DS2.
x28/x21 framed or unframed DS1 or E1 interfaces.
One additional dedicated protection channel for
DS2/DS1/E1.
1.10 T1/E1/J1 Framin g Fe atures (x28/x21)
x28/x21 T1 /E1 /J 1 chan nel s.
Line coding: B8ZS, HDB3, ZCS, AMI, and
CMI (JJ20-11).
T1 framing modes: ESF, D4, SLC ®-96, T1 DM DDS,
and SF (Ft only).
E1 framing: G.704 basic and CRC-4 multiframe con-
sistent with G.706.
J1 framing modes: JESF (Japan).
Supports T1 and E1 unframed and transparent trans-
mission format.
T1 signaling modes: transparent; register and sys-
tem access for ESF 2-state, 4-state, and 16-state;
D4 2-state, 4-state, and 16-state; SLC-96 2-state,
4-state, and 16-state; J-ESF handling groups main-
tenance and signaling; VT 1.5 SPE 2-state, 4-state,
16-state.
E1 signaling modes: transparent; register and sys-
tem access for entire TS16 multiframe structure as
per ITU G.732.
Signaling debounce and change of state interrupt.
V5.2 Sa7 processing.
3Agere Systems Inc.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
1 Features (continued)
Alarm reporting and performance monitoring per
AT&T ®, ANSI, ITU- T, and ETS I stand ards .
Facility data link features:
— HDLC or transparent access for either ESF or
DDS + FDL frame formats.
— Regis ter /stack access for SLC-96 transmit and re-
ceive data.
— Extended superframe (ESF): automatic transmis-
sion of the ESF performance report messages
(PRM). Automatic transmission of the ANSI
T1.403 ESF performance report messages. Auto-
matic detection and transmission of the ANSI
T1.403 ESF FDL bit-oriented codes.
— Register/stack access for all CEPT Sa bits trans-
mit and receive data.
HDLC features:
— HDLC or transparent mode.
— Programmable logical channel assignment: any
time sl ot, an y bit f or I SDN D- chan n el, al so inse rt s/
extracts C-channels for V5.1, V5.2 interfaces.
— 64 logical channels in both transmit and receive di-
rection (any framing form at).
— Maximum channel data rate: 64 kbits/s.
— Minimum channel data rate: 4 kbits/s (DS1-FDL or
E1 Sa bit).
— 128-byte FIFO per channel in both transmit and re-
ceive direction.
— Tx to Rx loopback supported.
System interfaces:
— Concentration highway interface: single clock and
frame sync signals; programmable clock rates at
2.048 MHz, 4.096 MHz, 8.192 MHz, and
16.384 MHz; programmable data rates at
2.048 Mbits/s, 4.096 Mbits/s, and 8.192 Mbits/s;
programmable clock edges and bit/byte offsets.
— Parallel system bus interface at 19.44 MHz for
data and signaling: single clock and frame sync
signals.
— Time-division multiplex data rate serial interface at
1.544 MHz or 2.048 MHz. Twenty-eight receive
data, clock, and frame sync signals. Twenty-eight
transmit data signals with a global clock and frame
sync.
— Network serial multiplexed interface minimal pin
count serial interface at 51.84 MHz optimized for
data and IMA applications.
1.11 System Test and Maintena nce
A variety of loopback modes implemented on
SONET/SDH side, as well as on framer level.
Built-in test pattern generator and monitor config-
urable for simultaneously testing E1, DS1, DS2, and
DS3 (one channel each).
1.12 Microprocessor Interface
20-bit address and 16-bit data interface with 16 MHz
to 60 MHz read and write access.
Compatible with most industry-standard processors.
1.13 Chip Testing an d Maintenance
IEEE ® 1149.1 JTAG boundary scan.
1.14 Interface to Other Agere Devices
Seamless interface to the following Agere Systems’
device:
TADM042G5.
4Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
5
Agere Sy st ems Inc.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
Features ...................................................................................................................................................................1
Product Description .............. ....... ...... .................... ...... ....... ...... ...... ....... ...... ....... ...... .............................................6
Preface .....................................................................................................................................................................6
Interface Specifications .......................................................................................................................................10
Pin Information .......................................................................................................................................................10
Electrical Characteristics ........................................................................................................................................35
Timing Characteristics ............................................................................................................................................39
Ordering Information ...............................................................................................................................................63
Register Description ............................................................................................................................................64
Microprocessor Interface and Global Control and Status Registers .......................................................................64
TMUX Registers .....................................................................................................................................................77
SPE Mapper Regist ers ................... ................... ....... ...... ....... ...... ................... ....... ...... ....... ..................................135
VT/TU Mapper Registers ... ...... ....... ...... ....... ...... ....... ...... ....... ...... ...... ....... ...... ....... ...... ....... ..................................157
M13/M23 MUX/DeMUX Registers ........................................................................................................................200
28-Channel Framer Registers ..............................................................................................................................242
Cross Connect (XC) Registers .............................................................................................................................326
Digital Jitter Attenuation Controller Registers .......................................................................................................336
Test-Pattern Generation/Detection Registers .......................................................................................................342
Functional Descriptions .....................................................................................................................................360
Microprocessor Interface Functional Description .................................................................................................360
TMUX Functional Description ...............................................................................................................................365
SPE Mapper Functional Description .....................................................................................................................402
VT/TU Mapper Functional Description .................................................................................................................431
M13/M23 MUX/DeMUX Block Functional Description ..........................................................................................462
28-Channel Framer Block Functional Description ................................................................................................482
Cross Connect (XC) Block Functional Description ...............................................................................................549
Digital Jitter Attenuation Controller Functional Description ..................................................................................577
Test-Pattern Generation/Detection Functional Description ..................................................................................581
Philosophies .........................................................................................................................................................589
Applications ........................................................................................................................................................594
Application Scripts ................................................................................................................................................620
Superframer .... ............ ............. ............. ............. ............. ....... ............ ............. ............. .........................................782
Change History ...................................................................................................................................................783
6Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
Product Description
2 Preface
Table of Con t ents
Contents Page
2 Preface ............................................................................................................................................. ....... ...... ..... 6
2.1 Major Categories............................................................................................................................................7
2.2 Naming Convention for Registers and Parameters........................................................................................7
2.3 Overview ........................................................................................................................................................8
Figures Page
Figure 1. Functional Diagram of Supermapper .........................................................................................................8
7Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
2 Preface (continued)
The objective of this data sheet is to define the func-
tionality of the Supermapper for hardware and software
developers. The information contained in this data
sheet is preliminary, and may change without notice;
the reader must therefore ascertain that the latest ver-
sion is used when a product is under development.
The latest version of this data sheet can be accessed
at:
http://www.agere.com/enterprise_metro_access/
mappers_muxes.html
2.1 Major Categories
This data sheet is divided into six major categories with
subsections as follows:
Features
Product Description:
— Features
— Preface
— Overview
Interface Specifications:
— Pin Information
— Electrical Characteristics
— Timing Characteristics
— Ordering Information
Register Descriptions:
— Microprocessor Interface Registers
— TMUX Registers
— SPE Mapper Registers
— VT/UT Mapper Registers
— M13/M23 MUX/deM UX Regi st er s
— 28-Channel Framer Registers
— Cross Connect (XC) Registers
— Digital Jitter Attenuation Registers
— Test Pattern Generation/Detection Registers
Functional Descriptions:
— Microprocessor Interface Description
— TMUX Registers Description
— SPE Mapper Registers Description
— VT/UT Mapper Registers Description
— M13/M23 MUX/deMUX Registers Description
— 28-Channel Framer Registers Description
— Cross Connect (XC) Registers Description
— Digital Jitter Attenuation Registers Description
— Test Pattern Generation/Detection Registers De-
scription
Applications:
— Application Block Diagrams and Descriptions
2.2 Naming Convention for Registers and
Parameters
There are many provisioning registers for controlling
the Supermapper . A naming convention for all registers
and parameters (bit names) is followed throughout this
data sheet. A prefix is attached to the base name of
each register or parameter, depending on which func-
tional section the register or parameter is associated
with:
SMPR_, for the Microprocessor Interface
TMUX_, for the TMUX
SPE_, for the SPE Mapper
VT_, for the VT/VC Mapper
M13_, for the M13/M23 MUX/deMUX
FRM_, for the 28-Channel Framer
XC_, for the Cross Connect
DJA_, for the Digital Jitter Attenuator
TPG_ and TPM_, for the Test-Pattern Generator/
Detection
A suffix is appended to the base name of three com-
mon parameters:
_IS, for interrupt signal.
_IM, for interrupt mask.
_SWRS, for software reset.
8Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
2 Preface (continued)
2.3 Overview
The SONET/SDH Supermapper device integrates the SONET/SDH line, path, and tributary termination functions
with M13 multiplex functions and the primary rate framing function. The Supermapper is designed to drive an
OC-3/STM-1 optical signal directly or to allow for modular growth in terminal or add/drop applications.
The device provides a versatile interface for all STS-3/STM-1 and STS-1 termination applications in point-to-point
scenarios and for ring applications. This chip can be used in tributary shelf applications for up to 28 T1 or J1 or 21
E1 line cards, providing all possible mappings into SONET/SDH, and it can be used for DS3/DS2 applications.
Because of the flexibility of the mappings, software upgrades from M13 mapped connections to VT/TU mapped
connections are possible.
A single Supermapper is capable of processing the aggregate bandwidth of one STS-1 or DS3. By communicating
to two other mate devices via the telecom bus interface, the Supermapper is capable of terminating a full
STS-3/STM-1 signal.
Figure 1. Functional Diagram of Supermapper
M13
MUX
TMUX
STS3/
STM1/
STS1/
AU-3
FRM
x28/x21
DS1/J1/E1
x28/x21
VT/TU
VTMPR
XC
DS1/J1/E1
DS2
DS3
TPG/TPM
x28/x21
DS1/E1
DJA
CDR
SPEMPR
STS1/AU3/AU4
MPU
Int er f ace an d Control
Switching Modes:
PSB - x28/x21 DS1/J1/E1
x672 DS0/E 0
CHI - x672 D S0/ E0
Transport Modes:
DS1/J1/E1 (X29) - x28/x21 + prot.
DS2 - x7 + prot.
NSMI Modes:
DS1/J1/E1 x28/x21
DS3 - x1
STS1 - x1
(x1) DS3
Multifunction System I/O
155.52 Mb/STS-3/STM-1
51.84 Mb/STS-1/AU-3
MSP 1 + 1
155.52 Mb/STS-3/STM-1
51.84 Mb/STS-1/AU-3
Clock/Sync
LOPOH
(Supports UPSR )
TOAC POAC
MPU IF
DS1/E1/DS2
AIS Clks
10
TCB and TDL
RCB and RDL
3
6
66
8
4
47
6
148
6
30 DS3 PLL IF
2
8PLL Interface
Telecom Bus
(To two a dditional Supermappers)
High-Speed IF
System
Interfaces
9Agere Systems Inc.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
10 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
Interface Spe cific ations
3 Pin In fo rm a tion
Table of Con t ents
Contents Page
3 Pin Information ..................................................................................................................................................10
3.1 456-Pin PBGA Pin Diagram .........................................................................................................................11
3.2 Pin Assignments...........................................................................................................................................11
3.3 Pin Descriptions ...........................................................................................................................................17
3.3.1 High-Speed I/O Pin Descriptions ...................................................................................................... 17
3.3.2 Protection Switch I/O Pin Description ............................................................................................... 18
3.3.3 Telecom Bus (Low-Speed I/O) Pin Description ................................................................................ 18
3.3.4 TOAC and POAC .............................................................................................................................. 21
3.3.5 Miscellaneous Signals ...................................................................................................................... 22
3.3.6 DS3 Port ........................................................................................................................................... 22
3.3.7 M13 Multiplexer/Demultiplexer Receive Section ............................................................................... 24
3.3.8 Low-Order Path Overhead Access Channel ..................................................................................... 25
3.3.9 Framer PLL ....................................................................................................................................... 29
3.3.10 Test Pins ..... ...... .................... ...... ....... ...... ....... ...... ....... ................... ...... ....... ...... ............................. 32
3.4 Outline Diagram ...........................................................................................................................................34
3.4.1 456-Pin PBGA .................................................................................................................................. 34
Figures Page
Figure 2. Pin Diagram of 456-Pin PBGA (Bottom View)..........................................................................................11
Figure 3. Protection Switch......................................................................................................................................18
Figure 4. DS1/E1 to DXC Block Diagram................................................................................................................25
Tables Page
Table 1. Pin Assignments for 456-Pin PBGA by Pin Number Order........................................................................11
Table 2. Pin Assignments for 456-Pin PBGA by Signal Name................................................................................14
Table 3. High-Speed I/O Pin Descriptions...............................................................................................................17
Table 4. Protection Switch I/O Pin Description ........................................................................................................18
Table 5. Telecom Bus (Low-Speed I/O) Pin Description..........................................................................................19
Table 6. TOAC and POAC........ .................... ...... ....... ...... ....... ................... ...... ....... ...... ...........................................21
Table 7. Miscellaneous Signals ...............................................................................................................................22
Table 8. DS3 Port ....................................................................................................................................................23
Table 9. DS3 Port, C-Bit, and Datalink Access........................................................................................................24
Table 10. M13 Multiplexer/Demultiplexer Receive Section......................................................................................24
Table 11. Low-Order Path Overhead Access Channel............................................................................................25
Table 12. Multifunction System Interface Transmit Path Direction ..........................................................................26
Table 13. Framer PLL..............................................................................................................................................29
Table 14. Microprocessor Interfaces........................................................................................................................30
Table 15. General-Purpose Interface.......................................................................................................................31
Table 16. Test Pins ..................................................................................................................................................32
Table 17. CDR Power..............................................................................................................................................32
Table 18. LVDS Control Pins ...................................................................................................................................32
11Agere Systems Inc.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
3 Pin Information (continued)
3.1 456-Pin PBGA Pin Diagram
5-8931(F)
Figure 2. Pin Diagram of 456-Pin PBGA (Bottom View)
3.2 Pin Assignments
r
Table 1. Pin Assignments for 456-Pin PBGA by Pin Number Order
Pin Signal Name Pin Signal Name Pin Signal Name Pin Signal Name
A1 VDD A21 VSS B15 LINETXDATA2 C9 LINERXSYNC24
A2 VSS A22 VDD B16 LINETXSYNC4 C10 LINERXCLK25
A3 LINERXDATA17 A23 LINETXSYNC12 B17 LINETXSYNC5 C11 LINERXCLK26
A4 LINERXDATA18 A24 LINETXSYNC13 B18 LINETXSYNC6 C12 LINERXCLK27
A5 VDD A25 VSS B19 LINETXCLK7 C13 LINERXDATA28
A6 VSS A26 VDD B20 LINETXDATA8 C14 LINETXSYNC2
A7 LINERXDATA21 B1 VSS B21 LINETXSYNC10 C15 LINETXCLK3
A8 LINERXSYNC23 B2 LINERXCLK15 B22 LINETXDATA10 C16 LINETXCLK4
A9 LINERXCLK24 B3 LINERXSYNC18 B23 LINETXDATA11 C17 LINETXCLK5
A10 VDD B4 LINERXSYNC19 B24 LINETXDATA12 C18 LINETXDATA6
A11 VSS B5 LINERXSYNC20 B25 LINETXCLK13 C19 LINETXSYNC8
A12 LINERXDATA27 B6 LINERXDATA20 B26 VSS C20 LINETXCLK9
A13 LINERXSYNC29 B7 LINERXSYNC22 C1 LINERXSYNC15 C21 LINETXCLK10
A14 LINETXDATA1 B8 LINERXCLK23 C2 LINERXDATA14 C22 LINETXCLK11
A15 LINETXSYNC3 B9 LINERXDATA24 C3 LINERXCLK17 C23 LINETXCLK12
A16 VSS B10 LINERXDATA25 C4 LINERXCLK18 C24 LINETXCLK14
A17 VDD B11 LINERXDATA26 C5 LINERXCLK19 C25 LINETXSYNC15
A18 LINETXCLK6 B12 LINERXSYNC28 C6 LINERXCLK20 C26 LINETXDATA14
A19 LINETXDATA7 B13 LINERXCLK29 C7 LINERXCLK21 D1 LINERXSYNC14
A20 LINETXSYNC9 B14 LINETXCLK1 C8 LINERXDATA22 D2 LINERXDATA13
AF
AE
AD
AC
AB
AA
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
1
2
3
4
5
6
7
8
9
10
12
13
14
15
16
17
18
19
20
23
24
25
26
11
21
22
A1
BALL
CORNER
12 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
3 Pin Information (continued)
Pin Signal Name Pin Signal Name Pin Signal Name Pin S ignal Name
D3 LINERXCLK14 E21 LINETXDATA13 J25 LINETXDATA21 N1 LINERXDATA3
D4 VSS E22 VDD J26 LINETXCLK21 N2 LINERXCLK3
D5 LINERXDATA19 E23 LINETXDATA16 K1 VDD N3 LINERXSYNC4
D6 LINERXSYNC21 E24 LINETXCLK16 K2 LINERXSYNC7 N4 LINERXSYNC3
D7 LINERXCLK22 E25 LINETXSYNC17 K3 LINERXCLK7 N5 SCAN_EN
D8 LINERXDATA23 E26 VDD K4 LINERXDATA6 N11 VSS
D9 LINERXSYNC25 F1 VSS K5 LINERXSYNC16 N12 VSS
D10 LINERXSYNC26 F2 LINERXSYNC12 K22 DS3NEGDATAIN N13 VSS
D11 LINERXSYNC27 F3 LINERXCLK12 K23 LINETXSYNC23 N14 VSS
D12 LINERXCLK28 F4 LINERXDATA11 K24 LINETXCLK22 N15 VSS
D13 LINERXDATA29 F5 LINERXDATA15 K25 LINETXDATA22 N16 VSS
D14 LINETXSYNC1 F22 LINETXSYNC14 K26 VDD N22 DS3DATAOUTCLK
D15 LINETXCLK2 F23 LINETXSYNC18 L1 VSS N23 LINETXDATA26
D16 LINETXDATA3 F24 LINETXCLK17 L2 LINERXSYNC6 N24 LINETXDATA25
D17 LINETXDATA4 F25 LINETXDATA17 L3 LINERXCLK6 N25 LINETXCLK26
D18 LINETXDATA5 F26 VSS L4 LINERXDATA5 N26 LINETXSYNC26
D19 LINETXSYNC7 G1 LINERXSYNC11 L5 VDD P1 LINERXSYNC2
D20 LINETXCLK8 G2 LINERXDATA10 L11 VSS P2 LINERXCLK2
D21 LINETXDATA9 G3 LINERXCLK11 L12 VSS P3 LINERXDATA1
D22 LINETXSYNC11 G4 LINERXCLK10 L13 VSS P4 LINERXDATA2
D23 VSS G5 VSS L14 VSS P5 IDDQ
D24 LINETXCLK15 G22 VSS L15 VSS P11 VSS
D25 LINETXSYNC16 G23 LINETXCLK19 L16 VSS P12 VSS
D26 LINETXDATA15 G24 LINETXCLK18 L22 VDD P13 VSS
E1 VDD G25 LINETXSYNC19 L23 LINETXSYNC24 P14 VSS
E2 LINERXDATA12 G26 LINETXDATA18 L24 LINETXCLK23 P15 VSS
E3 LINERXCLK13 H1 LINERXDATA9 L25 LINETXDATA23 P16 VSS
E4 LINERXSYNC13 H2 LINERXCLK9 L26 VSS P22 DS3NEGDATAOUT
E5 VDD H3 LINERXSYNC10 M1 LINERXSYNC5 P23 LINETXSYNC27
E6 LINERXSYNC17 H4 LINERXSYNC9 M2 LINERXDATA4 P24 LINETXSYNC28
E7 VSS H5 LINERXDATA16 M3 LINERXCLK5 P25 LINETXCLK27
E8 TDLDATA H22 RDLDATA M4 LINERXCLK4 P26 LINETXDATA27
E9 TDLCLK H23 LINETXDATA20 M5 SCAN_MODE R1 RLSDATA7
E10 DS2AISCLK H24 LINETXDATA19 M11 VSS R2 LINERXSYNC1
E11 VDD H25 LINETXCLK20 M12 VSS R3 RLSDATA6
E12 TCBDATA H26 LINETXSYNC20 M13 VSS R4 LINERXCLK1
E13 TCBCLK J1 LINERXCLK8 M14 VSS R5 TCK
E14 TCBSYNC J2 LINERXSYNC8 M15 VSS R11 VSS
E15 RCBDATA J3 LINERXDATA8 M16 VSS R12 VSS
E16 VDD J4 LINERXDATA7 M22 DS3POSDATAIN R13 VSS
E17 RCBCLK J5 LINERXCLK16 M23 LINETXCLK25 R14 VSS
E18 RCBSYNC J22 DS3DATAINCLK M24 LINETXCLK24 R15 VSS
E19 RDLCLK J23 LINETXSYNC22 M25 LINETXSYNC25 R16 VSS
E20 VSS J24 LINETXSYNC21 M26 LINETXDATA24 R22 DS3POSDATAOUT
Table 1. Pin Assignments for 456-Pin PBGA by Pin Number Order (continued)
13Agere Systems Inc.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
3 Pin Information (continued)
Pin Signal Name Pin Signal Name Pin Signal Name Pin Signal Name
R23 LINETXCLK28 W5 TMSN AB19 RXDATAEN AD11 RPSC155N
R24 LINETXCLK29 W22 TXDATAEN AB20 VSS AD12 REF14
R25 LINETXDATA28 W23 DATA4 AB21 MODE2_PLL AD13 TPSC155N
R26 LINETXSYNC29 W24 DATA7 AB22 VDD AD14 ECSEL
T1 VSS W25 DATA5 AB23 ADDR19 AD15 TSTSFTLD
T2 RLSDATA4 W26 DATA6 AB24 INTN AD16 DS1XCLK
T3 RLSDATA3 Y1 TLSDATA2 AB25 DATA15 AD17 MPMODE
T4 RLSDATA5 Y2 TLSDATA3 AB26 VDD AD18 DSN
T5 VDD Y3 TLSDATA1 AC1 RLSSYNC52 AD19 ADDR3
T11 VSS Y4 TLSDATA4 AC2 RLSC52 AD20 ADDR7
T12 VSS Y5 VSS AC3 TLSC52 AD21 ADDR10
T13 VSS Y22 VSS AC4 VSS AD22 VDDD_PLL
T14 VSS Y23 DATA8 AC5 TPOACSYNC AD23 VSSS_PLL
T15 VSS Y24 DATA11 AC6 AUTO_AIS1 AD24 CLKIN_PLL
T16 VSS Y25 DATA9 AC7 RHSCP AD25 ADDR16
T22 VDD Y26 DATA10 AC8 THSSYNCP AD26 ADDR15
T23 LINETXDATA29 AA1 VSS AC9 VDDA_CDR AE1 VSS
T24 RSTN AA2 TLSCLK AC10 RPSC155P AE2 TTOACDATA
T25 PMRST AA3 TLSPAR AC11 REF10 AE3 RPOACCLK
T26 VSS AA4 TLSDATA0 AC12 TPSC155P AE4 TPOACCLK
U1 VDD AA5 RTOACSYNC AC13 LOPOHCLKIN AE5 LOSEXT
U2 RLSDATA1 AA22 ADDR13 AC14 LOPOHDATAIN AE6 AUTO_AIS2
U3 RLSDATA0 AA23 DATA12 AC15 ETOGGLE AE7 RHSDN
U4 RLSDATA2 AA24 DATA14 AC16 TSTMUX0 AE8 THSCN
U5 TDI AA25 DATA13 AC17 E1XCLK AE9 THSDN
U22 PHASEDETDOWN AA26 VSS AC18 CSN AE10 RPSD155N
U23 DTN AB1 VDD AC19 ADDR0 AE11 CTAPTH
U24 PAR1 AB2 TLSSPE AC20 ADDR4 AE12 RESLO
U25 PAR0 AB3 TLSV1 AC21 ADDR8 AE13 TPSD155N
U26 VDD AB4 TLSJ0J1V1 AC22 ADDR12 AE14 BYPASS
V1 RLSSPE AB5 VDD AC23 VSS AE15 EXDNUP
V2 RLSPAR AB6 TTOACCLK AC24 ADDR17 AE16 TSTMUX1
V3 RLSJ0J1V1 AB7 VSS AC25 APS_INTN AE17 MPCLK
V4 RLSCLK AB8 TRSTN AC26 ADDR18 AE18 ADSN
V5 TDO AB9 IC3STATEN AD1 RTOACCLK AE19 ADDR1
V22 PHASEDETUP AB10 CTAPRH AD2 TLSSYNC52 AE20 ADDR5
V23 DATA0 AB11 VDD AD3 RTOACDATA AE21 ADDR9
V24 DATA3 AB12 VSSA_CDR AD4 RPOACDATA AE22 ADDR11
V25 DATA1 AB13 CTAPRP AD5 TPOACDATA AE23 VDDS_PLL
V26 DATA2 AB14 LOPOHVALIDIN AD6 AUTO_AIS3 AE24 MODE1_PLL
W1 TLSDATA6 AB15 LOPOHCLKOUT AD7 RHSFSYNCN AE25 ADDR14
W2 TLSDATA7 AB16 VDD AD8 RHSCN AE26 VSS
W3 TLSDATA5 AB17 LOPOHDATAOUT AD9 THSSYNCN AF1 VDD
W4 RLSV1 AB18 LOPOHVALIDOUT AD10 RPSD155P AF2 VSS
Table 1. Pin Assignments for 456-Pin PBGA by Pin Number Order (continued)
14 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
3 Pin Information (continued)
Pin Signal Name Pin Signal Name Pin Signal Name Pin S ignal Name
AF3 TTOACSYNC AF9 THSDP A15 TSTMODE AF21 VSS
AF4 RPOACSYNC AF10 VDD A16 VSS AF22 VDD
AF5 VDD AF11 VSS A17 VDD AF23 VSSA_PLL
AF6 VSS A12 REWSHI A18 RWMN AF24 MODE0_PLL
AF7 RHSDP AF13 TPSD155P A19 ADDR2
AF8 THSCP AF14 TSTPHASE AF20 ADDR6
Table 2. Pin Assignments for 456-Pin PBGA by Signal Name
Signal Name Pin Signal Name Pin S ignal Name Pin Signal Name Pin
ADDR0 AC19 CTAPRP AB13 ECSEL AD14 LINERXCLK24 A9
ADDR1 AE19 CTAPTH AE11 ETOGGLE AC15 LINERXCLK25 C10
ADDR2 AF19 DATA0 V23 EXDNUP AE15 LINERXCLK26 C11
ADDR3 AD19 DATA1 V25 IC3STATEN AB9 LINERXCLK27 C12
ADDR4 AC20 DATA2 V26 IDDQ P5 LINERXCLK28 D12
ADDR5 AE20 DATA3 V24 INTN AB24 LINERXCLK29 B13
ADDR6 AF20 DATA4 W23 LINERXCLK1 R4 LINERXDATA1 P3
ADDR7 AD20 DATA5 W25 LINERXCLK2 P2 LINERXDATA2 P4
ADDR8 AC21 DATA6 W26 LINERXCLK3 N2 LINERXDATA3 N1
ADDR9 AE21 DATA7 W24 LINERXCLK4 M4 LINERXDATA4 M2
ADDR10 AD21 DATA8 Y23 LINERXCLK5 M3 LINERXDATA5 L4
ADDR11 AE22 DATA9 Y25 LINERXCLK6 L3 LINERXDATA6 K4
ADDR12 AC22 DATA10 Y26 LINERXCLK7 K3 LINERXDATA7 J4
ADDR13 AA22 DATA11 Y24 LINERXCLK8 J1 LINERXDATA8 J3
ADDR14 AE25 DATA12 AA23 LINERXCLK9 H2 LINERXDATA9 H1
ADDR15 AD26 DATA13 AA25 LINERXCLK10 G4 LINERXDATA10 G2
ADDR16 AD25 DATA14 AA24 LINERXCLK11 G3 LINERXDATA11 F4
ADDR17 AC24 DATA15 AB25 LINERXCLK12 F3 LINERXDATA12 E2
ADDR18 AC26 DS1XCLK AD16 LINERXCLK13 E3 LINERXDATA13 D2
ADDR19 AB23 DS2AISCLK E10 LINERXCLK14 D3 LINERXDATA14 C2
ADSN AE18 DS3DATAINCLK J22 LINERXCLK15 B2 LINERXDATA15 F5
APS_INTN AC25 DS3DATAOUTCLK N22 LINERXCLK16 J5 LINERXDATA16 H5
AUTO_AIS1 AC6 DS3NEGDATAIN K22 LINERXCLK17 C3 LINERXDATA17 A3
AUTO_AIS2 AE6 DS3NEGDATAOUT P22 LINERXCLK18 C4 LINERXDATA18 A4
AUTO_AIS3 AD6 DS3POSDATAIN M22 LINERXCLK19 C5 LINERXDATA19 D5
BYPASS AE14 DS3POSDATAOUT R22 LINERXCLK20 C6 LINERXDATA20 B6
CLKIN_PLL AD24 DSN AD18 LINERXCLK21 C7 LINERXDATA21 A7
CSN AC18 DTN U23 LINERXCLK22 D7 LINERXDATA22 C8
CTAPRH AB10 E1XCLK AC17 LINERXCLK23 B8 LINERXDATA23 D8
Table 1. Pin Assignments for 456-Pin PBGA by Pin Number Order (continued)
15Agere Systems Inc.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
3 Pin Information (continued)
Signal Name Pin Signal Name Pin Signal Name P in Signal Name Pin
LINERXDATA24 B9 LINETXCLK7 B19 LINETXDATA19 H24 LOPOHCLKOUT AB15
LINERXDATA25 B10 LINETXCLK8 D20 LINETXDATA20 H23 LOPOHDATAIN AC14
LINERXDATA26 B11 LINETXCLK9 C20 LINETXDATA21 J25 LOPOHDATAOUT AB17
LINERXDATA27 A12 LINETXCLK10 C21 LINETXDATA22 K25 LOPOHVALIDIN AB14
LINERXDATA28 C13 LINETXCLK11 C22 LINETXDATA23 L25 LOPOHVALIDOUT AB18
LINERXDATA29 D13 LINETXCLK12 C23 LINETXDATA24 M26 LOSEXT AE5
LINERXSYNC1 R2 LINETXCLK13 B25 LINETXDATA25 N24 MODE0_PLL AF24
LINERXSYNC2 P1 LINETXCLK14 C24 LINETXDATA26 N23 MODE1_PLL AE24
LINERXSYNC3 N4 LINETXCLK15 D24 LINETXDATA27 P26 MODE2_PLL AB21
LINERXSYNC4 N3 LINETXCLK16 E24 LINETXDATA28 R25 MPCLK AE17
LINERXSYNC5 M1 LINETXCLK17 F24 LINETXDATA29 T23 MPMODE AD17
LINERXSYNC6 L2 LINETXCLK18 G24 LINETXSYNC1 D14 PAR0 U25
LINERXSYNC7 K2 LINETXCLK19 G23 LINETXSYNC2 C14 PAR1 U24
LINERXSYNC8 J2 LINETXCLK20 H25 LINETXSYNC3 A15 PHASEDETDOWN U22
LINERXSYNC9 H4 LINETXCLK21 J26 LINETXSYNC4 B16 PHASEDETUP V22
LINERXSYNC10 H3 LINETXCLK22 K24 LINETXSYNC5 B17 PMRST T25
LINERXSYNC11 G1 LINETXCLK23 L24 LINETXSYNC6 B18 RCBCLK E17
LINERXSYNC12 F2 LINETXCLK24 M24 LINETXSYNC7 D19 RCBDATA E15
LINERXSYNC13 E4 LINETXCLK25 M23 LINETXSYNC8 C19 RCBSYNC E18
LINERXSYNC14 D1 LINETXCLK26 N25 LINETXSYNC9 A20 RDLCLK E19
LINERXSYNC15 C1 LINETXCLK27 P25 LINETXSYNC10 B21 RDLDATA H22
LINERXSYNC16 K5 LINETXCLK28 R23 LINETXSYNC11 D22 REF10 AC11
LINERXSYNC17 E6 LINETXCLK29 R24 LINETXSYNC12 A23 REF14 AD12
LINERXSYNC18 B3 LINETXDATA1 A14 LINETXSYNC13 A24 RESHI AF12
LINERXSYNC19 B4 LINETXDATA2 B15 LINETXSYNC14 F22 RESLO AE12
LINERXSYNC20 B5 LINETXDATA3 D16 LINETXSYNC15 C25 RHSCN AD8
LINERXSYNC21 D6 LINETXDATA4 D17 LINETXSYNC16 D25 RHSCP AC7
LINERXSYNC22 B7 LINETXDATA5 D18 LINETXSYNC17 E25 RHSDN AE7
LINERXSYNC23 A8 LINETXDATA6 C18 LINETXSYNC18 F23 RHSDP AF7
LINERXSYNC24 C9 LINETXDATA7 A19 LINETXSYNC19 G25 RHSFSYNCN AD7
LINERXSYNC25 D9 LINETXDATA8 B20 LINETXSYNC20 H26 RLSC52 AC2
LINERXSYNC26 D10 LINETXDATA9 D21 LINETXSYNC21 J24 RLSCLK V4
LINERXSYNC27 D11 LINETXDATA10 B22 LINETXSYNC22 J23 RLSDATA0 U3
LINERXSYNC28 B12 LINETXDATA11 B23 LINETXSYNC23 K23 RLSDATA1 U2
LINERXSYNC29 A13 LINETXDATA12 B24 LINETXSYNC24 L23 RLSDATA2 U4
LINETXCLK1 B14 LINETXDATA13 E21 LINETXSYNC25 M25 RLSDATA3 T3
LINETXCLK2 D15 LINETXDATA14 C26 LINETXSYNC26 N26 RLSDATA4 T2
LINETXCLK3 C15 LINETXDATA15 D26 LINETXSYNC27 P23 RLSDATA5 T4
LINETXCLK4 C16 LINETXDATA16 E23 LINETXSYNC28 P24 RLSDATA6 R3
LINETXCLK5 C17 LINETXDATA17 F25 LINETXSYNC29 R26 RLSDATA7 R1
LINETXCLK6 A18 LINETXDATA18 G26 LOPOHCLKIN AC13 RLSJ0J1V1 V3
Table 2. Pin Assignments for 456-Pin PBGA by Signal Name (continued)
16 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
3 Pin Information (continued)
Signal Name Pin Signal Name Pin S ignal Name Pin Signal Name Pin
RLSPAR V2 TLSPAR AA3 VDD AB11 VSS N12
RLSSPE V1 TLSSPE AB2 VDD AB16 VSS N13
RLSSYNC52 AC1 TLSSYNC52 AD2 VDD AB22 VSS N14
RLSV1 W4 TLSV1 AB3 VDD AB26 VSS N15
RPOACCLK AE3 TMSN W5 VDD AF1 VSS N16
RPOACDATA AD4 TPOACCLK AE4 VDD AF5 VSS P11
RPOACSYNC AF4 TPOACDATA AD5 VDD AF10 VSS P12
RPSC155N AD11 TPOACSYNC AC5 VDD AF17 VSS P13
RPSC155P AC10 TPSC155N AD13 VDD AF22 VSS P14
RPSD155N AE10 TPSC155P AC12 VDD AF26 VSS P15
RPSD155P AD10 TPSD155N AE13 VDDA_CDR AC9 VSS P16
RSTN T24 TPSD155P AF13 VDDD_PLL AD22 VSS R11
RTOACCLK AD1 TRSTN AB8 VDDS_PLL AE23 VSS R12
RTOACDATA AD3 TSTMODE AF15 VSS A2 VSS R13
RTOACSYNC AA5 TSTMUX0 AC16 VSS A6 VSS R14
RWN AF18 TSTMUX1 AE16 VSS A11 VSS R15
RXDATAEN AB19 TSTPHASE AF14 VSS A16 VSS R16
SCAN_EN N5 TSTSFTLD AD15 VSS A21 VSS T1
SCAN_MODE M5 TTOACCLK AB6 VSS A25 VSS T11
TCBCLK E13 TTOACDATA AE2 VSS B1 VSS T12
TCBDATA E12 TTOACSYNC AF3 VSS B26 VSS T13
TCBSYNC E14 TXDATAEN W22 VSS D4 VSS T14
TCK R5 VDD A1 VSS D23 VSS T15
TDI U5 VDD A5 VSS E7 VSS T16
TDLCLK E9 VDD A10 VSS E20 VSS T26
TDLDATA E8 VDD A17 VSS F1 VSS Y5
TDO V5 VDD A22 VSS F26 VSS Y22
THSCN AE8 VDD A26 VSS G5 VSS AA1
THSCP AF8 VDD E1 VSS G22 VSS AA26
THSDN AE9 VDD E5 VSS L1 VSS AB7
THSDP AF9 VDD E11 VSS L11 VSS AB20
THSSYNCN AD9 VDD E16 VSS L12 VSS AC4
THSSYNCP AC8 VDD E22 VSS L13 VSS AC23
TLSC52 AC3 VDD E26 VSS L14 VSS AE1
TLSCLK AA2 VDD K1 VSS L15 VSS AE26
TLSDATA0 AA4 VDD K26 VSS L16 VSS AF2
TLSDATA1 Y3 VDD L5 VSS L26 VSS AF6
TLSDATA2 Y1 VDD L22 VSS M11 VSS AF11
TLSDATA3 Y2 VDD T5 VSS M12 VSS AF16
TLSDATA4 Y4 VDD T22 VSS M13 VSS AF21
TLSDATA5 W3 VDD U1 VSS M14 VSS AF25
TLSDATA6 W1 VDD U26 VSS M15 VSSA_CDR AB12
TLSDATA7 W2 VDD AB1 VSS M16 VSSA_PLL AF23
TLSJ0J1V1 AB4 VDD AB5 VSS N11 VSSS_PLL AD23
Table 2. Pin Assignments for 456-Pin PBGA by Signal Name (continued)
17Agere Systems Inc.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
3 Pin Information (continued)
3.3 Pin Descriptions
3.3.1 High-Speed I/O Pin Descriptions
The high-speed I/O consists of five LVDS signals (10 pins) that connect the Supermapper to an external OC-3
optics device. It exchanges an STS-3 or STM-1 signal between the TMUX and an OC-3 transceiver . The Super-
mapper is capable of recovering a clock from the receive data, or it can accept a clock recovered externally by the
optics device. If internal clock recovery is used, the Supermapper uses THSCP/N as a reference.
The high-speed I/O may also run at 52.84 Mbits/s in applications that terminate an STS-1 or EC-1 signal. In this
case, the (electrical) line signals are typically terminated by a line interface unit (LIU) chip. The operating speed of
the high-speed I/O is determined by TMUX_RCV_TX_MODE.
Table 3. High-Speed I/O Pin Descriptions
Pin Symbol Type I/O Description
AF7,
AE7 RHSDP
RHSDN LVDS I Receive Hig h-Sp eed Dat a. 155.52 Mbits/s serial data input in STS-1 or
STM-1 format, or 51.84 Mbits/s data in STS-1 format. If RHSD is not used
(in a slave Supermapper, for example), the P input should be pulled high
through a 1 k resistor and the N input pulled low through a 1 k resistor .
RHSD is typically provided by an OC-3 receiver, an STS-1 line interface
unit, or a higher-order (e.g., STS-12) demultiplexing chip.
AC7,
AD8 RHSCP
RHSCN LVDS I Receive Hig h-Sp eed Clo ck. 155.52 MHz or 51.84 MHz clock for STS-3
or STS-1 input data. Typically supplied by an external OC-3 optoelec-
tronic device, or an STS-1/EC1 line interface unit, synchronous with
RHSD. If the internal clock recovery (CDR) feature is enabled, RHC is not
required and should be connected to a 1 k resis tors to VDD (RHCP
input) and VSS (RHCN input).
AF8,
AE8 THSCP
THSCN LVDS I Transmit High-Speed Clock. T ransmit 155.52 MHz or 51.84 MHz clock.
Master clock for the transmit sections of the TMUX, telecom bus, SPE,
and VT mappers. THSC is also used as a reference clock for the receive
CDR, if it is being used.
AC8,
AD9 THSSYNCP
THSSYNCN LVDS I Transmit High-Speed Frame Synchronization. An optional input that
may be used to specify the position of the transmit STS-3, STM-1, or
STS-1 frame. THSSYNC marks the position of bit 1 of the A1 byte, i.e.,
the first bit of the overhead in the THSD output. If THSSYNC is not used,
the P input should be pulled high through a 1 k resistor , and the N input
pulled low through a 1 k resistor. A typical application for this pin may
be to synchronize a group of Supermappers so that their STS-3 outputs
may be multiplexed into an STS-12 signal.
AF9,
AE9 THSDP
THSDN LVDS O Transmit High-Speed Data. Transmit output for STS-3, STM-1, or STS-
1 serial data. Typically connected to an OC-3 module or an LIU, if operat-
ing in STS-1 mode. May also be connected to a higher-order multiplexing
device, for example, STS-12.
18 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
3 Pin Information (continued)
3.3.2 Protection Switch I/O Pin Description
The protection switch I/O provides additional copies of the high-speed interface signals so that various protection
schemes may be implemented. The protection interface may be used when the high-speed interface is operating in
both STS-3 and STS-1 modes. If the protection port is not used, the input clock and data may be left unconnected,
tied to power (P inputs), or ground (N inputs) through 1 kresistors. Unused protection outputs should be left
unconnected.
Table 4. Protection Switch I/O Pin Description
Figure 3. Protection Switch
3.3.3 Telecom Bus (Low-Speed I/O) Pin Description
The telecom bus on the Supermapper is used for interconnecting STS-1 signals. It has two 8-bit data buses, one
for upstream data and one for downstream data, plus clock and frame indication signals for each bus. The telecom
bus can operate at 19.44 MHz (space for three STS-1 signals) or 6.48 MHz (space for 1 STS-1 signal).
Supermappers in OC-3 applications are typically connected using the telecom bus, and the bus is configured to
operate at 19.44 MHz.
Pin Symbol Type I/O Description
AD10,
AE10 RPSD155P
RPSD155N LVDS I Receive Protection Data. Receive side high-speed serial data input
from protection board.
AC10,
AD11 RPSC155P
RPSC155N LVDS I Receive Protection Clock. Receive side high-speed clock input from
protection board.
AF13,
AE13 TPSD155P
TPSD155N LVDS O Transmit Protection Data. Transmit side high-speed serial data output
to protection board.
AC12,
AD13 TPSC155P
TPSC155N LVDS O Transmit Protection Clock. Tran sm it si de hig h- sp eed clock output to
protection board.
STS-3 TRANSMIT
FRAMER
STS-3 RECEIVE
FRAMER
RPSMUXSEL1
HIGH-SPEED
PROTECTION
INPUT HIGH-SPEED
PROTECTION
OUTPUT
HIGH- SPEED I/O
TPSMUXSEL2
TPSMUXSEL3
19Agere Systems Inc.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
3 Pin Information (continued)
Table 5. Telecom Bus (Low-Speed I/O) Pin Description
Pin Symbol Type I/O Description
R1, R3, T4, T2,
T3, U4, U2, U3 RLSDATA[7:0] I/O Receive Low-Speed Data [7:0], Parallel Data Bus. Used
to connect the downstream STS-1 signals from the master
to the slave devices. In master mode, RLSDATA is an out-
put bus, 8 bits wide. It contains all the received data for dis-
tribution to the two slave devices. Connect to
RLSDATA[7:0] on the slave devices. In slave mode, these
pins are inputs and should be connected to the
RLSDATA[7:0] outputs on the master. RLSDATA contains
three byte-interleaved STS-1 time slots. The slot used by
each SPE mapper in the slaves and the master device is
determined by programing the SPE_RSTS3_TMSLOT reg-
ister bits.
V4 RLSCLK I/O Receive Low-Speed Clock. This is a 19.44 MHz or
6.48 MHz clock for the receive low-sp eed data bits. In
19.44 MHz master mode, this is a 19.44 MHz clock output
for distribution to the two slave devices. Connect to
RLSCLK on the slaves. RLSCLK is an input signal on slave
devices.
Note: As outputs, these pins have 6 mA drive capability.
V2 RLSPAR I/O Receive Low-Speed Parity. Receive data parity bit, may
be configured for odd or even parity generated on
RLSDATA[7:0]. The default is odd parity; it may be set to
even by setting bit 2 of the register at 0x4001B an output in
master mode and an input in slave mode. Connect the
RSLPAR (output) on the master to The RLSPAR (input)
pin s on the slaves.
V1 RLSSPE I/O Receive Low-Speed SPE Marker. Receive synchronous
payload envelope timing indicator. It is high while there is
SPE data on the RLSDATA[7:0] output bus. Connect to
RLSSPE on the slaves. RLSSPE is an input on slave
devices.
V3 RLSJ0J1V1 I/O Receive Low-Speed J0/J1/V1 Marker. On the master
device, this is an output that is high while J0-1, J1
(1, 2, and 3), and V1 (1, 2, and 3) bytes are present on the
RLSDATA bus. Connect to RLSJ0J1V1 on the slaves,
which is an input.
W4 RLSV1 I/O Receive Low-Speed V1 Marker. Receive V1 tim ing indi ca-
tor . On the master , this is an output that is high while the V1
bytes (1, 2, and 3) are present on RLSDATA[7:0] output
bus. Connect to RLSV1 on the slaves.
20 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
3 Pin Information (continued)
Table 5. Telecom Bus (Low-Speed I/O) Pin Description (continued)
Pin Symbol Type I/O Description
W2, W1, W3, Y4,
Y2, Y1, Y3, AA4 TLSDATAI[7:0] I/O Transmit Low-Speed Data [7:0]. This is a parallel data
bus. It is used to connect the upstream STS-1 signals from
the slave devices to the master device. In master mode,
TLSDATA is an input bus, 8 bits wide. It contains all the
transmit STS-1 data from the slave devices. In slave mode,
these pins are outputs and should be connected to the
TLSDATA[7:0] inputs on the master. TLSDATA contains
three byte-interleaved STS-1 time slots. The slot used by
each SPE mapper in the slaves and the master device is
determined by programing the SPE_TSTS3_TMSLOT reg-
ister bits.
AA2 TLSCLK I/O Transmit Low-Speed Clock. This is a 19.44 MHz or
6.48 MHz clock for the TLSDATA[7:0] bits. TLSCLK is an
output on a master Supermapper and an input on a slave.
Note: As outputs, these pins have 6 mA drive capability.
AA3 TLSPAR I/O Transmit Low-Speed Parity. This parity bit is generated
on the TLSDATA[7:0] bits output from slave devices and
input to the master Supermapper. May be configured for
odd or even parity generation or for checking.
AB2 TLSSPE I/O Transmit Low-Speed SPE Marker. High while the STS-1
payloads are present on the TLSDATA[7:0] bus. Low while
the STS-1 overhead is present on the TLSDATA[7:0] bus.
An output from the master and input on the slaves.
AB4 TLSJ0J1V1 I/O Transmit Low-S peed J0/J1/ V1 Mar ker. Transmit J0, J1,
or V1 timing indicator. High while the J0, J1, or V1 bits are
pres en t o n t he T L S DATA[7:0] bu s. A n o u tpu t on t h e m as t er
and input on slaves.
AB3 TLSV1 I/O Transmit Low-Speed V1 Marker 3. Transmit V1 timing
indicator. High while the V1 bits are present on the
TLSDATA[7:0] bus. An output on the master and input on
slaves.
AC2 RLSC52 I/O Receive Low-Speed Clock. Wh en in outp ut (maste r)
mode, it is the receive side of the 51.84 MHz clock output,
synchronous to the receive high-speed input clock (data).
When in input (slave) mode, it receives a 51.84 MHz clock
input, synchronous to the receive high-speed input clock
(data).
Note: As outputs, these pins have 6 mA drive capability.
AC1 RLSSYNC52 I/O Receive Low-Speed Sync. When in output (master) mode,
it is the receive side frame sync output synchronous to a
51.84 MHz output. When in input mode, it is the receive
side frame sync input synchronous to a 51.84 MHz input.
21Agere Systems Inc.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
3 Pin Information (continued)
Table 5. Telecom Bus (Low-Speed I/O) Pin Description (continued)
3.3.4 TOAC and POAC
The transport and path overhead access channels (TOAC and POAC) allow parts of the SONET/SDH overhead to
be examined externally (receive direction) or overwritten (transmit direction) through serial data ports. Each port
has clock and data lines and a synchronization signal that marks the last bit of the frame so that the rest of the
overhead bytes can be identified.
The receive TOAC and POAC channels contain all of the respective overheads bytes. The transmit channels con-
tain space for all the overhead bytes, but whether they are actually transmitted depends on how the device is pro-
grammed. Some overhead bytes cannot be modified; some may be modified only through the CPU port; some may
be modified only through the overhead access channels; and some may be modified either through the CPU port,
or through the overhead access channels.
Pin Symbol Type I/O Description
AC3 TLSC52 I/O T ransmit Low-S peed Clock. When in output (master) mode,
it is the transmit side 51.84 MHz clock output synchronous to
transmit high-speed input clock. When in input mode, it
receives a 51.84 MHz clock input synchronous to transmit
high-speed input clock
Note: TLSCLK is used as the master clock for the T1/E1
framer and should therefore is provided even if the
TMUX SPE and VT mappers are not used.
AD2 TLSSYNC52 I/O Transmit Low-Speed Sync. When in output (master) mode,
it is the transmit side frame sync output synchronous to
51.84 MHz output. When in input (slave) mode, it receives
the transmit side frame sync input synchronous to 51.84 MHz
input.
Table 6. TOAC and POAC
Pin Symbol Type I/O Description
AD1 RTOACCLK O Receive TOAC Clock. Receive side serial access channel
clock output for the transport overhead bytes.
AD3 RTOACDATA O Receive TOAC Data. Receive side serial access channel
data output for the transport overhead bytes.
AA5 RTOACSYNC O Receive TOAC Sync hronization. Rec eive side sync outpu t
for TOAC channel. Active-high during the LSB of the last
byte.
AB6 TTOACCLK O Transmit T OAC Clock. Transmit side serial access channel
clock output for the transport overhead bytes.
AE2 TTOACDATA I
Pull-down Transmit TOAC Data. Transmit side serial access channel
data input for the transport overhead bytes.
AF3 TTOACSYNC O Transmit TOAC Synchronization. Transmit si de sy nc out-
put for TOAC channel. Active-high during the LSB of the last
byte.
22 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
3 Pin Information (continued)
3.3.5 Miscellaneous Signals
Table 7. Miscellaneous Signals
3.3.6 DS3 Port
If a DS3 output is required in a Supermapper application and the DS3 signal has been recovered (demapped) from
an STS-1, then it is necessary to smooth the DS3 recovered clock. The DS3 clock extracted from the STS-1 clock
will have considerable jitter introduced when the SONET overhead is removed and pointer adjustments are made.
A phase-locked loop is recommended for this purpose. The Supermapper contains a phase comparator that can
be used in conjunction with an external low-pass filter and voltage-controlled crystal oscillator to implement the
PLL.
Pin Symbol Type I/O Description
Path Overhead Access Channel (POAC)
AE3 RPOACCLK O Receive POAC Clock. Receive side serial access channel
clock output for the path overhead bytes.
AD4 RPOACDATA O Receive POAC Data. Receive side serial access channel
data output for the path overhead bytes.
AF4 RPOACSYNC O Receive POAC Synchronization. Receive side sync output
for POAC channel. Active-high during the last bit of the last
byte of the POAC frame.
AE4 TPOACCLK O Transmit POAC Clock. T ransmit side serial access chan-
nel clock output for the path overhead bytes.
AD5 TPOACDATA I
Pull-down Transmit POAC Data. Transmit side serial access channel
data input for the path overhead bytes.
AC5 TPOACSYNC O Transmit POAC Synchronization. Transmit side sync out-
put for POAC channel. Active-high during the last bit of the
last byte.
Pin Symbol Type I/O Description
AE5 LOSEXT I
Pull-up Loss of Signal External. External loss of signal input. If
external clock and data recovery is used on the high-speed
I/O port, it may be connected to this input, which can be con-
figured to assert the LOS register bit normally associated with
the internal LOS detection in the internal CDR block. The
polarity of LOS may be programmed active-high or low.
AD6, AE6,
AC6 AUTO_AIS I/O AIS Enable [3:1]. Control signal for automatic AIS insertion
on each STS1. The STS-1 AIS is applied down stream on the
telecom bus, i.e., it is an output from masters and an input to
slaves. Active-high.
Input when slave mode.
Output when master mode.
If not used, leave open.
AD7 RHSFSYNCN O Receive High-Spee d Frame Synchronization. Receive
side frame sync output indicating the frame location of the
high-speed data input. May be used as an 8 kHz timing refer-
ence for network synchronization to the receive high-speed
data input (STS- 3 or STS-1 ).
Table 6. TOAC and POAC (continued)
23Agere Systems Inc.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
3 Pin Information (continued)
Table 8. DS3 Port
Pin Symbol Type I/O Description
V22 PHASEDETUP O Phase Detector Up. Phase error signal out to external fil-
ter and VCXO. This output will generate an error signal
when the VCXO output is slower than the reference sig-
nal.
U22 PHASEDETDOWN O Phase Detector Down. Phase error signal out to external
filter and VCXO. This output will generate an error signal
when the VCXO output is faster that the reference signal.
R22 DS3POSDATAOUT O Positive Data Output. Serial DS3 positive data out to
LIU when the DS3 output port is operating in dual-rail
mode. Nonreturn-to-zero DS3 data output when the DS3
output is operating in single-ended mode.
P22 DS3NEGDATAOUT O Negative Data Output. Serial DS3 negative data output
to LIU when the DS3 port is operating in dual-rail mode.
In single-rail mode, this output is not used and may be left
unconnected.
N22 DS3DATAOUTCLK I
Pull-down DS3 Data Out Clock. 44.736 MHz DS3 clock input. If the
Supermapper is being used to map DS3 data to and from
STS-1, then this clock will be supplied by the external
VCXO that is associated with the DS3 clock recovery
PLL. In other DS3 modes (e.g., M13), this input will be
supplied by an external crystal oscillator, usually associ-
ated with a DS3 LIU . If th e DS3 p ort i s not us ed, th is inpu t
may be tied to ground or left open, since it is equipped
with an internal pulldown resistor.
M22 DS3POSDATAIN I
Pull-down Positive Data Input. If the DS3 port is configured in dual-
rail mode, then this input is serial positive data from an
external DS3 LIU. If the DS3 port is configured in single-
rail mode, then this input is serial nonreturn-to-zero data
from the external LIU.
K22 DS3NEGDATAIN I
Pull-down Negative Data In. In dual-rail mode, this is negative data
from an external DS3 LIU. In single-rail mode, it may be
connected to the bipolar violation output of the external
DS3 LIU, left unconnected, or tied to ground.
J22 DS3DATAINCLK I
Pull-down DS3 Data In Clock. This is a 44.736 MHz clock input
from the clock recovery in the external DS3 LIU.
24 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
3 Pin Information (continued)
Table 9. DS3 Port, C Bit, and Datalink Access
3.3.7 M13 Multiplexer/Demultiplexer Receive Section
Two groups of signals are defined in this section. The first group are reference clocks, used internally in the jitter
attenuation and AIS generation processes. Note that these are typically supplied by free-running crystal oscillators.
The outputs below provide access to the received C bits and data link bits extracted from the received DS3 frame.
These operate in the same way if the source of the DS3 signal is from an SPE or from the external DS3 port.
Pin Symbol Type I/O Description
E14 TCBSYNC O Transmit C-Bit Sync. In the C-bit parity mode, 10 C bits may
optionally be input for multiplexing into the transmit DS3 frame
through the TCBDATA input. The TCBSYNC output is low, except
during the rising edge of TCBCLK that is used to input C2.
E13 TCBCLK O Transmit C-Bit Clock. A gapped clock (nominally 93.983 kHz) for
accepting selected C bits on input M13_CBDATA.
E12 TCBDATA I
Pull-down Transmit C-Bit Data. In the C-b i t p a r ity m o de , th e ne t w or k re qu i r e-
ments bit (C2) and the unused C bits (C4, C5, C6, C16, C17, C18,
C19, C20, and C21) may optionally be input for multiplexing into
the transmit DS3 frame through this input.
E9 TDLCLK O Transmit Data Link Clock. A gapped clock (nominally
28.195 kHz) for accepting path maintenance data link C bits on
in put TDLDATA.
E8 TDLDATA I
Pull-down Transmit Data Link Data. The path maintenance data link C bits
(C13, C14, and C15) may optionally be input for multiplexing into
the transmit DS3 frame through this input.
Table 10. M13 Multiplexer/Demultiplexer Receive Section
Pin Symbol Type I/O Description
AC17 E1XCLK I
Pull-down E1 Reference Clock. This clock is used as a reference for the jitter
attenuator when it is operating in the E1 mode. It must have a fre-
quency of 2.048 MHz, 32.768 MHz, or 65.536 MHz and a stability of
50 ppm. It is also used to generate an E1 AIS (all ones). May be left
unconnected or tied to ground if no E1 options are being used.
AD16 DS1XCLK I
Pull-down DS1 Reference Clock. This clock is used as a reference for the jit-
ter attenuator when it is operating in the DS1 or the J1 mode. It must
have a frequency of 1.544 MHz, 24.704 MHz, or 49.408 MHz and a
stability of ±32 ppm. This clock signal is also used to generate DS1
AIS signals. May be left unconnected or tied to ground; if not, no
DS1 options are being used.
E10 DS2AISCLK I
Pull-down DS2 Reference Clock. A 6.312 MHz ± 30 ppm input. In the M23
mode, this clock is used to generate DS2 AIS. May be left uncon-
nected or tied to ground if no DS2 options are being used. Note that
C-bit parity mode does not require a DS2 reference clock.
E18 RCBSYNC O Receive C-Bit Sync. Ten C bits are output on RCD after they are
demultiplexed from the received DS3 signal. The RCS output is low ,
except during the rising edge of RCD that is used to output C2.
25Agere Systems Inc.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
3 Pin Information (continued)
3.3.8 Low-Order Path Overhead Access Channel
Each VT has a low-order path overhead, and this interface allows access to all LOPOH bits for all VTs. Note that
the purpose of doing this is slightly different from the transport and path overhead access. These are used to cross
couple the bits between links in a protection scheme, rather than provide access for examination or modification of
the overhead, although that is possible too.
Table 11. Low-Order P ath Overhead Access Channel
Figure 4. DS1/E1 to DXC Block Diagram
Pin Symbol Type I/O Description
E17 RCBCLK O Receive C-Bit Clock. A gapped clock (nominally 93.983 kHz) for
outputting selected C bits on RCD.
E15 RCBDATA O Receive C-Bit Data. The received network requirements bit (C2)
and the received unused C bits (C4, C5, C6, C16, C17, C18, C19,
C20, and C21) are output after they are demultiplexed from the
received DS3 signal.
E19 RDLCLK O Receive Data Link Clock. A gapped clock (nominally 28.195 kHz)
for outputting path maintenance data link C bits on RDLD.
H22 RDLDATA O Receive Data Link Data. The received path maintenance data link
C bits (C13, C14, and C15) that are demultiplexed from the received
DS3 signal.
Pin Symbol Type I/O Description
Transmit Direction
AC13 LOPOHCLKIN I Pull-down 6.48 MHz Low-Order Path Overhead Clock.
AC14 LOPOHDATAIN I Pull-down Low-Order Path Overhead Data. (O bits, V5, J2,
Z6/N2, Z7, and K4 byte.)
AB14 LOPOHVALIDIN I Pull-down Valid LOPOH_DATA.
Receive Direction
AB15 LOPOHCLKOUT O 6.48 MHz Low-Order Path Overhead Clock.
AB17 LOPOHDATAOUT O Low-Order Path Overhead Data. (O bits,V5, J2,
Z6/N2, and Z7/K4 byte.)
AB18 LOPOHVALIDOUT O Valid VTMPR_LOPOH_DATA Output.
Table 10. M13 Multiplexer/Demultiplexer Receive Section (continued)
VT MAPPER VT MAPPER
LOPOH
OUTPUTS
LOPOH
INPUTS
LOPOH
OUTPUTS
LOPOH
INPUTS
TELECOM BU S
DS1/E1 TO DXC
26 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
3 Pin Information (continued)
Table 12. Multifunction System Interface Transmit Path Direction
Pin Symbol Type I/O Description
C13, A12,
B11, B10, B9,
D8, C8, A7,
B6, D5, A4,
A3, H5, F5,
C2, D2, E2,
F4, G2, H1,
J3, J4, K4, L4,
M2, N1, P4,
P3
LINERXDATA[28:1] I
Pull-
down
Line Receive Dat a [28:1] . Configurable inputs to the
internal cross connect. The use depends on the applica-
tion. Generally, these inputs are used for the received
positive-rail or single-rail DS1/E1 line data input. If operat-
ing in dual-rail mode, the negative rail will be expected on
LINERXSYNC[28:1]. Using dual-rail mode implies that the
internal B8ZS or HDB3 decoders are enabled, and line
code violations can be detected and counted inside the
Supermapper.
These data inputs may be assigned, using the cross con-
nect block, to the DS1 or E1 inputs on the VT mapper,
M13 or DS1/E1 framers. It is also possible to use the
inputs for DS2 data, in which case they may be assigned
to the M23 multiplexer inputs.
D13 LINERXDATA29 I
Pull-
down
Receive Data 29. Configurable input to the internal cross
connect. May be used as an additional line receive data
input, for a protection channel. Other possible uses are as
follows:
Global transmit line clock input. Externally supplied
1.544 MHz or 2.048 MHz low jitter clock phase-locked to
the TDM system clock. Used for transmit line clock on the
DS1/E1 framers. This is not normally used because the
DS1/E1 framer has a PLL that can generate a
1.544 MHz clock from the TDM system clock (CHI clock).
This applies in PSB and CHI modes.
Receive data input. If NSMI mode is used, this will be a
51.84 Mbits/s serial data input.
D12, C12,
C1 1, C10, A9,
B8, D7, C7,
C6, C5, C4,
C3, J5, B2,
D3, E3, F3,
G3, G4, H2,
J1, K3, L3,
M3, M4, N2,
P2, R4
LINERXCLK[28:1] I/O
Pull-
down
Receive Clock [28:1]. Configurable inputs/output s to the
internal cross connect. Typically a line clock associated
with the corresponding LINERXDATA input. It can there-
fore be running at DS1, E1, or DS2 rate. The cross con-
nect is used to assign these inputs to the VT mapper,
M13, or DS1/E1 framers.
B13 LINERXCLK29 I/O
Pull-
down
Receive Clock 29. May be used as additional receive
clock input for a DS1/E1 protection channel. Also has
special use as a master clock. In CHI mode, it is the
receive clock input (2.048 MHz, 4.096 MHz, 8.192 MHz,
or 16.384 MHz). In PSB mode, it is the receive clock input
(19.44 MHz). In NSMI mode, it is the receive clock output.
(51.84 MHz).
27Agere Systems Inc.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
3 Pin Information (continued)
Pin Symbol Type I/O Description
B12, D11,
D10, D9, C9,
A8, B7, D6,
B5, B4, B3,
E6, K5, C1,
D1, E4, F2,
G1, H3, H4,
J2, K2, L2,
M1, N3, N4,
P1, R2
LINERXSYNC[28:1] I Line Receive Sync hronous[28:1]. Multifunction input.
Channel assignment may be configured through the inter-
nal cross connect. Can be used as the negative rail of a
DS1/E1 signal in conjunction with LINERXDATA[28:1],
when operating in dual-rail mode. In CHI mode, these
inputs are used for receive TDM highways that may run at
2.048, 4.096, or 8.192 Mbits/s. In parallel system bus
mode, the receive system data bus inputs are assigned to
LINERXSYNC 16:1. The PSB is a 16-bit wide bus that
operates at 19.44 MHz.
A13 LINERXSYNC29 I/O Line Receive Synchronous 29. Multifun cti on inp ut.
Channel assignment may be configured through the inter-
nal cross connect. Can be used as the negative rail of a
DS1/E1 signal in conjunction with LINERXDA TA 29, when
operati ng in dual- ra il mode.
In CHI and PSB modes, this input is used as the receive
system frame synchronization input. In NSMI mode, it is
the receive frame sync output.
R25, P26,
N23, N24,
M26, L25,
K25, J25,
H23, H24,
G26, F25,
E23, D26,
C26, E21,
B24, B23,
B22, D21,
B20, A19,
C18, D18,
D17, D16,
B15, A14
LINETXDATA[28:1] I/O Line Transmi t Da t a [2 8:1] Configurable outputs from the
internal cross connect. Used for transmit positive-rail or
singl e- rail D S1/ E1 l ine dat a out put s. May be co nne cte d to
the DS1/E1 outputs from the VT mapper, M13 MUX, or
DS1/E1 frame line outputs. May also be used as a DS2
output.
T23 LINETXDATA29 O L ine Transmit Data 29. Configurable output from the
internal cross connect. An extra DS1 or E1 transmit port
that may be used for protection or as a timing reference
output.
Table 12. Multifunction System Interface Transmit Path Direction (continued)
28 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
3 Pin Information (continued)
Pin Symbol Type I/O Description
R23, P25,
N25, M23,
M24, L24,
K24, J26,
H25, G23,
G24, F24,
E24, D24,
C24, B25,
C23, C22,
C21, C20,
D20, B19,
A18, C17,
C16, C15,
D15, B14
LINETXCLK[28:1] I/O Line Transmit Clock [28:1]. Configurab le outp uts from
the internal cross connect. Can be used as the clock sig-
nals for LINETXDATA[28:1] in DS1, E1, and DS2 modes.
R24 LINETXCLK29 I/O Line Transmit Clock 29. Configurable output to the inter-
nal cross connect for the protection or timing reference
channel. Also used as the transmit global system clock
input for CHI (2.048 MHz, 4.096 MHz, 8.192 MHz, or
16.384 MHz), PSB (19.44 MHz), and NSMI (51.84 MHz)
modes.
P24, P23,
N26, M25,
L23, K23, J23,
J24, H26,
G25, F23,
E25, D25,
C25, F22,
A24, A23,
D22, B21,
A20, C19,
D19, B18,
B17, B16,
A15, C14,
D14
LINETXSYNC[28:1] I/O Line Transmit Synchronous [28:1]. Configurable inputs/
outputs to the internal cross connect. An output when
used as the negative rail of a DS1 or E1 output port oper-
ating in dual-rail mode. In CHI mode, these pins may be
used as output TDM highways. In PSB mode, bits 16:1
are used for the transmit data bus, and bits 28:17 are not
used. These pins may also be used as DS2 I/O to the
M12 block as follows: 7:1—Tx data out. 14:8—Tx clock in.
21:16—Rx data in. 28:22—Rx clock in.
R26 LINETXSYNC29 I/O Line Transmit Synchronous 29. Configurab le inp ut/o ut-
put to the internal cross connect. An output when used as
the negative rail of a DS1 or E1 output port operating in
dual-rail mode. In CHI and PSB modes, it is used as the
transmit system frame synchronization input. In NSMI
mode, it is the transmit system frame sync output.
AB19 RXDATAEN O NS MI Rece ive Enable . Receive data enable for NSMI
mode.
W22 TXDATAEN O NMSI Transmit Enable. Transmit data enable for NSMI
mode.
Table 12. Multifunction System Interface Transmit Path Direction (continued)
29Agere Systems Inc.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
3 Pin Information (continued)
3.3.9 Framer PLL
The DS1/E1 framer has a phase-locked loop that may be used to generate a transmit line clock at 1.544 MHz or
2.048 MHz. The reference signal for this PLL may be chosen from a number of possible sources, all typically syn-
chronized to the system clock (CHI transmit/receive clock, for example). In order to ensure reliable performance,
this PLL has its own isolated power pins. The PLL also has a number of test control pins that are used for factory
testing only.
The PLL is active when framer bit PLL_BYPAS = 0. When PLL_BYPAS = 1, the PLL is bypassed and an external
clock at the system interface is used as the line clock. An example would be when the framers are programmed for
a CHI interface at 2.048 MHz and the frames are programmed for E1, the PLL may be bypassed and the CHI sys-
tem clock may be used as the line clock.
Table 13. Framer PLL
Pin Symbol Type I/O Description
AD22 VDDD_PLL VDD Digital VDD for PLL.
AE23 VDDS_PLL VDD Analog VDD for PLL.
AF23 VSSA_PLL VSS Analog VSS for PLL.
AD23 VSSS_PLL VSS Digital VSS for PLL.
AD24 CLKIN_PLL I
Pull-down Clock In PLL. Phase locked-loop reference clock input. Fre-
quency should be consistent with the MODE_PLL pins in the
PLL Mode1 table below. A 1.544 MHz clock for DS1 transmit
outputs is generated synchronous to this clock.
AB21 MODE2_PLL I/O PLL Mode 2. Control bit that should be tied to the appropriate
state depending on the frequency of CLKIN_PLL consistent
with the PLL Mode1 table below. This pin is also used during
factory testing as an output.
AF24 MODE0_PLL I
Pull-down PLL Mode 0. PLL control input 0.
AE24 MODE1_PLL I
Pull-down PLL Mode 1. PLL control input 1. The PLL mode inputs should
be hardwired to the logic levels shown in the table below,
depending on the frequency of the reference supplied to
CLKIN_PLL.
Mode2
0
0
0
0
1
1
1
1
Mode1
0
0
1
1
0
0
1
1
Mode0
0
1
0
1
0
1
0
1
CLKIN_PLL
Reserved
51.840 MHz
26.624 MHz
19.440 MHz
16.348 MHz
8.1940 MHz
4.0960 MHz
30 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
3 Pin Information (continued)
Table 14. Microprocessor Interfaces
Pin Symbol Type I/O Description
AE17 MPCLK I Processor Clock. This is the synchronous microprocessor
clock (when MPMODE = 1). The maximum clock frequency
is 60 MHz. This clock is required to properly sample address,
data, and control signals from the microprocessor in both
asynchronous and synchronous modes of operation. This
clock must be within the range of 16 MHz—60 MHz.
AD17 MPMODE I Control Port Mode. If the microprocessor interface is syn-
chronous, CPM should be set to 1. If the microprocessor
interface is asynchronous, CPM should be set to 0.
AC18 CSN I
Pull-up Chip Select. Active-low chip select. For synchronous mode,
it should be stable beyond a certain setup time before the ris-
ing clock edge when AS is active. For asynchronous mode, it
should be stable before DS is asserted.
AE18 ADSN I Address Strobe . Active-low address strobe that is a 1 PCK
cycle wide pulse for synchronous mode and active for the
entire read/write cycle for asynchronous mode. Address bus
signals, A[19:0], are transparently latched into Supermapper
when AS is low. The address bus should remain valid for the
duration of AS.
AF18 RWN I Read/Write Cycle Selection. RW is set high for a read oper-
ation, or set low for write operation.
AD18 DSN I Data Strobe. DS is not used for synchronous mode. For
asynchronous mode, write operation, DS becomes active
after data is stable. For read operation, it is similar to AS.
AB23, AC26,
AC24, AD25,
AD26, AE25,
AA22, AC22,
AE22, AD21,
AE21, AC21,
AD20, AF20,
AE20, AC20,
AD19, AF19,
AE19, AC19
ADDR[19:0] I Address [19:0]. A19 is the most significant and A0 the least
significant bit for addressing all the internal SM registers dur-
ing CPU access cyc les.
Note: The Supermapper is little endian; the least significant
byte is stored in the lowest address and the most sig-
nificant byte is stored in the highest address. Care
must be exercis ed in co nnecti on to mic ropr oces so rs
that use big-endian byte ordering.
AB25, AA24,
AA25, AA23,
Y24, Y26,
Y25, Y23,
W24, W26,
W25, W23,
V24, V26,
V25, V23
DATA[15:0] I/O Data [15:0]. Data bus for all transfers between the CPU and
the internal SM registers. The pins are inputs during write
cycles and outputs during read cycles. DATA15 is the MSB,
and DATA0 is the LSB.
U24, U25 PAR[1:0] I/O CPU Port Parity [1:0]. Byte-wide parity bits for data. CPP[1]
is the parity for D[15:8], and CPP[0] is the parity for D[7:0].
31Agere Systems Inc.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
3 Pin Information (continued)
Table 15. General-Purpose Interface
Pin Symbol Type I/O Description
U23 DTN O
Open Drain Data Transfer Acknowledge. In synchronous CPU mode,
DTA goes low at the fourth cycle for write or the fifth cycle for
read, resulting in a fixed two wait-states for writes and three
wait-states for reads. In asynchronous µP mode, after qualifi-
cation of AS and DS by TLSC52 clock, DTA goes low for two
TLSC52 clock cycles for writes and three TLSC52 clock
cycles for reads. DT A goes high, along with the rising edge of
AS.
AB24 INTN O
Open Drain Interrupt. Supermapper interrupt request, active-low. An
open-drain output should be connected to an external pull-up
resistor.
AC25 APS_INTN O
Open Drain APS Interrupt . Automatic protection switch interrupt request,
active-low. An open-drain output should be connected to an
external pull-up resistor .
Pin Symbol Type I/O Description
T24 RSTN I
Pull-up Reset. Global reset, active-low. Initializes all internal registers
to their default state.
T25 PMRST I/O
Pull-down Performance Monitor Reset. May be configured as an input
and then used to directly reset all the counters associated with
DS1/E1 performance monitoring. If an internal PM reset is
used, PMRST is configured as an output that indicates when a
PM reset occurred.
R5 TCK I Test Clock. This signal provides timing for the boundary scan
and TAP controller. This signal should be static, except during
boundary-scan testing.
U5 TDI I
Pull-up Test Data In. Data input for the boundary scan; sampled on
the rising edge of TCK.
W5 TMSN I
Pull-up Test Mode Select (Active-Low ). Controls boundary-scan test
operations. TMS is sampled on the rising edge of TCK.
AB8 TRSTN I
Pull-down Test Reset (Active-Low). This signal is an asynchronous
reset for the TAP controller.
V5 TDO O Test Data Out. Updated on the falling edge of TCK. The TDO
output is high impedance, except when scanning out test data.
AB9 IC3STATEN I
Pull-up Global Output Enable. All output and bidirectional buffers will
be high impedance when this input is low . Normally pulled high
internally.
Table 14. Microprocessor Interfaces (continued)
32 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
3 Pin Information (continued)
3.3.10 Test Pins
These pins are for factory test purposes only and must be connected as stated below for normal operation. They
are used to establish special configurations for testing, inserting test data, etc. For normal operation, they should
be left unconnected; each is equipped with a pull-up or pull-down to the inactive (normal operation) state.
Table 16. Test Pins
Table 17. CDR Power
Pin Symbol Type I/O Description
N5 SCAN_EN I
Pull-down Test Only. Scan enable (active-high).
M5 SCAN_MODE I
Pull-down Test Only. Serial scan input for testing (active-high).
P5 IDDQ I
Pull up Test Only. IDDQ input (active-high).
AE14 BYPASS I
Pull-down Test Only. Enables functional bypassing of the clock synthe-
sis with a test clock (active-high).
AF14 TSTPHASE I
Pull-down Test Only. Controls bypass of 32 PLL-generated phases with
32 low-speed phases, generated by test logic (active-high).
AD14 ECSEL I
Pull-down Test Only. Enables external test control of 155 MHz clock
phase selection through ETOGGLE and EXDNUP inputs
(active-high).
AC15 ETOGGLE I
Pull-down Test Only. Moves 155 MHz clock selection one phase per
positive pulse > 20 ns. Active + pulse.
AE15 EXDNUP I
Pull-down Test Only. Direction of phase changes.
0 = down.
1 = up.
AF15 TSTMODE I
Pull-down Test Only. Enables CDR test mode.
AD15 TSTSFTLD I
Pull-down Test Only. Enables CDR test mode shift register.
AE16,
AC16 TSTMUX[1:0] O Test Only. CDR test mode output.
Pin Symbol Type I/O Description
AC9 VDDA_CDR I Analog Power. Isolated analog power supply VDD for CDR.
AB12 VSSA_CDR I Analog Ground. Isolated analog power supply VSS for CDR.
Table 18. LVDS Control Pins
Pin Symbol Type I/O Description
AF12
AE12 RESHI
RESLO —IResistor 1, 2. A 100 1% resistor should be connected between
these two pins as a reference for the LVDS input buffer termination.
AC11 REF10 I Voltage Reference 1. 1.0 V reference voltage input.
AD12 REF14 I Voltage Reference 2. 1.4 V reference voltage input.
33Agere Systems Inc.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
3 Pin Information (continued)
Pin Symbol Type I/O Description
AB10 CTAPRH Center Tap 1. For RHSD P/N and RHSC P/N. An optional 0.1 µF
capacitor connected between CTAP pin and ground will improve the
common-mode rejection of the LVDS input buffers.
AE11 CTAPTH Center Tap 2. For THSD P/N and THSC P/N. An optional 0.1 µF
capacitor connected between CTAP pin and ground will improve the
common-mode rejection of the LVDS input buffers.
AB13 CTAPRP Center Tap 3. For RPSD155 P/N and RPSC155 P/N. An optional
0.1 µF capacitor connected between CTAP pin and ground will
improve the common-mode rejection of the LVDS input buffers.
Table 18. LVDS Control Pins (continued)
34 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
3 Pin Information (continued)
3.4 Outline Diagram
3.4.1 456-Pin PBGA
Dimensions are in millimeters.
5-6216(F)r.1
0.56 ± 0.06 1.17 ± 0.05 2.33 ± 0.21
SEATING PLANE
SOLDER BALL
0.60 ± 0.10
0.20
PWB
MOLD
COMPOUND
35.00 ± 0.20
35.00
± 0.20
+0.70
–0.00
30.00
+0.70
–0.00
30.00
A1 BALL
IDENTI FIER ZONE
AF
AE
AD
AC
AB
AA
Y
W
V
U
T
R
G
25 SPACES @ 1.27 = 31.75
P
N
M
L
K
J
H
1 2 3 4 5 6 7 8 9 10 12 14 16 18 22 24 2620
11 13 15 17 2119 23 25
F
E
D
C
B
A
CENTER ARRAY
FOR THERM AL
ENHANCEMENT
(OPTIONAL)
25 SPACES
@ 1.27 = 31.75
A1 BAL L
CORNER
0.75 ± 0.15
35Agere Systems Inc.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
4 Electr ic al Ch ar ac te ri st ics
Table of Con t en ts
Contents Page
4 Electrical Characteristics .................................................................................................................................. 35
4.1 Absolute Maximum Ratings..........................................................................................................................36
4.2 Handling Precautions ...................................................................................................................................36
4.3 Operating Conditions....................................................................................................................................37
4.4 Logic Interface Characteristics.....................................................................................................................37
4.5 LVDS Interface Characteristics ....................................................................................................................38
Figures Page
Figure 5. Single-Ended Input Specification .............................................................................................................37
Tables Page
Table 19. Absolute Maximum Ratings .....................................................................................................................36
Table 20. Power Consumption.................................................................................................................................36
Table 21. Handling Precaution.................................................................................................................................36
Table 22. Recommended Operating Conditions......................................................................................................37
Table 23. Logic Interface Characteristics.................................................................................................................37
Table 24. LVDS Interface Characteristics................................................................................................................38
36 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
4 Elec trical Char ac te ristics (continued)
4.1 Absolute Maximum Ratings
Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are abso-
lute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess
of those given in the operational sections of the data sheet. Exposure to absolute maximum ratings for extended
periods can adversely affect device reliability.
* When measuring power consumption of the Supermapper, the following blocks are powered on: TMUX, SPEMPR, VTMPR , DJA, FRAME R.
MPCLK = 25 MHz.
4.2 Handling Precautions
Although electrostatic discharge (ESD) protection circuitry has been designed into this device, proper precautions
must be taken to avoid exposure to ESD and electrical overstress (EOS) during all handling, assembly, and test
operations. Agere employs both a human-body model (HBM) and a charged-device model (CDM) qualification
requirement in order to determine ESD susceptibility limits and protection design evaluation. ESD voltage thresh-
olds are dependent on the circuit parameters used in each of the models, as defined by JEDEC's JESD22-A114
(HBM) and JESD22-C101 (CDM) standards.
Table 19. Absolute Maximum Ratings
Parameter Symbol Min Max Unit
dc Supply Voltage Range VDD –0.5 4.6 V
Storage Temperature Range Tstg –65 125 °C
Ambient Operating Temperature Range TA–40 85 °C
Maximum Voltage (digital input pins) 5.25 V
Minimum Voltage (digital input pins) –0.3 V
Table 20. Power Consumption
Parameter Typical Power* Unit
VDD = 3.5 V, TA = 25 °C 3.185 W
VDD = 3.3 V, TA = 25 °C 2.772 W
VDD = 3.0 V, TA = 25 °C 2.190 W
Table 21. Handling Precaution
Device Minimum HBM Threshold Minimum CDM Threshold
Corner Non-Corner
TMXF28155 2000 V 500 V 500 V
37Agere Systems Inc.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
4 Electr ic al Ch ar ac te ri st ics (continued)
4.3 Operating Cond itions
The following tables list the voltages required for proper operation of the TMXF28155 device, along with their toler-
ances.
Table 22. Recommended Operating Conditions
* Internal reference voltage is used if S MP R_LVD S_RE F_SEL = 1 (Table 80 on page 72), or else external voltage is used.
4.4 Logic Interface Characteristics
Table 23. Logic Interface Characteristics
The input specification for the remaining (nonbalanced) inputs are specified in Figure 5.
5-6032(F)r.2
Figure 5. Single-Ended Input Specification
Parameter Symbol Min Typ Max Unit
Power VDD 3.14 3.3 3.47 V
Ground VSS —0.0 V
Input Voltage, High VIH VDD – 1.0 5.25 V
Input Voltage, Low VIL VSS —1.0V
1.0 V: LVDS Reference* LVDS_REF10 1.0 V
1.4 V: LVDS Reference* LVDS_REF14 1.4 V
Parameter Symbol Test Conditions Min Max Unit
Input Leakag e IL——1.0µA
Output Current:
Low
High IOL
IOH
4.0
4.0 mA
mA
Output Voltage:
Low
High VOL
VOH
VSS
VDD – 0.5 0.5
3.465 V
V
Input Capaci tanc e CI— —1.5pF
V
IH
tF
tR
VIL
38 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
4 Elec trical Char ac te ristics (continued)
4.5 LVDS Interface Character is tics
3.3 V ± 5% VDD, 0 °C—125 °C, slow—fast process.
Table 24. LVDS Interface Characteristics
.
* Buffer will not produce output transition when input is open-circuited.
Parameter Symbol Test Conditions Min Typ Max Unit
Input Buffer Par ameters
Input Voltage Range, VIA or VIB VIVGPD < 925 mV, dc—1 MHz 0.0 1.2 2.4 V
Input Differential Threshold VIDTH VGPD < 925 mV, 311 MHz –100 100 mV
Input Differential Hysteresis VHYST (+VIDTH) – (–VIDTH)—*mV
Receiver Differential Input
Impedance RIN With build-in termination,
center-tapped 80 100 130
Output Buffer Parameters
Output Voltage:
Low (VOA or VOB)
High (VOA or VOB)VOL
VOH RLOAD = 100 ± 1%
RLOAD = 100 ± 1%
0.925
1.475
V
V
Output Differential Voltage VOD RLOAD = 100 ± 1% 0.25 0.40 V
Output Offset Voltage VOS RLOAD = 100 ± 1% 1.125 1.275 V
Output Impedance, Single Ended ROVCM = 1.0 V and 1.4 V 40 50 60
RO Mismatch Between A and B ROVCM = 1.0 V and 1.4 V 10 %
Change in Differential Voltage
Between Complementary States VOD RLOAD = 100 ± 1% 25 mV
Change in Output Offset Voltage
Between Complementary States VOS RLOAD = 100 ± 1% 25 mV
Output Current ISA, ISB Driver shorted to VSS 6.8 24 mA
Output Current ISAB Dr ivers shorted together 12 mA
39Agere Systems Inc.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
5 Timing Characteristics
Table of Con t en ts
Contents Page
5 Timing Characteristics ...................................................................................................................................... 39
5.1 TMUX Block Timing......................................................................................................................................41
5.2 DS3 Timing...................................................................................................................................................45
5.3 M13 Timing...................................................................................................................................................46
5.4 VT Mapper Timing........................................................................................................................................47
5.4.1 VT Mapper Lower-Order Path Overhead Interface Timing ............................................................... 47
5.5 Concentration Highway (CHI) Timing...........................................................................................................48
5.6 Parallel System Bus Timing .........................................................................................................................49
5.7 NSMI Timing (6-Pin) (to/from Framer)..........................................................................................................50
5.8 NSMI Timing (7-Pin) (to/from Framer)..........................................................................................................50
5.9 CHI Interface Timing ....................................................................................................................................51
5.10 PSB Interface Timing .................................................................................................................................52
5.11 Framer DS1/E1 Interface Timing................................................................................................................53
5.12 DJA DS1/E1 Interface Timing ....................................................................................................................54
5.13 M13 DS1/E1 Interface Timing ....................................................................................................................55
5.14 Microprocessor Interface Timing................................................................................................................56
5.14.1 Sync hrono us Mode ............... ...... ....... ...... ....... ...... ................... ....... ...... ....... ...... ............................. 56
5.14.2 Asyn ch ronou s Mode .......................... ...... ....... ...... ...... ....... ................... ....... ...... ....... ...................... 59
5.15 General-Purpose Interface Timing.............................................................................................................62
6 Ordering Information ........................................................................................................................................ 63
Figures Page
Figure 6. Generic Clock Timing...............................................................................................................................41
Figure 7. Generic Interface Data Timing .................................................................................................................43
Figure 8. DS3DATAOUTCLK Timing ......................................................................................................................45
Figure 9. VT Mapper Transmit Path Overhead Detailed Timing .............................................................................47
Figure 10. VT Mapper Receive Path Overhead Detailed Timing ............................................................................47
Figure 11. CHI Transmit I/O Timing.........................................................................................................................48
Figure 12. CHI Receive I/O Timing..........................................................................................................................48
Figure 13. Parallel System Bus Interface Transmit I/O Timing................................................................................49
Figure 14. Parallel System Bus Interface Receive I/O Timing.................................................................................49
Figure 15. Microprocessor Interface Synchronous Write Cycle (MPMODE (Pin AD17) = 1)..................................56
Figure 16. Microprocessor Interface Synchronous Read Cycle (MPMODE (Pin AD17) = 1)..................................57
Figure 17. Microprocessor Interface Asynchronous Write Cycle Description (MPMODE (Pin AC18) = 0) .............59
Figure 18. Microprocessor Interface Asynchronous Read Cycle (MPMODE (Pin AC18) = 0)................................61
Tables Page
Table 25. High-Speed Input Clock Specifications....................................................................................................41
Table 26. Output Clock Specifications.....................................................................................................................42
Table 27. Input Timing Specifications......................................................................................................................43
Table 28. Output Timing Specifications ...................................................................................................................45
Table 29. DS3 Input Clock Specifications................................................................................................................45
Table 30. Input Timing Specifications......................................................................................................................45
Table 31. Output Timing Specifications ...................................................................................................................45
Table 32. M13 Clock Specifications.........................................................................................................................46
Table 33. Input Timing Specifications......................................................................................................................46
Table 34. Output Timing Specifications ...................................................................................................................46
Table 35. VT Mapper Receive Path Overhead Detailed Timing..............................................................................47
40 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
5 Timing Characteristics (continued)
Table of Conten ts (continued)
Tables Page
Table 36. CHI Transmit Timing Characteristics .......................................................................................................48
Table 37. CHI Receive Timing Characteristics ........................................................................................................48
Table 38. PSB Interface Transmit Timing Characteristics .......................................................................................49
Table 39. PSB Interface Receive Timing Characteristics ........................................................................................49
Table 40. NSMI Input/Output Clock Specifications..................................................................................................50
Table 41. Input Timing Specifications......................................................................................................................50
Table 42. Output Timing Specifications ...................................................................................................................50
Table 43. NSMI Output Clock Specifications...........................................................................................................50
Table 44. NSMI Input Timing Specifications............................................................................................................51
Table 45. NSMI Output Timing Specifications .........................................................................................................51
Table 46. CHI Interface Clock Specifications...........................................................................................................51
Table 47. CHI Interface Input Ti ming Specifications................................................................................................51
Table 48. CHI Interface Output Timing Specifications.............................................................................................52
Table 49. PSB Interface Clock Specifications..........................................................................................................52
Table 50. PSB Interface Input Timing Specifications...............................................................................................52
Table 51. PSB Interface Output Timing Specifications............................................................................................52
Table 52. Framer DS1/E1 Interface Clock Specifications........................................................................................53
Table 53. Framer DS1/E1 Interface Input Timing Specifications.............................................................................53
Table 54. Framer DS1/E1 Interface Output Timing Specifications ..........................................................................53
Table 55. DJA DS1/E1 Interface Clock Specifications ............................................................................................54
Table 56. DJA DS1/E1 Interface Input Timing Specifications..................................................................................54
Table 57. DJA DS1/E1 Interface Output Timing Specifications...............................................................................54
Table 58. M13 DS1/E1 Interface Clock Specifications ...........................................................................................55
Table 59. M13 DS1/E1 Interface Input Timing Specifications..................................................................................55
Table 60. M13 DS1/E1 Interface Output Timing Specifications...............................................................................55
Table 61. Microprocessor Interface Synchronous Write Cycle Specifications.........................................................57
Table 62. Microprocessor Interface Synchronous Read Cycle Specifications.........................................................58
Table 63. Microprocessor Interface Asynchronous Write Cycle Specifications.......................................................60
Table 64. Microprocessor Interface Asynchronous Read Cycle Specifications.......................................................62
Table 65. Input Timing Specifications......................................................................................................................62
Table 66. Output Timing Specifications ...................................................................................................................63
41Agere Systems Inc.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
5 Timing Characteristics (continued)
5.1 TMUX Block Ti ming
The TMUX (STS-N/STM-1) timing parameters can be grouped separately for clocks, inputs, and outputs. Table 25
shows the input clock specifications for this device. The rise and fall times refer to the transition times from 10% to
90% of full swing.
For definitions of the signal names, see Section 3, Pin Information on page 10.
Table 25. High-Speed Input Clock Specifications
Note: When the true and complement inputs are float ing, the input buffer will not oscillate.
5-9077(F)
Figure 6. Generic Clock Timing
Symbol Parameter Signal Name 155 Clock 51 Clock Unit
Min Nominal Max Min Nominal Max
FCK Operating
Frequency THSCP/N 155.52 ± 30 ppm 51.84 ± 50 ppm MHz
RHSCP/N 155.52 ± 30 ppm 51.84 ± 50 ppm MHz
RPSC155P/N 155.52 ± 30 ppm MHz
tCK Clock
Period THSCP/N 6.43 ± 0.4% 19.29 ± 0.4% ns
RHSCP/N 6.43 ± 0.5% 19.29 ± 0.5% ns
RPSC155P/N 6.43 ± 0.5% ns
tCLKHI Clock Pulse
High Time THSCP/N 2.5 3.9 7.8 11.6 ns
RHSCP/N 2.5 3.9 7.8 11.6 ns
RPSC155P/N 2.5 3.9 ns
tR Rise Time THSCP/N 1.5 5.0 ns
RHSCP/N 1.5 5.0 ns
RPSC155P/N 1.5 ns
tF Fall Time THSCP/N 1.5 5.0 ns
RHSCP/N 1.5 5.0 ns
RPSC155P/N 1.5 ns
tCLKHI
tF
tR
tCK
42 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
5 Timing Characteristics (continued)
The output clock specifications are shown in Table 26.
Table 26. Output Clock Specifications
* The specifications for the table are with all loopbacks disabled.
Note: Any of the telecom signals being used as inputs (slave Supermapper) need to meet these same output clock
specifications.
Signal Name Reference CLK*Frequency Clock Pulse High
Time (tCLKHI)Test
Condition Max Rise
Time (tR)Max Fall
Time (tF)Unit
TLSCLK THSCP/N 19.44 MHz 24.43—27.00 CL = 50 pF 3.5 3.5 ns
TTOACCLK THSCP/N 5.184 MHz 91.62—101.30 CL = 15 pF 3.5 3.5 ns
RLSCLK RHSCP/N or
Internal CDR Clock 19.44 MHz 24.43—27.00 CL = 50 pF 3.5 3.5 ns
RTOACCLK RHSCP/N or
Internal CDR Clock 5.184 MHz 91.62—101.30 CL = 15 pF 3.5 3.5 ns
TPSC155P/N THSCP/N 155.5 MHz 3.119—3.311 CL = 15 pF 1.5 1.5 ns
TPOACCLK THSCP/N 5.184 MHz 91.62—101.30 CL = 15 pF 3.5 3.5 ns
RPOACCLK RHSCP/N 5.184 MHz 91.62—101.30 CL = 15 pF 3.5 3.5 ns
TLSC52 THSCP/N 51.84 MHz 9.162—10.130 CL = 30 pF 3.0 3.0 ns
RLSC52 RHSCP/N 51.84 MHz 9.162—10.130 CL = 30 pF 3.0 3.0 ns
43Agere Systems Inc.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
5 Timing Characteristics (continued)
Table 27. Input Timing Specifications
* Register 0x00010, bit 2, SMPR_RETIME_CKLK_EDGE.
Figure 7. Generic Interface Dat a Timing
Input Name Reference CLK Min Setup Time (tS) Min Hold Time (tH)Unit
Transmit Signals
THSSYNCP /N THSC 3.5 0.0 ns
TLSDATA[7:0] TLSCLK 5.0 0.0 ns
TLSPAR TLSCLK 5.0 0.0 ns
TLSSPE TLSCLK 5.0 0.0 ns
TLSJ0J1V1 TLSCLK 5.0 0.0 ns
TLSV1 TLSCLK 5.0 0.0 ns
TLSSYNC52 TLSC52 4.0 2.5 ns
TTOACDATA TTOACCLK 10.0 3.5 ns
TPOACDATA TPOACCLK 10.0 1.0 ns
Receive Signals
RHSDP/N RHSCP/N ↑↓*2.0 0.0 ns
RPSD155P/N RPSC155P/N2.0 0.0 ns
RLSDATA[7:0] RLSCLK 4.0 0.0 ns
RLSPAR RLSCLK 4.0 0.0 ns
RLSSPE RLSCLK 4.0 0.0 ns
RLSJ0J1V1 RLSCLK 4.0 0.0 ns
RLSV1 RLSCLK 4.0 0.0 ns
RLSSYNC52 RLSC52 4.0 3.0 ns
Miscellaneous Signals
LOSEXT NA ASYNC ASYNC
AUTO_AIS[3:1] NA ASYNC ASYNC
CLOCK
DATA
CLOCK
DATA
tSU tH
tPD
44 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
5 Timing Characteristics (continued)
Table 28. Output Timing Specifications
* Register 0x00010, bit 1, SMPR_TELECOMBUS_EDGE.
† Propagation delay skew, tPLH – tPHL, is ± 200 ps. Negative propagation delay indicates that output comes out ahead of reference clock.
Output Name Reference CLK Test
Conditions Propagation DelayUnit
tPD
Min Max
Transmit Signals
THSDP/N THSCP/N CL = 15 pF 2.6 8.0 ns
TPSD155P/N TPSC155P/NCL = 15 pF 0.6 2.9 ns
TLSDATA[7:0] TLSCLK ↑↓* CL = 50 pF 4.0 12.0 ns
TLSPAR TLSCLK ↑↓* CL = 50 pF 4.0 12.0 ns
TLSSPE TLSCLK CL = 50 pF 4.0 10.5 ns
TLSJ0J1V1 TLSCLK CL = 50 pF 4.0 10.5 ns
TLSV1 TLSCLK CL = 50 pF 4.0 10.5 ns
TLSSYNC52 TLSC52 CL = 30 pF 0.0 2.0 ns
TTOACSYNC TTOACCLK CL = 15 pF –2.0 30.0 ns
TPOACSYNC TPOACCLK CL = 15 pF –2.0 30.0 ns
Receive Signals
RLSDATA[7:0] RLSCLK CL = 50 pF 5.5 12.0 ns
RLSPAR RLSCLK CL = 50 pF 5.5 12.0 ns
RLSSPE RLSCLK CL = 50 pF 5.5 12.0 ns
RLSJOJ1V1 RLSCLK CL = 50 pF 5.5 12.0 ns
RLSVI RLSCLK CL = 50 pF 5.5 12.0 ns
RLSSYNC52 RLSC52 CL = 30 pF 0.5 3.0 ns
RTOACSYNC RTOACCLK CL = 15 pF –2.0 30.0 ns
RTOACDATA RTOACCLK CL = 15 pF –2.0 30.0 ns
RPOACSYNC RPOACCLK CL = 15 pF –2.0 30.0 ns
RPOACDATA RPOACCLK CL = 15 pF –2.0 30.0 ns
RHSFSYNCN RLSCLK CL = 30 pF –1.0 8.0 ns
Miscellaneous Signals
AUTO_AIS[3:1] NA ASYNC ASYNC
45Agere Systems Inc.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
5 Timing Characteristics (continued)
5.2 DS3 Timing
Table 29. DS3 Input Clock Specifications
.
Figure 8. DS3DATAOUTCLK Timing
Table 30. Input Timing Specifications
* Register 0x100A1, bit 0, M13_RDS3_EDGE, see Table 299 on page 227. Register 0x30019, bit 5, SPE_TDS3CLK_EDGE, see Table 163 on
page 143.
Table 31. Output Timing Specifications
Symbol Parameter Signal Name Min Max Unit
FCK Clock Fre quen cy DS3D ATAIN C LK
DS3DATAOUTCLK 44.736 ± 50 ppm MHz
tCK Clock Period DS3DATAINCLK
DS3DATAOUTCLK 22.353 ns
tCLKHI Clock Pulse High Time DS3DATAINCLK
DS3DATAOUTCLK 6
616
12 ns
ns
tRRise Time DS3DATAINCLK
DS3DATAOUTCLK 02ns
tFFall Time DS3DATAINCLK
DS3DATAOUTCLK 02ns
Input Name Reference CLK Min Setup Time (tS) Min Hold Time (tH) Unit
DS3POSDATAIN DS3DATAINCLK ↑↓* 40ns
DS3NEGDATAIN DS3DATAINCLK ↑↓*4 0 ns
Output Name Reference CLK Test Conditions Propagation Delay tPD Unit
Min Max
DS3POSDATAOUT DS3DATAOUTCLK CL = 15 pF 2 6.5 ns
DS3NEGDATAOUT DS3DATAOUTCLK CL = 15 pF 2 6.5 ns
WCLKHI
WCK
46 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
5 Timing Characteristics (continued)
5.3 M13 Timin g
Table 32. M13 Clock Specifications
Table 33. Input Timing Specifications
Table 34. Output Timing Specifications
Symbol Parameter Signal Name Min Nom Max Unit
FCK Clock
Frequency TCBCLK
TDLCLK
E1XCLK
DS1XCLK
DS2AISCLK
RCBCLK
RDLCLK
2.048
1.544
93.983 gapped
28.195 gapped
32.768
24.704
6.312
93.983
28.195
65.536
49.408
kHz
kHz
MHz
MHz
MHz
kHz
kHz
tCLKHI Clock Pulse
High Time TCBCLK
TDLCLK
RCBCLK
RDLCLK
212.19
212.19
212.19
212.19
223.53
223.53
223.53
223.53
250.77
250.77
250.77
250.77
ns
ns
ns
ns
tRRise Time TCBCLK
TDLCLK
E1XCLK
DS1XCLK
DS2AISCLK
RCBCLK
RDLCLK
0
0
0
0
0
0
0
3
3
3
3
3
3
3
ns
ns
ns
ns
ns
ns
ns
tFFall Time TCBCLK
TDLCLK
E1XCLK
DS1XCLK
DS2AISCLK
RCBCLK
RDLCLK
0
0
0
0
0
0
0
3
3
3
3
3
3
3
ns
ns
ns
ns
ns
ns
ns
Input Name Reference CLK Setup Time (tS) Hol d Time (tH)Unit
Min Max Min Max
TCBDATA TCBCLK 50 0 ns
TDLDATA TDLCLK 50 0 ns
Output Name Reference CLK Test Conditions Propagation Delay tPD Unit
Min Max
TCBSYNC TCBCLK CL = 15 pF 0.5 10 ns
RCBSYNC RCBCLK CL = 15 pF 0.5 10 ns
RCBDATA RCBCLK CL = 15 pF 0.5 10 ns
RDLDATA RDLCLK CL = 15 pF 2 10 ns
47Agere Systems Inc.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
5 Timing Characteristics (continued)
5.4 VT Mapper Ti ming
5.4.1 VT Mapper Lower-Order Path Overhead Interface Timing
Table 35. VT Mapper Receive Path Overhead Detailed Timing
* tSD, tHD LOPOH_CLK ↓.
tSV, tHV LOPOH_CLK ↓.
tPDV, tPDD LOPOH_CLK ↑.
5-9078(F)
Figure 9. VT Mapper Transmit Path Overhead Detailed T iming
5-9079(F)
Figure 10. VT Mapper Receive Path Overhead Detailed Timing
Symbol Parameter Min Max Unit
FCK Clock Frequency 6.48 6.48 MHz
tCK Clock Period 154 154 ns
tCLKHI Clock Pulse High Time 50 75 ns
tRClock Rise Time 0 3 ns
tFClock Fall Time 0 3 ns
tSD * LOPOH Data Setup Time 5 ns
tHD * LOPOH Data Hold Time 2.0 ns
tSV LOPOH Valid Signal Setup Time 5 ns
tHV LOPOH Valid Signal Hold Time 3.7 ns
tPDV Clock to LOPOH Valid Signal Out 2.0 10.0 ns
tPDD Clock to LOPOH Data Out 2.0 10.0 ns
LOPOHCLKIN
LOPOHVALIDIN
LOPOHDATAIN
t
HV
t
SV
t
SD
t
HD
t
CK
tPDV
tPDD
LOPOHCLKOUT
LOPOHVALIDOUT
LOPOHDATAOUT
tCK
48 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
5 Timing Characteristics (continued)
5.5 Concentration Highway (CHI) Timing
Table 36 and Table 37 with Figure 11 and Figure 12, respectively, illustrate the detailed CHI timing for clock, data,
and frame synchronization.
Table 36. CHI Transmit Timing Characteristics
* Fck can be either 2.048 MHz, 4.096 MHz, 8.192 MHz, or 16.384 MHz.
tS, tH, and tPD,LINETXCLK29 ↑↓ (Register 0x80050, bit 4, FRM_TFSCKE, see Table 359 on page 261).
5-9080(F)
Figure 11. CHI Transmit I/O Timing
Table 37. CHI Receive Timing Characteristics
*F
CK can be either 2.048 MHz, 4.096 MHz, 8.192 MHz, or 16.384 MHz.
LINERXSYNC29 ↑↓ (Register 0x80150, bit 13, FRM_RFSCKE, see Tab le 3 67 on pag e 2 65 ).
5-9081(F)
Figure 12. CHI Receive I/O Timing
Symbol Parameter Min Max Unit
FCK Clock Freq uen cy * 2.048 16.38 4 M Hz
tCK Clock Peri od 488.2 61.04 ns
tRClock Rise Time 0 3 ns
tFClock Fall Time 0 3 ns
tSFrame Sync Setup Time 35 ns
tHFrame Sync Hold Time 0 ns
tPDClock to CHI Data Delay 25 ns
Symbol Parameter Min Max Unit
FCK Clock Frequency* 2.048 16.384 MHz
tCK Clock Period 488.2 61.04 ns
tRClock Rise Time 0 3 ns
tFClock Fall Time 0 3 ns
tSSYNCFrame Sync Setup Time 30 ns
tHSYNCFrame Sync Hold T ime 3.4 ns
tSDATACHI Data Setup Time 25 ns
tHDATACHI Data Hold Time 0 ns
LINETXCLK29
LINETXSYNC29
LINETXSYNC[28:1]
t
S
CLOCK
FRAME SYNC
DATA
t
H
1/2t
CK
t
PD
t
HDATA
LINERXCLK29
LINERXSYNC29
LINERXSYNC[28:1]
CLOCK
FRAME SYNC
DATA
t
SSYNC
t
HSYNC
t
SDATA
1/2 t
CK
49Agere Systems Inc.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
5 Timing Characteristics (continued)
5.6 Parallel System Bus Timing
Table 38 and Table 39 with Figure 13 and Figure 14, respectively, show the transmit and receive timing. In the
transmit direction (to the system interface), the frame sync is sampled and the data is clocked out on the rising
edge of the clock. In the receive direction (from the switch), the data and frame sync are sampled on the rising
edge of the clock.
Table 38. PSB Interface Transmit Timing Characteristics
* LINETXCLK29 ↑↓ (Register 0x80050, bit 4, FR M _T FSC KE , se e Table 359 on page 261).
5-9082(F)
Figure 13. Parallel System Bus Interface Transmit I/O Timing
Table 39. PSB Interface Receive Timing Characteristics
* LINERXCLK29 ↑↓ (Register 0x80150, bit 13, FRM_RFSCKE, see Tab l e 3 67 on pag e 265).
5-9083(F)
Figure 14. Parallel System Bus Interface Receive I/O Timing
Symbol Parameter Min Max Unit
FCK Clock Frequency 19.44 19.44 MHz
tCK Clock Period 51.44 51.44 ns
tRClock Rise T ime 0 3 ns
tFClock Fall Time 0 3 ns
tS*Frame Sync Setup Time 8 ns
tH*Frame Sync Hold Time 0 ns
tPD*Clock to PSB Out Delay 3 10 ns
Symbol Parameter Min Max Unit
FCK Clock Freq uen cy 19.4 4 19.44 MHz
tCK Clock Peri od 51.44 51.4 4 ns
tRClock Rise Time 0 3 ns
tFClock Fall Time 0 3 ns
tSSYNC* Frame Sync Setup Ti me 8 ns
tHSYNC* Frame Sync Hold Time 0 ns
tSDATA* PSB to Clock Setup Time 8 ns
tHDATA* PSB Hold Time from Clock 2.8 ns
DEV #0, TS #1, DEV #0, TS #1,
tPD
STUFFED TS STUFFED TS
6 (3) STUFFED TS IN DS1 (E1)
tHtS
LINETXCLK29
LINETXSYNC29
LINETXSYNC[16:1]
CLOCK
FRAME SYNC
DATA LINK #0 LINK #1
tCK
DATA SAMPLED
tSDATA tHDATA
DEV #0, TS #1, DEV #0, TS #1,
STUFFED TS STUFFED TS
tHSYNCtSSYNC
LINERXCLK29
LINERXSYNC29
LINERXSYNC[16:1]
CLOCK
FRAME SYNC
DATA LINK #0 LINK #1
tCK
50 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
5 Timing Characteristics (continued)
5.7 NSMI Tim ing (6-Pin) (to/from Framer)
Table 40. NSMI Input/Output Clock Specifications
Table 41. Input Timing Specifications
Table 42. Output Timing Specifications
5.8 NSMI Timing (7-Pin) (to/from Framer)
Table 43. NSMI Output Clock Specifications
Symbol Parameter Signal Name I/O Min Nom Max Unit
FCK Clock
Frequency LINE_TXCLK29
LINE_RXCLK29 Output
Input –50 ppm
–50 ppm 51.84
51.84 50 ppm
50 ppm MHz
MHz
tCK = 1/FCK Clock
Period LINE_TXCLK29
LINE_RXCLK29 Output
Input
19.29
19.29
ns
ns
tCKHI Clock Pulse
High Time LINE_TXCLK29
LINE_RXCLK29 Output
Input 6
6
12
12 ns
ns
tRRise Time LI NE_TXCLK29
LINE_RXCLK29 Output
Input
3
3ns
ns
tFFall Time LINE_TXCLK29
LINE_RXCLK29 Output
Input
3
3ns
ns
Input Name Reference CLK Setup Time (tS)Hold Time (t
H)Unit
Min Max Min Max
LINE_RXDATA29 LINE_RXCLK29 3—0—ns
LINE_RXSYNC29 LINE_RXCLK29 3 0.5 ns
Output Name Reference CLK Test Conditions Propagation Delay tPD Unit
Min Max
LINE_TXDATA29 LINE_TXCLK29 CL = 15 pF 0.1 3.0 ns
LINE_TXSYNC29 LINE_TXCLK29 CL = 15 pF 0.1 5.0 ns
Symbol Parameter Signal Name Min Nom Max Unit
FCK Clock
Frequency LINE_TXCLK29
LINE_RXCLK29
RXDATAEN
–50 ppm
–50 ppm
–50 ppm
51.84/44.736
51.84/44.736
51.84/44.736
50 ppm
50 ppm
50 ppm
MHz
MHz
MHz
tCK = 1/FCK Clock
Period LINE_TXCLK29
LINE_RXCLK29
RXDATAEN
19.29/22.35
19.29/22.35
19.29/22.35
ns
ns
ns
tCKHI Clock Pulse
High T ime LINE_TXCLK29
LINE_RXCLK29
RXDATAEN
6
6
1/2 tck
1/2 tck
1/2 tck
ns
ns
ns
tRRise T ime LINE_TXCLK29
LINE_RXCLK29
RXDATAEN
0
0
0
3
3
3
ns
ns
ns
tFFall Time LINE_TXCLK29
LINE_RXCLK29
RXDATAEN
0
0
0
3
3
3
ns
ns
ns
51Agere Systems Inc.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
5 Timing Characteristics (continued)
Table 44. NSMI Input Timing Specifications
Table 45. NSMI Output Timing Specifications
5.9 CHI Interface Timing
Table 47. CHI Interface Input Timing Specifications
Input Name Reference CLK Setup Time (tS) Hold Time (tH)Unit
MinMaxMinMax
LINE_RXDATA29 LINE_RXCLK29 3.0 0 ns
LINE_RXSYNC29 LINE_RXCLK29 3.0 0.5 ns
Output Name Reference CLK Test Conditions Propagation Delay tPD Unit
Min Max
LINE_TXDATA29 LINE_TXCLK29 CL = 15 pF 0.1 3.0 ns
LINE_TXSYNC29 LINE_TXCLK29 CL = 15 pF 0.1 5.0 ns
TXDATAEN LINETXCLK29 CL = 15 pF –0.6 0.2 ns
Table 46. CHI Interface Clock Specifications
Symbol Parameter Signal Name Min Nom Max Unit
FCK Clock
Frequency LINERXDATA29
LINERXCLK29
LINETXCLK29
–130 ppm
–50 ppm
–50 ppm
–50 ppm
–50 ppm
–50 ppm
–50 ppm
–50 ppm
–50 ppm
–50 ppm
1.544
or 2.048
2.048
or 4.096
or 8.192
or 16.384
2.048
or 4.096
or 8.192
or 16.384
130 ppm
50 ppm
50 ppm
50 ppm
50 ppm
50 ppm
50 ppm
50 ppm
50 ppm
50 ppm
MHz
MHz
MHz
MHz
MHz
MHz
MHz
MHz
MHz
MHz
tCK = 1/FCK Clock
Period LINERXDATA29
LINERXCLK29
LINETXCLK29
647.67 or 488.28
488.28, or 244.14
or 122.07, or 61.04
488.28, or 244.14
or 122.07, or 61.04
—ns
ns
ns
ns
ns
tCKHI Clock Pulse
High Time LINERXDATA29
LINERXCLK29
LINETXCLK29
1/2 tck
1/2 tck
1/2 tck
—ns
ns
ns
tRRise Time LINERXDATA29
LINERXCLK29
LINETXCLK29
0
0
0
3
3
3
ns
ns
ns
tFFall Time LINE RXD ATA29
LINERXCLK29
LINETXCLK29
0
0
0
3
3
3
ns
ns
ns
Input Name Reference CLK Setup Time (tS) Hold Time (tH)Unit
MinMaxMinMax
LINERXSYNC[28:1] LINERXCLK[28:1] ↑↓ 25 0 ns
LINERXSYNC29 LINERXCLK29 ↑↓ 30 3.4 ns
LINETXSYNC29 LINETXCLK29 ↑↓ 35 1.6 ns
52 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
5 Timing Characteristics (continued)
Table 48. CHI Interface Output Timing Specifications
5.10 PSB Interface Timing
Table 50. PSB Interface Input Timing Spec ifications
Table 51. PSB Interface Output Timing Specifications
Output Name Reference CLK Test Conditions Propagation Delay tPD Unit
Min Max
LINETXSYNC[28:1] LINETXCLK29 ↑↓ CL = 15 pF 25 ns
Table 49. PSB Interface Clock Specifications
Symbol Parameter Signal Name Min Nom Max Unit
FCK Clock
Frequency LINERXDATA29
LINERXCLK29
LINETXCLK29
–130 ppm
–50 ppm
–50 ppm
–50 ppm
1.544
or 2.048
19.44
19.44
130 ppm
50 ppm
50 ppm
50 ppm
MHz
MHz
MHz
MHz
tCK = 1/FCK Clock
Period LINERXDATA29
LINERXCLK29
LINETXCLK29
647.67
or 488.28
51.44
51.44
—ns
ns
ns
ns
tCKHI Clock Pulse
High Time LINERXDATA29
LINERXCLK29
LINETXCLK29
1/2 tck
1/2 tck
1/2 tck
1/2 tck
—ns
ns
ns
ns
tRRise Time LINERXDATA29
LINERXCLK29
LINETXCLK29
0
0
0
0
3
3
3
3
ns
ns
ns
ns
tFFall Time LINERXDATA29
LINERXCLK29
LINETXCLK29
0
0
0
0
3
3
3
3
ns
ns
ns
ns
Input Name Reference CLK Setup Time ( tS) Hold Time (tH)Unit
Min Max Min Max
LINERXSYNC[16:1] LINERXCLK29 ↑↓ 8—2.8ns
LINERXSYNC29 LINERXCLK29 ↑↓ 8—0—ns
LINETXSYNC29 LINETXCLK29 ↑↓ 8—0—ns
Output Name Reference CLK Test Conditions Propagation Delay tPD Unit
Min Max
LINETXSYNC[16:1] LINETXCLK29 ↑↓ CL = 15 pF 3 10 ns
53Agere Systems Inc.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
5 Timing Characteristics (continued)
5.11 Framer DS1/E1 Interface Timing
Table 52. Framer DS1/E1 Interface Clock Specifications
Table 53. Framer DS1/E1 Interface Input Timing Specifications
Table 54. Framer DS1/E1 Interface Output Timing Specifications
Symbol Parameter Signal Name Min Nom Max Unit
FCK Clock
Frequency TLSC52
LINERXCLK[29:1]
LINETXCLK[29:1]
–50 ppm
–130 ppm
–50 ppm
–130 ppm
–50 ppm
51.84
1.544
or 2.048
1.544
or 2.048
50 ppm
130 ppm
50 ppm
130 ppm
50 ppm
MHz
MHz
MHz
MHz
MHz
tCK = 1/Fck Clock
Period TLSC52
LINERXCLK[29:1]
LINETXCLK[29:1]
—19.29
647.67
or 488.28
647.67
or 488.28
—ns
ns
ns
ns
ns
tCKHI Clock Pulse
High Time TLSC52
LINERXCLK[29:1]
LINETXCLK[29:1]
1/2 tck
1/2 tck
1/2 tck
—ns
ns
ns
tRRise Time TLSC52
LINERXCLK[29:1]
LINETXCLK[29:1]
0
0
0
3
3
3
ns
ns
ns
tFFall Time TLSC52
LINERXCLK[29:1]
LINETXCLK[29:1]
0
0
0
3
3
3
ns
ns
ns
Input Name Reference CLK Setup T ime (tS) Hold Time (tH)Unit
Min Max Min Max
LINERXDATA[29:1] LINERXCLK[29:1] ↑↓ 12.0 9.0 ns
LINERXSYNC[29:1] LINERXCLK[29:1] ↑↓ 12.0 9.0 ns
Output Name Reference CLK Test Conditions Propagation Delay tPD Unit
Min Max
LINETXDATA[29:1] LINETXCLK[29:1] ↑↓ CL = 15 pF 0.5 10 ns
LINETXSYNC[29:1] LINETXCLK[29:1] ↑↓ CL = 15 pF 0.5 11 ns
54 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
5 Timing Characteristics (continued)
5.12 DJA DS1/E1 Interface Timing
Table 55. DJA DS1/E1 Interface Clock Specifications
Table 56. DJA DS1/E1 Interface Input Timing Specifications
Table 57. DJA DS1/E1 Interface Output Timing Specifications
Symbol Parameter Signal Name Min Nom Max Unit
FCK Clock
Frequency LINERXCLK[29:1]
LINETXCLK[29:1]
–130 ppm
–50 ppm
–130 ppm
–50 ppm
1.544
or 2.048
1.544
or 2.048
130 ppm
50 ppm
130 ppm
50 ppm
MHz
MHz
MHz
MHz
tCK = 1/Fck Clock
Period LINERXCLK[29:1]
LINETXCLK[29:1]
647.67
or 488.28
647.67
or 488.28
—ns
ns
ns
ns
tCKHI Clock Pulse
High Time LINERXCLK[29:1]
LINETXCLK[29:1]
1/2 tck
1/2 tck
—ns
ns
tRRise Time LINERXCLK[29:1]
LINETXCLK[29:1]
0
0
3
3
ns
ns
tFFall Ti me LINERXCLK[29:1]
LINETXCLK[29:1]
0
0
3
3
ns
ns
Input Name Reference CLK Setup T ime (tS) Hold Time (tH)Unit
Min Max Min Max
LINERXDATA[29:1] LINERXCLK[29:1] ↑↓ NA NA ns
Output Name Reference CLK Test Conditions Propagation Delay tPD Unit
Min Max
LINETXDATA[29:1] LINETXCLK[29:1] ↑↓ CL = 15 pF –4.0 4.0 ns
55Agere Systems Inc.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
5 Timing Characteristics (continued)
5.13 M13 DS1/E1 Interface Ti ming
Table 58. M13 DS1/E1 Interface Clock Specifications
Table 59. M13 DS1/E1 Interface Input Timing Speci fications
Table 60. M13 DS1/E1 Interface Output Timing Specifications
Symbol Parameter Signal Name Min Nom Max Unit
FCK Clock
Frequency LINERXCLK[29:1]
LINETXCLK[29:1]
–130 ppm
–50 ppm
–130 ppm
–50 ppm
1.544
or 2.048
1.544
or 2.048
130 ppm
50 ppm
130 ppm
50 ppm
MHz
MHz
MHz
MHz
tCK = 1/Fck Clock
Period LINERXCLK[29:1]
LINETXCLK[29:1]
647.67
or 488.28
647.67
or 488.28
—ns
ns
ns
ns
tCKHI Clock Pulse
High Time LINERXCLK[29:1]
LINETXCLK[29:1]
1/2 tck
1/2 tck
—ns
ns
tRRise Time LINERXCLK[29:1]
LINETXCLK[29:1]
0
0
3
3
ns
ns
tFFall Ti me LINERXCLK[29:1]
LINETXCLK[29:1]
0
0
3
3
ns
ns
Input Name Reference CLK Setup T ime (tS) Hold Time (tH)Unit
Min Max Min Max
LINERXDATA[29:1] LINERXCLK[29:1] ↑↓ 12.0 8.0 ns
Output Name Reference CLK Test Conditions Propagation Delay tPD Unit
Min Max
LINETXDATA[29:1] LINETXCLK[29:1] ↑↓ CL = 15 pF –5.0 2.0 ns
56 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
5 Timing Characteristics (continued)
5.14 Microprocessor Interface Timing
5.14.1 Synchronous Mode
The synchronous microprocessor interface mode is selected when MPMODE (pin AD17) = 1. Interface timing for
the synchronous mode write cycle is given in Figure 15 and in Table 61, and for the read cycle in Figure 16 and in
Table 62.
5-7659(F)a
Figure 15. Microprocessor Interface Synchronous Write Cycle (MPMODE (Pin AD17) = 1)
MPCLK 16 MHz minimum to 60* MHz maximum frequency.
ADDR [19:0] The address will be available throughout the entire cycle.
DATA[15:0] Data will be available during cycle T1.
RWN (Input) The read (H) write (L) signal is always high except during a write cycle.
CSN (Input) Chip select is an active-low signal.
DTN (Output) Data transfer acknowledge is active-low for one clock and then driven high before entering a high-
impedance state. (This is done with an I/O pad using the input as feedback to qualify the 3-state
term.) DTN will become 3-stated when CSN is high. Typically, DTN is active 4 or 5 MPCLK cycles
after ADSN is low.
ADSN (Input) Address strobe is active-low. ADSN must be 1 MPCLK clock period wide.
* If DTN is used, then the maximum frequency for MPCLK is determined by the processor’s setup specification for DTN. For example, a 9 ns
setup time would limit MPCLK to 40 MHz for reliable DTN detection.
MPCLK
ADDR[19:0]
CSN
ADSN
RWN
DATA[15:0]
DTN
(60 MHz MAX)
(INPUT)
tADSNVS
tWS
tDTNVPD
tWS
tCSNVS
tWS
TCLK T1 T2 T3 Tn – 2 Tn – 1 Tn
tAIPD
tAPD
tAPD
tAPD
tAPD
tDTNIPD
HIGH ZHIGH Z tADSNVDTF
57Agere Systems Inc.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
5 Timing Characteristics (continued)
Table 61. Microprocessor Interface Synchronous Write Cycle Specifications
(See Figure 15 on page 56 for the timing diagram.)
5-7660(F).a
Figure 16. Microprocessor Interface Synchronous Read Cycle (MPMODE (Pin AD17) = 1)
MPCLK 16 MHz minimum to 60* MHz maximum frequency.
ADDR [19:0] The address will be available throughout the entire cycle, and must be stable before ADSN turns
high.
DATA [15:0] Read data is stable in Tn – 1.
RWN (Input) The read (H) write (L) signal is always high during the read cycle.
CSN (Input) Chip select is an active-low signal.
DTN (Output) Data transfer acknowledge on the host bus interface is initiated on T6. This signal is active for one
clock and then driven high before entering a high-impedance state. (This is done with an I/O pad
using the input as feedback to qualify the 3-state term.) DT will become 3-stated when CS is high.
Typically, DTN is active 4 or 5 MPCLK cycles after ADSN is low.
ADSN (Input) Address strobe is active-low. ADSN must be one MPCLK clock period wide.
* If DTN is used, then the maximum frequency for MPCLK is determined by the processor’s setup specification for DTN. For example, a 9 ns
setup time would limit MPCLK to 40 MHz for reliable DTN detection.
Symbol Parameter Setup (Min) Hold (Min) Delay (Max) Unit
TCLK MPCLK 16 MHz Min—60* MHz Max Frequency ns
tWS ADDR, RWN, DATA (write) Valid to MPCLK 3.5 0 ns
tAPD MPCLK to ADDR, RWN, DATA, CSN (write) Invalid 5 ns
tCSNVS CSN Valid to MPCLK 3.5 0 ns
tADSNVS ADSN Valid to MPCLK 5.5 0 ns
tAIPD MPCLK to ADSN Invalid 5 ns
tDTNVPD MPCLK to DTN Valid 16 ns
tDTNIPD MPCLK to DTN Invalid 16 ns
tADSNVDTF ADSN Valid to DT Falling 1000 ns
MPCLK
ADDR[19:0]
CSN
ADSN
RWN
(60 M Hz MAX )
tADSNSU tSNIPD
tCSNSU
tAVS
T0 T1 T2 Tn – 4 Tn – 3 T n 2 Tn – 1 Tn
DTN
DATA[15:0]
(OUTPUT)
tDAIPD
tDTNVPD
tDTNIPD
tADSNVDTF HIGH Z
HIGH Z
tAPD
58 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
5 Timing Characteristics (continued)
Table 62. Microprocessor Interface Synchronous Read Cycle Specifications
(See Figure 16 on page 57 for the timing diagram.)
Symbol Parameter Setup
(Min) Hold
(Min) Delay
(Min) Delay
(Max) Unit
TCLK MPCLK 16 MHz Min—60* MHz Max
Frequency ——ns
tAVS ADDR Valid to MPCLK 3.5 0 ns
tAPD MPCLK to ADDR Invalid 5 ns
tCSNSU CSN Active to MPCLK 3.5 0 ns
tADSNSU ADSN Valid to MPCLK 5.5 0 ns
tSNIPD MPCLK to ADSN Inactive 5 ns
tDVPD MPCLK to DTN Valid 4 16 ns
tDIPD MPCLK to DTN Invalid 4 16 ns
tDAIPD MPCLK to DATA 3-state 10 ns
tADSNVDTF ADSN Valid to DT Falling 1000 ns
* If DTN is used, then the maximum frequency for MPCLK is determined by the processor’s setup specification for DTN. For example, a 9 ns
setup time would limit MPCLK to 40 MHz for reliable DTN detec tion.
59Agere Systems Inc.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
5 Timing Characteristics (continued)
5.14.2 Asynchronous Mode
The asynchronous microprocessor interface mode is selected when MPMODE (pin AC18) = 0. Interface timing for
the asynchronous mode write cycle is given in Figure 17 and in Table 63, and for the read cycle in Figure 18 and in
Table 64.
5-7661(F).ar.1
Figure 17. Microprocessor Interface Asynchronous Write Cycle Description (MPMODE (Pin AC18) = 0)
ADDR [19:0] Address is asynchronously passed from the host bus to the internal bus. The address will be avail-
able throughout the entire cycle.
DATA [15:0] Write data is asynchronously passed from the host bus to the internal bus. Data will be available
throughout the entire cycle.
RWN (Input) The read (H) write (L) signal is always high except during a write cycle.
CSN (Input) Chip select is an active-low signal.
DTN (Output) Data transfer acknowledge (active-low). DTN is driven asynchronously based on the arrival of CSN.
DTN is driven high until the internal transaction is done. DTN is driven high again when either ADSN
or DSN is deasserted. DTN will become 3-stated when CSN is high.
ADSN (Input) Address strobe is active-low. ADSN must be a minimum of one MPCLK clock period wide.
DSN (Input) Data strobe is active-low.
ADDR[19:0]
CSN
ADSN
DSN
RWN
DATA[15:0]
DTN
(INPUT)
tAVADSF
tDVDSF
tCSFDTR tDSFDTF
tADSRDTR tCSRDT3
tDSRDI
tDSRRWR
tDSNRAI
tADSRAI
tAICSR
tRWFDSF
tAVDSF
HIGH Z HIGH Z
tCSFDSF
60 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
5 Timing Characteristics (continued)
Table 63. Microprocessor Interface Asynchronous Write Cycle Specifications
(See Figure 17 on page 59 for the timing diagram.)
Note: Specifications are valid for 50 MHz MPCLK with MPMODE = 0. Address strobe (ADSN) and chip select
(CSN) may be connected and driven from the same source. In this configuration, the setup and hold times
for ADSN must be satisfied.
Symbol Parameter Typical Interval Max Interval Unit
tCSFDSF CSN Fall to DSN Fall 0 ns
tAICSR ADDR Invalid to CSN Rise 0 ns
tAVADSF ADDR Valid to ADSN Fall 0 ns
tADSRAI ADSN Rise to ADDR Invalid 0 ns
tAVDSF ADDR Valid to DSN Fall 0 ns
tDSNRAI DSN Rise to ADDR Invalid 0 ns
tRWFDSF RWN Fall to DSN Fall 0 ns
tDSRRWR DSN Rise to RWN Rise 0 ns
tDVDSF DATA Valid to DSN Fall 0 ns
tDSRDI DSN Rise to DATA Invalid 0 ns
tCSFDTR CSN Fall to DTN Rise 20 ns
tDSFDTF DSN Fall to DTN Fall 120 1000 ns
tADSRDTR ADSN Rise to DTN Rise 20 ns
tCSRDT3 CSN Rise to DTN 3-state 10 ns
61Agere Systems Inc.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
5 Timing Characteristics (continued)
5-7662(F).ar.1
Figure 18. Microprocessor Interface Asynchronous Read Cycle (MPMODE (Pin AC18) = 0)
ADDR [19:0] Address is asynchronously passed from the host bus to the internal bus. The address will be avail-
able throughout the entire cycle.
DAT A [15:0] Read data on the internal bus is only valid for one clock cycle; therefore, a latch is necessary to meet
the correct timing on the host bus.
RWN (Input) The read (H) write (L) signal is always high during a read cycle.
CSN (Input) Chip select is an active-low signal.
DTN (Output) Data transfer acknowledge (active-low). DTN is driven asynchronously based on the arrival of CSN,
DSN, and ADSN. DTN is driven high while the internal bus transaction is in progress. There is no
need to provide synchronization to outgoing signals in this mode. DTN is driven high and then placed
in a high-impedance state when either ADSN or DSN is deasserted. DTN will become 3-stated when
CSN is high.
ADSN (Input) Address strobe is active-low.
DSN (Input) Data strobe is active-low.
ADDR[19:0]
CSN
ADSN
DSN
DTN
DATA[15:0]
tADSRD3
tCSRDT3
tADSRDTR
tCSFDSF
RWN
tAVADSF
tAVDSF
tAICSR
tADSRAI
tDSNRAI
tDTVDV
tDSFDTF
tCSFDTR
HIGH Z
HIGH Z
HIGH Z
HIGH Z
62 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
5 Timing Characteristics (continued)
Table 64. Microprocessor Interface Asynchronous Read Cycle Specifications
(See Figure 18 on page 61 for the timing diagram.)
1. DSN can be asserted up to 20 ns (1 clk at 50 MHz) prev ious to CSN.
2. ADDR can be asserted up to 60 ns (3 clk at 50 MHz) into cycle from ASDN.
3. DTN fall is variable depending on the block selected for access.
4. Leading edges of ADSN and DSN determine the falling edge of DTN.
5. Rising edge of ADSN determines the rising edge of DTN.
6. Data toggle 20 ns (1 clk at 50 MHz) previous to CSN.
Note: Specifications are valid for 50 MHz MPCLK with MPMODE = 0. Address strobe (ADSN) and chip select
(CSN) may be connected and driven from the same source. In this configuration, the setup and hold times
for ADSN must be satisfied.
5.15 General-Purpos e Interface Timing
Table 65. Input Timing Specifications
Symbol Parameter Typical Interval Max Interval Unit
tCSFDSF CSN Fall to DSN Fall 01—ns
tAICSR ADDR Invalid to CSN Rise 0 ns
tAVADSF ADDR Valid to ADSN Fall 0 602ns
tADSRAI ADSN Rise to ADDR Invalid 0 ns
tAVDSF ADDR Valid to DSN Fall 0 ns
tDSNRAI DSN Rise to ADDR Invalid 0 ns
tCSFDTR CSN Fall to DTN Rise 20 ns
tDSFDTF DSN Fall to DTN Fall 100 10003, 4 ns
tADSRDTR ADSN Rise to DTN Rise 205—ns
tCSRDT3 CSN Rise to DTN 3-state 10 ns
tDTVDV DTN Valid to DATA Valid 06—ns
tADSRD3 ADSN Rise to DATA 3-state 20 ns
Input Name Reference CLK Min Setup Time (tS) Min Hold Time (tH)Unit
JTAG Signals
TDI TCLK 15.0 2.0 ns
TMSN TCLK 15.0 2.0 ns
TRSTN NA ASYNC ASYNC
SCAN_EN NA ASYNC ASYNC
SCAN_MODE NA ASYNC ASYNC
Miscellaneous Signals
RSTN NA ASYNC ASYNC
PMRST NA ASYNC ASYNC
IC3STATEN NA ASYNC ASYNC
IDDQ NA ASYNC ASYNC
63Agere Systems Inc.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
5 Timing Characteristics (continued)
Table 66. Output Timing Specifications
* Propagation delay skew, tPLH tPHL, is ±200 ps.
6 Ordering Info rma tion
Output Name Reference CLK Test Conditions Propagation Delay* (tPD)Unit
Min Max
Transmit Signals
TDO TLCK CL = 25 pF 3.0 20.0 ns
Miscellaneous Signals
PMRST NA ASYNC ASYNC
Device Code Package Temperature Comcode
TMXF281553BAL-3C-DB 456-pin PBGA –40 °C to +85 °C 700002098
64 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
Register Description
7 Microprocessor Interface and Global Control and Status Registers
Table of Con t ents
Contents Page
7 Microprocessor Interface and Global Control and Status Registers ................................................................ 64
7.1 Supermapper Global Control and Status Registers.....................................................................................65
7.2 Microprocessor Interface Register Map .......................................................................................................75
Tables Page
Table 67. SMPR_VCR, Supermapper Version Control Register (RO) ....................................................................65
Table 68. SMPR_SYMR[4], Supermapper Symbol Register4 SMPR (RO).............................................................65
Table 69. SMPR_SYMR[3], Supermapper Symbol Register3 (RO)........................................................................65
Table 70. SMPR_SYMR[2], Supermapper Symbol Register2 (RO)........................................................................65
Table 71. SMPR_SYMR[1], Supermapper Symbol Register1 (RO)........................................................................65
Table 72. SMPR_SYMR[0], Supermapper Symbol Register0 (RO)........................................................................65
Table 73. SMPR_ISR, Supermapper Interrupt Status Register (RO)......................................................................66
Table 74. SMPR_IMR, Supermapper Interrupt Mask Register (RW) ......................................................................67
Table 75. SMPR_GTR, Global Trigger Register (RW).............................................................................................68
Table 76. SMPR_MSRR, Block Software Reset Register (RW)..............................................................................68
Table 77. SMPR_GCR, Global Control Register (RW)............................................................................................70
Table 78. SMPR_TSCR, TMUX, and SPEMPR Control Register (RW)..................................................................71
Table 79. SMPR_FCR, Framer Control Register (RW)...........................................................................................71
Table 80. SMPR_CLCR, CDR, and LVDS Control Register (RW)...........................................................................72
Table 81. SMPR_CPCR, Clock and Power Control Register (RW).........................................................................73
Table 82. SMPR_PMRCHR, PM Reset Count High Register (RW)........................................................................73
Table 83. SMPR_PMRCLR, PM Reset Count Low Register (RW)..........................................................................74
Table 84. SMPR_TX_LINE_EN1.............................................................................................................................74
Table 85. SMPR_SR, Scratch Register (RW)..........................................................................................................74
Table 86. Microprocessor Interface Register Map...................................................................................................75
65Agere Systems Inc.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
7 Microprocessor Interface and Global Control and Status Registers (continued)
7.1 Supermapper Global Control and Status Registers
This section gives a brief description of each register bit and its functionality. The abbreviations after each register
indicate if the register is read only (RO), clear-on-read/clear-on-write (COR/COW), or read/write (R/W).
Table 67. SMPR_VCR, Supermapper Version Control Register (RO)
Table 68. SMPR_SYMR[4], Supermapper Symbol Register4 SMPR (RO)
Table 69. SMPR_SYMR[3], Supermapper Symbol Register3 (RO)
Table 70. SMPR_SYMR[2], Supermapper Symbol Register2 (RO)
Table 71. SMPR_SYMR[1], Supermapper Symbol Register1 (RO)
Table 72. SMPR_SYMR[0], Supermapper Symbol Register0 (RO)
Address Bit Name Function Reset Default
0x00000 15:11 RSVD Reserved. 0x0000
10:8 SMPR_VERSION[2:0] Supermapper Version Number. SMPR version
register will change each time the device is
changed.
7:0 SMPR_ID[7:0] SMPR ID Number.
Address Bit Name Func tion Reset Default
0x00001 15:8 T Supermapper Symbol Bit. 0x544D
7:0 M Supermapper Symbol Bit.
Address Bit Name Func tion Reset Default
0x00002 15:8 X Supermapper Symbol Bit. 0x5846
7:0 F Supermapper Symbol Bit.
Address Bit Name Func tion Reset Default
0x00003 15:8 2 Superma pper Symbol Bit. 0x3238
7:0 8 Supermapper Symbol Bit.
Address Bit Name Function Reset Default
0x00004 15:8 1 Supermapper Symbol Bit. 0x3135
7:0 5 Supermapper Symbol Bit.
Address Bit Name Function Reset Default
0x00005 15:8 5 Supermapper Symbol Bit. 0x350D
7:0 CR Supermapper Symbol Bit.
66 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
7 Microprocessor Interface and Global Control and Status Registers (continued)
Table 73. SMPR_ISR, Supermapper Interrupt Status Register (RO)
Address Bit Name Function Reset
Default
0x00008 15 SMPR_APS_IS APS Interrupt. Active-high signal indicating an interrupt
event has occurred in the automatic protection switch (APS)
block, which is within the TMUX block.
0x0000
14:10 RSVD Reserved.
9 SMPR_PARITY_IS Microprocessor Interface Data Bus Parity Error Inter-
rupt. Active-high signal indicating a microprocessor data
bus parity error has occurred. Summary of errors detected
in PAR[1] and PAR[0] parity detectors.
8 SMPR_PMRESET_IS Performance Monitor Reset Interrupt. Active-high signal
indicating a 1 s event has occurred.
7SMPR_TPG_ISTPG Interrupt. Active-high signal indicating an interrupt
event has occurred in the test pattern generation block.
6SMPR_DJA_ISDJA Interrupt. Active-high signal indicating an interrupt
event has occurred in the digital jitter attenuation block.
5 SMPR_FRM_IS FRM Interrupt. Active-high signal indicating an interrupt
event has occurred in the framer block. However , on device
powerup, this bit is erroneously set. A device initialization
routine containing the following sequence should clear the
interrupt:
Power up the framer block by selecting one of the clock
options in address 0x00012.
Set and clear the framer software reset bit, bit 5 of
addres s 0x 0000 E.
Power down the framer block in address 0x00012.
4SMPR_XC_ISXC Interrupt. Active-high signal indicating an interrupt
event has occurred in the cross connect block.
3 SMPR_M13_IS M 13 Inte rrup t. Active-high signal indicating an interrupt
event has occurred in the M13 multiplexer/demultiplexer
block.
2 SMPR_VTMPR_IS VTMPR Interrupt. Active-high signal indicating an interrupt
event has occurred in the VT mapper block.
1 SMPR_SPEMPR_IS SPEMPR Interrupt. Active-high signal indicating an inter-
rupt event has occurred in the SPE mapper block.
0SMPR_TMUX_ISTMUX Interrupt. Active-high signal indicating an interrupt
event has occurred in the TMUX block.
67Agere Systems Inc.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
7 Microprocessor Interface and Global Control and Status Registers (continued)
Table 74. SMPR_IMR, Supermapper Interrupt Mask Register (RW)
Address Bit Name Function Reset
Default
0x00009 15 SMPR_APS_IM APS Interrupt Mask. When this bit is set to 1, the compos-
ite interrupt bit will be inhibited from contributing to the inter-
rupt pin APS_INTN.
0x83FF
14:10 RSVD Reserved.
9SMPR_PARITY_IMMicroprocessor Interface Data Bus Parity Error Inter-
rupt Mask. When this bit is set to 1, the composite interrupt
bit will be inhibited from contributing to the interrupt pin
INTN.
8 SMPR_PMRESET_IM Performance Monitor Reset Inte rrupt Mask. When this
bit is set to 1, the composite interrupt bit will be inhibited
from contributing to the interrupt pin INTN.
7SMPR_TPG_IMTPG Interrupt Mask. When this bit is set to 1, the compos-
ite interrupt bit will be inhibited from contributing to the inter-
rupt pin INTN.
6 SMPR_DJA_IM DJA Interrupt Mask. When this bit is set to 1, the compos-
ite interrupt bit will be inhibited from contributing to the inter-
rupt pin INTN.
5 SMPR_FRM_IM FRM Interrupt Mask. When this bit is set to 1, the compos-
ite interrupt bit will be inhibited from contributing to the inter-
rupt pin INTN.
4SMPR_XC_IMXC Inte rrup t Mask. When this bit is set to 1, the composite
interrupt bit will be inhibited from contributing to the interrupt
pin INTN.
3 SMPR_M13_IM M 13 In terru pt Mask. When this bit is set to 1, the compos-
ite interrupt bit will be inhibited from contributing to the inter-
rupt pin INTN.
2 SMPR_VTMPR_IM VTMPR Interrupt Mask. When this bit is set to 1, the com-
posite interrupt bit will be inhibited from contributing to the
interrupt pin INTN.
1 SMPR_SPEMPR_IM SPEMPR Interrupt Mask. When this bit is set to 1, the
composite interrupt bit will be inhibited from contributing to
the interrupt pin INTN.
0SMPR_TMUX_IMTMUX Interrupt Mask. When this bit is set to 1, the com-
posite interrupt bit will be inhibited from contributing to the
interrupt pin INTN.
68 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
7 Microprocessor Interface and Global Control and Status Registers (continued)
Table 75. SMPR_GTR, Global Trigger Register (RW)
Table 76. SMPR_MSRR, Block Software Reset Register (RW)
Address Bit Name Function Reset
Default
0x0000D 15:10 RSVD Reserved. 0x0000
9 SMPR_BER_INSRT Bit Error Rate Insertion. When this bit is set to 1, this bit
indicates to the Supermapper that a bit error has to be
inserted in the appr op riate frame .
8 SMPR_PMRESET Performance Monitor Reset. When this bit is set to 1, the
PMRESET signal will transition from a logic 0 to a logic 1
state. It will stay at a logic 1 state for a minimum of 100 ns.
(Self-clearing.)
7:1 RSVD Reserved.
0 SMPR_SWRS Supermapper Software Reset. When this bit is set to 1, it
will create a software reset of the device. This reset has the
same effect as the hardware reset. All microprocessor reg-
isters are reset to their default states, and all internal data
path state machines are reset. (Self-clearing.)
Address Bit Name Function Reset
Default
0x0000E 15:8 RSVD Reserved. 0x0000
7SMPR_TPG_SWRSTPG Bloc k S o ftw ar e R e se t. When this bit is set to 1, it will
create a software reset for the test-pattern generation
macro. This reset has the same effect as the hardware
reset and chip-level software reset. All microprocessor reg-
isters within the macro are reset to their default states. All
internal data path state machines within the block are also
reset.
6 SMPR_DJA_SWRS DJA Block Software Reset. When this bit is set to 1, it will
create a software reset for the digital jitter attenuation block.
This reset has the same effect as the hardware reset and
chip-level software reset. All microprocessor registers
within the macro are reset to their default states. All internal
data path state machines within the block are also reset.
5 SMPR_FRM_SWRS FRM Block Software Reset. When this bit is set to 1, it will
create a software reset for the framer block. This reset has
the same effect as the hardware reset and chip-level soft-
ware reset. All microprocessor registers within the block are
reset to their default states. All internal data path state
machines within the block are also reset.
69Agere Systems Inc.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
7 Microprocessor Interface and Global Control and Status Registers (continued)
Table 76. SMPR_MSRR, Block Software Reset Register (RW) (continued)
Address Bit Name Function Reset
Default
0x0000E 4 SMPR_XC_SWRS XC Block Software Reset. When this bit is set to 1, it
will create a software reset for the cross connect block.
This reset has the same effect as the hardware reset and
chip-level software reset. All microprocessor registers
within the block are reset to their default states. All inter-
nal data path state machines within the block are also
reset.
0x0000
3 SMPR_M13_SWRS M13 Blo ck Software Reset. When this bit is set to 1, it
will create a software reset for the M13 multiplexer/
demultiplexer block. This reset has the same effect as
the hardware reset and chip-level software reset.
All microprocessor registers within the block are reset to
their default states. All internal data path state machines
within the blo ck are also re se t.
2 SMPR_VTMPR_SWRS VTMPR Block Software Reset. When this bit is set to 1,
it will create a software reset for the VTMPR block. This
reset has the same effect as the hardware reset and
chip-level software reset. All microprocessor registers
within the block are reset to their default states. All inter-
nal data path state machines within the block are also
reset.
1 SMPR_SPEMPR_SWRS SPEMPR Block Software Reset. When this bit is set
to 1, it will create a software reset for the SPEMPR block.
This reset has the same effect as the hardware reset and
chip-level software reset. All microprocessor registers
within the block are reset to their default states. All inter-
nal data path state machines within the block are also
reset.
0 SMPR_TMUX_SWRS TMUX Block Software Reset. When this bit is set to 1, it
will create a software reset for the TMUX block. This
reset has the same effect as the hardware reset and
chip-level software reset. All microprocessor registers
within the block are reset to their default states. All inter-
nal data path state machines within the block are also
reset.
70 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
7 Microprocessor Interface and Global Control and Status Registers (continued)
Table 77. SMPR_GCR, Global Control Register (RW)
Address Bit Name Function Reset
Default
0x0000F 15:10 RSVD Reserved. 0x0000
9:8 SMPR_PMMODE[1:0] Performance Monitor Mode:
00 = PMRST comes from external pin.
10 = PMRST comes from external pin.
01 = PMRST comes from internal 1 s counter.
Note: Please see Table 82 and Table 83.
11 = PMRST is software controlled using the
SMPR_PMREST register bit 8 (Table 75 on
page 68).
7:5 RSVD Reserved.
4 SMPR_PARITY_EVEN_ODD Even or Odd Parity Indication on the Microproces-
sor Data Bus. This bit controls the parity setting and
checking on the microprocessor data bus:
0 = even parity on microprocessor byte data/parity bus.
1 = odd parity on microprocessor byte data/parity bus.
3SMPR_OH_DEFLTOverhead Default. This bit controls the filling of the
unused overhead bytes:
0 = filling the unused overhead bits with 0.
1 = filling the unused overhead bits with 1.
2 SMPR_FXD_STFF_DEFLT Fixed Stuff Default. This bit controls the filling of the
fixed stuff bytes:
0 = filling the fixed stuff bytes with 0.
1 = filling the fixed stuff bytes with 1.
1 SMPR_COR_COW Clear-On-Read or Clear-On-Write. This bit controls
the way clearing is perfo rmed on all delta and event
bits in all registers:
0 = the delta and event bit is cleared by writing a 1 to
it.
Note: The clear-on-write (COW) feature does not
apply to all registers in the 28-channel framer
block. The only framer block register that has
COW is transmit FDL link register 8 (address
0x8L TD7). All other registers in the framer block
are only clear-on-read.
1 = the delta and event bits are cleared when a micro-
processor read is performed on this delta and
event bit.
0 SMPR_SAT_ROLLOVER Saturate or Rollover. This bit controls if error
counters hold their values or roll over when they reach
their maximum values:
0 = error counters roll over when reaching maximum
values.
1 = error counters hold their values when reaching
maximum values.
71Agere Systems Inc.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
7 Microprocessor Interface and Global Control and Status Registers (continued)
Table 78. SMPR_TSCR, TMUX, and SPEMPR Control Register (RW)
Table 79. SMPR_FCR, Framer Control Register (RW)
Address Bit Name Function Reset
Default
0x00010 15:4 RSVD Reserved. 0x0000
3 MPU_RHDZTHD_LB Forces Received High-Speed Data to Transmit
High-Speed Data Loopback Prior to the CDR.
2 SMPR_RETIME_CLK_EDGE Retime Clock Edge for the Received High-Speed
Data. This bit controls on which clock edge, positive
or negative, the received high-speed data is to be
retimed.
1 = the re ceiv ed da ta wil l be cl ocke d int o the de vice
on the negative clock edge.
0 = the re ceiv ed da ta wil l be cl ocke d int o the de vice
on the positive clock edge.
1 SMPR_TELECOMBUS_EDGE Telecom Bus Edge. The SPE mapper is enabled
to use a time slot on the telecom bus. This bit
selects the clock edge for the data signals transmit-
ted to the telecom bus during the selected time slot.
0 = clock telecom bus signals out on the falling
edge.
1 = clock telecom bus signals out on the rising
edge.
0 SMPR_TMUX_MASTER_SLAVE SMPR/TMUX Master Slave. This bit controls if the
TMUX block in this Supermapper is the master
device in the system module that this Supermapper
is on, or if it is a slave device.
0 = this Supermapper/TMUX is a slave device in the
module.
1 = this Supermapper/TMUX is a master device in
the module.
Address Bit Name Function Reset
Default
0x00012 15:3 RSVD Reserved. 0x0000
2:0 SMPR_FRM_CLK_SEL[2:0] Framer Clock Selection. Selects the source of the
framer high-speed clock the selected clock needs
to be faster than the aggregate throughput of the
framer block for prope r operat ion .
000 = framer is powered down. No clock required.
001 = framer receives TLSC52 (pin AC3) clock
input.
010 = framer receives DS1XCLK (pin AD16) clock
input.
011 = framer receives E1XCLK (pin AC17) clock
input.
72 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
7 Microprocessor Interface and Global Control and Status Registers (continued)
Table 80. SMPR_CLCR, CDR, and LVDS Control Register (RW)
Address Bit Name Function Reset
Default
0x00013 15:11 RSVD Reserved. 0x000C
10 SMPR_MPU_CDR_MODE CDR Mode Selection. This bit controls the operating
mode of the internal CDR, whether it operates at
155 MHz or 51 MHz.
0 = 155 MHz mode.
1 = 51 MHz mode.
9 SMPR_MPU_CG_PWRDN PLL Powerdown Selection. This bit controls whether
the internal framer PLL is powered on or off.
0 = internal PLL powered on.
1 = internal PLL powered off.
8 SMPR_LVDS_REF_SEL LVDS Reference Voltage Selection. This bit controls
which reference voltage, internal or external, is used to
power the LVDS buffers.
0 = external reference voltage is used.
1 = internal reference voltage is used.
7:4 RSVD Reserved.
3 SMPR_RXPWRDN CDR Channel Powerdown. This bit co ntrol s the power
to the CDR data channel.
0 = channel is active, power is on.
1 = channel is inactive, power to the channel is turned
off.
2 SMPR_PLLPWRDN CDR Phase-Lock Loop Powerdown. This bit controls
the power to the CDR PLL circuit.
0 = PLL is active, power to the PLL is turned on.
1 = PLL is inactive, power to the PLL is turned off.
1 SMPR_MRESET CDR Master Reset. This bit is used for the CDR i nit ial-
ization. It can also be used in test mode to reset test cir-
cuitry.
0 = no reset.
1 = reset mode.
0 SMPR_CDR_SEL CDR Selection. This bit controls if the TMUX receives
its high-s pee d recei ve cl ock and data from the on- chip
CDR block or from the pins (bypass the CDR).
0 = bypass CDR. Receives clock and data directly from
pins.
1 = use CDR. Receives clock and data through CDR.
73Agere Systems Inc.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
7 Microprocessor Interface and Global Control and Status Registers (continued)
Table 81. SMPR_CPCR, Clock and Power Control Register (RW)
Table 82. SMPR_PMRCHR, PM Reset Count High Register (RW)
Address Bit Name Function Reset
Default
0x00014 15:9 RSVD Reserved. 0x0000
8SMPR_M13_TCLKM13 MUX/Tx Clock Enable.
0 = M13 MUX/Tx clock is powered down and inactive.
1 = M13 MUX/Tx clock is powered up and active.
7 SMPR_M13_RCLK M13 DeMUX Rx Clock Enable.
0 = M13 deMUX/Rx clock is powered down and inactive.
1 = M13 deMUX/Rx clock is powered up and active.
6 SMPR_DJA_CLK Digital Jitter Attenuation Clock Enable.
0 = DJA DPLL is powered down and inactive.
1 = DJA DPLL is powered up and active.
5SMPR_VTMPR_TCLKVT Mapper Tx Clock Enable.
0 = VT mapper Tx clock is powered down and inactive.
1 = VT mapper Tx clock is powered up and active.
4 SMPR_VTMPR_RCLK VT Mapper Rx Clock Enable.
0 = VT mapper Rx clock is powered down and inactive.
1 = VT mapper Rx clock is powered up and active.
3 SMPR_SPEMPR_TCLK SPE Mapper T x Clock Enable.
0 = SPE mapper Tx clock is powered down and inactive.
1 = SPE mapper Tx clock is powered up and active.
2 SMPR_SPEMPR_RCLK SPE Mapper Rx Clock Enable.
0 = SPE mapper Rx clock is powered down and inactive.
1 = SPE mapper Rx clock is powered up and active.
1 SMPR_TMUX_TCLK TMUX Tx Clock Enable.
0 = TMUX Tx clock is powered down and inactive.
1 = TMUX Tx clock is powered up and active.
0 SMPR_TMUX_RCLK TMUX Rx Clock Enable.
0 = TMUX Rx clock is powered down and inactive.
1 = TMUX Rx clock is powered up and active.
Address Bit Name Function Reset
Default
0x00016 15:11 RSVD Reserved. 0x01F8
10:0 SMPR_PMRESET_HIGH_COUNT[10:0] Performance Monitor Counter Preset.
The preset value of this register deter-
mines the frequency of the internal PM
counter. User should preload an appropri-
ate value based on the microprocessor
interface clock rate in order to reach the
desired PMRST rate.
74 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
7 Microprocessor Interface and Global Control and Status Registers (continued)
Table 83. SMPR_PMRCLR, PM Reset Count Low Register (RW)
Table 84. SMPR_TX_LINE_EN1
Table 85. SMPR_SR, Scratch Register (RW)
Address Bit Name Function Reset
Default
0x00017 15:0 SMPR_PMRESET_LOW_COUNT[15:0] Performance Monitor Counter Preset.
The preset value of this register determines
the frequency of the internal PM counter.
User should preload an appropriate value
based on the microprocessor interface
clock rate in order to reach the desired
PMRST rat e.
0x0000
Address Bit Name Function Reset
Default
0x00018 15:0 SMPR_TX_LINE_EN[16:1] 3-State Control for LINETXDATA,
LINETXCLK, and LINETXSYNC Output
Pins.
0x0000
0x00019 15:13
12:0 RSVD
SMPR_TX_LINE_EN[29:17] Reserved.
3-State Control for LINETXDATA,
LINETXCLK, and LINETXSYNC Output
Pins.
0x0000
Address Bit Name Function Reset
Default
0x0001F 15:0 SMPR_SCRATCH_REGISTER[15:0] Scratch Register. This register is for test
and diagnostics purpose.
Read/write operations can be performed on
all bits. No SMPR control and status will be
affected by any read/write operations to
this register.
0x0000
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
75Agere Systems Inc.
7 Microprocessor Interface and Global Control and Status Registers (continued)
7.2 Microprocess or Inter fa ce Reg is ter Ma p
Table 86. Microprocessor Interface Register Map
Note: Shading denotes reserved bits.
Address Symbol Bit
15 Bit
14 Bit
13 Bit
12 Bit
11 Bit
10 Bit
9Bit
8Bit
7Bit
6Bit
5Bit
4Bit
3Bit
2Bit
1Bit
0
Supermapper Version Control RegisterRO
0x00000
page 65 SMPR_VCR SMPR_VERSION[2:0] SMPR_ID[7:0]
Supermapper Symbol RegisterRO
0x00001
page 65 SMPR_SYMR4 0x54 = T 0x4D = M
0x00002
page 65 SMPR_SYMR3 0x58 = X 0x46 = F
0x00003
page 65 SMPR_SYMR2 0x32 = 2 0x38 = 8
0x00004
page 65 SMPR_SYMR1 0x31 = 1 0x35 = 5
0x00005
page 65 SMPR_SYMR0 0x35 = 5 0x0D = CR
0x00006
0x00007
RSVD
Supermapper Interrup t Status RegisterRO
0x00008
page 66 SMPR_ISR SMPR_APS_IS SMPR_
PARITY_IS SMPR_
PMRESET_IS SMPR_TPG_IS SMPR_DJA_IS SMPR_FRM_
IS SMPR_XC_IS SMPR_M13_
IS SMPR_VTMPR_
IS SMPR_
SPEMPR_IS SMPR_TMUX_
IS
Supermapper Interrup t Mask RegisterR/W
0x00009
page 67 SMPR_IMR SMPR_APS_IM SMPR_
PARITY_IM SMPR_
PMRESET_IM SMPR_TPG_IM SMPR_DJA_
IM SMPR_FRM_
IM SMPR_XC_IM SMPR_M13_
IM SMPR_VTMPR_
IM SMPR_
SPEMPR_IM SMPR_TMUX_
IM
0x0000A
0x0000C
RSVD
Global Trigger Register R/W
0x0000D
page 68 SMPR_GTR SMPR_BER_
INSRT SMPR_
PMRESET SMPR_SWRS
Block Software Reset RegisterR/W
0x0000E
page 68 SMPR_MSRR SMPR_TPG_SWRS SMPR_DJA_
SWRS SMPR_FRM_
SWRS SMPR_XC_
SWRS SMPR_M13_
SWRS SMPR_VTMPR_
SWRS SMPR_SPEMPR_
SWRS SMPR_TMUX_
SWRS
Global Control Register (SMPR_GCR)R/W
0x0000F
page 70 SMPR_GCR SMPR_PMMODE[1:0] SMPR_PARITY_
EVEN_ODD SMPR_OH_
DEFLT SMPR_FXD_
STFF_DEFLT SMPR_COR_
COW SMPR_SAT_
ROLLOVER
TMXF28155 Supermapper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
76 Agere Systems Inc.
7 Microprocessor Interface and Global Control and Status Registers (continued)
Table 86. Microprocessor Interface Register Map (continued)
Note: Shading denotes reserved bits.
Address Symbol Bit
15:13 Bit
12:11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
TMUX and SPEMOR CONTROL RegisterR/W
0x00010
page 71 SMPR_TSCR MPU_
RHDZTHD_LB SMPR_RETIME_
CLK_EDGE SMPR_TELECOMBUS_
EDGE SMPR_TMUX_
MASTER_SLAVE
0x00011 RSVD
FRAMER Control RegisterR/W
0x00012
page 71 SMPR_FCR SMPR_FRM_CLK_SEL[2:0]
CDR and LVDS Control RegisterR/W
0x00013
page 72 SMPR_CLCR SMPR_MPU_
CDR_MODE SMPR_MPU_
CG_PWRDN SMPR_LVDS_
REF_SEL SMPR_RXPWRDN SMPR_
PLLPWRDN SMPR_MRESET SMPR_CDR_SEL
Clock and Power Control RegisterR/W
0x00014
page 73 SMPR_CPCR SMPR_M13_
TCLK SMPR_M13_
RCLK SMPR_DJA_
CLK SMPR_VTMPR_
TCLK SMPR_VTMPR_
RCLK SMPR_SPEMPR_
TCLK SMPR_SPEMPR_
RCLK SMPR_TMUX_TCLK SMPR_TMUX_RCLK
0x00015 RSVD
PM Reset Count Register HighR/W
0x00016
page 73 SMPR_PMRCHR SMPR_PMRESET_HIGH_COUNT[10:0]
PM Reset Count Register LowR/W
0x00017
page 74 SMPR_PMRCLR SMPR_PMRESET_LOW_COUNT[15:0]
0x00018
page 74 TX_LINE_EN1 SMPR_TX_LINE_EN[16:1]
0x00019
page 74 TX_LINE_EN2 SMPR_TX_LINE_EN[29:17]
Scratch RegisterR/W
0x0001F
page 74 SMPR_SR SMPR_SCRATCH_REGISTER[15:0]
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
77Agere Systems Inc.
8 TMUX Regist er s
Table of Con t en ts
Contents Page
8 TMUX Registers ............................................................................................................................................... 77
8.1 TMUX Register Descriptions........................................................................................................................79
8.2 TMUX Register Map...................................................................................................................................126
Tables Page
Table 87. TMUX_ID_R, TMUX Identification Register (RO)....................................................................................79
Table 88. TMUX_ONESHOT, TMUX One-Shot Register 0 to 1 (R/W)....................................................................79
Table 89. TMUX_RCV_TX_MODE, TMUX Receive/Transmit Mode (R/W) ............................................................79
Table 90. TMUX_TX_DLT, Delta/Event (COR/COW) ..............................................................................................80
Table 91. TMUX_RPS_DLT, Delta/Event (COR/COW)............................................................................................80
Table 92. TMUX_RHS_DLT, Delta/Event (COR/COW) ...........................................................................................81
Table 93. TMUX_RPOH[1—3]_DLT, Delta/Event (COR/COW)...............................................................................83
Table 94. TMUX_TX_MSK, Mask Bits for INT Interrupt Signal (R/W) (Mask = 1, No Mask = 0).............................89
Table 95. TMUX_RPS_MSK, Mask Bits for INT Interrupt Signal (R/W) (Mask = 1, No Mask = 0)..........................90
Table 96. TMUX_RHS_MSK, Mask Bits for INT Interrupt Signal (R/W) (Mask = 1, No Mask = 0)..........................90
Table 97. TMUX_RPOH[1—3]_MSK, Mask Bits for Interrupt Signal (R/W) (Mask = 1, No Mask = 0)....................91
Table 98. TMUX_APSINT_MSK, Mask Bits for APSINT Interrupt Signal (R/W) (Mask = 1, No Mask = 0).............93
Table 99. TMUX_TX_STATE, State Parameters (RO) ............................................................................................93
Table 100. TMUX_RPS_STATE, State and Value Parameters (RO).......................................................................93
Table 101. TMUX_RHS_STATE, State and Value Parameters (RO) ......................................................................94
Table 102. TMUX_RPOH[1—3]_STATE, State and Value Parameters (RO)..........................................................94
Table 103. TMUX_RHS_CTL, Receive High-Speed Control Parameters (R/W).....................................................96
Table 104. TMUX_RLS_BITBLK_CTL, Receive Low-Speed Control Parameters (R/W)........................................96
Table 105. TMUX_RLS_MODE_CTL, Receive Low-Speed Control Parameters (R/W) .........................................97
Table 106. TMUX_RAISINH_CTL, Receive Low-Speed Control Parameters (R/W)...............................................98
Table 107. TMUX_LOSDETCNT, Receive Low-Speed Control Parameters (R/W).................................................99
Table 108. TMUX_CNTD_TOH_[A—B], Continuous N-Times Detect Control Parameters (R/W) ........................100
Table 109. TMUX_CNTD_POH_[A—B], Continuous N-Times Detect Control Parameters (R/W)........................101
Table 110. TMUX_C2EXP[1—2_3], Continuous N-Times Detect Control Parameters (R/W)...............................102
Table 111. TMUX_RF1MON, Receive Monitor Values (RO)..................................................................................102
Table 112. TMUX_RAPSMON, Receive Monitor Values (RO) ..............................................................................102
Table 113. TMUX_RS1MON, Receive Monitor Values (RO).................................................................................102
Table 114. TMUX_RPOHMON[1—3][A—D], Receive Monitor Values (RO)..........................................................103
Table 115. TMUX_TLS_CTL, Transmit Low-Speed Control Parameters (R/W)....................................................104
Table 116. TMUX_THS_PORT_CTL, Transmit High-Speed Port Control Parameters (R/W)...............................105
Table 117. TMUX_THS_TOH_CTL, Transmit High-Speed Control Parameters (R/W).........................................105
Table 118. TMUX_THS_POH[1—3]_CTL, Transmit High-Speed Control Parameters (R/W) ...............................107
Table 119. TMUX_TLRDI_CTL, Transmit High-Speed Line RDI Control Parameters (R/W) ................................ 111
Table 120. TMUX_TPRDI_CTL, Transmit High-Speed Path RDI Control Parameters (R/W)............................... 111
Table 121. TMUX_TZ0_INS_VAL, Transmit TOH and POH Insert Values (R/W)..................................................112
Table 122. TMUX_TS1_F1_INS_VAL, Transmit TOH and POH Insert Values (R/W)...........................................112
Table 123. TMUX_TAPS_INS_VAL, Transmit TOH and POH Insert Values (R/W)...............................................112
Table 124. TMUX_TPOH[1—3]_INS_[A—C], Transmit TOH and POH Insert Values (R/W) ................................112
Table 125. TMUX_TBERINS_CTL, Transmit High-Speed Error Insertion Control Parameters (R/W) ..................114
Table 126. TMUX_THS_ERR_CTL, Transmit High-Speed Error Insertion Control Parameters (R/W).................115
Table 127. TMUX_TOAC_CTL, Receive/Transmit TOAC/POAC Control Parameters (R/W)................................115
Table 128. TMUX_RPOAC_CTL, Receive/Transmit TOAC/POAC Control Parameters (R/W).............................117
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
78 Agere Systems Inc.
8 TMUX Registers (continued)
Table of Conten ts (continued)
Tables Page
Table 129. TMUX_TFRAMEOFFSET, Transmit High-Speed Offset Control Parameters (R/W) ...........................118
Table 130. TMUX_SD_CTL[1—6], B1/B2 Signal Degrade Set/Clear Control Registers (R/W).............................118
Table 131. TMUX_SF_CTL[1—6], B1/B2 Signal Fail Set/Clear Control Registers (R/W).....................................119
Table 132. TMUX_B3SD_CTL[1—6], B3 Signal Degrade Set/Clear Control Registers (R/W)..............................119
Table 133. TMUX_B3SF_CTL[1—6], B3 Signal Fail Set/Clear Control Registers (R/W)......................................120
Table 134. TMUX_B1ECNT, Receive B1 Error Counts (RO) ................................................................................120
Table 135. TMUX_B2ECNT_17_16 and TMUX_B2ECNT_15_0, Receive B2 Error Counts (RO)........................121
Table 136. TMUX_B3ECNT[1—3], Receive B3 Error Counts (RO) ......................................................................121
Table 137. TMUX_M1ECNT_17_16 and TMUX_M1ECNT_15_0, Receive M1 Error Counts (RO)......................122
Table 138. TMUX_G1ECNT[1—3], Receive G1 Error Counts (RO)......................................................................122
Table 139. TMUX_RPTR_INCCNT[1—3], Receive Pointer Increment Count (RO)..............................................123
Table 140. TMUX_RPTR_DECCNT[1—3], Receive Pointer Decrement Count (RO)...........................................123
Table 141. TMUX_RJ0EXPECTED[1—8], Expected J0 Byte Sequence (R/W)....................................................123
Table 142. TMUX_RJ0CAPTURED[1—8], Captured J0 Receive Value (RO).......................................................123
Table 143. TMUX_TJ0VALUE[1—8], J0 Byte Transmit Insert (R/W) ....................................................................123
Table 144. TMUX_RJ1EXPECTED1_[1—32], Expected J1 Byte Value for Port 1 (R/W) .....................................124
Table 145. TMUX_RJ1EXPECTED2_[1—32], Expected J1 Byte Value for Port 2 (R/W) .....................................124
Table 146. TMUX_RJ1EXPECTED3_[1—32], Expected J1 Byte Value for Port 3 (R/W) .....................................124
Table 147. TMUX_RJ1CAPTURED1_[1—32], Captured J1 Value for STS #1 (RO).............................................124
Table 148. TMUX_RJ1CAPTURED2_[1—32], Captured J1 Value for STS #2 (RO).............................................124
Table 149. TMUX_RJ1CAPTURED3_[1—32], Captured J1 Value for STS #3 (RO).............................................124
Table 150. TMUX_TJ1VALUE_1[1—32], J1 Byte Transmit Insert for STS #1 (R/W)............................................125
Table 151. TMUX_TJ1VALUE_2[1—32], J1 Byte Transmit Insert for STS #2 (R/W)............................................125
Table 152. TMUX_TJ1VALUE_3[1—32], J1 Byte Transmit Insert for STS #3 (R/W)............................................125
Table 153. TMUX Register Map ............................................................................................................................126
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
79Agere Systems Inc.
8 TMUX Registers (continued)
8.1 TMUX Register Descrip tions
This section provides a brief description of each register bit and its functionality. The abbreviations after each regis-
ter indicate if the register is read only (RO), clear-on-read/clear-on-write (COR/COW), or read/write (R/W).
Table 87. TMUX_ID_R, TMUX Identification Register (RO)
Table 88. TMUX_ONESHOT, TMUX One-Shot Register 0 to 1 (R/W)
Table 89. TMUX_RCV_TX_MODE, TMUX Receive/Transmit Mode (R/W)
Address Bit Name Function Reset
Default
0x40000 15:11 RSVD Reserved. 0x0
10:8 TMUX_VERSION[2:0] Block Version Number. Block version register will
change each time the device is changed. 0x0
7:0 TMUX_ID[7:0] Block ID Number. 0x04
Address Bit Name Function Reset
Default
0x40002 15:8 RSVD Reserved. 0x00
7 TMUX_B3SFCLEAR B3 Signal Fail Clear . Allows the signal fail algorithm to be
forced into the normal state. 0
6 TMUX_B3SFSET B3 Signal Fail Set. Allows the signal fail algorithm to be
forced into the failed state. 0
5 TMUX_B3SDCLEAR B3 Signal Degra de Clear. Allows the signal degrade
algorithm to be forced into the normal state. 0
4 TMUX_B3SDSET B3 Signal Degrade Set. Allows the signal degrade algo-
rithm to be forced into the degra ded sta te. 0
3 TMUX_SFCLEAR Signal Fail Clear. Allows the signal fail algorithm to be
forced into the normal state. 0
2 TMUX_SFSET Signal Fail Set. Allows the signal fail algorithm to be
forced into the failed state. 0
1 TMUX_SDCLEAR Signal Degrade Clear. Allows the signal degrade algo-
rithm to be forced into the normal state. 0
0 TMUX_SDSET Signal Degrade Set. Allows the signal degrade algorithm
to be forced into the degraded state. 0
Address Bit Name Function Reset
Default
0x40003 15:1 RSVD Reserved. 0x000
0 TMUX_STS1MODE STS-1 Mode Control Bit. A 1 indicates that the received
and transmitted high-speed data is STS-1 data operating
at 52 MHz. A 0 indicates that the received and transmitted
high-speed data operates at 155 MHz.
0
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
80 Agere Systems Inc.
8 TMUX Registers (continued)
Table 90. TMUX_TX_DLT, Delta/Event (COR/COW)
Table 91. TMUX_RPS_DLT, Delta/Event (COR/COW)
Address Bit Name Function Reset
Default
0x40004 15:7 RSVD Reserved. 0x000
6:4 TMUX_TLSPARE[3:1] Transmit Low-Speed Parity Error Event (Input Port Num-
ber). This event bit indicates a byte transfer parity error was
detected on the respective STS-1/AU-3 input. The mask bits
are TMUX_TLSPARM[3:1] (Table 94 on page 89).
0
3 TMUX_TPOAC_PE Transmit Path Overhead Access Channel (TPOAC) Par-
ity Error Even t. This event bit indicates a parity error was
detected on the incoming transmit path overhead access
channel. The mask bit is TMUX_TPOAC_PM (Table 94 on
page 89).
0
2 TMUX_TTOAC_PE Transmit Transport Overhead Access Channel (TTOAC)
Parity Error Event. This event bit indicates a parity error
was detected on the incoming transmit transport overhead
access channel. The mask bit is TMUX_TTOAC_PM
(Table 94 on page 89).
0
1 TMUX_THSILOFD Transmit High-Speed Input Loss of Frame Delta. Th is
delta bit indicates a change of state for the transmit loss of
frame bit TMUX_THSILOF (Table 99 on page 93). The mask
bit is TMUX_THSILOFM (Table 94 on page 89).
0
0 TMUX_THSILOCD Transmit High-Speed Input Loss of Clock Delta. This
delta bit indicates a change of state for the transmit loss of
high-speed clock bit TMUX_THSILOC (Table 99 on
page 93). The mask bit is TMUX_THSILOCM (Table 94 on
page 89).
0
Address Bit Name Function Reset
Default
0x40005 15:6 RSVD Reserved. 0x000
5 TMUX_RPSLOFD Receive Protection High-Speed Loss of Frame Delta.
This delta bit indicates a change in state of TMUX_RPSLOF
(Table 100 on page 93). The mask bit is TMUX_RPSLOFM
(Table 95 on page 90).
0
4 TMUX_RPSOOFD Receive Protection High-Speed Out of Frame Delta. This
delta bit indicates a change in state of TMUX_RPSOOF
(Table 100). The mask bit is TMUX_RPSOOFM (Table 95).
0
3 TMUX_RPSILOCD Receive Protection High-Speed Loss of Input Clock
Delta. This delta bit indicates a change in state of the
TMUX_RPSILOC (Table 100) state bit. T he mask bi t is
TMUX_RPSILOCM (Table 95).
0
2TMUX_RPSB2EReceive Prote ct ion High -Spee d B2 Error Even t. This
event bit indicates a B2 error was detected in the receive pro-
tection input. The mask bit is TMUX_RPSB2M (Table 95).
0
1 TMUX_RPSLREIE Rece ive Prote ct ion High -Spee d Lin e REI Event. This
event bit indicates a line REI error was detected in the
receive protection input. The mask bit is TMUX_RPSLREIM
(Table 95).
0
0RSVDReserved. 0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
81Agere Systems Inc.
8 TMUX Registers (continued)
Table 92. TMUX_RHS_DLT, Delta/Event (COR/COW)
Address Bit Name Function Reset
Default
0x40006 15 RSVD Reserved. 0
14 TMUX_RS1BABE Receive S1 Babble Event. This event bit indicates an inconsis-
tent S1 value is being received. The event is triggered if
TMUX_CNTDS 1FRAM E[3:0] (Table 108 on page 100) co nsec-
utive frames pass without a validated message occurring. The
mask bit is TMUX_RS1BABM (Table 96 on page 90).
0
13 TMUX_RS1MOND Receive S1 Monitor Delta. This delta bit indicates a change of
state for TMUX_RS1MON[7:0] (Table 113 on page 102). A new
S1 value is detected after TMUX_CNTDS1[3:0] (Table 108 on
page 100) consecutive occurrences of a consistent new value
in the S1 byte. The mask bit is TMUX_RS1MONM.
0
12 TMUX_RLRDIMOND Receive Line RDI Monitor Delta. This delta bit indicates a
change in state for TMUX_RLRDIMON (Table 101 on page 94)
when the pattern 110 is detected/not detected
TMUX_CNTDK2[3:0] (Table 108 on page 100) consecutive
times in the incoming STS-3/STM-1 frame. The mask bit is
TMUX_RLRDIMONM (Table 96 on page 90).
0
11 TMUX_RLAISMOND Receive Line AIS Monitor Delta. This delta bit indicates a
change in state for TMUX_RLAISMON (Table 101 on page 94)
when the pattern 111 is detected/not detected
TMUX_CNTDK2[3:0] consecutive times in the incoming STS-3/
STM-1 frame. The mask bit is TMUX_RLAISMONM (Table 96
on page 90).
0
10 TMUX_RK2MOND Receive K2 Monitor Delta. This delta bit indicates a change in
state for TMUX_K2MON[2:0] (Table 112 on page 102). A new
K2 value is detected after TMUX_CNTDK2[3:0] consecutive
occurrences of a consistent new value in the three least signifi-
cant bits of the incoming K2 byte. Note that this delta bit may be
coincid ent with TMUX_RLR DIMOND and
TMUX_RLAISMOND. The mask bit is TMUX_RK2MONM
(Table 96 on page 90).
0
9 TMUX_RAPSBABE Receive APS Babble Event. This event bit indicates when an
inconsistent APS value has been detected
TMUX_CNTDK1K2[3:0] (Table 108 on page 100) times in the
incoming TMUX_CNTDK1K2FRAME[3:0] (Table 108 on
page 100) consecutive frames. The mask bit is
TMUX_RAPSBABM (Table 96 on page 90).
0
8 TMUX_RAPSMOND Receive APS Monitor Delta. This delta bit indicates a change
in state in the received APS value TMUX_RAPSMON[12:0]
(Table 112 on page 102) when a new consistent value is
detected TMUX_CNTDK1K2[3:0] times in the K1 and K2[7:3]
bits. The mask bit is TMUX_RAPSMONM (Table 96 on
page 90).
0
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
82 Agere Systems Inc.
8 TMUX Registers (continued)
Table 92. TMUX_RHS_DLT, Delta/Event (COR/COW) (continued)
Address Bit Name Function Reset
Default
0x40006 7 TMUX_RF1MOND Receive F1 Monitor Delta. This delta bit indicates a change in
state of TMUX_RF1MON0[7:0] and TMUX_RF1MON1[7:0]
(Table 111 on page 102) when a consistent new value is
detected in the incoming F1 byte for TMUX_CNTDF1[3:0]
(Table 108 on page 100) continuous frames. The current value is
stored in TMUX_RF1MON0[7:0], and the previous value is
stored in TMUX_RF1MON0[7:0]. The mask bit is
TMUX_RF1MONM (Table 96 on page 90).
0
6 TMUX_RTIMSD Receive Section Trace Identifier Mismatch Delta. This delta
bit indicates a change in state in the received 16-byte J0
sequence of bytes if the J0 mode is programmed to receive a 16-
byte sequence. The mask bit is TMUX_RTIMSM (Table 96 on
page 90).
0
5 TMUX_RHSSFD Receive High-Speed Signal Fail BER Algorithm Delta. This
delta bit indicates a change of state for the signal fail BER algo-
rithm state bit TMUX_RHSSF (Table 101 on page 94). The mask
bit for this delta bit is TMUX_RHSSFM (Table 96 on page 90).
0
4 TMUX_RHSSDD Receive High-Speed Signal Degrade BER Algorithm Delta.
This delta bit indicates a change of state for the signal degrade
BER algorithm state bit TMUX_RHSSD (Table 101 on page 94).
The mask bit is TMUX_RHSSDM (Table 96 on page 90).
0
3 TMUX_RHSLOSD Receive High-Speed Loss of Signal Delta. This delta bit
indicates a change in state of either TMUX_RHSLOS (Table 101
on page 94) or TMUX_RHSLOSEXTI (Table 101 on page 94).
TMUX_RHSLOSEXTI is an external input from a device pin.
TMUX_RHSLOS is an internally generated state bit based on
monitoring for a consecutive 0/1s pattern in the data input. The
mask bit is TMUX_RHSLOSM (Table 96 on page 90).
0
2 TMUX_RHSLOFD Receive High-Speed Loss of Frame Delta. This delta bit indi-
cates a change in state of TMUX_RHSLOF (Table 101 on
page 94). The mask bit is TMUX_RHSLOFM (Table 96 on
page 90).
0
1 TMUX_RHSOOFD Receive High-Speed Out of Frame Delta. This delta bit indi-
cates a change in state of TMUX_RHSOOF (Table 101 on
page 94). The mask bit is TMUX_RHSOOFM (Table 96 on
page 90).
0
0 TMUX_RHSILOCD Receive High-Speed Loss of Input Clock Delta. This delta bit
indicates a change in state of the TMUX_RHSILOC (Table 101
on page 94) state bit. The mask bit is TMUX_RHSILOCM
(Table 96 on page 90).
0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
83Agere Systems Inc.
8 TMUX Registers (continued)
Table 93. TMUX_RPOH[1—3]_DLT, Delta/Event (COR/COW)
Address Bit Name Function Reset
Default
0x40007 15 TMUX_RSFB3D1 Receive Path Signal Fail BER Algorithm Delta. This delta
bit indicates a change of state for the signal fail BER algo-
rithm state bit TMUX_RSFB31 (Table 102 on page 94) at the
path level for port 1. Only port 1 information is valid in AU-4
mode and in STS-1 mode. The mask bit is TMUX_RSFB3M1
(Table 97 on page 91).
0
14 TMUX_RSDB3D1 Receive Path Signal Degrade BER Algorithm Delta. This
delta bit indicates a change of state for the signal fail BER
algorithm state bit TMUX_RSDB31 (Table 102 on page 94)
at the path level for port 1. Only port 1 information is valid in
AU-4 mode and in STS-1 mode. The mask bit is
TMUX_RSDB3M1 (Table 97 on page 91).
0
13 TMUX_RUNEQPE1 Receive Path Unequipped Event. This event bit ind ic ate s
that the current value of the received C2 (signal label) byte,
TMUX_C2MON1[7:0] (Table 114 on page 103), has a value
0x00, indicating unequipped payload on port 1. Only port 1
information is valid in AU-4 mode and in STS-1 mode. The
mask bit is TMUX_RUNEQPM1 (Table 97 on page 91).
0
12 TMUX_RPLMPE1 Receive Path Payload Label Mismatch Event. This event
bit indicates that the current value of the received C2 (signal
label) byte, TMUX_C2MON1[7:0], differs from the expected
C2 value, TMUX_C2EXP1[7:0] (Table 110 on page 102), for
port 1. Only port 1 information is valid in AU-4 mode and in
STS-1 mode. The mask bit is TMUX_RPLMPM1 (Table 97
on page 91).
0
11 TMUX_RN1MOND1 Receive N1 Monitor Delta. This delta bit indicates a change
in state in TMUX_ N 1M ON 1[7:0] (Table 114 on page 103).
The N1 current value is updated when a consecutive and
consistent value is detected in the incoming N1 byte for
TMUX_CNTDN1[3:0] (Table 109 on page 101) frames on
port 1. Only port 1 information is valid in AU-4 mode and in
STS-1 mode. The mask bit is TMUX_RN1MONM1 (Table 97
on page 91).
0
10 TMUX_RK3MOND1 Receive K3 Monitor Delta. This delta bit indicates a change
in state in TMUX_ K3 MO N1[7:0] (Table 114 on page 103),
which is updated when a consecutive and consistent value is
detected in the incoming K3 byte for TMUX_CNTDK3[3:0]
(Table 109 on page 101) frames on port 1. Only port 1 infor-
mation is valid in AU-4 mode and in STS-1 mode. The mask
bit is TMUX_RK3MONM1 (Table 97 on page 91).
0
9 TMUX_RF3MOND1 Receive F3 (Path User Byte) Monitor Delta. This delta bit
indicates a change in state in TMUX_F3MON01[7:0]
(Table 114 on page 103), which is updated when a consecu-
tive and consistent value is detected in the incoming F3 byte
for TMUX_CNTDF3[3:0] (Table 109 on page 101) frames on
port 1. Only port 1 information is valid in AU-4 mode and in
STS-1 mode. The mask bit is TMUX_RF3MONM1 (Table 97
on page 91).
0
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
84 Agere Systems Inc.
8 TMUX Registers (continued)
Table 93. TMUX_RPOH[1—3]_DLT, Delta/Event (COR/COW) (continued)
Address Bit Name Function Reset
Default
0x40007 8 TMUX_RF2MOND1 Receive F2 (Path User Byte) Monitor Delta. This delta bit
indicates a change in state in TMUX_F2MON01[7:0]
(Table 114 on page 103), which is updated when a consecu-
tive and consistent value is detected in the incoming F2 byte
for TMUX_CNTDF2[3:0] (Table 109 on page 101) frames on
port 1. Only port 1 information is valid in AU-4 mode and in
STS-1 mode. The mask bit is TMUX_RF2MONM1 (Table 97
on page 91).
0
7 TMUX_RRDIPD1 Receive Path RDI (Remote Defect Indication) Monitor
Delta. This delta bit indicates a change in state in
TMUX_RDIP MON1[2:0] (Table 114 on page 103), that
occurs when a consecutive and consistent new value is
detected in the incoming G1[3:1] bits for
TMUX_CNTDRDIP[3:0] (Table 109 on page 101) frames on
port 1. The device monitors either G1 bit 3 or G1[3:1],
dependi ng on TM UX_ REP RDI_ MO DE (Tab le 105 on
page 97). Only port 1 information is valid in AU-4 mode and
in STS-1 mode. The mask bit is TMUX_RRDIPM1 (Table 97
on page 91).
0
6 TMUX_RC2MOND1 Receive C2 (Signal Label) Monitor Delta. This delta bit
indicates a change in state in TMUX_C2MON1[7:0]
(Table 114 on page 103), which is updated when a consecu-
tive and consistent value is detected in the incoming C2 byte
for TMUX_CNTDC2[3:0] (Table 109 on page 101) frames on
port 1. Only port 1 information is valid in AU-4 mode and in
STS-1 mode. The mask bit is TMUX_RC2MONM1 (Table 97
on page 91).
0
5 TMUX_RTIMPD1 Receive Path Trace Identifier Mismatch Delta. This delta
bit indicates a change in state in the received 16-byte J1
sequence on port 1 if the J1 mode is programmed to receive
a 16-byte sequence. Only port 1 information is valid in AU-4
mode and in STS-1 mode. The mask bit is TMUX_RTIMPM1
(Table 97 on page 91).
0
4 TMUX_RNDFE1 Receive New Data Flag Event. This event bit indicates that
the incoming pointer has the new data flag enabled, causing
a jump in the current pointer location for port 1. Only port 1
information is valid in AU-4 mode and in STS-1 mode. The
mask bit is TMUX_RNDFM1 (Table 97 on page 91).
0
3 TMUX_RDECE1 Receive Pointer Decrement Event. This event bit indicates
that a valid incoming pointer decrement indication was
received on port 1. Only port 1 information is valid in AU-4
mode and in STS-1 mode. The mask bit is TMUX_RDECM1
(Table 97 on page 91).
0
2 TMUX_RINCE1 Receive Pointer Increment Event. This event bit indicates
that a valid incoming pointer increment indication was
received on port 1. Only port 1 information is valid in AU-4
mode and in STS-1 mode. The mask bit is TMUX_RINCM1
(Table 97 on page 91).
0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
85Agere Systems Inc.
8 TMUX Registers (continued)
Table 93. TMUX_RPOH[1—3]_DLT, Delta/Event (COR/COW) (continued)
Address Bit Name Function Reset
Default
0x4007 1 TMUX_RPAISD1 Rec eive Path AIS Delta. This delta bit indicates a change in
state of the TMUX_RPAIS1 (Table 102 on page 94) state bit,
which designates that the port 1 pointer interpreter is in the
alarm indication signal state. Only port 1 information is valid in
AU-4 mode and in STS-1 mode. The mask bit is
TMUX_RPAISM1 (Tab le 97 on page 91).
0
0 TMUX_RLOPD1 Receive Loss of Pointer Delta. This delta bit indicates a
change in state of the TMUX_RLOP1 (Table 102 on page 94)
state bit, which designates that the port 1 pointer interpreter is
in the loss of pointer state. Only port 1 information is valid in
AU-4 mode. The mask bit is TMUX_RLOPM1 (Table 97 on
page 91).
0
0x40008 15 TMUX_RSFB3D2 Receive Path Signal Fail BER Algorithm Delta. This delta
bit indicates a change of state for the signal fail BER algorithm
state bit TMUX_RSFB32 (Table 102 on page 94) at the path
level for port 2. Only port 1 information is valid in AU-4 mode
and in STS-1 mode. The mask bit is TMUX_RSFB3M2
(Table 97 on page 91).
0
14 TMUX_RSDB3D2 Receive Path Signal Degrade BER Algorithm Delta. This
delta bit indicates a change of state for the signal fail BER
algorithm state bit TMUX_RSDB32 (Table 102 on page 94) at
the path level for port 2. Only port 1 information is valid in AU-
4 mode and in STS-1 mode. The mask bit is
TMUX_RHSSDB3M2.
0
13 TMUX_RUNEQPD2 Receive Path Unequipped Delta. This delta bit indicates that
the current value of the received C2 (signal label) byte,
TMUX_C2MON2[7:0] (Table 114 on page 103), has a value
0x00, indicating unequipped payload for port 2. Only port 1
information is valid in AU-4 mode and in STS-1 mode. The
mask bit is TMUX_RUNEQPM2 (Table 97 on page 91).
0
12 TMUX_RPLMPD2 Receiv e Path P ayloa d Labe l Mism atch D elta. This event bit
indicates that the current value of the received C2 (signal
label) byte, TMUX_C2MON2[7:0], differs from the expected
C2 value, TMUX_C2EXP2[7:0] (Table 110 on page 102) for
port 2. Only port 1 information is valid in AU-4 mode and in
STS-1 mode. The mask bit is TMUX_RPLMPM2 (Table 97 on
page 91).
0
11 TMUX_RN1MOND2 Receive N1 Monitor Delta. This delta bit indicates a change
in state in TMUX_ N 1M ON 2[7:0 ] (Table 114 on page 103).
The N1 current value is updated when a consecutive and con-
sistent value is detected in the incoming N1 byte for
TMUX_CNTDN1[3:0] (Table 109 on page 101) frames on port
2. Only port 1 information is valid in AU-4 mode and in STS-1
mode. The mask bit is TMUX_RN1MONM2 (Table 97 on
page 91).
0
10 TMUX_RK3MOND2 Receive K3 Monitor Delta. This delta bit indicates a change
in state in TMUX_ K3 MO N2[7:0] (Table 114 on page 103),
which is updated when a consecutive and consistent value is
detected in the incoming K3 byte for TMUX_CNTDK3[3:0]
(Table 109 on page 101) frames on port 2. Only port 1 infor-
mation is valid in AU-4 mode and in STS-1 mode. The mask
bit is TMUX_RK3MONM2 (Table 97 on page 91).
0
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
86 Agere Systems Inc.
8 TMUX Registers (continued)
Table 93. TMUX_RPOH[1—3]_DLT, Delta/Event (COR/COW) (continued)
Address Bit Name Function Reset
Default
0x40008 9 TMUX_RF3MOND2 Receive F3 (Path User Byte) Monitor Delta. This delta bit indi-
cates a change in state in TMUX_F3MON02[7:0] (Table 114 on
page 103), which is updated when a consecutive and consistent
value is detected in the incoming F3 byte for
TMUX_CNTDF3[3:0] (Table 109 on page 101) frames on port 2.
Only port 1 information is valid in AU-4 mode and in STS-1
mode. The mask bit is TMUX_RF3MONM2 (Table 97 on
page 91).
0
8 TMUX_RF2MOND2 Receive F2 (Path User Byte) Monitor Delta. This delta bit indi-
cates a change in state in TMUX_F2MON02[7:0] (Table 114 on
page 103), which is updated when a consecutive and consistent
value is detected in the incoming F2 byte for
TMUX_CNTDF2[3:0] (Table 109 on page 101) frames on port 2.
Only port 1 information is valid in AU-4 mode and in STS-1
mode. The mask bit is TMUX_RF2MONM2 (Table 97 on
page 91).
0
7 TMUX_RRDIPD2 Receive Path RDI (Remote Defect Indication) Monitor Delta.
This delta bit indicates a change in state in
TMUX_ RDIPMO N2[ 2:0] (Table 114 on page 103), whi ch occu rs
when a consecutive and consistent new value is detected in the
incoming G1[3:1] bits for TMUX_CNTDRDIP[3:0] (Table 109 on
page 101) frames on port 2. The device monitors either G1 bit 3
or G1[3:1], depending on TMUX_REPRDI_MODE (Table 105
on page 97). Only port 1 information is vali d in AU-4 mode and
in STS-1 mode. The mask bit is TMUX_RRDIPM2 (Table 97 on
page 91).
0
6 TMUX_RC2MOND2 Receive C2 (Signal Label) Monitor Delta. This delta bit indi-
cates a change in state in TMUX_C2MON2[7:0] (Tab le 114 on
page 103), which is updated when a consecutive and consistent
value is detected in the incoming C2 byte for
TMUX_CNTDC2[3:0] (Table 109 on page 101) frames on port 2.
Only port 1 information is valid in AU-4 mode and in STS-1
mode. The mask bit is TMUX_RC2MONM2 (Table 97 on
page 91).
0
5 TMUX_RTIMPD2 Receive Path Trace Identifier Mismatch Delta. This delta bit
indicates a change in state in the received 16-byte J1 sequence
for port 2 if the J1 mode is programmed to receive a 16-byte
sequence. Only port 1 information is valid in AU-4 mode and in
STS-1 mode. The mask b it is TMUX_RTIMPM2 (Table 97 on
page 91).
0
4 TMUX_RNDFE2 Receive New Data Flag Event. This event bit indicates that the
incoming pointer has the new data flag enabled for port 2, caus-
ing a jump in the current pointer location. Only port 1 information
is valid in AU-4 mode and in STS-1 mode. The mask bit is
TMUX_RNDFM2 (Table 97 on page 91 ).
0
3 TMUX_RDECE2 Receive Pointer Decrement Event. This event bit indicates
that a valid incoming pointer decrement indication was received
on por t 2. Only port 1 inf ormation is valid in AU-4 mode and in
STS-1 mode. The mask bit is TMUX_RDECM2 (Table 97 on
page 91). However, increment and decrement event indication
should be ignored during loss of pointer (LOP) condition.
0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
87Agere Systems Inc.
8 TMUX Registers (continued)
Table 93. TMUX_RPOH[1—3]_DLT, Delta/Event (COR/COW) (continued)
Address Bit Name Function Reset
Default
0x40008 2 TMUX_RINCE2 Receive Pointer Increment Event. This event bit indicates
that a valid incoming pointer increment indication was
received on port 2. Only port 1 information is valid in AU-4
mode and in STS-1 mode. The mask bit is TMUX_RINCM2
(Table 97 on page 91). However, increment and decrement
event indication should be ignored during loss of pointer
(LOP) condition.
0
1 TMUX_RPAISD2 Receive Path AIS Delta. This delta bit indicates a change in
state of the TMUX_RPAIS2 (Table 102 on page 94) state bi t,
which designates that the port 2 pointer interpreter is in the
alarm indication signal state. Only port 1 information is valid
in AU-4 mode and in STS-1 mode. The mask bit is
TMUX_RPAISM2 (Table 97 on page 91).
0
0 TMUX_RLOPD2 Receive Loss of Pointer Delta. This delta bit indicates a
change in state of the TMUX_RLOP2 (Table 102 on
page 94) state bit, which designates that the port 2 pointer
interpreter is in the loss of pointer state. Only port 1 informa-
tion is valid in AU-4 mode. The mask bit is TMUX_RLOPM2
(Table 97 on page 91).
0
0x40009 15 TMUX_RSFB3D3 Receive Path Signal Fail BER Algorithm Delta. This delta
bit indicates a change of state for the signal fail BER algo-
rithm state bit TMUX_RSFB32 (Table 102 on page 94) at the
path level for port 3. Only port 1 information is valid in AU-4
mode and in STS-1 mode. The mask bit is TMUX_RSFB3M3
(Table 97 on page 91).
0
14 TMUX_RSDB3D3 Receive Path Signal Degrade BER Algorithm Delta. This
delta bit indicates a change of state for the signal fail BER
algorithm state bit TMUX_RSDB32 (Table 102 on page 94)
at the path level for port 3. Only port 1 information is valid in
AU-4 mode and in STS-1 mode. The mask bit is
TMUX_RSDB3M3 (Table 97 on page 91).
0
13 TMUX_RUNEQPE3 Receive Path Unequipped Event. This event bit indicates
that the current value of the received C2 (signal label) byte,
TMUX_C2MON3[7:0] (Table 114 on page 103), has a value
0x00, indicating unequipped payload for port 3. Only port 1
information is valid in AU-4 mode and in STS-1 mode. The
mask bit is TMUX_RUNEQPM3 (Table 97 on page 91).
0
12 TMUX_RPLMPE3 Receive Path Payload Label Mismatch Event. This event
bit indicates that the current value of the received C2 (signal
label) byte, TMUX_C2MON3[7:0], differs from the expected
C2 value, TMUX_C2EXP3[7:0] (Table 110 on page 102) fo r
port 3. Only port 1 information is valid in AU-4 mode and in
STS-1 mode. The mask bit is TMUX_RPLMPM3 (Table 97
on page 91).
0
11 TMUX_RN1MOND3 Rece ive N1 Mo nito r Delt a. This delta bit indicates a change
in state in TMUX_N1MON3[7:0] (Table 114 on page 103).
The N1 current value is updated when a consecutive and
consistent value is detected in the incoming N1 byte for
TMUX_CNTDN1[3:0] (Table 109 on page 101) frames on
port 3. Only port 1 information is valid in AU-4 mode and in
STS-1 mode. The mask bit is TMUX_RN1MONM3 (Table 97
on page 91).
0
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
88 Agere Systems Inc.
8 TMUX Registers (continued)
Table 93. TMUX_RPOH[1—3]_DLT, Delta/Event (COR/COW) (continued)
Address Bit Name Function Reset
Default
0x40009 10 TMUX_RK3MOND3 Receive K3 Monitor Delta. This delta bit indicates a change in
state in TMUX_K3MON3[7:0] (Table 114 on page 103), which
is updated when a consecutive and consistent value is
detected in the incoming K3 byte for TMUX_CNTDK3[3:0]
(Table 109 on page 101) frames on port 2. Only port 1 informa-
tion is valid in AU-4 mode and in STS-1 mode. The mask bit is
TMUX_RK3MONM3 (Table 97 on page 91).
0
9 TMUX_RF3MOND3 Receive F3 (Path User Byte) Monitor Delta. This delta bit
indicates a change in state in TMUX_F3MON03[7:0]
(Table 1 14 on page 103), which is updated when a consecutive
and consistent value is detected in the incoming F3 byte for
TMUX_CNTDF3[3:0] (Table 109 on page 101) frames on port
3. Only port 1 information is valid in AU-4 mode and in STS-1
mode. The mask bit is TMUX_RF3MONM3 (Table 97 on
page 91).
0
8 TMUX_RF2MOND3 Receive F2 (Path User Byte) Monitor Delta. This delta bit
indicates a change in state in TMUX_F2MON03[7:0]
(Table 1 14 on page 103), which is updated when a consecutive
and consistent value is detected in the incoming F2 byte for
TMUX_CNTDF2[3:0] (Table 109 on page 101) frames on port
3. Only port 1 information is valid in AU-4 mode and in STS-1
mode. The mask bit is TMUX_RF2MONM3 (Table 97 on
page 91).
0
7 TMUX_RDIPD3 Receive Path RDI (Remote Defect Indication) Monitor
Delta. This delta bit indicates a change in state in
TMUX_RDIP MON3[2:0] (Table 114 on page 103), which
occurs when a consecutive and consistent new value is
detected in the incoming G1[3:1] bits for
TMUX_CNTDRDIP[3:0] (Table 109 on page 101) frames on
port 3. The device monitors either G1 bit 3 or G1[3:1], depend-
ing on TMUX_REPRDI_MODE (Table 105 on page 97). On ly
port 1 information is valid in AU-4 mode and in STS-1 mode.
The mask bit is TMUX_RRDIPM3 (Table 97 on page 91).
0
6 TMUX_RC2MOND3 Receive C2 (Signal Label) Monitor Delta. This delta bit indi-
cates a change in state in TMUX_C2MON3[7:0] (Tab le 114 on
page 103), which is updated when a consecutive and consis-
tent value is detected in the incoming C2 byte for
TMUX_CNTDC2[ 3:0] (Table 109 on page 101) frames on port
3. Only port 1 information is valid in AU-4 mode and in STS-1
mode. The mask bit is TMUX_RC2MONM3 (Table 97 on
page 91).
0
5 TMUX_RTIMPD3 Receive Path Trace Identifier Mismatch Delta. This delta bit
indicates a change in state in the received 16-byte J1
sequence for port 3 if the J1 mode is programmed to receive a
16-byte sequence. Only port 1 information is valid in AU-4
mode and in STS-1 mode. The mask bit is TMUX_RTIMPM3
(Table 97 on page 91).
0
4 TMUX_RNDFE3 Receive New Data Flag Event. This event bit indicates that
the incoming pointer has the new data flag enabled, causing a
jump in the current pointer location for port 3. Only port 1 infor-
mation is valid in AU-4 mode and in STS-1 mode. The mask bit
is TMUX_RNDFM3 (Table 97 on page 91).
0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
89Agere Systems Inc.
8 TMUX Registers (continued)
Table 93. TMUX_RPOH[1—3]_DLT, Delta/Event (COR/COW) (continued)
Note: In Table 94, the mask bits are set to suppress an interrupt when the corresponding event has occurred or
change in state has taken place.
Table 94. TMUX_TX_MSK, Mask Bits for INT Interrupt Signal (R/W) (Mask = 1, No Mask = 0)
Note: In Table 95, the mask bits are set to suppress an interrupt when the corresponding event has occurred or
change in state has taken place.
Address Bit Name Fu nction Reset
Default
0x40009 3 TMUX_RDECE3 Receive Pointer Decrement Event. This event bit indicates
that a valid incoming pointer decrement indication was received
on port 3. Only port 1 information is valid in AU-4 mode and in
STS-1 mode. The mask bit is TMUX_RDECM3 (Table 97 on
page 91).
0
2 TMUX_RINCE3 Receive Pointer Increment Event. This event bit indicates that
a valid incoming pointer increment indication was received on
port 3. Only port 1 information is valid in AU-4 mode and in
STS-1 mode. The mask bit is TMUX_RINCM3 (Table 97 on
page 91).
0
1 TMUX_RPAISD3 Receive Path AIS Delta. This delta bit indicates a change in
state of the TMUX_RPAIS3 (Table 102 on page 94) state bit,
which designates that the port 3 pointer interpreter is in the
alarm indication signal state. Only port 1 information is valid in
AU-4 mode and in STS-1 mode. The mask bit is
TMUX_RPAISM3 (Table 97 on page 91).
0
0TMUX_RLOPD3Receive Loss of Pointer Delta. This delta bit indicates a
change in state of the TMUX_RLOP3 (Table 102 on page 94)
state bit, which designates that the port 3 pointer interpreter is in
the loss of pointer state. Only port 1 information is valid in AU-4
mode. The mask bit is TMUX_RLOPM3 (Table 97 on page 91).
0
Address Bit Name Function Reset
Default
0x4000A 15:7 RSVD Reserved. 0x000
6:4 TMUX_TLSPARM[3:1] Transmit Low-Speed Parity Error Mask (Input Port
Number). See Table 90 on page 80 for description. 1
3 TMUX_TPOAC_PM Transmit Path Overhead Access Channel (TPOAC) Par-
ity Error Mask. See Table 90 for description. 1
2 TMUX_TTOAC_PM Transmit Transport Overhead Access Channel
(TTOAC) P arity Error Mask. See Table 90 for description. 1
1 TMUX_THSILOFM Transmit High-Speed Input Loss of Frame Mask. See
Table 90 for description. 1
0 TMUX_THSILOCM Transmit High-Speed Input Loss of Clock Mask. See
Table 90 for description. 1
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
90 Agere Systems Inc.
8 TMUX Registers (continued)
Table 95. TMUX_RPS_MSK, Mask Bits for INT Interrupt Signal (R/W) (Mask = 1, No Mask = 0)
Note: In Table 96, the mask bits are set to suppress an interrupt when the corresponding event has occurred or
change in state has taken place.
Table 96. TMUX_RHS_MSK, Mask Bits for INT Interrupt Signal (R/W) (Mask = 1, No Mask = 0)
Address Bit Name Function Reset
Default
0x4000B 15:6 RSVD Reserved. 0x000
5TMUX_RPSLOFMReceive Prote ct ion High -Spee d Los s of Frame Mask. See
Table 91 starting on page 80, for description of all bits in this
table.
1
4 TMUX_RPSOOFM Receive Protection High-Speed Out of Frame Mask. 1
3 TMUX_RPSILOCM Receive Protection High-Spee d Loss of Input Clock Mask. 1
2 TMUX_RPSB2M Rece ive Pr ote ctio n High-Sp ee d B2 Err or Mask. 1
1 TMUX_RPSLREIM Receive Pr ote ct ion High-S pee d Li ne REI Mask. 1
0RSVDReserved. 0
Address Bit Name Function Reset
Default
0x4000C 15 RSVD Reserved. 0
14 TMUX_RS1BABM Receive S1 Babble Mask. See Table 92 starting on
page 81, for a description of all bits in this table. 1
13 TMUX_RS1MONM Receive S1 Monitor Mask. 1
12 TMUX_RLRDIMONM Receive Line RDI Monitor Mask. 1
11 TMUX_RLAISMONM Receive Line AIS Monitor Mask. 1
10 TMUX_RK2MONM Receive K2 Monitor Mask. 1
9 TMUX_RAPSBABM Receive APS Babble Mask. 1
8 TMUX_RAPSMONM Receive APS Monitor Mask. 1
7TMUX_RF1MONMReceive F1 Monitor Mask. 1
6 TMUX_RTIMSM Receive Section Trace Identifier Mismatch Mask. 1
5TMUX_RHSSFMReceive High-Speed Signal Fail BER Algorithm Mask. 1
4 TMUX_RHSSDM Receive High-Speed Signal Degrade BER Algorithm
Mask. 1
3 TMUX_RHSLOSM Receive High-Speed Loss of Signal Mask. 1
2 TMUX_RHSLOFM Receive High-Speed Loss of Frame Mask. 1
1 TMUX_RHSOOFM Receive High-Speed Out of Frame Mask. 1
0 TMUX_RHSILOCM Receive High-Speed Loss of Input Clock Mask. 1
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
91Agere Systems Inc.
8 TMUX Registers (continued)
Note: In Table 97, the mask bits are set to suppress an interrupt when the corresponding event has occurred or
change in state has taken place.
Table 97. TMUX_RPOH[1—3]_MSK, Mask Bits for Interrupt Signal (R/W) (Mask = 1, No Mask = 0)
Address Bit Name Function Reset
Default
0x4000D 15 TMUX_RSFB3M1 Receive Path Signal Fail BER Algorithm Mask. See Table 93
on page 83 for a description of all bits in this table. 1
14 TMUX_RSDB3M1 Receive Path Signal Degrade BER Algorithm Mask. 1
13 TMUX_RUNEQPM1 Receive Path Unequipped Mask. 1
12 TMUX_RPLMPM1 Receive Path Payload Label Mismatch Mask. 1
11 TMUX_RN1MONM1 Receive N1 Monitor Mask. 1
10 TMUX_RK3MONM1 Receive K3 Monitor Mask. 1
9 TMUX_RF3MONM1 Receive F3 (Path User Byte) Monitor Mask. 1
8 TMUX_RF2MONM1 Receive F2 (Path User Byte) Monitor Mask. 1
7 TMUX_RRDIPM1 Receive Path RDI (Remote Defect Indication) Monitor Mask. 1
6 TMUX_RC2MONM1 Receive C2 (Signal Label) Monitor Mask. 1
5 TMUX_RTIMPM1 Receive Path Trace Identifier Mismatch Mask. 1
4 TMUX_RNDFM1 Receive New Data Flag Mask. 1
3TMUX_RDECM1Receive Pointer Decrement Mask. 1
2 TMUX_RINCM1 Receive Pointer Increment Mask. 1
1 TMUX_RPAISM1 Receive Path AIS Mask. 1
0 TMUX_RLOPM1 Receive Loss of Pointer Mask. 1
0x4000E 15 TMUX_RSFB3M2 Receive Path Signal Fail BER Algorithm Mask. 1
14 TMUX_RSDB3M2 Receive Path Signal Degrade BER Algorithm Mask. 1
13 TMUX_RUNEQPM2 Receive Path Unequipped Mask. 1
12 TMUX_RPLMPM2 Receive Path Payload Label Mismatch Mask. 1
11 TMUX_RN1MONM2 Receive N1 Monitor Mask. 1
10 TMUX_RK3MONM2 Receive K3 Monitor Mask. 1
9 TMUX_RF3MONM2 Receive F3 (Path User Byte) Monitor Mask. 1
8 TMUX_RF2MONM2 Receive F2 (Path User Byte) Monitor Mask. 1
7 TMUX_RRDIPM2 Receive Path RDI (Remote Defect Indication) Monitor Mask. 1
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
92 Agere Systems Inc.
8 TMUX Registers (continued)
Note: In Table 97, the mask bits are set to suppress an interrupt when the corresponding event has occurred or
change in state has taken place.
Table 97. TMUX_RPOH[1—3]_MSK, Mask Bits for Interrupt Signal (R/W) (Mask = 1, No Mask = 0) (continued)
Address Bit Name Function Reset
Default
0x4000E 6 TMUX_RC2MONM2 Receive C2 (Signal Label) Monitor Mask. See Table 93 on
page 83 for a description of all bits in this table. 1
5TMUX_RTIMPM2Receive Path Trace Identifier Mismatch Mask. 1
4 TMUX_RNDFM2 Receive New Data Flag Mask. 1
3TMUX_RDECM2Receive Pointer Decrement Mask. 1
2 TMUX_RINCM2 Receive Pointer Increment Mask. 1
1 TMUX_RPAISM2 Receive Path AIS Mask. 1
0TMUX_RLOPM2Receive Loss of Pointer Mask. 1
0x4000F 15 TMUX_RSFB3M3 Receive Path Signal Fail BER Algorithm Mask. 1
14 TMUX_RSDB3M3 Receive Path Signal Degrade BER Algorithm Mask. 1
13 TMUX_RUNEQPM3 Receive Path Unequipped Mask. 1
12 TMUX_RPLMPM3 Receive Path Payload Label Mismatch Mask. 1
11 TMUX_RN1MONM3 Receive N1 Monitor Mask. 1
10 TMUX_RK3MONM3 Receive K3 Monitor Mask. 1
9 TMUX_RF3MONM3 Receive F3 (Path User Byte) Monitor Mask. 1
8 TMUX_RF2MONM3 Receive F2 (Path User Byte) Monitor Mask. 1
7 TMUX_RRDIPM3 Receive Path RDI (Remote Defect Indication) Monitor
Mask. 1
6 TMUX_RC2MONM3 Receive C2 (Signal Label) Monitor Mask. 1
5TMUX_RTIMPM3Receive Path Trace Identifier Mismatch Mask. 1
4 TMUX_RNDFM3 Receive New Data Flag Mask. 1
3TMUX_RDECM3Receive Pointer Decrement Mask. 1
2 TMUX_RINCM3 Receive Pointer Increment Mask. 1
1 TMUX_RPAISM3 Receive Path AIS Mask. 1
0TMUX_RLOPM3Receive Loss of Pointer Mask. 1
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
93Agere Systems Inc.
8 TMUX Registers (continued)
Note: In Table 98, the mask bits are set to suppress an interrupt when the corresponding event has occurred or
change in state has taken place.
Table 98. TMUX_APSINT_MSK, Mask Bits for APSINT Interrupt Signal (R/W) (Mask = 1, No Mask = 0)
Note: When state bits are set in Table 99, the corresponding function has occurred.
Table 99. TMUX_TX_STATE, State Parameters (RO)
Note: When state bits are set in Table 100, the corresponding function has occurred.
Table 100. TMUX_RPS_STATE, State and Value Parameters (RO)
Address Bit Name Function Reset
Default
0x40011 15:8 RSVD Reserved. 0x000
7 TMUX_RHSSF_APSM Receive High-Speed Signal Fail BER Algorithm
APSINT Mask. See Table 92 on page 81 for descrip-
tion.
1
6 TMUX_RHSSD_APSM Receive High-Speed Signal Degrade BER Algo-
rithm APSINT Mask. See Table 92 for descript ion. 1
5 TMUX_RAPSMON_APSM Receive APS Monitor APSINT Mask. See Table 93
for description. 1
4 TMUX_RLAISMON_APSM Receive Line AIS Monitor APSINT Mask. See
Table 92 for descri ption. 1
3 TMUX_RHSLOS_APSM Receive High-Speed Loss of Signal APSINT Mask.
See Table 92 for descri ption. 1
2 TMUX_RHSLOF_APSM Receive High-Speed Loss of Frame APSINT Mask.
See Table 92 for descri ption. 1
1 TMUX_RHSOOF_APSM Receive High-Speed Out of Frame APSINT Mask.
See Table 92 for descri ption. 1
0 TMUX_RHSILOC_APSM Receive High-Speed Loss of Input Clock APSINT
Mask. See Table 92 for de scription. 1
Address Bit Name Function Reset
Default
0x40012 15:2 RSVD Reserved. 0x000
1 TMUX_THSILOF Transmit High-Speed Input Loss of Frame State. See
Table 90 on page 80 for description. 0
0 TMUX_THSILOC Transmit High-Speed Input Los s of Clock State. See
Table 90 for description. 0
Address Bit Name Function Reset
Default
0x40013 15:6 RSVD Reserved. 0x000
5TMUX_RPSLOFReceive Protection High-Speed Loss of Frame State. See
Table 91 on page 80 for description. 0
4 TMUX_RPSOOF Receive Protection High-Speed Out of Frame State. See
Table 91 for description. 0
3 TMUX_RPSILOC Receive Protection High-Speed Loss of Input Cloc k State.
See Table 91 for description. 0
2:0 RSVD Reserved. 000
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
94 Agere Systems Inc.
8 TMUX Registers (continued)
Note: When state bits are set in Table 101, the corresponding function has occurred.
Table 101. TMUX_RHS_STATE, State and Value Parameters (RO)
Note: When state bits are set in Table 102, the corresponding function has occurred.
Address Bit Name Function Reset
Default
0x40014 15:13 RSVD Reserved. 000
12 TMUX_RLRDIMON Receive Line RDI Monitor State. See Table 92 on
page 81 for description. 0
11 TMUX_RLAISMON Receive Line AIS Monitor State. See Table 92 for
description. 0
10:8 RSVD Reserved. 000
7 TMUX_RHSLOSEXTI Reflects LOSEXT Pin (AE5) Input.
6TMUX_RTIMSReflects Section-Level T race Identifier Mismatch State.
5 TMUX_RHSSF Receive High-Speed Signal Fail BER Algorithm State.
See Table 92 for description. 0
4TMUX_RHSSDReceive High-Speed Signal Degrade BER Algorithm
State. See Table 92 for descri ption. 0
3 TMUX_RHSLOS Receive High-Speed Loss of Signal State. See Table 92
for description. 0
2 TMUX_RHSLOF Receive High-Speed Loss of Frame State. See Table 92
for description. 0
1 TMUX_RHSOOF Receive High-Speed Out of Frame State. See Table 92
for description. 0
0 TMUX_RHSILOC Receive High-Speed Loss of Input Clock State. See
Table 92 for descri ption. 0
Table 102. TMUX_RPOH[1—3]_STATE, State and Value Parameters (RO)
Address Bit Name Function Reset
Default
0x40015 15 TMUX_RSFB31 Receive Path Signal Fail BER Algorithm State.
See Table 93 on page 83 for description. 0
14 TMUX_RSDB31 Receive Path Signal Degrade BER Algorithm
State. See Table 93 for description. 0
13 TMUX_RUNEQP1 Receive Path Unequipped State. See Table 93
for description. 0
12 TMUX_RPLMP1 Receive Path Payload Label Mismatch State.
See Table 93 for description. 0
11:6 RSVD Reserved. 0x00
5 TMUX_RTIMP1 Receive Path Trace Identifier Mismatch State.
See Table 93 for description. 0
4:2 RSVD Reserved. 000
1 TMUX_RPAIS1 Receive Path AIS State. See Table 93 for descrip-
tion. 0
0TMUX_RLOP1Receive Loss of Pointer State. See Table 93 for
description. 0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
8 TMUX Registers (continued)
95Agere Systems Inc.
Address Bit Name Function Reset
Default
0x40016 15 TMUX_RSFB32 Receive Path Signal Fail BER Algorithm State.
See Tab le 93 on page 83 for description. 0
14 TMUX_RSDB32 Receive Path Signal Degrade BER Algorithm
State. See Table 93 for description. 0
13 TMUX_RUNEQP2 Receive Path Unequipped State. See Table 93
for descri pti on. 0
12 TMUX_RPLMP2 Receive Path Payload Label Mismatch State.
See Table 93 for description . 0
11:6 RSVD Reserved. 0x000
5 TMUX_RTIMP2 Receive Path Trace Identifier Mismatch State.
See Table 93 for description . 0
4RSVDReserved. 0
3:2 TMUX_CONCAT_STATE2[1:0] Concatenation Poi nter State Machine State.
State bits indicate the state of the concatenation
state machine (LOPC = 10, AISC = 01,
CONC = 00) for port 2. These values only have
meaning in the AU-4 mode with the
TMUX_RCONCATMODE bit (Table 105 on
page 97) set to the concatenation mode (1).
00
1 TMUX_RPAIS2 Receive Path AIS State. See Table 93 for descrip-
tion. 0
0TMUX_RLOP2Receive Loss of Pointer State. See Table 93 for
description. 0
0x40017 15 TMUX_RSFB33 Receive Path Signal Fail BER Algorithm State.
See Table 93 for description . 0
14 TMUX_RSDB33 Receive Path Signal Degrade BER Algorithm
State. See Table 93 for description. 0
13 TMUX_RUNEQP3 Receive Path Unequipped State. See Table 93
for descri pti on. 0
12 TMUX_RPLMP3 Receive Path Payload Label Mismatch State.
See Table 93 for description . 0
11:6 RSVD Reserved. 0x000
5 TMUX_RTIMP3 Receive Path Trace Identifier Mismatch State.
See Table 93 for description . 0
4RSVDReserved. 0
3:2 TMUX_CONCAT_STATE3[1:0] Concatenation Poi nter State Machine State.
State bits indicate the state of the concatenation
state machine (LOPC = 10, AISC = 01,
CONC = 00) for port 3. These values only have
meaning in the AU-4 mode and the
TMUX_RCONCATMODE bit (Table 105 on
page 97) set to the concatenation mode (1).
00
1 TMUX_RPAIS3 Receive Path AIS State. See Table 93 for descrip-
tion. 0
0TMUX_RLOP3Receive Loss of Pointer State. See Table 93 for
description. 0
Table 102. TMUX_RPOH[1—3]_STATE, State and Value Parameters (RO) (continued)
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
96 Agere Systems Inc.
8 TMUX Registers (continued)
Table 103. TMUX_RHS_CTL, Receive High-Speed Control Parameters (R/W)
Address Bit Name Function Reset
Default
0x40019 15:4 RSVD Reserved. 0x000
3 TMUX_LOSEXT_LEVEL Controls External LOSEXT Polarity.
0 = active-low.
1 = active-high.
0
2 TMUX_RPSMUXSEL1 Receive Protection Switch Control. Control bit, when
set to a logic 1, causes the receive protection switch data
and clock inputs to be selected; otherwise, the normal
receive high-speed data input is selected.
0
1 TMUX_THS2RHSLB Transmit High-Speed to Receive High-Speed Loop-
back Control. Control bit, when set to a logic 1, causes
the transmit output STS-3/STM-1 (AU-4) signal to be
looped back to the receive input; otherwise, the loopback
is disabled.
0
0 TMUX_RHSDSCR Receive High-Speed Descramble Enable. Control bit,
when set to a logic 1, causes the input STS-3/STM-1
(AU-4) signal to be descrambled; otherwise, the signal is
not descrambled.
0
Table 104. TMUX_RLS_BITBLK_CTL, Receive Low-Speed Control Parameters (R/W)
Address Bit Name Function Reset
Default
0x4001A 15:9 RSVD Reserved. 0x00
8:7 TMUX_RCV_SS_EXP[1:0] Expected Receive Pointer Size Bits V alue. Expected
value of incoming pointer SS bits. 00
6 TMUX_RCV_SS_ENB Receive Size Bits Enable. Control bit, when set to a logic
0, causes the received size bits to be ignored by the
pointer interpreter; otherwise, the received size bits must
equal the expected size bits or the received pointer value
will b e invali d.
0
5RSVDReserved. 0
4TMUX_BITBLKG1Receive Bit/Block Error Count Control. Control bit,
when set to a logic 0, causes the receive error counter to
count bit errors; otherwise, count block errors (a block
equals one frame) occur .
0
3 TMUX_BITBLKM1 Receive Bit/Block Error Count Control. Control bit,
when set to a logic 0, causes the receive error counter to
count bit errors; otherwise, count block errors (a block
equals one frame) occur .
0
2 TMUX_BITBLKB3 Receive Bit/Block Error Count Control. Control bit,
when set to a logic 0, causes the receive error counter to
count bit errors; otherwise, count block errors (a block
equals one frame) occur .
0
1 TMUX_BITBLKB2 Receive Bit/Block Error Count Control. Control bit,
when set to a logic 0, causes the receive error counter to
count bit errors; otherwise, count block errors (a block
equals one frame) occur .
0
0 TMUX_BITBLKB1 Receive Bit/Block Error Count Control. Control bit,
when set to a logic 0, causes the receive error counter to
count bit errors; otherwise, count block errors (a block
equals one frame) occur.
0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
97Agere Systems Inc.
8 TMUX Registers (continued)
Table 105. TMUX_RLS_MODE_CTL, Receive Low-Speed Control Parameters (R/W)
Address Bit Name Function Reset
Default
0x4001B 15:14 RSVD Reserved. 00
13 TMUX_RPAIS_INS Receive Force Path AIS Insertion. Control bit, when
set to a logic 1, causes the receive low-speed signal to
carry PAIS as well as asserting all AUTO_AIS[1—3]
(pins AC6, AE6, and AD6) (Table 3 on page 17) out-
puts.
0
12 TMUX_8ORMAJORITY Receive Control Bit for Pointer Justifications. Con-
trol bit, when set to a logic 1, causes the pointer inter-
preter to accept an increment or decrement only if 8 out
of 10 bits are correct; otherwise, it will accept an incre-
ment or decrement based on majority vote only.
0
11 TMUX_SDB1B2SEL Receive Signal Degrade Algorithm Input Selection.
Control bit, when set to a logic 1, causes the B2 erro rs
to contribute to the signal degrade calculation; other-
wise, the B1 error count is used.
0
10 TMUX_SFB1B2SEL Receive Signal Fail Algorithm Input Selection. Con-
trol bit, when set to a logic 1, causes the B2 errors to
contribute to the signal degrade calculation; otherwise,
the B1 error count is used.
0
9:7 TMUX_J1MONMODE[2:0] Receive J1 Monitor Mode. There are six modes, as
defined in Sec ti on, J1 Mon ito r, on page 383. 000
6:4 TMUX_J0MONMODE[2:0] Receive J0 Monitor Mode. There are six modes, as
defin ed in Section 17.5.5, J0 Monitor, on page 376. 000
3 TMUX_S1MODE4 Receive S1 Monitor Mode. Control bit, when set to a
logic 1, causes the most significant nibble of the S1 byte
to be monitored; otherwise, the entire S1 byte is moni-
tored.
0
2 TMUX_RLSPAROEG Receive Low-Speed Parity Odd or Even Generation.
Control bit, when set to a logic 1, forces the output parity
bit to be even; otherwise, the parity is odd.
0
1 TMUX_RCONCATMODE Receive Concatenation Mode. Control bit, when set to
a logic 1, causes the input pointer interpreter to operate
in concatenation mode. This mode is most likely used in
AU-4 mode; otherwise, three independent pointers are
expected.
0
0 TMUX_REPRDI_MODE Receive Enhanced Path RDI Mode. Control bit, when
set to a logic 1, causes the receive path RDI monitor to
monitor the enhanced (3-bit found in G1[3:1]) value of
path RDI; otherwise, a 1-bit value (G1[3]) is monitored.
0
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
98 Agere Systems Inc.
8 TMUX Registers (continued)
Table 106. TMUX_RAISINH_CTL, Receive Low-Speed Control Parameters (R/W)
Address Bit Name Function Res et
Default
0x4001C 15 TMUX_R_M1_BIT7 Receive M1 MSB Mode. Control bit, when set to a
logic 1, causes the most significant bit in the M1 byte to
be ignored for line REI accumulation; otherwise, the
MSB is included.
0
14 TMUX_RSDB3_AISINH Receive B3 Signal Degrade AIS Inhibit. Control bit,
when set to a logic 1, inhibits the associated alarm from
causing the ass ert ion of the AUTO_AIS output; othe r-
wise, the assoc ia ted fail ure cau se s asser ti on of the cor-
responding AUTO_AIS output signal.
0
13 TMUX_RSFB3_AISINH Receive B3 Signal Fail AIS Inhibit. Control bit, when
set to a logic 1, inhibits the associated alarm from caus-
ing the assertion of the AUTO_AIS output; otherwise, the
associated failure causes assertion of the corresponding
AUTO_AIS output signal.
0
12:10 TMUX_RTIMP_AISINH[3:1] Receive Path Trace Identifier Mismatch AIS Inhibit
Bits. Control bits, when set to a logic 1, inhibit the asso-
ciated alarm from causing the assertion of the
AUTO_AIS output; otherwise, the associated failure
causes assertion of the corresponding AUTO_AIS output
signal.
0
9 TMUX_RUNEQP_AISINH Receive Path Unequip AIS Inhibit. Control bit, when
set to a logic 1, inhibits the associated alarm from caus-
ing the assertion of the AUTO_AIS output; otherwise, the
associated failure causes assertion of the corresponding
AUTO_AIS output signal.
0
8 TMUX_RPLMP_AISINH Receive Path Payload Label Mismatch AIS Inhibit.
Control bit, when set to a logic 1, inhibits the associated
alarm from causing the assertion of the AUTO_AIS out-
put; otherwise, the associated failure causes assertion of
the corresponding AUTO_AIS output signal.
0
7 TMUX_RHSSD_AISINH Receive High-Speed S ignal Degra de AIS Inhibit. Con-
trol bit, when set to a logic 1, inhibits the associated
alarm from causing AIS generation; otherwise, the asso-
ciated failure causes AIS generation on all STS-1/AU-3
outputs as well as the assertion of AUTO_AIS outputs.
0
6 TMUX_RHSSF_AISINH Receive High-Speed Signal Fail AIS Inhibit. Control
bit, when set to a logic 1, inhibits the associated alarm
from causing AIS generation; otherwise, the associated
failure causes AIS generation on all STS-1/AU-3 outputs
as well as the assertion of AUTO_AIS outputs.
0
5 TMUX_RPAISLOP_AISINH Receive Path AIS or LOP AIS Inhibit. Co ntro l bit, when
set to a logic 1, inhibits the associated alarm from caus-
ing AIS generation; otherwise, the associated failure
causes AIS generation on all STS-1/AU-3 outputs as
well as the assertion of AUTO_AIS outputs.
0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
99Agere Systems Inc.
8 TMUX Registers (continued)
Table 106. TMUX_RAISINH_CTL, Receive Low-Speed Control Parameters (R/W) (continued)
Table 107. TMUX_LOSDETCNT, Receive Low-Speed Control Parameters (R/W)
Address Bit Name Function Reset
Default
0x4001C 4 TMUX_RLAISMON_AISINH Receive Line AIS Monitor AIS Inhibit. Control bit,
when set to a logic 1, inhibits the associated alarm
from causing AIS generation; otherwise, the associ-
ated failure causes AIS generation on all STS-1/AU-3
outputs as well as the assertion of AUTO_AIS out-
puts.
0
3 TMUX_RLOF_AISINH Receive Loss-of-Frame AIS Inhibit. Control bit,
when set to a logic 1, inhibits the associated alarm
from causing AIS generation; otherwise, the associ-
ated failure causes AIS generation on all STS-1/AU-3
outputs as well as the assertion of AUTO_AIS out-
puts.
0
2 TMUX_ROOF_AISINH Receive High-Speed Out of Frame AIS Inhibit.
Control bit, when set to a logic 1, inhibits the associ-
ated alarm from causing AIS generation; otherwise,
the associated failure causes AIS generation on all
STS-1/AU-3 outputs as well as the assertion of
AUTO_AIS outp uts.
0
1 TMUX_RHSLOS_AISINH Receive High-Speed Loss-of-Signal AIS Inhibit.
Control bit, when set to a logic 1, inhibits the associ-
ated alarm from causing AIS generation; otherwise,
the associated failure causes AIS generation on all
STS-1/AU-3 outputs as well as the assertion of
AUTO_AIS outputs .
0
0 TMUX_RILOC_AISINH Receive Input Loss-of-Clock AIS Inhibit. Control
bit, when set to a logic 1, inhibits the associated alarm
from causi ng the asserti on of the AUTO_AIS outp uts ;
otherwise, the associated failure causes assertion of
all AUTO_AIS output signals.
0
Address Bit Name Function Reset
Default
0x4001D 15:14 RSVD Reserved. 00
13:11 TMUX_FORCEC2DEF[2:0] Force TMUX_RPLMP Defects. These bits (one for
each STS -1 in an STS -3) wil l force TMUX _RP LMP
defects on certain conditions as shown in Table 536
on page 385 (STS Signal Label Defect Conditions).
000
10:0 TMUX_LOSDETCNT[10:0] Loss-of-Signal Detection Count. Control bits are the
number of consecutive all-0s/1s patterns detected to
declare LOS state in the unscrambled STS-3/STM-1
(AU-4) input frame. A value of 0x02D equals 2.3 µs
while a value of 0x798 equals 100 µs.
0x02D
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
100 Agere Systems Inc.
8 TMUX Registers (continued)
Table 108. TMUX_CNTD_TOH_[A—B], Continuous N-Times Detect Control Parameters (R/W)
Address Bit Name Function Reset
Default
0x4001E 15:12 TMUX_CNTDK1K2FRAME[3:0] Continuous N-Times Detect for APS Frame
Bytes. Sets the number of CNTD frames within
which an inconsistent APS value is detected in the
incoming STS-3/STM-1 (AU-4). This value is used in
the APS babble algorithm. The valid range for this
register is 0x3—0xF. Invalid values will be mapped
to a value of 0x3.
0xC
11:8 TMUX_CNTDK1K2[3:0] Continuous N-Times Detect for APS (K1, K2[7:3])
Bytes. Sets the number of CNTD occurrences of a
consistent APS value in the incoming STS-3/STM-1
(AU-4) frame. The valid range for this register is
0x3—0xF. Invalid values will be mapped to a value
of 0x3.
0x3
7:4 TMUX_CNTDF1[3:0] Continuous N-Times Detect for F1 Byte. Sets the
number of CNTD occurrences of a consistent F1
value in the incoming STS-3/STM-1 (AU-4) frame.
The valid range for this register is 0x3—0xF. Invalid
values will be mapped to a value of 0x3.
0x3
3:0 TMUX_CNTDJ0[3:0] Continuous N-Times Detect for J0 Byte. Sets the
number of CNTD occurrences of a consistent J0
value in the incoming STS-3/STM-1 (AU-4) frame.
The valid range for this register is 0x3—0xF. Invalid
values will be mapped to a value of 0x3.
0x3
0x4001F 15:14 RSVD Reserved. 00
13:12 TMUX_CTDLOPCNT[1:0] Continuous N-Times Detect for Loss of Pointe r
State. Control bits are the number of consecutive
conditions for invalid pointer and invalid concatena-
tion indication (pointer interpretation). Valid values
are the following: 00 = 8, 01 = 9, 10 = 10, and 11 = 8.
0x0
11:8 TMUX_CNTDS1FRAME[3:0] Continuous N-Times Detect for S1 Frame Bytes.
Sets the number of CNTD frames within which an
inconsistent S1 value is detected in the incoming
STS-3/STM-1 (AU-4). This value is used in the S1
babble algorithm. The valid range for this register is
0x3—0xF. Invalid values will be mapped to a value
of 0x3.
0x3
7:4 TMUX_CNTDS1[3:0] Continuous N-Times Detect for S1 Byte. Sets the
number of CNTD occurrences of a consistent S1
value in the incoming STS-3/STM-1 (AU-4) frame.
The valid range for this register is 0x3—0xF. Invalid
values will be mapped to a value of 0x3.
0x3
3:0 TMUX_CNTDK2[3:0] Continuous N-Times Detect for K2[2:0] Byte. Sets
the number of CNTD occurrences of a consistent
K2[2:0] value in the incoming STS-3/STM-1 (AU-4)
frame. The valid range for this register is 0x3—0xF.
Invalid values will be mapped to a value of 0x3.
0xC
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
101Agere Systems Inc.
8 TMUX Registers (continued)
Table 109. TMUX_CNTD_POH_[A—B], Continuous N-Times Detect Control Parameters (R/W)
Address Bit Name Function Reset
Default
0x40020 15:12 TMUX_CNTDF2[3:0] Continuous N-Times Detect for F2 Byte. Sets the num-
ber of CNTD occurrences of a consistent F2 value in the
incoming STS-3/STM-1 (AU-4) frame. The valid range for
this register is 0x3—0xF. Invalid values will be mapped to
a value of 0x3.
0x3
11:8 TMUX_CNTDRDIP[3:0] Continuous N-Times Detect for G1[3:1] Byte. Sets the
number of CNTD occurrences of a consistent G1[3:1]
value in th e incoming STS-3/STM-1 (AU-4) frame. The
valid range for this register is 0x3—0xF. Invalid values will
be mapped to a value of 0x3.
0x3
7:4 TMUX_CNTDC2[3:0] Continuous N-Times Detect for C2 Byte. Sets the num-
ber of CNTD occurrences of a consistent C2 value in the
incoming STS-3/STM-1 (AU-4) frame. The valid range for
this register is 0x3—0xF. Invalid values will be mapped to
a value of 0x3.
0x3
3:0 TMUX_CNTDJ1[3:0] Continuous N-Times Detect for J1 Byte. Sets the num-
ber of CNTD occurrences of a consistent J1 value in the
incoming STS-3/STM-1 (AU-4) frame. The valid range for
this register is 0x3—0xF. Invalid values will be mapped to
a value of 0x3.
0x3
0x40021 15:13 RSVD Reserved. 000
12 TMUX_CTDB1SEL Continuous N-Times AUTO AIS Select. Control bit,
when set to a logic 1, causes TOH CNTD counters to be
reset whenever the AUTO_AIS signal is asserted.
0
11:8 TMUX_CNTDN1[3:0] Continuous N-Times Detect for N1 Byte. Sets the num-
ber of CNTD occurrences of a consistent N1 value in the
incoming STS-3/STM-1 (AU-4) frame. The valid range for
this register is 0x3—0xF. Invalid values will be mapped to
a value of 0x3.
0x3
7:4 TMUX_CNTDK3[3:0] Continuous N-Times Detect for K3 Byte. Sets the num-
ber of CNTD occurrences of a consistent K3 value in the
incoming STS-3/STM-1 (AU-4) frame. The valid range for
this register is 0x3—0xF. Invalid values will be mapped to
a value of 0x3.
0x3
3:0 TMUX_CNTDF3[3:0] Continuous N-Times Detect for F3 Byte. Sets the num-
ber of CNTD occurrences of a consistent F3 value in the
incoming STS-3/STM-1 (AU-4) frame. The valid range for
this register is 0x3—0xF. Invalid values will be mapped to
a value of 0x3.
0x3
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
102 Agere Systems Inc.
8 TMUX Registers (continued)
Table 110. TMUX_C2EXP[1—2_3], Continuous N-Time s Detect Control Parameters (R/W)
Table 111. TMUX_RF1MON, Receive Monitor Values (RO)
Table 11 2. TMUX_RAPSMON, Receive Monitor Values (RO)
Table 113. TMUX_RS1MON, Receive Monitor Values (RO)
Address Bit Name Function Reset
Default
0x40022 15:8 RSVD Reserved. 0x00
7:0 TMUX_C2EXP1[7:0] Expected C2 Byte for Port 1. Should be programmed to
contain expected signal label (C2) for port 1. 0x00
0x40023 15:8 TMUX_C2EXP3[7:0] Expected C2 Byte for Port 3. Should be programmed to
contain expected signal label (C2) for port 3. 0x00
7:0 TMUX_C2EXP2[7:0] Expected C2 Byte for Port 2. Should be programmed to
contain expected signal label (C2) for port 2. 0x00
Address Bit Name Function Reset
Default
0x40024 15:8 TMUX_RF1MON1[7:0] Rece ive F1 Pre vious Mo nitor Value. See Secti on 17.5 .7,
F1 Monitor, on page 377. 0x00
7:0 TMUX_RF1MON0[7:0] Receive F1 Current Monitor Value. See Section 17.5.7,
F1 Monitor, on page 377. 0x00
Address Bit Name Function Reset
Default
0x40025 15:3 TMUX_
RAPSMON[12:0] Receive APS Monitor Value. See Section 17.5.9, Auto-
matic Protection Switch (APS) Monitor, on page 377. 0x00
2:0 TMUX_K2MON[2:0] Receive K2 Monitor Value. See Section 17.5.9, Auto-
matic Protection Switch (APS) Monitor, on page 377. 0x0
Address Bit Name Function Reset
Default
0x40026 15:8 RSVD Reserved. 0x00
7:0 TMUX_RS1MON[7:0] Rece ive S1 Mon ito r Value . See Section 17.5.12, Sync
Status Monitor, on page 378. 0x00
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
103Agere Systems Inc.
8 TMUX Registers (continued)
Table 114. TMUX_RPOHMON[1—3][A—D], Receive Monitor Values (RO)
Address Bit Name Function Reset
Default
0x40027 15:11 RSVD Reserved. 0x00
10:8 TMUX_RDIPMON1[2:0] Receive Path RDI Monitor Value for Port 1. See RDI-P
Detection Section on page 385.0x0
7:0 TMUX_C2MON1[7:0] Receive C2 Monit or Value for Port 1. See Signal Label
C2 Byte Monitor Section on page 384.0x00
0x40028 15:8 TMUX_F2MON11[7:0] Receive F2 Previous Monitor Value for Port 1. See
Path User Byte F2 Monitor Section on page 386.0x00
7:0 TMUX_F2MON01[7:0] Receive F2 Current Monitor Value for Port 1. See Path
User Byte F2 Monitor Section on page 386.0x00
0x40029 15:8 TMUX_F3MON11[7:0] Receive F3 Previous Monitor Value for Port 1. See
Path User Byte F3 Monitor Section on page 386.0x00
7:0 TMUX_F3MON01[7:0] Receive F3 Current Monitor Value for Port 1. See Path
User Byte F3 Monitor Section on page 386.0x00
0x4002A 15:8 TMUX_N1MON1[7:0] Rece i v e N1 M o ni to r Value for Por t 1. See N1 Byte Mon-
itor Section on page 387.0x00
7:0 TMUX_K3MON1[7:0] Receive K3 Monitor Value for Port 1. See K3 Byte Mon-
itor Section on page 387.0x00
0x4002B 15:11 RSVD Reserved. 0x00
10:8 TMUX_RDIPMON2[2:0] Receive Path RDI Monitor Value for Port 2. See RDI-P
Detection Section on page 385.0x0
7:0 TMUX_C2MON2[7:0] Receive C2 Monit or Value for Port 2. See Signal Label
C2 Byte Monitor Section on page 384.0x00
0x4002C 15:8 TMUX_F2MON12[7:0] Receive F2 Previous Monitor Value for Port 2. See
Path User Byte F2 Monitor Section on page 386.0x00
7:0 TMUX_F2MON02[7:0] Receive F2 Current Monitor Value for Port 2. See Path
User Byte F2 Monitor Section on page 386.0x00
0x4002D 15:8 TMUX_F3MON12[7:0] Receive F3 Previous Monitor Value for Port 2. See
Path User Byte F3 Monitor Section on page 386.0x00
7:0 TMUX_F3MON02[7:0] Receive F3 Current Monitor Value for Port 2. See Path
User Byte F3 Monitor Section on page 386.0x00
0x4002E 15:8 TMUX_N1MON2[7:0] Rece i v e N1 M o ni to r Value for Por t 2. See N1 Byte Mon-
itor Section on page 387.0x00
7:0 TMUX_K3MON2[7:0] Receive K3 Monitor Value for Port 2. See K3 Byte Mon-
itor Section on page 387.0x00
0x4002F 15:11 RSVD Reserved. 0x00
10:8 TMUX_RDIPMON3[2:0] Receive Path RDI Monitor Value for Port 3. See RDI-P
Detection Section on page 385.0x0
7:0 TMUX_C2MON3[7:0] Receive C2 Monit or Value for Port 3. See Signal Label
C2 Byte Monitor Section on page 384.0x00
0x40030 15:8 TMUX_F2MON13[7:0] Receive F2 Previous Monitor Value for Port 3. See
Path User Byte F2 Monitor Section on page 386.0x00
7:0 TMUX_F2MON03[7:0] Receive F2 Current Monitor Value for Port 3. See Path
User Byte F2 Monitor Section on page 386.0x00
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
104 Agere Systems Inc.
8 TMUX Registers (continued)
Table 114. TMUX_RPOHMON[1—3][A—D], Receive Monitor Values (RO) (continued)
Table 115. TMUX_TLS_CTL, Transmit Low-Speed Control Parameters (R/W)
Address Bit Name Function Reset
Default
0x40031 15:8 TMUX_F3MON13[7:0] Receive F3 Previous Monitor Value for Port 3. See
Path User Byte F3 Monitor Secti on o n page 386.0x00
7:0 TMUX_F3MON03[7:0] Receive F3 Current Monitor Value for Port 3. See Pat h
User Byte F3 Monitor Section on page 386.0x00
0x40032 15:8 TMUX_N1MON3[7:0] Receive N1 Monitor V alue for Port 3. See N1 Byte Mon-
itor Section on page 387.0x00
7:0 TMUX_K3MON3[7:0] Receive K3 Monitor Value for Port 3. See K3 Byte Mon-
itor Section on page 387.0x00
Address Bit Name Function Reset
Default
0x40033 15:7 RSVD Reserved. 0x000
6:4 TMUX_TLS_UNEQP[3:1] Transmit Low-Speed Unequipped Insert Control.
Control bit, when set to a logic 1, causes an unequip
signal to be generated in the selected STS-1/AU-3 time
slot in the STS-3/STM-1 (AU-4) output signal; normal
data is sent when set to a logic 0. Only
TMUX_TLS_UNEQP1 is used in AU-4 mode.
0
3:1 TMUX_TLS_PAISINS[3:1] Transmit Low-Speed Path AIS Insert Control. Con-
trol bit, when set to a logic 1, causes path AIS to be
inserted into the selected STS-1/TUG-3 time slot in the
STS-3/STM-1 (AU-4) output signal; normal data is sent
when set to a logic 0. Only TMUX_TLS_PAISINS1 is
used in AU-4 mode.
0
0 TMUX_TLSVOEPAR T ransmit Low- Speed Verify Odd or Even Pari ty. Con-
trol bit, when set to a logic 0, causes odd parity to be
verified per byte transfer per STS-1/AU-3 input; other-
wise, even parity is verified.
0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
105Agere Systems Inc.
8 TMUX Registers (continued)
Table 116. TMUX_THS_PORT_CTL, Transmit High-Speed Port Control Parameters (R/W)
Table 117. TMUX_THS_TOH_CTL, Transmit High-Speed Control Parameters (R/W)
Address Bit Name Function Reset
Default
0x40034 15:4 RSVD Reserved. 0x000
3 TMUX_TPSMUXSEL3 T ransmit High-Speed Protection MUX Selection. Control
bit, when set to a logic 1, causes the receive side working
input STS-3/STM-1 (AU-4) signal to be selected; otherwise,
the signal coming in from the transmit low-speed side (tele-
com bus) and POH MUX is selected. The output of this
MUX is sent to a transport overhead MUX and eventually
out the TPSD155P/N (pins AF13, AE13) and TPSC155P/N
(pins AC12, AD13) outputs.
0
2 TMUX_TPSMUXSEL2 T ransmit High-Speed Protection MUX Selection. Control
bit, when set to a logic 1, causes the receive side protection
input STS-3/STM-1 (AU-4) signal to be selected; otherwise,
the signal coming in from the transmit low-speed side (tele-
com bus) and POH MUX is selected. The output of this
MUX is sent to a transport overhead MUX and eventually
out the THSDP/N (pins AF9, AE9) output.
0
1 TMUX_RHS2THSLB Receive High-Speed to T r ansmit High-Speed Loopback
Control. Control bit, when set to a logic 1, causes the
receive STS-3/STM-1 (AU-4) input signal to be looped back
to the transmit high-speed output; loopback is disabled
when set to a logic 0.
0
0 TMUX_THSSCR Transmi t H igh -Speed Scramble En able . Control bit,
when set to a logic 1, causes the output STS-3/STM-1
(AU-4) signal to be scrambled; the signal is not scrambled if
set to a logic 0.
0
Address Bit Name Function Reset
Default
0x40035 15:13 RSVD Reserved. 0x0
12 TMUX_TCONCATMODE T r ansmit a Concatenated Signal. Control bit, when set
to a logic 1, causes the outgoing STS-3/STM-1 signal to
be concatenated; otherwise, the outgoing signal is three
independent STS-1s (for a 155 MHz signal).
0
11 TMUX_TPREIRDISEL Transmit MUX Selection Control for Outgoing Path
REI and RDI. Control bit, when set to a logic 1, causes
the path REI and RDI signals to be selected from the
protection boar d ; other wise, they are deriv ed from the
receive side of the same TMUX.
0
10 TMUX_TLREIRDISEL Transmit MUX Selection Control for Outgoing Line
REI and RDI. Control bit, when set to a logic 1, causes
the line REI and RDI signals to be selected from the pro-
tection board; otherwise, they are derived from the
receive side of the same TMUX.
0
9:8 TMUX_TSS[1:0] Transmit SS (Bits). These bits are inserted into the out-
going pointer value (but not in the concatenation values). 00
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
106 Agere Systems Inc.
8 TMUX Registers (continued)
Table 117. TMUX_THS_TOH_CTL, Transmit High-Speed Control Parameters (R/W) (continued)
Address Bit Name Function Reset
Default
0x40035 7 TMUX_THSLREIINH Transmit Line REI Inhibit. Control bit, when set to a logic 1,
disables hardware insertion of line REI (B2 errors) in the outgo-
ing STM-1 (AU-4) frame M1 byte; a logic 0 enables hardware
insertion of line REI.
0
6 TMUX_THSLAISINS Transmit High-Speed Line AIS Ins ertion. Control bit, when
set to a logic 1, causes line AIS to be inserted into the outgoing
STS-3/STM-1 (AU-4) signal; otherwise, line AIS is not sent.
0
5 TMUX_THSAPSINS T ransmit APS Value Insert (Control). Control bit, when set to
a logic 1, inserts the value in TMUX_TAPSINS[12:0]
(Table 123 on page 112) into the outgoing K1 and K2[7:3]
bytes in the STS-3/STM-1 (AU-4) frame; a logic 0 inserts the
default value based on SMPR_OH_DEFLT (Table 77 on
page 70).
0
4 TMUX_THSK2INS Transmit K2[2:0] Insert (Control). Control bit, when set to a
logic 1, inserts the value in TMUX_TK2INS[2:0] (Table 123 on
page 112) into the outgoing K2 byte in the STS-3/STM-1 (AU-
4) frame; a logic 0 inserts the default value based on RDI_L.
0
3 TMUX_THSS1INS Transmit S1 Insert (Control). Control bit, when set to a
logic 1, inserts the value in TMUX_TS1INS[7:0] (Table 122 on
page 112) into the outgoing S1 byte in the STS-3/STM-1 (AU-
4) frame; a logic 0 allows insertion from the TTOAC channel or
a default value.
0
2 TMUX_THSF1INS Transmit F1 Insert (Control). Control bit, when set to a logic
1, inserts the value in TMUX_TF1INS[7:0] (Table 122 on
page 112) into the outgoing S1 byte in the STS-3/STM-1 (AU-
4) frame; a logic 0 allows insertion from the TTOAC channel or
a default value.
0
1 TMUX_THSZ0INS Transmit Z0-2 and Z0-3 Insert (Control). Control bit, when
set to a logic 1, inserts the values in TMUX_TZ02INS[7:0]
(Table 121 on page 112) and TMUX_TZ03INS[7:0] (Table 121
on page 112) into the outgoing Z0-2 and Z0-3 bytes in the
STS-3/STM-1 (AU-4) frame; a logic 0 inserts the default value
based on SMPR_OH_DEFLT.
0
0TMUX_THSJ0INSTransmit J0 Insert (Control). Control bit, when set to a logic
1, inserts the 16-byte sequence TMUX_TJ0DINS[16—1][7:0]
(Table 143 on page 123) into the outgoing STS-3/STM-1 (AU-
4) frame; a logic 0 inserts the default value based on
SMPR_OH_DEFLT.
0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
107Agere Systems Inc.
8 TMUX Registers (continued)
Table 118. TMUX_THS_POH[1—3]_CTL, Transmit High-Speed Control Parameters (R/W)
Address Bit Name Function Reset
Default
0x40036 15:9 RSVD Reserved. 0x00
8 TMUX_THSPREIINH1 T ransmit Path REI Inhibit for Port 1. Control bit, when set to
a logic 1, disables hardware insertion of path REI (B3 errors)
in the outgoing STM-1 (AU-4) frame G1 byte; a logic 0
enables hardware insertion of path REI. Only port 1 control is
valid in AU-4 mode .
0
7 TMUX_TPOHTHRU1 Transmit High-Speed Path Overhead Insertion from Low-
Speed Input (Telecom Bus). Contr ol bit, when set to a logic
1, causes all path overhead bytes, and H1, H2, and H3, to be
passed through from the low-speed telecom bus to the high-
speed output signal. Only port 1 control is valid in AU-4 mode.
0
6 TMUX_THSN1INS1 Transmit N1 Insert (Control) for Port 1. Control bit, when
set to a logic 1, inserts the value in TMUX_TN1INS1[7:0]
(Table 124 on page 112) into the outgoing N1 byte in the
STS-3/STM-1 (AU-4) frame; a logic 0 allows insertion from the
TPOAC channel or a default value. Only port 1 control is valid
in AU-4 mode.
0
5 TMUX_THSK3INS1 Transmit K3 Insert (Control) for Port 1. Control bit, when
set to a logic 1, inserts the value in TMUX_TK3INS1[7:0]
(Table 124 on page 112) into the outgoing K3 byte in the
STS-3/STM-1 (AU-4) frame; a logic 0 allows insertion from the
TPOAC channel or a default value. Only port 1 control is valid
in AU-4 mode.
0
4 TMUX_THSF3INS1 Transmit F3 Insert (Control) for Port 1. Control bit, when
set to a logic 1, inserts the value in TMUX_TF3INS1[7:0]
(Table 124 on page 112) into the outgoing F3 byte in the STS-
3/STM-1 (AU-4) frame; a logic 0 allows insertion from the
TPOAC channel or a default value. Only port 1 control is valid
in AU-4 mode.
0
3 TMUX_THSF2INS1 Transmit F2 Insert (Control) for Port 1. Control bit, when
set to a logic 1, inserts the value in TMUX_TF2INS1[7:0]
(Table 124 on page 112) into the outgoing F2 byte in the STS-
3/STM-1 (AU-4) frame; a logic 0 allows insertion from the
TPOAC channel or a default value. Only port 1 control is valid
in AU-4 mode.
0
2 TMUX_THSRDIPINS1 Transmit Path RDI Insert (Control) for Port 1. Control bit,
when set to a logic 1, inserts the value in
TMUX_TRDIPINS1[2:0] (Table 124 on page 112) into the out-
going G1[3:1] bits in the STS-3/STM-1 (AU-4) frame; a logic 0
allows insertion from the TPOAC channel or a default value.
Only port 1 control is valid in AU-4 mode.
0
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
108 Agere Systems Inc.
8 TMUX Registers (continued)
Table 118. TMUX_THS_POH[1—3]_CTL, Transmit High-Speed Control Parameters (R/W) (continued)
Address Bit Name Function Reset
Default
0x40036 1 TMUX_THSC2INS1 Transmit C2 Insert (Control) for Port 1. Control bit, when
set to a logic 1, inserts the value in TMUX_TC2INS1[7:0]
(Table 124 on page 112) into the outgoing C2 byte in the
STS-3/STM-1 (AU-4) frame; a logic 0 allows insertion from the
TPOAC channel or a default value. Only port 1 control is valid
in AU-4 mode.
0
0 TMUX_THSJ1INS1 T ransmit J1 Insert (Control) for Port 1. Control bit, when set
to a logic 1, inserts the 64-byte sequence
TMUX_TJ1DINS1[64—1][7:0] (Table 150 on page 125) into
the outgoing STS-3/STM-1 (AU-4) frame; a logic 0 allows
insertion from the TPOAC channel or a default value. Only
port 1 control is valid in AU-4 mode.
0
0x40037 15:9 RSVD Reserved. 0
8 TMUX_THSPREIINH2 T ransmit Path REI Inhibit for Port 2. Control bit, when set to
a logic 1, disables hardware insertion of path REI (B3 errors)
in the outgoing STS-3/STM-1 (AU-4) frame G1 byte; a logic 0
enables hardware insertion of path REI. Only port 1 control is
valid in AU-4 mode.
0
7 TMUX_TPOHTHRU2 Transmit High-Speed Path Overhead Insertion from Low-
Speed Input (Telecom Bus). Control bit, when set to a logic
1, causes all path overhead bytes for port 2, and H1, H2 and
H3, to be passed through from the low-speed telecom bus to
the high-speed output signal. Only port 1 control is valid in
AU-4 mode.
0
6 TMUX_THSN1INS2 Transmit N1 Insert (Control) for Port 2. Control bit, when
set to a logic 1, inserts the value in TMUX_TN1INS2[7:0]
(Table 124 on page 112) into the outgoing N1 byte in the
STS-3/STM-1 (AU-4) frame; a logic 0 allows insertion from the
TPOAC channel or a default value. Only port 1 control is valid
in AU-4 mode.
0
5 TMUX_THSK3INS2 Transmit K3 Insert (Control) for Port 2. Control bit, when
set to a logic 1, inserts the value in TMUX_TK3INS2[7:0]
(Table 124 on page 112) into the outgoing K3 byte in the
STS-3/STM-1 (AU-4) frame; a logic 0 allows insertion from the
TPOAC channel or a default value. Only port 1 control is valid
in AU-4 mode.
0
4 TMUX_THSF3INS2 Transmit F3 Insert (Control) for Port 2. Control bit, when
set to a logic 1, inse rts the value in TMUX_TF3INS2[7:0]
(Table 124 on page 112) into the outgoing F3 byte in the STS-
3/STM-1 (AU-4) frame; a logic 0 allows insertion from the
TPOAC channel or a default value. Only port 1 control is valid
in AU-4 mode.
0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
109Agere Systems Inc.
8 TMUX Registers (continued)
Table 118. TMUX_THS_POH[1—3]_CTL, Transmit High-Speed Control Parameters (R/W) (continued)
Address Bit Name Function Reset
Default
0x40037 3 TMUX_THSF2INS2 Transmit F2 Insert (Control) for Port 2. Con trol bit, when
set to a logic 1, inserts the value in TMUX_TF2INS2[7:0]
(Table 124 on page 112) into the outgoing F2 byte in the STS-
3/STM-1 (AU-4) frame; a logic 0 allows insertion from the
TPOAC channel or a default value. Only port 1 control is valid
in AU-4 mode.
0
2 TMUX_THSRDIPINS2 Transmit Path RDI Insert (Control) for Port 2. Control bit,
when set to a logic 1, inserts the value in
TMUX_TRDIPINS2[2:0] (Table 124 on page 112) into the out-
going G1[3:1] bits in the STS-3/STM-1 (AU-4) frame; a logic 0
allows insertion from the TPOAC channel or a default value.
Only port 1 control is valid in AU-4 mode.
0
1 TMUX_THSC2INS2 Transmit C2 Insert (Control) for Port 2. Control bit, when
set to a logic 1, inserts the value in TMUX_TC2INS2[7:0]
(Table 124 on page 112) into the outgoing C2 byte in the
STS-3/STM-1 (AU-4) frame; a logic 0 allows insertion from the
TPOAC channel or a default value. Only port 1 control is valid
in AU-4 mode.
0
0 TMUX_THSJ1INS2 T ransmit J1 Insert (Control) for Port 2. Control bit, when set
to a logic 1, inserts the 64-byte sequence
TMUX_TJ1DINS2[64—1][7:0] (Table 151 on page 125) into
the outgoing STS-3/STM-1 (AU-4) frame; a logic 0 allows
insertion from the TPOAC channel or a default value. Only
port 1 control is valid in AU-4 mode.
0
0x40038 15:9 RSVD Reserved. 0x00
8 TMUX_THSPREIINH3 T ransmit Path REI Inhibit for Port 3. Control bit, when set to
a logic 1, disables hardware insertion of path REI (B3 errors)
in the outgoing STS-3/STM-1 (AU-4) frame G1 byte; a logic 0
enables hardware insertion of path REI. Only port 1 control is
valid in AU-4 mode .
0
7 TMUX_TPOHTHRU3 Transmit High-Speed Path Overhead Insertion from Low-
Speed Input (Telecom Bus). Contr ol bit, when set to a logic
1, causes all path overhead bytes for port 3, and H1, H2, and
H3, to be passed through from the low-speed telecom bus to
the high-speed output signal. Only port 1 control is valid in
AU-4 mode.
0
6 TMUX_THSN1INS3 Transmit N1 Insert (Control) for Port 3. Control bit, when
set to a logic 1, inserts the value in TMUX_TN1INS3[7:0]
(Table 124 on page 112) into the outgoing N1 byte in the
STS-3/STM-1 (AU-4) frame; a logic 0 allows insertion from the
TPOAC channel or a default value. Only port 1 control is valid
in AU-4 mode.
0
5 TMUX_THSK3INS3 Transmit K3 Insert (Control) for Port 3. Control bit, when
set to a logic 1, inserts the value in TMUX_TK3INS3[7:0]
(Table 124 on page 112) into the outgoing K3 byte in the
STS-3/STM-1 (AU-4) frame; a logic 0 allows insertion from the
TPOAC channel or a default value. Only port 1 control is valid
in AU-4 mode.
0
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
110 Agere Systems Inc.
8 TMUX Registers (continued)
Table 118. TMUX_THS_POH[1—3]_CTL, Transmit High-Speed Control Parameters (R/W) (continued)
Address Bit Name Function Reset
Default
0x40038 4 TMUX_THSF3INS3 Transmit F3 Insert (Control) for Port 3. Control bit, when
set to a logic 1, inserts the value in TMUX_TF3INS3[7:0]
(Table 124 on page 112) into the outgoing F3 byte in the
STS-3/STM-1 (AU-4) frame; a logic 0 allows insertion from
the TPOAC channel or a default value. Only port 1 control is
valid in AU-4 mode.
0
3 TMUX_THSF2INS3 Transmit F2 Insert (Control) for Port 3. Control bit, when
set to a logic 1, inserts the value in TMUX_TF2INS3[7:0]
(Table 124 on page 112) into the outgoing F2 byte in the
STS-3/STM-1 (AU-4) frame; a logic 0 allows insertion from
the TPOAC channel or a default value. Only port 1 control is
valid in AU-4 mode.
0
2 TMUX_THSRDIPINS3 Transmit Path RDI Insert (Control) for Port 3. Control bit,
when set to a logic 1, inserts the value in
TMUX_TRDIPINS3[2:0] (Table 124 on page 112) into the
outgoing G1[3:1] bits in the STS-3/STM-1 (AU-4) frame; a
logic 0 allows insertion from the TPOAC channel or a default
value. Only port 1 control is valid in AU-4 mode.
0
1 TMUX_THSC2INS3 Transmit C2 Insert (Control) for Port 3. Control bit, when
set to a logic 1, inserts the value in TMUX_TC2INS3[7:0]
(Table 124 on page 112) into the outgoing C2 byte in the
STS-3/STM-1 (AU-4) frame; a logic 0 allows insertion from
the TPOAC channel or a default value. Only port 1 control is
valid in AU-4 mode.
0
0 TMUX_THSJ1INS3 Transmit J1 Insert (Control) for Port 3. Control bit, when
set to a logic 1, inserts the 64-byte sequence
TMUX_TJ1DINS3[64—1][7:0] (Table 152 on page 125) into
the outgoing STS-3/STM-1 (AU-4) frame; a logic 0 allows
insertion from the TPOAC channel or a default value. Only
port 1 control is valid in AU-4 mode.
0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
111Agere Systems Inc.
8 TMUX Registers (continued)
Table 119. TMUX_TLRDI_CTL, Transmit High-Speed Line RDI Control Parameters (R/W)
Table 120. TMUX_TPRDI_CTL, Transmit High-Speed Path RDI Control Parameters (R/W)
Address Bit Name Function Reset Default
0x4003A 15:7 RSVD Reserved. 0x000
6 TMUX_TRHSSD_LRDIINH Transmit Receive High -Speed Signal
Degrade L-RDI Inhibit. Control bit, when
set to a logic 1, causes the associated fail-
ure not to contribute to the automatic inser-
tion of RDI-L; otherwise, the associated
alarm contributes to the generation of RDI-L.
0
5 TMUX_TRHSSF_LRDIINH Transmit Receive High-Speed Signal Fail
L-RDI Inhibit. Control bit, when set to a
logic 1, causes the associated failure not to
contribute to the automatic insertion of
RDI-L; otherwise, the associated alarm con-
tributes to the generation of RDI-L.
0
4 TMUX_TRLAISMON_LRDIINH Transmit Receive Line AIS Line RDI
Inhibit. Same as above. 0
3 TMUX_TRHSLOF_LRDIINH Transmit Receive High-Speed Loss-of-
Frame Line RDI Inhibit. Same as above . 0
2 TMUX_TRHSOOF_LRDIINH Transmit Receive High-Speed Out of
Frame Line RDI Inhibit. Same as above . 0
1 TMUX_TRHSLOS_LRDIINH Transmit Receive High-Speed Loss-of-
Signal Line RDI Inhibit. Same as abo ve . 0
0 TMUX_TRILOC_LRDIINH Transmit Receive Input Loss-of-Clock
Line RDI Inhibit. Same as abo ve. 0
Address Bit Name Function Reset
Default
0x4003B 15:8 RSVD Reserved. 0x000
7:5 TMUX_TRTIM_PRDIINH[3:1] Transmit Receive Trace Identifier Mismatch Path
RDI Inhibit. When a 1, causes the associated failure not
to contribute to the automatic insertion of RDI-P; other-
wise, the associated alarm contributes to the generation
of RDI-P.
0
4 TMUX_TRUEQ_PRDIINH T ransmit Receive Unequipped Path RDI Inhibit.
When a 1, causes the associated failure not to contrib-
ute to the automatic insertion of RDI-P; otherwise, the
associated alarm contributes to the generation of RDI-P.
0
3 TMUX_TRPLM_PRDIINH T ransmit Receive Payload Label Mismatch Path RDI
Inhibit. When a 1, causes the associated failure not to
contribute to the automatic insertion of RDI-P; other-
wise, the associated alarm contributes to the generation
of RDI-P.
0
2 TMUX_TRLOP_PRDIINH Transmit Receive Loss of Pointer RDI Inhibit. When
a 1, causes the associated failure not to contribute to
the automatic insertion of RDI-P; otherwise, the associ-
ated alarm contributes to the generation of RDI-P.
0
1 TMUX_TRPAIS_PRDIINH Transmit Receive Path AIS RDI Inhibit. Same as
above. 0
0 TMUX_TEPRDI_MODE Transmit Enhanced RDI Mode. When a 1, causes the
enhanced 3-bit path RDI value to be transmitted in
G1[3:1]; otherwise, a 1-bit value (G1[3]) is sent.
0
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
112 Agere Systems Inc.
8 TMUX Registers (continued)
Table 121. TMUX_TZ0_INS_VAL, Transmit TOH and POH Insert Values (R/W)
Table 122. TMUX_TS1_F1_INS_VAL, Transmit TOH and POH Insert Values (R/W)
Table 123. TMUX_TAPS_INS_VAL, Transmit TOH and POH Insert Values (R/W)
Address Bit Name Function Reset
Default
0x4003C 15:8 TMUX_TZ03INS[7:0] Transmit Z0-3 Data Insert Value. Register value is
inserted into the STS-3/STM-1 (AU-4) output Z0-3 byte
if TMUX_THSZ0INS (Tab le 117 on page 105) is
asserted.
0x00
7:0 TMUX_TZ02INS[7:0] Transmit Z0-2 Data Insert Value. Register value is
inserted into the STS-3/STM-1 (AU-4) output Z0-2 byte
if TMUX_THSZ0INS is asserted.
0x00
Address Bit Name Function Reset
Default
0x4003D 15:8 TMUX_TS1INS[7:0] Transmit S1 Data Insert Value. Register value is
inserted into the STS-3/STM-1 (AU-4) output S1 byte if
TMUX_THSS1INS (Table 117 on page 105) is asserted.
0x00
7:0 TMUX_TF1INS[7:0] Transmit F1 Data Insert Value. Register value is
inserted into the STS-3/STM-1 (AU-4) output F1 byte if
TMUX_THSF1INS (Table 117 on page 105) is asse rt ed.
0x00
Address Bit Name Function Reset
Default
0x4003E 15:3 TMUX_TAPSINS[12:0] Transmit APS Data Insert Value. Re gi ster value is
inserted into the STS-3/STM-1 (AU-4) output K1[7:0] and
K2[7:3] bits if TMUX_THSAPSINS (Table 117 on
page 105) is asserted.
0x00
2:0 TMUX_TK2INS[2:0] Transmit K2 Data Insert Value. Register value is inserted
into the STS-3/STM-1 (AU-4) output K2[2:0] bits if
TMUX_THSK2INS (Table 117 on page 105) is asserted.
000
Table 124. TMUX_TPOH[1—3]_INS_[A—C], Transmit TOH and POH Insert Values (R/W)
Address Bit Na me Function Reset
Default
0x4003F 15:11 RSVD Reserved. 0x00
10:8 TMUX_TRDIPINS1[2:0] Transmit Path RDI Data Insert Value for Port 1. Register
value is inserted into the STS-3/STM-1 (AU-4) output
G1[3:1] bits if TMUX_THSRDIPINS1 (Tab le 118 on
page 107) is asserted, regardless of the value of
TMUX_TEPRDI_ MODE ( Table 120 on page 111).
000
7:0 TMUX_TC2INS1[7:0] Transmit C2 Data Insert Value for Port 1. Register value
is inserted into the STM-1 (AU-4) output C2 byte if
TMUX_THSC2INS1 (Table 118 on page 107) is asserted.
0x00
0x40040 15:8 TMUX_TF3INS1[7:0] T ransmit F3 Data Insert V alue for Port 1. Register value is
inserted into the STM-1 (AU-4) output F3 byte if
TMUX_THSF3INS1 (Table 118 on page 107) is asserted.
0x00
7:0 TMUX_TF2INS1[7:0] T ransmit F2 Data Insert V alue for Port 1. Register value is
inserted into the STM-1 (AU-4) output F2 byte if
TMUX_THSF2INS1 (Table 118 on page 107) is asserted.
0x00
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
8 TMUX Registers (continued)
113Agere Systems Inc.
Address Bit Name Function Reset
Default
0x40041 15:8 TMUX_TN1INS1[7:0] Transmit N1 Data Insert Value for Port 1. Register value
is inserted into the STM-1 (AU-4) output N1 byte if
TMUX_THSN1IN S1 (Table 118 on page 107) is asserted.
0x00
7:0 TMUX_TK3INS1[7:0] Transmit K3 Data Insert Value for Port 1. Register value
is inserted into the STM-1 (AU-4) output K3 byte if
TMUX_THSK3INS1 (Table 118 on page 107) is asserted.
0x00
0x40042 15:11 RSVD Reserved. 0x00
10:8 TMUX_TRDIPINS2[2:0] Transmit Path RDI Data Insert Value for Port 2. Register
value is inserted into the STS-3/STM-1 (AU-4) output
G1[3:1] bits if TMUX_THSRDIPINS2 (Table 118 on
page 107) is asser ted, regardless of the value of
TMUX_TEPRDI_MODE.
000
7:0 TMUX_TC2INS2[7:0] Transmit C2 Data Insert Value for Port 2. Register value
is inserted into the STM-1 (AU-4) output C2 byte if
TMUX_THS C2IN S1 is asse rted.
0x00
0x40043 15:8 TMUX_TF3INS2[7:0] T ransmit F3 Data Insert V alue for Port 2. Register value is
inserted into the STM-1 (AU-4) output F3 byte if
TMUX_THSF3INS1 is asserted.
0x00
7:0 TMUX_TF2INS2[7:0] T ransmit F2 Data Insert V alue for Port 2. Register value is
inserted into the STM-1 (AU-4) output F2 byte if
TMUX_THSF2INS1 is asserted.
0x00
0x40044 15:8 TMUX_TN1INS2[7:0] Transmit N1 Data Insert Value for Port 2. Register value
is inserted into the STM-1 (AU-4) output N1 byte if
TMUX_THSN1IN S1 (Table 118 on page 107) is asserted.
0x00
7:0 TMUX_TK3INS2[7:0] Transmit K3 Data Insert Value for Port 2. Register value
is inserted into the STM-1 (AU-4) output K3 byte if
TMUX_THSK3INS1 (Table 118 on page 107) is asserted.
0x00
0x40045 15:11 RSVD Reserved. 0x00
10:8 TMUX_TRDIPINS3[2:0] Transmit Path RDI Data Insert Value for Port 3. Register
value is inserted into the STS-3/STM-1 (AU-4) output
G1[3:1] bits if TMUX_THSRDIPINS3 (Table 118 on
page 107) is asser ted, regardless of the value of
TMUX_TEPRDI_MODE.
000
7:0 TMUX_TC2INS3[7:0] Transmit C2 Data Insert Value for Port 3. Register value
is inserted into the STM-1 (AU-4) output C2 byte if
TMUX_THSC2IN S1 (Table 118 on page 107) is asserted.
0x00
0x40046 15:8 TMUX_TF3INS3[7:0] T ransmit F3 Data Insert V alue for Port 3. Register value is
inserted into the STM-1 (AU-4) output F3 byte if
TMUX_THSF3INS1 (Table 118 on page 107) is asserted.
0x00
7:0 TMUX_TF2INS3[7:0] T ransmit F2 Data Insert V alue for Port 3. Register value is
inserted into the STM-1 (AU-4) output F2 byte if
TMUX_THSF2INS1 (Table 118 on page 107) is asserted.
0x00
0x40047 15:8 TMUX_TN1INS3[7:0] Transmit N1 Data Insert Value for Port 3. Register value
is inserted into the STM-1 (AU-4) output N1 byte if
TMUX_THS N1IN S1 is asse rted.
0x00
7:0 TMUX_TK3INS3[7:0] Transmit K3 Data Insert Value for Port 3. Register value
is inserted into the STM-1 (AU-4) output K3 byte if
TMUX_THSK3INS1 is asserted.
0x00
Table 124. TMUX_TPOH[1—3]_INS_[A—C], Transmit TOH and POH Insert Values (R/W) (continued)
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
114 Agere Systems Inc.
8 TMUX Registers (continued)
Table 125. TMUX_TBERINS_CTL, Transmit High-Speed Error Insertion Control Parameters (R/W)
Address Bit Name Function Reset
Default
0x40048 15:13 RSVD Reserved. 0x0
12 TMUX_TPSLREIINS Transmit Protection Signal Line REI Insert. Con-
trol bit, when set to a logic 1, causes one line REI
error in the outgoing protection STS-3/STM-1 (AU-4)
signal when there is a rising edge observed on the
SMPR_BER_INSRT (Table 75 on page 68) input
signal.
0
11 TMUX_TPSB2EIINS Transmit Protection Signal B2 Error Insert. Con-
trol bit , whe n se t t o a lo gi c 1, cau s es one B2 er ro r in
the outgoing protection STS-3/STM-1 (AU-4) signal
when there is a rising edge observed on the
SMPR_BER_INSRT (Table 75 on page 68) input
signal.
0
10:8 TMUX_TPREIINS[3:1] Transmit Path REI Error Insert. Control bit, when
set to a logic 1, causes one path REI error in the out-
going STS-3/STM-1 (AU-4) signal. Only port 1 con-
trol is vali d in AU-4 mode.
0
7:5 TMUX_THSB3ERRINS[3:1] Transmit High-Speed B3 Error Insert. Control bit,
when set to a logic 1, causes the output B3 byte in
the outgoing STS-3/STM-1 (AU-4) signal to be
inverted when there is a rising edge observed on the
SMPR_BER_INSRT (Table 75 on page 68) input
signal. Only port 1 control is valid in AU-4 mode.
0
4 TMUX_TLREIINS Transmit High-Speed Line REI Insert. Control bit,
when set to a logic 1, causes one line REI error in
the outgoing STS-3/STM-1 (AU-4) signal.
0
3:1 TMUX_THSB2ERRINS[3:1] Transmit High-Speed B2 Error Insert. Control bit,
when set to a logic 1, causes the output B2 bytes in
the outgoing STS-3/STM-1 (AU-4) signal to be
inverted when there is a rising edge observed on the
SMPR_BER_INSRT (Table 75 on page 68) input
signal.
000
0 TMUX_THSB1ERRINS Transmit High-Speed B1 Error Insert. Control bit,
when set to a logic 1, causes the output B1 byte in
the outgoing STS-3/STM-1 (AU-4) signal to be
inverted when there is a rising edge observed on the
SMPR_BER_INSRT (Table 75 on page 68) input
signal.
0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
115Agere Systems Inc.
8 TMUX Registers (continued)
Table 126. TMUX_THS_ERR_CTL, Transmit High-Speed Error Insertion Control Parameters (R/W)
Address Bit Name Function Reset
Default
0x40049 15:10 RSVD Reserved. 0x00
9 TMUX_TAPSBABINS Transmit APS Babble Insert. When 1, causes an
inconsistent APS byte (K1[7:0], K2[7:3]) to be inserted
into the outgoing STS-3/STM-1 (AU-4) frame.
0
8:6 TMUX_TH1H2INVEN[3:1] Transmit H1 H2 Corrupt Enable. When 1, causes the
output H1 and H2 bytes of the STS-3/STM-1 (AU-4) sig-
nal to be corrupted on a per STS-1 basis. In the AU-4
mode, only con tr ol bit 1 is used.
000
5 TMUX_TH1H2INVORNDF Transmit H1 H2 Corrupt or NDF. When 0, causes an
invalid pointer to be inserted into the output H1 and H2
bytes; otherwise, a continuous NDF condition (1001) is
sent.
0
4:0 TMUX_TA2ERRINS[4:0] Transmit Frame Error Insert Value. These bits specify
the number of consecutive frames when a frame error is
inserted in the outgoing A2 byte. This number of errored
frames is sent each time a rising edge is observed on
the SMPR_BER_INSRT (Table 75 on page 68) input
signal.
0x0
Table 127. TMUX_TOAC_CTL, Receive/Transmit TOAC/POAC Control Parameters (R/W)
Address Bit Name Function Reset
Default
0x4004A 15 TMUX_RTOAC_D412MODE Receive TOAC DCC4 to DCC12 Only Mode. When
1, causes the RTOAC data signal to carry only a par-
ity byte followed by DCC4 to DCC12 bytes. The
clock rate is 640 kHz. If this control bit is a logic 0
and TMUX_RTOAC_D13MODE is a logic 0, then the
receive TOAC channel is in full access mode.
0
14 TMUX_RTOAC_D13MODE Receive TOAC DCC1 to DCC3 Only Mode. When
1, causes the RTOAC data signal to carry only a par-
ity byte followed by DCC1 to DCC3 bytes. The clock
rate is 260 kHz. If this control bit is a logic 0 and
TMUX_RTOAC_D412MODE is a logic 0, then the
receive TOAC channel is in full access mode.
0
13 TMUX_RTOAC_OEPINS Receive TOAC Odd or Even Parity Insert. When 1,
forces receive the output TOAC parity bit to be even;
otherwise, the parity is odd.
0
12:10 RSVD Reserved. 000
9 TMUX_TTOAC_D412MODE Transmit TOAC DCC4 to DCC12 Only Mode.
When 1, causes DCC4 to DCC12 in the outgoing
frame to be inserted from the TTOAC channel. The
TTOAC clock rate is 640 kHz. If this control bit is a
logic 0 and TMUX_TTOAC_D13MODE is a logic 0,
then the transmit TOAC channel is in full access
mode.
0
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
8 TMUX Registers (continued)
116 Agere Systems Inc.
0x4004A 8 TMUX_TTOAC_D13MODE Transmit TOAC DCC1 to DCC3 Only Mode.
When 1, causes DCC1 to DCC3 in the outgoing
frame to be inserted from the TTOAC channel. The
TTOAC clock rate is 260 kHz. If this control bit is a
logic 0 and TMUX_TTOAC_D13MODE is a logic 0,
then the transmit TOAC channel is in full access
mode.
0
7TMUX_TTOAC_AVAILTransmit TOAC Available Byte Control. When 1,
causes the incoming TOAC values for undefined
bytes (bold-faced bytes in Table 535 on page 379) to
be inserted into the outgoing STS-3/STM-1 frame.
Other wis e, thei r values depend on
SMPR_OH _D EFLT (Table 77 on page 70).
0
6 TMUX_TTOAC_S1 Transmit TOAC S1 Byte Control. When 1, causes
the incoming TOAC S1 value to be inserted into the
S1 byte of the outgoing STS-3/STM-1 frame if the
TMUX_THSS1INS (Table 117 on page 105) control
bit is deasserted. If the S1 is not inserted from regis-
ter control or from the transmit TOAC channel, then
its value depends on SMPR_OH_DEFLT.
0
5 TMUX_TTOAC_F1 Transmit TOAC F1 Byte Control. When 1, causes
the incoming TOAC F1 value to be inserted into the
F1 byte of the outgoing STS-3/STM-1 frame if the
TMUX_THSF1INS (Table 117 on page 105) control
bit is desasserted. If the F1 is not inserted from reg-
ister control or from the transmit TOAC channel, then
its value depends on SMPR_OH_DEFLT.
0
4 TMUX_TTOAC_E2 Transmit TOAC E1 Byte Control. When 1, causes
the incoming TOAC E1 value to be inserted into the
E1 byte of the outgoing STS-3/STM-1 frame. Other-
wise, the E1 value depends on SMPR_OH_DEFLT.
0
3 TMUX_TTOAC_E1 Transmit TOAC E1 Byte Control. When 1, causes
the incoming TOAC E1 value to be inserted into the
E1 byte of the outgoing STS-3/STM-1 frame. Other-
wise, the E1 value depends on SMPR_OH_DEFLT.
0
2TMUX_TTOAC_D4TO12Transmit TOAC D4 to D12 Byte Control. When 1,
causes the TTOAC values to be inserted into the D4
to D12 bytes of the outgoing frame. If this control bit
is a logic 0, then the outgoing D4 to D12 values
depend on SMPR_OH_DEFLT.
0
1 TMUX_TTOAC_D1TO3 Transmit TOAC D1 to D3 Byte Control. When 1,
causes the TTOAC values to be inserted into the D1
to D3 bytes of the outgoing frame. If this control bit is
a logic 0, then the outgoing D1 to D3 values depend
on SMPR_OH_DEFLT.
0
0 TMUX_TTOAC_OEPMON Transmit TOAC Odd or Even Parity Monitor.
When 1, forces the input TOAC parity checker to
check for odd parity; otherwise, even parity is
checked on the transmit TOAC channel.
0
Table 127. TMUX_TOAC_CTL, Receive/Transmit TOAC/POAC Control Parameters (R/W) (continued)
Address Bit Name Function Reset
Default
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
117Agere Systems Inc.
8 TMUX Registers (continued)
Table 128. TMUX_RPOAC_CTL, Receive/Transmit TOAC/POAC Control Parameters (R/W)
Address Bit Name Function Reset
Default
0x4004B 15:14 TMUX_RPOAC_SEL[1:0] Receive POAC STS-1 Port Selection. Designates which
STS-1 inserts its path overhead bytes into the receive
POAC channel. A value of 00 disables POAC, 01 desig-
nates STS-1 #1, 10 designates STS-1 #2, and 11 desig-
nates STS-1 #3.
00
13 TMUX_RPOAC_OEPINS Receive POAC Odd or Even Parity Insert. Wh en 1,
forces receive the output POAC parity bit to be even; oth-
erwise, the parity is odd.
0
12:10 RSVD Reserved. 000
9:8 TMUX_TPOAC_SEL[1:0] Transmit POAC STS-1 Port Selection. Designates which
STS-1 obtains path overhead bytes from the transmit
POAC channel. A value of 00 disables POAC, 01 desig-
nate STS-1 #1, 10 designates STS-1 #2, and 11 desig-
nates STS-1 #3.
00
7RSVDReserved. 0
6 TMUX_TPOAC_N1 Transmit POAC N1 Byte Control. When 1, causes the
incoming POAC N1 value to be inserted into the N1 byte of
the selected TPOAC STS-1 if the corresponding
TMUX_THSN1INS (Table 118 on page 107) control bit is
desasserted. If the N1 is not inserted from register control
or from the transmit POAC channel, then its value
depends on SMPR_OH_DEFLT (Table 77 on page 70).
0
5 TMUX_TPOAC_K3 Transmit POAC K3 Byte Control. When 1, causes the
incoming POAC K3 value to be inserted into the K3 byte of
the selected TPOAC STS-1 if the corresponding
TMUX_THSK3 INS (Table 118 on page 107) control bit is
desasserted. If the K3 is not inserted from register control
or from the transmit POAC channel, then its value
depends on SMP R_O H_ DEF LT.
0
4 TMUX_TPOAC_F3 Transmit POAC F3 Byte Control. When 1, causes the
incoming POAC F3 value to be inserted into the F3 byte of
the selected TPOAC STS-1 if the corresponding
TMUX_THSF3INS (Table 118 on page 107) control bit is
desasserted. If the F3 is not inserted from register control
or from the transmit POAC channel, then its value
depends on SMP R_O H_ DEF LT.
0
3 TMUX_TPOAC_F2 Transmit POAC F2 Byte Control. When 1, causes the
incoming POAC F2 value to be inserted into the F2 byte of
the selected TPOAC STS-1 if the corresponding
TMUX_THSF2INS (Table 118 on page 107) control bit is
desasserted. If the F2 is not inserted from register control
or from the transmit POAC channel, then its value
depends on SMPR_OH_DEFLT (Table 77 on page 70).
0
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
118 Agere Systems Inc.
8 TMUX Registers (continued)
Table 128. TMUX_RPOAC_CTL, Receive/Transmit TOAC/POAC Control Parameters (R/W) (continued)
Table 129. TMUX_TFRAMEOFFSET, Transmit High-Speed Offset Control Parameters (R/W)
)
Address Bit Name Function Reset
Default
0x4004B 2 TMUX_TPOAC_C2 Transmit POAC C2 Byte Control. When 1, causes
the incoming POAC C2 value to be inserted into the
C2 byte of the selected TPOAC STS-1 if the corre-
spondi ng TMUX _THSC 2INS (Table 118 on page 107)
control bit is desasserted. If the C2 is not inserted from
register control or from the transmit POAC channel,
then its value depends on SMPR_OH_DEFLT.
0
1TMUX_TPOAC_J1Transmit POAC J1 Byte Control. Control bit, when
set to a logic 1, causes the incoming POAC J1 value to
be inserted into the J1 byte of the selected TPOAC
STS-1 if the corresponding TMUX_THSJ1INS
(Table 118 on page 107) control bit is desasserted. If
the J1 is not inserted from register control or from the
transmit POAC channel, then its value depends on
SMPR_OH_ DEFLT.
0
0 TMUX_TPOAC_OEPMON T r ansmit TOAC Odd or Even Parity Monitor. Control
bit, when set to a logic 1, forces the input TOAC parity
checker to check for odd parity; otherwise, even parity
is checked on the transmit TOAC channel.
0
Address Bit Name Function Reset
Default
0x4004D 15:13 TMUX_TLBITCNT[2:0] Transmit Load Bit Count. Allows the outp ut
STS-3/STM-1 (AU-4) frame to have any relationship to
the input frame sync pulse (THSSJ0J1V1I).
000
12:11 TMUX_TLSTSCNT[1:0] Transmit Load STS-1 Count. Same as abo ve . 00
10:4 TMUX_TLCOLCNT[6:0] Transmit Load Column Count. Same as abo ve . 000 0000
3:0 TMUX_TLROWCNT[3:0] Transmit Load Row Count . Same as above. 0000
Table 130. TMUX_SD_CTL[16], B1/B2 Signal Degrade Set/Clear Control Registers (R/W)
Address Bit Name Function Reset
Default
0x4004E
0x4004F 15:0
2:0 TMUX_SDNSSET[18:3]
TMUX_SDNSSET[2:0] Signal Degrade Ns Set. Number of frames in a
monitoring block for signal degrade (SD). 0x00000
0x4004F 15
14:7 RSVD
TMUX_SDMSET[7:0] Reserved.
Signal Degrade M Set. Threshold of the number of bad
monitoring blocks in an observation interval. If the
number of bad blocks is above this threshold, then SD
is set.
0x00
6:3 TMUX_SDLSET[3:0] Signal Degrade L Set. Error threshold for determining
if a monitoring block is bad. 0x0
0x40050 15:0 TMUX_SDBSET[15:0] Signal Degrade B Set. Number of monitoring blocks. 0x0000
0x40051
0x40052 15:0
2:0 TMUX_SDNSCLEAR[18:3]
TMUX_SDNSCLEAR[2:0] Signal Degrade Ns Clear. Number of frames in a
monitoring block for SD. 0x00000
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
8 TMUX Registers (continued)
119Agere Systems Inc.
Table 131. TMUX_SF_CTL[16], B1/B2 Signal Fail Set/Clear Control Registers (R/W)
0x40052 15
14:7 RSVD
TMUX_SDMCLEAR[7:0] Reserved.
Signal Degrade M Clear. Threshold of the number of
bad monitoring blocks in an observation interval. If the
number of bad blocks is below this threshold, then SD is
cleared.
0x00
6:3 TMUX_SDLCLEAR[3:0] Signal Degrad e L Clear. Error threshold for
determining if a monitoring block is bad. 0x0
0x40053 15:0 TMUX_SDBCLEAR[15:0] Signal Degrade B Clear. Number of monitoring blocks. 0x0000
Address Bit Name Function Reset
Default
0x40054
0x40055 15:0
2:0 TMUX_SFNSSET[18:3]
TMUX_SFNSSET[2:0] Signal Fail Ns Set. Number of frames in a monitoring
block for signal fail (SF). 0x00000
0x40055 15
14:7 RSVD
TMUX_SFMSET[7:0] Reserved.
Signal Fail M Set. Threshold of the number of bad
monitoring blocks in an observation interval. If the num-
ber of bad blocks is above this threshold, then SF is
set.
0x00
6:3 TMUX_SFLSET[3:0] Signal Fail L Set. Error threshold for determining if a
monitoring block is bad. 0x0
0x40056 15:0 TMUX_SFBSET[15:0] Signal Fail B Set. Number of monitoring blocks. 0x0000
0x40057
0x40058 15:0
2:0 TMUX_SFNSCLEAR[18:3]
TMUX_SFNSCLEAR[2:0] Signal Fail Ns Clear . Number of frames in a monitoring
block for SF. 0x00000
0x40058 15
14:7 RSVD
TMUX_SFMCLEAR[7:0] Reserved.
Signal Fail M Clear. Threshold of the number of bad
monitoring blocks in an observation interval. If the num-
ber of bad blocks is below this threshold, then SF is
cleared.
0x00
0x40058 6:3 TMUX_SFLCLEAR[3:0] Signal Fail L Clear. Error thresh old for dete rmin ing if a
monitoring block is bad. 0x0
0x40059 15:0 TMUX_SFBCLEAR[15:0] Signal Fail B Clear. Number of monitoring blocks. 0x0000
Table 132. TMUX_B3SD_CTL[16], B3 Signal Degrade Set/Clear Control Registers (R/W)
Address Bit Name Function Reset
Default
0x4005A
0x4005B 15:0
2:0 TMUX_B3SDNSSET[18:3]
TMUX_B3SDNSSET[2:0] B3 Signal Degrade Ns Set. Number of frames in a
monitoring block for signal degrade (SD). 0x0000
0
0x4005B 15
14:7 RSVD
TMUX_B3SDMSET[7:0] Reserved.
B3 Signal Degrade M Set. Thresho l d o f t h e nu m be r
of bad monitoring blocks in an observation interval. If
the number of bad blocks is above this threshold,
then SD is set.
0x00
0x4005B 6:3 TMUX_B3SDLSET[3:0] B3 Signal Degrade L Set. Error threshold for deter-
mining if a monitoring block is bad. 0x0
0x4005C 15:0 TMUX_B3SDBSET[15:0] B3 Signal Degrade B Set. Number of monitoring
blocks. 0x0000
Table 130. TMUX_SD_CTL[16], B1/B2 Signal Degrade Set/Clear Control Registers (R/W) (continued)
Address Bit Name Function Reset
Default
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
8 TMUX Registers (continued)
120 Agere Systems Inc.
Table 133. TMUX_B3SF_CTL[16], B3 Signal Fail Set/Clear Control Registers (R/W)
Table 134. TMUX_B1ECNT, Receive B1 Error Counts (RO)
0x4005D
0x4005E 15:0
2:0 TMUX_B3SDNSCLEAR[18:3]
TMUX_B3SDNSCLEAR[2:0] B3 Signal Degrade Ns Clear . Number of frames in a
monitoring block for SD. 0x0000
0
0x4005E 15
14:7 RSVD
TMUX_B3SDMCLEAR[7:0] Reserved.
B3 Signal Degrade M Clear. Threshold of the num-
ber of bad monitoring blocks in an observation inter-
val. If the number of bad blocks is below this
threshold, then SD is cleared.
0x00
6:3 TMUX_B3SDLCLEAR[3:0] B3 Signal Degrade L Clear. Error threshold for
determining if a monitoring block is bad. 0x0
0x4005F 15:0 TMUX_B3SDBCLEAR[15:0] B3 Signal Degrade B Clear. Number of monitoring
blocks. 0x0000
Address Bit Name Function Reset
Default
0x40060
0x40061 15:0
2:0 TMUX_B3SFNSSET[18:3]
TMUX_B3SFNSSET[2:0] B3 Signal Fail Ns Set. Number of frames in a
monitoring block for SF. 0x00000
0x40061 15
14:7 RSVD
TMUX_B3SFMSET[7:0] Reserved.
B3 Signal Fail M Set. Threshold of the number of
bad monitoring blocks in an observation interval. If
the number of bad blocks is above this threshold,
then SF is set .
0x00
6:3 TMUX_B3SFLSET[3:0] B3 Signal Fail L Set. Error threshold for determin-
ing if a monitoring block is bad. 0x0
0x40062 15:0 TMUX_B3SFBSET[15:0] B3 Signal Fail B Set. Number of monitoring blocks. 0x0000
0x40063
0x40064 15:0
2:0 TMUX_B3SFNSCLEAR[18:3]
TMUX_B3SFNSCLEAR[2:0] B3 Signal Fail Ns Clear. Number of frames in a
monitoring block for SF. 0x00000
0x40064 15
14:7 RSVD
TMUX_B3SFMCLEAR[7:0] Reserved.
B3 Signal Fail M Clear . Threshold of the number of
bad monitoring blocks in an observation interval. If
the number of bad blocks is below this threshold,
then SF is clear ed .
0x00
0x40064 6:3 TMUX_B3SFLCLEAR[3:0] B3 Signal Fail L Clear. Error threshold for deter-
mining if a monitoring block is bad. 0x0
0x40065 15:0 TMUX_B3SFBCLEAR[15:0] B3 Signal Fail B Clear. Number of monitoring
blocks. 0x0000
Address Bit Name Function Reset
Default
0x40066 15:0 TMUX_B1ECNT[15:0] Receive High-Speed B1 Erro r Count . Counts the number
of B1 errors in the received STS-3/STM-1 (AU-4) frame.
This counter can either count actual BIP errors or block
errors ; se e TMUX_ BIT BL KB1 (Table 105 on page 97). This
counter holds at its maximum value or rolls over depending
on the value of SMPR_SAT_ROLLOVER (Table 77 on
page 70), and transfers its internal count to a holding regis-
ter whe n SMPR_PMRESET (Table 75 on page 68) tra ns i -
tions from a logic 0 to 1.
0x0000
Table 132. TMUX_B3SD_CTL[16], B3 Signal Degrade Set/Clear Control Registers (R/W) (continued)
Address Bit Name Function Reset
Default
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
121Agere Systems Inc.
8 TMUX Registers (continued)
Table 135. TMUX_B2ECNT_17_16 and TMUX_B2ECNT_15_0 , Receive B2 Error Counts (RO)
Table 136. TMUX_B3ECNT[13], Receive B3 Error Counts (RO)
Address Bit Name Function Reset
Default
0x40067 15:2 RSVD Reserved. 0x000
0x40067
0x40068
1:0
15:0
TMUX_B2ECNT[17:16]
TMUX_B2ECNT[15:0]
Receive High-Speed B2 Error Count. Coun ts the
number of B2 errors in the received STS-3/STM-1
(AU-4) frame. This counter can either count actual
BIP errors or block errors; see TMUX_BITBLKB2
(Table 105 on page 97). This counter holds at its
maximum value or rolls over depending on the value
of SMPR_SA T_ROLLOVER, and transfers its internal
count to a holding register when SMPR_PMRESET
transitions from a logic 0 to 1.
0x00000
Address Bit Name Function Reset
Default
0x40069 15:0 TMUX_B3ECNT1[15:0] Receive High-Speed B3 Error Count for Port 1. Counts
the number of B3 errors in the receive STS-3/STM-1
(AU-4) frame for port 1. Only counter value 1 is valid in
AU-4 mode. This counter can either count actual BIP errors
or block errors; see TMUX_BITBLKB3 (Table 105 on
page 97). This counter holds at its maximum value or rolls
over depending on the value of SMPR_SAT_ROLLOVER
(Table 77 on page 70), and transfers its internal count to a
holding re gister when SM PR_PMRES ET (Table 75 on
page 68) transitions from a logic 0 to 1.
0x0000
0x4006A 15:0 TMUX_B3ECNT2[15:0] Receive High-Speed B3 Error Count for Port 2. Counts
the number of B3 errors in the receive STS-3/STM-1
(AU-4) frame for port 2. Only counter value 1 is valid in
AU-4 mode. This counter can either count actual BIP errors
or block errors; see TMUX_BITBLKB3 (Table 105 on
page 97). This counter holds at its maximum value or rolls
over depending on the value of SMPR_SAT_ROLLOVER,
and transfers its internal count to a holding register when
SMPR_PMRESET transitions from a logic 0 to 1.
0x0000
0x4006B 15:0 TMUX_B3ECNT3[15:0] Receive High-Speed B3 Error Count for Port 3. Counts
the number of B3 errors in the receive STS-3/STM-1
(AU-4) frame for port 3. Only counter value 1 is valid in
AU-4 mode. This counter can either count actual BIP errors
or block errors; see TMUX_BITBLKB3 (Table 105 on
page 97). This counter holds at its maximum value or rolls
over depending on the value of SMPR_SAT_ROLLOVER,
and transfers its internal count to a holding register when
SMPR_PMRESET transitions from a logic 0 to 1.
0x0000
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
122 Agere Systems Inc.
8 TMUX Registers (continued)
Table 137. TMUX_M1ECNT_17_16 and TMUX_M1ECNT_15_0, Receive M1 Error Counts (RO)
Table 138. TMUX_G1ECNT[13], Receive G1 Error Counts (RO)
Address Bit Name Function Reset
Default
0x4006C 15:2 RSVD Reserved. 0x000
0x4006C
0x4006D
1:0
15:0
TMUX_M1ECNT[17:16]
TMUX_M1ECNT[15:0]
Receive Line REI Count. Counts the number of errors
received in the M1 byte of the receive
STS-3/STM-1 (AU-4) frame. This counter can either
count actual errors or block errors; see
TMUX_BITBLKM1 (Table 105 on page 97). This
counter holds at its maximum value or rolls over
depending on the value of SMPR_SAT_ROLLOVER,
and transfers its internal count to a holding register
when SMPR_PMRESET t ran si tio ns fr om a l og ic 0 t o 1.
0x00000
Address Bit Name Function Reset
Default
0x4006E 15:0 TMUX_G1ECNT1[15:0] Receive Path REI Count for Port 1 . Counts the number of
B3 errors received in the G1[7:4] bits of port 1 in the
received STS-3/STM-1 (AU-4) frame. This counter can
either count actual errors or block errors; see
TMUX_BITBLKB3 (Table 105 on page 97). This counter
holds at its maximum value or rolls over depending on the
value of SMPR_SAT_ROLLOVER (Table 77 on page 70),
and transfers its internal count to a holding register when
SMPR_PMRESET (Table 75 on page 68) transitions from a
logic 0 to 1.
0x0000
0x4006F 15:0 TMUX _G1E CNT2[15:0] Receive Pa th REI Count for Port 2. Counts the number of
B3 errors received in the G1[7:4] bits of port 2 in the
received STS-3/STM-1 (AU-4) frame. This counter can
either count actual errors or block errors; see
TMUX_BITBLKB3 (Table 105 on page 97). This counter
holds at its maximum value or rolls over depending on the
value of SMPR_SA T_ROLLOVER, and transfers its internal
count to a holding register when SMPR_PMRESET transi-
tions from a logic 0 to 1.
0x0000
0x40070 15:0 TMUX_G1ECNT3[15:0] Receive Path REI Count for Port 3 . Counts the number of
B3 errors received in the G1[7:4] bits of port 3 in the
received STS-3/STM-1 (AU-4) frame. This counter can
either count actual errors or block errors; see
TMUX_BITBLKB3 (Table 105 on page 97). This counter
holds at its maximum value or rolls over depending on the
value of SMPR_SA T_ROLLOVER, and transfers its internal
count to a holding register when SMPR_PMRESET transi-
tions from a logic 0 to 1.
0x0000
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
123Agere Systems Inc.
8 TMUX Registers (continued)
Table 139. TMUX_RPTR_INCCNT[13], Receive Pointer Increment Count (RO)
Table 140. TMUX_RPTR_DECCNT[13], Receive Pointer Decrement Count (RO)
Table 141. TMUX_RJ0EXPECTED[1—8], Expected J0 Byte Sequence (R/W)
Table 142. TMUX_RJ0CAPTURED[1—8], Captured J0 Receive Value (RO)
Table 143. TMUX_TJ0VALUE[1—8], J0 Byte Transmit Insert (R/W)
Address Bit Name Function Reset
Default
0x40074
0x40076
15:11 RSVD Reserved. 0x000
10:0 TMUX_RPTR_INC1[10:0]—
TMUX_RPTR_INC3[10:0] Receive Pointer Increment Count. Counts the
number of increments in the incoming pointer val-
ues. This counter holds at its maximum value or
rolls over depending on the value of
SMPR_SAT_ROLLOVER (Table 77 on page 70),
and transfers its internal count to a holding register
when SMPR_PMRESET (Table 75 on page 68)
transitions from a logic 0 to 1.
0x000
Address Bit Name Function Reset
Default
0x40077
0x40079
15:11 RSVD Reserved. 0x000
10:0 TMUX_RPTR_DEC1[10:0]—
TMUX_RPTR_DEC3[10:0] Receive Pointer Decrement Count. Counts the
number of decrements in the incoming pointer values.
This counter holds at its maximum value or rolls over
depending on the value of SMPR_SAT_ROLLOVER,
and transfers its internal count to a holding register
when SMPR_PMRESET transitions from a logic 0
to 1.
0x000
Address Bit Name Function Reset
Default
0x400A0
0x400A7
15:0 TMUX_EXPJ0DMON[16—1][7:0] Expected Receive J0 Value. Registers con-
tain either the programmed expected J0
16-byte sequence or the previously captured
J0 sequence, depending on the J0 mode.
0x0000
Address Bit Name Function Reset
Default
0x400A8
0x400AF
15:0 TMUX_J0DMON[16—1][7:0] Received J0 Value. Registers capture a 16-byte
sequence from the J0 byte of the receive input signal. 0x0000
Address Bit Name Function Reset
Default
0x400B0
0x400B7
15:0 TMUX_TJ0DINS[16—1][7:0] Transmit J0 Data Insert. Registers allow a 16-byte
sequence to be inserted into the J0 byte of the
STS-3/STM-1 (AU-4) output signal.
0x0000
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
124 Agere Systems Inc.
8 TMUX Registers (continued)
Table 144. TMUX_RJ1EXPECTED1_[1—32], Expected J1 Byte Value for Port 1 (R/W)
Table 145. TMUX_RJ1EXPECTED2_[1—32], Expected J1 Byte Value for Port 2 (R/W)
Table 146. TMUX_RJ1EXPECTED3_[1—32], Expected J1 Byte Value for Port 3 (R/W)
Table 147. TMUX_RJ1CAPTURED1_[1—32], Captured J1 Value for STS #1 (RO)
Table 148. TMUX_RJ1CAPTURED2_[1—32], Captured J1 Value for STS #2 (RO)
Table 149. TMUX_RJ1CAPTURED3_[1—32], Captured J1 Value for STS #3 (RO)
Address Bit Name Function Reset
Default
0x400E0
0x400FF
15:0 TMUX_EXPJ1DMON1[64—1][7:0] Expected Receive J1 Value for Port 1. Reg-
isters contain either the programmed
expected J1 16-byte/64-byte sequence or the
previously captured J1 sequence, depending
on the J1 mode.
0x0000
Address Bit Name Function Reset
Default
0x40100
0x4011F
15:0 TMUX_EXPJ1DMON2[64—1][7:0] Expected Receive J1 Value for Port 2. Reg-
isters contain either the programmed
expected J1 16-byte/64-byte sequence or the
previously captured J1 sequence, depending
on the J1 mode.
0x0000
Address Bit Name Function Reset
Default
0x40120
0x4013F
15:0 TMUX_EXPJ1DMON3[64—1][7:0] Expected Receive J1 Value for Port 3. Regis-
ters contain either the programmed expected
J1 16-byte/64-byte sequence or the previously
captured J1 sequence, depending on the J1
mode.
0x0000
Address Bit Name Function Reset
Default
0x40140
0x4015F
15:0 TMUX_J1DMON1[64—1][7:0] Receive J1 Monitor Data for Port 1. Registers
capture a 16-byte/64-byte sequence from the port
1, J1 byte of the STS-3/STM-1 (AU-4) input signal.
Only port 1 information is valid in AU-4 mode.
0x0000
Address Bit Name Function Reset
Default
0x40160
0x4017F
15:0 TMUX_J1DMON2[64—1][7:0] Receive J1 Monitor Data for Port 2. Registers
capture a 64-byte sequence from the port 2, J1 byte
of the STS-3/STM-1 (AU-4) input signal. Only port 1
information is valid in AU-4 mode.
0x0000
Address Bit Name Function Reset
Default
0x40180
0x4019F
15:0 TMUX_J1DMON3[64—1][7:0] Receive J1 Monitor Data for Port 3. Registers
capture a 64-byte sequence from the port 3 J1
byte of the STS-3/STM-1 (AU-4) input signal.
Only port 1 information is valid in AU-4 mode.
0x0000
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
125Agere Systems Inc.
8 TMUX Registers (continued)
Table 150. TMUX_TJ1VALUE_1[1—32], J1 Byte Tr ansmit Insert for STS #1 (R/W)
Table 151. TMUX_TJ1VALUE_2[1—32], J1 Byte Tr ansmit Insert for STS #2 (R/W)
Table 152. TMUX_TJ1VALUE_3[1—32], J1 Byte Tr ansmit Insert for STS #3 (R/W)
Address Bit Name Function Reset
Default
0x401A0
0x401BF
15:0 TMUX_TJ1DINS[64—1][7:0] T ransmit J1 Data Insert for Port 1. Registers allow
a 64-byte sequence to be inserted into the port 1, J1
byte of the STS-3/STM-1 (AU-4) output signal. Only
port 1 information is valid in AU-4 mode.
0x0000
Address Bit Name Function Reset
Default
0x401C0
0x401DF
15:0 TMUX_TJ1DINS2[64—1][7:0] Transmit J1 Data Insert for Port 2. Registers
allow a 64-byte sequence to be inserted into the
port 2, J1 byte of the STS-3/STM-1 (AU-4) output
signal. Only port 1 information is valid in AU-4
mode.
0x0000
Address Bit Name Function Reset
Default
0x401E0
0x401FF
15:0 TMUX_TJ1DINS3[64—1][7:0] Transmit J1 Data Insert for Port 3. Registers
allow a 64-byte sequence to be inserted into the
port 2, J1 byte of the STS-3/STM-1 (AU-4) output
signal. Only port 1 information is valid in AU-4
mode.
0x0000
TMXF28155 Supermapper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
126 Agere Systems Inc.
8 TMUX Registers (continued)
8.2 TMUX Register Map
Table 153. TMUX Register Map
Note: The reset default of all reserved bits is 0. Shading denotes reserved bits.
Addr Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ID and VersionRO
0x40000
page 79 TMUX_
ID_R TMUX_VERSION[2: 0] TMUX _ID[7:0] = 0X04
One-Shot (0 to 1 Transition Control Bit ParametersR/W)
0x40002
page 79 TMUX_
ONESHOT TMUX_
B3SFCLEAR TMUX_
B3SFSET TMUX_
B3SDCLEAR TMUX_
B3SDSET TMUX_
SFCLEAR TMUX_
SFSET TMUX_
SDCLEAR TMUX_
SDSET
Receive/Transmit Mod e R/W
0x40003
page 79 TMUX_
RCV_TX_
MODE
TMUX_
STS1MODE
Del ta and Event Param etersCOR/COW
0x40004
page 80 TMUX_
TX_DLT TMUX_
TLSPARE3 TMUX_
TLSPARE2 TMUX_
TLSPARE1 TMUX_
TPOAC_PE TMUX_
TTOAC_PE TMUX_
THSILOFD TMUX_
THSILOCD
0x40005
page 80 TMUX_
RPS_
DLT
TMUX_
RPSLOFD TMUX_
RPSOOFD TMUX_
RPSILOCD TMUX_
RPSB2E TMUX_
RPSLREIE
0x40006
page 81 TMUX_
RHS_DLT TMUX_
RS1BABE TMUX_
RS1MOND TMUX_
RLRDIMOND TMUX_
RLAISMOND TMUX_
RK2MOND TMUX_
RAPSBABE TMUX_
RAPSMOND TMUX_
RF1MOND TMUX_
RTIMSD TMUX_
RHSSFD TMUX_
RHSSDD TMUX_
RHSLOSD TMUX_
RHSLOFD TMUX_
RHSOOFD TMUX_
RHSILOCD
0x40007
page 83 TMUX_
RPOH1_
DLT
TMUX_
RSFB3D1 TMUX_
RSDB3D1 TMUX_
RUNEQPE1 TMUX_
RPLMPE1 TMUX_
RN1MOND1 TMUX_
RK3MOND1 TMUX_
RF3MOND1 TMUX_
RF2MOND1 TMUX_
RRDIPD1 TMUX_
RC2MOND1 TMUX_
RTIMPD1 TMUX_
RNDFE1 TMUX_
RDECE1 TMUX_
RINCE1 TMUX_
RPAISD1 TMUX_
RLOPD1
0x40008
page 87 TMUX_
RPOH2_
DLT
TMUX_
RSFB3D2 TMUX_
RSDB3D2 TMUX_
RUNEQPE2 TMUX_
RPLMPE2 TMUX_
RN1MOND2 TMUX_
RK3MOND2 TMUX_
RF3MOND2 TMUX_
RF2MOND2 TMUX_
RRDIPD2 TMUX_
RC2MOND2 TMUX_
RTIMPD2 TMUX_
RNDFE2 TMUX_
RDECE2 TMUX_
RINCE2 TMUX_
RPAISD2 TMUX_
RLOPD2
0x40009
page 87 TMUX_
RPOH3_
DLT
TMUX_
RSFB3D3 TMUX_
RSDB3D3 TMUX_
RUNEQPE3 TMUX_
RPLMPE3 TMUX_
RN1MOND3 TMUX_
RK3MOND3 TMUX_
RF3MOND3 TMUX_
RF2MOND3 TMUX_
RDIPD3 TMUX_
RC2MOND3 TMUX_
RTIMPD3 TMUX_
RNDFE3 TMUX_
RDECE3 TMUX_
RINCE3 TMUX_
RPAISD3 TMUX_
RLOPD3
Interrupt Mask Parameters for INT PinR/W
0x4000A
page 89 TMUX_
TX_
MSK
TMUX_
TLSPARM3 TMUX_
TLSPARM2 TMUX_
TLSPARM1 TMUX_
TPOAC_
PM
TMUX_
TTOAC_PM TMUX_
THSILOFM TMUX_
THSILOCM
0x4000B
page 90 TMUX_
RPS_MSK TMUX_
RPSLOFM TMUX_
RPSOOFM TMUX_
RPSILOCM TMUX_
RPSB2M TMUX_
RPSLREIM
0x4000C
page 90 TMUX_
RHS_MSK TMUX_
RS1BABM TMUX_
RS1MONM TMUX_
RLRDIMONM TMUX_
RLAISMONM TMUX_
RK2MONM TMUX_
RAPSBABM TMUX_
RAPSMONM TMUX_
RF1MONM TMUX_
RTIMSM TMUX_
RHSSFM TMUX_
RHSSDM TMUX_
RHSLOSM TMUX_
RHSLOFM TMUX_
RHSOOFM TMUX_
RHSILOCM
0x4000D
page 91 TMUX_
RPOH1_
MSK
TMUX_
RSFB3M1 TMUX_
RSDB3M1 TMUX_
RUNEQPM1 TMUX_
RPLMPM1 TMUX_
RN1MONM1 TMUX_
RK3MONM1 TMUX_
RF3MONM1 TMUX_
RF2MONM1 TMUX_
RRDIPM1 TMUX_
RC2MONM1 TMUX_
RTIMPM1 TMUX_
RNDFM1 TMUX_
RDECM1 TMUX_
RINCM1 TMUX_
RPAISM1 TMUX_
RLOPM1
0x4000E
page 91 TMUX_
RPOH2_
MSK
TMUX_
RSFB3M2 TMUX_
RSDB3M2 TMUX_
RUNEQPM2 TMUX_
RPLMPM2 TMUX_
RN1MONM2 TMUX_
RK3MONM2 TMUX_
RF3MONM2 TMUX_
RF2MONM2 TMUX_
RRDIPM2 TMUX_
RC2MONM2 TMUX_
RTIMPM2 TMUX_
RNDFM2 TMUX_
RDECM2 TMUX_
RINCM2 TMUX_
RPAISM2 TMUX_
RLOPM2
0x4000F
page 92 TMUX_
RPOH3_
MSK
TMUX_
RSFB3M3 TMUX_
RSDB3M3 TMUX_
RUNEQPM3 TMUX_
RPLMPM3 TMUX_
RN1MONM3 TMUX_
RK3MONM3 TMUX_
RF3MONM3 TMUX_
RF2MONM3 TMUX_
RRDIPM3 TMUX_
RC2MONM3 TMUX_
RTIMPM3 TMUX_
RNDFM3 TMUX_
RDECM3 TMUX_
RINCM3 TMUX_
RPAISM3 TMUX_
RLOPM3
Interrup t Mask Parameters for APSINT PinR/W
0x40011
page 93 TMUX_
APSINT_
MSK
TMUX_
RHSSF_
APSM
TMUX_
RHSSD_
APSM
TMUX_
RAPSMON_
APSM
TMUX_
RLAISMON_
APSM
TMUX_
RHSLOS_
APSM
TMUX_
RHSLOF_
APSM
TMUX_
RHSOOF_
APSM
TMUX_
RHSILOC_
APSM
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
127Agere Systems Inc.
8 TMUX Registers (continued)
Table 153. TMUX Register Map (continued)
Note: The reset default of all reserved bits is 0. Shading denotes reserved bits.
Addr Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
State and Value Parameters RO
0x40012
page 93 TMUX_TX_
STATE TMUX_
THSILOF TMUX_
THSILOC
0x40013
page 93 TMUX_RPS_
STATE TMUX_
RPSLOF TMUX_
RPSOOF TMUX_
RPSILOC
0x40014
page 94 TMUX_RHS_
STATE TMUX_
RLRDIMON TMUX_
RLAISMON TMUX_
RHSLOSEXTI TMUX_
RTIMS TMUX_
RHSSF TMUX_
RHSSD TMUX_
RHSLOS TMUX_
RHSLOF TMUX_
RHSOOF TMUX_
RHSILOC
0x40015
page 94 TMUX_RPOH1_
STATE TMUX_
RSFB31 TMUX_
RSDB31 TMUX_
RUNEQP1 TMUX_
RPLMP1 TMUX_
RTIMP1 TMUX_
RPAIS1 TMUX_
RLOP1
0x40016
page 95 TMUX_RPOH2_
STATE TMUX_
RSFB32 TMUX_
RSDB32 TMUX_
RUNEQP2 TMUX_
RPLMP2 TMUX_
RTIMP2 TMUX_CONCAT_
STATE2[1:0] TMUX_
RPAIS2 TMUX_
RLOP2
0x40017
page 95 TMUX_RPOH3_
STATE TMUX_
RSFB33 TMUX_
RSDB33 TMUX_
RUNEQP3 TMUX_
RPLMP3 TMUX_
RTIMP3 TMUX_CONCAT_
STATE3[1:0] TMUX_
RPAIS3 TMUX_
RLOP3
Receive High-Speed Control ParametersR/W
0x40019
page 96 TMUX_RHS_
CTL TMUX_
LOSEXT_
LEVEL
TMUX_
RPSMUXSEL1 TMUX_
THS2RHSLB TMUX_
RHSDSCR
Receive Low-Speed C ontrol ParametersR/W
0x4001A
page 96 TMUX_RLS_
BITBLK_CTL TMUX_RCV_SS_EXP[1:0] TMUX_
RCV_SS_
ENB
TMUX_
BITBLKG1 TMUX_
BITBLKM1 TMUX_
BITBLKB3 TMUX_
BITBLKB2 TMUX_
BITBLKB1
0x4001B
page 97 TMUX_RLS_
MODE_CTL TMUX_
RPAIS_
INS
TMUX_
8ORMAJORITY TMUX_
SDB1B2SEL TMUX_
SFB1B2SEL TMUX_J1MONMODE[2:0] TMUX_J0MONMODE[2:0] TMUX_
S1MODE4 TMUX_
RLSPAROEG TMUX_
RCONCATMODE TMUX_
REPRDI_
MODE
0x4001C
page 98 TMUX_
RAISINH_CTL TMUX_
R_M1_
BIT7
TMUX_
RSDB3_
AISINH
TMUX_
RSFB3_
AISINH
TMUX_RTIMP_AISINH[3:1] TMUX_
RUNEQP_
AISINH
TMUX_
RPLMP_
AISINH
TMUX_
RHSSD_
AISINH
TMUX_
RHSSF_
AISINH
TMUX_
RPAISLOP_
AISINH
TMUX_
RLAISMON_
AISINH
TMUX_
RLOF_
AISINH
TMUX_
ROOF_
AISINH
TMUX_
RHSLOS_
AISINH
TMUX_
RILOC_
AISINH
0x4001D
page 99 TMUX_
LOSDETCNT TMUX_FORCEC2DEF[2:0] TMUX_LOSDETCNT[10:0]
Continuous N-Times Detect ValuesR/W
0x4001E
page 100 TMUX_CNTD_
TOH_A TMUX_CNTDK1K2FRAME[3:0] TMUX_CNTDK1K2[3:0] TMUX_CNTDF1[3:0] TMUX_CNTDJ0[3:0]
0x4001F
page 100 TMUX_CNTD_
TOH_B TMUX_CTDLOPCNT[1:0] TMUX_CNTDS1FRAME[3:0] TMUX_CNTDS1[3:0] TMUX_CNTDK2[3:0]
0x40020
page 101 TMUX_CNTD_
POH_A TMUX_CNTDF2[3:0] TMUX_CNTDRDIP[3:0] TMUX_C2[3:0] TMUX_CNTDJ1[3:0]
0x40021
page 101 TMUX_CNTD_
POH_B TMUX_
CTDB1SEL TMUX_CNTDN1[3:0] TMUX_CNTDK3[3:0] TMUX_CNTDF3[3:0]
0x40022
page 102 TMUX_C2EXP1 TMUX_C2EXP1[7:0]
0x40023
page 102 TMUX_
C2EXP2_3 TMUX_C2EXP3[7:0] TMUX_C2EXP2[7:0]
TMXF28155 Supermapper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
128 Agere Systems Inc.
8 TMUX Registers (continued)
Table 153. TMUX Register Map (continued)
Note: The reset default of all reserved bits is 0. Shading denotes reserved bits.
Addr Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Receive Monitor ValuesRO
0x40024
page 102 TMUX_RF1MON TMUX_RF1MON1[7:0] TMUX_RF1MON0[7:0]
0x40025
page 102 TMUX_RAPSMON TMUX_RAPSMON[12:0] TMUX_K2MON[2:0]
0x40026
page 102 TMUX_RS1MON TMUX_RS1MON[7:0]
0x40027
page 103 TMUX_RPOHMON1A TMUX_RDIPMON1[2:0] TMUX_C2MON1[7:0]
0x40028
page 103 TMUX_RPOHMON1B TMUX_F2MON11[7:0] TMUX_F2MON01[7:0]
0x40029
page 103 TMUX_RPOHMON1C TMUX_F3MON11[7:0] TMUX_F3MON01[7:0]
0x4002A
page 103 TMUX_RPOHMON1D TMUX_N1MON1[7:0] TMUX_K3MON1[7:0]
0x4002B
page 103 TMUX_RPOHMON2A TMUX_RDIPMON2[2:0] TMUX_C2MON2[7:0]
0x4002C
page 103 TMUX_RPOHMON2B TMUX_F2MON12[7:0] TMUX_F2MON02[7:0]
0x4002D
page 103 TMUX_RPOHMON2C TMUX_F3MON12[7:0] TMUX_F3MON02[7:0]
0x4002E
page 103 TMUX_RPOHMON2D TMUX_N1MON2[7:0] TMUX_K3MON2[7:0]
0x4002F
page 103 TMUX_RPOHMON3A TMUX_RDIPMON3[2:0] TMUX_C2MON3[7:0]
0x40030
page 103 TMUX_RPOHMON3B TMUX_F2MON13[7:0] TMUX_F2MON03[7:0]
0x40031
page 104 TMUX_RPOHMON3C TMUX_F3MON13[7:0] TMUX_F3MON03[7:0]
0x40032
page 104 TMUX_RPOHMON4D TMUX_N1MON3[7:0] TMUX_K3MON3[7:0]
Transmit Low-Speed Control ParametersR/W
0x40033
page 104 TMUX_TLS_CTL TMUX_TLS_UNEQP[3:1] TMUX_TLS_PAISINS[3:1] TMUX_
TLSVOEPAR
Transmit High-Speed Por t Control ParametersR/W
0x40034
page 105 TMUX_THS_PORT_CTL TMUX_TPSMUXSEL3 TMUX_
TPSMUXSEL2 TMUX_
RHS2THSLB TMUX_THSSCR
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
129Agere Systems Inc.
8 TMUX Registers (continued)
Table 153. TMUX Register Map (continued)
Note: The reset default of all reserved bits is 0. Shading denotes reserved bits.
Addr Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Transmit High-Speed Control ParametersR/W
0x40035
page 105 TMUX_THS_
TOH_CTL TMUX_
TCONCA
MODE
TMUX_TPR
EIRDISEL TMUX_TLR
EIRDISEL TMUX_TSS[1:0] TMUX_THS
LREIINH TMUX_THS
LAISINS TMUX_THS
APSINS TMUX_
THSK2INS TMUX_
THSS1INS TMUX_
THSF1INS TMUX_
THSZ0INS TMUX_
THSJ0INS
0x40036
page 107 TMUX_THS_
POH1_CTL TMUX_THS
PREIINH1 TMUX_TP
OHTHRU1 TMUX_THS
N1INS1 TMUX_THS
K3INS1 TMUX_THS
F3INS1 TMUX_TH
SF2INS1 TMUX_
THSRDIPINS1 TMUX_
THSC2INS1 TMUX_
THSJ1INS1
0x40037
page 108 TMUX_THS_
POH2_CTL TMUX_THS
PREIINH2 TMUX_TP
OHTHRU2 TMUX_THS
N1INS2 TMUX_THS
K3INS2 TMUX_THS
F3INS2 TMUX_TH
SF2INS2 TMUX_
THSRDIPINS2 TMUX_
THSC2INS2 TMUX_
THSJ1INS2
0x40038
page 109 TMUX_THS_
POH3_CTL TMUX_THS
PREIINH3 TMUX_TP
OHTHRU3 TMUX_THS
N1INS3 TMUX_THS
K3INS3 TMUX_THS
F3INS3 TMUX_TH
SF2INS3 TMUX_
THSRDIPINS3 TMUX_
THSC2INS3 TMUX_
THSJ1INS3
Tr ansmit High-Speed Line RDI Control ParametersR/W
0x4003A
page 111 TMUX_TLRDI_
CTL TMUX_
TRSD_
LRDIINH
TMUX_
TRSF_
LRDIINH
TMUX_TRL
AISMON_
LRDIINH
TMUX_
TRLOF_
LRDIINH
TMUX_
TROOF_
LRDIINH
TMUX_
TRLOS_
LRDIINH
TMUX_
TRILOC_
LRDIINH
Transmit High-Speed Path RDI Control ParametersR/W
0x4003B
page 111 TMUX_TPRDI_
CTL TMUX_TIM_PRDIINH[3:1] TMUX_
TRUEQ_
PRDIINH
TMUX_
TRPLM_
PRDIINH
TMUX_
TRLOP_
PRDIINH
TMUX_
TRPAIS_
PRDIINH
TMUX_
TEPRDI_
MODE
Transmit TOH and POH Insert Values R/W
0x4003C
page 112 TMUX_TZ0_INS_
VAL TMUX_TZ03INS[7:0] TMUX_TZ02INS[7:0]
0x4003D
page 112 TMUX_TS1_F1_
INS_VAL TMUX_TS1INS[7:0] TMUX_TF1INS[7:0]
0x4003E
page 112 TMUX_TAPS_
INS_VAL TMUX_TAPSINS[12:0] TMUX_TK2INS[2:0]
0x4003F
page 112 TMUX_TPOH1_
INS_A TMUX_TRDIPINS1[2:0] TMUX_TC2INS1[7:0]
0x40040
page 112 TMUX_TPOH1_
INS_B TMUX_TF3INS1[7:0] TMUX_TF2INS1[7:0]
0x40041
page 112 TMUX_TPOH1_
INS_C TMUX_TN1INS1[7:0] TMUX_TK3INS1[7:0]
0x40042
page 112 TMUX_TPOH2_
INS_A TMUX_TRDIPINS2[2:0] TMUX_TC2INS2[7:0]
0x40043
page 112 TMUX_TPOH2_
INS_B TMUX_TF3INS2[7:0] TMUX_TF2INS2[7:0]
0x40044
page 112 TMUX_TPOH2_
INS_C TMUX_TN1INS2[7:0] TMUX_TK3INS2[7:0]
0x40045
page 112 TMUX_TPOH3_
INS_A TMUX_TRDIPINS3[2:0] TMUX_TC2INS3[7:0]
0x40046
page 112 TMUX_TPOH3_
INS_B TMUX_TF3INS3[7:0] TMUX_TF2INS3[7:0]
0x40047
page 112 TMUX_TPOH3_
INS_C TMUX_TN1INS3[7:0] TMUX_TK3INS3[7:0]
TMXF28155 Supermapper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
130 Agere Systems Inc.
8 TMUX Registers (continued)
Table 153. TMUX Register Map (continued)
Note: The reset default of all reserved bits is 0. Shading denotes reserved bits.
Addr Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Transmit High-Speed Erro r Insertion Control Parame tersR/W
0x40048
page 114 TMUX_
TBERINS_CTL TMUX_TP
SLREIINS TMUX_TP
SB2EINS TMUX_TPREIINS[3:1] TMUX_THSB3ERRINS[3:1] TMUX_
TLREIINS TMUX_THSB2ERRINS[3:1] TMUX_THS
B1ERRINS
0x40049
page 115 TMUX_THS_ERR_
CTL TMUX_TAP
SBABINS TMUX_TH1H2INVEN[3:1] TMUX_
TH1H2INV
ORNDF
TMUX_TA2ERRINS[4:0]
Receive/Transmit TOAC/POAC Control ParametersR/W
0x4004A
page 115 TMUX_TOAC_CTL TMUX_
RTOAC_
D412MODE
TMUX_
RTOAC_
D13MODE
TMUX_
RTOAC_
OEPINS
TMUX_
TTOAC_
D412MODE
TMUX_
TTOAC_
D13MODE
TMUX_
TTOAC_
AVAIL
TMUX_
TTOAC_S1 TMUX_
TTOAC_F1 TMUX_
TTOAC_E2 TMUX_
TTOAC_E1 TMUX_
TTOAC_
D4TO12
TMUX_
TTOAC_
D1TO3
TMUX_
TTOAC_
OEPMON
0x4004B
page 117 TMUX_RPOAC_
CTL TMUX_RPOAC_SEL[1:0] TMUX_
RPOAC_
OEPINS
TMUX_TPOAC_SEL[1:0] TMUX_
TPOAC_N1 TMUX_
TPOAC_K3 TMUX_
TPOAC_F
3
TMUX_
TPOAC_F
2
TMUX_
TPOAC_C2 TMUX_
TPOAC_J1 TMUX_
TPOAC_
OEPMON
Transmit High-Speed Offset Control ParametersR/W
0x4004D
page 118 TMUX_
TFRAMEOFFSET TMUX_TLBITCNT[2:0] TMUX_TLSTSCNT[1:0] TMUX_TLCOLCNT[6:0] TMUX_TLROWCNT[3:0]
B1/B2 Signal Degrade Set/Clear Control RegistersR/W
0x4004E
page 118 TMUX_SD_CTL1 TMUX_SDNSSET[18:3]
0x4004F
page 118 TMUX_SD_CTL2 TMUX_SDMSET[7:0] TMUX_SDLSET[3:0] TMUX_SDNSSET[2:0]
0x40050
page 118 TMUX_SD_CTL3 TMUX_SDBSET[15:0]
0x40051
page 118 TMUX_SD_CTL4 TMUX_SDNSCLEAR[18:3]
0x40052
page 118 TMUX_SD_CTL5 TMUX_SDMCLEAR[7:0] TMUX_SDLCLEAR[3:0] TMUX_SDNSCLEAR[2:0]
0x40053
page 119 TMUX_SD_CTL6 TMUX_SDBCLEAR[15:0]
B1/B2 Signal Fail Set/Clear Control RegistersR/W
0x40054
page 119 TMUX_SF_CTL1 TMUX_SFNSSET[18:3]
0x40055
page 119 TMUX_SF_CTL2 TMUX_SFMSET[7:0] TMUX_SFLSET[3:0] TMUX_SFNSSET[2:0]
0x40056
page 119 TMUX_SF_CTL3 TMUX_SFBSET[15:0]
0x40057
page 119 TMUX_SF_CTL4 TMUX_SFNSCLEAR[18:3]
0x40058
page 119 TMUX_SF_CTL5 TMUX_SFMCLEAR[7:0] TMUX_SFLCLEAR[3:0] TMUX_SFNSCLEAR[2:0]
0x40059
page 119 TMUX_SF_CTL6 TMUX_SFBCLEAR[15:0]
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
131Agere Systems Inc.
8 TMUX Registers (continued)
Table 153. TMUX Register Map (continued)
Note: The reset default of all reserved bits is 0. Shading denotes reserved bits.
Addr Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
B3 Signal Degrade Set/Clear Control RegistersR/W
0x4005A
page 119 TMUX_B3SD_CTL1 TMUX_B3SDNSSET[18:3]
0x4005B
page 119 TMUX_B3SD_CTL2 TMUX_B3SDMSET[7:0] TMUX_B3SDLSET[3:0] TMUX_B3SDNSSET[2:0]
0x4005C
page 119 TMUX_B3SD_CTL3 TMUX_B3SDBSET[15:0]
0x4005D
page 119 TMUX_B3SD_CTL4 TMUX_B3SDNSCLEAR[18:3]
0x4005E
page 119 TMUX_B3SD_CTL5 TMUX_B3SDMCLEAR[7:0] TMUX_B3SDLCLEAR[3:0] TMUX_B3SDNSCLEAR[2:0]
0x4005F
page 120 TMUX_B3SD_CTL6 TMUX_B3SDBCLEAR[15:0]
B3 Signal Fail Set/Clear Control RegistersR/W
0x40060
page 120 TMUX_B3SF_CTL1 TMUX_B3SFNSSET[18:3]
0x40061
page 120 TMUX_B3SF_CTL2 TMUX_B3SFMSET[7:0] TMUX_B3SFLSET[3:0] TMUX_B3SFNSSET[2:0]
0x40062
page 120 TMUX_B3SF_CTL3 TMUX_B3SFBSET[15:0]
0x40063
page 120 TMUX_B3SF_CTL4 TMUX_B3SFNSCLEAR[18:3]
0x40064
page 120 TMUX_B3SF_CTL5 TMUX_B3SFMCLEAR[7:0] TMUX_B3SFLCLEAR[3:0] TMUX_B3SFNSCLEAR[2:0]
0x40065
page 120 TMUX_B3SF_CTL6 TMUX_B3SFBCLEAR[15:0]
TMXF28155 Supermapper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
132 Agere Systems Inc.
8 TMUX Registers (continued)
Table 153. TMUX Register Map (continued)
Note: The reset default of all reserved bits is 0. Shading denotes reserved bits.
Addr Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Receive B1, B2, B3, M1, G1, and N1 Error CountsRO
0x40066
page 120 TMUX_B1ECNT TMUX_B1ECNT[15:0]
0x40067
page 121 TMUX_B2ECNT_17_16 TMUX_B2ECNT[17:16]
0x40068
page 121 TMUX_B2ECNT_15_0 TMUX_B2ECNT[15:0]
0x40069
page 121 TMUX_B3ECNT1 TMUX_B3ECNT1[15:0]
0x4006A
page 121 TMUX_B3ECNT2 TMUX_B3ECNT2[15:0]
0x4006B
page 121 TMUX_B3ECNT3 TMUX_B3ECNT3[15:0]
0x4006Cp
age 122 TMUX_M1ECNT_17_16 TMUX_M1ECNT[17:16]
0x4006Dp
age 122 TMUX_M1ECNT_15_0 TMUX_M1ECNT[15:0]
0x4006E
page 122 TMUX_G1ECNT1 TMUX_G1ECNT1[15:0]
0x4006F
page 122 TMUX_G1ECNT2 TMUX_G1ECNT2[15:0]
0x40070
page 122 TMUX_G1ECNT3 TMUX_G1ECNT3[15:0]
Receive Pointer Increment and Decrement CountsRO
0x40074
page 123 TMUX_RPTR_INCCNT1 TMUX_RPTR_INC1[10:0]
0x40075
page 123 TMUX_RPTR_INCCNT2 TMUX_RPTR_INC2[10:0]
0x40076
page 123 TMUX_RPTR_INCCNT3 TMUX_RPTR_INC3[10:0]
0x40077
page 123 TMUX_RPTR_DECCNT1 TMUX_RPTR_DEC1[10:0]
0x40078
page 123 TMUX_RPTR_DECCNT2 TMUX_RPTR_DEC2[10:0]
0x40079
page 123 TMUX_RPTR_DECCNT3 TMUX_RPTR_DEC3[10:0]
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
133Agere Systems Inc.
8 TMUX Registers (continued)
Table 153. TMUX Register Map (continued)
Note: The reset default of all reserved bits is 0. Shading denotes reserved bits.
Addr Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Expected J0 Receive ValueR/W
0x400A0
0x400A7
page 123
TMUX_RJ0EXPECTED[1—8] TMUX_EXPJ0DMON[2][7:0]
TMUX_EXPJ0DMON[16][7:0]
TMUX_EXPJ0DMON[1][7:0]
TMUX_EXPJ0DMON[15][7:0]
Captured J0 Receive ValueRO
0x400A8
0x400AF
page 123
TMUX_RJ0CAPTURED[1—8] TMUX_J0DMON[2][7:0]
TMUX_J0DMON[16][7:0]
TMUX_J0DMON[1][7:0]
TMUX_J0DMON[15][7:0]
J0 Byte Transmit InsertR/W
0x400B0
0x400B7
page 123
TMUX_TJ0VALUE[1—8] TMUX_TJ0DINS[2][7:0]
TMUX_TJ0DINS[16][7:0]
TMUX_TJ0DINS[1][7:0]
TMUX_TJ0DINS[15][7:0]
Expected J1 Receive Value for STS #1R/W
0x400E0
0x400FF
page 124
TMUX_RJ1EXPECTED_1[1—32] TMUX_EXPJ1DMON1[2][7:0]
TMUX_EXPJ1DMON1[64][7:0]
TMUX_EXPJ1DMON1[1][7:0]
TMUX_EXPJ1DMON1[63][7:0]
Expected J1 Receive Value for STS #2R/W
0x40100
0x4011F
page 124
TMUX_RJ1EXPECTED_2[1—32] TMUX_EXPJ1DMON2[2][7:0]
TMUX_EXPJ1DMON2[64][7:0]
TMUX_EXPJ1DMON2[1][7:0]
TMUX_EXPJ1DMON2[63][7:0]
Expected J1 Receive Value for STS #3R/W
0x40120
0x4013F
page 124
TMUX_RJ1EXPECTED_3[1—32] TMUX_EXPJ1DMON3[2][7:0]
TMUX_EXPJ1DMON3[64][7:0]
TMUX_EXPJ1DMON3[1][7:0]
TMUX_EXPJ1DMON3[63][7:0]
TMXF28155 Supermapper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
134 Agere Systems Inc.
8 TMUX Registers (continued)
Table 153. TMUX Register Map (continued)
Note: The reset default of all reserved bits is 0. Shading denotes reserved bits.
Addr Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Captured J1 Receive Value for STS #1RO
0x40140
0x4015F
page 124
TMUX_RJ1CAPTURED_1[1—32] TMUX_J1DMON1[2][7:0]
TMUX_J1DMON1[64][7:0]
TMUX_J1DMON1[1][7:0]
TMUX_J1DMON1[63][7:0]
Captured J1 Receive Value for STS #2RO
0x40160
0x4017F
page 124
TMUX_RJ1CAPTURED_2[1—32] TMUX_J1DMON2[2][7:0]
TMUX_J1DMON2[64][7:0]
TMUX_J1DMON2[1][7:0]
TMUX_J1DMON2[63][7:0]
Captured J1 Receive Value for STS #3RO
0x40180
0x4019F
page 124
TMUX_RJ1CAPTURED_3[1—32] TMUX_J1DMON3[2][7:0]
TMUX_J1DMON3[64][7:0]
TMUX_J1DMON3[1][7:0]
TMUX_J1DMON3[63][7:0]
J1 Byte Transmit Insert for STS #1R/W
0x401A0
0x401BF
page 125
TMUX_TJ1VALUE_1[1—32] TMUX_TJ1DINS1[2][7:0]
TMUX_TJ1DINS1[64][7:0]
TMUX_TJ1DINS1[1][7:0]
TMUX_TJ1DINS1[63][7:0]
J1 Byte Transmit Insert for STS #2R/W
0x401C0
0x401DF
page 125
TMUX_TJ1VALUE_2[1—32] TMUX_TJ1DINS2[2][7:0]
TMUX_TJ1DINS2[64][7:0]
TMUX_TJ1DINS2[1][7:0]
TMUX_TJ1DINS2[63][7:0]
J1 Byte Transmit Insert for STS #3R/W
0x401E0
0x401FF
page 125
TMUX_TJ1VALUE_3[1—32] TMUX_TJ1DINS3[2][7:0]
TMUX_TJ1DINS3[64][7:0]
TMUX_TJ1DINS3[1][7:0]
TMUX_TJ1DINS3[63][7:0]
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
135Agere Systems Inc.
9 SPE Mapper Registers
Table of Co nten ts
Contents Page
9 SPE Mapper Registers .................................................................................................................................. 135
9.1 SPE Mapper Register Descriptions ...........................................................................................................136
9.2 SPE Mapper Register Map ........................................................................................................................153
Tables Page
Table 154. SPE_VERSION_R, SPE Version and Identification Register (RO).....................................................136
Table 155. SPE_ONESHOT, One Shot (R/W) ......................................................................................................136
Table 156. SPE_EVENT1—SPE_EVENT3, SPE Deltas/Events (COR/COW).....................................................136
Table 157. SPE_MASK1—SPE_MASK3, Mask Bits (R/W) ..................................................................................138
Table 158. SPE_STATE1—SPE_STATE2, Receive/Transmit State and Value Parameters (RO)........................140
Table 159. SPE_RAOH_CTL1—SPE_RAOH_CTL3, Rx Control for Alarm and OH Functions (R/W) .................141
Table 160. SPE_CNTD1—SPE_CNTD2, Continuous N-Times Detect Values (R/W) ..........................................142
Table 161. SPE_ROHC2, Receive Overhead Expected Value for C2 Byte (R/W)................................................143
Table 162. SP E_ RMON1—SPE_ RMON5, Rec ei ve Monito r Values (RO).......................... ................... ....... ...... ..143
Table 163. SPE_MAP_CTL1—SPE_MAP_CTL3, Tx/Rx Control for Mapping Functions (R/W) ..........................143
Table 164. SPE_TAOH_CTL1—SPE_TAOH_CTL3, Tx Control for Alarm/OH Functions (R/W)..........................146
Table 165. SPE_TRDIREI_CTL, Transmit Path RDI and REI Control Register (R/W) .........................................148
Table 166. SPE_TERRINS_CTL, Transmit Error Insertion Control (R/W) ............................................................148
Table 167. SPE_TOHINS1—SPE_TOHINS4, Transmit OH Insert Value (R/W)...................................................149
Table 168. SPE_SIGDEG_CTL1—SPE_SIGDEG_CTL6, Signal Degrade BER Algorithm Parameters (R/W)....149
Table 169. SPE_SIGFAIL_CTL1—SPE_SIGFAIL_CTL6, Signal Fail BER Algorithm Parameters (R/W) ............150
Table 170. SPE_ERRCNT1—SPE_ERRCNT6, B3, G1, Bipolar Violation, and Excess Zero Error Count (RO)..150
Table 171. SPE_PTRCNT1—SPE_PTRCNT3, Receive Pointer Increment and Decrement Count (RO)............151
Table 172. SPE_RJ1MON_R1—SPE_RJ1MON_R32, Receive J1 Monitor Values (RO).....................................151
Table 173. SPE_TJ1DINS_R1—SPE_TJ1DINS_R32, Transmit J1 Insert Values (R/W) .....................................151
Table 174. SPE_RJ1DEXP_R1—SPE_RJ1DEXP_R32, Receive J1 Expected Values (R/W).............................151
Table 175. SPE_SCRATCH_R, Scratch Pad (R/W)..............................................................................................151
Table 176. SPE_SPE_RX_THRES_CTL_DS3, Receive Elastic Store Threshold Control for DS3 (R/W)............152
Table 177. SPE_SPE_TX_THRES_CTL_DS3, Tr ansmit Elastic Store Threshold Control for DS3 (R/W) ...........152
Table 178. SPE_SPE_OV_UN_FIFO_THRES FIFO Overflow and Underflow Thresholds (R/W)........................152
Table 179. SPE Mapper Register Map..................................................................................................................153
136 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
9 SPE Mapper Registers (continued)
9.1 SPE Mapper Register Descriptions
This section gives a brief description of each register bit and its functionality. The abbreviations after each register
indicate if the register is read only (RO), clear-on-read/clear-on-write (COR/COW), or read/write (R/W).
Table 154. SPE_VERSION_R, SPE Version and Identification Register (RO)
Table 155. SPE_ONESHOT, One Shot (R/W)
Note: In Table 156, the mask bits for these delta and event bits are in Table 157 on page 138, state bits are in
Table 158 on page 140, and monitor values are in Table 162 on page 143.
Address Bit Name Function Reset
Default
0x30000 15:11 RSVD Reserved. 0x00
10:8 SPE_VERSION[2:0] Block Version Number. Block version register will change
each time the device is changed. 0x0
7:0 SPEMPR_ID[7:0] Block ID Number. 0x03
Address Bit Name Function Reset
Default
0x30002 15:5 RSVD Reserved. 0x000
4 SPE_BIPOL_ERR Bipolar Violation Error. A single bipolar violation error for
DS3 output is transmitted each time this bit transitions from a
0 to 1.
0
3 SPE_SFCLEAR Signal Fail Clear. Allows the signal fail algorithm to be
forced into the normal state. 0
2SPE_SFSETSignal Fail Set. Allows the signal fail algorithm to be forced
into the failed state. 0
1 SPE_SDCLEAR Signal Degrade Clear. Allows the signal degrade algorithm
to be forced into the normal state. 0
0SPE_SDSETSignal Degrade Set. Allows the signal degrade algorithm to
be forced into the degraded state. 0
Table 156. SPE_EVENT1—SPE_EVENT3, SPE Deltas/Events (COR/COW)
Address Bit Name Function Res et
Default
0x30003 15 SPE_RX_ESOVUN_E Receive Elastic Store Overflow/Underflow Event Bit. Logic
1 indicates an elastic store overflow or underflow, based on
the SPE_RX_OVUN_FLOW_THRES threshold.
0
14 RSVD Reserved.
13 SPE_TX_ESOVUN_E Transmit Elastic Store Overflow/Underflow Event Bit.
Logic 1 indicates an elastic store overflow or underflow , based
on the SPE_TX_OVUN_FLOW_THRES threshold.
0
12:5 RSVD Reserved.
4 SPE_K3DMOND K3 Data Monitor Delta Bit. The mask bit is SPE_K3DMONM. 0
3 SPE_N1DMOND N1 Data Monitor Delta Bit. Th e mas k bit is SPE_ N1 DMONM . 0
2 SPE_C2DMOND C2 Data Monitor Delta Bit. Th e mas k bit is SPE_ C2 DMONM . 0
1 SPE_F2DMOND F2 Data Monitor Delta Bit. The mask bit is SPE_F2DMONM. 0
0 SPE_F3DMOND F3 Data Monitor Delta Bit. The mask bit is SPE_F3DMONM. 0
137Agere Systems Inc.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
9 SPE Mapper Registers (continued)
0x30004 15:1
1RSVD Reserved.0x00
10 SPE_PRDIDMOND Path RDI Delta. Delta bit indicates a change of state for the
path RDI state bit SPE_PRDIDMON. The delta bit is cleared
when read. The mask bit for this delta bit is
SPE_PRDIDMONM.
0
9 SPE_RNDFE Pointer Interpreter New Data Flag Event Bit. The mas k bit
is SPE_RNDFM. 0
8SPE_RDECEPointer Interpreter Decrement Event Bit. The mask bit is
SPE_RDECM. However, increment and decrement event indi-
cations should be ignored during LOP condition.
0
7 SPE_RINCE Pointer Interpreter Increment Event Bit. The mask bit is
SPE_RINCM. However, increment and decrement event indi-
cations should be ignored during LOP condition.
0
6 SPE_RAISD Delta Bit for the AIS Alarm Detect State Bit. The mask bit is
SPE_RAISM. 0
5SPE_RLOPDDelta Bit for the Los s of Pointer Alarm St ate Bit. The mask
bit is SPE _RLOP M. 0
4SPE_SFB3DSignal Fail BER Algorithm Delta. Indicates a change of
state for the signal fail BER algorithm state bit SFB3. This bit
clears when read. The mask bit is SPE_SFB3M.
0
3SPE_SDB3DSignal Degrade BER Algorithm Delta. Indicate s a change of
state for the signal degrade BER algorithm state bit SDB3.
This bit clears when read. The mask bit is SPE_SDB3M.
0
2 SPE_RUNEQD Delta Bit for the Unequipped Alarm State Bit. The mask bit
is SPE_RUNEQM. 0
1SPE_RPLMDDelta Bit for the Payload Label Mismatch Alarm State Bit.
The mask bit is SPE_RPLMM. 0
0 SPE_RTIMD Trace Indicator Mismatch Event Bit (J1 Byte). The mask bit
is SPE_RTIMM. 0
Table 156. SPE_EVENT1—SPE_EVENT3, SPE Deltas/Events (COR/COW) (continued)
Address Bit Name Function Res et
Default
138 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
9 SPE Mapper Registers (continued)
0x30005 15 RSVD Reserved. 0
14 SPE_RSY52LOSD Delta Bit for Loss of Sync 52 Signal from Telecom Bus. 0
13 SPE_RV1LOSD Delta Bit for Loss of V1 Sync Signal from Telecom Bus. 0
12 SPE_RSPELOSD Delta Bit for Loss of SPE Sync Signal from Telecom Bus. 0
11 SPE_RJ0J1V1LOSD Delta Bit for Loss of J0J1V1 Sync Signal from Telecom
Bus. 0
10 SPE_RDS3LOCD Delta Bit for Loss of DS3 External Clock from External
Pin. 0
9 SPE_RC52LOCD Delta Bit for Loss of 52 MHz Clock from Telecom Bus. 0
8 SPE_RLSLOCD Delta Bit for Loss of 19 MHz Clock from Telecom Bus. 0
7RSVDReserved. 0
6 SPE_TSY52LOSD Delta Bit for Loss of Sync 52 Signal from Telecom Bus. 0
5 SPE_TV1LOSD Delta Bit for Loss of V1 Sync Signal from Telecom Bus. 0
4 SPE_TSPELOSD Delta Bit for Loss of SPE Sync Signal from Telecom Bus. 0
3 SPE_TJ0J1V1LOSD Delta Bit for Loss of J0J1V1 Sync Signal from Telecom
Bus. 0
2 SPE_TDS3LOCD Delta Bit for Loss of DS3 External Clock from External
Pin. 0
1 SPE_TC52LOCD Delta Bit for Loss of 52 MHz Clock from Telecom Bus. 0
0 SPE_TLSLOCD Delta Bit for Loss of 19 MHz Clock from Telecom Bus. 0
Table 157. SPE_MASK1—SPE_MASK3, Mask Bits (R/W)
Address Bit Name Function Reset
Default
0x30006 15 SPE_RX_ESOVUN_IM Receive Elastic Store Overflow/Underflow Mask Bit. If
set to a logic 1, SPE_RX_ESO VUNL_E will not contribute
to the interrupt.
1
14 RSVD Reserved.
13 SPE_TX_ESOVUN_IM Transmit Elastic Store Overflow/Underflow Mask Bit. If
set to a logic 1, SPE_RX_ESOVUN_E will not contribute to
the interrupt.
1
12:7 RSVD Reserved.
6 SPE_RDATA_PM Received Data Parity Error Mask. Active-high. 1
5 SPE_TPOAC_PM Transmit POAC Parity Error Mask. Active-high. 1
4 SPE_K3DMONM K3 Data Monitor Mask Bit. Active-high. 1
3 SPE_N1DMONM N1 Data Monitor Mask Bit. Active-high. 1
2 SPE_C2DMONM C2 Data Monitor Mask Bit. Active-high. 1
1 SPE_F2DMONM F2 Data Monitor Mask Bit. Active-high. 1
0 SPE_F3DMONM F3 Data Monitor Mask Bit. Active-high. 1
Table 156. SPE_EVENT1—SPE_EVENT3, SPE Deltas/Events (COR/COW) (continued)
Address Bit Name Function Res et
Default
139Agere Systems Inc.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
9 SPE Mapper Registers (continued)
0x30007 15:11 RSVD Reserved. 00000
10 SPE_PRDIDMONM Path RDI Mask Bit. Active-high. 1
9 SPE_RNDFM Pointer Interpreter New Data Flag M ask Bit. Active-high. 1
8SPE_RDECMPointer Interpreter Decrement Mask Bit. Active-high. 1
7 SPE_RINCM Pointer Interpreter Increment Mask Bit. Active-high. 1
6 SPE_RAISM Mask Bit for the AIS Alarm Detect State Bit. Active-high. 1
5 SPE_RLOPM Mask Bit for the Loss of Pointer Alarm State Bit. Active-
high. 1
4 SPE_SFB3M Signal Fail Mask Bit. Active-high. 1
3SPE_SDB3MSignal Degrade Mask Bit. Active-high. 1
2 SPE_RUNEQM Mask Bit for the Unequipped Alarm State Bit. Active-
high. 1
1SPE_RPLMMMask Bit for the Payload Label Mismatch Alarm State
Bit. Active-high. 1
0SPE_RTIMMTrace Indicator Mismatch Mask Bits. Active-high. 1
0x30008 15 RSVD Reserved. 0
14 SPE_RSY52LOSM Mask Bit for Loss of Sync 52 Signal from Telecom Bus.
Active-high. 1
13 SPE_RV1LOSM Mask Bit for Loss of V1 Sync Signal from Telecom
Bus. Active-high. 1
12 SPE_RSPELOSM Mask Bit for Loss of SPE Sync Signal from Telecom
Bus. Active-high. 1
11 SPE_RJ0J1V1LOSM Mask Bit for Loss of J0J1V1 Sync Signal from Telecom
Bus. Active-high. 1
10 SPE_RDS3LOCM Mask Bit for Loss of DS3 External Clock from External
PIN. Active-high. 1
9 SPE_RC52LOCM Mask Bit for Loss of 52 MHz Clock from Telecom Bus.
Active-high. 1
8 SPE_RLSLOCM Mask Bit for Loss of 19 MHz Clock from Telecom Bus.
Active-high. 1
0x30008 7 RSVD Reserved. 0
6 SPE_TSY52LOSM Mask Bit for Loss of Sync 52 Signal from Telecom Bus.
Active-high. 1
5 SPE_TV1LOSM Mask Bit for Loss of V1 Sync Signal from Telecom
Bus. Active-high. 1
4 SPE_TSPELOSM Mask Bit for Loss of SPE Sync Signal from Telecom
Bus. Active-high. 1
3 SPE_TJ0J1V1LOSM Mask Bit for Loss of J0J1V1 Sync Signal from Telecom
Bus. Active-high. 1
2 SPE_TDS3LOCM Mask Bit for Loss of DS3 External Clock from External
PIN. Active-high. 1
1 SPE_TC52LOCM Mask Bit for Loss of 52 MHz Clock from Telecom Bus.
Active-high. 1
0 SPE_TLSLOCM Mask Bit for Loss of 19 MHz Clock from Telecom Bus.
Active-high. 1
Table 157. SPE_MASK1—SPE_MASK3, Mask Bits (R/W) (continued)
Address Bit Name Function Reset
Default
140 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
9 SPE Mapper Registers (continued)
Table 158. SPE_STATE1—SPE_STATE2, Receive/Transmit State and Value Parameters (RO)
Address Bit Name Function Reset
Default
0x30009 15:7 RSVD Reserved. 0x000
6SPE_RAISPath AIS Stat e Bit. 0
5SPE_RLOPPath Loss of Pointer State Bit. 0
4 SPE_SFB3 Signal Fail State Bit. 0
3SPE_SDB3Signal Degrade State Bit. 0
2 SPE_RUNEQ Path Unequipped State Bit. 0
1 SPE_RPLM Pa th Payload Label Mismatch State Bit. 0
0SPE_RTIMPath Trace Indicator Mismatch State Bit. 0
0x3000A 15 RSVD Reserved. 0
14 SPE_RSY52LOS State Bit for Loss of Sync 52 Signal from Telecom Bus. 0
13 SPE_RV1LOS State Bit for Loss of V1 Sync Signal from Telecom Bus. 0
12 SPE_RSPELOS State Bit for Loss of SPE S ync Signal from Telecom Bus. 0
11 SPE_RJ0J1V1LOS State Bit for Loss of J0J1V1 Sync Signal from Telecom
Bus. 0
10 SPE_RDS3LOC State Bit for Los s of DS3 External Cloc k from External
PIN. 0
9 SPE_RC52LOC Stat e Bit for Loss of 52 MHz Clock from Telecom Bus. 0
8 SPE_RLSLOC State Bit for Loss of 19 MHz Clock from Telecom Bus. 0
7 RSVD Reserved. 0
6 SPE_TSY52LOS State Bit for Loss of Sync 52 Signal from Telecom Bus. 0
5 SPE_TV1LOS State Bit for Loss of V1 Sync Signal from Telecom Bus. 0
4 SPE_TSPELOS State Bit for Loss of S PE Sync Signal from Telecom Bus. 0
3 SPE_TJ0J1V1LOS State Bit for Loss of J0J1V1 Sync Signal from Telecom
Bus. 0
2 SPE_TDS3LOC State Bit for Loss of DS3 Ex ter nal Clock from External
Pin. 0
1SPE_TC52LOCState Bit for L oss of 52 MHz Clock from Telecom Bus. 0
0 SPE_TLSLOC State Bit for Lo ss of 19 MHz Clock from Telecom Bus. 0
141Agere Systems Inc.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
9 SPE Mapper Registers (continued)
)
Table 159. SPE_RAOH_CTL1—SPE_RAOH_CTL3, Rx Control for Alarm and OH Functions (R/W)
Address Bit Name Function Reset
Default
0x3000B 15:8 RSVD Reserved. 0x00
7 SPE_RD_OEPAR Received Data Odd/Even Parity Check. If 0, odd
parity check for received data; if 1, even parity check. 0
6:4 SPE_J1MONMODE[2:0] J1 Monitoring Mode. There are four monitoring modes
as defined in the document. 000
3 SPE_RPRDI_MODE Receive ERDI Mode. When 1, 3-bit enhanced ERDI
mode is supported; when 0, the 1-bit RDI mode is
supported.
0
2 SPE_G1BITBLKCNT G1 Error Count in Bit or Block. When 0, G1(7:4)
chec k logic will count bit errors; other wise, it counts
block erro rs.
0
1 SPE_B3BITBLKCNT B3 Error Count in Bit or Block. When 0, B3 check
logic will count bit errors; otherwise, it counts block
errors.
0
0 SPE_RPOAC_OEPINS Receive POAC Odd or Even Parity Insert. When 1,
the output POAC parity bit is even; otherwise, the parity
is odd.
0
0x3000C 15:12 RSVD Reserved. 0x0
11:10 SPE_CNTDLOPCNT[1:0] Continuous N-Times Detect for Loss of Pointer.
Two-bit programmable integration constant for the
pointer interpreter.
00
9RSVDReserved. 0
8 SPE_8ORMAJORITY TU-3 Pointer Interpreter Mode Control. When 1, the
pointer interpreter transitions into the INC and DEC
states based on 8 of the 10 I and D bits. Otherwise, the
pointer interpreter transitions into the INC and DEC
states based on majority rule.
0
7 SPE_PAISINS Path AIS Software Insertion. When 1, path AIS
insertion is enabled. 0
6 SPE_PAIS_AISINH Path AIS State Bit Inhibit Signal for Gene rating P ath
AIS. When 1, the inhibit is o n. 0
5 SPE_PAIS_LOPINH Loss of Pointer Inhibit Signal for Generating Path
AIS. When 1, the inhibit is o n. 0
4 SPE_PAIS_SFB3INH Signal Fail Inhibit Signal for Generating Path AIS.
When 1, the inhibit is on. 0
3 SPE_PAIS_SDB3INH Signal Degrade Inhibit Signal for Generating Path
AIS. When 1, the inhibit is o n. 0
2 SPE_PAIS_UNEQINH Path Unequipped Inhibit Signal for Generating Path
AIS. When 1, the inhibit is o n. 0
1 SPE_PAIS_PLMINH Path Label Mismatch Inhibit Signal for Generating
Path AIS. When 1, the inhibit is on. 0
0 SPE_PAIS_TIMINH Path Trace Indicator Mismatch Inhibit Signal for
Generating Path AIS. When 1, the inhibit is on. 0
142 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
9 SPE Mapper Registers (continued)
Table 160. SPE_CNTD1—SPE_CNTD2, Continuous N-Times Detect Values (R/W)
0x3000D 15 RSVD Reserved.
14 SPE_PH_DET_INV Phase Dete ction VCO Invert. When set to a 1, the
phase detection algorithm uses an invert VCO. 0
13:7 RSVD Reserved.
6 SPE_AIS_LOSSY52INH Loss of Sync 52 State Bit Inhibit Signal for Generat-
ing Path AIS. When 1, the inhibit is on. 0
5 SPE_AIS_LOSV1INH Loss of V1 Sync Inhibit Signal for Generating Path
AIS. When 1, the inhibit is on. 0
4 SPE_AIS_LOSSPEINH Loss of SPE S ync Inhibit Sig nal for Ge nera ting Pa th
AIS. When 1, the inhibit is on. 0
3 SPE_AIS_LOSJ0J1V1INH Loss of J0J1V1 Sync Inhibit Signal for Generating
Path AIS. When 1, the inhibit is on. 0
2 SPE_AIS_LOCDS3INH Loss of Ext DS3 Clock Inhibit Signal for Generating
Path AIS. When 1, the inhibit is on. 0
1 SPE_AIS_LOC52INH Loss of 52 MHz Clock Inhibit Signal for Generating
Path AIS. When 1, the inhibit is on. 0
0 SPE_AIS_LOCINH Loss of 19 MHz Clock Inhibit Signal for Generating
Path AIS. When 1, the inhibit is on. 0
Address Bit Name Function Reset
Default
0x3000F 15:12 SPE_CNTDC2[3:0] Continuous N-Times Detect for C2 Byte. The valid range
for this register is 0x3—0xF. Invalid values will be mapped to
a va lue of 0x3.
0x3
11:8 SPE_CNTDF3[3:0] Continuous N-Times Detect for F3 Byte. The valid range
for this register is 0x3—0xF. Invalid values will be mapped to
a va lue of 0x3.
0x3
7:4 SPE_CNTDF2[3:0] Continuous N-Times Detect for F2 Byte. The valid range
for this register is 0x3—0xF. Invalid values will be mapped to
a va lue of 0x3.
0x3
3:0 SPE_CNTDJ1[3:0] Continuou s N-Times Detect for J1 Byte s. The valid range
for this register is 0x3—0xF. Invalid values will be mapped to
a va lue of 0x3.
0x3
0x30010 15:12 SPE_CNTDN1[3:0] Continuous N-Times Detect for N1 Byte. The valid range
for this register is 0x3—0xF. Invalid values will be mapped to
a va lue of 0x3.
0x3
11:8 SPE_CNTDPRDI[3:0] Continuous N-Times Detect for G1 Byte. The valid range
for this register is 0x3—0xF. Invalid values will be mapped to
a va lue of 0x3.
0x3
7:4 SPE_CNTDK3[3:0] Continuou s N-Times Detect for K3[6:4] Byte. The valid
range for this register is 0x3—0xF. Invalid values will be
mapped to a value of 0x3.
0x3
3:0 RSVD Reserved. 0x0
Table 159. SPE_RAOH_CTL1—SPE_RAOH_ CTL3, Rx Control fo r Alarm and O H Func tions (R/W) (continued)
Address Bit Name Function Reset
Default
143Agere Systems Inc.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
9 SPE Mapper Registers (continued)
Table 161. SPE_ROHC2, Receive Overhead Expected Value for C2 Byte (R/W)
Tab le 162. SP E_ RMO N1— SP E_ RMO N5, Rece ive Mo nit or Val ues (RO )
Address Bit Name Function Reset
Default
0x30011 15:8 RSVD Reserved. 0x00
7:0 SPE_C2DEXP[7:0] Programmable Expected Value for C2 Byte. The
programmed value is checked against the actual received
value to determine payload label mismatch error.
0x00
Address Bit Name Function Reset
Default
0x30012 15:3 RSVD Reserved. 0x000
2:0 SPE_PRDIDMON[2:0] Received Byte G1[3:1] Monitor Value. 0x0
0x30013 15:8 SPE_N1DMON[7:0] Received Byte N1[7:0] Monitor Value. 0x00
7:0 SPE_K3DMON[7:0] Received Byte K3[7:0] Monitor Value. 0x00
0x30014 15:8 SPE_F2DMON1[7:0] Received Byte F2[7:0] Previous Monitor Value. 0x00
7:0 SPE_F2DMON0[7:0] Received Byte F2[7:0] Current Monitor Value. 0x00
0x30015 15:8 SPE_F3DMON1[7:0] Received Byte F3[7:0] Previous Monitor Value. 0x00
7:0 SPE_F3DMON0[7:0] Received Byte F3[7:0] Current Monitor Value. 0x00
0x30016 15:8 RSVD Reserved. 0x00
7:0 SPE_C2DMON[7:0] Received Byte C2[7:0] Monitor Value. 0x00
Table 163. SPE_MAP_CTL1—SPE_MAP_CTL3, Tx/Rx Contr ol for Mapping Functions (R/W)
Address Bit Name Function Reset
Default
0x30018 15 SPE_T_STS1_MODE Transmit STS-1 Mode. When 1, STS-1 mode is
selected for transmit data; when 0, STS-3/STM-1. 0
14 SPE_T_NSMI_MODE Transmit Serial STS-1 SPE Mode. When 1, serial
data is accepted through an external serial interface
and mapped to STS-1 SPE.
0
13:12 SPE_TDS3SRCTYP[1:0] Transmit DS3 Source Type. Two-bit value selects
one of three DS3 input sources.
00 or 01 = DS3 data from M13 block.
10 = DS3 data from loopback (Rx to Tx).
11 = DS3 data from external clear channel.
00
11 SPE_T_VT_DS3 Transmit VT or DS3 Input. When 1, VT input data is
selected; when 0, DS3 input data is selected. 0
10 SPE_T_AU3_TUG3 Transmit AU-3/STS-1 or TUG-3 Mapping. When 1,
AU-3/STS-1 mapping is selected; when 0, TUG-3 map-
ping is selected.
0
144 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
9 SPE Mapper Registers (continued)
0x30018 9:8 SPE_TSTS3TMSLOT[1:0] Transmit STS-3 Time-Slot Value. Two-bit value
selects one of three STS-1 time slots within an STS-3
in the transmit direction.
00 = no output.
01 = STS-1/TUG-3 data for slot 1 in STS-3/STM-1.
10 = STS-1/TUG-3 data for slot 2 in STS-3/STM-1.
11 = STS-1/TUG-3 data for slot 3 in STS-3/STM-1.
00
7 SPE_R_STS1_MODE Receive STS-1 Mode. When 1, STS-1 mode is
selected for receive data. When 0, STS-3/STM-1. 0
6 SPE_R_NSMI_MODE Receive Serial STS-1 SPE Mode. When 1, serial data
demapped from STS-1 SPE is sent out to an external
serial interface.
0
5:4 SPE_RDS3OUTTYP[1:0] Receive DS3 Output Type. Two-bit value selec ts one
of three DS3 output devices.
00 or 01 = DS3 data to M13 block.
10 = DS3 data to loopback (RX to TX).
11 = DS3 data to external clear channel.
00
3SPE_R_VT_DS3Receive VT or DS3 Output. When 1, VT data is out-
put; when 0, DS3 data is output. 0
2 SPE_R_AU3_TUG3 Receive AU-3/STS-1 or TUG-3 Demapping. When 1,
AU-3/STS-1 demapping is selected; when 0, TUG-3
demapping is selected.
0
1:0 SPE_RSTS3TMSLOT[1:0] Rece ive ST S-3 T ime -S lot. Selects one of three STS-1
time slots within an STS-3/STM-1 frame in the receive
direction.
00 = no selection.
01 = STS-1/TUG-3 data from slot 1 in STS-3/STM-1.
10 = STS-1/TUG-3 data from slot 2 in STS-3/STM-1.
11 = STS-1/TUG-3 data from slot 3 in STS-3/STM-1.
00
0x30019 15:13 SPE_T_NSMI_BIT[2:0] Transmit Seri al Sync P os ition W ith in a Byte Bound -
ary. Selects one of eight positions for the bit sync of the
serial transmit data stream (previously known as the
NSMI inter face data) .
0x0
12:10 SPE_R_NSMI_BIT[2:0] Receive Serial Sync Position Within a Byte Bound-
ary. Selects one of eight positions for the bit sync of the
serial receive data stream (previously known as the
NSMI inter face data) .
0x0
9:8 RSVD Reserved. 0x0
7 SPE_JITTER_FIFO Jitter FIFO Mode. When set to a 1, the SPE mapper
uses an extra FIFO to reduce jitter on the clear
channel.
0
6RSVDReserved.
5 SPE_TDS3CLK_EDGE External DS3 Clock Edge Select for DS3 Input Data
Retiming.
0 = negative edge is selected.
1 = positive edge is selected.
0x0
Table 163. SPE_MAP_CTL1—SPE_MAP_CTL3, Tx/Rx Contr ol for Mapping Functions (R/W) (continued)
Address Bit Name Function Reset
Default
145Agere Systems Inc.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
9 SPE Mapper Registers (continued)
Table 163. SPE_MAP_CTL1—SPE_MAP_CTL3, Tx/Rx Contr ol for Mapping Functions (R/W) (continued)
Address Bit Name Function Reset
Default
0x30019 4 SPE_PHDETUP_INV Phase Detector Up Signal Invert. When 1, the phase
detector up signal required for an external PLL in DS3
mode is inverted from its current phase.
0x0
3 SPE_PHDETDN_INV Phase Detector Down Signal Invert. When 1, the
phase detector down signal required for an external
PLL in DS3 mode is inverted from its current phase.
0x0
2 SPE_TDS3BPV_IN Transmit DS3 BPV/Data In. When 1,
DS3NEGDATAIN (K22) input pin is used as external
B3ZS bipolar violation indication instead of negative
input pulse.
0x00
1 SPE_TDS3_BIPOLAR Transmit DS3 Bipolar/Unipolar. Whe n 1, the DS3
input is bipolar; when 0, the DS3 input is unipolar. 0x00
0 SPE_RDS3_BIPOLAR Receive DS3 Bipolar/Unipolar. When 1, the DS3 out-
put is bipolar; when 0, the DS3 output is unipolar. 0x00
0x3001A 15 RSVD Reserved.
14:8 SPE_T_NSMI_COL[6:0] Transmit Serial Sync Position. Selects one of
90 positions aligned with 90 SONET columns within
SONET row 9 for the bit sync of the serial transmit data
stream (prev iou sl y kn own as the NSM I inter fac e data ).
0x0
7RSVDReserved.
6:0 SPE_R_NSMI_COL[6:0] Receive Serial Sync Position. Selects one of 90 posi-
tions aligned with 90 SONET columns within SONET
row 9 for the bit sync of the serial transmit data stream
(previously known as the NSMI interface data).
0x0
146 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
9 SPE Mapper Registers (continued)
Table 164. SPE_TAOH_CTL1—SPE_TAOH_CTL3, Tx Control for Alarm/OH Functions (R/W)
Address Bit Name Function Reset
Default
0x3001B 15:10 RSVD Reserved. 0x00
9SPE_TD_OEPARTransmit Data Odd/Even Parity Generate. When 0, odd
parity is generated for transmit data; when 1, even parity is
generated.
00
8 SPE_ TREIRDISEL REI and RDI Input Select. Control bit, when 1, inserts
REI/RDI value from the protected channel REI/RDI lines;
otherwise, the value is inserted from the direct feedback
(receive to transmit) lines.
0
7 SPE_TAISPINS Force Path AIS in the Output. Active-high. 0
6SPE_TN1INSTransmit N1 Insert Control. Control bit, when 1, inserts
the value in SPE_TN1DINS[7:0] (Table 167 on page 149)
into the outgoing N1 byte in the STS-1 frame; otherwise,
the insert value depends on SPE_TPOAC_N1 (Table 164
on page 146) control bit.
1
5SPE_TK3INSTransmit K3 Insert Control. Control bit, when 1, inserts
the value in SPE_TK3DINS[7:0] (Table 167 on page 149)
into the outgoing K3 bytes; otherwise, the insert value
depends on SP E_TP O AC_ K3 (Table 164 on page 146)
control bit.
0
4SPE_TH4INSTransmit H4 Insert Control. Control bit, when 1, inserts
the overhead default value SMPR_OH_DEFLT (Table 77
on page 70) into the outgoing H4 bytes; otherwise, the
insert value depends on SPE_TPOAC_H4 (Table 164 on
page 146) control bit.
0
3 SPE_TF3INS Tran smit F3 Inser t Control. Control bit, when 1, inserts
the value in SPE_TF3DINS[7:0] (Table 167 on page 149)
into the outgoing F3 byte in the STS-1 frame; otherwise,
the insert value depends on SPE_TPOAC_F3 (Table 164
on page 146) control bit.
1
2 SPE_TF2INS Tran smit F2 Inser t Control. Control bit, when 1, inserts
the value in SPE_TF2DINS[7:0] (Table 167 on page 149)
into the outgoing F2 byte in the STS-1 frame; otherwise,
the insert value depends on SPE_TPOAC_F2 (Table 164
on page 146) control bit.
1
1 SP E_ TC 2INS Transmit C2 Insert Control. Control bit, when 1, inserts
the value in SPE_TC2DINS[7:0] (Table 167 on page 149)
into the outgoing C2 byte in the STS-1 frame; otherwise,
the insert value depends on SPE_TPOAC_C2 (Table 164
on page 146) control bit.
1
0SPE_TJ1INSTransmit J1 Insert Control. Control bit, when 1, inserts
the value in SPE_TJ1DINS[1—64][7:0] (Table 173 on
page 151) into the outgoing J1 bytes; otherwise, the insert
value depends on SPE_TPOAC_J1 (Table 164 on
page 146) control bit.
0
147Agere Systems Inc.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
9 SPE Mapper Registers (continued)
Table 164. SPE_TAOH_CTL1—SPE_TAOH_CTL3, Tx Control for Alarm/OH Functions (R/W) (continued)
Address Bit Name Function Reset
Default
0x3001C 15:8 RSVD Reserved. 0x00
7 SPE_TPOAC_OEPMON Transmit POAC Odd or Even Parity Monitor. When 1,
even parity is checked for transmit POAC channels; other-
wise, odd parit y is chec ke d.
0
6 SPE_TPOAC_N1 Transmit POAC N1 Byte Control. Control bit, when 0,
inserts the default value into the N1 byte in the transmit
frame. When 1, the TPOAC value is inserted in the N1 byte.
0
5 SPE_TPOAC_K3 Transmit POAC K3 Byte Control. Control bit, when 0,
inserts the default value into the K3 byte in the transmit
frame. When 1, the TPOAC value is inserted in the K3 byte.
0
4 SPE_TPOAC_H4 Transmit POAC H4 Byte Control. Control bit, when 0,
inserts the default value into the H4 byte in the transmit
frame. When 1, the TPOAC value is inserted in the H4 byte.
0
3 SPE_TPOAC_F3 Transmit POAC F3 Byte Control. Control bit, when 0,
inserts the default value into the F3 byte in the transmit
frame. When 1, the TPOAC value is inserted in the F3 byte.
0
2 SPE_TPOAC_F2 Transmit POAC F2 Byte Control. Control bit, when 0,
inserts the default value into the F2 byte in the transmit
frame. When 1, the TPOAC value is inserted in the F2 byte.
0
1 SPE_TPOAC_C2 Transmit POAC C2 Byte Control. Control bit, when 0,
inserts the default value into the C2 byte in the transmit
frame. When 1, the TPOAC value is inserted in the C2 byte.
0
0 SPE_TPOAC_J1 Transmit POAC J1 Byte Control. Control bit, when 0,
inserts the default value into the J1 byte in the transmit
frame. When 1, the TPOAC value is inserted in the J1 byte.
0
0x3001D 15:8 SPE_NPI_BYTE2[7:0] Transmit NPI Byte 2. Programmable value for NPI byte 2
to be inserted into the NPI byte location. 0
7:0 SPE_NPI_BYTE1[7:0] Transmit NPI Byte 1. Programmable value for NPI byte 1
to be inserted into the NPI byte location. 0
148 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
9 SPE Mapper Registers (continued)
Table 165. SPE_TRDIREI_CTL, Transmit Path RDI and REI Control Register (R/W)
Table 166. SPE_TERRINS_CTL, Transmit Error Insertion Control (R/W)
Address Bit Name Function Reset
Default
0x3001E 15:8 RSVD Reserved. 0x00
7 SPE_TPRDIINS Transmit RDI Software Insert. When 1, the value in
SPE_TG1DINS[3:1] is inserted into G1[3:1] in the trans-
mit frame; otherwise, hardware insert is enabled for RDI-
P inserti on.
1
6 SPE_TTIM_PRDIINH Transmit Trace Indicator Mismatch RDI Inhibit. Con-
trol bit, when 1, the TIM failure will not contribute to the
automatic insertion of RDI-P; otherwise, the associated
alarm contributes to the generation of RDI-P.
0
5 SPE_TPLM_PRDIINH Transmit Path Label Mismatch RDI Inhibit. Control bit,
when 1, the PLM failure will not contribute to the auto-
matic insertion of RDI-P; otherwise, the associated alarm
contributes to the generation of RDI-P.
0
4 SPE_TUNEQ_PRDIINH Transmit Path Unequipped RDI Inhibit. Control bit,
when 1, the unequipped failure will not contribute to the
automatic insertion of RDI-P; otherwise, the associated
alarm contributes to the generation of RDI-P.
0
3 SPE_TLOP_PRDIINH Transmit Loss of Pointer RDI Inhibit. Control bit, when
1, the loss of pointer failure will not contribute to the auto-
matic insertion of RDI-P; otherwise, the associated alarm
contributes to the generation of RDI-P.
0
2 SPE_TPAIS_PRDIINH Transmit Path AIS RDI Inhibit. Control bit, when 1, the
path AIS failure will not contribute to the automatic inser-
tion of RDI-P; otherwise, the associated alarm contrib-
utes to the generation of RDI-P.
0
1 SPE_TPRDI_MODE Transmit PRDI Mode. When 1, 3-bit enhanced ERDI
mode is supported; when 0, the 1-bit RDI mode is
supported.
0
0 SPE_ TREIP_INH T ransmit REI-P Inhibit. When 1, inhibits automatic inser-
tion of REI-P. 0
Address Bit Name Function Reset
Default
0x3001F 15:3 RSVD Reserved. 0x000
2 SPE_BERR_INS Bit Error Insert Control Bit. When 1, bit errors will be
inserted on selected signals (whose error insert bits are set)
each time a pulse occurs on the BER_INS line.
0
1 SPE_TB3ERRINS Transmit B3 Error Insertion. When 1, the B3 output will be
inverted. 0
0 SPE_TREIERRINS Transmit G1 Error Insert. When 1, an error will be inserted
continuously into the outgoing G1[7:4] bits, until reset to 0. 0
149Agere Systems Inc.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
9 SPE Mapper Registers (continued)
Table 167. SPE_TOHINS1—SPE_TOHINS4, Transmit OH Insert Value (R/W)
Table 168. SPE_SIGDEG_CTL1—SPE_SIGDEG_CTL6, Signa l Degrade BER Algorithm Parameters (R/W)
Address Bit Name Function Reset
Default
0x30020 15:8 SPE_TF3DINS[7:0] Transmit F3 Byte Value. This value is inserted into the
transmit F3 byte. 0x00
7:0 SPE_TF2DINS[7:0] Transmit F2 Byte Value. This value is inserted into the
transmit F2 byte. 0x00
0x30021 15:8 SPE_TC2DINS[7:0] Transmit C2 Byte Value. This value is inserted into the
transmit C2 byte. 0x00
7:0 SPE_TK3DINS[7:0] Transmit K3 Byte Value. This value is inserted into the
transmit K3 byte. 0x00
0x30022 15:8 SPE_TG1DINS[7:0] Transmit G1 Byte Value. This value is inserted into the
transmit G1 byte. 0x00
7:0 SPE_TN1DINS[7:0] Transmit N1 Byte Value. This value is inserted into the
transmit N1 byte. 0x00
0x30023 15:8 RSVD Reserved. 0x00
7:0 SPE_TH4DINS[7:0] Transmit H4 Byte Value. This value is inserted into the
transmit H4 byte. 0x00
Address Bit Name Function Reset
Default
0x30024
0x30025 15:0
2:0 SPE_SDNSSET[18:3]
SPE_SDNSSET[2:0] Signal Degrade Ns Set. Number of frames in a
monitoring block for SD. 0x0000
0
0x30025 15 RSVD Reserved. 0
14:7 SPE_SDMSET[7:0] Signal Degrade M Set. Threshold of the number of bad
monitoring blocks in an observation interval. If the
number of bad blocks is above this threshold, then signal
degrade (SD) is set.
0x00
6:3 SPE_SDLSET[3:0] Signal Degr ade L S et. Error threshold for determining a
bad monitoring block. 0x0
0x30026 15:0 SPE_SDBSET[15:0] Signal Degrade B Set. Number of monitoring blocks. 0x0000
0x30027
0x30028 15:0
2:0 SPE_SDNSCLEAR[18:3]
SPE_SDNSCLEAR[2:0] Signal Degrade Ns Clear. Number of frames in a
monitoring block for SD. 0x0000
0
0x30028 15 RSVD Reserved. 0
14:7 SPE_SDMCLEAR[7:0] Signal Degrade M Clear. Threshold of the number of
bad monitoring blocks in an observation interval. If the
number of bad blocks is below this threshold, then SD is
cleared.
0x00
6:3 SPE_SDLCLEAR[3:0] Signal Degrade L Clear. E rror threshold for determining
a bad monitoring block. 0x0
0x30029 15:0 SPE_SDBCLEAR[15:0] Signal Degrade B Clear. Number of monitoring blocks. 0x0000
150 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
9 SPE Mapper Registers (continued)
Table 169. SPE_SIGFAIL_CTL1—SPE_SIGFAIL_CTL6, Signal Fail BER Algorithm Parameters (R/W)
Table 170. SPE_ERRCNT1—SPE_ERRCNT6, B3, G1, Bipolar Violation, and Excess Zero Error Count (RO)
Address Bit Name Function Reset
Default
0x3002A
0x3002B 15:0
2:0 SPE_SFNSSET[18:3]
SPE_SFNSSET[2:0] Signal Fail Ns Set. Number of frames in a monitoring
block for SF. 0x0000
0
0x3002B 15 RSVD Reserved. 0
14:7 SPE_SFMSET[7:0] Signal Fail M Set. Threshold of the number of bad
monitoring blocks in an observation interval. If the
number of bad blocks is above this threshold, then signal
fail (SF) is set.
0x00
6:3 SPE_SFLSET[3:0] Signal Fail L Set. Error threshold for determining a bad
monitoring block. 0x0
0x3002C 15:0 SPE_SFBSET[15:0] Signal Fail B Set. Number of monitoring blocks. 0x0000
0x3002D
0x3002E 15:0
2:0 SPE_SFNSCLEAR[18:3]
SPE_SFNSCLEAR[2:0] Signal Fail Ns Clear. Number of frames in a monitoring
block for SF. 0x0000
0
0x3002E 15 RSVD Reserved. 0
14:7 SPE_SFMCLEAR[7:0] Signal Fail M Clear. Threshold of the number of bad
monitoring blocks in an observation interval. If the
number of bad blocks is below this threshold, then SF is
cleared.
0x00
6:3 SPE_SFLCLEAR[3:0] Signal Fail L Clear. Error threshold for determining a
bad monitoring block. 0x0
0x3002F 15:0 SPE_SFBCLEAR[15:0] Signal Fail B Clear. Number of monitoring blocks. 0x0000
Address Bit Name Function Reset
Default
0x30030 15:0 SPE_B3ECNT[15:0] B3 Error Count. The value of internal running counter
is transferred into this holding register coincident with
the end of a performance monitor interval.
0x0000
0x30031 15:0 SPE_G1ECNT[15:0] G1 Error Count. The value of internal running counter
is transferred into this holding register coincident with
the end of a performance monitor interval.
0x0000
0x30033
0x30033
0x30034
15:8
7:0
15:0
RSVD
SPE_BIPOL_CNT[23:16]
SPE_BIPOL_CNT[15:0]
Reserved.
Bipolar Coding Violation Occurrence Count. The
value of internal running counter is transferred into this
holding register coincident with the end of a
performance monitor interval.
0x000000
0x30035
0x30035
0x30036
15:8
7:0
15:0
RSVD
SPE_EXZ_CNT[23:16]]
SPE_EXZ_CNT[15:0]
Reserved.
Excess Zero Occurrence Count. The value of
internal running counter is transferred into this holding
register coincident with the end of a performance
monitor interval.
0x000000
151Agere Systems Inc.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
9 SPE Mapper Registers (continued)
Table 171. SPE_PTRCNT1—SPE_PTRCNT3, Receive Pointer Increment and Decrement Count (RO)
Table 172. SPE_RJ1MON_R1—SPE_RJ1MON_R32, Receive J1 Monitor Values (RO)
Table 173. SPE_TJ1DINS_R1—SPE_TJ1DINS_R32, Transmit J1 Insert Values (R/W)
Table 174. SPE_RJ1DEXP_R1—SPE_RJ1DEXP_R32, Receive J1 Expected Values (R/W)
Table 175. SPE_SCRATCH_R, Scratch Pad (R/W)
Address Bit Name Function Rese t
Default
0x30037 15:10 RSVD Reserved. 0x00
9:0 SPE_STORED_PTR[9:0] Store d TU-3 Pointer Location. 0x000
0x30038 15:11 RSVD Reserved. 0x00
10:0 SPE_RPTR_INC[10:0] Pointer Increment Count from Pointer
Interpreter Block. The value of internal running
counter is transferred into this holding register
coincident with the end of a performance monitor
interval.
0x000
0x30039 15:11 RSVD Reserved. 0x00
10:0 SPE_RPTR_DEC[10:0] Pointer Decrement Count from Pointer
Interpreter Block. The value of internal running
counter is transferred into this holding register
coincident with the end of a performance monitor
interval.
0x000
Address Bit Name Function Reset
Default
0x30042
0x30061
15:0 SPE_RJ1DMON[1—64][7:0] Receive J1 Monitor V alue. These registers capture
a 64-byte sequence from the J1 byte of each frame. 0x00
Address Bit Name Function Reset
Default
0x30062
0x30081
15:0 SPE_TJ1DINS[1—64][7:0] Transmit J1 Insert Value. These registers allow a
64-byte sequence to be inserted into the J1 byte of
each frame.
0x00
Address Bit Name Function Reset
Default
0x30082
0x300A1
15:0 SPE_RJ1DEXP[164][7:0] Receive J1 Expected V alue. These registers hold a
programmable 64-byte expected sequence for the J1
byte of each frame.
0x00
Address Bit Name Function Reset
Default
0x300A2 15:10
9:0 RSVD
SPE_SCRATCH[9:0] Reserved.
Scratch Register. Allows the control system to ver-
ify read and write operations to the device without
affecting device operation.
0x0000
152 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
9 SPE Mapper Registers (continued)
Table 176. SPE_SPE_RX_THRES_CTL_DS3, Receive Elastic Store Threshold Control for DS3 (R/W)
Address Bit Name Function Reset
Default
0x300A3 15 RSVD Reserved. 0
14:8 SPE_RX_HIGH_THRES_DS3[6:0] Receive Elastic Store High Threshold for
DS3. Programmable threshold controlling posi-
tive justifications.
0x4D
7RSVDReserved. 0
6:0 SPE_RX_LOW_THRES_DS3[6:0] Receive Elastic Store Low Threshold for
DS3. Programmable threshold controlling nega-
tive justifications.
0x4A
Table 177. SPE_SPE_TX_THRES_CTL_DS3, Transmit Elastic Store Threshold Control for DS3 (R/W)
Address Bit Name Function Reset
Default
0x300A4 15 RSVD Reserved. 0
14:8 SPE_TX_HIGH_THRES_DS3[6:0] Transmit Elastic Store High Threshold for
DS3. Programmable threshold controlling posi-
tive justifications.
0x38
7RSVDReserved. 0
6:0 SPE_TX_LOW_THRES_DS3[6:0] Transmit Elastic Store Low Threshold for
DS3. Programmable threshold controlling nega-
tive justifications.
0X36
Table 178. SPE_SPE_OV_UN_FIFO_THRES FIFO Overflow and Underflow Thresholds (R/W)
Address Bit Name Function Reset
Default
0x300B0 15:7 RSVD Reserved.0
6:0 SPE_RX_OVUN_FLOW_THRES[6:0] Receive FIFO Overflow/Underflow
Threshold. Programmable threshold con-
trolling overflow/underflow event. If the write
minus the read address falls below this
value, then the overflow/underflow event will
be a 1. If the write minus the read address is
above this half of this value, then the over-
flow/unde rf low event wil l be a 1.
0x1E
0x300B1 15:7 RSVD Reserved.0
6:0 SPE_TX_OVUN_FLOW_THRES[6:0] Transmit FIFO Overflow/Underflow
Threshold. Programmable threshold con-
trolling overflow/underflow event. If the write
minus the read address falls below this
value, then the overflow/underflow event will
be a ‘1’. If the write minus the read address
is above this half of this value, then the over-
flow/underflow event will be a 1.
0x1E
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
153Agere Systems Inc.
9 SPE Mapper Registers (continued)
9.2 SPE Mapper Register Map
Note: In Table 179, the reset default of all reserved bits is 0. Shading denotes reserved bits.
Table 179. SPE Mapper Register Map
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
SPE Version and Identification Registers—RO
0x30000
Page 136 SPE_
VERSION_R SPE_VERSION[2:0] SPEMPR_ID[7:0]
0x30001
Page 136 RSVD
One Shot (0 to 1 transition) Control Bit Parameters—R/W
0x30002
Page 136 SPE_
ONESHOT SPE_
BIPOL_ERR SPE_
SFCLEAR SPE_
SFSET SPE_
SDCLEAR SPE_SDSET
Delta and Event Parameters—COR/COW
0x30003
Page 136 SPE_EVENT1 SPE_RX_
ESOVUN_
E
SPE_TX_
ESOVUBN_
E
SPE_
K3DMOND SPE_
N1DMOND SPE_
C2DMOND SPE_
F2DMOND SPE_
F3DMOND
0x30004
Page 137 SPE_EVENT2 SPE_PRDI
DMOND SPE_RNDFE SPE_RDECE SPE_RINCE SPE_RAISD SPE_
RLOPD SPE_SFB3D SPE_SDB3D SPE_
RUNEQD SPE_
RPLMD SPE_RTIMD
0x30005
Page 137 SPE_EVENT3 SPE_RSY5
2LOSD SPE_
RV1LOSD SPE_
RSPELOSD SPE_RJ0J1
V1LOSD SPE_RDS3
LOCD SPE_
RC52LOCD SPE_
RLSLOCD SPE_
TSY52LOSD SPE_
TV1LOSD SPE_
TSPELOSD SPE_TJ0J1V
1LOSD SPE_
TDS3LOCD SPE_
TC52LOCD SPE_
TLSLOCD
Interrupt Mask Parameters for INT Pins—R/W
0x30006
Page 138 SPE_MASK1 SPE_RX_
ESOVUN_
IM
SPE_TX_
ESOVUN_
IM
SPE_
RDATA_PM SPE_
TPOAC_PM SPE_
K3DMONM SPE_
N1DMONM SPE_
C2DMONM SPE_
F2DMONM SPE_
F3DMONM
0x30007
Page 138 SPE_MASK2 SPE_PRDI
DMONM SPE_RNDFM SPE_
RDECM SPE_RINCM SPE_RAISM SPE_
RLOPM SPE_
SFB3M SPE_
SDB3M SPE_
RUNEQM SPE_
RPLMM SPE_
RTIMM
0x30008
Page 138 SPE_MASK3 SPE_RSY5
2LOSM SPE_
RV1LOSM SPE_
RSPELOSM SPE_RJ0J1
V1LOSM SPE_RDS3
LOCM SPE_
RC52LOCM SPE_
RLSLOCM SPE_
TSY52LOSM SPE_
TV1LOSM SPE_
TSPELOSM SPE_TJ0J1V
1LOSM SPE_
TDS3LOCM SPE_
TC52LOCM SPE_
TLSLOCM
State and Value Parameter s—RO
0x30009
Page 140 SPE_STATE1 SPE_RAIS SPE_RLOP SPE_SFB3 SPE_SDB3 SPE_
RUNEQ SPE_RPLM SPE_RTIM
0x3000A
Page 140 SPE_STATE2 SPE_
RSY52LOS SPE_
RV1LOS SPE_
RSPELOS SPE_RJ0J1
V1LOS SPE_
RDS3LOC SPE_
RC52LOC SPE_
RLSLOC SPE_
TSY52LOS SPE_
TV1LOS SPE_
TSPELOS SPE_
TJ0J1V1LOS SPE_
TDS3LOC SPE_
TC52LOC SPE_
TLSLOC
Receive Control Parameters for Alarm and Overhead Functions—R/W
0x3000B
Page 141 SPE_RAOH_
CTL1 SPE_RD_
OEPAR SPE_J1MONMODE[2:0] SPE_RPRDI_
MODE SPE_G1BTB
LKCNT SPE_B3BT
BLKCNT SPE_RPOAC_
OEPINS
0x3000C
Page 141 SPE_RAOH_
CTL2 SPE_CNTDLOPCNT[1:0] SPE_8ORMA
JORITY SPE_
PAISINS SPE_PAIS_
AISINH SPE_PAIS_
LOPINH SPE_PAIS_
SFB3INH SPE_PAIS_
SDB3INH SPE_PAIS_
UNEQINH SPE_PAIS_
PLMINH SPE_PAIS_
TIMINH
0x3000D
Page 142 SPE_RAOH_
CTL3 SPE_PH_
DET_INV SPE_AIS_
LOSSY52INH SPE_AIS_
LOSV1INH SPE_AIS_
LOSSPEINH SPE_AIS_LO
SJ0J1V1INH SPE_AIS_
LOCDS3INH SPE_AIS_
LOC52INH SPE_AIS_
LOCINH
TMXF28155 Supermapper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
154 Agere Systems Inc.
9 SPE Mapper Registers (continued)
Table 179. SPE Mapper Register Map (continued)
Address Symbol Bit 15 Bit 14 B it 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Continuous N-Times Detect Values—R/W
0x3000E RSVD
0x3000F
Page 142 SPE_CNTD1 SPE_CNTDC2[3:0] SPE_CNTDF3[3:0] SPE_CNTDF2[3:0] SPE_CNTDJ1[3:0]
0x30010
Page 142 SPE_CNTD2 SPE_CNTDN1[3:0] SPE_CNTDPRDI[3:0] SPE_CNTDK3[3:0]
Receive Overhead Expected Value for C2 Byte—R/W
0x30011
Page 143 SPE_ROHC2 SPE_C2DEXP[7:0]
Receive Monitor Values—RO
0x30012
Page 143 SPE_RMON1 SPE_PRDIDMON[2:0]
0x30013
Page 143 SPE_RMON2 SPE_N1DMON[7:0] SPE_K3DMON[7:0]
0x30014
Page 143 SPE_RMON3 SPE_F2DMON1[7:0] SPE_F2DMON0[7:0]
0x30015
Page 143 SPE_RMON4 SPE_F3DMON1[7:0] SPE_F3DMON0[7:0]
0x30016
Page 143 SPE_RMON5 SPE_C2DMON[7:0]
0x30017 RSVD
Transmit/Receive Cont rol Parameters for Mapping Functions—R/W
0x30018
Page 143 SPE_MAP_CTL1 SPE_T_ST
S1_MODE SPE_T_NS
MI_MODE SPE_TDS3SRCTYP[1:0] SPE_T_
VT_DS3 SPE_T_
AU3_TUG3 SPE_TSTS3TMSLOT[1:0] SPE_R_
STS1_MODE SPE_R_
NSMI_MODE SPE_RDS3OUTTYP[1:0] SPE_R_
VT_DS3 SPE_R_
AU3_TUG3 SPE_RSTS3TMSLOT[1:0]
0x30019
Page 144 SPE_MAP_CTL2 SPE_T_NSMI_BIT[2:0] SPE_R_NSMI_BIT[2:0] SPE_JITTER_
FIFO SPE_
TDS3CLK_
EDGE
SPE_
PHDETUP_
INV
SPE_PHD
ETDN_
INV
SPE_TDS3
BPV_IN SPE_TDS3_
BIPOLAR SPE_RDS3_
BIPOLAR
0x3001A
Page 144 SPE_MAP_CTL3 SPE_T_NSMI_COL[6:0] SPE_R_NSMI_COL[6:0]
Transmit Control Parameters for Alarm and Overhead Functions—R/W
0x3001B
Page 146 SPE_TAOH_
CTL1 SPE_TD_
OEPAR SPE_TREIR
DISEL SPE_
TAISPINS SPE_
TN1INS SPE_
TK3INS SPE_
TH4INS SPE_
TF3INS SPE_
TF2INS SPE_
TC2INS SPE_
TJ1INS
0x3001C
Page 146 SPE_TAOH_
CTL2 SPE_TPOAC
_OEPMON SPE_
TPOAC_N1 SPE_
TPOAC_K3 SPE_
TPOAC_H4 SPE_
TPOAC_
F3
SPE_
TPOAC_F2 SPE_
TPOAC_C2 SPE_
TPOAC_J1
0x3001D
Page 147 SPE_TAOH_
CTL3 SPE_NPI_BYTE2[7:0] SPE_NPI_BYTE1[7:0]
Transmit Path RDI and REI Control Parameters—R/W
0x3001E
Page 148 SPE_TRDIREI_
CTL SPE_
TPRDIINS SPE_
TTIM_
PRDIINH
SPE_
TPLM_
PRDIINH
SPE_
TUNEQ_
PRDIINH
SPE_
TLOP_
PRDIINH
SPE_
TPAIS_
PRDIINH
SPE_
TPRDI_
MODE
SPE_
TREIP_INH
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
155Agere Systems Inc.
9 SPE Mapper Registers (continued)
Table 179. SPE Mapper Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Transmit Erro r Insertion Control Parameters—R/W
0x3001F
Page 148 SPE_TERRINS_CTL SPE_BERR_INS SPE_TB3ERRINS SPE_TREIERRINS
Transmit OH Insert Value—R/W
0x30020
Page 149 SPE_TOHINS1 SPE_TF3DINS[7:0] SPE_TF2DINS[7:0]
0x30021
Page 149 SPE_TOHINS2 SPE_TC2DINS[7:0] SPE_TK3DINS[7:0]
0x30022
Page 149 SPE_TOHINS3 SPE_TG1DINS[7:0] SPE_TN1DINS[7:0]
0x30023
Page 149 SPE_TOHINS4 SPE_TH4DINS[7:0]
Signal Degrade Set/Clear Control Registers—R/W
0x30024
Page 149 SPE_SIGDEG_CTL1 SPE_SDNSSET[18:3]
0x30025
Page 149 SPE_SIGDEG_CTL2 SPE_SDMSET[7:0] SPE_SDLSET[3:0] SPE_SDNSSET[2:0]
0x30026
Page 149 SPE_SIGDEG_CTL3 SPE_SDBSET[15:0]
0x30027
Page 149 SPE_SIGDEG_CTL4 SPE_SDNSCLEAR[18:3]
0x30028
Page 149 SPE_SIGDEG_CTL5 SPE_SDMCLEAR[7:0] SPE_SDLCLEAR[3:0] SPE_SDNSCLEAR[2:0]
0x30029
Page 149 SPE_SIGDEG_CTL6 SPE_SDBCLEAR[15:0]
Signal Fail Set/Clear Control Registers—R/W
0x3002A
Page 150 SPE_SIGFAIL_CTL1 SPE_SFNSSET[18:3]
0x3002B
Page 150 SPE_SIGFAIL_CTL2 SPE_SFMSET[7:0] SPE_SFLSET[3:0] SPE_SFNSSET[2:0]
0x3002C
Page 150 SPE_SIGFAIL_CTL3 SPE_SFBSET[15:0]
0x3002D
Page 150 SPE_SIGFAIL_CTL4 SPE_SFNSCLEAR[18:3]
0x3002E
Page 150 SPE_SIGFAIL_CTL5 SPE_SFMCLEAR[7:0] SPE_SFLCLEAR[3:0] SPE_SFNSCLEAR[2:0]
0x3002F
Page 150 SPE_SIGFAIL_CTL6 SPE_SFBCLEAR[15:0]
TMXF28155 Supermapper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
156 Agere Systems Inc.
9 SPE Mapper Registers (continued)
Table 179. SPE Mapper Register Map (continued)
Addr Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
B3 and G1 Error Counts—RO
0x30030
Page 150 SPE_ERRCNT1 SPE_B3ECNT[15:0]
0x30031
Page 150 SPE_ERRCNT2 SPE_G1ECNT[15:0]
0x30032
Page 150 RSVD
Bipolar Violation and Excess Zero Counts for DS3—RO
0x30033
Page 150 SPE_ERRCNT3 SPE_BIPOL_CNT[23:16]
0x30034
Page 150 SPE_ERRCNT4 SPE_BIPOL_CNT[15:0]
0x30035 Page 150 SPE_ERRCNT5 SPE_EXZ_CNT[23:16]
0x30036 Page 150 SPE_ERRCNT6 SPE_EXZ_CNT[15:0]
Receive Pointer Increment and Decrement Counts—RO
0x30037 Page 151 SPE_PTRCNT1 SPE_STORED_PTR[9:0]
0x30038 SPE_PTRCNT2 SPE_RPTR_INC[10:0]
0x30039 Page 151 SPE_PTRCNT3 SPE_RPTR_DEC[10:0]
0x3003A—0x30041 RSVD
J1 Byte Receive Monitor—RO
0x30042—0x30061
Page 151 SPE_RJ1MON_R1—
SPE_RJ1MON_R32 SPE_RJ1DMON[2][7:0]—SPE_RJ1DMON[64][7:0] SPE_RJ1DMON[1][7:0]
SPE_RJ1DMON[63][7:0]
J1 Byte Transmit Insert—R/W
0x30062—0x30081
Page 151 SPE_TJ1DINS_R1—
SPE_TJ1DINS_R32 SPE_TJ1DINS[2][7:0]—SPE_TJ1DINS[64][7:0] SPE_TJ1DINS[1][7:0]
SPE_TJ1DINS[63][7:0]
J1 Byte Expected Values—R/W
0x30082—0x300A1
Page 151 SPE_RJ1DEXP_R1—
SPE_RJ1DEXP_R32 SPE_RJ1DEXP[2][7:0]—SPE_RJ1DEXP[64][7:0] SPE_RJ1DEXP[1][7:0]
SPE_RJ1DEXP[63][7:0]
Scratc h Registe r—R/W
0x300A2 Page 151 SPE_SCRATCH_R SPE_SCRATCH[9:0]
0x300A3 Page 151 SPE_RX_THRES_CTL_DS3 SPE_RX_HIGH_THRES_DS3[6:0] SPE_RX_LOW_THRES_DS3[6:0]
0x300A4 Page 151 SPE_TX_THRES_CTL_DS3 SPE_TX_HIGH_THRES_DS3[6:0] SPE_TX_LOW_THRES_DS3[6:0]
0x300B0 Page 152 SPE_OV_UN_FIFO_THRES SPE_RX_OVUN_FLOW_THRES[6:0]
0x300B1 Page 152 SPE_OV_UN_FIFO_THRES SPE_TX_OVUN_FLOW_THRES[6:0]
0x300A3—0x301FF RSVD
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
157Agere Systems Inc.
10 VT/TU Mapper Registers
Table of Con t en ts
Contents Page
10 VT/TU Mapper Registers ........... ...... ....... ................... ....... ...... ...... ....... ...... ....... ...... .........................................157
10.1 VT/TU Mapper Register Descriptions.......................................................................................................158
10.2 VT/TU Mapper Register Map ...................................................................................................................175
Tables Page
Table 180. VT_VERSION_R, VT Mapper Ready, Version, and Identification (RO)...............................................158
Table 181. VT_GDELTA, VT Global Deltas (COR/COW)......................................................................................158
Table 182. VT_REVENT_DELTA[1—28], Receive Event and Delta Per Channel (COR/COW) ...........................159
Table 183. VT_LOPOHFAIL_EVENT, Low-Order Path Overhead Failure Event (COR/COW) .............................159
Table 184. VT_TEVENT_DELTA[1—28], Transmit Event and Delta Per Channel (COR/COW)...........................160
Table 185. VT_GMASK, VT Global Masks (R/W)..................................................................................................160
Table 186. VT_RMASK[1—28], Receive Masks Per Channel (R/W) ....................................................................161
Table 187. VT_LOPOHFAIL_MASK, Low-Order Path Overhead Failure Mask (R/W)..........................................162
Table 188. VT_TMASK[1—28], Transmit Masks Per Channel (R/W)....................................................................162
Table 189. VT_GSTATE, VT Global State (RO) ....................................................................................................162
Table 190. VT_RSTATE[1—28], Receive State Per Channel (RO).......................................................................163
Table 191. VT_RAPSSTATE[1—28], Receive APS State Per Channel (RO)........................................................163
Table 192. VT_TSTATE[1—28], Transmit State Per Channel (RO) ......................................................................163
Table 193. VT_GCTL1, VT Global Control Register 1 (R/W) ................................................................................164
Table 194. VT_GCTL2, VT Global Control Register 2 (R/W) ................................................................................164
Table 195. VT_GCTL3, VT Global Control Register 3 (R/W) ................................................................................165
Table 196. VT_GCTL4, VT Global Control Register 4 (R/W) ................................................................................165
Table 197. VT_GCTL5, VT Global Control Register 5 (R/W) ................................................................................166
Table 198. VT_SIGDEG_CTL1, Signal Degrade Control Register 1 (R/W) ..........................................................167
Table 199. VT_SIGDEG_CTL2, Signal Degrade Control Register 2 (R/W) ..........................................................167
Table 200. VT_SIGDEG_CTL3, Signal Degrade Control Register 3 (R/W) ..........................................................167
Table 201. VT_SIGDEG_CTL4, Signal Degrade Control Register 4 (R/W) ..........................................................167
Table 202. VT_SIGDEG_CTL5, Signal Degrade Control Register 5 (R/W) ..........................................................168
Table 203. VT_SIGDEG_CTL6, Signal Degrade Control Register 6 (R/W) ..........................................................168
Table 204. VT_SIGDEG_CTL7, Signal Degrade Control Register 7 (R/W) ..........................................................168
Table 205. VT_SIGFAIL_CTL1, Signal Fail Control Register 1 (R/W)...................................................................168
Table 206. VT_SIGFAIL_CTL2, Signal Fail Control Register 2 (R/W)...................................................................168
Table 207. VT_SIGFAIL_CTL3, Signal Fail Control Register 3 (R/W)...................................................................168
Table 208. VT_SIGFAIL_CTL4, Signal Fail Control Register 4 (R/W)...................................................................169
Table 209. VT_SIGFAIL_CTL5, Signal Fail Control Register 5 (R/W)...................................................................169
Table 210. VT_SIGFAIL_CTL6, Signal Fail Control Register 6 (R/W)...................................................................169
Table 211. VT_TCTL[1—28], Transmit Control Per Channel (R/W) ......................................................................170
Table 212. VT_TTUOH_CTL[1—28], Transmit TU Overhead Control Per Channel (R/W) ...................................171
Table 213. VT_TAPSRIVAL[1—28], Transmit APS and Remote Indication Per Channel (R/W)...........................171
Table 214. VT_TSWOW[1—28], Transmit Software Overwrite Per Channel (R/W)..............................................171
Table 215. VT_TSIG_CTL[1—28], Transmit Signaling Control Per Channel (R/W)..............................................172
Table 216. VT_J2BYTE_INS_R[1—28][1—16], J2 Insert Values Per Channel (R/W)...........................................172
Table 217. VT_RCTL[1—28], Receive Control Per Channel (R/W) ......................................................................172
Table 218. VT_RTUOH_CTL[1—28], Receive TU Overhead Control Per Channel (RO) .....................................173
Table 219. VT_RBIP2_CNT[1—28], Receive BIP-2 Error Count Per Channel (RO).............................................173
Table 220. VT_RREIV_CNT[1—28], Receive REI-V Error Count Per Channel (RO) ...........................................173
Table 221. VT_RPTR_CNT[1—28], Receive Pointer and Count Per Channel (RO).............................................174
Table 222. VT_J2BYTE_EXP_R[1—28][1—16], J2 Expected Values Per Channel (R/W, RO)............................174
Table 223. VT_THRES_CTL[1—28], Transmit Elastic Store Threshold Control (R/W).........................................174
Table 224. VT/TU Mapper Register Map...............................................................................................................175
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
158 Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
10.1 VT/TU Mapper Reg ister Descr ip tions
The following tables describe the functions of all bits in the register map. For each address, the register bits are
indicated as either read/write (R/W) or read only (RO), and the value of the bits on reset is given.
Table 180. VT_VERSION_R, VT Mapper Ready, Version, and Identification (RO)
Table 181. VT_GDELTA, VT Global Deltas (COR/COW)
Address Bit Name Function Reset
Default
0x20000 15 VT_RDY VT/TU Mapper Ready. A 1 indicates that the VT/TU map-
per is ready for microprocessor reads and writes. 0x0
14:11 RSVD Reserved. 0x0
10:8 VT_VERSION[2:0] Block Version Number. These bits identify the version
number of the VT/TU mapper. NA
7:0 VT_ID[7:0] Block ID Number. VT_ID returns a fixed value (0x02)
when read. 0x02
Address Bit Name Function Reset
Default
0x20001 15:3 RSVD Reserved. 0x000
2VT_SD_DVT/TU Signal Degrade Delta Bit. Logic 1 indicates a
change in the signal degrade condition based on the inter-
nal bit error rate detec tor.
0x1
1VT_SF_DVT/TU Signal Fail Delta Bit. Logic 1 indicates a change in
the signal fail condition based on the internal bit error rate
detector.
0x1
0VT_H4LOMF_DH4 Mismatch Delta Bit. Logic 1 indicates a change in the
H4 loss of multiframe condition. 0x1
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
159Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 182. VT_REVENT_DELTA[1—28], Receive Event and Delta Per Channel (COR/COW)
Table 183. VT_LOPOHFAIL_EVENT, Low-Order Path Overhead Failure Event (COR/COW)
Address Bit Name Function Reset
Default
0x20002
0x2001D
15 RSVD Reserved. 0
14 VT_RX_VTREI_E[1—28] Receive REI-V Event Bit. Logic 1 indicates that
REI-V was received. 0x0
13 VT_RX_BIP2ERR_E[1—28] Receive BIP-2 Error Even t Bit. Logic 1 indicates
that BIP-2 errors have been detected. 0x0
12 VT_RX_ESOVFL_E[1—28] Receive Elastic Store Overflow Event Bit.
Logic 1 indicates an elastic store overflow. 0x0
11 VT_APS_D[1—28] ERDI-V Delta Bit. Logic 1 indicates a VTAPS
change of value. 0x1
10 VT_ERDI_D[1—28] ERDI-V Delta Bit. Logic 1 indicates an ERDI-V
change of value. 0x1
9 VT_RDI_D[1—28] RDI-V Delta Bit. Logic 1 indicates an RDI-V change
of value. 0x1
8 VT_RFI_D[1—28] RFI-V Delta Bit. Logic 1 indicates an RFI-V change
of value. 0x1
7RSVDReserved. 0
6 VT_LOPS_D[1—28] VT Loss of Phase Sync Delta Bit. Logic 1 indi-
cates a change of VTLOPS state. 0x1
5VT_J2TIM_D[128]J2 Trace Identifier Mismatch. Logic 1 indicates a
change of J2TIM state. 0x1
4VT_PLM_D[128]VT Payload Label Mismatch Delta Bit. Logic 1
indicates a change of VTPLM state. 0x1
3 VT_UNEQ_D[1—28] VT Unequip Delta Bit. Logic 1 indicates a change
of VTUNEQ state. 0x1
2 VT_SIZERR_D[1—28] VT Size Er ror Delt a Bit. Logic 1 indicates a change
of VTSIZERR state. 0x1
1 VT_AIS_D[1—28] AIS-V Delta Bit. Logic 1 indicates a change of
VTAIS state. 0x0
0 VT_LOP_D[1—28] LOP-V Delta Bit. Logic 1 indicates a change of
VTLOP state. 0x1
Address Bit Name Function Reset
Default
0x2001E 15:1 RSVD Reserved. 0x000
0VT_LOPOH_FAIL_ELow-Order Path Overhead Fa ilure Event Bit.
Logic 1 indicates that a failure has occurred on the
LOPOH serial access channel.
0x0
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
160 Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 184. VT_TEVENT_DELTA[1—28], Transmit Event and Delta Per Channel (COR/COW)
Tab le 185. VT_G MA SK, VT Global Mas ks (R/W )
Address Bit Name Function Reset
Default
0x2001F
0x2003A
15:5 RSVD Reserved. 0x000
4 VT_TX_ESOVFL_E[1—28] T r ansmit Elastic Store Overflow Event Bit. Logic
1 indicates an elastic store overflow. 0x0
3RSVDReserved. 0
2 VT_LOFS_D[1—28] Loss of Frame Sync Delta Bit. Logic 1 indicates a
change of VT_LOF S [1— 28] (Table 192 on
page 163) state.
0x1
1 VT_TX_AIS_D[1—28] T ransmit AIS Delta Bit. Logic 1 indicates a change
of VT_TX_AIS[1—28] (Table 192 on page 163)
state.
0x0
0 VT_TX_LOC_D[1—28] Transmit Loss of Clock Delta Bit. Logi c 1 indi-
cates a change of VT_TX_LOC[1—28] (Table 192
on page 163) state.
0x1
Address Bit Name Function Reset
Default
0x2003B 15:3 RSVD Reserved. 0x000
2VT_SD_MVT/TU Signal Degrade Mask Bit. If set to a logic 1,
VT_SD_D (Table 181 on page 158) will not contribute t o
the interrupt.
0x1
1VT_SF_MVT/TU Signal Fail Mask Bit. If set to a logic 1, VT_SF_D
(Table 181 on page 158) will not contribute to the inter-
rupt.
0x1
0VT_H4LOMF_MH4 Mismatch Mask Bit. If set to a logic 1,
VT_H4LOMF_D (Table 181 on page 158) will not con-
tribute to the interrupt.
0x1
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
161Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 186. VT_RMASK[1—28], Receive Masks Per Channel (R/W)
Note: The event and delta bits for these mask bits are in Table 182 on page 159.
Address Bit Name Function Reset
Default
0x2003C
0x20057
15 RSVD Reserved. 0
14 VT_RX_VTREI_M[1—28] Receive REI-V Mask Bit. If set to a logic 1,
VT_RX_VTREI_E[1—28] will not contribute to the inter-
rupt.
0x1
13 VT_RX_BIP2ERR_M[1—28] Receive BIP- 2 Er ror Mask Bit. If set to a logic 1,
VT_RX_BIP2ERR_E[1—28] will not contribute to the
interrupt.
0x1
12 VT_RX_ESOVFL_M[1—28] Receive Elastic Store Overflow Mask Bit. If set to a
logic 1, VT_RX_ESOVFL_E[1—28] will not contribute to
the interrupt.
0x1
11 VT_APS_M[1—28] VT APS Mask Bit. If set to a logic 1, VT_APS_D[1—28]
will not contribute to the interrupt. 0x1
10 VT_ERDI_M[1—28] ERDI-V Mask Bit. If set to a logic 1, VT_ERDI_D[1—28]
will not contribute to the interrupt. 0x1
9 VT_RDI_M[1—28] RDI-V Mask Bit. If set to a logic 1, VT_RDI_D[1—28] will
not contribute to the interrupt. 0x1
8VT_RFI_M[128]RFI-V Mask Bit. If set to a logic 1, VT_RFI_D[1—28] will
not contribute to the interrupt. 0x1
7RSVDReserved. 0
6 VT_LOPS_M[1—28] VT Loss of Phase Sync Mask Bit. If set to a logic 1,
VT_LOPS_D[1—28] will not contribute to the interrupt. 0x1
5 VT_J2TIM_M[1—28] J2 Mismatch Mask Bit. If set to a logic 1,
VT_J2TIM_D[1—28] will not contribute to the interrupt. 0x1
4 VT_PLM_M[1—28] VT Payload Label Mismatch Mask Bit. If set to a logic
1, VT_PLM_D[1—28] will not contribute to the interrupt. 0x1
3 VT_UNEQ_M[1—28] VT Unequip Mask Bit. If set to a logic 1,
VT_UNEQ_D[1—28] will not contribute to the interrupt. 0x1
2 VT_SIZERR_M[1—28] VT Size Error Mask Bit. If set to a logic 1,
VT_SIZERR_D[1—28] will not contribute to the interrupt. 0x1
1VT_AIS_M[128]AIS-V Mask Bit. If set to a logic 1, VT_AIS_D[1—28] will
not contribute to the interrupt. 0x1
0 VT_LOP_M[1—28] LOP-V Mask Bit. If set to a logic 1, VT_LOP_D[1—28]
will not contribute to the interrupt. 0x1
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
162 Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 187. VT_LOPOHFAIL_MASK, Low-Order Path Overhead Failure Mask (R/W)
Table 188. VT_TMASK[1—28], Transmit Masks Per Channel (R/W)
Table 189. VT_GSTATE, VT Global State (RO)
Address Bit Name Function Reset
Default
0x20058 15:1 RSVD Reserved. 0x000
0 VT_LOPOH_FAIL_M Low-Order Path Overhead Failure Mask Bit. If set to a
logic 1, VT_LOPOH_F AIL_E (Table 183 on page 159) will
not contribute to the interrupt.
0x1
Address Bit Name Function Reset
Default
0x20059
0x20074
15:5 RSVD Reserved. 0x000
4 VT_TX_ESOVFL_M[1—28] T ransmit Elastic Store Overflow Mask Bit. If set to
a logic 1, VT_TX_ESOVFL_E[1—28] (Table 184 on
page 160) will not contribute to the interrupt.
0x1
3RSVDReserved. 0
2 VT_LOFS_M[1—28] Loss of Frame Sync Mask Bit. If set to a logic 1,
VT_LOFS_D[1—28] (Table 184 on page 160) will
not contribute to the interrupt.
0x1
1 VT_TX_AIS_M[1—28] Transmit AIS Mask Bit. If set to a logic 1,
VT_TX_AIS_D[1—28] (Table 184 on page 160) will
not contribute to the interrupt.
0x1
0 VT_TX_LOC_M[1—28] Transmit Loss of Clock Mask Bit. If set to a logic
1, VT_TX_LO C_ D[1—2 8] (Table 184 on page 160)
will not contribute to the interrupt.
0x1
Address Bit Name Function Reset
Default
0x20075 15:3 RSVD Reserved. 0x000
2VT_SDVT/TU Signal Degrade. Logic 1 indicates a signal
degrade condition on the selected channel. 0x1
1VT_SFVT/TU Signal Fail. Logic 1 indicates a signal fail
condition on the selected channel. 0x1
0 VT_H4LOMF H4 Loss of Multiframe. Logic 1 indicates a loss of
H4 multiframe alignment. 0x1
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
163Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 190. VT_RSTATE[1—28], Receive State Per Channel (RO)
Table 191. VT_RAPSSTATE[1—28], Receive APS State Per Channel (RO)
Table 192. VT_TSTATE[1—28], Transmit State Per Channel (RO)
Address Bit Name Function Reset
Default
0x20076
0x20091
15:13 VT_ERDI[1—28][2:0] Enhanced RDI-V V alue. Th ese b it s are t he st or ed ER DI- V
bits received in the Z7 byte. 0x000
12:10 VT_LAB[1—28][2:0] VT Signal Label. These bits are the stored VT signal label
bits rece ived in the V5 byte. 0x000
9 VT_RDI[1—28] RDI-V Value. This bit is the accepted RDI-V bit received in
the V5 byte. 0x00
8VT_RFI[128]RFI-V Value. This bit is the accepted RFI-V bit received in
the V5 byte. 0x00
7RSVDReserved. 0
6VT_LOPS[128]VT Loss of Phase Sync. Logic 1 indicates a loss of P-bit
phase synchronization. 0x1
5 VT_J2TIM[1—28] J2 Trace Identifier Mismatch. Logic 1 indicates a mis-
match between the expected trace and the detected trace. 0x1
4VT_PLM[128]VT Payload Label Mismatch. Logic 1 indicates PLM-V. 0x1
3 VT_UNEQ[1—28] VT Unequip. Logic 1 indicates UNEQ-V. 0x1
2 VT_SIZERR[1—28] VT Siz e Err or. Logic 1 indicates a VT size error. 0x1
1 VT_AIS[1—28] AIS-V. Logic 1 indicates AIS-V. 0x0
0 VT_LOP[1—28] LOP-V. Logic 1 indicates LOP-V. 0x1
Address Bit Name Function Reset
Default
0x20092
0x200AD
15:4 RSVD Reserved. 0x000
3:0 VT_APS[1—28][3:0] VT APS Value. These bits are the stored VT APS bits
received in the Z7/K4 byte. 0x0
Address Bit Name Function Reset
Default
0x200AE
0x200C9
15:3 RSVD Reserved. 0x000
2 VT_LOFS[1—28] Loss of Frame Sync. Logic 1 indicates DS1/E1 loss of
frame sync. 0x1
1 VT_TX_AIS[1—28] Transmit AIS. Logic 1 indicates DS1/E1 AIS. 0x0
0 VT_TX_LOC[1—28] Transmit Loss of Clock. Logic 1 indicates DS1/E1 loss
of clock. 0x1
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
164 Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 193. VT_GCTL1, VT Global Control Register 1 (R/W)
Table 194. VT_GCTL2, VT Global Control Register 2 (R/W)
Address Bit Name Function Reset
Default
0x200CA 15 RSVD Reserved. 0
14:8 VT_RX_GRP_TYPE[6:0] Receive Group Type. VT/TU group type selection.
Logic 1 selects VT1.5/TU-11 and logic 0 selects
VT2/TU-12 group type. Group 1 is the LSB.
0x7F
7RSVDReserved. 0
6:0 VT_TX_GRP_TYPE[6:0] Transmit Group Type. VT/TU group type select ion.
Logic 1 selects VT1.5/TU-11 and logic 0 selects
VT2/TU-12 group type. Group 1 is the LSB.
0x7F
Address Bit Name Function Reset
Default
0x200CB 15:11 RSVD Reserved. 0x00
10 VT_LOPS_AIS_INH VT/TU Loss of Phase Sync. Contribution to AIS inhibit
control. 0x0
9 VT_J2TIM_ERDI_INH J2 Trace Identifier Mismatch. Contribution to ERDI
inhibit co ntr ol . 0x0
8 VT_J2TIM_RDI_INH J2 T race Identifier Mismatch. Contribution to RDI inhibit
control. 0x0
7 VT_J2TIM_AIS_INH J2 Trace Identifier Mismatch. Contribution to AIS inhibit
control. 0x0
6 VT_LOMF_AIS_INH Loss of Multiframe. Contribution to AIS inhibit control. 0x0
5 VT_PLM_AIS_INH Payload Label Mismatch . Contribution to AIS inhibit con-
trol. 0x0
4 VT_UNEQ_AIS_INH UNEQ-V. Contribution to AIS inhibit control. 0x0
3RSVDReserved. 0
2VT_UPSRUnidirectional Path Switch Ring M ode Control. Logic 1
activates the UPSR mode of operation. When the device
is programmed for UPSR mode, the transmitted REI-V,
RDI-V, RFI-V, and ERDI-V are based on the receive con-
ditions. Otherwise, the transmitted LOPOH is a copy of
the received overhead bytes.
0x0
1VT_8ORMAJORITYVT Po in te r Interpre te r Mo de Cont ro l. Logic 1 tells the
pointer interpreter to transition into the inc and dec states
based on 8 of the 10 I and D bits. Otherwise, the pointer
interpreter transitions into the inc and dec states based on
majori ty ru le.
0x1
0 VT_BIT_BLOCK_CNT Performance Monitor Count Mode Control. Logic 1
activates BIP-2, TC-BIP-2, REI, and TC-CRC-7 counts
based on single bit errors. Otherwise, errors are counted
on a block basis.
0x1
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
165Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 195. VT_GCTL3, VT Global Control Register 3 (R/W)
Table 196. VT_GCTL4, VT Global Control Register 4 (R/W)
Address Bit Name Function Reset
Default
0x200CC 15:8 RSVD Reserved. 0x00
7:4 VT_LOPS_NTIME[3:0] VT/TU Loss of Phase Sync NTIME Detection Control.
This nibble is programmed to provision the number of
consecutive errored phase indications required to transi-
tion into the VT_LOPS[1—28] (Table 190 on page 163)
state. This is only valid in byte-synchronous mode.
Note: The valid range of values is 0x1—0xF. A value of
0x0 will be mapped to 0x1.
0x6
3:0 VT_H4_NTIME[3:0] H4 Multiframe Indication NTIME Detection Control.
This nibble is programmed to provision the number of
consecutive errored multiframe indications required to
transition into the VT_H4LOMF (Table 189 on page 162)
state.
Note: The valid range of values is 0x1—0xF. A value of
0x0 will be mapped to 0x1.
0x6
Address Bit Name Function Reset
Default
0x200CD 15:11 VT_Z6_NTIME[3:0] Z6 Byte Monitor NTIME Detection Control. This nibble
is programmed to provision the number of consecutive
consistent Z6 bytes required to accept a new value.
Note: The valid range of values is 0x1—0xF. A value of
0x0 will be mapped to 0x1.
0x3
10:8 VT_J2_NTIME[3:0] J2 Byte Monitor NTIME Detection Control. This nibb le
is programmed to provision the number of consecutive
consistent J2 sequences required for the J2 byte monitor
to transition in and out of J2TIM.
Note: The valid range of values is 0x1—0xF. A value of
0x0 will be mapped to 0x1.
0x3
7:4 VT_INV_NTIME[3:0] Pointer Interpreter Invalid Pointer NTIME Detection
Control. This nibble is programmed to provision the
number of invalid pointers required for the pointer inter-
preter to go into the VT_LOP[1—28] (Table 190 on
page 163) state.
Note: The valid range of values is 0x1—0xF. A value of
0x0 will be mapped to 0x1.
0x8
3:0 VT_NDF_NTIME[3:0] Pointer Interpreter NDF Pointer NTIME Detection
Control. This nibble is programmed to provision the
number of consecutive NDF pointers required for the
pointer interpreter to go into the VT_LOP state.
Note: The valid range of values is 0x1—0xF. A value of
0x0 will be mapped to 0x1.
0x8
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
166 Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 197. VT_GCTL5, VT Global Control Register 5 (R/W)
Address Bit Name Function Reset
Default
0x200CE 15:12 VT_APS_NTIME[3:0] APS NTIME Detection Control. This nibble is programmed
to provision the number of consecutive consistent new values
required to accept a new VT_APS[1—28][3:0] (Table 191 on
page 163).
Note: The valid range of values is 0x1—0xF. A value of 0x0
will be mapped to 0x1.
0x3
11:8 VT_LAB_NTIME[3:0] VT Signal Label NTIME Detection Control. This nibble is
programmed to provision the number of consecutive consis-
tent new values required to accept a new
VT_LAB[1—28][2:0] (Table 190 on page 163).
Note: The valid range of values is 0x1—0xF. A value of 0x0
will be mapped to 0x1.
0x3
7:4 VT_ERDI_NTIME[3:0] ERDI-V NTIME Detection Control. This nibble is pro-
grammed to provision the number of consecutive consistent
new values required to accept a new VT_ERDI[1—28][2:0]
(Table 190 on page 163).
Note: The valid range of values is 0x1—0xF. A value of 0x0
will be mapped to 0x1.
0x3
3:0 VT_RDI_NTIME[3:0] RDI-V NTIME Detection Control. This nibble is programmed
to provision the number of consecutive consistent new values
required to accept a new VT_RDI[1—28] (Table 190 on
page 163).
Note: The valid range of values is 0x1—0xF. A value of 0x0
will be mapped to 0x1.
0x3
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
167Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 198. VT_SIGDEG_CTL1, Signal Degrade Control Register 1 (R/W)
Table 199. VT_SIGDEG_CTL2, Signal Degrade Control Register 2 (R/W)
Table 200. VT_SIGDEG_CTL3, Signal Degrade Control Register 3 (R/W)
Table 201. VT_SIGDEG_CTL4, Signal Degrade Control Register 4 (R/W)
Address Bit Name Function Reset
Default
0x200CF 15:12 RSVD Reserved. 0x00
11 VT_SFCLEAR VT Signal Fail Clear . Allows the signal fail algorithm to be
forced into the normal state. This is a one-shot which is
activated by a 0 to 1 transition.
0x0
10 VT_SFSET VT Signal Fail Set. Allows the signal fail algorithm to be
forced into the failed state. This is a one-shot which is
activated by a 0 to 1 transition.
0x0
9 VT_SDCLEAR Signal Degrade Clear. Allows the signal degrade algo-
rithm to be forced into the normal state. This is a one-shot
which is activated by a 0 to 1 transition.
0x0
8VT_SDSETSignal Degrade Set. Allows the signal degrade algorithm
to be forced into the failed state. This is a one-shot which
is activated by a 0 to 1 transition.
0x0
7:5 RSVD Reserved. 000
4:0 VT_BER_CH_SEL[4:0] Bit Error Rate Monitor Channel Select. Selects which
channel (1—28/21) is being monitored by the internal
BER monitor. Valid inputs are 00001—11100.
0x00
Address Bit Name Function Reset
Default
0x200D0 15:0 VT_SDNSSET[18:3] Signal Degrade Ns Set. Number of frames in a monitor-
ing block for SD. 0x0000
Address Bit Name Function Reset
Default
0x200D1 15 RSVD Reserved. 0
14:7 VT_SDMSET[7:0] Signal Degrade M Set. Threshold of the number of bad
monitoring blocks in an observation interval. If the number
of bad blocks is above this threshold, then signal degrade
SD is set.
0x00
6:3 VT_SDLSET[3:0] Signal Degrade L Set. Error threshold for determining if a
monitoring block is bad. 0x0
2:0 VT_SDNSSET[2:0] Signal Degrade Ns Set. Number of frames in a monitor-
ing block for SD. 0x0
Address Bit Name Function Reset
Default
0x200D2 15:0 VT_SDBSET[15:0] Signal Degrade B Set. Number of monitoring blocks. 0x0000
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
168 Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 202. VT_SIGDEG_CTL5, Signal Degrade Control Register 5 (R/W)
Table 203. VT_SIGDEG_CTL6, Signal Degrade Control Register 6 (R/W)
Table 204. VT_SIGDEG_CTL7, Signal Degrade Control Register 7 (R/W)
Table 205. VT_SIGFAIL_CTL1, Signal Fail Control Register 1 (R/W)
Table 206. VT_SIGFAIL_CTL2, Signal Fail Control Register 2 (R/W)
Table 207. VT_SIGFAIL_CTL3, Signal Fail Control Register 3 (R/W)
Address Bit Name Function Reset
Default
0x200D3 15:0 VT_SDNSCLEAR[18:3] Signal Degrade Ns Clear. Number of frames in a moni-
toring blo ck for SD. 0x0000
Address Bit Name Function Reset
Default
0x200D4 15 RSVD Reserved. 0
14:7 VT_SDMCLEAR[7:0] Signal Degrade M Clear . Threshold of the number of bad
monitoring blocks in an observation interval. If the number
of bad blocks is below this threshold, then SD is cleared.
0x00
6:3 VT_SDLCLEAR[3:0] Signal Degrade L Clear. Error threshold for determining
if a monitoring block is bad. 0x0
2:0 VT_SDNSCLEAR[2:0] Signal Degrade Ns Clear. Number of frames in a moni-
toring block for SD. 0x0
Address Bit Name Function Reset
Default
0x200D5 15:0 VT_SDBCLEAR[15:0] Signal Degrade B Clear. Number of monitoring blocks. 0x0000
Address Bit Name Function Reset
Default
0x200D6 15:0 VT_SFNSSET[18:3] Signal Fail Ns Set. Number of frames in a monitoring block
for SF. 0x0000
Address Bit Name Function Reset
Default
0x200D7 15 RSVD Reserved. 0
14:7 VT_SFMSET[7:0] Signal Fail M Set. Threshold of the number of bad
monitoring blocks in an observation interval. If the number
of bad blocks is above this threshold, then SF is set.
0x00
6:3 VT_SFLSET[3:0] Signal Fail L Set. Error threshold for determining if a
monitoring block is bad. 0x0
2:0 VT_SFNSSET[2:0] Signal Fail Ns Set. Number of frames in a monitoring
block for SF. 0x0
Address Bit Name Function Reset
Default
0x200D8 15:0 VT_SFBSET[15:0] Signal Fail B Set. Number of monitoring blocks. 0x0000
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
169Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 208. VT_SIGFAIL_CTL4, Signal Fail Control Register 4 (R/W)
Table 209. VT_SIGFAIL_CTL5, Signal Fail Control Register 5 (R/W)
Table 210. VT_SIGFAIL_CTL6, Signal Fail Control Register 6 (R/W)
Address Bit Name Function Reset
Default
0x200D9 15:0 VT_SFNSCLEAR[18:3] Signal Fail Ns Clear. Number of frames in a monitoring
block for SF. 0x0000
Address Bit Name Function Reset
Default
0x200DA 15 RSVD Reserved. 0
14:7 VT_SFMCLEAR[7:0] Signal Fail M Clear. Threshold of the number of bad
monitoring blocks in an observation interval. If the
number of bad blocks is below this threshold, then SF is
cleared.
0x00
6:3 VT_SFLCLEAR[3:0] Signal Fail L Clear. Error threshold for determining if a
monitoring block is bad. 0x0
2:0 VT_SFNSCLEAR[2:0] Signal Fail Ns Clear. Number of frames in a monitoring
block for SF. 0x0
Address Bit Name Function Reset
Default
0x200DB 15:0 VT_SFBCLEAR[15:0] Signal Fail B Clear. Number of monitoring blocks. 0x0000
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
170 Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 211. VT_TCTL[1—28], Transmit Control Per Cha nnel (R/W)
Address Bit Name Function Reset
Default
0x200DC
0x200F7
15:13 RSVD Reserved. 0x0
12 VT_TX_ERDI_EN[1—28] T ransmit Path Enhanced RDI-V Enable. Logic 1
enables enha nc ed RDI- V. 0x0
11 VT_ERDI_EN[1—28] Enhanced RDI-V Source Selection. Logic 1
activates so ft w a re ov er write of t h e ER DI -V bits of
the Z7 byte. Otherwise, insertion is based on the
LOPOH serial channel or automatic generation.
0x0
10 VT_RDI_EN[1—28] RDI-V Source Selection. Logic 1 activates soft-
ware overwrite of the RDI-V bit of the V5 byte.
Otherwise, insertion is based on the LOPOH
serial channel or automatic generation.
0x0
9 VT_RFI_EN[1—28] RFI-V Source Selection. Logic 1 activates soft-
ware overwrite of the RFI-V bit of the V5 byte. If
VT_V5_INS[1—28] = 0 (Table 212 on page 171)
and the mapping is set to byte synchronous DS1,
a logic 0 enables automatic insertion of RFI-V. If
VT_V5_INS[1—28] = 1, a logic 0 inserts RFI-V
based on the LOPOH serial channel.
0x0
8 VT_REI_EN[1—28] REI-V Enable. Logic 1 activates automatic gener-
ation of REI-V. If VT_V5_INS[1—28] = 0, the gen-
eration is based on the received BIP-2 errors.
Otherwise, insertion is based on the LOPOH
serial channel.
0x0
7RSVDReserved. 0
6 VT_AIS_INS[1—28] AIS-V Insertion Control. Logic 1 forces AIS-V to
be transmitted in the specified channel. 0x0
5 VT_TX_CLKEDGE[1—28] Transmit Path DS1/E1 Clock Edge Selection.
Logic 1 forces the DS1/E1 signals to be retimed
using the rising edge of the associated clock.
Logic 0 forces the DS1/E1 signals to be retimed
using the falling edge of the associated clock.
0x0
4 VT_LB_SEL[1—28] Tributary Loopback Selection. Logic 1 acti-
vates tributary loopback. 0x0
3:0 VT_TX_MAPTYPE[1—28][3:0] Transmit Mapping Mode Control. See
Table 570 on page 448.0x6
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
171Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 212. VT_TTUOH_CTL[1—28], Transmit TU Overhead Control Per Channel (R/W)
Table 213. VT_TAPSRIVAL[1—28], Transmit APS and Remote Indication Per Channel (R/W)
Table 214. VT_TSWOW[1—28], Transmit Software Overwrite Per Channel (R/W)
Address Bit Name Function Reset
Default
0x200F8
0x20113
15:11 RSVD Reserved. 0x00
10:9 VT_O_INS[1—28][1:0] O Bit Insertion Control. See Table 578 on page 453.0x0
8:7 VT_Z7_INS[1—28][1:0] Z7 Byte Insertion Control. See Table 577 on page 452.0x0
6:5 VT_Z6_INS[1—28][1:0] Z6 Byte Insertion Control. See Table 576 on page 452.0x0
4:3 VT_J2_INS[1—28][1:0] J2 Byte Insertion Control. See Table 575 on page 452.0x0
2 VT_V5_INS[1—28] V5 Byte Insertion Control. Logic 1 forces the V5 byte to
be programmed via the LOPOH serial channel. See
Table 571 on page 450.
0x0
1:0 VT_BIP2ERR_
INS[1—28][1:0] BIP-2 Error Insertion Control. See Table 572 on
page 450.0x0
Address Bit Name Function Reset
Default
0x20114
0x2012F
15:12 RSVD Reserved. 0x0
11:8 VT_APS_
INS[1—28][3:0] APS Software Overwrite Value. This nibble is pro-
grammed to utilize APS bits in the Z7/K4 byte. This nibble
will be transmitted in bits 1:4 of the Z7/K4 byte.
0x0
7:5 RSVD Reserved. 0x0
4:2 VT_ERDI_
INS[1—28][2:0] Enhanced RDI-V Software Overwrite Values. If
VT_ERDI_EN[1—28] (Table 211 on pa ge 170 ) is a logic 1,
these bits are written into the ERDI-V locations of the Z7
byte.
0x0
1 VT_RDI_INS[1—28] RDI-V Sof tware Ov erwri te Valu es. If VT_RDI_EN[1—28]
(Table 211 on page 170) is a logic 1, this value will be writ-
ten into the RDI-V location of the V5 byte.
0x0
0VT_RFI_INS[128]RFI-V Software Overwrite Values. If VT_RFI_EN[1—28]
(Table 211 on page 170) is a logic 1, this value will be writ-
ten into the RFI-V location of the V5 byte.
0x0
Address Bit Name Function Reset
Default
0x20130
0x2014B
15:8 VT_OBIT_
INS[1—28][7:0] Overhead Values for Software Overwrite in Asynchro-
nous Mappings. This byte is programmed to utilize the
overhead bits in asynchronous VT/TU mappings.
VT_OBIT_INS[7:4] will be transmitted in the byte following
J2, and VT_OBIT_INS[3:0] will be transmitted in the byte
followi ng Z6/N2.
0x00
7:0 VT_Z6BYTE_
INS[1—28][7:0] Z6 Software Ov erwrite V a lues. This byte is programmed
into the outgoing Z6/N2 location when
VT_Z6_INS[1—28][1:0] (Table 212 on page 171) = 01.
0x00
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
172 Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 215. VT_TSIG_CTL[1—28], Transmit Signaling Control Per Channel (R/W)
Table 216. VT_J2BYTE_INS_R[1—28][1—16], J2 Insert Values Per Channel (R/W)
Address Bit Name Function Reset
Default
0x2014C
0x20167
15:11 RSVD Reserved. 000000
10 VT_USE_FBIT[1—28] Frame Bit Use Control. Logic 1 provisions use
of the F bit in the outgoing VT/TU. Otherwise,
the F bit is forced to the value of bit
SMPR_OH_DEFLT (Table 77 on page 70) in
the microprocessor interface on the outgoing
VT/TU.
0x1
9 VT_USE_PBIT[1—28] Phase Bit Use Control. Logic 1 provisions use
of the P bits in the outgoing VT/TU. Otherwise,
the P bits are forced to the value of bit
SMPR_OH_DEFLT in the microprocessor inter-
face on the outgoing VT/TU.
0x1
8 VT_USE_SBIT[1—28] Signaling Bit Use Control. Logic 1 provisions
use of the S bits in the outgoing VT/TU. Other-
wise, the S bits are forced to the value of bit
SMPR_OH_DEFLT in the microprocessor inter-
face on the outgoing VT/TU.
0x1
7:5 RSVD Reserved. 000
4:0 VT_TXSIG_CH_SEL[1—28][4:0] T ransmit Input Channel Selection. These bits
are programmed wi th the same value as the
cross connect for each individual channel. The
bits are only used in byte-synchronous mode
and can be set to 0xXX for all other modes. If an
invalid value is programmed, UNEQ-V will be
transmitted in the specified channel. Invalid
decimal values are 0, 29, 30, and 31.
0x00
Address Bit Name Function Reset
Default
0x20168
0x20327
15:8 RSVD Reserved. 0x00
7:0 VT_J2BYTE_
INS[1—28][1—16][7:0] J2 Software Overwrite Values. These values are written
into the outgoing J2 byte when VT_J2_INS[1—28][1:0] = 01
(Table 212 on page 171).
0x00
Table 217. VT_RCTL[1—28], Receive Control Per Channel (R/W)
Address Bit Name Function Reset
Default
0x20328
0x20343
15 VT_SF_ESF[1—28] DS1 Frame Type for Byte-Synchronous
Mode. Logic 1 provisions an SF frame format.
Otherwise, an ESF frame format is provisioned.
0x0
14 VT_WR_FBIT[1—28] F-Bit Provisioning Control. See Table 568 on
page 446.0x0
13 VT_SYNC_PBIT[1—28] P-Bit Pr ovisioning Control. See Table 568 on
page 446.0x0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
10 VT/TU Mapper Registers (continued)
173Agere Systems Inc.
Table 218. VT_RTUOH_CTL[1—28], Receive TU Overhead Control Per Channel (RO)
Table 219. VT_RBIP2_CNT[1—28], Receive BIP-2 Error Count Per Channel (RO)
Table 220. VT_RREIV_CNT[1—28], Receive REI-V Error Count Per Channel (RO)
0x20328
0x20343
12:8 VT_RXSIG_CH_SEL[1—28][4:0] Receive Output Cha nnel Selection. These bits
are programmed with the same value as the
cross connect for each individual channel. The
bits are only used in byte-synchronous mod e
and can be set to 0xXX for all other modes. If an
invalid value is programmed, UNEQ-V will be
transmitted in the specified channel. Invalid deci-
mal values are 0, 29, 30, and 31. See Table 568
on page 446.
0x00
7:5 VT_J2MON_MODE[1—28][2:0] J2 Trace Monitoring Mode Control. See Sec-
tion 19.11, J2 Byte Monitor and Termination
(J2MON), on page 444.
0x00
4 VT_RX_ERDI_EN[1—28] Receive Path Enhanced RDI-V Enable. Logic 1
enables enhanced RDI-V. 0x0
3:0 VT_RX_MAPTYPE[1—28][3:0] Receive Demapping Mode Control. See
Table 567 on page 443.0x6
Address Bit Name Function Reset
Default
0x20344
0x2035F
15:8 VT_Z6_BYTE[1—28][7:0] Received Z6/N2 Byte Value. Accepted Z6/N2 value. 0x00
7:0 VT_OBITS[1—28][7:0] Received O Bits Value. Accepted overhead bits in
asynchronous and bit-synchronous modes.
VT_OBITS[7:4] are the O bits received in the byte follow-
ing J2, and VT_OBITS[3:0] are the O bits received in the
byte following Z6/N2.
0x00
Address Bit Name Function Reset
Default
0x20360
0x2037B
15:12 RSVD Reserved. 0x0
11:0 VT_BIP2ERR_CNT[1—28][11:0] BIP-2 Error Count. BIP-2 error count updated on
a 0 to 1 transition of SMPR_PMRESET (Table 75
on page 68).
0x000
Address Bit Name Function Reset
Default
0x2037C
0x20397
15:11 RSVD Reserved. 0x00
10:0 VT_REI_CNT[1—28][10:0] REI-V Error Count. REI-V error count updated
on a 0 to 1 transition of SMPR_PMRESET. 0x000
Table 217. VT_RCTL[1—28], Receive Control Per Channel (R/W) (continued)
Address Bit Name Function Reset
Default
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
174 Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 221. VT_RPTR_CNT[1—28], Receive Pointer and Count Per Channel (RO)
Table 222. VT_J2BYTE_EXP_R[1—28][1—16], J2 Expected Values Per Channel (R/W, RO)
Address Bit Name Function Reset
Default
0x20398
0x203B3
15:8 VT_STORED_PTR[1—28][7:0] Store VT/TU Pointer Location. This value indi-
cates the stored location of the V5 byte within the
VT/TU mapping.
0x00
7:4 VT_PTR_DEC[1—28][3:0] VT Pointer Decrement Count. VT pointer decre-
ment count updated on a 0 to 1 transition of
SMPR_PMRESET.
0x0
3:0 VT_PTR_INC[1—28][3:0] VT Pointer Increment Count. VT pointer incre-
ment count updated on a 0 to 1 transition of
SMPR_PMRESET.
0x0
Address Bit Name Function Reset
Default
0x203B4
0x20573
15:8 VT_J2BYTE_EXP[1—28][1—16][7:0] J2 Expected Values. This value is pro-
grammed by the user as an expected value
for the J2 byte. The hardware will compare
this value to the incoming J2 sequence
when VT_J2MON_MODE[1—28][2:0] =
011 or 100 (Table 217 on page 172).
0x00
7:0 VT_J2BYTE_
DET[1—28][1—16][7:0] J2 Detected Values. Ac ce pte d J2
sequence or value. 0x00
Table 223. VT_THRES_CTL[1—28], Transmit Elastic Store Threshold Control (R/W)
Address Bit Name Function Reset
Default
0x20574
0x2058F
15 RSVD Reserved. 0x0
14:8 VT_HIGH_THRES[1—28][6:0] Transmit Elastic Store High Threshold.
Programmable threshold controlling posi-
tive justifications.
0x28
7RSVDReserved. 0x0
6:0 VT_LOW_THRES[1—28][6:0] Transmit Elastic Store Low Threshold.
Programmable threshold controlling nega-
tive justifications.
0x27
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
175Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
10.2 VT/TU Mapper Reg ister Map
Table 224. VT/TU Mapper Register Map
Note: The reset default of all reserved bits is 0. Shading denotes reserved bits.
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
VT Mapper ID—RO
0x20000
Page 158 VT_VERSION_R VT_
RDY VT_VERSION[2:0] VT_ID[7:0]
VT Global Events—COR/COW
0x20001
Page 158 VT_GDELETA VT_SD_D VT_SF_D VT_H4LOMF_D
Receive Delta and Event Parameters—COR/COW
For the following addresses, reference Table 182 on page 159.
0x20002 VT_REVENT_DELTA1 VT_RX_VTREI_E1 VT_RX_BIP2ERR_E1 VT_RX_ESOVFL_E1 VT_APS_D1 VT_ERDI_D1 VT_RDI_D1 VT_RFI_D1 VT_LOPS_D1 VT_J2TIM_D1 VT_PLM_D1 VT_UNEQ_D1 VT_SIZERR_D1 VT_AIS_D1 VT_LOP_D1
0x20003 VT_REVENT_DELTA2 VT_RX_VTREI_E2 VT_RX_BIP2ERR_E2 VT_RX_ESOVFL_E2 VT_APS_D2 VT_ERDI_D2 VT_RDI_D2 VT_RFI_D2 VT_LOPS_D2 VT_J2TIM_D2 VT_PLM_D2 VT_UNEQ_D2 VT_SIZERR_D2 VT_AIS_D2 VT_LOP_D2
0x20004 VT_REVENT_DELTA3 VT_RX_VTREI_E3 VT_RX_BIP2ERR_E3 VT_RX_ESOVFL_E3 VT_APS_D3 VT_ERDI_D3 VT_RDI_D3 VT_RFI_D3 VT_LOPS_D3 VT_J2TIM_D3 VT_PLM_D3 VT_UNEQ_D3 VT_SIZERR_D3 VT_AIS_D3 VT_LOP_D3
0x20005 VT_REVENT_DELTA4 VT_RX_VTREI_E4 VT_RX_BIP2ERR_E4 VT_RX_ESOVFL_E4 VT_APS_D4 VT_ERDI_D4 VT_RDI_D4 VT_RFI_D4 VT_LOPS_D4 VT_J2TIM_D4 VT_PLM_D4 VT_UNEQ_D4 VT_SIZERR_D4 VT_AIS_D4 VT_LOP_D4
0x20006 VT_REVENT_DELTA5 VT_RX_VTREI_E5 VT_RX_BIP2ERR_E5 VT_RX_ESOVFL_E5 VT_APS_D5 VT_ERDI_D5 VT_RDI_D5 VT_RFI_D5 VT_LOPS_D5 VT_J2TIM_D5 VT_PLM_D5 VT_UNEQ_D5 VT_SIZERR_D5 VT_AIS_D5 VT_LOP_D5
0x20007 VT_REVENT_DELTA6 VT_RX_VTREI_E6 VT_RX_BIP2ERR_E6 VT_RX_ESOVFL_E6 VT_APS_D6 VT_ERDI_D6 VT_RDI_D6 VT_RFI_D6 VT_LOPS_D6 VT_J2TIM_D6 VT_PLM_D6 VT_UNEQ_D6 VT_SIZERR_D6 VT_AIS_D6 VT_LOP_D6
0x20008 VT_REVENT_DELTA7 VT_RX_VTREI_E7 VT_RX_BIP2ERR_E7 VT_RX_ESOVFL_E7 VT_APS_D7 VT_ERDI_D7 VT_RDI_D7 VT_RFI_D7 VT_LOPS_D7 VT_J2TIM_D7 VT_PLM_D7 VT_UNEQ_D7 VT_SIZERR_D7 VT_AIS_D7 VT_LOP_D7
0x20009 VT_REVENT_DELTA8 VT_RX_VTREI_E8 VT_RX_BIP2ERR_E8 VT_RX_ESOVFL_E8 VT_APS_D8 VT_ERDI_D8 VT_RDI_D8 VT_RFI_D8 VT_LOPS_D8 VT_J2TIM_D8 VT_PLM_D8 VT_UNEQ_D8 VT_SIZERR_D8 VT_AIS_D8 VT_LOP_D8
0x2000A VT_REVENT_DELTA9 VT_RX_VTREI_E9 VT_RX_BIP2ERR_E9 VT_RX_ESOVFL_E9 VT_APS_D9 VT_ERDI_D9 VT_RDI_D9 VT_RFI_D9 VT_LOPS_D9 VT_J2TIM_D9 VT_PLM_D9 VT_UNEQ_D9 VT_SIZERR_D9 VT_AIS_D9 VT_LOP_D9
0x2000B VT_REVENT_DELTA10 VT_RX_VTREI_E10 VT_RX_BIP2ERR_E10 VT_RX_ESOVFL_E10 VT_APS_D10 VT_ERDI_D10 VT_RDI_D10 VT_RFI_D10 VT_LOPS_D10 VT_J2TIM_D10 VT_PLM_D10 VT_UNEQ_D10 VT_SIZERR_D10 VT_AIS_D10 VT_LOP_D10
0x2000C VT_REVENT_DELTA11 VT_RX_VTREI_E11 VT_RX_BIP2ERR_E11 VT_RX_ESOVFL_E11 VT_APS_D11 VT_ERDI_D11 VT_RDI_D11 VT_RFI_D11 VT_LOPS_D11 VT_J2TIM_D11 VT_PLM_D11 VT_UNEQ_D11 VT_SIZERR_D11 VT_AIS_D11 VT_LOP_D11
0x2000D VT_REVENT_DELTA12 VT_RX_VTREI_E12 VT_RX_BIP2ERR_E12 VT_RX_ESOVFL_E12 VT_APS_D12 VT_ERDI_D12 VT_RDI_D12 VT_RFI_D12 VT_LOPS_D12 VT_J2TIM_D12 VT_PLM_D12 VT_UNEQ_D12 VT_SIZERR_D12 VT_AIS_D12 VT_LOP_D12
0x2000E VT_REVENT_DELTA13 VT_RX_VTREI_E13 VT_RX_BIP2ERR_E13 VT_RX_ESOVFL_E13 VT_APS_D13 VT_ERDI_D13 VT_RDI_D13 VT_RFI_D13 VT_LOPS_D13 VT_J2TIM_D13 VT_PLM_D13 VT_UNEQ_D13 VT_SIZERR_D13 VT_AIS_D13 VT_LOP_D13
0x2000F VT_REVENT_DELTA14 VT_RX_VTREI_E14 VT_RX_BIP2ERR_E14 VT_RX_ESOVFL_E14 VT_APS_D14 VT_ERDI_D14 VT_RDI_D14 VT_RFI_D14 VT_LOPS_D14 VT_J2TIM_D14 VT_PLM_D14 VT_UNEQ_D14 VT_SIZERR_D14 VT_AIS_D14 VT_LOP_D14
0x20010 VT_REVENT_DELTA15 VT_RX_VTREI_E15 VT_RX_BIP2ERR_E15 VT_RX_ESOVFL_E15 VT_APS_D15 VT_ERDI_D15 VT_RDI_D15 VT_RFI_D15 VT_LOPS_D15 VT_J2TIM_D15 VT_PLM_D15 VT_UNEQ_D15 VT_SIZERR_D15 VT_AIS_D15 VT_LOP_D15
0x20011 VT_REVENT_DELTA16 VT_RX_VTREI_E16 VT_RX_BIP2ERR_E16 VT_RX_ESOVFL_E16 VT_APS_D16 VT_ERDI_D16 VT_RDI_D16 VT_RFI_D16 VT_LOPS_D16 VT_J2TIM_D16 VT_PLM_D16 VT_UNEQ_D16 VT_SIZERR_D16 VT_AIS_D16 VT_LOP_D16
0x20012 VT_REVENT_DELTA17 VT_RX_VTREI_E17 VT_RX_BIP2ERR_E17 VT_RX_ESOVFL_E17 VT_APS_D17 VT_ERDI_D17 VT_RDI_D17 VT_RFI_D17 VT_LOPS_D17 VT_J2TIM_D17 VT_PLM_D17 VT_UNEQ_D17 VT_SIZERR_D17 VT_AIS_D17 VT_LOP_D17
0x20013 VT_REVENT_DELTA18 VT_RX_VTREI_E18 VT_RX_BIP2ERR_E18 VT_RX_ESOVFL_E18 VT_APS_D18 VT_ERDI_D18 VT_RDI_D18 VT_RFI_D18 VT_LOPS_D18 VT_J2TIM_D18 VT_PLM_D18 VT_UNEQ_D18 VT_SIZERR_D18 VT_AIS_D18 VT_LOP_D18
0x20014 VT_REVENT_DELTA19 VT_RX_VTREI_E19 VT_RX_BIP2ERR_E19 VT_RX_ESOVFL_E19 VT_APS_D19 VT_ERDI_D19 VT_RDI_D19 VT_RFI_D19 VT_LOPS_D19 VT_J2TIM_D19 VT_PLM_D19 VT_UNEQ_D19 VT_SIZERR_D19 VT_AIS_D19 VT_LOP_D19
0x20015 VT_REVENT_DELTA20 VT_RX_VTREI_E20 VT_RX_BIP2ERR_E20 VT_RX_ESOVFL_E20 VT_APS_D20 VT_ERDI_D20 VT_RDI_D20 VT_RFI_D20 VT_LOPS_D20 VT_J2TIM_D20 VT_PLM_D20 VT_UNEQ_D20 VT_SIZERR_D20 VT_AIS_D20 VT_LOP_D20
0x20016 VT_REVENT_DELTA21 VT_RX_VTREI_E21 VT_RX_BIP2ERR_E21 VT_RX_ESOVFL_E21 VT_APS_D21 VT_ERDI_D21 VT_RDI_D21 VT_RFI_D21 VT_LOPS_D21 VT_J2TIM_D21 VT_PLM_D21 VT_UNEQ_D21 VT_SIZERR_D21 VT_AIS_D21 VT_LOP_D21
0x20017 VT_REVENT_DELTA22 VT_RX_VTREI_E22 VT_RX_BIP2ERR_E22 VT_RX_ESOVFL_E22 VT_APS_D22 VT_ERDI_D22 VT_RDI_D22 VT_RFI_D22 VT_LOPS_D22 VT_J2TIM_D22 VT_PLM_D22 VT_UNEQ_D22 VT_SIZERR_D22 VT_AIS_D22 VT_LOP_D22
0x20018 VT_REVENT_DELTA23 VT_RX_VTREI_E23 VT_RX_BIP2ERR_E23 VT_RX_ESOVFL_E23 VT_APS_D23 VT_ERDI_D23 VT_RDI_D23 VT_RFI_D23 VT_LOPS_D23 VT_J2TIM_D23 VT_PLM_D23 VT_UNEQ_D23 VT_SIZERR_D23 VT_AIS_D23 VT_LOP_D23
0x20019 VT_REVENT_DELTA24 VT_RX_VTREI_E24 VT_RX_BIP2ERR_E24 VT_RX_ESOVFL_E24 VT_APS_D24 VT_ERDI_D24 VT_RDI_D24 VT_RFI_D24 VT_LOPS_D24 VT_J2TIM_D24 VT_PLM_D24 VT_UNEQ_D24 VT_SIZERR_D24 VT_AIS_D24 VT_LOP_D24
0x2001A VT_REVENT_DELTA25 VT_RX_VTREI_E25 VT_RX_BIP2ERR_E25 VT_RX_ESOVFL_E25 VT_APS_D25 VT_ERDI_D25 VT_RDI_D25 VT_RFI_D25 VT_LOPS_D25 VT_J2TIM_D25 VT_PLM_D25 VT_UNEQ_D25 VT_SIZERR_D25 VT_AIS_D25 VT_LOP_D25
0x2001B VT_REVENT_DELTA26 VT_RX_VTREI_E26 VT_RX_BIP2ERR_E26 VT_RX_ESOVFL_E26 VT_APS_D26 VT_ERDI_D26 VT_RDI_D26 VT_RFI_D26 VT_LOPS_D26 VT_J2TIM_D26 VT_PLM_D26 VT_UNEQ_D26 VT_SIZERR_D26 VT_AIS_D26 VT_LOP_D26
0x2001C VT_REVENT_DELTA27 VT_RX_VTREI_E27 VT_RX_BIP2ERR_E27 VT_RX_ESOVFL_E27 VT_APS_D27 VT_ERDI_D27 VT_RDI_D27 VT_RFI_D27 VT_LOPS_D27 VT_J2TIM_D27 VT_PLM_D27 VT_UNEQ_D27 VT_SIZERR_D27 VT_AIS_D27 VT_LOP_D27
0x2001D VT_REVENT_DELTA28 VT_RX_VTREI_E28 VT_RX_BIP2ERR_E28 VT_RX_ESOVFL_E28 VT_APS_D28 VT_ERDI_D28 VT_RDI_D28 VT_RFI_D28 VT_LOPS_D28 VT_J2TIM_D28 VT_PLM_D28 VT_UNEQ_D28 VT_SIZERR_D28 VT_AIS_D28 VT_LOP_D28
TMXF28155 Supermapper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
176 Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 224. VT/TU Mapper Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Transmit Delta and Event Parameters—COR/COW
0x2001E
Page 159 VT_LOPOHFAIL_EVENT VT_LOPOH_FAIL_E
For the following addresses, reference Table 184 on page 160.
0x2001F VT_TEVENT_DELTA1 VT_TX_ESOVFL_E1 VT_LOFS_D1 VT_TX_AIS_D1 VT_TX_LOC_D1
0x20020 VT_TEVENT_DELTA2 VT_TX_ESOVFL_E2 VT_LOFS_D2 VT_TX_AIS_D2 VT_TX_LOC_D2
0x20021 VT_TEVENT_DELTA3 VT_TX_ESOVFL_E3 VT_LOFS_D3 VT_TX_AIS_D3 VT_TX_LOC_D3
0x20022 VT_TEVENT_DELTA4 VT_TX_ESOVFL_E4 VT_LOFS_D4 VT_TX_AIS_D4 VT_TX_LOC_D4
0x20023 VT_TEVENT_DELTA5 VT_TX_ESOVFL_E5 VT_LOFS_D5 VT_TX_AIS_D5 VT_TX_LOC_D5
0x20024 VT_TEVENT_DELTA6 VT_TX_ESOVFL_E6 VT_LOFS_D6 VT_TX_AIS_D6 VT_TX_LOC_D6
0x20025 VT_TEVENT_DELTA7 VT_TX_ESOVFL_E7 VT_LOFS_D7 VT_TX_AIS_D7 VT_TX_LOC_D7
0x20026 VT_TEVENT_DELTA8 VT_TX_ESOVFL_E8 VT_LOFS_D8 VT_TX_AIS_D8 VT_TX_LOC_D8
0x20027 VT_TEVENT_DELTA9 VT_TX_ESOVFL_E9 VT_LOFS_D9 VT_TX_AIS_D9 VT_TX_LOC_D9
0x20028 VT_TEVENT_DELTA10 VT_TX_ESOVFL_E10 VT_LOFS_D10 VT_TX_AIS_D10 VT_TX_LOC_D10
0x20029 VT_TEVENT_DELTA11 VT_TX_ESOVFL_E11 VT_LOFS_D11 VT_TX_AIS_D11 VT_TX_LOC_D11
0x2002A VT_TEVENT_DELTA12 VT_TX_ESOVFL_E12 VT_LOFS_D12 VT_TX_AIS_D12 VT_TX_LOC_D12
0x2002B VT_TEVENT_DELTA13 VT_TX_ESOVFL_E13 VT_LOFS_D13 VT_TX_AIS_D13 VT_TX_LOC_D13
0x2002C VT_TEVENT_DELTA14 VT_TX_ESOVFL_E14 VT_LOFS_D14 VT_TX_AIS_D14 VT_TX_LOC_D14
0x2002D VT_TEVENT_DELTA15 VT_TX_ESOVFL_E15 VT_LOFS_D15 VT_TX_AIS_D15 VT_TX_LOC_D15
0x2002E VT_TEVENT_DELTA16 VT_TX_ESOVFL_E16 VT_LOFS_D16 VT_TX_AIS_D16 VT_TX_LOC_D16
0x2002F VT_TEVENT_DELTA17 VT_TX_ESOVFL_E17 VT_LOFS_D17 VT_TX_AIS_D17 VT_TX_LOC_D17
0x20030 VT_TEVENT_DELTA18 VT_TX_ESOVFL_E18 VT_LOFS_D18 VT_TX_AIS_D18 VT_TX_LOC_D18
0x20031 VT_TEVENT_DELTA19 VT_TX_ESOVFL_E19 VT_LOFS_D19 VT_TX_AIS_D19 VT_TX_LOC_D19
0x20032 VT_TEVENT_DELTA20 VT_TX_ESOVFL_E20 VT_LOFS_D20 VT_TX_AIS_D20 VT_TX_LOC_D20
0x20033 VT_TEVENT_DELTA21 VT_TX_ESOVFL_E21 VT_LOFS_D21 VT_TX_AIS_D21 VT_TX_LOC_D21
0x20034 VT_TEVENT_DELTA22 VT_TX_ESOVFL_E22 VT_LOFS_D22 VT_TX_AIS_D22 VT_TX_LOC_D22
0x20035 VT_TEVENT_DELTA23 VT_TX_ESOVFL_E23 VT_LOFS_D23 VT_TX_AIS_D23 VT_TX_LOC_D23
0x20036 VT_TEVENT_DELTA24 VT_TX_ESOVFL_E24 VT_LOFS_D24 VT_TX_AIS_D24 VT_TX_LOC_D24
0x20037 VT_TEVENT_DELTA25 VT_TX_ESOVFL_E25 VT_LOFS_D25 VT_TX_AIS_D25 VT_TX_LOC_D25
0x20038 VT_TEVENT_DELTA26 VT_TX_ESOVFL_E26 VT_LOFS_D26 VT_TX_AIS_D26 VT_TX_LOC_D26
0x20039 VT_TEVENT_DELTA27 VT_TX_ESOVFL_E27 VT_LOFS_D27 VT_TX_AIS_D27 VT_TX_LOC_D27
0x2003A VT_TEVENT_DELTA28 VT_TX_ESOVFL_E28 VT_LOFS_D28 VT_TX_AIS_D28 VT_TX_LOC_D28
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
177Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 224. VT/TU Mapper Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
VT Global Interrupt Masks—R/W
0x2003B
Page 160 VT_GMASK VT_SD_M VT_SF_M VT_H4LOMF_
M
Receive Interrupt Masks—R/W
For the following addresses, reference Table 186 on page 161.
0x2003C VT_RMASK1 VT_RX_VTREI_M1 VT_RX_BIP2ERR_M1 VT_RX_ESOVFL_M1 VT_APS_M1 VT_ERDI_M1 VT_RDI_M1 VT_RFI_M1 VT_LOPS_M1 VT_J2TIM_M1 VT_PLM_M1 VT_UNEQ_M1 VT_SIZERR_M1 VT_AIS_M1 VT_LOP_M1
0x2003D VT_RMASK2 VT_RX_VTREI_M2 VT_RX_BIP2ERR_M2 VT_RX_ESOVFL_M2 VT_APS_M2 VT_ERDI_M2 VT_RDI_M2 VT_RFI_M2 VT_LOPS_M2 VT_J2TIM_M2 VT_PLM_M2 VT_UNEQ_M2 VT_SIZERR_M2 VT_AIS_M2 VT_LOP_M2
0x2003E VT_RMASK3 VT_RX_VTREI_M3 VT_RX_BIP2ERR_M3 VT_RX_ESOVFL_M3 VT_APS_M3 VT_ERDI_M3 VT_RDI_M3 VT_RFI_M3 VT_LOPS_M3 VT_J2TIM_M3 VT_PLM_M3 VT_UNEQ_M3 VT_SIZERR_M3 VT_AIS_M3 VT_LOP_M3
0x2003F VT_RMASK4 VT_RX_VTREI_M4 VT_RX_BIP2ERR_M4 VT_RX_ESOVFL_M4 VT_APS_M4 VT_ERDI_M4 VT_RDI_M4 VT_RFI_M4 VT_LOPS_M4 VT_J2TIM_M4 VT_PLM_M4 VT_UNEQ_M4 VT_SIZERR_M4 VT_AIS_M4 VT_LOP_M4
0x20040 VT_RMASK5 VT_RX_VTREI_M5 VT_RX_BIP2ERR_M5 VT_RX_ESOVFL_M5 VT_APS_M5 VT_ERDI_M5 VT_RDI_M5 VT_RFI_M5 VT_LOPS_M5 VT_J2TIM_M5 VT_PLM_M5 VT_UNEQ_M5 VT_SIZERR_M5 VT_AIS_M5 VT_LOP_M5
0x20041 VT_RMASK6 VT_RX_VTREI_M6 VT_RX_BIP2ERR_M6 VT_RX_ESOVFL_M6 VT_APS_M6 VT_ERDI_M6 VT_RDI_M6 VT_RFI_M6 VT_LOPS_M6 VT_J2TIM_M6 VT_PLM_M6 VT_UNEQ_M6 VT_SIZERR_M6 VT_AIS_M6 VT_LOP_M6
0x20042 VT_RMASK7 VT_RX_VTREI_M7 VT_RX_BIP2ERR_M7 VT_RX_ESOVFL_M7 VT_APS_M7 VT_ERDI_M7 VT_RDI_M7 VT_RFI_M7 VT_LOPS_M7 VT_J2TIM_M7 VT_PLM_M7 VT_UNEQ_M7 VT_SIZERR_M7 VT_AIS_M7 VT_LOP_M7
0x20043 VT_RMASK8 VT_RX_VTREI_M8 VT_RX_BIP2ERR_M8 VT_RX_ESOVFL_M8 VT_APS_M8 VT_ERDI_M8 VT_RDI_M8 VT_RFI_M8 VT_LOPS_M8 VT_J2TIM_M8 VT_PLM_M8 VT_UNEQ_M8 VT_SIZERR_M8 VT_AIS_M8 VT_LOP_M8
0x20044 VT_RMASK9 VT_RX_VTREI_M9 VT_RX_BIP2ERR_M9 VT_RX_ESOVFL_M9 VT_APS_M9 VT_ERDI_M9 VT_RDI_M9 VT_RFI_M9 VT_LOPS_M9 VT_J2TIM_M9 VT_PLM_M9 VT_UNEQ_M9 VT_SIZERR_M9 VT_AIS_M9 VT_LOP_M9
0x20045 VT_RMASK10 VT_RX_VTREI_M10 VT_RX_BIP2ERR_M10 VT_RX_ESOVFL_M10 VT_APS_M10 VT_ERDI_M10 VT_RDI_M10 VT_RFI_M10 VT_LOPS_M10 VT_J2TIM_M10 VT_PLM_M10 VT_UNEQ_M10 VT_SIZERR_M10 VT_AIS_M10 VT_LOP_M10
0x20046 VT_RMASK11 VT_RX_VTREI_M11 VT_RX_BIP2ERR_M11 VT_RX_ESOVFL_M11 VT_APS_M11 VT_ERDI_M11 VT_RDI_M11 VT_RFI_M11 VT_LOPS_M11 VT_J2TIM_M11 VT_PLM_M11 VT_UNEQ_M11 VT_SIZERR_M11 VT_AIS_M11 VT_LOP_M11
0x20047 VT_RMASK12 VT_RX_VTREI_M12 VT_RX_BIP2ERR_M12 VT_RX_ESOVFL_M12 VT_APS_M12 VT_ERDI_M12 VT_RDI_M12 VT_RFI_M12 VT_LOPS_M12 VT_J2TIM_M12 VT_PLM_M12 VT_UNEQ_M12 VT_SIZERR_M12 VT_AIS_M12 VT_LOP_M12
0x20048 VT_RMASK13 VT_RX_VTREI_M13 VT_RX_BIP2ERR_M13 VT_RX_ESOVFL_M13 VT_APS_M13 VT_ERDI_M13 VT_RDI_M13 VT_RFI_M13 VT_LOPS_M13 VT_J2TIM_M13 VT_PLM_M13 VT_UNEQ_M13 VT_SIZERR_M13 VT_AIS_M13 VT_LOP_M13
0x20049 VT_RMASK14 VT_RX_VTREI_M14 VT_RX_BIP2ERR_M14 VT_RX_ESOVFL_M14 VT_APS_M14 VT_ERDI_M14 VT_RDI_M14 VT_RFI_M14 VT_LOPS_M14 VT_J2TIM_M14 VT_PLM_M14 VT_UNEQ_M14 VT_SIZERR_M14 VT_AIS_M14 VT_LOP_M14
0x2004A VT_RMASK15 VT_RX_VTREI_M15 VT_RX_BIP2ERR_M15 VT_RX_ESOVFL_M15 VT_APS_M15 VT_ERDI_M15 VT_RDI_M15 VT_RFI_M15 VT_LOPS_M15 VT_J2TIM_M15 VT_PLM_M15 VT_UNEQ_M15 VT_SIZERR_M15 VT_AIS_M15 VT_LOP_M15
0x2004B VT_RMASK16 VT_RX_VTREI_M16 VT_RX_BIP2ERR_M16 VT_RX_ESOVFL_M16 VT_APS_M16 VT_ERDI_M16 VT_RDI_M16 VT_RFI_M16 VT_LOPS_M16 VT_J2TIM_M16 VT_PLM_M16 VT_UNEQ_M16 VT_SIZERR_M16 VT_AIS_M16 VT_LOP_M16
0x2004C VT_RMASK17 VT_RX_VTREI_M17 VT_RX_BIP2ERR_M17 VT_RX_ESOVFL_M17 VT_APS_M17 VT_ERDI_M17 VT_RDI_M17 VT_RFI_M17 VT_LOPS_M17 VT_J2TIM_M17 VT_PLM_M17 VT_UNEQ_M17 VT_SIZERR_M17 VT_AIS_M17 VT_LOP_M17
0x2004D VT_RMASK18 VT_RX_VTREI_M18 VT_RX_BIP2ERR_M18 VT_RX_ESOVFL_M18 VT_APS_M18 VT_ERDI_M18 VT_RDI_M18 VT_RFI_M18 VT_LOPS_M18 VT_J2TIM_M18 VT_PLM_M18 VT_UNEQ_M18 VT_SIZERR_M18 VT_AIS_M18 VT_LOP_M18
0x2004E VT_RMASK19 VT_RX_VTREI_M19 VT_RX_BIP2ERR_M19 VT_RX_ESOVFL_M19 VT_APS_M19 VT_ERDI_M19 VT_RDI_M19 VT_RFI_M19 VT_LOPS_M19 VT_J2TIM_M19 VT_PLM_M19 VT_UNEQ_M19 VT_SIZERR_M19 VT_AIS_M19 VT_LOP_M19
0x2004F VT_RMASK20 VT_RX_VTREI_M20 VT_RX_BIP2ERR_M20 VT_RX_ESOVFL_M20 VT_APS_M20 VT_ERDI_M20 VT_RDI_M20 VT_RFI_M20 VT_LOPS_M20 VT_J2TIM_M20 VT_PLM_M20 VT_UNEQ_M20 VT_SIZERR_M20 VT_AIS_M20 VT_LOP_M20
0x20050 VT_RMASK21 VT_RX_VTREI_M21 VT_RX_BIP2ERR_M21 VT_RX_ESOVFL_M21 VT_APS_M21 VT_ERDI_M21 VT_RDI_M21 VT_RFI_M21 VT_LOPS_M21 VT_J2TIM_M21 VT_PLM_M21 VT_UNEQ_M21 VT_SIZERR_M21 VT_AIS_M21 VT_LOP_M21
0x20051 VT_RMASK22 VT_RX_VTREI_M22 VT_RX_BIP2ERR_M22 VT_RX_ESOVFL_M22 VT_APS_M22 VT_ERDI_M22 VT_RDI_M22 VT_RFI_M22 VT_LOPS_M22 VT_J2TIM_M22 VT_PLM_M22 VT_UNEQ_M22 VT_SIZERR_M22 VT_AIS_M22 VT_LOP_M22
0x20052 VT_RMASK23 VT_RX_VTREI_M23 VT_RX_BIP2ERR_M23 VT_RX_ESOVFL_M23 VT_APS_M23 VT_ERDI_M23 VT_RDI_M23 VT_RFI_M23 VT_LOPS_M23 VT_J2TIM_M23 VT_PLM_M23 VT_UNEQ_M23 VT_SIZERR_M23 VT_AIS_M23 VT_LOP_M23
0x20053 VT_RMASK24 VT_RX_VTREI_M24 VT_RX_BIP2ERR_M24 VT_RX_ESOVFL_M24 VT_APS_M24 VT_ERDI_M24 VT_RDI_M24 VT_RFI_M24 VT_LOPS_M24 VT_J2TIM_M24 VT_PLM_M24 VT_UNEQ_M24 VT_SIZERR_M24 VT_AIS_M24 VT_LOP_M24
0x20054 VT_RMASK25 VT_RX_VTREI_M25 VT_RX_BIP2ERR_M25 VT_RX_ESOVFL_M25 VT_APS_M25 VT_ERDI_M25 VT_RDI_M25 VT_RFI_M25 VT_LOPS_M25 VT_J2TIM_M25 VT_PLM_M25 VT_UNEQ_M25 VT_SIZERR_M25 VT_AIS_M25 VT_LOP_M25
0x20055 VT_RMASK26 VT_RX_VTREI_M26 VT_RX_BIP2ERR_M26 VT_RX_ESOVFL_M26 VT_APS_M26 VT_ERDI_M26 VT_RDI_M26 VT_RFI_M26 VT_LOPS_M26 VT_J2TIM_M26 VT_PLM_M26 VT_UNEQ_M26 VT_SIZERR_M26 VT_AIS_M26 VT_LOP_M26
0x20056 VT_RMASK27 VT_RX_VTREI_M27 VT_RX_BIP2ERR_M27 VT_RX_ESOVFL_M27 VT_APS_M27 VT_ERDI_M27 VT_RDI_M27 VT_RFI_M27 VT_LOPS_M27 VT_J2TIM_M27 VT_PLM_M27 VT_UNEQ_M27 VT_SIZERR_M27 VT_AIS_M27 VT_LOP_M27
0x20057 VT_RMASK28 VT_RX_VTREI_M28 VT_RX_BIP2ERR_M28 VT_RX_ESOVFL_M28 VT_APS_M28 VT_ERDI_M28 VT_RDI_M28 VT_RFI_M28 VT_LOPS_M28 VT_J2TIM_M28 VT_PLM_M28 VT_UNEQ_M28 VT_SIZERR_M28 VT_AIS_M28 VT_LOP_M28
TMXF28155 Supermapper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
178 Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 224. VT/TU Mapper Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
T ra nsm it Interr upt Masks—R /W
0x20058
Page 162 VT_LOPOHFAIL_MASK VT_LOPOH_FAIL_M
For the following addresses, reference Table 188 on page 162.
0x20059 VT_TMASK1 VT_TX_ESOVFL_M1 VT_LOFS_M1 VT_TX_AIS_M1 VT_TX_LOC_M1
0x2005A VT_TMASK2 VT_TX_ESOVFL_M2 VT_LOFS_M2 VT_TX_AIS_M2 VT_TX_LOC_M2
0x2005B VT_TMASK3 VT_TX_ESOVFL_M3 VT_LOFS_M3 VT_TX_AIS_M3 VT_TX_LOC_M3
0x2005C VT_TMASK4 VT_TX_ESOVFL_M4 VT_LOFS_M4 VT_TX_AIS_M4 VT_TX_LOC_M4
0x2005D VT_TMASK5 VT_TX_ESOVFL_M5 VT_LOFS_M5 VT_TX_AIS_M5 VT_TX_LOC_M5
0x2005E VT_TMASK6 VT_TX_ESOVFL_M6 VT_LOFS_M6 VT_TX_AIS_M6 VT_TX_LOC_M6
0x2005F VT_TMASK7 VT_TX_ESOVFL_M7 VT_LOFS_M7 VT_TX_AIS_M7 VT_TX_LOC_M7
0x20060 VT_TMASK8 VT_TX_ESOVFL_M8 VT_LOFS_M8 VT_TX_AIS_M8 VT_TX_LOC_M8
0x20061 VT_TMASK9 VT_TX_ESOVFL_M9 VT_LOFS_M9 VT_TX_AIS_M9 VT_TX_LOC_M9
0x20062 VT_TMASK10 VT_TX_ESOVFL_M10 VT_LOFS_M10 VT_TX_AIS_M10 VT_TX_LOC_M10
0x20063 VT_TMASK11 VT_TX_ESOVFL_M11 VT_LOFS_M11 VT_TX_AIS_M11 VT_TX_LOC_M11
0x20064 VT_TMASK12 VT_TX_ESOVFL_M12 VT_LOFS_M12 VT_TX_AIS_M12 VT_TX_LOC_M12
0x20065 VT_TMASK13 VT_TX_ESOVFL_M13 VT_LOFS_M13 VT_TX_AIS_M13 VT_TX_LOC_M13
0x20066 VT_TMASK14 VT_TX_ESOVFL_M14 VT_LOFS_M14 VT_TX_AIS_M14 VT_TX_LOC_M14
0x20067 VT_TMASK15 VT_TX_ESOVFL_M15 VT_LOFS_M15 VT_TX_AIS_M15 VT_TX_LOC_M15
0x20068 VT_TMASK16 VT_TX_ESOVFL_M16 VT_LOFS_M16 VT_TX_AIS_M16 VT_TX_LOC_M16
0x20069 VT_TMASK17 VT_TX_ESOVFL_M17 VT_LOFS_M17 VT_TX_AIS_M17 VT_TX_LOC_M17
0x2006A VT_TMASK18 VT_TX_ESOVFL_M18 VT_LOFS_M18 VT_TX_AIS_M18 VT_TX_LOC_M18
0x2006B VT_TMASK19 VT_TX_ESOVFL_M19 VT_LOFS_M19 VT_TX_AIS_M19 VT_TX_LOC_M19
0x2006C VT_TMASK20 VT_TX_ESOVFL_M20 VT_LOFS_M20 VT_TX_AIS_M20 VT_TX_LOC_M20
0x2006D VT_TMASK21 VT_TX_ESOVFL_M21 VT_LOFS_M21 VT_TX_AIS_M21 VT_TX_LOC_M21
0x2006E VT_TMASK22 VT_TX_ESOVFL_M22 VT_LOFS_M22 VT_TX_AIS_M22 VT_TX_LOC_M22
0x2006F VT_TMASK23 VT_TX_ESOVFL_M23 VT_LOFS_M23 VT_TX_AIS_M23 VT_TX_LOC_M23
0x20070 VT_TMASK24 VT_TX_ESOVFL_M24 VT_LOFS_M24 VT_TX_AIS_M24 VT_TX_LOC_M24
0x20071 VT_TMASK25 VT_TX_ESOVFL_M25 VT_LOFS_M25 VT_TX_AIS_M25 VT_TX_LOC_M25
0x20072 VT_TMASK26 VT_TX_ESOVFL_M26 VT_LOFS_M26 VT_TX_AIS_M26 VT_TX_LOC_M26
0x20073 VT_TMASK27 VT_TX_ESOVFL_M27 VT_LOFS_M27 VT_TX_AIS_M27 VT_TX_LOC_M27
0x20074 VT_TMASK28 VT_TX_ESOVFL_M28 VT_LOFS_M28 VT_TX_AIS_M28 VT_TX_LOC_M28
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
179Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 224. VT/TU Mapper Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Receive State Param eter s—RO
0x20075
Page 162 VT_GSTATE VT_SD VT_SF VT_H4LOMF
For the following addresses, reference Table 190 on page 163.
0x20076 VT_RSTATE1 VT_ERDI(1)[2:0] VT_LAB(1)[2:0] VT_RDI(1) VT_RFI1 VT_LOPS1 VT_J2TIM1 VT_PLM1 VT_UNEQ1 VT_SIZERR1 VT_AIS1 VT_LOP1
0x20077 VT_RSTATE2 VT_ERDI(2)[2:0] VT_LAB(2)[2:0] VT_RDI(2) VT_RFI2 VT_LOPS2 VT_J2TIM2 VT_PLM2 VT_UNEQ2 VT_SIZERR2 VT_AIS2 VT_LOP2
0x20078 VT_RSTATE3 VT_ERDI(3)[2:0] VT_LAB(3)[2:0] VT_RDI(3) VT_RFI3 VT_LOPS3 VT_J2TIM3 VT_PLM3 VT_UNEQ3 VT_SIZERR3 VT_AIS3 VT_LOP3
0x20079 VT_RSTATE4 VT_ERDI(4)[2:0] VT_LAB(4)[2:0] VT_RDI(4) VT_RFI4 VT_LOPS4 VT_J2TIM4 VT_PLM4 VT_UNEQ4 VT_SIZERR4 VT_AIS4 VT_LOP4
0x2007A VT_RSTATE5 VT_ERDI(5)[2:0] VT_LAB(5)[2:0] VT_RDI(5) VT_RFI5 VT_LOPS5 VT_J2TIM5 VT_PLM5 VT_UNEQ5 VT_SIZERR5 VT_AIS5 VT_LOP5
0x2007B VT_RSTATE6 VT_ERDI(6)[2:0] VT_LAB(6)[2:0] VT_RDI(6) VT_RFI6 VT_LOPS6 VT_J2TIM6 VT_PLM6 VT_UNEQ6 VT_SIZERR6 VT_AIS6 VT_LOP6
0x2007C VT_RSTATE7 VT_ERDI(7)[2:0] VT_LAB(7)[2:0] VT_RDI(7) VT_RFI7 VT_LOPS7 VT_J2TIM7 VT_PLM7 VT_UNEQ7 VT_SIZERR7 VT_AIS7 VT_LOP7
0x2007D VT_RSTATE8 VT_ERDI(8)[2:0] VT_LAB(8)[2:0] VT_RDI(8) VT_RFI8 VT_LOPS8 VT_J2TIM8 VT_PLM8 VT_UNEQ8 VT_SIZERR8 VT_AIS8 VT_LOP8
0x2007E VT_RSTATE9 VT_ERDI(9)[2:0] VT_LAB(9)[2:0] VT_RDI(9) VT_RFI9 VT_LOPS9 VT_J2TIM9 VT_PLM9 VT_UNEQ9 VT_SIZERR9 VT_AIS9 VT_LOP9
0x2007F VT_RSTATE10 VT_ERDI(10)[2:0] VT_LAB(10)[2:0] VT_RDI(10) VT_RFI10 VT_LOPS10 VT_J2TIM10 VT_PLM10 VT_UNEQ10 VT_SIZERR10 VT_AIS10 VT_LOP10
0x20080 VT_RSTATE11 VT_ERDI(11)[2:0] VT_LAB(11)[2:0] VT_RDI(11) VT_RFI11 VT_LOPS11 VT_J2TIM11 VT_PLM11 VT_UNEQ11 VT_SIZERR11 VT_AIS11 VT_LOP11
0x20081 VT_RSTATE12 VT_ERDI(12)[2:0] VT_LAB(12)[2:0] VT_RDI(12) VT_RFI12 VT_LOPS12 VT_J2TIM12 VT_PLM12 VT_UNEQ12 VT_SIZERR12 VT_AIS12 VT_LOP12
0x20082 VT_RSTATE13 VT_ERDI(13)[2:0] VT_LAB(13)[2:0] VT_RDI(13) VT_RFI13 VT_LOPS13 VT_J2TIM13 VT_PLM13 VT_UNEQ13 VT_SIZERR13 VT_AIS13 VT_LOP13
0x20083 VT_RSTATE14 VT_ERDI(14)[2:0] VT_LAB(14)[2:0] VT_RDI(14) VT_RFI14 VT_LOPS14 VT_J2TIM14 VT_PLM14 VT_UNEQ14 VT_SIZERR14 VT_AIS14 VT_LOP14
0x20084 VT_RSTATE15 VT_ERDI(15)[2:0] VT_LAB(15)[2:0] VT_RDI(15) VT_RFI15 VT_LOPS15 VT_J2TIM15 VT_PLM15 VT_UNEQ15 VT_SIZERR15 VT_AIS15 VT_LOP15
0x20085 VT_RSTATE16 VT_ERDI(16)[2:0] VT_LAB(16)[2:0] VT_RDI(16) VT_RFI16 VT_LOPS16 VT_J2TIM16 VT_PLM16 VT_UNEQ16 VT_SIZERR16 VT_AIS16 VT_LOP16
0x20086 VT_RSTATE17 VT_ERDI(17)[2:0] VT_LAB(17)[2:0] VT_RDI(17) VT_RFI17 VT_LOPS17 VT_J2TIM17 VT_PLM17 VT_UNEQ17 VT_SIZERR17 VT_AIS17 VT_LOP17
0x20087 VT_RSTATE18 VT_ERDI(18)[2:0] VT_LAB(18)[2:0] VT_RDI(18) VT_RFI18 VT_LOPS18 VT_J2TIM18 VT_PLM18 VT_UNEQ18 VT_SIZERR18 VT_AIS18 VT_LOP18
0x20088 VT_RSTATE19 VT_ERDI(19)[2:0] VT_LAB(19)[2:0] VT_RDI(19) VT_RFI19 VT_LOPS19 VT_J2TIM19 VT_PLM19 VT_UNEQ19 VT_SIZERR19 VT_AIS19 VT_LOP19
0x20089 VT_RSTATE20 VT_ERDI(20)[2:0] VT_LAB(20)[2:0] VT_RDI(20) VT_RFI20 VT_LOPS20 VT_J2TIM20 VT_PLM20 VT_UNEQ20 VT_SIZERR20 VT_AIS20 VT_LOP20
0x2008A VT_RSTATE21 VT_ERDI(21)[2:0] VT_LAB(21)[2:0] VT_RDI(21) VT_RFI21 VT_LOPS21 VT_J2TIM21 VT_PLM21 VT_UNEQ21 VT_SIZERR21 VT_AIS21 VT_LOP21
0x2008B VT_RSTATE22 VT_ERDI(22)[2:0] VT_LAB(22)[2:0] VT_RDI(22) VT_RFI22 VT_LOPS22 VT_J2TIM22 VT_PLM22 VT_UNEQ22 VT_SIZERR22 VT_AIS22 VT_LOP22
0x2008C VT_RSTATE23 VT_ERDI(23)[2:0] VT_LAB(23)[2:0] VT_RDI(23) VT_RFI23 VT_LOPS23 VT_J2TIM23 VT_PLM23 VT_UNEQ23 VT_SIZERR23 VT_AIS23 VT_LOP23
0x2008D VT_RSTATE24 VT_ERDI(24)[2:0] VT_LAB(24)[2:0] VT_RDI(24) VT_RFI24 VT_LOPS24 VT_J2TIM24 VT_PLM24 VT_UNEQ24 VT_SIZERR24 VT_AIS24 VT_LOP24
0x2008E VT_RSTATE25 VT_ERDI(25)[2:0] VT_LAB(25)[2:0] VT_RDI(25) VT_RFI25 VT_LOPS25 VT_J2TIM25 VT_PLM25 VT_UNEQ25 VT_SIZERR25 VT_AIS25 VT_LOP25
0x2008F VT_RSTATE26 VT_ERDI(26)[2:0] VT_LAB(26)[2:0] VT_RDI(26) VT_RFI26 VT_LOPS26 VT_J2TIM26 VT_PLM26 VT_UNEQ26 VT_SIZERR26 VT_AIS26 VT_LOP26
0x20090 VT_RSTATE27 VT_ERDI(27)[2:0] VT_LAB(27)[2:0] VT_RDI(27) VT_RFI27 VT_LOPS27 VT_J2TIM27 VT_PLM27 VT_UNEQ27 VT_SIZERR27 VT_AIS27 VT_LOP27
0x20091 VT_RSTATE28 VT_ERDI(28)[2:0] VT_LAB(28)[2:0] VT_RDI(28) VT_RFI28 VT_LOPS28 VT_J2TIM28 VT_PLM28 VT_UNEQ28 VT_SIZERR28 VT_AIS28 VT_LOP28
TMXF28155 Supermapper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
180 Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 224. VT/TU Mapper Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Receive APS Value Parameters—RO
For the following addresses, reference Table 191 on page 163.
0x20092 VT_RAPSSTATE1 VT_APS(1)[3:0]
0x20093 VT_RAPSSTATE2 VT_APS(2)[3:0]
0x20094 VT_RAPSSTATE3 VT_APS(3)[3:0]
0x20095 VT_RAPSSTATE4 VT_APS(4)[3:0]
0x20096 VT_RAPSSTATE5 VT_APS(5)[3:0]
0x20097 VT_RAPSSTATE6 VT_APS(6)[3:0]
0x20098 VT_RAPSSTATE7 VT_APS(7)[3:0]
0x20099 VT_RAPSSTATE8 VT_APS(8)[3:0]
0x2009A VT_RAPSSTATE9 VT_APS(9)[3:0]
0x2009B VT_RAPSSTATE10 VT_APS(10)[3:0]
0x2009C VT_RAPSSTATE11 VT_APS(11)[3:0]
0x2009D VT_RAPSSTATE12 VT_APS(12)[3:0]
0x2009E VT_RAPSSTATE13 VT_APS(13)[3:0]
0x2009F VT_RAPSSTATE14 VT_APS(14)[3:0]
0x200A0 VT_RAPSSTATE15 VT_APS(15)[3:0]
0x200A1 VT_RAPSSTATE16 VT_APS(16)[3:0]
0x200A2 VT_RAPSSTATE17 VT_APS(17)[3:0]
0x200A3 VT_RAPSSTATE18 VT_APS(18)[3:0]
0x200A4 VT_RAPSSTATE19 VT_APS(19)[3:0]
0x200A5 VT_RAPSSTATE20 VT_APS(20)[3:0]
0x200A6 VT_RAPSSTATE21 VT_APS(21)[3:0]
0x200A7 VT_RAPSSTATE22 VT_APS(22)[3:0]
0x200A8 VT_RAPSSTATE23 VT_APS(23)[3:0]
0x200A9 VT_RAPSSTATE24 VT_APS(24)[3:0]
0x200AA VT_RAPSSTATE25 VT_APS(25)[3:0]
0x200AB VT_RAPSSTATE26 VT_APS(26)[3:0]
0x200AC VT_RAPSSTATE27 VT_APS(27)[3:0]
0x200AD VT_RAPSSTATE28 VT_APS(28)[3:0]
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
181Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 224. VT/TU Mapper Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Transmit State Parameters—RO
For the following addresses, reference Table 192 on page 163.
0x200AE VT_TSTATE1 VT_LOFS1 VT_TX_AIS1 VT_TX_LOC1
0x200AF VT_TSTATE2 VT_LOFS2 VT_TX_AIS2 VT_TX_LOC2
0x200B0 VT_TSTATE3 VT_LOFS3 VT_TX_AIS3 VT_TX_LOC3
0x200B1 VT_TSTATE4 VT_LOFS4 VT_TX_AIS4 VT_TX_LOC4
0x200B2 VT_TSTATE5 VT_LOFS5 VT_TX_AIS5 VT_TX_LOC5
0x200B3 VT_TSTATE6 VT_LOFS6 VT_TX_AIS6 VT_TX_LOC6
0x200B4 VT_TSTATE7 VT_LOFS7 VT_TX_AIS7 VT_TX_LOC7
0x200B5 VT_TSTATE8 VT_LOFS8 VT_TX_AIS8 VT_TX_LOC8
0x200B6 VT_TSTATE9 VT_LOFS9 VT_TX_AIS9 VT_TX_LOC9
0x200B7 VT_TSTATE10 VT_LOFS10 VT_TX_AIS10 VT_TX_LOC10
0x200B8 VT_TSTATE11 VT_LOFS11 VT_TX_AIS11 VT_TX_LOC11
0x200B9 VT_TSTATE12 VT_LOFS12 VT_TX_AIS12 VT_TX_LOC12
0x200BA VT_TSTATE13 VT_LOFS13 VT_TX_AIS13 VT_TX_LOC13
0x200BB VT_TSTATE14 VT_LOFS14 VT_TX_AIS14 VT_TX_LOC14
0x200BC VT_TSTATE15 VT_LOFS15 VT_TX_AIS15 VT_TX_LOC15
0x200BD VT_TSTATE16 VT_LOFS16 VT_TX_AIS16 VT_TX_LOC16
0x200BE VT_TSTATE17 VT_LOFS17 VT_TX_AIS17 VT_TX_LOC17
0x200BF VT_TSTATE18 VT_LOFS18 VT_TX_AIS18 VT_TX_LOC18
0x200C0 VT_TSTATE19 VT_LOFS19 VT_TX_AIS19 VT_TX_LOC19
0x200C1 VT_TSTATE20 VT_LOFS20 VT_TX_AIS20 VT_TX_LOC20
0x200C2 VT_TSTATE21 VT_LOFS21 VT_TX_AIS21 VT_TX_LOC21
0x200C3 VT_TSTATE22 VT_LOFS22 VT_TX_AIS22 VT_TX_LOC22
0x200C4 VT_TSTATE23 VT_LOFS23 VT_TX_AIS23 VT_TX_LOC23
0x200C5 VT_TSTATE24 VT_LOFS24 VT_TX_AIS24 VT_TX_LOC24
0x200C6 VT_TSTATE25 VT_LOFS25 VT_TX_AIS25 VT_TX_LOC25
0x200C7 VT_TSTATE26 VT_LOFS26 VT_TX_AIS26 VT_TX_LOC26
0x200C8 VT_TSTATE27 VT_LOFS27 VT_TX_AIS27 VT_TX_LOC27
0x200C9 VT_TSTATE28 VT_LOFS28 VT_TX_AIS28 VT_TX_LOC28
TMXF28155 Supermapper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
182 Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 224. VT/TU Mapper Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
VT Global Control Parameters—R/W
0x200CA
Page 164 VT_GCTL1 VT_RX_GRP_TYPE[6:0] VT_TX_GRP_TYPE[6:0]
0x200CB
Page 164 VT_GCTL2 VT_LOPS_AIS_INH VT_J2TIM_ERDI_INH VT_J2TIM_RDI_INH VT_J2TIM_AIS_INH VT_LOMF_AIS_INH VT_PLM_AIS_INH VT_UNEQ_AIS_INH VT_UPSR VT_8ORMAJORITY VT_BIT_BLOCK_CNT
0x200CC
Page 165 VT_GCTL3 VT_LOPS_NTIME[3:0] VT_H4_NTIME[3:0]
0x200CD
Page 165 VT_GCTL4 VT_Z6_NTIME[3:0] VT_J2_NTIME[3:0] VT_INV_NTIME[3:0] VT_NDF_NTIME[3:0]
0x200CE
Page 166 VT_GCTL5 VT_APS_NTIME[3:0] VT_LAB_NTIME[3:0] VT_ERDI_NTIME[3:0] VT_RDI_NTIME[3:0]
Signal Degrade Control—R/W
0x200CF
Page 167 VT_SIGDEG_CTL1 VT_SFCLEAR VT_SFSET VT_SDCLEAR VT_SDSET VT_BER_CH_SEL[4:0]
0x200D0
Page 167 VT_SIGDEG_CTL2 VT_SDNSSET[18:3]
0x200D1
Page 167 VT_SIGDEG_CTL3 VT_SDMSET[7:0] VT_SDLSET[3:0] VT_SDNSSET[2:0]
0x200D2
Page 167 VT_SIGDEG_CTL4 VT_SDBSET[15:0]
0x200D3
Page 168 VT_SIGDEG_CTL5 VT_SDNSCLEAR[18:3]
0x200D4
Page 168 VT_SIGDEG_CTL6 VT_SDMCLEAR[7:0] VT_SDLCLEAR[3:0] VT_SDNSCLEAR[2:0]
0x200D5
Page 168 VT_SIGDEG_CTL7 VT_SDBCLEAR[15:0]
Signal Fail Control—R/W
0x200D6
Page 168 VT_SIGFAIL_CTL1 VT_SFNSSET[18:3]
0x200D7
Page 168 VT_SIGFAIL_CTL2 VT_SFMSET[7:0] VT_SFLSET[3:0] VT_SFNSSET[2:0]
0x200D8
Page 168 VT_SIGFAIL_CTL3 VT_SFBSET[15:0]
0x200D9
Page 169 VT_SIGFAIL_CTL4 VT_SFNSCLEAR[18:3]
0x200DA
Page 169 VT_SIGFAIL_CTL5 VT_SFMCLEAR[7:0] VT_SFLCLEAR[3:0] VT_SFNSCLEAR[2:0]
0x200DB
Page 169 VT_SIGFAIL_CTL6 VT_SFBCLEAR[15:0]
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
183Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 224. VT/TU Mapper Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Transmit Control Parameters—R/W
For the following addresses, reference Table 211 on page 170.
0x200DC VT_TCTL1 VT_TX_ERDI_EN1 VT_ERDI_EN1 VT_RDI_EN1 VT_RFI_EN1 VT_REI_EN1 VT_AIS_INS1 VT_TX_CLKEDGE1 VT_LB_SEL1 VT_TX_MAPTYPE(1)[3:0]
0x200DD VT_TCTL2 VT_TX_ERDI_EN2 VT_ERDI_EN2 VT_RDI_EN2 VT_RFI_EN2 VT_REI_EN2 VT_AIS_INS2 VT_TX_CLKEDGE2 VT_LB_SEL2 VT_TX_MAPTYPE(2)[3:0]
0x200DE VT_TCTL3 VT_TX_ERDI_EN3 VT_ERDI_EN3 VT_RDI_EN3 VT_RFI_EN3 VT_REI_EN3 VT_AIS_INS3 VT_TX_CLKEDGE3 VT_LB_SEL3 VT_TX_MAPTYPE(3)[3:0]
0x200DF VT_TCTL4 VT_TX_ERDI_EN4 VT_ERDI_EN4 VT_RDI_EN4 VT_RFI_EN4 VT_REI_EN4 VT_AIS_INS4 VT_TX_CLKEDGE4 VT_LB_SEL4 VT_TX_MAPTYPE(4)[3:0]
0x200E0 VT_TCTL5 VT_TX_ERDI_EN5 VT_ERDI_EN5 VT_RDI_EN5 VT_RFI_EN5 VT_REI_EN5 VT_AIS_INS5 VT_TX_CLKEDGE5 VT_LB_SEL5 VT_TX_MAPTYPE(5)[3:0]
0x200E1 VT_TCTL6 VT_TX_ERDI_EN6 VT_ERDI_EN6 VT_RDI_EN6 VT_RFI_EN6 VT_REI_EN6 VT_AIS_INS6 VT_TX_CLKEDGE6 VT_LB_SEL6 VT_TX_MAPTYPE(6)[3:0]
0x200E2 VT_TCTL7 VT_TX_ERDI_EN7 VT_ERDI_EN7 VT_RDI_EN7 VT_RFI_EN7 VT_REI_EN7 VT_AIS_INS7 VT_TX_CLKEDGE7 VT_LB_SEL7 VT_TX_MAPTYPE(7)[3:0]
0x200E3 VT_TCTL8 VT_TX_ERDI_EN8 VT_ERDI_EN8 VT_RDI_EN8 VT_RFI_EN8 VT_REI_EN8 VT_AIS_INS8 VT_TX_CLKEDGE8 VT_LB_SEL8 VT_TX_MAPTYPE(8)[3:0]
0x200E4 VT_TCTL9 VT_TX_ERDI_EN9 VT_ERDI_EN9 VT_RDI_EN9 VT_RFI_EN9 VT_REI_EN9 VT_AIS_INS9 VT_TX_CLKEDGE9 VT_LB_SEL9 VT_TX_MAPTYPE(9)[3:0]
0x200E5 VT_TCTL10 VT_TX_ERDI_EN10 VT_ERDI_EN10 VT_RDI_EN10 VT_RFI_EN10 VT_REI_EN10 VT_AIS_INS10 VT_TX_CLKEDGE10 VT_LB_SEL10 VT_TX_MAPTYPE(10)[3:0]
0x200E6 VT_TCTL11 VT_TX_ERDI_EN11 VT_ERDI_EN11 VT_RDI_EN11 VT_RFI_EN11 VT_REI_EN11 VT_AIS_INS11 VT_TX_CLKEDGE11 VT_LB_SEL11 VT_TX_MAPTYPE(11)[3:0]
0x200E7 VT_TCTL12 VT_TX_ERDI_EN12 VT_ERDI_EN12 VT_RDI_EN12 VT_RFI_EN12 VT_REI_EN12 VT_AIS_INS12 VT_TX_CLKEDGE12 VT_LB_SEL12 VT_TX_MAPTYPE(12)[3:0]
0x200E8 VT_TCTL13 VT_TX_ERDI_EN13 VT_ERDI_EN13 VT_RDI_EN13 VT_RFI_EN13 VT_REI_EN13 VT_AIS_INS13 VT_TX_CLKEDGE13 VT_LB_SEL13 VT_TX_MAPTYPE(13)[3:0]
0x200E9 VT_TCTL14 VT_TX_ERDI_EN14 VT_ERDI_EN14 VT_RDI_EN14 VT_RFI_EN14 VT_REI_EN14 VT_AIS_INS14 VT_TX_CLKEDGE14 VT_LB_SEL14 VT_TX_MAPTYPE(14)[3:0]
0x200EA VT_TCTL15 VT_TX_ERDI_EN15 VT_ERDI_EN15 VT_RDI_EN15 VT_RFI_EN15 VT_REI_EN15 VT_AIS_INS15 VT_TX_CLKEDGE15 VT_LB_SEL15 VT_TX_MAPTYPE(15)[3:0]
0x200EB VT_TCTL16 VT_TX_ERDI_EN16 VT_ERDI_EN16 VT_RDI_EN16 VT_RFI_EN16 VT_REI_EN16 VT_AIS_INS16 VT_TX_CLKEDGE16 VT_LB_SEL16 VT_TX_MAPTYPE(16)[3:0]
0x200EC VT_TCTL17 VT_TX_ERDI_EN17 VT_ERDI_EN17 VT_RDI_EN17 VT_RFI_EN17 VT_REI_EN17 VT_AIS_INS17 VT_TX_CLKEDGE17 VT_LB_SEL17 VT_TX_MAPTYPE(17)[3:0]
0x200ED VT_TCTL18 VT_TX_ERDI_EN18 VT_ERDI_EN18 VT_RDI_EN18 VT_RFI_EN18 VT_REI_EN18 VT_AIS_INS18 VT_TX_CLKEDGE18 VT_LB_SEL18 VT_TX_MAPTYPE(18)[3:0]
0x200EE VT_TCTL19 VT_TX_ERDI_EN19 VT_ERDI_EN19 VT_RDI_EN19 VT_RFI_EN19 VT_REI_EN19 VT_AIS_INS19 VT_TX_CLKEDGE19 VT_LB_SEL19 VT_TX_MAPTYPE(19)[3:0]
0x200EF VT_TCTL20 VT_TX_ERDI_EN20 VT_ERDI_EN20 VT_RDI_EN20 VT_RFI_EN20 VT_REI_EN20 VT_AIS_INS20 VT_TX_CLKEDGE20 VT_LB_SEL20 VT_TX_MAPTYPE(20)[3:0]
0x200F0 VT_TCTL21 VT_TX_ERDI_EN21 VT_ERDI_EN21 VT_RDI_EN21 VT_RFI_EN21 VT_REI_EN21 VT_AIS_INS21 VT_TX_CLKEDGE21 VT_LB_SEL21 VT_TX_MAPTYPE(21)[3:0]
0x200F1 VT_TCTL22 VT_TX_ERDI_EN22 VT_ERDI_EN22 VT_RDI_EN22 VT_RFI_EN22 VT_REI_EN22 VT_AIS_INS22 VT_TX_CLKEDGE22 VT_LB_SEL22 VT_TX_MAPTYPE(22)[3:0]
0x200F2 VT_TCTL23 VT_TX_ERDI_EN23 VT_ERDI_EN23 VT_RDI_EN23 VT_RFI_EN23 VT_REI_EN23 VT_AIS_INS23 VT_TX_CLKEDGE23 VT_LB_SEL23 VT_TX_MAPTYPE(23)[3:0]
0x200F3 VT_TCTL24 VT_TX_ERDI_EN24 VT_ERDI_EN24 VT_RDI_EN24 VT_RFI_EN24 VT_REI_EN24 VT_AIS_INS24 VT_TX_CLKEDGE24 VT_LB_SEL24 VT_TX_MAPTYPE(24)[3:0]
0x200F4 VT_TCTL25 VT_TX_ERDI_EN25 VT_ERDI_EN25 VT_RDI_EN25 VT_RFI_EN25 VT_REI_EN25 VT_AIS_INS25 VT_TX_CLKEDGE25 VT_LB_SEL25 VT_TX_MAPTYPE(25)[3:0]
0x200F5 VT_TCTL26 VT_TX_ERDI_EN26 VT_ERDI_EN26 VT_RDI_EN26 VT_RFI_EN26 VT_REI_EN26 VT_AIS_INS26 VT_TX_CLKEDGE26 VT_LB_SEL26 VT_TX_MAPTYPE(26)[3:0]
0x200F6 VT_TCTL27 VT_TX_ERDI_EN27 VT_ERDI_EN27 VT_RDI_EN27 VT_RFI_EN27 VT_REI_EN27 VT_AIS_INS27 VT_TX_CLKEDGE27 VT_LB_SEL27 VT_TX_MAPTYPE(27)[3:0]
0x200F7 VT_TCTL28 VT_TX_ERDI_EN28 VT_ERDI_EN28 VT_RDI_EN28 VT_RFI_EN28 VT_REI_EN28 VT_AIS_INS28 VT_TX_CLKEDGE28 VT_LB_SEL28 VT_TX_MAPTYPE(28)[3:0]
TMXF28155 Supermapper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
184 Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 224. VT/TU Mapper Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Transmit TU OH Control Parameters—R/W
For the following addresses, reference Table 212 on page 171.
0x200F8 VT_TTUOH_CTL1 VT_O_INS(1)[1:0] VT_Z7_INS(1)[1:0] VT_Z6_INS(1)[1:0] VT_J2_INS(1)[1:0] VT_V5_INS1 VT_BIP2ERR_INS(1)[1:0]
0x200F9 VT_TTUOH_CTL2 VT_O_INS(2)[1:0] VT_Z7_INS(2)[1:0] VT_Z6_INS(2)[1:0] VT_J2_INS(2)[1:0] VT_V5_INS2 VT_BIP2ERR_INS(2)[1:0]
0x200FA VT_TTUOH_CTL3 VT_O_INS(3)[1:0] VT_Z7_INS(3)[1:0] VT_Z6_INS(3)[1:0] VT_J2_INS(3)[1:0] VT_V5_INS3 VT_BIP2ERR_INS(3)[1:0]
0x200FB VT_TTUOH_CTL4 VT_O_INS(4)[1:0] VT_Z7_INS(4)[1:0] VT_Z6_INS(4)[1:0] VT_J2_INS(4)[1:0] VT_V5_INS4 VT_BIP2ERR_INS(4)[1:0]
0x200FC VT_TTUOH_CTL5 VT_O_INS(5)[1:0] VT_Z7_INS(5)[1:0] VT_Z6_INS(5)[1:0] VT_J2_INS(5)[1:0] VT_V5_INS5 VT_BIP2ERR_INS(5)[1:0]
0x200FD VT_TTUOH_CTL6 VT_O_INS(6)[1:0] VT_Z7_INS(6)[1:0] VT_Z6_INS(6)[1:0] VT_J2_INS(6)[1:0] VT_V5_INS6 VT_BIP2ERR_INS(6)[1:0]
0x200FE VT_TTUOH_CTL7 VT_O_INS(7)[1:0] VT_Z7_INS(7)[1:0] VT_Z6_INS(7)[1:0] VT_J2_INS(7)[1:0] VT_V5_INS7 VT_BIP2ERR_INS(7)[1:0]
0x200FF VT_TTUOH_CTL8 VT_O_INS(8)[1:0] VT_Z7_INS(8)[1:0] VT_Z6_INS(8)[1:0] VT_J2_INS(8)[1:0] VT_V5_INS8 VT_BIP2ERR_INS(8)[1:0]
0x20100 VT_TTUOH_CTL9 VT_O_INS(9)[1:0] VT_Z7_INS(9)[1:0] VT_Z6_INS(9)[1:0] VT_J2_INS(9)[1:0] VT_V5_INS9 VT_BIP2ERR_INS(9)[1:0]
0x20101 VT_TTUOH_CTL10 VT_O_INS(10)[1:0] VT_Z7_INS(10)[1:0] VT_Z6_INS(10)[1:0] VT_J2_INS(10)[1:0] VT_V5_INS10 VT_BIP2ERR_INS(10)[1:0]
0x20102 VT_TTUOH_CTL11 VT_O_INS(11)[1:0] VT_Z7_INS(11)[1:0] VT_Z6_INS(11)[1:0] VT_J2_INS(11)[1:0] VT_V5_INS11 VT_BIP2ERR_INS(11)[1:0]
0x20103 VT_TTUOH_CTL12 VT_O_INS(12)[1:0] VT_Z7_INS(12)[1:0] VT_Z6_INS(12)[1:0] VT_J2_INS(12)[1:0] VT_V5_INS12 VT_BIP2ERR_INS(12)[1:0]
0x20104 VT_TTUOH_CTL13 VT_O_INS(13)[1:0] VT_Z7_INS(13)[1:0] VT_Z6_INS(13)[1:0] VT_J2_INS(13)[1:0] VT_V5_INS13 VT_BIP2ERR_INS(13)[1:0]
0x20105 VT_TTUOH_CTL14 VT_O_INS(14)[1:0] VT_Z7_INS(14)[1:0] VT_Z6_INS(14)[1:0] VT_J2_INS(14)[1:0] VT_V5_INS14 VT_BIP2ERR_INS(14)[1:0]
0x20106 VT_TTUOH_CTL15 VT_O_INS(15)[1:0] VT_Z7_INS(15)[1:0] VT_Z6_INS(15)[1:0] VT_J2_INS(15)[1:0] VT_V5_INS15 VT_BIP2ERR_INS(15)[1:0]
0x20107 VT_TTUOH_CTL16 VT_O_INS(16)[1:0] VT_Z7_INS(16)[1:0] VT_Z6_INS(16)[1:0] VT_J2_INS(16)[1:0] VT_V5_INS16 VT_BIP2ERR_INS(16)[1:0]
0x20108 VT_TTUOH_CTL17 VT_O_INS(17)[1:0] VT_Z7_INS(17)[1:0] VT_Z6_INS(17)[1:0] VT_J2_INS(17)[1:0] VT_V5_INS17 VT_BIP2ERR_INS(17)[1:0]
0x20109 VT_TTUOH_CTL18 VT_O_INS(18)[1:0] VT_Z7_INS(18)[1:0] VT_Z6_INS(18)[1:0] VT_J2_INS(18)[1:0] VT_V5_INS18 VT_BIP2ERR_INS(18)[1:0]
0x2010A VT_TTUOH_CTL19 VT_O_INS(19)[1:0] VT_Z7_INS(19)[1:0] VT_Z6_INS(19)[1:0] VT_J2_INS(19)[1:0] VT_V5_INS19 VT_BIP2ERR_INS(19)[1:0]
0x2010B VT_TTUOH_CTL20 VT_O_INS(20)[1:0] VT_Z7_INS(20)[1:0] VT_Z6_INS(20)[1:0] VT_J2_INS(20)[1:0] VT_V5_INS20 VT_BIP2ERR_INS(20)[1:0]
0x2010C VT_TTUOH_CTL21 VT_O_INS(21)[1:0] VT_Z7_INS(21)[1:0] VT_Z6_INS(21)[1:0] VT_J2_INS(21)[1:0] VT_V5_INS21 VT_BIP2ERR_INS(21)[1:0]
0x2010D VT_TTUOH_CTL22 VT_O_INS(22)[1:0] VT_Z7_INS(22)[1:0] VT_Z6_INS(22)[1:0] VT_J2_INS(22)[1:0] VT_V5_INS22 VT_BIP2ERR_INS(22)[1:0]
0x2010E VT_TTUOH_CTL23 VT_O_INS(23)[1:0] VT_Z7_INS(23)[1:0] VT_Z6_INS(23)[1:0] VT_J2_INS(23)[1:0] VT_V5_INS23 VT_BIP2ERR_INS(23)[1:0]
0x2010F VT_TTUOH_CTL24 VT_O_INS(24)[1:0] VT_Z7_INS(24)[1:0] VT_Z6_INS(24)[1:0] VT_J2_INS(24)[1:0] VT_V5_INS24 VT_BIP2ERR_INS(24)[1:0]
0x20110 VT_TTUOH_CTL25 VT_O_INS(25)[1:0] VT_Z7_INS(25)[1:0] VT_Z6_INS(25)[1:0] VT_J2_INS(25)[1:0] VT_V5_INS25 VT_BIP2ERR_INS(25)[1:0]
0x20111 VT_TTUOH_CTL26 VT_O_INS(26)[1:0] VT_Z7_INS(26)[1:0] VT_Z6_INS(26)[1:0] VT_J2_INS(26)[1:0] VT_V5_INS26 VT_BIP2ERR_INS(26)[1:0]
0x20112 VT_TTUOH_CTL27 VT_O_INS(27)[1:0] VT_Z7_INS(27)[1:0] VT_Z6_INS(27)[1:0] VT_J2_INS(27)[1:0] VT_V5_INS27 VT_BIP2ERR_INS(27)[1:0]
0x20113 VT_TTUOH_CTL28 VT_O_INS(28)[1:0] VT_Z7_INS(28)[1:0] VT_Z6_INS(28)[1:0] VT_J2_INS(28)[1:0] VT_V5_INS28 VT_BIP2ERR_INS(28)[1:0]
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
185Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 224. VT/TU Mapper Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Transmit APS and Remote Indication—R/W
For the following addresses, reference Table 213 on page 171.
0x20114 VT_TAPSRIVAL1 VT_APS_INS(1)[3:0] VT_ERDI_INS(1)[2:0] VT_RDI_INS1 VT_RFI_INS1
0x20115 VT_TAPSRIVAL2 VT_APS_INS(2)[3:0] VT_ERDI_INS(2)[2:0] VT_RDI_INS2 VT_RFI_INS2
0x20116 VT_TAPSRIVAL3 VT_APS_INS(3)[3:0] VT_ERDI_INS(3)[2:0] VT_RDI_INS3 VT_RFI_INS3
0x20117 VT_TAPSRIVAL4 VT_APS_INS(4)[3:0] VT_ERDI_INS(4)[2:0] VT_RDI_INS4 VT_RFI_INS4
0x20118 VT_TAPSRIVAL5 VT_APS_INS(5)[3:0] VT_ERDI_INS(5)[2:0] VT_RDI_INS5 VT_RFI_INS5
0x20119 VT_TAPSRIVAL6 VT_APS_INS(6)[3:0] VT_ERDI_INS(6)[2:0] VT_RDI_INS6 VT_RFI_INS6
0x2011A VT_TAPSRIVAL7 VT_APS_INS(7)[3:0] VT_ERDI_INS(7)[2:0] VT_RDI_INS7 VT_RFI_INS7
0x2011B VT_TAPSRIVAL8 VT_APS_INS(8)[3:0] VT_ERDI_INS(8)[2:0] VT_RDI_INS8 VT_RFI_INS8
0x2011C VT_TAPSRIVAL9 VT_APS_INS(9)[3:0] VT_ERDI_INS(9)[2:0] VT_RDI_INS9 VT_RFI_INS9
0x2011D VT_TAPSRIVAL10 VT_APS_INS(10)[3:0] VT_ERDI_INS(10)[2:0] VT_RDI_INS10 VT_RFI_INS10
0x2011E VT_TAPSRIVAL11 VT_APS_INS(11)[3:0] VT_ERDI_INS(11)[2:0] VT_RDI_INS11 VT_RFI_INS11
0x2011F VT_TAPSRIVAL12 VT_APS_INS(12)[3:0] VT_ERDI_INS(12)[2:0] VT_RDI_INS12 VT_RFI_INS12
0x20120 VT_TAPSRIVAL13 VT_APS_INS(13)[3:0] VT_ERDI_INS(13)[2:0] VT_RDI_INS13 VT_RFI_INS13
0x20121 VT_TAPSRIVAL14 VT_APS_INS(14)[3:0] VT_ERDI_INS(14)[2:0] VT_RDI_INS14 VT_RFI_INS14
0x20122 VT_TAPSRIVAL15 VT_APS_INS(15)[3:0] VT_ERDI_INS(15)[2:0] VT_RDI_INS15 VT_RFI_INS15
0x20123 VT_TAPSRIVAL16 VT_APS_INS(16)[3:0] VT_ERDI_INS(16)[2:0] VT_RDI_INS16 VT_RFI_INS16
0x20124 VT_TAPSRIVAL17 VT_APS_INS(17)[3:0] VT_ERDI_INS(17)[2:0] VT_RDI_INS17 VT_RFI_INS17
0x20125 VT_TAPSRIVAL18 VT_APS_INS(18)[3:0] VT_ERDI_INS(18)[2:0] VT_RDI_INS18 VT_RFI_INS18
0x20126 VT_TAPSRIVAL19 VT_APS_INS(19)[3:0] VT_ERDI_INS(19)[2:0] VT_RDI_INS19 VT_RFI_INS19
0x20127 VT_TAPSRIVAL20 VT_APS_INS(20)[3:0] VT_ERDI_INS(20)[2:0] VT_RDI_INS20 VT_RFI_INS20
0x20128 VT_TAPSRIVAL21 VT_APS_INS(21)[3:0] VT_ERDI_INS(21)[2:0] VT_RDI_INS21 VT_RFI_INS21
0x20129 VT_TAPSRIVAL22 VT_APS_INS(22)[3:0] VT_ERDI_INS(22)[2:0] VT_RDI_INS22 VT_RFI_INS22
0x2012A VT_TAPSRIVAL23 VT_APS_INS(23)[3:0] VT_ERDI_INS(23)[2:0] VT_RDI_INS23 VT_RFI_INS23
0x2012B VT_TAPSRIVAL24 VT_APS_INS(24)[3:0] VT_ERDI_INS(24)[2:0] VT_RDI_INS24 VT_RFI_INS24
0x2012C VT_TAPSRIVAL25 VT_APS_INS(25)[3:0] VT_ERDI_INS(25)[2:0] VT_RDI_INS25 VT_RFI_INS25
0x2012D VT_TAPSRIVAL26 VT_APS_INS(26)[3:0] VT_ERDI_INS(26)[2:0] VT_RDI_INS26 VT_RFI_INS26
0x2012E VT_TAPSRIVAL27 VT_APS_INS(27)[3:0] VT_ERDI_INS(27)[2:0] VT_RDI_INS27 VT_RFI_INS27
0x2012F VT_TAPSRIVAL28 VT_APS_INS(28)[3:0] VT_ERDI_INS(28)[2:0] VT_RDI_INS28 VT_RFI_INS28
TMXF28155 Supermapper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
186 Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 224. VT/TU Mapper Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Transmit Software Overwrite Parameters—R/W
For the following addresses, reference Table 214 on page 171.
0x20130 VT_TSWOW1 VT_OBIT_INS(1)[7:0] VT_Z6BYTE_INS(1)[7:0]
0x20131 VT_TSWOW2 VT_OBIT_INS(2)[7:0] VT_Z6BYTE_INS(2)[7:0]
0x20132 VT_TSWOW3 VT_OBIT_INS(3)[7:0] VT_Z6BYTE_INS(3)[7:0]
0x20133 VT_TSWOW4 VT_OBIT_INS(4)[7:0] VT_Z6BYTE_INS(4)[7:0]
0x20134 VT_TSWOW5 VT_OBIT_INS(5)[7:0] VT_Z6BYTE_INS(5)[7:0]
0x20135 VT_TSWOW6 VT_OBIT_INS(6)[7:0] VT_Z6BYTE_INS(6)[7:0]
0x20136 VT_TSWOW7 VT_OBIT_INS(7)[7:0] VT_Z6BYTE_INS(7)[7:0]
0x20137 VT_TSWOW8 VT_OBIT_INS(8)[7:0] VT_Z6BYTE_INS(8)[7:0]
0x20138 VT_TSWOW9 VT_OBIT_INS(9)[7:0] VT_Z6BYTE_INS(9)[7:0]
0x20139 VT_TSWOW10 VT_OBIT_INS(10)[7:0] VT_Z6BYTE_INS(10)[7:0]
0x2013A VT_TSWOW11 VT_OBIT_INS(11)[7:0] VT_Z6BYTE_INS(11)[7:0]
0x2013B VT_TSWOW12 VT_OBIT_INS(12)[7:0] VT_Z6BYTE_INS(12)[7:0]
0x2013C VT_TSWOW13 VT_OBIT_INS(13)[7:0] VT_Z6BYTE_INS(13)[7:0]
0x2013D VT_TSWOW14 VT_OBIT_INS(14)[7:0] VT_Z6BYTE_INS(14)[7:0]
0x2013E VT_TSWOW15 VT_OBIT_INS(15)[7:0] VT_Z6BYTE_INS(15)[7:0]
0x2013F VT_TSWOW16 VT_OBIT_INS(16)[7:0] VT_Z6BYTE_INS(16)[7:0]
0x20140 VT_TSWOW17 VT_OBIT_INS(17)[7:0] VT_Z6BYTE_INS(17)[7:0]
0x20141 VT_TSWOW18 VT_OBIT_INS(18)[7:0] VT_Z6BYTE_INS(18)[7:0]
0x20142 VT_TSWOW19 VT_OBIT_INS(19)[7:0] VT_Z6BYTE_INS(19)[7:0]
0x20143 VT_TSWOW20 VT_OBIT_INS(20)[7:0] VT_Z6BYTE_INS(20)[7:0]
0x20144 VT_TSWOW21 VT_OBIT_INS(21)[7:0] VT_Z6BYTE_INS(21)[7:0]
0x20145 VT_TSWOW22 VT_OBIT_INS(22)[7:0] VT_Z6BYTE_INS(22)[7:0]
0x20146 VT_TSWOW23 VT_OBIT_INS(23)[7:0] VT_Z6BYTE_INS(23)[7:0]
0x20147 VT_TSWOW24 VT_OBIT_INS(24)[7:0] VT_Z6BYTE_INS(24)[7:0]
0x20148 VT_TSWOW25 VT_OBIT_INS(25)[7:0] VT_Z6BYTE_INS(25)[7:0]
0x20149 VT_TSWOW26 VT_OBIT_INS(26)[7:0] VT_Z6BYTE_INS(26)[7:0]
0x2014A VT_TSWOW27 VT_OBIT_INS(27)[7:0] VT_Z6BYTE_INS(27)[7:0]
0x2014B VT_TSWOW28 VT_OBIT_INS(28)[7:0] VT_Z6BYTE_INS(28)[7:0]
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
187Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 224. VT/TU Mapper Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Transmit Signaling Control Param eters—R/W
For the following addresses, reference Table 215 on page 172.
0x2014C VT_TSIG_CTL1 VT_USE_FBIT1 VT_USE_PBIT1 VT_USE_SBIT1 VT_TXSIG_CH_SEL(1)[4:0]
0x2014D VT_TSIG_CTL2 VT_USE_FBIT2 VT_USE_PBIT2 VT_USE_SBIT2 VT_TXSIG_CH_SEL(2)[4:0]
0x2014E VT_TSIG_CTL3 VT_USE_FBIT3 VT_USE_PBIT3 VT_USE_SBIT3 VT_TXSIG_CH_SEL(3)[4:0]
0x2014F VT_TSIG_CTL4 VT_USE_FBIT4 VT_USE_PBIT4 VT_USE_SBIT4 VT_TXSIG_CH_SEL(4)[4:0]
0x20150 VT_TSIG_CTL5 VT_USE_FBIT5 VT_USE_PBIT5 VT_USE_SBIT5 VT_TXSIG_CH_SEL(5)[4:0]
0x20151 VT_TSIG_CTL6 VT_USE_FBIT6 VT_USE_PBIT6 VT_USE_SBIT6 VT_TXSIG_CH_SEL(6)[4:0]
0x20152 VT_TSIG_CTL7 VT_USE_FBIT7 VT_USE_PBIT7 VT_USE_SBIT7 VT_TXSIG_CH_SEL(7)[4:0]
0x20153 VT_TSIG_CTL8 VT_USE_FBIT8 VT_USE_PBIT8 VT_USE_SBIT8 VT_TXSIG_CH_SEL(8)[4:0]
0x20154 VT_TSIG_CTL9 VT_USE_FBIT9 VT_USE_PBIT9 VT_USE_SBIT9 VT_TXSIG_CH_SEL(9)[4:0]
0x20155 VT_TSIG_CTL10 VT_USE_FBIT10 VT_USE_PBIT10 VT_USE_SBIT10 VT_TXSIG_CH_SEL(10)[4:0]
0x20156 VT_TSIG_CTL11 VT_USE_FBIT11 VT_USE_PBIT11 VT_USE_SBIT11 VT_TXSIG_CH_SEL(11)[4:0]
0x20157 VT_TSIG_CTL12 VT_USE_FBIT12 VT_USE_PBIT12 VT_USE_SBIT12 VT_TXSIG_CH_SEL(12)[4:0]
0x20158 VT_TSIG_CTL13 VT_USE_FBIT13 VT_USE_PBIT13 VT_USE_SBIT13 VT_TXSIG_CH_SEL(13)[4:0]
0x20159 VT_TSIG_CTL14 VT_USE_FBIT14 VT_USE_PBIT14 VT_USE_SBIT14 VT_TXSIG_CH_SEL(14)[4:0]
0x2015A VT_TSIG_CTL15 VT_USE_FBIT15 VT_USE_PBIT15 VT_USE_SBIT15 VT_TXSIG_CH_SEL(15)[4:0]
0x2015B VT_TSIG_CTL16 VT_USE_FBIT16 VT_USE_PBIT16 VT_USE_SBIT16 VT_TXSIG_CH_SEL(16)[4:0]
0x2015C VT_TSIG_CTL17 VT_USE_FBIT17 VT_USE_PBIT17 VT_USE_SBIT17 VT_TXSIG_CH_SEL(17)[4:0]
0x2015D VT_TSIG_CTL18 VT_USE_FBIT18 VT_USE_PBIT18 VT_USE_SBIT18 VT_TXSIG_CH_SEL(18)[4:0]
0x2015E VT_TSIG_CTL19 VT_USE_FBIT19 VT_USE_PBIT19 VT_USE_SBIT19 VT_TXSIG_CH_SEL(19)[4:0]
0x2015F VT_TSIG_CTL20 VT_USE_FBIT20 VT_USE_PBIT20 VT_USE_SBIT20 VT_TXSIG_CH_SEL(20)[4:0]
0x20160 VT_TSIG_CTL21 VT_USE_FBIT21 VT_USE_PBIT21 VT_USE_SBIT21 VT_TXSIG_CH_SEL(21)[4:0]
0x20161 VT_TSIG_CTL22 VT_USE_FBIT22 VT_USE_PBIT22 VT_USE_SBIT22 VT_TXSIG_CH_SEL(22)[4:0]
0x20162 VT_TSIG_CTL23 VT_USE_FBIT23 VT_USE_PBIT23 VT_USE_SBIT23 VT_TXSIG_CH_SEL(23)[4:0]
0x20163 VT_TSIG_CTL24 VT_USE_FBIT24 VT_USE_PBIT24 VT_USE_SBIT24 VT_TXSIG_CH_SEL(24)[4:0]
0x20164 VT_TSIG_CTL25 VT_USE_FBIT25 VT_USE_PBIT25 VT_USE_SBIT25 VT_TXSIG_CH_SEL(25)[4:0]
0x20165 VT_TSIG_CTL26 VT_USE_FBIT26 VT_USE_PBIT26 VT_USE_SBIT26 VT_TXSIG_CH_SEL(26)[4:0]
0x20166 VT_TSIG_CTL27 VT_USE_FBIT27 VT_USE_PBIT27 VT_USE_SBIT27 VT_TXSIG_CH_SEL(27)[4:0]
0x20167 VT_TSIG_CTL28 VT_USE_FBIT28 VT_USE_PBIT28 VT_USE_SBIT28 VT_TXSIG_CH_SEL(28)[4:0]
TMXF28155 Supermapper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
188 Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 224. VT/TU Mapper Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
For the following addresses, reference Table 216 on page 172.
Channel 1 Transmit J2 Value Parameters—R/W
0x20168
0x20177
VT_J2BYTE_INS_R[1][1]
VT_J2BYTE_INS_R[1][16]
VT_J2BYTE_INS(1)(1)[7:0]
VT_J2BYTE_INS(1)(16)[7:0]
Channel 2 Transmit J2 Value Parameters—R/W
0x20178
0x20187
VT_J2BYTE_INS_R[2][1]
VT_J2BYTE_INS_R[2][16]
VT_J2BYTE_INS(2)(1)[7:0]
VT_J2BYTE_INS(2)(16)[7:0]
Channel 3 Transmit J2 Value Parameters—R/W
0x20188
0x20197
VT_J2BYTE_INS_R[3][1]
VT_J2BYTE_INS_R[3][16]
VT_J2BYTE_INS(3)(1)[7:0]
VT_J2BYTE_INS(3)(16)[7:0]
Channel 4 Transmit J2 Value Parameters—R/W
0x20198
0x201A7
VT_J2BYTE_INS_R[4][1]
VT_J2BYTE_INS_R[4][16]
VT_J2BYTE_INS(4)(1)[7:0]
VT_J2BYTE_INS(4)(16)[7:0]
Channel 5 Transmit J2 Value Parameters—R/W
0x201A8
0x201B7
VT_J2BYTE_INS_R[5][1]
VT_J2BYTE_INS_R[5][16]
VT_J2BYTE_INS(5)(1)[7:0]
VT_J2BYTE_INS(5)(16)[7:0]
Channel 6 Transmit J2 Value Parameters—R/W
0x201B8
0x201C7
VT_J2BYTE_INS_R[6][1]
VT_J2BYTE_INS_R[6][16]
VT_J2BYTE_INS(6)(1)[7:0]
VT_J2BYTE_INS(6)(16)[7:0]
Channel 7 Transmit J2 Value Parameters—R/W
0x201C8
0x201D7
VT_J2BYTE_INS_R[7][1]
VT_J2BYTE_INS_R[7][16]
VT_J2BYTE_INS(7)(1)[7:0]
VT_J2BYTE_INS(7)(16)[7:0]
Channel 8 Transmit J2 Value Parameters—R/W
0x201D8
0x201E7
VT_J2BYTE_INS_R[8][1]
VT_J2BYTE_INS_R[8][16]
VT_J2BYTE_INS(8)(1)[7:0]
VT_J2BYTE_INS(8)(16)[7:0]
Channel 9 Transmit J2 Value Parameters—R/W
0x201E8
0x201F7
VT_J2BYTE_INS_R[9][1]
VT_J2BYTE_INS_R[9][16]
VT_J2BYTE_INS(9)(1)[7:0]
VT_J2BYTE_INS(9)(16)[7:0]
Channel 10 Transmit J2 Value Parame ters—R/W
0x201F8
0x20207
VT_J2BYTE_INS_R[10][1]
VT_J2BYTE_INS_R[10][16]
VT_J2BYTE_INS(10)(1)[7:0]
VT_J2BYTE_INS(10)(16)[7:0]
Channel 11 Transmit J2 Value Parameters—R/W
0x20208
0x20217
VT_J2BYTE_INS_R[11][1]
VT_J2BYTE_INS_R[11][16]
VT_J2BYTE_INS(11)(1)[7:0]
VT_J2BYTE_INS(11)(16)[7:0]
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
189Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 224. VT/TU Mapper Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
For the following addresses, reference Table 216 on page 172.
Channel 12 Transmit J2 Value Parameters—R/W
0x20218
0x20227
VT_J2BYTE_INS_R[12][1]
VT_J2BYTE_INS_R[12][16]
VT_J2BYTE_INS(12)(1)[7:0]
VT_J2BYTE_INS(12)(16)[7:0]
Channel 13 Transmit J2 Value Parameters—R/W
0x20228
0x20237
VT_J2BYTE_INS_R[13][1]
VT_J2BYTE_INS_R[13][16]
VT_J2BYTE_INS(13)(1)[7:0]
VT_J2BYTE_INS(13)(16)[7:0]
Channel 14 Transmit J2 Value Parameters—R/W
0x20238
0x20247
VT_J2BYTE_INS_R[14][1]
VT_J2BYTE_INS_R[14][16]
VT_J2BYTE_INS(14)(1)[7:0]
VT_J2BYTE_INS(14)(16)[7:0]
Channel 15 Transmit J2 Value Parameters—R/W
0x20248
0x20257
VT_J2BYTE_INS_R[15][1]
VT_J2BYTE_INS_R[15][16]
VT_J2BYTE_INS(15)(1)[7:0]
VT_J2BYTE_INS(15)(16)[7:0]
Channel 16 Transmit J2 Value Parameters—R/W
0x20258
0x20267
VT_J2BYTE_INS_R[16][1]
VT_J2BYTE_INS_R[16][16]
VT_J2BYTE_INS(16)(1)[7:0]
VT_J2BYTE_INS(16)(16)[7:0]
Channel 17 Transmit J2 Value Parameters—R/W
0x20268
0x20277
VT_J2BYTE_INS_R[17][1]
VT_J2BYTE_INS_R[17][16]
VT_J2BYTE_INS(17)(1)[7:0]
VT_J2BYTE_INS(17)(16)[7:0]
Channel 18 Transmit J2 Value Parameters—R/W
0x20278
0x20287
VT_J2BYTE_INS_R[18][1]
VT_J2BYTE_INS_R[18][16]
VT_J2BYTE_INS(18)(1)[7:0]
VT_J2BYTE_INS(18)(16)[7:0]
Channel 19 Transmit J2 Value Parameters—R/W
0x20288
0x20297
VT_J2BYTE_INS_R[19][1]
VT_J2BYTE_INS_R[19][16]
VT_J2BYTE_INS(19)(1)[7:0]
VT_J2BYTE_INS(19)(16)[7:0]
Channel 20 Transmit J2 Value Parameters—R/W
0x20298
0x202A7
VT_J2BYTE_INS_R[20][1]
VT_J2BYTE_INS_R[20][16]
VT_J2BYTE_INS(20)(1)[7:0]
VT_J2BYTE_INS(20)(16)[7:0]
Channel 21 Transmit J2 Value Parameters—R/W
0x202A8
0x202B7
VT_J2BYTE_INS_R[21][1]
VT_J2BYTE_INS_R[21][16]
VT_J2BYTE_INS(21)(1)[7:0]
VT_J2BYTE_INS(21)(16)[7:0]
Channel 22 Transmit J2 Value Parameters—R/W
0x202B8
0x202C7
VT_J2BYTE_INS_R[22][1]
VT_J2BYTE_INS_R[22][16]
VT_J2BYTE_INS(22)(1)[7:0]
VT_J2BYTE_INS(22)(16)[7:0]
TMXF28155 Supermapper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
190 Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 224. VT/TU Mapper Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
For the following addresses, reference Table 216 on page 172.
Channel 23 Transmit J2 Value Parame ters—R/W
0x202C8
0x202D7
VT_J2BYTE_INS_R[23][1]
VT_J2BYTE_INS_R[23][16]
VT_J2BYTE_INS(23)(1)[7:0]
VT_J2BYTE_INS(23)(16)[7:0]
Channel 24 Transmit J2 Value Parame ters—R/W
0x202D8
0x202E7
VT_J2BYTE_INS_R[24][1]
VT_J2BYTE_INS_R[24][16]
VT_J2BYTE_INS(24)(1)[7:0]
VT_J2BYTE_INS(24)(16)[7:0]
Channel 25 Transmit J2 Value Parame ters—R/W
0x202E8
0x202F7
VT_J2BYTE_INS_R[25][1]
VT_J2BYTE_INS_R[25][16]
VT_J2BYTE_INS(25)(1)[7:0]
VT_J2BYTE_INS(25)(16)[7:0]
Channel 26 Transmit J2 Value Parame ters—R/W
0x202F8
0x20307
VT_J2BYTE_INS_R[26][1]
VT_J2BYTE_INS_R[26][16]
VT_J2BYTE_INS(26)(1)[7:0]
VT_J2BYTE_INS(26)(16)[7:0]
Channel 27 Transmit J2 Value Parame ters—R/W
0x20308
0x20317
VT_J2BYTE_INS_R[27][1]
VT_J2BYTE_INS_R[27][16]
VT_J2BYTE_INS(27)(1)[7:0]
VT_J2BYTE_INS(27)(16)[7:0]
Channel 28 Transmit J2 Value Parame ters—R/W
0x20318
0x20327
VT_J2BYTE_INS[28][1]
VT_J2BYTE_INS[28][16]
VT_J2BYTE_INS(28)(1)[7:0]
VT_J2BYTE_INS(28)(16)[7:0]
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
191Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 224. VT/TU Mapper Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Receive Control Parameters—R/W
For the following addresses, reference Table 217 on page 172.
0x20328 VT_RCTL1 VT_SF_ESF1 VT_WR_FBIT1 VT_SYNC_PBIT1 VT_RXSIG_CH_SEL(1)[4:0] VT_J2MON_MODE(1)[2:0] VT_RX_ERDI_EN1 VT_RX_MAPTYPE(1)[3:0]
0x20329 VT_RCTL2 VT_SF_ESF2 VT_WR_FBIT2 VT_SYNC_PBIT2 VT_RXSIG_CH_SEL(2)[4:0] VT_J2MON_MODE(2)[2:0] VT_RX_ERDI_EN2 VT_RX_MAPTYPE(2)[3:0]
0x2032A VT_RCTL3 VT_SF_ESF3 VT_WR_FBIT3 VT_SYNC_PBIT3 VT_RXSIG_CH_SEL(3)[4:0] VT_J2MON_MODE(3)[2:0] VT_RX_ERDI_EN3 VT_RX_MAPTYPE(3)[3:0]
0x2032B VT_RCTL4 VT_SF_ESF4 VT_WR_FBIT4 VT_SYNC_PBIT4 VT_RXSIG_CH_SEL(4)[4:0] VT_J2MON_MODE(4)[2:0] VT_RX_ERDI_EN4 VT_RX_MAPTYPE(4)[3:0]
0x2032C VT_RCTL5 VT_SF_ESF5 VT_WR_FBIT5 VT_SYNC_PBIT5 VT_RXSIG_CH_SEL(5)[4:0] VT_J2MON_MODE(5)[2:0] VT_RX_ERDI_EN5 VT_RX_MAPTYPE(5)[3:0]
0x2032D VT_RCTL6 VT_SF_ESF6 VT_WR_FBIT6 VT_SYNC_PBIT6 VT_RXSIG_CH_SEL(6)[4:0] VT_J2MON_MODE(6)[2:0] VT_RX_ERDI_EN6 VT_RX_MAPTYPE(6)[3:0]
0x2032E VT_RCTL7 VT_SF_ESF7 VT_WR_FBIT7 VT_SYNC_PBIT7 VT_RXSIG_CH_SEL(7)[4:0] VT_J2MON_MODE(7)[2:0] VT_RX_ERDI_EN7 VT_RX_MAPTYPE(7)[3:0]
0x2032F VT_RCTL8 VT_SF_ESF8 VT_WR_FBIT8 VT_SYNC_PBIT8 VT_RXSIG_CH_SEL(8)[4:0] VT_J2MON_MODE(8)[2:0] VT_RX_ERDI_EN8 VT_RX_MAPTYPE(8)[3:0]
0x20330 VT_RCTL9 VT_SF_ESF9 VT_WR_FBIT9 VT_SYNC_PBIT9 VT_RXSIG_CH_SEL(9)[4:0] VT_J2MON_MODE(9)[2:0] VT_RX_ERDI_EN9 VT_RX_MAPTYPE(9)[3:0]
0x20331 VT_RCTL10 VT_SF_ESF10 VT_WR_FBIT10 VT_SYNC_PBIT10 VT_RXSIG_CH_SEL(10)[4:0] VT_J2MON_MODE(10)[2:0] VT_RX_ERDI_EN10 VT_RX_MAPTYPE(10)[3:0]
0x20332 VT_RCTL11 VT_SF_ESF11 VT_WR_FBIT11 VT_SYNC_PBIT11 VT_RXSIG_CH_SEL(11)[4:0] VT_J2MON_MODE(11)[2:0] VT_RX_ERDI_EN11 VT_RX_MAPTYPE(11)[3:0]
0x20333 VT_RCTL12 VT_SF_ESF12 VT_WR_FBIT12 VT_SYNC_PBIT12 VT_RXSIG_CH_SEL(12)[4:0] VT_J2MON_MODE(12)[2:0] VT_RX_ERDI_EN12 VT_RX_MAPTYPE(12)[3:0]
0x20334 VT_RCTL13 VT_SF_ESF13 VT_WR_FBIT13 VT_SYNC_PBIT13 VT_RXSIG_CH_SEL(13)[4:0] VT_J2MON_MODE(13)[2:0] VT_RX_ERDI_EN13 VT_RX_MAPTYPE(13)[3:0]
0x20335 VT_RCTL14 VT_SF_ESF14 VT_WR_FBIT14 VT_SYNC_PBIT14 VT_RXSIG_CH_SEL(14)[4:0] VT_J2MON_MODE(14)[2:0] VT_RX_ERDI_EN14 VT_RX_MAPTYPE(14)[3:0]
0x20336 VT_RCTL15 VT_SF_ESF15 VT_WR_FBIT15 VT_SYNC_PBIT15 VT_RXSIG_CH_SEL(15)[4:0] VT_J2MON_MODE(15)[2:0] VT_RX_ERDI_EN15 VT_RX_MAPTYPE(15)[3:0]
0x20337 VT_RCTL16 VT_SF_ESF16 VT_WR_FBIT16 VT_SYNC_PBIT16 VT_RXSIG_CH_SEL(16)[4:0] VT_J2MON_MODE(16)[2:0] VT_RX_ERDI_EN16 VT_RX_MAPTYPE(16)[3:0]
0x20338 VT_RCTL17 VT_SF_ESF17 VT_WR_FBIT17 VT_SYNC_PBIT17 VT_RXSIG_CH_SEL(17)[4:0] VT_J2MON_MODE(17)[2:0] VT_RX_ERDI_EN17 VT_RX_MAPTYPE(17)[3:0]
0x20339 VT_RCTL18 VT_SF_ESF18 VT_WR_FBIT18 VT_SYNC_PBIT18 VT_RXSIG_CH_SEL(18)[4:0] VT_J2MON_MODE(18)[2:0] VT_RX_ERDI_EN18 VT_RX_MAPTYPE(18)[3:0]
0x2033A VT_RCTL19 VT_SF_ESF19 VT_WR_FBIT19 VT_SYNC_PBIT19 VT_RXSIG_CH_SEL(19)[4:0] VT_J2MON_MODE(19)[2:0] VT_RX_ERDI_EN19 VT_RX_MAPTYPE(19)[3:0]
0x2033B VT_RCTL20 VT_SF_ESF20 VT_WR_FBIT20 VT_SYNC_PBIT20 VT_RXSIG_CH_SEL(20)[4:0] VT_J2MON_MODE(20)[2:0] VT_RX_ERDI_EN20 VT_RX_MAPTYPE(20)[3:0]
0x2033C VT_RCTL21 VT_SF_ESF21 VT_WR_FBIT21 VT_SYNC_PBIT21 VT_RXSIG_CH_SEL(21)[4:0] VT_J2MON_MODE(21)[2:0] VT_RX_ERDI_EN21 VT_RX_MAPTYPE(21)[3:0]
0x2033D VT_RCTL22 VT_SF_ESF22 VT_WR_FBIT22 VT_SYNC_PBIT22 VT_RXSIG_CH_SEL(22)[4:0] VT_J2MON_MODE(22)[2:0] VT_RX_ERDI_EN22 VT_RX_MAPTYPE(22)[3:0]
0x2033E VT_RCTL23 VT_SF_ESF23 VT_WR_FBIT23 VT_SYNC_PBIT23 VT_RXSIG_CH_SEL(23)[4:0] VT_J2MON_MODE(23)[2:0] VT_RX_ERDI_EN23 VT_RX_MAPTYPE(23)[3:0]
0x2033F VT_RCTL24 VT_SF_ESF24 VT_WR_FBIT24 VT_SYNC_PBIT24 VT_RXSIG_CH_SEL(24)[4:0] VT_J2MON_MODE(24)[2:0] VT_RX_ERDI_EN24 VT_RX_MAPTYPE(24)[3:0]
0x20340 VT_RCTL25 VT_SF_ESF25 VT_WR_FBIT25 VT_SYNC_PBIT25 VT_RXSIG_CH_SEL(25)[4:0] VT_J2MON_MODE(25)[2:0] VT_RX_ERDI_EN25 VT_RX_MAPTYPE(25)[3:0]
0x20341 VT_RCTL26 VT_SF_ESF26 VT_WR_FBIT26 VT_SYNC_PBIT26 VT_RXSIG_CH_SEL(26)[4:0] VT_J2MON_MODE(26)[2:0] VT_RX_ERDI_EN26 VT_RX_MAPTYPE(26)[3:0]
0x20342 VT_RCTL27 VT_SF_ESF27 VT_WR_FBIT27 VT_SYNC_PBIT27 VT_RXSIG_CH_SEL(27)[4:0] VT_J2MON_MODE(27)[2:0] VT_RX_ERDI_EN27 VT_RX_MAPTYPE(27)[3:0]
0x20343 VT_RCTL28 VT_SF_ESF28 VT_WR_FBIT28 VT_SYNC_PBIT28 VT_RXSIG_CH_SEL(28)[4:0] VT_J2MON_MODE(28)[2:0] VT_RX_ERDI_EN28 VT_RX_MAPTYPE(28)[3:0]
TMXF28155 Supermapper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
192 Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 224. VT/TU Mapper Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Receive TU OverheadRO
For the following addresses, reference Table 218 on page 173.
0x20344 VT_RTUOH_CTL1 VT_Z6_BYTE(1)[7:0] VT_OBITS(1)[7:0]
0x20345 VT_RTUOH_CTL2 VT_Z6_BYTE(2)[7:0] VT_OBITS(2)[7:0]
0x20346 VT_RTUOH_CTL3 VT_Z6_BYTE(3)[7:0] VT_OBITS(3)[7:0]
0x20347 VT_RTUOH_CTL4 VT_Z6_BYTE(4)[7:0] VT_OBITS(4)[7:0]
0x20348 VT_RTUOH_CTL5 VT_Z6_BYTE(5)[7:0] VT_OBITS(5)[7:0]
0x20349 VT_RTUOH_CTL6 VT_Z6_BYTE(6)[7:0] VT_OBITS(6)[7:0]
0x2034A VT_RTUOH_CTL7 VT_Z6_BYTE(7)[7:0] VT_OBITS(7)[7:0]
0x2034B VT_RTUOH_CTL8 VT_Z6_BYTE(8)[7:0] VT_OBITS(8)[7:0]
0x2034C VT_RTUOH_CTL9 VT_Z6_BYTE(9)[7:0] VT_OBITS(9)[7:0]
0x2034D VT_RTUOH_CTL10 VT_Z6_BYTE(10)[7:0] VT_OBITS(10)[7:0]
0x2034E VT_RTUOH_CTL11 VT_Z6_BYTE(11)[7:0] VT_OBITS(11)[7:0]
0x2034F VT_RTUOH_CTL12 VT_Z6_BYTE(12)[7:0] VT_OBITS(12)[7:0]
0x20350 VT_RTUOH_CTL13 VT_Z6_BYTE(13)[7:0] VT_OBITS(13)[7:0]
0x20351 VT_RTUOH_CTL14 VT_Z6_BYTE(14)[7:0] VT_OBITS(14)[7:0]
0x20352 VT_RTUOH_CTL15 VT_Z6_BYTE(15)[7:0] VT_OBITS(15)[7:0]
0x20353 VT_RTUOH_CTL16 VT_Z6_BYTE(16)[7:0] VT_OBITS(16)[7:0]
0x20354 VT_RTUOH_CTL17 VT_Z6_BYTE(17)[7:0] VT_OBITS(17)[7:0]
0x20355 VT_RTUOH_CTL18 VT_Z6_BYTE(18)[7:0] VT_OBITS(18)[7:0]
0x20356 VT_RTUOH_CTL19 VT_Z6_BYTE(19)[7:0] VT_OBITS(19)[7:0]
0x20357 VT_RTUOH_CTL20 VT_Z6_BYTE(20)[7:0] VT_OBITS(20)[7:0]
0x20358 VT_RTUOH_CTL21 VT_Z6_BYTE(21)[7:0] VT_OBITS(21)[7:0]
0x20359 VT_RTUOH_CTL22 VT_Z6_BYTE(22)[7:0] VT_OBITS(22)[7:0]
0x2035A VT_RTUOH_CTL23 VT_Z6_BYTE(23)[7:0] VT_OBITS(23)[7:0]
0x2035B VT_RTUOH_CTL24 VT_Z6_BYTE(24)[7:0] VT_OBITS(24)[7:0]
0x2035C VT_RTUOH_CTL25 VT_Z6_BYTE(25)[7:0] VT_OBITS(25)[7:0]
0x2035D VT_RTUOH_CTL26 VT_Z6_BYTE(26)[7:0] VT_OBITS(26)[7:0]
0x2035E VT_RTUOH_CTL27 VT_Z6_BYTE(27)[7:0] VT_OBITS(27)[7:0]
0x2035F VT_RTUOH_CTL28 VT_Z6_BYTE(28)[7:0] VT_OBITS(28)[7:0]
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
193Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 224. VT/TU Mapper Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Receive BIP-2 Error Count ValuesRO
For the following addresses, reference Table 219 on page 173.
0x20360 VT_RBIP2_CNT1 VT_BIP2ERR_CNT(1)[11:0]
0x20361 VT_RBIP2_CNT2 VT_BIP2ERR_CNT(2)[11:0]
0x20362 VT_RBIP2_CNT3 VT_BIP2ERR_CNT(3)[11:0]
0x20363 VT_RBIP2_CNT4 VT_BIP2ERR_CNT(4)[11:0]
0x20364 VT_RBIP2_CNT5 VT_BIP2ERR_CNT(5)[11:0]
0x20365 VT_RBIP2_CNT6 VT_BIP2ERR_CNT(6)[11:0]
0x20366 VT_RBIP2_CNT7 VT_BIP2ERR_CNT(7)[11:0]
0x20367 VT_RBIP2_CNT8 VT_BIP2ERR_CNT(8)[11:0]
0x20368 VT_RBIP2_CNT9 VT_BIP2ERR_CNT(9)[11:0]
0x20369 VT_RBIP2_CNT10 VT_BIP2ERR_CNT(10)[11:0]
0x2036A VT_RBIP2_CNT11 VT_BIP2ERR_CNT(11)[11:0]
0x2036B VT_RBIP2_CNT12 VT_BIP2ERR_CNT(12)[11:0]
0x2036C VT_RBIP2_CNT13 VT_BIP2ERR_CNT(13)[11:0]
0x2036D VT_RBIP2_CNT14 VT_BIP2ERR_CNT(14)[11:0]
0x2036E VT_RBIP2_CNT15 VT_BIP2ERR_CNT(15)[11:0]
0x2036F VT_RBIP2_CNT16 VT_BIP2ERR_CNT(16)[11:0]
0x20370 VT_RBIP2_CNT17 VT_BIP2ERR_CNT(17)[11:0]
0x20371 VT_RBIP2_CNT18 VT_BIP2ERR_CNT(18)[11:0]
0x20372 VT_RBIP2_CNT19 VT_BIP2ERR_CNT(19)[11:0]
0x20373 VT_RBIP2_CNT20 VT_BIP2ERR_CNT(20)[11:0]
0x20374 VT_RBIP2_CNT21 VT_BIP2ERR_CNT(21)[11:0]
0x20375 VT_RBIP2_CNT22 VT_BIP2ERR_CNT(22)[11:0]
0x20376 VT_RBIP2_CNT23 VT_BIP2ERR_CNT(23)[11:0]
0x20377 VT_RBIP2_CNT24 VT_BIP2ERR_CNT(24)[11:0]
0x20378 VT_RBIP2_CNT25 VT_BIP2ERR_CNT(25)[11:0]
0x20379 VT_RBIP2_CNT26 VT_BIP2ERR_CNT(26)[11:0]
0x2037A VT_RBIP2_CNT27 VT_BIP2ERR_CNT(27)[11:0]
0x2037B VT_RBIP2_CNT28 VT_BIP2ERR_CNT(28)[11:0]
TMXF28155 Supermapper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
194 Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 224. VT/TU Mapper Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Receive REI-V Count ValuesRO
For the following addresses, reference Table 220 on page 173.
0x2037C VT_RREIV_CNT1 VT_REI_CNT(1)[10:0]
0x2037D VT_RREIV_CNT2 VT_REI_CNT(2)[10:0]
0x2037E VT_RREIV_CNT3 VT_REI_CNT(3)[10:0]
0x2037F VT_RREIV_CNT4 VT_REI_CNT(4)[10:0]
0x20380 VT_RREIV_CNT5 VT_REI_CNT(5)[10:0]
0x20381 VT_RREIV_CNT6 VT_REI_CNT(6)[10:0]
0x20382 VT_RREIV_CNT7 VT_REI_CNT(7)[10:0]
0x20383 VT_RREIV_CNT8 VT_REI_CNT(8)[10:0]
0x20384 VT_RREIV_CNT9 VT_REI_CNT(9)[10:0]
0x20385 VT_RREIV_CNT10 VT_REI_CNT(10)[10:0]
0x20386 VT_RREIV_CNT11 VT_REI_CNT(11)[10:0]
0x20387 VT_RREIV_CNT12 VT_REI_CNT(12)[10:0]
0x20388 VT_RREIV_CNT13 VT_REI_CNT(13)[10:0]
0x20389 VT_RREIV_CNT14 VT_REI_CNT(14)[10:0]
0x2038A VT_RREIV_CNT15 VT_REI_CNT(15)[10:0]
0x2038B VT_RREIV_CNT16 VT_REI_CNT(16)[10:0]
0x2038C VT_RREIV_CNT17 VT_REI_CNT(17)[10:0]
0x2038D VT_RREIV_CNT18 VT_REI_CNT(18)[10:0]
0x2038E VT_RREIV_CNT19 VT_REI_CNT(19)[10:0]
0x2038F VT_RREIV_CNT20 VT_REI_CNT(20)[10:0]
0x20390 VT_RREIV_CNT21 VT_REI_CNT(21)[10:0]
0x20391 VT_RREIV_CNT22 VT_REI_CNT(22)[10:0]
0x20392 VT_RREIV_CNT23 VT_REI_CNT(23)[10:0]
0x20393 VT_RREIV_CNT24 VT_REI_CNT(24)[10:0]
0x20394 VT_RREIV_CNT25 VT_REI_CNT(25)[10:0]
0x20395 VT_RREIV_CNT26 VT_REI_CNT(26)[10:0]
0x20396 VT_RREIV_CNT27 VT_REI_CNT(27)[10:0]
0x20397 VT_RREIV_CNT28 VT_REI_CNT(28)[10:0]
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
195Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 224. VT/TU Mapper Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Receive VT Pointer and Count ValuesRO
For the following addresses, reference Table 221 on page 174.
0x20398 VT_RPTR_CNT1 VT_STORED_PTR(1)[7:0] VT_PTR_DEC(1)[3:0] VT_PTR_INC(1)[3:0]
0x20399 VT_RPTR_CNT2 VT_STORED_PTR(2)[7:0] VT_PTR_DEC(2)[3:0] VT_PTR_INC(2)[3:0]
0x2039A VT_RPTR_CNT3 VT_STORED_PTR(3)[7:0] VT_PTR_DEC(3)[3:0] VT_PTR_INC(3)[3:0]
0x2039B VT_RPTR_CNT4 VT_STORED_PTR(4)[7:0] VT_PTR_DEC(4)[3:0] VT_PTR_INC(4)[3:0]
0x2039C VT_RPTR_CNT5 VT_STORED_PTR(5)[7:0] VT_PTR_DEC(5)[3:0] VT_PTR_INC(5)[3:0]
0x2039D VT_RPTR_CNT6 VT_STORED_PTR(6)[7:0] VT_PTR_DEC(6)[3:0] VT_PTR_INC(6)[3:0]
0x2039E VT_RPTR_CNT7 VT_STORED_PTR(7)[7:0] VT_PTR_DEC(7)[3:0] VT_PTR_INC(7)[3:0]
0x2039F VT_RPTR_CNT8 VT_STORED_PTR(8)[7:0] VT_PTR_DEC(8)[3:0] VT_PTR_INC(8)[3:0]
0x203A0 VT_RPTR_CNT9 VT_STORED_PTR(9)[7:0] VT_PTR_DEC(9)[3:0] VT_PTR_INC(9)[3:0]
0x203A1 VT_RPTR_CNT10 VT_STORED_PTR(10)[7:0] VT_PTR_DEC(10)[3:0] VT_PTR_INC(10)[3:0]
0x203A2 VT_RPTR_CNT11 VT_STORED_PTR(11)[7:0] VT_PTR_DEC(11)[3:0] VT_PTR_INC(11)[3:0]
0x203A3 VT_RPTR_CNT12 VT_STORED_PTR(12)[7:0] VT_PTR_DEC(12)[3:0] VT_PTR_INC(12)[3:0]
0x203A4 VT_RPTR_CNT13 VT_STORED_PTR(13)[7:0] VT_PTR_DEC(13)[3:0] VT_PTR_INC(13)[3:0]
0x203A5 VT_RPTR_CNT14 VT_STORED_PTR(14)[7:0] VT_PTR_DEC(14)[3:0] VT_PTR_INC(14)[3:0]
0x203A6 VT_RPTR_CNT15 VT_STORED_PTR(15)[7:0] VT_PTR_DEC(15)[3:0] VT_PTR_INC(15)[3:0]
0x203A7 VT_RPTR_CNT16 VT_STORED_PTR(16)[7:0] VT_PTR_DEC(16)[3:0] VT_PTR_INC(16)[3:0]
0x203A8 VT_RPTR_CNT17 VT_STORED_PTR(17)[7:0] VT_PTR_DEC(17)[3:0] VT_PTR_INC(17)[3:0]
0x203A9 VT_RPTR_CNT18 VT_STORED_PTR(18)[7:0] VT_PTR_DEC(18)[3:0] VT_PTR_INC(18)[3:0]
0x203AA VT_RPTR_CNT19 VT_STORED_PTR(19)[7:0] VT_PTR_DEC(19)[3:0] VT_PTR_INC(19)[3:0]
0x203AB VT_RPTR_CNT20 VT_STORED_PTR(20)[7:0] VT_PTR_DEC(20)[3:0] VT_PTR_INC(20)[3:0]
0x203AC VT_RPTR_CNT21 VT_STORED_PTR(21)[7:0] VT_PTR_DEC(21)[3:0] VT_PTR_INC(21)[3:0]
0x203AD VT_RPTR_CNT22 VT_STORED_PTR(22)[7:0] VT_PTR_DEC(22)[3:0] VT_PTR_INC(22)[3:0]
0x203AE VT_RPTR_CNT23 VT_STORED_PTR(23)[7:0] VT_PTR_DEC(23)[3:0] VT_PTR_INC(23)[3:0]
0x203AF VT_RPTR_CNT24 VT_STORED_PTR(24)[7:0] VT_PTR_DEC(24)[3:0] VT_PTR_INC(24)[3:0]
0x203B0 VT_RPTR_CNT25 VT_STORED_PTR(25)[7:0] VT_PTR_DEC(25)[3:0] VT_PTR_INC(25)[3:0]
0x203B1 VT_RPTR_CNT26 VT_STORED_PTR(26)[7:0] VT_PTR_DEC(26)[3:0] VT_PTR_INC(26)[3:0]
0x203B2 VT_RPTR_CNT27 VT_STORED_PTR(27)[7:0] VT_PTR_DEC(27)[3:0] VT_PTR_INC(27)[3:0]
0x203B3 VT_RPTR_CNT28 VT_STORED_PTR(28)[7:0] VT_PTR_DEC(28)[3:0] VT_PTR_INC(28)[3:0]
TMXF28155 Supermapper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
196 Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 224. VT/TU Mapper Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
For the following addresses, reference Table 222 on page 174.
Channel 1 Receive J2 Expected/Monitor Values—R/W, RO
0x203B4
0x203C3
VT_J2BYTE_EXP_R[1][1]
VT_J2BYTE_EXP_R[1][16]
VT_J2BYTE_EXP(1)(1)[7:0]
VT_J2BYTE_EXP(1)(16)[7:0]
VT_J2BYTE_DET(1)(1)[7:0]
VT_J2BYTE_DET(1)(16)[7:0]
Channel 2 Receive J2 Expected/Monitor Values—R/W, RO
0x203C4
0x203D3
VT_J2BYTE_EXP_R[2][1]
VT_J2BYTE_EXP_R[2][16]
VT_J2BYTE_EXP(2)(1)[7:0]
VT_J2BYTE_EXP(2)(16)[7:0]
VT_J2BYTE_DET(2)(1)[7:0]
VT_J2BYTE_DET(2)(16)[7:0]
Channel 3 Receive J2 Expected/Monitor Values—R/W, RO
0x203D4
0x203E3
VT_J2BYTE_EXP_R[3][1]
VT_J2BYTE_EXP_R[3][16]
VT_J2BYTE_EXP(3)(1)[7:0]
VT_J2BYTE_EXP(3)(16)[7:0]
VT_J2BYTE_DET(3)(1)[7:0]
VT_J2BYTE_DET(3)(16)[7:0]
Channel 4 Receive J2 Expected/Monitor Values—R/W, RO
0x203E4
0x203F3
VT_J2BYTE_EXP_R[4][1]
VT_J2BYTE_EXP_R[4][16]
VT_J2BYTE_EXP(4)(1)[7:0]
VT_J2BYTE_EXP(4)(16)[7:0]
VT_J2BYTE_DET(4)(1)[7:0]
VT_J2BYTE_DET(4)(16)[7:0]
Channel 5 Receive J2 Expected/Monitor Values—R/W, RO
0x203F4
0x20403
VT_J2BYTE_EXP_R[5][1]
VT_J2BYTE_EXP_R[5][16]
VT_J2BYTE_EXP(5)(1)[7:0]
VT_J2BYTE_EXP(5)(16)[7:0]
VT_J2BYTE_DET(5)(1)[7:0]
VT_J2BYTE_DET(5)(16)[7:0]
Channel 6 Receive J2 Expected/Monitor Values—R/W, RO
0x20404
0x20413
VT_J2BYTE_EXP_R[6][1]
VT_J2BYTE_EXP_R[6][16]
VT_J2BYTE_EXP(6)(1)[7:0]
VT_J2BYTE_EXP(6)(16)[7:0]
VT_J2BYTE_DET(6)(1)[7:0]
VT_J2BYTE_DET(6)(16)[7:0]
Channel 7 Receive J2 Expected/Monitor Values—R/W, RO
0x20414
0x20423
VT_J2BYTE_EXP_R[7][1]
VT_J2BYTE_EXP_R[7][16]
VT_J2BYTE_EXP(7)(1)[7:0]
VT_J2BYTE_EXP(7)(16)[7:0]
VT_J2BYTE_DET(7)(1)[7:0]
VT_J2BYTE_DET(7)(16)[7:0]
Channel 8 Receive J2 Expected/Monitor Values—R/W, RO
0x20424
0x20433
VT_J2BYTE_EXP_R[8][1]
VT_J2BYTE_EXP_R[8][16]
VT_J2BYTE_EXP(8)(1)[7:0]
VT_J2BYTE_EXP(8)(16)[7:0]
VT_J2BYTE_DET(8)(1)[7:0]
VT_J2BYTE_DET(8)(16)[7:0]
Channel 9 Receive J2 Expected/Monitor Values—R/W, RO
0x20434
0x20443
VT_J2BYTE_EXP_R[9][1]
VT_J2BYTE_EXP_R[9][16]
VT_J2BYTE_EXP(9)(1)[7:0]
VT_J2BYTE_EXP(9)(16)[7:0]
VT_J2BYTE_DET(9)(1)[7:0]
VT_J2BYTE_DET(9)(16)[7:0]
Channel 10 Receive J2 Expected/Monitor Values—R/W, RO
0x20444
0x20453
VT_J2BYTE_EXP_R[10][1]
VT_J2BYTE_EXP_R[10][16]
VT_J2BYTE_EXP(10)(1)[7:0]
VT_J2BYTE_EXP(10)(16)[7:0]
VT_J2BYTE_DET(10)(1)[7:0]
VT_J2BYTE_DET(10)(16)[7:0]
Channel 11 Receive J2 Expected/Monitor Values—R/W, RO
0x20454
0x20463
VT_J2BYTE_EXP_R[11][1]
VT_J2BYTE_EXP_R[11][16]
VT_J2BYTE_EXP(11)(1)[7:0]
VT_J2BYTE_EXP(11)(16)[7:0]
VT_J2BYTE_DET(11)(1)[7:0]
VT_J2BYTE_DET(11)(16)[7:0]
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
197Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 224. VT/TU Mapper Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
For the following addresses, reference Table 222 on page 174.
Channel 12 Receive J2 Expected/Monitor Values—R/W, RO
0x20464
0x20473
VT_J2BYTE_EXP_R[12][1]
VT_J2BYTE_EXP_R[12][16]
VT_J2BYTE_EXP(12)(1)[7:0]
VT_J2BYTE_EXP(12)(16)[7:0]
VT_J2BYTE_DET(12)(1)[7:0]
VT_J2BYTE_DET(12)(16)[7:0]
Channel 13 Receive J2 Expected/Monitor Values—R/W, RO
0x20474
0x20483
VT_J2BYTE_EXP_R[13][1]
VT_J2BYTE_EXP_R[13][16]
VT_J2BYTE_EXP(13)(1)[7:0]
VT_J2BYTE_EXP(13)(16)[7:0]
VT_J2BYTE_DET(13)(1)[7:0]
VT_J2BYTE_DET(13)(16)[7:0]
Channel 14 Receive J2 Expected/Monitor Values—R/W, RO
0x20484
0x20493
VT_J2BYTE_EXP_R[14][1]
VT_J2BYTE_EXP_R[14][16]
VT_J2BYTE_EXP(14)(1)[7:0]
VT_J2BYTE_EXP(14)(16)[7:0]
VT_J2BYTE_DET(14)(1)[7:0]
VT_J2BYTE_DET()14(16)[7:0]
Channel 15 Receive J2 Expected/Monitor Values—R/W, RO
0x20494
0x204A3
VT_J2BYTE_EXP_R[15][1]
VT_J2BYTE_EXP_R[15][16]
VT_J2BYTE_EXP(15)(1)[7:0]
VT_J2BYTE_EXP(15)(16)[7:0]
VT_J2BYTE_DET(15)(1)[7:0]
VT_J2BYTE_DET(15)(16)[7:0]
Channel 16 Receive J2 Expected/Monitor Values—R/W, RO
0x204A4
0x204B3
VT_J2BYTE_EXP_R[16][1]
VT_J2BYTE_EXP_R[16][16]
VT_J2BYTE_EXP(16)(1)[7:0]
VT_J2BYTE_EXP(16)(16)[7:0]
VT_J2BYTE_DET(16)(1)[7:0]
VT_J2BYTE_DET(16)(16)[7:0]
Channel 17 Receive J2 Expected/Monitor Values—R/W, RO
0x204B4
0x204C3
VT_J2BYTE_EXP_R[17][1]
VT_J2BYTE_EXP_R[17][16]
VT_J2BYTE_EXP(17)(1)[7:0]
VT_J2BYTE_EXP(17)(16)[7:0]
VT_J2BYTE_DET(17)(1)[7:0]
VT_J2BYTE_DET(17)(16)[7:0]
Channel 18 Receive J2 Expected/Monitor Values—R/W, RO
0x204C4
0x204D3
VT_J2BYTE_EXP_R[18][1]
VT_J2BYTE_EXP_R[18][16]
VT_J2BYTE_EXP(18)(1)[7:0]
VT_J2BYTE_EXP(18)(16)[7:0]
VT_J2BYTE_DET(18)(1)[7:0]
VT_J2BYTE_DET(18)(16)[7:0]
Channel 19 Receive J2 Expected/Monitor Values—R/W, RO
0x204D4
0x204E3
VT_J2BYTE_EXP_R[19][1]
VT_J2BYTE_EXP_R[19][16]
VT_J2BYTE_EXP(19)(1)[7:0]
VT_J2BYTE_EXP(19)(16)[7:0]
VT_J2BYTE_DET(19)(1)[7:0]
VT_J2BYTE_DET(19)(16)[7:0]
Channel 20 Receive J2 Expected/Monitor Values—R/W, RO
0x204E4
0x204F3
VT_J2BYTE_EXP_R[20][1]
VT_J2BYTE_EXP_R[20][16]
VT_J2BYTE_EXP(20)(1)[7:0]
VT_J2BYTE_EXP(20)(16)[7:0]
VT_J2BYTE_DET(20)(1)[7:0]
VT_J2BYTE_DET(20)(16)[7:0]
Channel 21 Receive J2 Expected/Monitor Values—R/W, RO
0x204F4
0x20503
VT_J2BYTE_EXP_R[21][1]
VT_J2BYTE_EXP_R[21][16]
VT_J2BYTE_EXP(21)(1)[7:0]
VT_J2BYTE_EXP(21)(16)[7:0]
VT_J2BYTE_DET(21)(1)[7:0]
VT_J2BYTE_DET(21)(16)[7:0]
Channel 22 Receive J2 Expected/Monitor Values—R/W, RO
0x20504
0x20513
VT_J2BYTE_EXP_R[22][1]
VT_J2BYTE_EXP_R[22][16]
VT_J2BYTE_EXP(22)(1)[7:0]
VT_J2BYTE_EXP(22)(16)[7:0]
VT_J2BYTE_DET(22)(1)[7:0]
VT_J2BYTE_DET(22)(16)[7:0]
TMXF28155 Supermapper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
198 Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 224. VT/TU Mapper Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
For the following addresses, reference Table 222 on page 174.
Channel 23 Receive J2 Expected/Monitor Values—R/W, RO
0x20514
0x20523
VT_J2BYTE_EXP_R[23][1]
VT_J2BYTE_EXP_R[23][16]
VT_J2BYTE_EXP(23)(1)[7:0]
VT_J2BYTE_EXP(23)(16)[7:0]
VT_J2BYTE_DET(23)(1)[7:0]
VT_J2BYTE_DET(23)(16)[7:0]
Channel 24 Receive J2 Expected/Monitor Values—R/W, RO
0x20524
0x20533
VT_J2BYTE_EXP_R[24][1]
VT_J2BYTE_EXP_R[24][16]
VT_J2BYTE_EXP(24)(1)[7:0]
VT_J2BYTE_EXP(24)(16)[7:0]
VT_J2BYTE_DET(24)(1)[7:0]
VT_J2BYTE_DET(24)(16)[7:0]
Channel 25 Receive J2 Expected/Monitor Values—R/W, RO
0x20534
0x20543
VT_J2BYTE_EXP_R[25][1]
VT_J2BYTE_EXP_R[25][16]
VT_J2BYTE_EXP(25)(1)[7:0]
VT_J2BYTE_EXP(25)(16)[7:0]
VT_J2BYTE_DET(25)(1)[7:0]
VT_J2BYTE_DET(25)(16)[7:0]
Channel 26 Receive J2 Expected/Monitor Values—R/W, RO
0x20544
0x20553
VT_J2BYTE_EXP_R[26][1]
VT_J2BYTE_EXP_R[26][16]
VT_J2BYTE_EXP(26)(1)[7:0]
VT_J2BYTE_EXP(26)(16)[7:0]
VT_J2BYTE_DET(26)(1)[7:0]
VT_J2BYTE_DET(26)(16)[7:0]
Channel 27 Receive J2 Expected/Monitor Values—R/W, RO
0x20554
0x20563
VT_J2BYTE_EXP_R[27][1]
VT_J2BYTE_EXP_R[27][16]
VT_J2BYTE_EXP(27)(1)[7:0]
VT_J2BYTE_EXP(27)(16)[7:0]
VT_J2BYTE_DET(27)(1)[7:0]
VT_J2BYTE_DET(27)(16)[7:0]
Channel 28 Receive J2 Expected/Monitor Values—R/W, RO
0x20564
0x20573
VT_J2BYTE_EXP_R[28][1]
VT_J2BYTE_EXP_R[28][16]
VT_J2BYTE_EXP(28)(1)[7:0]
VT_J2BYTE_EXP(28)(16)[7:0]
VT_J2BYTE_DET(28)(1)[7:0]
VT_J2BYTE_DET(28)(16)[7:0]
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
199Agere Systems Inc.
10 VT/TU Mapper Registers (continued)
Table 224. VT/TU Mapper Register Map (continued)
Note: Registers from 0x20590 to 0x20969 are reserved and should not be read.
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Transmit Elastic Store Threshold Control—R/W
For the following addresses, reference Table 223 on page 174.
0x20574 VT_THRES_CTL1 VT_HIGH_THRES(1)[6:0] VT_LOW_THRES(1)[6:0]
0x20575 VT_THRES_CTL2 VT_HIGH_THRES(2)[6:0] VT_LOW_THRES(2)[6:0]
0x20576 VT_THRES_CTL3 VT_HIGH_THRES(3)[6:0] VT_LOW_THRES(3)[6:0]
0x20577 VT_THRES_CTL4 VT_HIGH_THRES(4)[6:0] VT_LOW_THRES(4)[6:0]
0x20578 VT_THRES_CTL5 VT_HIGH_THRES(5)[6:0] VT_LOW_THRES(5)[6:0]
0x20579 VT_THRES_CTL6 VT_HIGH_THRES(6)[6:0] VT_LOW_THRES(6)[6:0]
0x2057A VT_THRES_CTL7 VT_HIGH_THRES(7)[6:0] VT_LOW_THRES(7)[6:0]
0x2057B VT_THRES_CTL8 VT_HIGH_THRES(8)[6:0] VT_LOW_THRES(8)[6:0]
0x2057C VT_THRES_CTL9 VT_HIGH_THRES(9)[6:0] VT_LOW_THRES(9)[6:0]
0x2057D VT_THRES_CTL10 VT_HIGH_THRES(10)[6:0] VT_LOW_THRES(10)[6:0]
0x2057E VT_THRES_CTL11 VT_HIGH_THRES(11)[6:0] VT_LOW_THRES(11)[6:0]
0x2057F VT_THRES_CTL12 VT_HIGH_THRES(12)[6:0] VT_LOW_THRES(12)[6:0]
0x20580 VT_THRES_CTL13 VT_HIGH_THRES(13)[6:0] VT_LOW_THRES(13)[6:0]
0x20581 VT_THRES_CTL14 VT_HIGH_THRES(14)[6:0] VT_LOW_THRES(14)[6:0]
0x20582 VT_THRES_CTL15 VT_HIGH_THRES(15)[6:0] VT_LOW_THRES(15)[6:0]
0x20583 VT_THRES_CTL16 VT_HIGH_THRES(16)[6:0] VT_LOW_THRES(16)[6:0]
0x20584 VT_THRES_CTL17 VT_HIGH_THRES(17)[6:0] VT_LOW_THRES(17)[6:0]
0x20585 VT_THRES_CTL18 VT_HIGH_THRES(18)[6:0] VT_LOW_THRES(18)[6:0]
0x20586 VT_THRES_CTL19 VT_HIGH_THRES(19)[6:0] VT_LOW_THRES(19)[6:0]
0x20587 VT_THRES_CTL20 VT_HIGH_THRES(20)[6:0] VT_LOW_THRES(20)[6:0]
0x20588 VT_THRES_CTL21 VT_HIGH_THRES(21)[6:0] VT_LOW_THRES(21)[6:0]
0x20589 VT_THRES_CTL22 VT_HIGH_THRES(22)[6:0] VT_LOW_THRES(22)[6:0]
0x2058A VT_THRES_CTL23 VT_HIGH_THRES(23)[6:0] VT_LOW_THRES(23)[6:0]
0x2058B VT_THRES_CTL24 VT_HIGH_THRES(24)[6:0] VT_LOW_THRES(24)[6:0]
0x2058C VT_THRES_CTL25 VT_HIGH_THRES(25)[6:0] VT_LOW_THRES(25)[6:0]
0x2058D VT_THRES_CTL26 VT_HIGH_THRES(26)[6:0] VT_LOW_THRES(26)[6:0]
0x2058E VT_THRES_CTL27 VT_HIGH_THRES(27)[6:0] VT_LOW_THRES(27)[6:0]
0x2058F VT_THRES_CTL28 VT_HIGH_THRES(28)[6:0] VT_LOW_THRES(28)[6:0]
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
200 Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers
Table of Con t ents
Contents Page
11 M13/M23 MUX/DeMUX Registers ...................................................................................................................200
11.1 M13 Block Register Descriptions .............................................................................................................202
11.2 M13 Register Map....................................................................................................................................231
Tables Page
Table 224. M13_ID_R, M13 Block Identification (RO)...........................................................................................202
Table 225. M13_VERSION_R, M13 Version (RO) ................................................................................................202
Table 226. M13_DELTA1, Delta (RO)....................................................................................................................202
Table 227. M13_DELTA2, Delta (RO)....................................................................................................................203
Table 228. M13_DELTA3, Delta (RO)....................................................................................................................203
Table 229. M13_DELTA4, Delta (RO)....................................................................................................................204
Table 230. M13_DELTA5, Delta (RO)....................................................................................................................205
Table 231. M13_MASK1, Mask (R/W)...................................................................................................................205
Table 232. M13_MASK2, Mask (R/W)...................................................................................................................206
Table 233. M13_MASK3, Mask (R/W)...................................................................................................................206
Table 234. M13_MASK4, Mask (R/W)...................................................................................................................207
Table 235. M13_MASK5, Mask (R/W)...................................................................................................................208
Table 236. M13_DS3_STATUS1, Status (RO) ......................................................................................................208
Table 237. M13_DS3_STATUS2, Status (RO) ......................................................................................................209
Table 238. M13_XC_DS2_LOCD_R, DS2 Loss of Clock Delta (RO)....................................................................209
Table 239. M13_XC_DS2_AIS_DETD_R, DS2 Alarm Indication Signal Detection Delta (RO).............................209
Table 240. M13_DS2_OOFD_R, DS2 Out-Of-Frame Delta (RO) .........................................................................210
Table 241. M13_DS2_LOFD_R, DS2 Loss-Of-Frame Delta (RO) ........................................................................210
Table 242. M13_DS2_AIS_DETD_R, DS2 Alarm Indication Signal Detect Delta (RO) ........................................210
Table 243. M13_DS2_RAI_DETD_R, DS2 Remote Alarm Indication Detection Delta (RO).................................210
Table 244. M13_DS2_LB_DETD_R, DS2 Loopback Detect Delta (RO)...............................................................211
Table 245. M13_DS2_RSV_RCVD_R, DS2 Receive Reserved Bit Delta (RO)....................................................211
Table 246. M13_DS2DMX_LOCD_R, DS2 DeMUX Loss of Clock Delta (RO).....................................................211
Table 247. M13_DS1_LOCD_R[1—4], DS1 Loss of Clock Delta Registers (RO).................................................211
Table 248. M13_DS1_AIS_DETD_R[1—4], DS1 Alarm Indication Signal Delta Registers (RO)..........................212
Table 249. M13_DS1_LB_DETD_R[1—4], DS1 Loopback Detect Delta Registers (RO).....................................212
Table 250. M13__XC_DS2_LOC_R, DS2 Loss of Clock Status (RO) ..................................................................212
Table 251. M13_XC_DS2_AIS_DET_R, DS2 Alarm Indication Signal Detect Status (RO)..................................212
Table 252. M13_DS2_OOF_R, DS2 Out-Of-Frame Status (RO)..........................................................................213
Table 253. M13_DS2_LOF_R, DS2 Loss of Frame Status (RO) ..........................................................................213
Table 254. M13_DS2_AIS_DET_R, DS2 Alarm Indication Signal Detect Status (RO) .........................................213
Table 255. M13_DS2_RAI_DET_R, DS2 Remote Alarm Indication Detect Status (RO) ......................................213
Table 256. M13_DS2_LB_DET_R, DS2 Loopback Detect Status (RO)................................................................214
Table 257. M13_DS2_RSV_RCV_R, DS2 Receive Reserved Bit Delta Status (RO) ...........................................214
Table 258. M13_DS2DMX_LOC_R, DS2 DeMUX Loss of Clock Status (RO)......................................................214
Table 259. M13_DS1_LOC_R[1—4], DS1 Loss of Clock Status Registers (RO)..................................................214
Table 260. M13_DS1_AIS_DET_R[1—4], DS1 Alarm Indication Signal Detect Status Registers (RO) ...............215
Table 261. M13_DS1_LB_DET_R[1—4], DS1 Loopback Detect Status Registers (RO)......................................215
Table 262. M13_DS1_FEAC_LB_DETD_R[1—4], DS1 Far-End Alarm and Control Loopback Detect Delta
Registers (RO) ......................................................................................................................................215
Table 263. M13_DS1_FEAC_LB_DET_R[1—4], DS1 Far-End Alarm and Control Loopback Detect Status
Registers (RO) ......................................................................................................................................216
Table 264. M13_RFEAC_CODE_R, Receive Far-End Alarm and Control Code Status (RO)..............................216
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
11 M13/M23 MUX/DeMUX Registers (continued)
201Agere Systems Inc.
Table of Conten ts (continued)
Tables Page
Table 265. M13_RDL_STATUS, Receive Data-Link Status (RO)..........................................................................216
Table 266. M13_RDL_DATA_R, Receive Data-Link Data (RO) ............................................................................217
Table 267. M13_RDL_FRAME_SIZE_R, Receive Data-Link Frame Size (RO)....................................................217
Table 268. M13_RHDLC_STATUS_R, Receive High-Level Data-Link Control Status (RO).................................217
Table 269. M13_DS2_FORCE_OOF_R, DS2 Force Out-Of-Frame (One Shot R/W)...........................................217
Table 270. M13_CONTROL1, Control 1 (One Shot R/W) .....................................................................................218
Table 271. M13_CONTROL2, Control 2 (R/W) .....................................................................................................218
Table 272. M13_CONTROL3, Control 3 (R/W) ....................................................................................................219
Table 273. M13_SP_OFFSET_R, Sync Pulse Offset (R/W) .................................................................................219
Table 274. M13_SP_D_OFFSET_R, Sync Pulse D Offset (R/W) .........................................................................219
Table 275. M13_M12_MUX_CONTROL1_R[1—7], M12 MUX CONTROL 1 Registers [1—7] (R/W) ..................220
Table 276. M13_M12_MUX_CONTROL2_R[1—7], M12 MUX CONTROL 2 Registers [1—7] (R/W) ..................220
Table 277. M13_DS2_RAI_SEND_R, DS2 Remote Alarm Indication Send (R/W) ...............................................220
Table 278. M13_DS2_RSV_SEND_R, DS2 Reserve Bit Send (R/W)...................................................................220
Table 279. M13_DS2_MPINV_R, DS2 M Frame Alignment or Parity Error (R/W)................................................221
Table 280. M13_DS2_FINV_R, DS2 Frame Error (R/W) ......................................................................................221
Table 281. M13_DS2_P_BER_R, Parity Bit Error Rate (R/W)..............................................................................221
Table 282. M13_DS2M12_EDGE_R, DS2 M12 Edge (R/W) ................................................................................221
Table 283. M13_DS2_FORCE_AIS_R, DS2 Force Alarm Indication Signal (R/W)...............................................221
Table 284. M13_M12_DEMUX_CONTROL1_R[1—7], M12 DeMUX Control 1 Registers [1—7] (R/W)...............222
Table 285. M13_M12_DEMUX_CONTROL2_R[1—7], M12 DeMUX Control 2 Registers [1—7] (R/W)...............222
Table 286. M13_M12_DEMUX_CONTROL3, DS2 M12 DeMUX Control 3 (R/W)................................................222
Table 287. M13_DMDS2_EDGE_R, DS2 Edge for M12 DeMUX (R/W)...............................................................223
Table 288. M13_DS3_CONTROL1, DS3 Control 1 (R/W) ....................................................................................223
Table 289. M13_DS3_CONTROL2, DS3 Control 2 (R/W) ....................................................................................224
Table 290. M13_TFEAC_CONTROL, Tx FEAC Control (R/W).............................................................................224
Table 291. M13_THDLC_CONTROL1, Tx HDLC Control 1 (R/W)........................................................................225
Table 292. M13_THDLC_CONTROL2, Tx HDLC Control 2 (R/W)........................................................................225
Table 293. M13_DS2_LB_REQ_R, DS2 Loopback Request (R/W)......................................................................225
Table 294. M13_SEL_DS2_LB_R, Select DS2 Loopback (R/W) ..........................................................................226
Table 295. M13_RDS2_EDGE_R[1—2], Rx DS2 Edge Registers [1—2](R/W)....................................................226
Table 296. M13_DS2_OUT_IDLE_R, DS2 Output Idle (R/W)...............................................................................226
Table 297. M13_DS2_OUT_AIS_R, DS2 Output Alarm Indication Signal (R/W)..................................................226
Table 298. M13_TDS2_EDGE_R, Tx DS2 Edge (R/W)........................................................................................227
Table 299. M13_RDL_CONTROL, RDL Control (R/W).........................................................................................227
Table 300. M13_PM_CNT_ACT_R, Performance Counter (RO) ..........................................................................227
Table 301. M13_DS3_FERR_CNT_R[1—2], DS3 F-Bit Error Registers (RO)......................................................227
Table 302. M13_DS3_FEBE_CNT_R[1—2], DS3 Far-End Block Error Registers (RO) .......................................228
Table 303. M13_DS3_CPERR_CNT_R[1—2], DS3 C-Bit Parity Error Registers (RO).........................................228
Table 304. M13_DS3_PERR_CNT_R[1—2], DS3 P-Bit Error Registers (RO)......................................................228
Table 305. M13_DS2_PERR_CNT[7—1]_R[1—2], P-Bit Error Counter Status Registers (RO)...........................228
Table 306. M13_DS2_FERR_CNT[7—1]_R, F-Bit Error Counter Status Registers (RO).....................................229
Table 307. M13_BPV_CNT_R[1—3], Bipolar Violation Counter Status Registers (RO) .......................................229
Table 308. M13_EXZ_CNT_R[1—3], Bipolar Violation Counter Status Registers (RO)........................................230
Table 309. M13_TDL_BUFFER_R, Tx Data-Link Buffer Control (R/W) ................................................................230
Table 310. M13_TDL_0DATA_R[0—63], Tx Data for Path Maintenance Data-Link Buffer 0 Registers
(64 Bytes x 8 Bits) (R/W).....................................................................................................................230
Table 311. M13_TDL_1DATA_R[0—63], Tx Data for Path Maintenance Data-Link Buffer 1 Registers
(64 Bytes x 8 Bits) (R/W).....................................................................................................................230
Table 312. M13 Register Address Map .................................................................................................................231
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
202 Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
11.1 M13 Block Register Descriptions
The following tables describe the functions of all bits. For each address, the register bits are indicated as either
read/write (R/W) or read only (RO), and the value of the bits on reset is given.
Table 224. M13_ID_R, M13 Block Identification (RO)
Table 225. M13_VERSION_R, M13 Version (RO)
Note: All bit description in the function column in Table 226 can be found in Table 236 on page 208.
Table 226. M13_DELTA1, Delta (RO)
Address Bit Name Function Reset
Default
0x10000 15:8 RSVD Reserved. 0x00
7:0 M13_ID[7:0] The M13_ID_R register returns a fixed value (0x01) when
read. 0x01
Address Bit Name Function Reset
Default
0x10001 15:3 RSVD Reserved. 0x000
2:0 M13_VERSION[2:0] These bits identify the version number of the M13. 0x0
Address Bit Name Function Reset
Default
0x10004 15:8 RSVD Reserved. 0x00
7 M13_RDL_IDLED This delta bit is set if M13_RDL_IDLE changes state. It
can be programmed to be either clear on read (COR) or
clear on write (COW), and it is not set to 1 again until
another state transition occurs.
0
6 M13_DS3_LOFD This delta bit is set if M13_DS3_LOF changes state. It
can be programmed to be either clear on read (COR) or
clear on write (COW), and it is not set to 1 again until
another state transition occurs.
0
5 M13_DS3_OOFD This delta bit is set if M13_DS3_OOF changes state. It
can be programmed to be either clear on read (COR) or
clear on write (COW), and it is not set to 1 again until
another state transition occurs.
0
4 M13_DS3_C1_DETD This delta bit is set if M13_DS3_C1_DET changes state.
It is cleared when read, and it is not set to 1 again until
another state transition occurs.
0
3 M13_DS3_RAI_DETD This delta bit is set if M13_DS3_RAI_DET changes state.
It can be programmed to be either clear on read (COR) or
clear on write (COW), and it is not set to 1 again until
another state transition occurs.
0
2 M13_DS3_AISPAT_DETD This delta bit is set if M13_DS3_AISPAT_DET changes
state. It can be programmed to be either clear on read
(COR) or clear on write (COW), and it is not set to 1
again until another state transition occurs.
0
1 M13_DS3_IDLEPAT_DETD This delta bit is set if M13_DS3_IDLEPAT_DET changes
state. It can be programmed to be either clear on read
(COR) or clear on write (COW), and it is not set to 1
again until another state transition occurs.
0
0 M13_DS3_CBZ_DETD This delta bit is set if M13_DS3_CBZ_DET changes
state. It can be programmed to be either clear on read
(COR) or clear on write (COW), and it is not set to 1
again until another state transition occurs.
0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
203Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 227. M13_DELTA2, Delta (RO)
Table 228. M13_DELTA3, Delta (RO)
Address Bit Name Function Reset
Default
0x10005 15:8 RSVD Reserved. 0x00
7 M13_DS1_LB_SD Delta Bit. This delta bit summarizes the state of
M13_DS1_LB_DETD[28:1] (Table 249 on page 212) bits. 0
6 M13_DS1_AIS_SD Delta Bit. This delta bit is set if any M13_DS1_AIS_DETD[28:1]
(Table 248 on page 212) bit is high. 0
5 M13_DS1_LOC_SD Delta Bit. This delta bit is set if any M13_DS1_LOCD[28:1]
(Table 247 on page 211) bit is high. 0
4 M13_RDS3_SEFD Delta Bit. This delta bit is set if M13_RDS3_SEF (Table 237 on
page 209) changes state. It can be programmed to be either
clear on read (COR) or clear on write (COW), and it is not set to
1 again until another state transition occurs.
0
3 M13_RDS3_ALL1_
DETD Delta Bit. This delta bit is set if M13_RDS3_ALL1_DET
(Table 237 on page 209) changes state. It can be programmed
to be either clear on read (COR) or clear on write (COW), and it
is not set to 1 again until another state transition occurs.
0
2 M13_RDS3_LOSD Delta Bit. This delta bit is set if M13_RDS3_LOS (Table 237 on
page 209) changes state. It can be programmed to be either
clear on read (COR) or clear on write (COW), and it is not set to
1 again until another state transition occurs.
0
1 M13_TDS3_LOCD Delta Bit. This delta bit is set if M13_TDS3_LOC (Table 237 on
page 209) changes state. It can be programmed to be either
clear on read (COR) or clear on write (COW), and it is not set to
1 again until another state transition occurs.
0
0 M13_RDS3_LOCD Delta Bit. This delta bit is set if M13_RDS3_LOC (Table 237 on
page 209) changes state. It can be programmed to be either
clear on read (COR) or clear on write (COW), and it is not set to
1 again until another state transition occurs.
0
Address Bit Name Function Reset
Default
0x10006 15:8 RSVD Reserved. 0x00
7 M13_DS2_RSV_SD Delta Bit. This delta bit is high if any
M13_DS2_RSV_RCVD[7:1] (Table 245 on page 211) bit is
high.
0
6 M13_DS2_LB_SD Delta Bit. This delta bit summarizes the state of
M13_DS2_LB_DETD[7:1] (Table 244 on page 211). 0
5 M13_DS2_RAI_SD Delta Bit. This delta bit summarizes the state of
M13_DS2_RAI_DETD[7:1] (Table 243 on page 210). 0
4 M13_DS2_AIS_SD Delta Bit. This delta bit summarizes the state of
M13_DS2_AIS_DETD[7:1] (Table 242 on page 210). 0
3 M13_DS2_LOF_SD Delta Bit. This delta bit is high if any M13_DS2_LOFD[7:1]
(Table 241 on page 210) bit is high. 0
2 M13_DS2_OOF_SD Delta Bit. This delta bit is high if any M13_DS2_OOFD[7:1]
(Table 240 on page 210) bit is high. 0
1 M13_XC_DS2_
AIS_SD Delta Bit. This delta bit is set if any
M13_XC_DS2_AIS_DETD[7:1] (Table 239 on page 209) bit is
high.
0
0 M13_XC_DS2_
LOC_SD Delta Bit. This delta bit is set if any M13_XC_DS2_LOCD[7:1]
(Table 238 on page 209) bit is high. 0
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
204 Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 229. M13_DELTA4, Delta (RO)
Address Bit Name Function Reset
Default
0x10007 15:8 RSVD Reserved. 0x00
7 M13_TFEAC_DONE This bit is set when the M13 completes transmission of a
sequence of FEAC control code. It can be programmed to
be either clear on read (COR) or clear on write (COW), and
it is not set to 1 again until the event reoccurs.
0
6 M13_TDL_DONE This bit is set when the M13 completes transmission of a
data-link frame. It can be programmed to be either clear on
read (COR) or clear on write (COW), and it is not set to 1
again until the event reoccurs.
0
5 M13_TDL_BUF1_INT This bit is set when the device completes transmission of
M13_TDL_ 1DATA 63[ 7:0] (Table 311 on page 230) (the
last byte of buffer 1). It can be programmed to be either
clear on read (COR) or clear on write (COW), and it is not
set to 1 again until the event reoccurs.
0
4 M13_TDL_BUF0_INT This bit is set when the device completes transmission of
M13_TDL_ 0DATA 63[ 7:0] (Tab le 310 on page 230) (t h e
last byte of buffer 0). It can be programmed to be either
clear on read (COR) or clear on write (COW), and it is not
set to 1 again until the event reoccurs.
0
3 M13_RDL_FIFO_AFD This delta bit is set if M13_RDL_FIFO_AF (Table 237 on
page 209) changes state. It can be programmed to be
either clear on read (COR) or clear on write (COW), and it
is not set to 1 again until another state transition occurs.
0
2 M13_RDL_FRM_INT This bit indicates that a new data-link frame closing flag or
an abort Byte Has Been Received. It can be programmed
to be either clear on read (COR) or clear on write (COW),
and it is not set to 1 again until the event reoccurs.
0
1 M13_RFEAC_ALM_INT This bit indicates that a new DS3 FEAC alarm codeword
has been received. The new codeword is available in reg-
ister M13_RFEAC_CODE_R (Table 264 on page 216). For
loopback codewords, the appropriate
M13_DS1_FEAC_LB_DETx (Table 263 on page 216) and
M13_DS3_FLB_DET (Table 263 on page 216) bits in reg-
isters 0x2F through 0x32 will be set or cleared. It can be
programmed to be either clear on read (COR) or clear on
write (COW), and it is not set to 1 again until the event
reoccurs.
0
0 M13_RFEAC_LB_INT This bit indicates that a new DS3 FEAC loopback code-
word has been received. The new codeword is available in
register M13_RFEAC_CODE_R. For loopback codewords,
the appropriate M13_DS1_FEAC_LB_DETx and
M13_DS3_FLB_DET bits will be set or cleared. It can be
programmed to be either clear on read (COR) or clear on
write (COW), and it is not set to 1 again until the event
reoccurs.
0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
205Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 230. M13_DELTA5, Delta (RO)
Note: All bit description in the function column in Table 231 can be found in Table 226 on page 202.
Table 231. M13_MASK1, Mask (R/W)
Address Bit Name Function Reset
Default
0x10008 15:2 RSVD Reserved. 0x0000
1 M13_DS2DMX_LOC_SD Delta Bit. This delta bit is set if any
M13_DS2DMX_LOCD[7:0] (Table 246 on page 211 ) bit
register is high.
0
0 M13_RDL_FIFO_UFD Delta Bit. This delta bit is set if bit M13_RDL_FIFO_UF
(Table 237 on page 209) changes state. It can be pro-
grammed to be either clear on read (COR) or clear on write
(COW), and it is not set to 1 again until another state tran-
sition occurs.
0
Address Bit Name Function Reset
Default
0x1000A 15:8 RSVD Reserved. 0x00
7 M13_RDL_IDLEM Mask Bit. Setting this mask bit high prevents the delta
M13_RDL_IDLED from causing the block output inter-
rupt (INT) to be active.
1
6 M13_DS3_LOFM Mask Bit. Setting this mask bit high prevents the delta
M13_DS3_LOFD from causing the block output INT to
be active.
1
5 M13_DS3_OOFM Mask Bit. Setting this mask bit high prevents the delta
M13_DS3_OOFD from causing the block output INT to
be active.
1
4 M13_DS3_C1_DETM Mask Bit. Setting this mask bit high prevent s the delta
M13_DS3_C1_DETD from causing the block output INT
to be active.
1
3 M13_DS3_RAI_DETM Mask Bit. Setting this ma sk bit high prevents the delta
M13_DS3_RAI_DETD from causing the block output INT
to be active.
1
2 M13_DS3_AISPAT_DETM Mask Bit. Setting this mask bit high prevents the delta
M13_DS3_AISP AT_DETD from causing the block output
INT to be active.
1
1 M13_DS3_IDLEPAT_DETM Mask Bit. Setting this mask bit high prevents the delta
M13_DS3_IDLEPAT_DETD from causing the block out-
put INT to be active.
1
0 M13_DS3_CBZ_DETM Mask Bit. Setting this mask bit high prevents the delta
M13_DS3_CBZ_DETD from causing the block output
INT to be active.
1
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
206 Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Note: All bit description in the function column in Table 232 can be found in Table 227 on page 203.
Table 232. M13_MASK2, Mask (R/W)
Address Bit Name Function Reset Default
0x1000B 15:8 RSVD Reserved. 0x00
7 M13_DS1_LB_SM Mask Bit. Setting this mask bit high prevents the
summary delta M13_DS1_LB_SD from causing the
block output interrupt (INT) to be active.
1
6 M13_DS1_AIS_SM Mask Bit. Setting this mask bit high prevents the
summary delta M13 _DS1_A IS_ SD from cau sing
the block output INT to be active.
1
5 M13_DS1_LOC_SM Mask Bit. Setting this mask bit high prevents the
summary delta M13 _DS1_LO C_ SD from cau sing
the block output INT to be active.
1
4 M13_RDS3_SEFM Mask Bit. Setting this mask bit high prevents the
delta M13_RDS3_SEFD from causing the block
output INT to be active.
1
3 M13_RDS3_ALL1_DETM Mask Bit. Setting this mask bit high prevents the
delta M13_RDS3_ALL1_DETD from causing the
block output INT to be active.
1
2 M13_RDS3_LOSM Mask Bit. Setting this mask bit high prevents the
delta M13_RDS3_LOSD from causing the block
output INT to be active.
1
1 M13_TDS3_LOCM Mask Bit. Setting this mask bit high prevents the
delta M13_TDS3_LOCD from causing the block
output INT to be active.
1
0 M13_RDS3_LOCM Mask Bit. Setting this mask bit high prevents the
delta M13_RDS3_LOCD from causing the block
output INT to be active.
1
Note: All bit description in the function column in Table 233 can be found in Table 228 on page 203.
Table 233. M13_MASK3, Mask (R/W)
Address Bit Name Function Reset Default
0x1000C 15:8 RSVD Reserved. 0x00
7 M13_DS2_RSV_SM Mask Bit. Setting this mask bit high prevents the
summary delta M13_DS2_RSV_SD from causing the
block output interrupt (INT) to be active.
1
6 M13_DS2_LB_SM Mask Bit. Setting this mask bit high prevents the
summary delta M13_DS2_LB_SD from causing the
block output INT to be active.
1
5 M13_DS2_RAI_SM Mask Bit. Setting this mask bit high prevents the
summary delta M13_DS2_RAI_SD from causing the
block output INT to be active.
1
4 M13_DS2_AIS_SM Mask Bit. Setting this mask bit high prevents the
summary delta M13_DS2_AIS_SD from causing the
block output INT to be active.
1
3 M13_DS2_LOF_SM Mask Bit. Setting this mask bit high prevents the
summary delta M13_DS2_LOF_SD from causing the
block output INT to be active.
1
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
11 M13/M23 MUX/DeMUX Registers (continued)
207Agere Systems Inc.
0x1000C 2 M13_DS2_OOF_SM Mask Bit. Setting this mask bit high prevents the
summary delta M13_DS2_OOF_SD from causing the
block output INT to be active.
1
1 M13_XC_DS2_AIS_SM Mask Bit. Setting this mask bit high prevents the
summary delta M13_XC_DS2_AIS_SD from causing
the block output INT to be active.
1
0 M13_XC_DS2_LOC_SM Mask Bit. Setting this mask bit high prevents the
summary delta M13_XC_DS2_LOC_SD from caus-
ing the block output INT to be active.
1
Note: All bit description in the function column in Table 234 can be found in Table 229 on page 204.
Table 234. M13_MASK4, Mask (R/W)
Address Bit Name Function Reset
Default
0x1000D 15:8 RSVD Reserved. 0x00
7 M13_TFEAC_DONEM M ask Bit. Setting this mask bit high prevents
M13_TFEAC_DONE from causing the block output inter-
rupt (INT) to be active.
1
6 M13_TDL_DONEM M ask Bit . Setting this mask bit high prevents
M13_TDL_DONE from causing the block output INT to be
active.
1
5 M13_TDL_BUF1_INTM Mask Bit. Setting this mask bit high prevents
M13_TDL_BUF1_INT from causing the block output INT to
be active.
1
4 M13_TDL_BUF0_INTM Mask Bit. Setting this mask bit high prevents
M13_TDL_BUF0_INT from causing the block output INT to
be active.
1
3 M13_RDL_FIFO_AFM M ask Bit . Setting this mask bit high prevents
M13_RDL_FIFO_AFD from causing the block output INT
to be active.
1
2 M13_RDL_FRM_INTM Mask Bit . Setting this mask bit high prevents
M13_RDL_FRM_INT from causing the block output INT to
be active.
1
1 M13_RFEAC_ALM_INTM Mask Bit . Setting this mask bit high prevents
M13_RFEAC_ALM_INT from causing the block output INT
to be active.
1
0 M13_RFEAC_LB_INTM Mask Bit. Setting this mask bit high prevents
M13_RFEAC_LB_INT from causing the block output INT to
be active.
1
Note: All bit description in the function column in Table 233 can be found in Table 228 on page 203.
Table 233. M13_MASK3, Mask (R/W) (continued)
Address Bit Name Function Reset Default
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
208 Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 235. M13_MASK5, Mask (R/W)
Address Bit Name Function Reset
Default
0x1000E 15:2 RSVD Reserved. 00000000000000
1 M13_DS2DMX_LOC_SM M ask Bit . Setting this mask bit high prevents the
summary delta M13_DS2DMX_LOC_SD
(Table 230 on page 205) from causing the block
output interrupt (INT) to be active.
1
0 M13_RDL_FIFO_UFM Mask Bit. Setting this mask bit high prevents
M13_RDL_FIFO_UFD (Table 230 on page 205)
from causing the block output INT to be active.
1
Tab le 236. M13 _DS 3_STATUS 1, St atu s (RO)
Address Bit Name Function Reset
Default
0x1000F 15:8 RSVD Reserved. 0x00
7 M13_RDL_IDLE This bit is set if 15 consecutive ones are received on the
path maintenance data link. it is cleared when a flag byte
is rec eived.
1
6 M13_DS3_LOF This bit is set if M13_DS3_OOF is high continuously for 28
frame periods (approximately 3 ms). Once set,
M13_DS3_LOF is not cleared until M13_DS3_OOF is
continuously low for 28 frame periods.
0
5 M13_DS3_OOF The DS3 Framer Out Of Frame State Bit. (See DS3
framer section on page 476.) This bit is high while out of
frame.
1
4 M13_DS3_C1_DET This bit is set if the first C bit of each DS3 frame is
received high for 8 consecutive frames. Once
M13_DS3_C1_DET is set, three consecutive frames with
C1 = 0 must be received before it is cleared.
0
3 M13_DS3_RAI_DET If both X bits in two consecutive frames are received as 0,
the M13 sets this bit to 1. Once it is set, it is not cleared
until both X bits in two consecutive frames are received
as 1.
0
2 M13_DS3_AISP AT_DET The 4704 information bits in each M frame are checked for
the presence of the AIS (1010) pattern. A pattern detection
bit is set if fewer than five pattern errors are received in
each of two consecutive frames. Once a bit is set, it is not
cleared until at least 16 pattern errors are received in each
of two consecutive frames.
0
1 M13_DS3_IDLEPA T_DET The 4704 information bits in each M frame are checked for
the presence of the idle (1100) pattern. A pattern detection
bit is set if fewer than five pattern errors are received in
each of two consecutive frames. Once a bit is set, it is not
cleared until at least 16 pattern errors are received in each
of two consecutive frames.
0
0 M13_DS3_CBZ_DET This bit is set if every C bit in three consecutive DS3
frames is 0. It is cleared if the three C bits in a single
M-sub fra me are all 1.
0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
209Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Tab le 237. M13 _DS 3_STATUS 2, St atu s (RO)
Table 238. M13_XC_DS2_LOCD_R, DS2 Loss of Clock Delta (RO)
Table 239. M13_XC_DS2_AIS_DETD_R, DS2 Alarm Indication Signal Detection Delta (RO)
Address Bit Name Function Reset
Default
0x10010 15:7 RSVD Reserved. 000000000
6 M13_RDL_FIFO_UF This bit is 1 if the receive HDLC FIFO is underflow. 0
5 M13_RDL_FIFO_AF This bit is 1 if the number of unread bytes in the receive
HDLC FIFO is greater than the fill-up level set by bits
M13_RDL_FILL[1:0] (Table 299 on page 227).
0
4 M13_RDS3_SEF This bit is 1 if there are three or more F-bit errors in
16 consecutive F bits. It is not terminated until the signal is
in-frame and there are less than three F-bit errors in 16
consecutive F bits.
1
3 M13_RDS3_ALL1_
DET This bit is 1 if the input data is 0 for fewer than 9 out of
8192 cloc k per io ds . 0
2 M13_RDS3_LOS This bit is 1 if there are 175 ± 75 contiguous pulse positions
with no pulses of either positive or negative polarity at the
DS3 input. An LOS is cleared upon detecting an average
pulse density of at least 33% over a period of 175 ± 75
contiguous pulse positions, starting with the receipt of a
pulse.
0
1 M13_TDS3_LOC This bit is 1 if the SMPR_TDS3CLK signal fails to have
transitions for at least 10 periods of SMPR_RDS3CLK. A
single transition on SMPR_TDS3CLK resets this bit.
0
0 M13_RDS3_LOC This bit is 1 if the SMPR_RDS3CLK signal fails to have
transitions for at least 10 periods of SMPR_TDS3CLK. A
single transition on SMPR_RDS3CLK resets this bit.
0
Address Bit Name Function Reset
Default
0x10011 15:7 RSVD Reserved. 0x000
6:0 M13_XC_DS2_
LOCD[7:1] Delta Bits. These individual delta bits are set as the result of
the corresponding state bits M13_XC_DS2_LOC[7:1]
(Table 250 on page 212) transitioning either from 0 to 1 or from
1 to 0. They can be programmed to be either clear on read
(COR) or clear on write (COW), and they are not set to 1 again
until the event reo ccur s .
0x00
Address Bit Name Function Reset
Default
0x10012 15:7 RSVD Reserved. 0x000
6:0 M13_XC_DS2_
AIS_DETD[7:1] Delta Bits. These individual delta bits are set as the result of
the corresponding state bits M13_XC_DS2_AIS_DET[7:1]
(Table 251 on page 212) transitioning either from 0 to 1 or from
1 to 0. They can be programmed to be either clear on read
(COR) or clear on write (COW), and they are not set to 1 again
until the event reoccurs.
0x00
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
210 Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 240. M13_DS2_OOFD_R, DS2 Out-Of-Frame Delta (RO)
Table 241. M13_DS2_LOFD_R, DS2 Loss-Of-Frame Delta (RO)
Table 242. M13_DS2_AIS_DETD_R, DS2 Alarm Indication Signal Detect Delta (RO)
Table 243. M13_DS2_RAI_DETD_R, DS2 Remote Alarm Indication Detection Delta (RO)
Address Bit Name Function Reset
Default
0x10013 15:7 RSVD Reserved. 0x000
6:0 M13_DS2_OOFD[7:1] Delta Bits. These individual delta bits are set as the result of
the corresponding state bits M13_DS2_OOF[7:1] (Table 252
on page 213) transitioning either from 0 to 1 or from 1 to 0.
Delta bits can be programmed to be either clear on read
(COR) or clear on write (COW), and they are not set to 1 again
until the event reoccurs.
0x00
Address Bit Name Function Reset
Default
0x10014 15:7 RSVD Reserved. 0x000
6:0 M13_DS2_LOFD[7:1] Delta Bits. These individual delta bits are set as the result of
the corresponding state bits M13_DS2_LOF[7:1] (Table 253
on page 213) transitioning either from 0 to 1 or from 1 to 0.
They can be programmed to be either clear on read (COR) or
clear on write (COW), and they are not set to 1 again until the
event reoccurs.
0x00
Address Bit Name Function Reset
Default
0x10015 15:7 RSVD Reserved. 0x000
6:0 M13_DS2_AIS_DETD[7:1] Delta Bits. These individual delta bits are set as the result
of the corresponding state bits M13_DS2_AIS_DET[7:1]
(Table 254 on page 213) transitioning either from 0 to 1 or
from 1 to 0. Delta bits can be programmed to be either
clear on read (COR) or clear on write (COW), and they
are not set to 1 again until the event reoccurs.
0x00
Address Bit Name Function Reset
Default
0x10016 15:7 RSVD Reserved. 0x000
6:0 M13_DS2_RAI_DETD[7:1] Delta Bits. These individual delta bits are set as the result
of the corresponding state bits M13_DS2_RAI_DET[7:1]
(Table 255 on page 213) transitioning either from 0 to 1 or
from 1 to 0. Delta bits can be programmed to be either
clear on read (COR) or clear on write (COW), and they
are not set to 1 again until the event reoccurs.
0x00
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
211Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 244. M13_DS2_LB_DETD_R, DS2 Loopback Detect Delta (RO)
Table 245. M13_DS2_RSV_RCVD_R, DS2 Receive Reserved Bit Delta (RO)
Table 246. M13_DS2DMX_LOCD_R, DS2 DeMUX Loss of Clock Delta (RO)
Table 247. M13_DS1_LOCD_R[1—4], DS1 Loss of Clock Delta Registers (RO)
Address Bit Name Function Reset
Default
0x10017 15:7 RSVD Reserved. 0x000
6:0 M13_DS2_LB_DETD[7:1] Delta Bits. These individual delta bits are set as the result
of the corresponding state bits M13_DS2_LB_DET[7:1]
(Table 256 on page 214) transitioning either from 0 to 1 or
from 1 to 0. Delta bits can be programmed to be either
clear on read (COR) or clear on write (COW), and they are
not set to 1 again until the event reoccurs.
0x00
Address Bit Name Function Reset
Default
0x10018 15:7 RSVD Reserved. 0x000
6:0 M13_DS2_RSV_RCVD[7:1] Delta Bits. These individual delta bits are set as the
result of the corresponding state bits
M13_DS2_RSV_RCV[7:1] (Table 257 on page 214)
transitioning either from 0 to 1 or from 1 to 0. Delta bits
can be programmed to be either clear on read (COR) or
clear on write (COW), and they are not set to 1 again
until the event reoccurs. (G.747).
0x00
Address Bit Name Function Reset
Default
0x10019 15:7 RSVD Reserved. 0x000
6:0 M13_DS2DMX_LOCD[7:1] Delta Bits. These individual delta bits are set as the
result of the corresponding state bits
M13_DS2DMX_LOC[7:1] (Table 258 on page 214) tran-
sitioning either from 0 to 1 or from 1 to 0. Delta bits can
be programmed to be either clear on read (COR) or clear
on write (COW), and they are not set to 1 again until the
event reoccurs.
0x00
Address Bit Name Function Reset
Default
0x1001E 15:4 RSVD Reserved. 0x000
0x1001F
0x10021
15:8 RSVD Reserved. 0x00
0x1001E
0x1001F
0x10020
0x10021
3:0
7:0
7:0
7:0
M13_DS1_LOCD[28:25]
M13_DS1_LOCD[24:17]
M13_DS1_LOCD[16:9]
M13_DS1_LOCD[8:1]
Delta Bits. These individual delta bits are set as the
result of the corresponding state bits
M13_DS1 _LO C[2 8:1] ( Table 259 on page 214) transi-
tioning either from 0 to 1 or from 1 to 0. Delta bits can
be programmed to be either clear on read (COR) or
clear on write (COW), and they are not set to 1 again
until the event reoccurs.
0x00
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
212 Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 248. M13_DS1_AIS_DETD_R[1—4], DS1 Alarm Indication Signal Delta Registers (RO)
Table 249. M13_DS1_LB_DETD_R[1—4], DS1 Loopback Detect Delta Registers (RO)
Table 250. M13__XC_DS2_LOC_R, DS2 Loss of Clock Status (RO)
Table 251. M13_XC_DS2_AIS_DET_R, DS2 Alarm Indication Signal Detect Status (RO)
Address Bit Name Function Reset
Default
0x10022 15:4 RSVD Reserved. 0x000
0x10023
0x10025
15:8 RSVD Reserved. 0x00
0x10022
0x10023
0x10024
0x10025
3:0
7:0
7:0
7:0
M13_DS1_AIS_DETD[28:25]
M13_DS1_AIS_DETD[24:17]
M13_DS1_AIS_DETD[16:9]
M13_DS1_AIS_DETD[8:1]
Delta Bits. These individual delta bits are set as the
result of the corresponding state bits
M13_DS1_AIS_DET[28:1] (Table 260 on page 215)
transitioning either from 0 to 1 or from 1 to 0. Delta
bits can be programmed to be either clear on read
(COR) or clear on write (COW), and they are not set
to 1 again until the event reoccurs.
0x00
Address Bit Name Function Reset
Default
0x10026 15:4 RSVD Reserved. 0x000
0x10027
0x10029
15:8 RSVD Reserved. 0x00
0x10026
0x10027
0x10028
0x10029
3:0
7:0
7:0
7:0
M13_DS1_LB_DETD[28:25]
M13_DS1_LB_DETD[24:17]
M13_DS1_LB_DETD[16:9]
M13_DS1_LB_DETD[8:1]
Delta Bits. These individual delta bits are set as the
result of the corresponding state bits
M13_DS1_LB_DET[28:1] (Table 261 on page 215)
transitioning either from 0 to 1 or from 1 to 0. Delta
bits can be programmed to be either clear on read
(COR) or clear on write (COW), and they are not set
to 1 again until the event reoccurs.
0x00
Address Bit Name Function Reset
Default
0x1002F 15:7 RSVD Reserved. 0x000
6:0 M13_XC_DS2_LOC[7:1] A logic 1 of M13_XC_DS2_LOCy bit indicates that loss of
clock is detected on the DS2 clock input. 0x00
Address Bit Name Function Reset
Default
0x10030 15:7 RSVD Reserved. 0x000
6:0 M13_XC_DS2_AIS_DET[7:1] M13_XC_DS2_AIS_DETy Bit. The
M13_XC_DS2_AIS_DETy bit is set high if the input
XC_DS2M23DATAy is 0 for fewer than 5 clock cycles
in each of two consecutive 840 clock periods, and
cleared if there are more than four zeros in each of two
consecutive 840-bit periods.
0x00
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
213Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 252. M13_DS2_OOF_R, DS2 Out-Of-Frame Status (RO)
Table 253. M13_DS2_LOF_R, DS2 Loss of Frame Status (RO)
Table 254. M13_DS2_AIS_DET_R, DS2 Alarm Indication Signal Detect Status (RO)
Table 255. M13_DS2_RAI_DET_R, DS2 Remote Alarm Indication Detect Status (RO)
Address Bit Name Function Reset
Default
0x10031 15:7 RSVD Reserved. 000000
000
6:0 M13_DS2_OOF[7:1] State Bits. This register contains the state bits for the DS2
framers. A 1 indicates out of frame. 0x7F
Address Bit Name Function Reset
Default
0x10032 15:7 RSVD Reserved. —
6:0 M13_DS2_LOF[7:1] M13_DS2_LOFy Bit. The M13_DS2_LOFy bit is set if
M13_DS2_OOFy (Table 252 on page 213 ) is high continu-
ously for 28 DS3 frame periods (approximately 3 ms). Once
set, M13_DS2_LOFy is not cleared until M13_DS2_OOFy is
continuously low for 28 DS3 frame periods. DS3 frame peri-
ods are not counted while M13_DS3_OOF = 1 (Table 236 on
page 208).
0x00
Address Bit Name Function Reset
Default
0x10033 15:7 RSVD Reserved. 0x000
6:0 M13_DS2_AIS_DET[7:1] M13_DS2_AIS_DETy Bit. The M13_DS2_AIS_DET y bit is
set high if the input to the yth M12 demultiplexer is logic 0
for fewer than five clock cycles in each of two consecutive
840 clock periods, and cleared if there are more than four
zeros in each of two consecutive 840-bit periods.
0x00
Address Bit Name Function Reset
Default
0x10034 15:7 RSVD Reserved. 0x000
6:0 M13_DS2_RAI_DET[7:1] M13_DS2_RAI_DETy Bit. The M13_DS2_RAI_DETy bit
changes state only after the X bit in the DS1 mode
(M13_DS1_E1Ny = 1 (Table 275 on page 220)), or the RAI
bit in the E1 mode is received as the same value for four
consecutive DS2 frames. DS2 frame periods are not
counted while M13_DS3_OOF = 1 (Table 236 on
page 208). In the DS1 mode, M13_DS2_RAI_DETy is set
to the inverse of the X bit. In the E1 mode, it is set equal to
the RAI bit.
0x00
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
214 Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 256. M13_DS2_LB_DET_R, DS2 Loopback Detect Status (RO)
Table 257. M13_DS2_RSV_RCV_R, DS2 Receive Reserved Bit Delta Status (RO)
Table 258. M13_DS2DMX_LOC_R, DS2 DeMUX Loss of Clock Status (RO)
Table 259. M13_DS1_LOC_R[1—4], DS1 Loss of Clock Status Registers (RO)
Address Bit Name Function Reset
Default
0x10035 15:7 RSVD Reserved. 0x000
6:0 M13_DS2_LB_DET[7:1] M13 Mode. In the M23 mode (M13_M23_CBP = 1
(Table 272 on page 219)), the C bits in each received DS3
M-subframe are checked for loopback requests. If the third
C bit differs from the first and second C bits in the yth M-
subframe for five successive DS3 frames,
M13_DS2_LB_DETy is set to 1. M13_DS2_LB_DETy is
cleared when the third C bit does not differ from the first two
C bits in subframe y for five successive DS3 frames. In the
C-bit parity mode, M13_DS2_LB_DETy is fixed at 0.
0x00
Address Bit Name Function Reset
Default
0x10036 15:7 RSVD Reserved. 0x000
6:0 M13_DS2_RSV_RCV[7:1] M13_DS2_RSV_RCVy Bit. The M13_DS2_RSV_RCVy
bit changes state only after the reserved bit in the E1
mode (M13_DS1_E1Ny = 0) is received as the same
value for four consecutive DS2 frames. DS2 frame peri-
ods are not counted while M13_DS3_OOF = 1.
M13_DS2_RSV_RCVy is set equal to the reserved bit.
0x00
Address Bit Name Function Reset
Default
0x10037 15:7 RSVD Reserved. 0x000
6:0 M13_DS2DMX_LOC[7:1] M13_DS2DMX_LOCy Bit. A logic 1 of
M13_DS2DMX_LOCy bit indicates that loss of clock is
detected on the DS2 cloc k inp ut, XC_D S2DMXCLK y.
0x00
Address Bit Name Function Reset
Default
0x1003C
0x1003D
0x1003E
0x1003F
15:4
15:8
15:8
15:8
RSVD
RSVD
RSVD
RSVD
Reserved.
Reserved.
Reserved.
Reserved.
0x000
0x00
0x00
0x00
0x1003C
0x1003D
0x1003E
0x1003F
3:0
7:0
7:0
7:0
M13_DS1_LOC[28:25]
M13_DS1_LOC[24:17]
M13_DS1_LOC[16:9]
M13_DS1_LOC[8:1]
The M13_DS1_LOCx bits indicate when loss of clock is
detected on a low-speed clock input, XC_DS1CLKx. 0x0
0x00
0x00
0x00
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
215Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 260. M13_DS1_AIS_DET_R[1—4], DS1 Alarm Indication Signal Detect Status Registers (RO)
Table 261. M13_DS1_LB_DET_R[1—4], DS1 Loopback Detect Status Registers (RO)
Table 262. M13_DS1_FEAC_LB_DETD_R[1—4], DS1 Far-End Alarm and Control Loopback Detect Delta
Registers (RO)
Address Bit Name Function Reset
Default
0x10040
0x10041
0x10042
0x10043
15:4
15:8
15:8
15:8
RSVD
RSVD
RSVD
RSVD
Reserved.
Reserved.
Reserved.
Reserved.
0x000
0x00
0x00
0x00
0x10040
0x10041
0x10042
0x10043
3:0
7:0
7:0
7:0
M13_DS1_AIS_DET[28:25]
M13_DS1_AIS_DET[24:17]
M13_DS1_AIS_DET[16:9]
M13_DS1_AIS_DET[8:1]
The M13_DS1_AIS_DETx bits indicate when AIS is
detected on a low-speed data input, XC_DS1DATAx. 0x0
0x00
0x00
0x00
Address Bit Name Function Reset
Default
0x10044
0x10045
0x10046
0x10047
15:4
15:8
15:8
15:8
RSVD
RSVD
RSVD
RSVD
Reserved.
Reserved.
Reserved.
Reserved.
0x000
0x00
0x00
0x00
0x10044
0x10045
0x10046
0x10047
3:0
7:0
7:0
7:0
M13_DS1_LB_DET[28:25]
M13_DS1_LB_DET[24:17]
M13_DS1_LB_DET[16:9]
M13_DS1_LB_DET[8:1]
The M13_DS1_LB_DETx bits indicate when a loopback
request has been received through inversion of the third
C bit in received DS2 frames.
0x0
0x00
0x00
0x00
Address Bit Name Function Reset
Default
0x10049
0x1004A
0x1004B
0x1004C
0x10049
0x1004A
0x1004B
0x1004C
15:8
7
6:4
15:8
15:8
15:8
3:0
7:0
7:0
7:0
RSVD
M13_DS3_FLB_DETD
RSVD
RSVD
RSVD
RSVD
M13_DS1_FEAC_LB_DETD[28:25]
M13_DS1_FEAC_LB_DETD[24:17]
M13_DS1_FEAC_LB_DETD[16:9]
M13_DS1_FEAC_LB_DETD[8:1]
Reserved.
This delta bit is set if M13_DS3_FLB_DET
(Table 263 on page 216) changes state. It can
be programmed to be either clear on read (COR)
or clear on write (COW), and it is not set to 1
again until another state transition occurs.
Reserved.
Reserved.
Reserved.
Reserved.
These individual delta bits are set as the result
of the corresponding state bits
M13_DS1_FEAC_LB_DET[28:1] (Table 263 on
page 216) transitioning either from 0 to 1 or from
1 to 0. Delta bits can be programmed to be
either clear on read (COR) or clear on write
(COW), and they are not set to 1 again until the
event reoc cu rs.
0x00
0x0
000
0x00
0x00
0x00
0x0
0x00
0x00
0x00
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
216 Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 263. M13_DS1_FEAC_LB_DET_R[1—4], DS1 Far-End Alarm and Control Loopback Detect Status
Registers (RO)
Table 264. M13_RFEAC_CODE_R, Receive Far-End Alarm and Control Code Status (RO)
Table 265. M13_RDL_STATUS, Receive Data-Link Status (RO)
Address Bit Name Function Reset
Default
0x1004D 15:8 RSVD Reserved. 0x00
7 M13_DS3_FLB_DET When an FEAC loopback activate codeword for
DS3 is received four consecutive times, the bit is
set high. The bit is cleared when a loopback deac-
tivate codeword is received four consecutive
times.
0
6:4 RSVD Reserved. 000
0x1004E
0x1004F
0x10050
15:8
15:8
15:8
RSVD
RSVD
RSVD
Reserved.
Reserved.
Reserved.
0x00
0x00
0x00
0x1004D
0x1004E
0x1004F
0x10050
3:0
7:0
7:0
7:0
M13_DS1_FEAC_LB_DET[28:25]
M13_DS1_FEAC_LB_DET[24:17]
M13_DS1_FEAC_LB_DET[16:9]
M13_DS1_FEAC_LB_DET[8:1]
When an FEAC loopback activate codeword for
DS1 is received four consecutive times, the
appropriate bit(s) is set high. The bit(s) is cleared
when a loopback deactivate codeword for that
channel(s) is received four consecutive times.
0x0
0x00
0x00
0x00
Address Bit Name Function Reset
Default
0x10051 15:6 RSVD Reserved. 000000
0000
5:0 M13_RFEAC_CODE[5:0] M13_RFEAC_CODE[5:0] Bits. When the same codeword
is received through the FEAC channel four consecutive
times, M13 will set M13_RFEAC_CODE[5:0] =
x5x4x3x2x1x0, where the received FEAC codeword is
0x5x4x3x2x1x0 0 11111111, and it is received right to left.
0x3F
Address Bit Name Function Reset
Default
0x10052 15:5 RSVD Reserved. 0x000
4 M13_RDL_FLAG This bit is high if the closing flag or an abort byte has been
received. 0
3 M13_RDL_ABORT This bit is high if the frame was ended with an abort byte
rather than a closing flag. 0
2 M13_RDL_NOT_BYTE This bit is set if the number of bits in the frame (after removal
of stuffed zeros) is not a multiple of 8. 0
1 M13_RDL_OVFL This bit is set if at least 1 byte of the frame was overwritten by
a byte from a succeeding frame before being read. 0
0 M13_RDL_FCS_ERR This bit is set if the CRC-16 check fails and
M13_RDL_FCS = 1 (Table 299 on page 227). 0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
217Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 266. M13_RDL_DATA_R, Receive Data-Link Data (RO)
Table 267. M13_RDL_FRAME_SIZE_R, Receive Data-Link Frame Size (RO)
Table 268. M13_RHDLC_STATUS_R, Receive High-Level Data-Link Control Status (RO)
Table 269. M13_DS2_FORCE_OOF_R, DS2 Force Out-Of-Frame (One Shot R/W)
Address Bit Name Function Reset
Default
0x10053 15:8 RSVD Reserved. 0x00
7:0 M13_RDL_DATA[7:0] Bytes received via the path maintenance data link are stored
in a 128-byte FIFO. They can be read out of the FIFO through
this register, M13_RDL_DATA_R. On reset, the FIFO is emp-
tied, and reading from this register returns an undetermined
value.
0xXX
Address Bit Name Function Reset
Default
0x10054 15:7 RSVD Reserved. 0x000
6:0 M13_RDL_FRAME_SIZE[6:0] The number of bytes in the frame modulo-128 is indi-
cated by this register. This is the number of bytes from
the frame that have been written into the FIFO, not the
number of bytes remaining in the FIFO. All bytes
between the opening flag and the FCS bytes are
included (unless M13_RDL_FCS (Table 299 on
page 227) is low, in which case the FCS bytes are
included in the count).
0x00
Address Bit Name Function Reset
Default
0x10055 15:8 RSVD Reserved. 0x00
7:0 M13_RHDLC_STATUS[7:0] This register provides information on the earliest HDLC
frame still in the FIFO. A value of 1 in bit 7 indicates that
the closing flag or an abort byte for the current frame
has been received; a 1 in bit 6 indicates the current
frame is corrupted; bits 5 to 1 indicate the size of the
current frame modulo-32; and bit 0 is set to 1 if there
are less than 32 bytes of the earliest frame left in the
FIFO.
0x00
Address Bit Name Function Reset
Default
0x10059 15:7 RSVD Reserved. 0x000
6:0 M13_DS2_FORCE_OOF[7:1] M 13_D S2_ F OR CE_ OO Fy Bit s. When
M13_DS2_FORCE_OOFy transitions from 0 to 1, the
DS2 framer in M12 demultiplexer Y is forced out of
frame.
0x00
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
218 Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 270. M13_CONTROL1, Control 1 (One Shot R/W)
Address Bit Name Function Reset
Default
0x1005A 15:3 RSVD Reserved. 0x000
2 M13_RDL_FRM_CLR If M13_RDL_FRM_CLR is set to 1, the portion of the earli-
est frame still in the receive HDLC FIFO will be deleted.
The user must reset M13_RDL_FRM_CLR before another
frame can be deleted. If M13_RDL_FRM_CLR is set
before the closing flag of the frame currently being read
from the FIFO has been received, all subsequent bytes of
the frame will be discarded without being written into the
FIFO.
0
1 M13_DS3_FORCE_OOF When this bit transitions from 0 to 1, the DS3 framer is
forced out of frame. 0
0 M13_BIPOL_ERR A single bipolar violation error is transmitted each time this
bit transitions from 0 to 1. 0
Table 271. M13_CONTROL2, Control 2 (R/W)
Address Bit Name Function Reset
Default
0x1005C 15:8 RSVD Reserved. 0x00
7 M13_BPV_IN If this bit is 1, the SMPR_RDS3NEG_BPV input is used as an
external B3ZS bipolar violation indication instead of a negative
input pulse.
0
6 M13_LOOP_TIME The M23 multiplexer uses the SMPR_TDS3CLK if this bit is 0;
otherwise, the SMPR_RDS3CLK is used. 0
5 M13_LOOP_T_TO_R Setting this bit to 1 causes the M23 MUX output to be looped
back to the M23 deMUX inp ut. 0
4 M13_LOOP_R_TO_T Setting this bit to 1 causes the received DS3 input to be
looped back to the transmit DS3 output. 0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
11 M13/M23 MUX/DeMUX Registers (continued)
219Agere Systems Inc.
Table 272. M13_CONTROL3, Control 3 (R/W)
Table 273. M13_SP_OFFSET_R, Sync Pulse Offset (R/W)
Table 274. M13_SP_D_OFFSET_R, Sync Pulse D Offset (R/W)
0x1005C 3 M13_AUTO_AIS_LOF M13_AUTO_AIS_LOF Bit. If this bit is 1, the M13 will auto-
matically insert AIS in all DS2 outputs of the M23 demulti-
plexer when M13_DS3_LOF = 1 (Table 236 on page 208),
and it will automatically insert AIS in all DS1 or E1 outputs of
M12 demultiplexer Y when M13_DS2_LOFy = 1 (Table 253
on page 213).
1
2 M13_AUTO_AIS_
OOF M13_AUTO_AIS_OOF Bit. If this bit is 1, the M13 will auto-
matically insert AIS in all DS2 outputs of the M23 demulti-
plexer when M13_DS3_OOF = 1 (Table 236 on page 208),
and it will automatically insert AIS in all DS1 or E1 outputs of
M12 demultiplexer Y when M13_DS2_OOFy = 1 (Table 252
on page 213).
1
1 M13_AUTO_FLB M13_AUTO_FLB Bit. If this bit Is 1, the device will automati-
cally loop the received DS3 input to the transmit DS3 output
when M13_DS3_FLB_DET = 1 (Table 263 on page 216), and
it will automatically select DS1/E1 output x from an M12
demultiplexer in place of the DS1/E1 output from input selec-
tor x when M13_DS1_FEAC_LB_DETx = 1 (Table 263 on
page 216).
0
0 M13_AUTO_LB M13_AUTO_LB Bit. When M13_AUTO_LB = 1, loopback of
DS1 channel x is activated if M13_DS1_LB_DETx = 1
(Table 261 on page 215).
0
Address Bit Name Function Reset
Default
0x1005D 15:2 RSVD Reserved. 0x0000
1 M13_M23_CBP M13_M23_CBP Bit. If this bit Is 1, the M13 operates in the
M23 mode; otherwise, it is in the C-bit parity mode. 0
0 M13_BIPOLAR M 13_ BIPOLAR Bit. The M13 performs B3ZS encoding and
decoding if this bit is high. 0
Address Bit Name Function Reset
Default
0x1005E 15:8 RSVD Reserved. 0x00
7:0 M13_NSMI_SP_
OFFSET[7:0] The register determines the offset value (0—255) for the trans-
mit NSMI sync pulse ahead of the M1 bit in a DS3 frame. 0x00
Address Bit Name Function Reset
Default
0x1005F 15:8 RSVD Reserved. 0x00
7:0 M13_NSMI_SP_D_
OFFSET[7:0] The register determines the offset value (0—255) for the
receive NSMI sync pulse ahead of the M1 bit in a DS3 frame. 0x00
Table 271. M13_CONTROL2, Control 2 (R/W) (continued)
Address Bit Name Function Reset
Default
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
220 Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 275. M13_M12_MUX_CONTROL1_R[1—7], M12 MUX CONTROL 1 Registers [1—7] (R/W)
Table 276. M13_M12_MUX_CONTROL2_R[1—7], M12 MUX CONTROL 2 Registers [1—7] (R/W)
Table 277. M13_DS2_RAI_SEND_R, DS2 Remote Alarm Indication Send (R/W)
Table 278. M13_DS2_RSV_SEND_R, DS2 Reserve Bit Send (R/W)
Address Bit Name Function Reset
Default
0x10060
0x10062
0x10064
0x10066
0x10068
0x1006A
0x1006C
15:8 RSVD Reserved. 0x00
7:6 M13_M12_MODE[1—7][1:0] 00 = the M12 MUX operates as the first stage of M13
multiplexing. The DS1/E1 clocks are inputs to the
block.
01 = the M12 MUX operates as an independent multi-
plexer. The DS1/E1 clocks are inputs to the block.
10 = the M12 MUX operates as an independent multi-
plexer. The DS1/E1 clocks are outputs from the
block.
11 = the M12 is idle.
00
5 M13_MUXCH2_4_INV[1—7] M13_MUXCH2_4_INV[1—7] Bits. If these bits are 1,
the second and fourth DS1 inputs to the M12 multiplex-
ers are inverted before they are MUXed into DS2 sig-
nals.
1
4 M13_DS1_E1N[1—7] M13_DS1_E1N[1—7] Bits. If these bits are 1, the M12
multiplexers operate on DS1 inputs; otherwise, they
operate on E1 inputs.
1
3:0 M13_DS1_LB_REQ[1:28] M13_DS1_LB_REQ[1:28] Bits. If these bits are 1, the
third C bit for DS1 or E1 channels is inverted in the gen-
erated DS2 frames to indicate loopback requests.
0x0
Address Bit Name Function Reset
Default
0x10061
0x10063
0x10065
0x10067
0x10069
0x1006B
0x1006D
15:8 RSVD Reserved. 0x00
7:4 M13_SEL_DS1_LB[1:28] A 1 in these bits will force deMUXed DS1 or E1 signals to
be looped back. 0x0
3:0 M13_RDS1_EDGE[1:28] A 1 in these bits means that the received DS1/E1 signals
are retimed by the rising edge of the associated clocks. A
logic 0 means that the data is retimed by the falling edge.
0x0
Address Bit Name Function Reset
Default
0x1006E 15:7 RSVD Reserved. 0x000
6:0 M13_DS2_RAI_SEND[7:1] The remote alarm indication is activated if these bits are
set to 1. 0x00
Address Bit Name Function Reset
Default
0x1006F 15:7 RSVD Reserved. 0x000
6:0 M13_DS2_RSV_SEND[7:1] In the E1 mode, the reserved bit of DS2 is set to the
value of these bits. 0x00
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
221Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 279. M13_DS2_MPINV_R, DS2 M Frame Alignment or Parity Error (R/W)
Table 280. M13_DS2_FINV_R, DS2 Frame Error (R/W)
Table 281. M13_DS2_P_BER_R, Parity Bit Error Rate (R/W)
Table 282. M13_DS2M12_EDGE_R, DS2 M12 Edge (R/W)
Table 283. M13_DS2_FORCE_AIS_R, DS2 Force Alarm Indication Signal (R/W)
Address Bit Name Function Reset
Default
0x10070 15:7 RSVD Reserved. 0x000
6:0 M13_DS2_MPINV[7:1] M13_DS2_MPINV[7:1] Bits. These bits determine whether
the DS2 M frame alignment signals in the DS1 mode, or the
DS2 parity bits in the E1 mode are generated in error.
0x00
Address Bit Name Function Reset
Default
0x10071 15:7 RSVD Reserved. 0x000
6:0 M13_DS2_FINV[7:1] M 1 3_DS2_F I NV[7 :1 ] B i t s. These bits determine whether the
DS2 M-subframe alignment signals in the DS1 mode, or the
frame alignment signal in the E1 mode are generated in error.
0x00
Address Bit Name Function Reset
Default
0x10072 15:7 RSVD Reserved. 0x000
6:0 M13_DS2_P_BER[7:1] DS2 Parity Bits. The DS2 pa r ity b it s in t h e E1 mo de i mm e di -
ately following each 0 to 1 transition of the input
SMPR_BER_INSRT (Table 75 on page 68) ar e inver ted if
these register bits are set to 1.
0x00
Address Bit Name Function Reset
Default
0x10073 15:7 RSVD Reserved. 0x000
6:0 M13_DS2M12_EDGE[7:1] M13_DS2M12_EDGE[7:1] Bits. A 1 in these bits means
that the output DS2 signals from M12 MUXs are retimed
by the rising edge of the associated clocks; a 0 means
that the data is retimed by the falling edge.
0x00
Address Bit Name Function Reset
Default
0x10074 15:7 RSVD Reserved. 0x000
6:0 M13_DS2_FORCE_AIS[7:1] M13_DS2_FORCE_AIS[7:1] Bits. A 1 in these bits
means that the output DS2 signals from M12 MUXs are
forced to be AIS (all ones).
0x00
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
222 Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 284. M13_M12_DEMUX_CONTROL1_R[1—7], M12 DeMUX Control 1 Registers [1—7] (R/W)
Table 285. M13_M12_DEMUX_CONTROL2_R[1—7], M12 DeMUX Control 2 Registers [1—7] (R/W)
Table 286. M13_M12_DEMUX_CONTROL3, DS2 M12 DeMUX Control 3 (R/W)
Address Bit Name Function Reset
Default
0x1007B
0x1007D
0x1007F
0x10081
0x10083
0x10085
0x10087
15:8 RSVD Reserved. 0x00
7:6 M13_M12DMX_
MODE[1—7][1:0] M13_M1 2DMX _M O DE[ 1— 7][1 :0] Bits.
00 = the M12 deMUX Receives DS2 Signal From the M23
deMUX.
01 = the M12 deMUX operates as an independent demulti-
plexer.
10/11 = the M12 deMUX is idle and outputs are held low.
00
5 M13_DEMUXCH2_
4_INV[1—7] The second and fourth DS1 outputs from the M12 demulti-
plexers are inverted if these bits are 1. 1
4 M13_OUT_TYPE[1—7] Each DS1/E1 output selector number, x, can be expressed
as either 4y – 3, 4y – 2, 4y – 1, or 4y, where y ranges from 1
to 7. For a given y, the 4 selectors in the group output DS1
signals if M13_OUT_TYPEy = 1, or E1 signals if
M13_OUT_TYPEy = 0.
1
3:0 M13_TDS1_EDGE[28:1] The transmit DS1/E1 signals are retimed by the rising edge
of the associated clocks if these bits are set high; otherwise,
the data is retimed by the falling edge.
0xF
Address Bit Name Function Reset
Default
0x1007C
0x1007E
0x10080
0x10082
0x10084
0x10086
0x10088
15:4 RSVD Reserved. 0x000
3:0 M13_DS1_OUT_AIS[28:1] A logic 1 of these bits will cause the corresponding DS1
output all ones AIS. 0x0
Address Bit Name Function Reset
Default
0x10089 15:2 RSVD Reserved. 0x0000
1 M13_DS2_MODE This bit controls the DS2 framing algorithm in the DS1
mode only. Out-of-frame is declared if the F bits contain
two errors in 4 bits if M13_DS2_MODE = 0, or at least 1 F-
bit error in four consecutive M-subframe pairs if
M13_DS2_MODE = 1.
0
0 M13_DS2_FERR_MODE This bit controls frame error counting for the M12 demulti-
plexers in the E1 mode only. If this bit is 0, the frame error
counters increment for each frame alignment signal bit
error. Otherwise, the counter increments once for each
frame alignment signal that contains at least 1 bit error.
0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
223Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 287. M13_DMDS2_EDGE_R, DS2 Edge for M12 DeMUX (R/W)
Table 288. M13_DS3_CONTROL1, DS3 Control 1 (R/W)
Address Bit Name Function Reset
Default
0x1008A 15:7 RSVD Reserved. 0x000
6:0 M13_DMDS2_EDGE[7:1] M13_DMDS2_EDGE[7:1] Bits. A logic 1 of these bits
means that the input DS2 signals to M12 demultiplexers
are retimed by the rising edge of the associated clocks; a
logic 0 means that the data is retimed by the falling edge.
0x00
Address Bit Name Function Reset
Default
0x10092 15:8 RSVD Reserved. 0x00
7 M13_DS3_FINV M13_DS3_FINV Bit. For testing purposes, this bit is high
to allow the F bit to be generated with errors. 0
6 M13_DS3_MINV M13_DS3_MINV Bit. For t est in g p u rpo s es , t hi s bi t i s hi gh
to allow the M bit to be generated with errors. 0
5 M13_DS3_PINV M13_DS3_PINV Bit. For testing purposes, this bit is high
to allow the P bit to be generated with errors. 0
4 M13_DS3_FORCE_AIS M13_DS3_FORCE_AIS Bit. This bit causes the M13 to
generate DS3 AIS in place of the transmit DS3 signal
from the M23 multiplexer.
0
3 M13_DS3_FORCE_IDLE M13_DS3_FORCE_IDLE Bit. This bit ca uses the M13 to
generate DS3 idle (unless M13_DS3_FORCE_AIS
(Table 288 on page 223) is also set) in place of the trans-
mit DS3 signal from the M23 multiplexer.
0
2 M13_TDS3_FORCE_ALL1 M13_TDS3_FORCE_ALL1 Bit. This bit causes the M13
to generate unframed all ones DS3 output. 0
1 M13_M23CLK_MODE M13_M23CLK_MODE Bit. If this bit is 1, DS2 clocks
associated with DS2 signals being MUXed into DS3 are
outputs from the block; otherwise, they are inputs to the
block.
0
0RSVDReserved.0
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
224 Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 289. M13_DS3_CONTROL2, DS3 Control 2 (R/W)
Table 290. M13_TFEAC_CONTROL, Tx FEAC Control (R/W)
Address Bit Name Function Reset
Default
0x10093 15:7 RSVD Reserved. 0x000
6 M23_STUFF_MODE M23_STUFF_MODE Bit. A logic 0 on this bit will cause the
M23 stuffing to be determined by the external stuff request;
otherwis e, fix ed stu ffing is used .
0
5 M13_NSMI_MODE M13_NSMI_MODE Bit. A logic 1 of this bit will enable M13 to
receive and output Ds3 payload through a serial link. 0
4 M13_DS3_P_BER M13_DS3_P_BER Bit. The P bits and, in CBP mode, the CP
bits in the DS3 frame immediately following each 0 to 1 transi-
tion of the input SMPR_BER_INSERT (Table 75 on page 68)
are inverted if this bit is set to 1.
0
3 M13_CBIT2_ACT M13_CBIT2_ACT Bit. This bit is used only in the C-Bit parity
mode. In this mode, if it is 0, the second C bit of each DS3
frame, C2, is set to 1. Otherwise, the transmit value of C2 is
input through pin TCBDATA (E12).
0
2 M13_UNUSED_ACT M13_UNUSED_ACT Bit. This bit is used only in the C-bit par-
ity mode. In this mode, if it is 0, the unused C bits of each DS3
frame (the fourth through sixth and the sixteenth through
twenty-first) are set to 1. Otherwise, the transmit values of
these bits are inp ut through pin TCBDATA (E12).
0
1 M13_DS3_RAI_SEND M13_DS3_RAI_SEND Bit. The transmitted DS3 X bits are set
to the inverse of this bit during normal transmission. 0
0 M13_FEBE_ERR M13_FEBE_ ERR Bit. This bit is used to force errors in the
transmitted DS3 FEBE indication. If the bit is set, all DS3
frames are transmitted with the FEBE bits set to 000.
0
Address Bit Name Function Reset
Default
0x10094 15:8 RSVD Reserved. 0x00
7:6 M13_TFEAC_CTL[1:0] M13_TFEAC_CTL. The user can provision the M13 to trans-
mit continuous ones by setting M13_TFEAC_CTL to 00. 0x0
5:0 M13_TFEAC_
CODE[5:0] FEAC Signals. TFEAC signals are transmitted continuously
by setting M13_TFEAC_CTL to 01, and M13_TFEAC_CODE
= x5x4x3x2x1x0, where x5x4x3x2x1x0 is the appropriat e
value for the alarm or status codeword.
In order to activate a loopback, the user may set
M13_TFEAC_CTL = 11, and M13_TFEAC_CODE =
x5x4x3 x2x1x0, w here x5 x4x3x2x 1x0 is t he appr opriate value
for the loopback codeword. The M13 will then transmit 10
repetitions of the activate codeword, 0 000111 0 11111111,
followed by 10 repetitions of 0 x5x4x3x2x1x0 0 11111111.
After transmitting this 40 octet sequence, it will set
M13_TF EAC_DONE (Table 229 on page 204) to 1.
In order to deactivate a loopback, the user may set
M13_TFEAC_CTL = 10, and M13_TFEAC_CODE =
x5x4x3 x2x1x0, w here x5 x4x3x2x 1x0 is t he appr opriate value
for the loopback codeword. The M13 will then transmit 10
repetitions of the deactivate codeword, 0 011100 0 11111111,
followed by 10 repetitions of 0 x5x4x3x2x1x0 0 11111111.
After transmitting this 40 octet sequence, it will set
M13_TFE AC_ D ONE to 1 .
0x00
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
225Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 291. M13_THDLC_CONTROL1, Tx HDLC Control 1 (R/W)
Table 292. M13_THDLC_CONTROL2, Tx HDLC Control 2 (R/W)
Table 293. M13_DS2_LB_REQ_R, DS2 Loopback Request (R/W)
Address Bit Name Function Reset
Default
0x10095 15:6 RSVD Reserved. 0x000
5 M13_TDL_BUF1_END If this bit is 0, all bytes from HDLC buffer 1 and at least one
byte from HDLC buffer 0 are transmitted. If it is 1, bytes from
buffer 1 are transmitted sequentially up to and including the
byte set by M13_TDL_BYTE_END[5:0] (Table 292 on
page 225).
0
4 M13_TDL_BUF0_END If this bit is 0, all bytes from HDLC buffer 0 and at least one
byte from HDLC buffer 1 are transmitted. If it is 1, bytes from
buffer 0 are transmitted sequentially up to and including the
byte set by M13_TDL_BYTE_END[5:0].
0
3 M13_TDL_ACT If the data link is not used, the user should set
M13_TDL_ACT to 0, which causes all ones to be transmit-
ted. Otherwise, this bit should be set to 1.
0
2 M13_TDL_NTRNL If M13_TDL_NTRNL = 0, the data transmitted on the data
link comes directly from the M13 input pin TDLDATA (E8);
otherwise (M13_TDL_NTRNL = 1), the data link is controlled
by the internal HDLC transmitter. This bit is valid only when
M13_TDL_ACT = 1 (Table 291 on page 225).
0
1 M13_TDL_NTRNL_ACT Once M13_TDL_NTRNL_ACT is Set to 1, the HDLC trans-
mitter begins transmitting the first byte of the first data buffer
following the completion of the next flag byte. The user may
abort the transmission of an HDLC frame by clearing
M13_TDL_NTRNL_ACT to 0 prior to completing transmis-
sion of the last byte from the data buffers. If so, the HDLC
controller will stop transmission from the buffers and send
an abort byte (01111111). The abort byte will then be fol-
lowed by flag bytes until M13_TDL_NTRNL_ACT is again
set to 1, starting transmission of a new frame.
0
0 M13_TDL_FCS If M13_TDL_FCS = 1, the HDLC controller appends the two-
byte ITU-T FCS with the necessary zero stuffing before
sending the closing flag; otherwise, no FCS bytes will be
transmitted.
1
Address Bit Name Function Reset
Default
0x10096 15:6 RSVD Reserved. 0x000
5:0 M13_TDL_BYTE_
END[5:0] These bits define the position of the last byte to be transmitted
from the buffer. 0x00
Address Bit Name Function Reset
Default
0x10097 15:7 RSVD Reserved. 0x000
6:0 M13_DS2_LB_
REQ[7:1] M13_DS2_LB_REQy Bits. If M13_DS2_LB_REQy = 1, the
third C bit in the yth DS3 M-subframe is transmitted as the
inverse of the first two C bits (which indicates a loopback
request for DS2 channel y).
0x00
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
226 Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 294. M13_SEL_DS2_LB_R, Select DS2 Loopback (R/W)
Table 295. M13_RDS2_EDGE_R[1—2], Rx DS2 Edge Registers [1—2](R/W)
Table 296. M13_DS2_OUT_IDLE_R, DS2 Output Idle (R/W)
Table 297. M13_DS2_OUT_AIS_R, DS2 Output Alarm Indication Signal (R/W)
Address Bit Name Function Reset
Default
0x10098 15:7 RSVD Reserved. 0x000
6:0 M13_SEL_DS2_LB[7:1] M13_SE L_D S2 _LBy Bit s. If M13_SEL_DS2_LBy = 1, the
DS2 signal from time slot y in the received DS3 signal is
looped back into time slot y of the transmitted DS3 signal.
0x00
Address Bit Name Function Reset
Default
0x10099 15:7 RSVD Reserved. 0x000
6:0 M13_RDS2_EDGE[7:1] A logic 1 of these bits means that the received
DS2 signals are retimed by the rising edge of the
associated clocks. A logic 0 means that the data
is retimed by the falling edge. When used in the
demand clocking mode of the M23 mapping,
M13_RDS2_EDGE[7:1] = 1 should be set if the
delay from the output clock to the incoming data
(the maximum should be less than eight STS-1
clock cycles) i s less tha n four STS- 1 clock cy cles;
otherwise, M13_RDS2_EDGE[7:1] = 0 should be
used.
0x00
0x1009A 15:7 RSVD Reserved. 0x000
6:0 M13_DS2ALCO_RTM_EDGE[7:1] M13_DS2ALCO_RTM_EDGE[7:1] Bits. In the
demand clocking mode of the M23 mapping, this
register provides an extra clock edge selection
capability, in addition to M13_RDS2_EDGE[7:1],
for retiming input DS2 data. It should normally be
set to logic 1 (default). A logic 0 is suggested only
to be used with M13_RDS2_EDGE[7:1] = 0 when
necessary.
0x7F
Address Bit Name Function Reset
Default
0x1009E 15:7 RSVD Reserved. 0x000
6:0 M13_DS2_OUT_IDLE[7:1] M13_DS2_OUT_IDLE[7:1] Bits. If
M13_DS2_OUT_IDLEy = 1, the output from DS2 output
selection block y is held low.
0x00
Address Bit Name Function Reset
Default
0x1009F 15:7 RSVD Reserved. 0x000
6:0 M13_DS2_OUT_AIS[7:1] M13_DS2_OUT_AIS[7:1] Bits. If M13_DS2_OUT_IDLEy
= 0 (Table 296 on page 226), a logic 1 of this bit causes
DS2 AIS to be output from the DS2 output selector y; oth-
erwise, the DS2 signal from time slot y in the received DS3
signal will be output.
0x00
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
227Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 298. M13_TDS2_EDGE_R, Tx DS2 Edge (R/W)
Table 299. M13_RDL_CONTROL, RDL Control (R/W)
Table 300. M13_PM_CNT_ACT_R, Performance Counter (RO)
Table 301. M13_DS3_FERR_CNT_R[1—2], DS3 F-Bit Error Registers (RO)
Address Bit Name Function Reset
Default
0x100A0 15:7 RSVD Reserved. 000000000
6:0 M13_TDS2_EDGE[7:1] A logic 1 of these bits means that the transmit DS2 sig-
nals are retimed by the rising edge of the associated
clocks. A logic 0 means that the data is retimed by the
falling edge.
0x7F
Address Bit Name Function Reset
Default
0x100A1 15:5 RSVD Reserved. 0x000
4:3 M13_RDL_FILL[1:0] The M13_RDL_FIFO_AF (Table 237 on page 209) bit is set if
the buffer reaches the fill level.
00 = sets the receive HDLC FIFO fill level to 16 bytes.
01 = sets the receive HDLC FIFO fill level to 32 bytes.
10 = sets the receive HDLC FIFO fill level to 64 bytes.
11 = sets the receive HDLC FIFO fill level to 96 bytes.
00
2 M13_RDL_FCS If M13_RDL_FCS = 1, the FCS bytes will be checked at HDLC
receiver. Otherwise, the FCS is not checked and the last 2
bytes of the HDLC frame are written into the FIFO.
1
1 M13_DS3_MODE This bit controls the DS3 framing algorithm. Out-of-frame is
declared if the F bits contain three errors in 16 bits if
M13_DS3_MODE = 0, or at least one F-bit error in four con-
secutive M-subframes if M13_DS3_MODE = 1.
0
0 M13_RDS3_EDGE A logic 1 of this bit means that the received DS3 data is
retimed by the rising edge of the associated clock. A logic 0
means the data is retimed by the falling edge.
0
Address Bit Name Function Reset
Default
0x100A5 15:1 RSVD Reserved. 0x0000
0 M13_PM_CNT_ACT This bit returns a 0 when read if all performance counter val-
ues are 0; otherwise, it is set to 1. 0
Address Bit Name Function Reset
Default
0x100A6 15:4 RSVD Reserved. 0x000
0x100A7 15:8 RSVD Reserved. 0x00
0x100A6
0x100A7 3:0
7:0 M13_DS3_FERR_CNT[11:8]
M13_DS3_FERR_CNT[7:0] This register holds the results from a counter that
increments each time an error is detected in either a
DS3 F bit or M bit.
0x0
0x00
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
228 Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 302. M13_DS3_FEBE_CNT_R[1—2], DS3 Far-End Block Error Registers (RO)
Table 303. M13_DS3_CPERR_CNT_R[1—2], DS3 C-Bit Parity Error Registers (RO)
Table 304. M13_DS3_PERR_CNT_R[1—2], DS3 P-Bit Error Registers (RO)
Address Bit Name Function Reset
Default
0x100A8 15:6 RSVD Reserved. 0x000
0x100A9 15:8 RSVD Reserved. 0x00
0x100A8
0x100A9 5:0
7:0 M13_DS3_FEBE_CNT[13:8]
M13_DS3_FEBE_CNT[7:0] This register holds the results from a counter that
accumulates FEBE error indications (one error indi-
cation for each DS3 frame with at least one FEBE bit
equal to zero).
0x00
0x00
Address Bit Name Function Reset
Default
0x100AA 15:6 RSVD Reserved. 0x000
0x100AB 15:8 RSVD Reserved. 0x00
0x100AA
0x100AB 5:0
7:0 M13_DS3_CPERR_CNT[13:8]
M13_DS3_CPERR_CNT[7:0] This register is used only in the C bit parity mode. It
indicates the number of frames with two or more C-bit
parity errors.
0x00
0x00
Address Bit Name Function Reset
Default
0x100AC 15:6 RSVD Reserved. 0x000
0x100AD 15:8 RSVD Reserved. 0x00
0x100AC
0x100AD 5:0
7:0 M13_DS3_PERR_CNT[13:8]
M13_DS3_PERR_CNT[7:0] This register indicates the number of frames with at
least one P bit that disagrees with the parity of the
previou s frame.
0x00
0x00
Table 305. M13_DS2_PERR_CNT[7—1]_R[1—2], P-Bit Error Counter Status Registers (RO)
Address Bit Name Function Reset
Default
0x100B2
0x100B3
0x100B4
0x100B5
0x100B6
0x100B7
0x100B8
0x100B9
0x100BA
0x100BB
0x100BC
0x100BD
0x100BE
0x100BF
15:5
15:8
15:5
15:8
15:5
15:8
15:5
15:8
15:5
15:8
15:5
15:8
15:5
15:8
RSVD Reserved. 0x000
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
11 M13/M23 MUX/DeMUX Registers (continued)
229Agere Systems Inc.
Table 306. M13_DS2_FERR_CNT[7—1]_R, F-Bit Error Counter Status Registers (RO)
Table 307. M13_BPV_CNT_R[1—3], Bipolar Violation Counter Status Registers (RO)
0x100B2
0x100B3 4:0
7:0 M13_DS2_PERR_CNT7[12:8]
M13_DS2_PERR_CNT7[7:0] These registers are used by M12 demulti-
plexers that operate in the G.747 (E1) mode.
They indicate the number of received DS2
frames with P-bit errors.
0x00
0x00
0x100B4
0x100B5 4:0
7:0 M13_DS2_PERR_CNT6[12:8]
M13_DS2_PERR_CNT6[7:0] 0x00
0x00
0x100B6
0x100B7 4:0
7:0 M13_DS2_PERR_CNT5[12:8]
M13_DS2_PERR_CNT5[7:0] 0x00
0x00
0x100B8
0x100B9 4:0
7:0 M13_DS2_PERR_CNT4[12:8]
M13_DS2_PERR_CNT4[7:0] 0x00
0x00
0x100BA
0x100BB 4:0
7:0 M13_DS2_PERR_CNT3[12:8]
M13_DS2_PERR_CNT3[7:0] 0x00
0x00
0x100BC
0x100BD 4:0
7:0 M13_DS2_PERR_CNT2[12:8]
M13_DS2_PERR_CNT2[7:0] 0x00
0x00
0x100BE
0x100BF 4:0
7:0 M13_DS2_PERR_CNT1[12:8]
M13_DS2_PERR_CNT1[7:0] 0x00
0x00
Address Bit Name Function Reset
Default
0x100C6
0x100CC
15:8 RSVD Reserved. 0x00
7:0 M13_DS2_FERR_CNT[7—1][7:0] These registers hold the results from DS2 frame
alignment signal error counters. In the DS1 mode,
these counters increment each time an error is
detected in either an F bit or M bit. In the E1 mode,
the counters increment either for each frame align-
ment signal bit error (if M13_DS2_FERR_MODE
(Table 286 on page 222) is 0), or once for each
frame alignment signal that contains at least one bit
error (if M13_DS2 _FERR_MODE = 1).
0x00
Address Bit Name Function Reset
Default
0x100CD
0x100CF
15:8 RSVD Reserved. 0x00
7:0 M13_BPV_CNT[23:0] This register is only used in the DS3 bipolar
mode. It holds the results from a counter that
increments each time a received B3ZS bipolar
coding vi olatio n is dete cte d.
0x00
Table 305. M13_DS2_PERR_CNT[7—1]_R[1—2], P-Bit Error Counter Status Registers (RO) (continued)
Address Bit Name Function Reset
Default
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
230 Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 308. M13_EXZ_CNT_R[1—3], Bipolar Violation Counter Status Registers (RO)
Table 309. M13_TDL_BUFFER_R, Tx Data-Link Buffer Control (R/W)
Table 310. M13_TDL_0DATA_R[0—63], Tx Data for Path Maintenance Data-Link Buffer 0 Registers
(64 Bytes x 8 Bits) (R/W)
Table 311. M13_TDL_1DATA_R[0—63], Tx Data for Path Maintenance Data-Link Buffer 1 Registers
(64 Bytes x 8 Bits) (R/W)
Address Bit Name Function Reset
Default
0x100D0
0x100D2
15:8 RSVD Reserved. 0x00
7:0 M13_EXZ_CNT[23:0] This register is only used in the DS3 bipolar mode. It holds the
results from a counter that increments each time an excessive
zeros string is detected.
0x00
Address Bit Name Function Reset
Default
0x100FF 15:1 RSVD Reserved. 0x0000
0 M13_TDL_BUFFER If this bit is 0, data written to registers M13_TDL_0DATA_R[0—
63] address 0x10100—0x1013f (Table 309) is stored in the
path maintenance data-link buffer 0. otherwise, the data is writ-
ten to buffer 1.
0
Address Bit Name Function Reset
Default
0x10100
0x1013F
15:8 RSVD Reserved. 0x00
7:0 M13_TDL_
0DATA[0—63][7:0] This 64-byte buffer for the transmit path maintenance data link
is accessible when M13_TDL_BUFFER = 0 (Table 309). On
reset, reading from these registers returns an undetermined
value.
0xXX
Address Bit Name Function Reset
Default
0x10100
0x1013F
15:8 RSVD Reserved. 0x00
7:0 M13_TDL_
1DATA[0—63][7:0] This 64-byte buffer for the transmit path maintenance data link
is accessible when M13_TDL_BUFFER = 1. On reset, reading
from these registers returns an undetermined value.
0xXX
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
231Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
11.2 M13 Register Map
Table 312. M13 Register Address Map
Note: The reset default of all reserved bits is 0. Shading denotes reserved bits.
Addr Symbol Bits [15:8] Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Block-level Status—RO
0x10000
Page 202 M13_ID_R M13_ID[7:0]
0x10001
Page 202 M13_VERSION_R M13_VERSION[2:0]
0x10002
0x10003 RSVD
DS3 Deltas, Summary Deltas, FEAC, and DL Interrupts—RO
0x10004
Page 202 M13_DELTA1 M13_RDL_IDLED M13_DS3_LOFD M13_DS3_OOFD M13_DS3_C1_DETD M13_DS3_RAI_DETD M13_DS3_AISPAT_DETD M13_DS3_IDLEPAT_DETD M13_DS3_CBZ_DETD
0x10005
Page 203 M13_DELTA2 M13_DS1_LB_SD M13_DS1_AIS_SD M13_DS1_LOC_SD M13_RDS3_SEFD M13_RDS3_ALL1_DETD M13_RDS3_LOSD M13_TDS3_LOCD M13_RDS3_LOCD
0x10006
Page 203 M13_DELTA3 M13_DS2_RSV_SD M13_DS2_LB_SD M13_DS2_RAI_SD M13_DS2_AIS_SD M13_DS2_LOF_SD M13_DS2_OOF_SD M13_XC_DS2_AIS_SD M13_XC_DS2_LOC_SD
0x10007
Page 204 M13_DELTA4 M13_TFEAC_DONE M13_TDL_DONE M13_TDL_BUF1_INT M13_TDL_BUF0_INT M13_RDL_FIFO_AFD M13_RDL_FRM_INT M13_RFEAC_ALM_INT M13_RFEAC_LB_INT
0x10008
Page 205 M13_DELTA5 M13_DS2DMX_LOC_SD M13_RDL_FIFO_UFD
0x10009 RSVD
Interrupt Masks—R/W
0x1000A
Page 205 M13_MASK1 M13_RDL_IDLEM M13_DS3_LOFM M13_DS3_OOFM M13_DS3_C1_DETM M13_DS3_RAI_DETM M13_DS3_AISPAT_DETM M13_DS3_IDLEPAT_DETM M13_DS3_CBZ_DETM
0x1000B
Page 206 M13_MASK2 M13_DS1_LB_SM M13_DS1_AIS_SM M13_DS1_LOC_SM M13_RDS3_SEFM M13_RDS3_ALL1_DETM M13_RDS3_LOSM M13_TDS3_LOCM M13_RDS3_LOCM
0x1000C
Page 206 M13_MASK3 M13_DS2_RSV_SM M13_DS2_LB_SM M13_DS2_RAI_SM M13_DS2_AIS_SM M13_DS2_LOF_SM M13_DS2_OOF_SM M13_XC_DS2_AIS_SM M13_XC_DS2_LOC_SM
0x1000D
Page 207 M13_MASK4 M13_TFEAC_DONEM M13_TDL_DONEM M13_TDL_BUF1_INTM M13_TDL_BUF0_INTM M13_RDL_FIFO_AFM M13_RDL_FRM_INTM M13_RFEAC_ALM_INTM M13_RFEAC_LB_INTM
0x1000E
Page 208 M13_MASK5 M13_DS2DMX_LOC_SM M13_RDL_FIFO_UFM
DS3 Status—RO
0x1000F
Page 208 M13_DS3_STATUS1 M13_RDL_IDLE M13_DS3_LOF M13_DS3_OOF M13_DS3_C1_DET M13_DS3_RAI_DET M13_DS3_AISPAT_DET M13_DS3_IDLEPAT_DET M13_DS3_CBZ_DET
0x10010
Page 209 M13_DS3_STATUS2 M13_RDL_FIFO_UF M13_RDL_FIFO_AF M13_RDS3_SEF M13_RDS3_ALL1_DET M13_RDS3_LOS M13_TDS3_LOC M13_RDS3_LOC
TMXF28155 Supermapper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
232 Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 312. M13 Register Address Map (continued)
Addr Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Individual DS2 and DS1 Deltas—RO
0x10011
Page 209 M13_XC_DS2_LOCD_R M13_XC_DS2_LOCD[7:1]
0x10012
Page 209 M13_XC_DS2_AIS_DETD_R M13_XC_DS2_AIS_DETD[7:1]
0x10013
Page 210 M13_DS2_OOFD_R M13_DS2_OOFD[7:1]
0x10014
Page 210 M13_DS2_LOFD_R M13_DS2_LOFD[7:1]
0x10015
Page 210 M13_DS2_AIS_DETD_R M13_DS2_AIS_DETD[7:1]
0x10016
Page 210 M13_DS2_RAI_DETD_R M13_DS2_RAI_DETD[7:1]
0x10017
Page 211 M13_DS2_LB_DETD_R M13_DS2_LB_DETD[7:1]
0x10018
Page 211 M13_DS2_RSV_RCVD_R M13_DS2_RSV_RCVD[7:1]
0x10019
Page 211 M13_DS2DMX_LOCD_R M13_DS2DMX_LOCD[7:1]
0x1001A
0x1001D
RSVD
0x1001E
Page 211 M13_DS1_LOCD_R1 M13_DS1_LOCD[28:25]
0x1001F
Page 211 M13_DS1_LOCD_R2 M13_DS1_LOCD[24:17]
0x10020
Page 211 M13_DS1_LOCD_R3 M13_DS1_LOCD[16:9]
0x10021
Page 211 M13_DS1_LOCD_R4 M13_DS1_LOCD[8:1]
0x10022
Page 212 M13_DS1_AIS_DETD_R1 M13_DS1_AIS_DETD[28:25]
0x10023
Page 212 M13_DS1_AIS_DETD_R2 M13_DS1_AIS_DETD[24:17]
0x10024
Page 212 M13_DS1_AIS_DETD_R3 M13_DS1_AIS_DETD[16:9]
0x10025
Page 212 M13_DS1_AIS_DETD_R4 M13_DS1_AIS_DETD[8:1]
0x10026
Page 212 M13_DS1_LB_DETD_R1 M13_DS1_LB_DETD[28:25]
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
233Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 312. M13 Register Address Map (continued)
Addr Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0x10027
Page 212 M13_DS1_LB_DETD_R2 M13_DS1_LB_DETD[24:17]
0x10028
Page 212 M13_DS1_LB_DETD_R3 M13_DS1_LB_DETD[16:9]
0x10029
Page 212 M13_DS1_LB_DETD_R4 M13_DS1_LB_DETD[8:1]
0x1002A
0x1002E
RSVD
DS2 and DS1 Status—RO
0x1002F
Page 212 M13_XC_DS2_LOC_R M13_XC_DS2_LOC[7:1]
0x10030
Page 212 M13_XC_DS2_AIS_DET_R M13_XC_DS2_AIS_DET[7:1]
0x10031
Page 213 M13_DS2_OOF_R M13_DS2_OOF[7:1]
0x10032
Page 213 M13_DS2_LOF_R M13_DS2_LOF[7:1]
0x10033
Page 213 M13_DS2_AIS_DET_R M13_DS2_AIS_DET[7:1]
0x10034
Page 213 M13_DS2_RAI_DET_R M13_DS2_RAI_DET[7:1]
0x10035
Page 214 M13_DS2_LB_DET_R M13_DS2_LB_DET[7:1]
0x10036
Page 214 M13_DS2_RSV_RCV_R M13_DS2_RSV_RCV[7:1]
0x10037
Page 214 M13_DS2DMX_LOC_R M13_DS2DMX_LOC[7:1]
0x10038
0x1003B
RSVD
0x1003C
Page 214 M13_DS1_LOC_R1 M13_DS1_LOC[28:25]
0x1003D
Page 214 M13_DS1_LOC_R2 M13_DS1_LOC[24:17]
0x1003E
Page 214 M13_DS1_LOC_R3 M13_DS1_LOC[16:9]
0x1003F
Page 214 M13_DS1_LOC_R4 M13_DS1_LOC[8:1]
0x10040
Page 215 M13_DS1_AIS_DET_R1 M13_DS1_AIS_DET[28:25]
TMXF28155 Supermapper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
234 Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 312. M13 Register Address Map (continued)
Addr Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0x10041
Page 215 M13_DS1_AIS_DET_R2 M13_DS1_AIS_DET[24:17]
0x10042
Page 215 M13_DS1_AIS_DET_R3 M13_DS1_AIS_DET[16:9]
0x10043
Page 215 M13_DS1_LB_DET_R4 M13_DS1_AIS_DET[8:1]
0x10044
Page 215 M13_DS1_LB_DET_R1 M13_DS1_LB_DET[28:25]
0x10045
Page 215 M13_DS1_LB_DET_R2 M13_DS1_LB_DET[24:17]
0x10046
Page 215 M13_DS1_LB_DET_R3 M13_DS1_LB_DET[16:9]
0x10047
Page 215 M13_DS1_LB_DET_R4 M13_DS1_LB_DET[8:1]
0x10048 RSVD
FEAC Loopback Individual Deltas—RO
0x10049
Page 215 M13_DS1_FEAC_LB_DETD_R1 M13_DS3_FLB_DETD M13_DS1_FEAC_LB_DETD[28:25]
0x1004A
Page 215 M13_DS1_FEAC_LB_DETD_R2 M13_DS1_FEAC_LB_DETD[24:17]
0x1004B
Page 215 M13_DS1_FEAC_LB_DETD_R3 M13_DS1_FEAC_LB_DETD[16:9]
0x1004C
Page 215 M13_DS1_FEAC_LB_DETD_R4 M13_DS1_FEAC_LB_DETD[8:1]
FEAC Status, RDL Status, and RDL FIFO—RO
0x1004D
Page 216 M13_DS1_FEAC_LB_DET_R1 M13_DS3_FLB_DET M13_DS1_FEAC_LB_DET[28:25]
0x1004E
Page 216 M13_DS1_FEAC_LB_DET_R2 M13_DS1_FEAC_LB_DET[24:17]
0x1004F
Page 216 M13_DS1_FEAC_LB_DET_R3 M13_DS1_FEAC_LB_DET[16:9]
0x10050
Page 216 M13_DS1_FEAC_LB_DET_R4 M13_DS1_FEAC_LB_DET[8:1]
0x10051
Page 216 M13_RFEAC_CODE_R M13_RFEAC_CODE[5:0]
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
235Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 312. M13 Register Address Map (continued)
Addr Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0x10052
Page 216 M13_RDL_STATUS M13_RDL_FLAG M13_RDL_ABORT M13_RDL_NOT_
BYTE M13_RDL_OVFL M13_RDL_FCS_
ERR
0x10053
Page 217 M13_RDL_DATA_R M13_RDL_DATA[7:0]
0x10054
Page 217 M13_RDL_FRAME_SIZE_R M13_RDL_FRAME_SIZE[6:0]
0x10055
Page 217 M13_RHDLC_STATUS_R M13_RHDLC_STATUS[7:0]
0x10056
0x10058
RSVD
One Shot Signals—R/Wl
0x10059
Page 217 M13_DS2_FORCE_OOF_R M13_DS2_FORCE_OOF[7:1]
0x1005A
Page 218 M13_CONTROL1 M13_RDL_FRM_
CLR M13_DS3_
FORCE_OOF M13_BIPOL_
ERR
0x1005B RSVD
Block-level Controls—R/W
0x1005C
Page 218 M13_CONTROL2 M13_BPV_IN M13_LOOP_TIME M13_LOOP_T_
TO_R M13_LOOP_
R_TO_T M13_AUTO_
AIS_LOF M13_AUTO_AIS_
OOF M13_AUTO_FLB M13_AUTO_LB
0x1005D
Page 219 M13_CONTROL3 M13_M23_CBP M13_BIPOLAR
0x1005E
Page 219 M13_SP_OFFSET_R M13_NSMI_SP_OFFSET[7:0]
0x1005F
Page 219 M13_SP_D_OFFSET_R M13_NSMI_SP_D_OFFSET[7:0]
M12 MUX’s Control—R/W
0x10060
Page 220 M13_M12_MUX_CONTROL1_R1 M13_M12_MODE1[1:0] M13_MUXCH2_
4_INV1 M13_DS1_E1N1 M13_DS1_LB_REQ[4:1]
0x10061
Page 220 M13_M12_MUX_CONTROL2_R1 M13_SEL_DS1_LB[4:1] M13_RDS1_EDGE[4:1]
0x10062
Page 220 M13_M12_MUX_CONTROL1_R2 M13_M12_MODE2[1:0] M13_MUXCH2_
4_INV2 M13_DS1_E1N2 M13_DS1_LB_REQ[8:5]
0x10063
Page 220 M13_M12_MUX_CONTROL2_R2 M13_SEL_DS1_LB[8:5] M13_RDS1_EDGE[8:5]
0x10064
Page 220 M13_M12_MUX_CONTROL1_R3 M13_M12_MODE3[1:0] M13_MUXCH2_
4_INV3 M13_DS1_E1N3 M13_DS1_LB_REQ[12:9]
TMXF28155 Supermapper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
236 Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 312. M13 Register Address Map (continued)
Addr Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0x10065
Page 220 M13_M12_MUX_CONTROL2_R3 M13_SEL_DS1_LB[12:9] M13_RDS1_EDGE[12:9]
0x10066
Page 220 M13_M12_MUX_CONTROL1_R4 M13_M12_MODE4[1:0] M13_MUXCH2_4_INV4 M13_DS1_E1N4 M13_DS1_LB_REQ[16:13]
0x10067
Page 220 M13_M12_MUX_CONTROL2_R4 M13_SEL_DS1_LB[16:13] M13_RDS1_EDGE[16:13]
0x10068
Page 220 M13_M12_MUX_CONTROL1_R5 M13_M12_MODE5[1:0] M13_MUXCH2_4_INV5 M13_DS1_E1N5 M13_DS1_LB_REQ[20:17]
0x10069
Page 220 M13_M12_MUX_CONTROL2_R5 M13_SEL_DS1_LB[20:17] M13_RDS1_EDGE[20:17]
0x1006A
Page 220 M13_M12_MUX_CONTROL1_R6 M13_M12_MODE6[1:0] M13_MUXCH2_4_INV6 M13_DS1_E1N6 M13_DS1_LB_REQ[24:21]
0x1006B
Page 220 M13_M12_MUX_CONTROL2_R6 M13_SEL_DS1_LB[24:21] M13_RDS1_EDGE[24:21]
0x1006C
Page 220 M13_M12_MUX_CONTROL1_R7 M13_M12_MODE7[1:0] M13_MUXCH2_4_INV7 M13_DS1_E1N7 M13_DS1_LB_REQ[28:25]
0x1006D
Page 220 M13_M12_MUX_CONTROL2_R7 M13_SEL_DS1_LB[28:25] M13_RDS1_EDGE[28:25]
0x1006E
Page 220 M13_DS2_RAI_SEND_R M13_DS2_RAI_SEND[7:1]
0x1006F
Page 220 M13_DS2_RSV_SEND_R M13_DS2_RSV_SEND[7:1]
0x10070
Page 221 M13_DS2_MPINV_R M13_DS2_MPINV[7:1]
0x10071
Page 221 M13_DS2_FINV_R M13_DS2_FINV[7:1]
0x10072
Page 221 M13_DS2_P_BER_R M13_DS2_P_BER[7:1]
0x10073
Page 221 M13_DS2M12_EDGE_R M13_DS2M12_EDGE[7:1]
0x10074
Page 221 M13_DS2_FORCE_AIS_R M13_DS2_FORCE_AIS[7:1]
0x10075
0x1007A
RSVD
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
237Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 312. M13 Register Address Map (continued)
Addr Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
M12 DeMUX’s Control—R/W
0x1007B
Page 222 M13_M12_DEMUX_CONTROL1_R1 M13_M12DMX_MODE1[1:0] M13_DEMUXCH2_4_INV1 M13_OUT_TYPE1 M13_TDS1_EDGE[4:1]
0x1007C
Page 222 M13_M12_DEMUX_CONTROL2_R1 M13_DS1_OUT_AIS[4:1]
0x1007D
Page 222 M13_M12_DEMUX_CONTROL1_R2 M13_M12DMX_MODE2[1:0] M13_DEMUXCH2_4_INV2 M13_OUT_TYPE2 M13_TDS1_EDGE[8:5]
0x1007E
Page 222 M13_M12_DEMUX_CONTROL2_R2 M13_DS1_OUT_AIS[8:5]
0x1007F
Page 222 M13_M12_DEMUX_CONTROL1_R3 M13_M12DMX_MODE3[1:0] M13_DEMUXCH2_4_INV3 M13_OUT_TYPE3 M13_TDS1_EDGE[12:9]
0x10080
Page 222 M13_M12_DEMUX_CONTROL2_R3 M13_DS1_OUT_AIS[12:9]
0x10081
Page 222 M13_M12_DEMUX_CONTROL1_R4 M13_M12DMX_MODE4[1:0] M13_DEMUXCH2_4_INV4 M13_OUT_TYPE4 M13_TDS1_EDGE[16:13]
0x10082
Page 222 M13_M12_DEMUX_CONTROL2_R4 M13_DS1_OUT_AIS[16:13]
0x10083
Page 222 M13_M12_DEMUX_CONTROL1_R5 M13_M12DMX_MODE5[1:0] M13_DEMUXCH2_4_INV5 M13_OUT_TYPE5 M13_TDS1_EDGE[20:17]
0x10084
Page 222 M13_M12_DEMUX_CONTROL2_R5 M13_DS1_OUT_AIS[20:17]
0x10085
Page 222 M13_M12_DEMUX_CONTROL1_R6 M13_M12DMX_MODE6[1:0] M13_DEMUXCH2_4_INV6 M13_OUT_TYPE6 M13_TDS1_EDGE[24:21]
0x10086
Page 222 M13_M12_DEMUX_CONTROL2_R6 M13_DS1_OUT_AIS[24:21]
0x10087
Page 222 M13_M12_DEMUX_CONTROL1_R7 M13_M12DMX_MODE7[1:0] M13_DEMUXCH2_4_INV7 M13_OUT_TYPE7 M13_TDS1_EDGE[28:25]
0x10088
Page 222 M13_M12_DEMUX_CONTROL2_R7 M13_DS1_OUT_AIS[28:25]
0x10089
Page 222 M13_M12_DEMUX_CONTROL3 M13_DS2_MODE M13_DS2_FERR_MODE
0x1008A
Page 223 M13_DMDS2_EDGE_R M13_DMDS2_EDGE[7:1]
0x1008B
0x10091
RSVD
TMXF28155 Supermapper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
238 Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 312. M13 Register Address Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
M23 MUX Co ntrols—R/W
0x10092
Page 223 M13_DS3_CONTROL1 M13_DS3_FINV M13_DS3_MINV M13_DS3_PINV M13_DS3_FORCE_AIS M13_DS3_FORCE_
IDLE M13_TDS3_
FORCE_ALL1 M13_M23CLK_
MODE
0x10093
Page 224 M13_DS3_CONTROL2 M23_STUFF_
MODE M13_NSMI_MODE M13_DS3_P_BER M13_CBIT2_ACT M13_UNUSED_
ACT M13_DS3_RAI_
SEND M13_FEBE_ERR
0x10094
Page 224 M13_TFEAC_CONTROL M13_TFEAC_CTL[1:0] M13_TFEAC_CODE[5:0]
0x10095
Page 225 M13_THDLC_CONTROL1 M13_TDL_BUF1_
END M13_TDL_BUF0_END M13_TDL_ACT M13_TDL_NTRNL M13_TDL_
NTRNL_ACT M13_TDL_FCS
0x10096
Page 225 M13_THDLC_CONTROL2 M13_TDL_BYTE_END[5:0]
0x10097
Page 225 M13_DS2_LB_REQ_R M13_DS2_LB_REQ[7:1]
0x10098
Page 226 M13_SEL_DS2_LB_R M13_SEL_DS2_LB[7:1]
0x10099
Page 226 M13_RDS2_EDGE_R1 M13_RDS2_EDGE[7:1]
0x1009A
Page 226 M13_RDS2_EDGE_R2 M13_DS2ALCO_RTM_EDGE[7:1]
0x1009B
0x1009D
RSVD
M23 DeMUX Controls—R/W
0x1009E
Page 226 M13_DS2_OUT_IDLE_R M13_DS2_OUT_IDLE[7:1]
0x1009F
Page 226 M13_DS2_OUT_AIS_R M13_DS2_OUT_AIS[7:1]
0x100A0
Page 227 M13_TDS2_EDGE_R M13_TDS2_EDGE[7:1]
0x100A1
Page 227 M13_RDL_CONTROL M13_RDL_FILL[1:0] M13_RDL_FCS M13_DS3_
MODE M13_RDS3_
EDGE
0x100A2
0x100A4
RSVD
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
239Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 312. M13 Register Address Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Performance-Monitoring Counters RO
0x100A5
Page 227 M13_PM_CNT_ACT_R M13_PM_CNT_ACT
0x100A6
Page 227 M13_DS3_FERR_CNT_R1 M13_DS3_FERR_CNT[11:8]
0x100A7
Page 227 M13_DS3_FERR_CNT_R2 M13_DS3_FERR_CNT[7:0]
0x100A8
Page 228 M13_DS3_FEBE_CNT_R1 M13_DS3_FEBE_CNT[13:8]
0x100A9
Page 228 M13_DS3_FEBE_CNT_R2 M13_DS3_FEBE_CNT[7:0]
0x100AA
Page 228 M13_DS3_CPERR_CNT_R1 M13_DS3_CPERR_CNT[13:8]
0x100AB
Page 228 M13_DS3_CPERR_CNT_R2 M13_DS3_CPERR_CNT[7:0]
0x100AC
Page 228 M13_DS3_PERR_CNT_R1 M13_DS3_PERR_CNT[13:8]
0x100AD
Page 228 M13_DS3_PERR_CNT_R2 M13_DS3_PERR_CNT[7:0]
0x100AE
0x100B1
RSVD
0x100B2
Page 229 M13_DS2_PERR_CNT7_R1 M13_DS2_PERR_CNT7[12:8]
0x100B3
Page 229 M13_DS2_PERR_CNT7_R2 M13_DS2_PERR_CNT7[7:0]
0x100B4
Page 229 M13_DS2_PERR_CNT6_R1 M13_DS2_PERR_CNT6[12:8]
0x100B5
Page 229 M13_DS2_PERR_CNT6_R2 M13_DS2_PERR_CNT6[7:0]
0x100B6
Page 229 M13_DS2_PERR_CNT5_R1 M13_DS2_PERR_CNT5[12:8]
0x100B7
Page 229 M13_DS2_PERR_CNT5_R2 M13_DS2_PERR_CNT5[7:0]
0x100B8
Page 229 M13_DS2_PERR_CNT4_R1 M13_DS2_PERR_CNT4[12:8]
0x100B9
Page 229 M13_DS2_PERR_CNT4_R2 M13_DS2_PERR_CNT4[7:0]
0x100BA
Page 229 M13_DS2_PERR_CNT3_R1 VDS2_PERR_CNT3[12:8]
0x100BB
Page 229 M13_DS2_PERR_CNT3_R2 M13_DS2_PERR_CNT3[7:0]
TMXF28155 Supermapper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
240 Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 312. M13 Register Address Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0x100BC
Page 229 M13_DS2_PERR_CNT2_R1 M13_DS2_PERR_CNT2[12:8]
0x100BD
Page 229 M13_DS2_PERR_CNT2_R2 M13_DS2_PERR_CNT2[7:0]
0x100BE
Page 229 M13_DS2_PERR_CNT1_R1 M13_DS2_PERR_CNT1[12:8]
0x100BF
Page 229 M13_DS2_PERR_CNT1_R2 M13_DS2_PERR_CNT1[7:0]
0x100C0
0x100C5
RSVD
0x100C6
Page 229 M13_DS2_FERR_CNT7_R M13_DS2_FERR_CNT7[7:0]
0x100C7
Page 229 M13_DS2_FERR_CNT6_R M13_DS2_FERR_CNT6[7:0]
0x100C8
Page 229 M13_DS2_FERR_CNT5_R M13_DS2_FERR_CNT5[7:0]
0x100C9
Page 229 M13_DS2_FERR_CNT4_R M13_DS2_FERR_CNT4[7:0]
0x100CA
Page 229 M13_DS2_FERR_CNT3_R M13_DS2_FERR_CNT3[7:0]
0x100CB
Page 229 M13_DS2_FERR_CNT2_R M13_DS2_FERR_CNT2[7:0]
0x100CC
Page 229 M13_DS2_FERR_CNT1_R M13_DS2_FERR_CNT1[7:0]
0x100CD
Page 229 M13_BPV_CNT_R1 M13_BPV_CNT[23:16]
0x100CE
Page 229 M13_BPV_CNT_R2 M13_BPV_CNT[15:8]
0x100CF
Page 229 M13_BPV_CNT_R3 M13_BPV_CNT[7:0]
0x100D0
Page 230 M13_EXZ_CNT_R1 M13_EXZ_CNT[23:16]
0x100D1
Page 230 M13_EXZ_CNT_R2 M13_EXZ_CNT[15:8]
0x100D2
Page 230 M13_EXZ_CNT_R3 M13_EXZ_CNT[7:0]
0x100D3
0x100FE
RSVD
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
241Agere Systems Inc.
11 M13/M23 MUX/DeMUX Registers (continued)
Table 312. M13 Register Address Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
TDL Buffer Selection—R/W
0x100FF
Page 230 M13_TDL_BUFFER_R M13_TDL_BUFFER
TDL Buffers—R/W, When M13_TDL_BUFFER = 0
0x10100
0x1013F
Page 230
M13_TDL_0DATA_R[0—63] M13_TDL_0DATA[0—63][7:0]
When M13_TDL_BUFFER = 1
0x10100
0x1013F
Page 230
M13_TDL_1DATA_R[0—63] M13_TDL_1DATA[0—63][7:0]
0x10140
0x101FF
RSVD
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
242 Agere Systems Inc.
12 28-Channel Framer Registers
Table of Con t ents
Contents Page
12 28-Channel Framer Registers .........................................................................................................................242
12.1 Framer Global Register Descriptions.......................................................................................................246
12.2 Arbiter (Framer) Global Registers............................................................................................................248
12.3 Performance Monitor Global Registers....................................................................................................250
12.4 HDLC Global Configuration and Status Registers ...................................................................................257
12.5 System Interface Global Registers...........................................................................................................261
12.6 Signaling Global Registers.......................................................................................................................267
12.7 Frame Formatter (Transmit Framer) Global Register...............................................................................271
12.8 Facility Data Link Global Registers ..........................................................................................................272
12.9 Supermapper Framer Per Link Configuration and Status Registers........................................................272
12.9.1 Signaling Per Link Registers ......................................................................................................... 272
12.10 Performance Monitor Per Link Registers ...............................................................................................278
12.11 Receive Facility Data Link Configuration and Status Registers .............................................................293
12.12 Transmit Facility Data Link Configuration and Status Registers............................................................295
12.13 System Interface, Arbiter, and Frame Formatter Mapping.....................................................................298
12.14 System Interface Per Link Registers......................................................................................................299
12.15 Arbiter Framer Per Link Registers..........................................................................................................300
12.16 Frame Formatter Per Link Registers......................................................................................................305
12.17 Line Decoder/Encoder Per Link Registers.............................................................................................307
12.18 Line Encoder/Decoder Per Link Registers.............................................................................................308
12.19 HDLC Per Channel Configuration and Status Registers........................................................................309
12.20 28-Channel Framer Block Register Map................................................................................................316
Tables Page
Table 313. FRM_SFGR1, Superframer Global Register 1 (R/W)..........................................................................246
Table 314. FRM_SFGR2, Superframer Global Register 2 (R/W)..........................................................................247
Table 315. FRM_SFGR3, Superframer Global Register 3 (RO)............................................................................248
Table 316. FRM_SFGSR4, Superframer Global Register 4 (R/W)........................................................................248
Table 317. FRM_FGR1, Framer Global Register 1 (R/W).....................................................................................248
Table 318. FRM_FGR2, Framer Global Register 2 (R/W).....................................................................................249
Table 319. FRM_FGR3, Framer Global Register 3 (R/W).....................................................................................249
Table 320. FRM_FGR4, Framer Global Register 4 (COR)....................................................................................249
Table 321. FRM_FGR5, Framer Global Register 5 (COR)....................................................................................250
Table 322. FRM_PMGR1_B, Performance Monitor Global Register 1_B (R/W)...................................................250
Table 323. FRM_PMGR1, Performance Monitor Global Register 1 (COR)...........................................................251
Table 324. FRM_PMGR2, Performance Monitor Global Register 2 (COR)...........................................................251
Table 325. FRM_PMGR3, Performance Monitor Global Register 3 (R/W)............................................................251
Table 326. FRM_PMGR4, Performance Monitor Global Register 4 (R/W)............................................................252
Table 327. FRM_PMGR5, Performance Monitor Global Register 5—PMGR5 (R/W)...........................................252
Table 328. FRM_PMGR6, Performance Monitor Global Register 6 (R/W)............................................................253
Table 329. FRM_PMGR7, Performance Monitor Global Register 7 (R/W)............................................................253
Table 330. FRM_PMGR8, Performance Monitor Global Register 8 (R/W)............................................................253
Table 331. FRM_PMGR9, Performance Monitor Global Register 9 (R/W)............................................................253
Table 332. FRM_PMGR10, Performance Monitor Global Register 10 (R/W)........................................................254
Table 333. FRM_PMGR11, Performance Monitor Global Register 11 (R/W)........................................................254
Table 334. FRM_PMGR12, Performance Monitor Global Register 12 (R/W)........................................................255
Table 335. FRM_PMGR13, Performance Monitor Global Register 13 (R/W)........................................................256
Table 336. FRM_PMGR14, Performance Monitor Global Register 14 (R/W)........................................................256
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
243Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table of Conten ts (continued)
Tables Page
Table 337. FRM_PMGR15, Performance Monitor Global Register 15 (R/W)........................................................257
Table 338. FRM_PMGR16, Performance Monitor Global Register 16 (R/W)........................................................257
Table 339. FRM_HGR1, Transmit HDLC Global Registe r 1 (R/W) .... ....... ...... .................... ...... ....... ...... ....... ...... ..257
Table 340. FRM_HGR2, Transmit HDLC Global Registe r 2 (R/W) .... ....... ...... .................... ...... ....... ...... ....... ...... ..257
Table 341. FRM_HGR3, Transmit HDLC Global Registe r 3 (R/W) .... ....... ...... .................... ...... ....... ...... ....... ...... ..258
Table 342. FRM_HGR4, Transmit HDLC Global Registe r 4 (R/W) .... ....... ...... .................... ...... ....... ...... ....... ...... ..258
Table 343. FRM_HGR5, Transmit HDLC Global Registe r 5 (R/W) .... ....... ...... .................... ...... ....... ...... ....... ...... ..258
Table 344. FRM_HGR6, Transmit HDLC Global Registe r 6 (R/W) .... ....... ...... .................... ...... ....... ...... ....... ...... ..258
Table 345. FRM_HGR7, Transmit HDLC Global Registe r 7 (R/W) .... ....... ...... .................... ...... ....... ...... ....... ...... ..259
Table 346. FRM_HGR8, Transmit HDLC Global Registe r 8 (R/W) .... ....... ...... .................... ...... ....... ...... ....... ...... ..259
Table 347. FRM_HGR9, Transmit HDLC Global Registe r 9 (R/W) .... ....... ...... .................... ...... ....... ...... ....... ...... ..259
Table 348. FRM_HGR10, Transmit HDLC Global Register 10 (R/W) ...................................................................259
Table 349. FRM_HGR11, Transmit HDLC Global Register 11 (RO)......................................................................259
Table 350. FRM_HGR12, Transmit HDLC Global Register 12 (R/W) ...................................................................260
Table 351. FRM_HGR13, Transmit HDLC Global Register 13 (R/W) ...................................................................260
Table 352. FRM_HGR14, Transmit HDLC Global Register 14 (R/W) ...................................................................260
Table 353. FRM_HGR15, Receive HDLC Global Register 15 (R/W) ....................................................................260
Table 354. FRM_HGR16, Receive HDLC Global Register 16 (R/W) ....................................................................260
Table 355. FRM_HGR17, Receive HDLC Global Register 17 (R/W) ....................................................................260
Table 356. FRM_HGR18, Receive HDLC Global Register 18 (R/W) ....................................................................261
Table 357. FRM_HGR19, Receive HDLC Global Register 19 (R/W) ....................................................................261
Table 358. FRM_HGR20, Receive HDLC Global Register 20 (R/W) ....................................................................261
Table 359. FRM_SYSGR1, System Interface Global Register 1 (R/W) ................................................................261
Table 360. FRM_SYSGR2, System Interface Global Register 2 (R/W) ................................................................263
Table 361. FRM_SYSGR3, System Interface Global Register 3 (R/W) ................................................................263
Table 362. FRM_SYSGR4, System Interface Global Register 4 (R/W) ................................................................264
Table 363. FRM_SYSGR5, System Interface Global Register 5 (R/W) ................................................................264
Table 364. FRM_SYSGR6, System Interface Global Register 6 (COR) ...............................................................264
Table 365. FRM_SYSGR7, System Interface Global Register 7 (COR) ...............................................................265
Table 366. FRM_SYSGR8, System Interface Global Register 8 (R/W) ................................................................265
Table 367. FRM_SYSGR9, System Interface Global Register 9 (R/W) ................................................................265
Table 368. FRM_SYSGR10—FRM_SYSGR14, System Interface Global Register 10—14 (R/W).......................266
Table 369. FRM_SYSGR15, System Interface Global Register 15 (COR) ...........................................................266
Table 370. FRM_SYSGR16, System Interface Global Register 16 (R/W) ............................................................266
Table 371. FRM_SGR1, Receive Signaling Global Register 1 (R/W) ...................................................................267
Table 372. FRM_SGR2, Receive Signaling Global Register 2 (R/W) ...................................................................267
Table 373. FRM_SGR3, Receive Signaling Global Register 3 (R/W) ...................................................................268
Table 374. FRM_SGR4, Receive Signaling Global Register 4 (RO).....................................................................268
Table 375. FRM_SGR5, Receive Signaling Global Register 5 (RO).....................................................................268
Table 376. FRM_SGR6, Receive Signaling Global Register 6 .............................................................................269
Table 377. FRM_SGR7, Receive Signaling Global Register 7 (R/W) ...................................................................269
Table 378. FRM_SGR8, Transmit Signaling Global Register 8 (R/W)...................................................................270
Table 379. FRM_FFGR1, Transmit Framer Global Register 1 (R/W)....................................................................271
Table 380. FRM_FDLGR1, Receive Facility Data Link Global Register 1 (R/W) ..................................................272
Table 381. FRM_FDLGR2, Transmit Facility Data Link Global Register 2 (R/W)..................................................272
Table 382. Receive Path Signaling Register Addressing Map ..............................................................................272
Table 383. Receive Path Signaling Registers Address Indexing...........................................................................272
Table 384. FRM_RSLR0—FRM_RSLR31, Receive Signaling Link Registers 0—31 (R/W).................................273
Table 385. FRM_RSLR32, Receive Signaling Link Register 32 (COR) ................................................................274
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
244 Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table of Conten ts (continued)
Tables Page
Table 386. FRM_RSLR33, Receive Signaling Link Register 33 (R/W) .................................................................274
Table 387. Transmit Path Signaling Register Addressing Map..............................................................................275
Table 388. Transmit Path Signaling Registers Address Indexing..........................................................................275
Table 389. FRM_TSLR0—FRM_TSLR31, Transmit Signaling Link Registers 0—31 (R/W).................................276
Table 390. FRM_TSLR33, Transmit Signaling Link Register 33 (COR)................................................................277
Table 391. FRM_TSLR32, Transmit Signaling Link Register 32 (R/W).................................................................277
Table 392. Performance Monitor Per Link Register Addressing Map....................................................................278
Table 393. Performance Monitor Per Link Register Address Indexing..................................................................279
Table 394. FRM_PMLR1, Performance Monitor Link Register 1 (R/W)................................................................279
Table 395. FRM_PMLR2, Performance Monitor Link Register 2 (R/W)................................................................279
Table 396. FRM_PMLR3, Performance Monitor Link Register 3 (R/W)................................................................280
Table 397. FRM_PMLR4, Performance Monitor Link Register 4 (COR)...............................................................280
Table 398. FRM_PMLR5, Performance Monitor Link Register 5 (COR)...............................................................287
Table 399. FRM_PMLR6, Performance Monitor Link Register 6 (COR)...............................................................289
Table 400. FRM_PMLR7, Performance Monitor Link Register 7 (COR)...............................................................289
Table 401. FRM_PMLR8, Performance Monitor Link Register 8 (COR)...............................................................290
Table 402. FRM_PMLR9, Performance Monitor Link Register 9 (COR)...............................................................290
Table 403. FRM_PMLR10, Performance Monitor Link Register 10 (COR)...........................................................290
Table 404. FRM_PMLR11, Performance Monitor Link Register 11 (COR)............................................................290
Table 405. FRM_PMLR12, Performance Monitor Link Register 12 (COR)...........................................................290
Table 406. FRM_PMLR13, Performance Monitor Link Register 13 (COR)...........................................................291
Table 407. FRM_PMLR14, Performance Monitor Link Register 14 (COR)...........................................................292
Table 408. FRM_PMLR15, Performance Monitor Link Register 15 (COR)...........................................................292
Table 409. FRM_PMLR16, Performance Monitor Link Register 16 (COR)...........................................................292
Table 410. FRM_PMLR17, Performance Monitor Link Register 17 (COR)...........................................................292
Table 411. FRM_PMLR18, Performance Monitor Link Register 18 (COR) ...........................................................292
Table 412. FRM_PMLR19, Performance Monitor Link Register 19 (COR)...........................................................293
Table 413. FRM_PMLR20, Performance Monitor Link Register 20 (COR)...........................................................293
Table 414. Receive Facility Data Link Register Addressing Map ..........................................................................293
Table 415. Receive Path Facility Data Link Registers Address Indexing..............................................................294
Table 416. FRM_RFDLLR1—FRM_RFDLLR5, Receive FDL Link Registers 1—5 (RO)......................................294
Table 417. FRM_RFDLLR6, Receive FDL Link Register 6 (R/W).........................................................................294
Table 418. FRM_RFDLLR7, Receive FDL Link Register 7 (RO)...........................................................................294
Table 419. FRM_RFDLLR8, Receive FDL Link Register 8 (COR)........................................................................295
Table 420. FRM_RFDLLR9, Receive FDL Link Register 9 (R/W).........................................................................295
Table 421. Transmit Facility Data Link Register Addressing Map .........................................................................295
Table 422. Transmit Path Facility Data Link Registers Address Indexing .............................................................295
Table 423. FRM_TFDLLR1—FRM_TFDLR5, Transmit FDL Link Registers 1—5 (COR).....................................295
Table 424. FRM_TFDLLR6, Transmit FDL Link Register 6 (R/W).........................................................................296
Table 425. FRM_TFDLLR7, Transmit FDL Link Register 7 (R/W).........................................................................297
Table 426. FRM_TFDLLR8, Transmit FDL Link Register 8 (RO/COW) ................................................................297
Table 427. FRM_TFDLLR9, Transmit FDL Link Register 9 (R/W).........................................................................297
Table 428. System Interface, Arbiter, and Frame Formatter Link Register Addressing Map.................................298
Table 429. System Interface, Arbiter, and Frame Formatter Link Register Address Indexing...............................298
Table 430. FRM_SYSLR1, System Interface Link Register 1 (R/W).....................................................................299
Table 431. FRM_SYSLR2, System Interface Link Register 2 (R/W).....................................................................299
Table 432. FRM_SYSLR3—FRM_SYSLR6, System Interface Link Registers 3—6 (R/W) ..................................299
Table 433. FRM_ARLR1, Arbiter Link Register 1 (R/W)........................................................................................300
Table 434. FRM_ARLR2, Arbiter Link Register 2 (R/W)........................................................................................301
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
245Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table of Conten ts (continued)
Tables Page
Table 435. FRM_ARLR3, Arbiter Link Register 3 (R/W)........................................................................................304
Table 436. FRM_FFLR1, Frame Formatter Link Register 1 (R/W)........................................................................305
Table 437. FRM_FFLR2, Frame Formatter Link Register 2 (R/W)........................................................................306
Table 438. Line Decoder Per LInk Register Addressing Map................................................................................307
Table 439. Line Decoder Per Link Registers Address Indexing ............................................................................307
Table 440. Line Encoder Per Link Register Addressing Map ................................................................................307
Table 441. Line Encoder Per Link Registers Address Indexing.............................................................................307
Table 442. FRM_LDLR1, Line Decoder Link Register 1 (R/W) .............................................................................308
Table 443. FRM_LDLR2, Line Encoder Link Register 2 (R/W) .............................................................................308
Table 444. HDLC Per Channel Register Addressing Map.....................................................................................309
Table 445. FRM_HCR1, Transmit HDLC Channel Register 1 (R/W).....................................................................309
Table 446. FRM_HCR2, Transmit HDLC Channel Register 2 (R/W).....................................................................309
Table 447. FRM_HCR3, Transmit HDLC Channel Register 3 (R/W).....................................................................310
Table 448. FRM_HCR4, Transmit HDLC Channel Register 4 (RO)......................................................................311
Table 449. FRM_HCR5, Transmit HDLC Channel Register 5 (R/W).....................................................................311
Table 450. FRM_HCR6, Transmit HDLC Channel Register 6 (WO) .....................................................................312
Table 451. FRM_HCR7, Transmit HDLC Channel Register 7 (RO)......................................................................312
Table 452. FRM_HCR8, Receive HDLC Channel Register 8 (R/W) .....................................................................312
Table 453. FRM_HCR9, Receive HDLC Channel Register 9 (R/W) .....................................................................312
Table 454. FRM_HCR10, Receive HDLC Channel Register 10 (R/W) .................................................................313
Table 455. FRM_HCR11, Receive HDLC Channel Register 11 (RO)....................................................................314
Table 456. FRM_HCR12, Receive HDLC Channel Register 12 (R/W) .................................................................314
Table 457. FRM_HCR13, Receive HDLC Channel Register 13 (RO)...................................................................315
Table 458. FRM_HGR14, Receive HDLC Channel Register 14 (COR)................................................................315
Table 459. Framer Register Map...........................................................................................................................316
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
246 Agere Systems Inc.
12 28-Channel Framer Registers (continued)
12.1 Framer Global Register Description s
Table 313. FRM_SFGR1, Superframer Global Register 1 (R/W)
Address Bit Name Function Reset Default
0x80000 15 FRM_SW_TRN Superframer Configuration Modes.
0 = transport mode.
1 = switching mode.
0
14:13 FRM_LC_
CNTRL[1:0] Line Encoder/Decoder Control.
00 = line encoder and line decoder blocks are not used in either
the framer Tx or Rx paths. This setting is used in the
following switching modes:
STS-3/STS-1/DS3/DS2 to CHI/parallel system bus/SMI.
STS-3/STS-1/DS3 to line data rate mode.
01 = line decoder is used in the Rx path and line encoder is
used in th e Tx path. This s etting is used i n the framer-only
switching modes:
DS1 to CHI/parallel system bus/SMI channelized.
10 = line decoder is used in the Tx path and line encoder is
used in the Rx path. This setting is used in the following
transport modes:
DS1 to DS2/DS3/ST S-1/STS-3 .
11 = reserved.
00
12 FRM_LOOP_
TIMING Loop Timing.
0 = superframer is programmed for normal mode.
1 = superframer is programmed for loop timing; i.e., all
received line clocks are looped back to the correspond-
ing transmit line clocks.
0
11 FRM_DS1_
CEPTN DS1/CEPT Terminal Count.
0 = superframer is programmed for CEPT mode, which has
a maximum of 21 operational links. Links 22 to 28 are
disabled.
1 = superframer is programmed for DS1 mode, which has a
maximum of 28 operational links.
Note: For fewer links or DS1/CEPT mixed modes, use
FRM_TC_EN and FRM_TC[7:0] (Table 318) parame-
ters to select an accurate link count.
1
10 FRM_PLL_
BYPAS PLL Bypass.
0 = internal PLL is used to generate the line clock in the
transmit path.
1 = the PLL is bypassed. External line clock is required in
this mode.
0
9:1 RSVD Reserved. Must write to 0. 0
0 FRM_LG_BUF_
MODE HDLC Buffer Mode.
0 = HDLC channel buffers are configured for 128-byte stor-
age. Up to 64 (32) channels can be supported in the
switching (transport) mode.
1 = HDLC channel buffers are combined for 512-byte stor-
age. Up to 16 (8) channels can be supported in the
switching (transport) mode.
0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
247Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 314. FRM_SFGR2, Superframer Global Register 2 (R/W)
Address Bit Name Function Reset
Default
0x80001 15:14 RSVD Reserved. Must write to 0. 0
13 FRM_TP_SIG_PWDN Trans mit Path Receive Signaling Powerdown. When set
to 0, the transmit path receive signaling block for the trans-
port mode is powered down.
0
12 FRM_RP_SIG_PWDN Receive Path Transmit Signaling Powerdown. When set
to 0, the receive path transmit signaling block for the trans-
port mode is powered down.
0
11 FRM_TP_RDL_PWDN T ransmit Path Receive Datalink Powerdown. When set to
0, the transmit path receive data link block for the transport
mode is powered down.
0
10 FRM_RP_TDL_PWDN Rece ive Pat h T r ansmi t Data link P owerdo wn. When set to
0, the receive path transmit data link block for the transport
mode is powered down.
0
9 FRM_TP_RH_PWDN T ransmit Path Receive HDLC Powerdown. When set to 0,
the transmit path receive HDLC block for the transport mode
is powered down.
0
8FRM_RP_TH_PWDNReceive Path T ransmit HDLC Powerdown. When set to 0,
the receive path transmit HDLC block for the transport mode
is powered down.
0
7 FRM_TS_PWDN Transmit Path System Block Powerdown. When set to 0,
the transmit path system block is powered down. 0
6 FRM_RS_PWDN Receive Path System Block Powerdown. When set to 0,
the receive path system block is powered down. 0
5 FRM_TP_PM_PWDN Transmit Path Performance Monitor Powerdown. When
set to 0, the transmit path performance monitor block is pow-
ered down.
0
4 FRM_RP_FF_PWDN Receive Path Frame Formatter Powerdown. When set to
0, the receive path frame formatter block is powered down. 0
3 FRM_TP_RA_PWDN Transmit Path Receive Aligner Powerdown. When set to
0, the transmit path receive aligner block is powered down. 0
2:0 RSVD Reserved. Must write to 0. 0
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
248 Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 315. FRM_SFGR3, Superframer Global Register 3 (RO)
Table 316. FRM_SFGSR4, Superframer Global Register 4 (R/W)
12.2 Arbiter (Framer) Global Register s
Table 317. FRM_FGR1, Framer Global Register 1 (R/W)
Address Bit Name Function Reset
Default
0x80002 15 FRM_RP_SIG A 1 indicates the change of signaling state; FIFO con-
tains state change information. 0
14 FRM_AR_IS A 1 indicates the FRM_AR_IS block has generated an
interrupt. 0
13 FRM_TP_RDL_IS A 1 indicates the FRM_TP_RDL_IS block has generated
an interrupt. 0
12 FRM_TP_TDL_IS A 1 indicates the FRM_TP_TDL_IS block has generated
an interrupt. 0
11 FRM_RH_IS A 1 indicates the FRM_RH_IS block has generated an
interrupt. 0
10 FRM_TH_IS A 1 indicates the FRM_TH_IS block has generated an
interrupt. 0
9 FRM_TS_IS A 1 indicates the FRM_TS_IS block has generated an
interrupt. 0
8 FRM_RS_IS A 1 indicates the FRM_RS_IS block has generated an
interrupt. 0
7 FRM_TP_PM_IS A 1 indicates the FRM_TP_PM_IS block has generated
an interrupt. 0
6 FRM_RP_PM_IS A 1 indicates the FRM_RP_PM_IS block has generated
an interrupt. 0
5 FRM_RP_RDL_IS A 1 indicates the FRM_RP_RDL_IS block has generated
an interrupt. 0
4 FRM_RP_TDL_IS A 1 indicates the FRM_RP_TDL_IS block has generated
an interrupt. 0
3:0 RSVD Reserved. Reads 0. 0
Address Bit Name Function Reset
Default
0x80003 15 RSVD Reserved. Must write to 0. 0
14:12 FRM_VERSION[2:0] Superframer Version Number. 000
11:0 RSVD Reserved. Must write to 0. 0x000
Address Bit Name Function Re set
Default
0x80010 15 FRM_DIS_LHSCD Disable Loss of High-Speed Clock Detection.
1 = disable the loss of high-speed clock detection within
the framer.
0
14:0 RSVD Reserved. Must write to 0.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
249Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 318. FRM_FGR2, Framer Global Register 2 (R/W)
Table 319. FRM_FGR3, Framer Global Register 3 (R/W)
Table 320. FRM_FGR4, Framer Global Register 4 (COR)
Address Bit Name Function Reset
Default
0x80011 15 FRM_TC_EN Terminal Count Enable.
0 = terminal count disabled use defaults.
1 = terminal count enabled.
0
14:8 RSVD Reserved. Must write to 0. 0000000
7:0 FRM_TC[7:0] Terminal Count. When enabled, the link counter will count
from 1 to the terminal count. The terminal count determines
the number of links available for use. The operational links are
link 1 to the link determined by the terminal count. By default,
the count is determined by the option bit, FRM_DS1_CEPTN
(Table 313 on page 246). In an application, where there is a
mix of DS1 and CEPT links or a small number of links, the ter-
minal count may be set by enabling FRM_TC_EN and setting
the terminal count, FRM_TC[7:0].
Note: Minimum terminal count value is 4.
00011100
Address Bit Name Function Reset
Default
0x80012 15 FRM_TPSSE_IM Transmit Path System Synchronization Error Inter-
rupt Mas k. A transmit path system synchronization error
interrupt is generated when synchron ization is lost
between the receiv e system interf ace and the tra nsmi t
path line clock. FRM_TPSSE_IM is a global mask for the
interrupt status from each link. The individual link transmit
path system error interrupt status bits,
FRM_TPSSEI[28:1] are summarized in FRM_AR_IS bit
14 of FRM_SFGR3 (Table 315 on page 248).
0 = allows any synchronization error, as reported in the
synchronization status registers, to generate an inter-
rupt.
1 = masks any synchronization error, as reported in the
synchronization status registers, from generating an
interrupt.
1
14:0 RSVD Reserved. Must write to 0. 000000000
000000
Address Bit Name Function Reset
Default
0x80014 15:0 FRM_TPSSEI[16:1] Transmit Path System Synchr onization Error Inter-
rupt.
1 = indicates a transmit path system synchronization
error on links 16 to 1.
00X0000
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
250 Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 321. FRM_FGR5, Framer Global Register 5 (COR)
12.3 Performance Monitor Global Registers
Table 322. FRM_PMGR1_B, Performance Monitor Global Register 1_B (R/W)
* P = 0x0 for the receive path, and P = 0x1 for the transmit path.
Address Bit Name Function Reset
Default
0x80015 15:12 RSVD Reserved. Must write to 0. 000
11:0 FRM_TPSSEI[28:17] Transmit Path System Synchronization Error Inter-
rupt.
1 = indicates a transmit path system synchronization
error on links 28 to 17.
000000000
000
Address*Bit Name Function Reset
Default
0x80P20 15 FRM_SEC_SEL Framer PMRESET Source. The source of the performance
monitoring interval (generally one second) may be selected to
be internal to the framer block or external to the framer block.
0 = external.
1 = internal.
0
14 FRM_GLB_PL_CFG Global/Per-Link Configuration. This bit is used to select glo-
bal RAC/RDC or per-link RAC/RDC. This bit selects global
reframe upon excessive CRC errors or per-link reframe upon
excessive CRC errors. When FRM_GLB_PL_CFG = 0, global
RAC/RDC is selected. The configurations in FRM_RAC
(0x80P32 bits [13:11]) and FRM_RDC (0x80P32 bits [10:8])
are used for all the applicable links. Reframe upon excessive
CRC errors is determined by FRM_CRCRFEN (0x80P32,
bit 5), which affects all the applicable links. When
FRM_GLB_PL_CFG = 1, per-link RAC/RDC is selected. The
configurations in FRM_PL_RAC (0x8LP94 bits [5:3]) and
FRM_PL_RDC (0x8LP94 bits [2:0]) are used for each individ-
ual link. Reframe upon excessive CRC errors is determined by
FRM_PL_CRCRFEN (0x8LP94, bit 8) for each individual link.
0
13 RSVD Reserved. Must write to 0. 000
12:0 FRM_CT125[12:0] Framer Terminal Count. This is the terminal count for an
internal 125 µs timer that is multiplied by 8000 to determine
the internal performance monitoring interval. This count is
based on the TDM clock speed. The default count is based on
a 51.84 MHz clock. This terminal count is calculated by the fol-
lowing equation:
Timer terminal count = (125 µs)(fTDM clock).
0x1950
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
251Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 323. FRM_PMGR1, Performance Monitor Global Register 1 (COR)
* P = 0x0 for the receive path, and P = 0x1 for the transmit path.
Table 324. FRM_PMGR2, Performance Monitor Global Register 2 (COR)
* P = 0x0 for the receive path, and P = 0x1 for the transmit path.
Address*Bit Name Function Reset
Default
0x80P30 15:2 RSVD Reserved. Must write to 0. 0x0000
1FRM_DETECTTest-Pattern Dete ct. A 1 indicates the pattern detector has
locked onto the pattern specified by the FRM_PTRN_SEL[3:0]
(Table 336 on page 256) configuration bits. There is only one
test-pattern detector. See O.151, Section 2. Both framed and
unframed test-pattern generation/detection are supported.
0
0 FRM_PTRNBER Test-Pattern Bit Error. A 1 indicates the receive framer pattern
detector has found one or more single-bit errors in the pattern on
to which it is currently locked. There is only one test-pattern BER
counter for all links.
0
Address*Bit Name Function Re set
Default
0x80P31 15:0 FRM_TPERR_CT[15:0] Test Pattern Error Count Register. This register con-
tains the 16-bit count of test-pattern errors. 0
Table 325. FRM_PMGR3, Performance Monitor Global Register 3 (R/W)
Address*Bit Name Function Re set
Default
0x80P32 15:14 RSVD Reserved. Must write to 0. 00
13:11 FRM_RAC[2:0] CEPT Mode RAI Activation Count. 001
10:8 FRM_RDC[2:0] CEPT Mode RAI Deactivation Count. RAC and RDC
can be set to meet various standards. 001
7 FRM_FSFBEEN FS Frame Bit Error Enable. Allows a signaling frame (FS)
bit error to set the FBE status bit, FRM_FBE (Table 398 on
page 287).
In DDS, a 0 means do not count TS24 framing and FS as
FBEs; a 1 means count TS24 framing and Fs as FBEs.
0 = FS bit errors disabled.
1 = FS bit errors enabled.
0
6FRM_CMFRFENCEPT Multiframe Reframe Enable.
0 = CEPT CRC-4 multiframe reframe disabled.
1 = CEPT CRC-4 multiframe reframe enabled. A research
for multiframe alignment is initiated upon a loss of
CEPT CRC-4 multiframe alignment.
0
5 FRM_CRCRFEN CRC Reframe Enable.
0 = CRC errors do not cause a reframe or LOF condition.
1 = the receive performance monitor will force a reframe
and LOF condition on excessive CRC errors.
1
* P = 0x0 for the receive path, and P = 0x1 for the transmit path.
FRM_RACFRM_RDC Standard.
TMXF2815 5/ 51 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
252 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
12 28-Channel Framer Registers (continued)
Table 326. FRM_PMGR4, Performance Monitor Global Register 4 (R/W)
* P = 0x0 for the receive path, and P = 0x1 for the transmit path.
Table 327. FRM_PMGR5, Performance Monitor Global Register 5PMGR5 (R/W)
* P = 0x0 for the receive path, and P = 0x1 for the transmit path.
0x80P32 4:3 FRM_CEPTAISM[1:0] CEPT AIS Mode.
00 = option 0: G.775, Section I.2; G.965, Section 16.1.2.
01 = option 1: G.775, Section 5.2.
10 = option 2: G.775, Section I.2.
11 = option 3: G.775, Section I.2.
01
2 FRM_DS1AISM DS1 AIS Mode.
0 = option 0: T1.231, Section 6.1.2.2.3, T1.403, Section H,
G.775, Section 5.4.
1 = option 1: G.775, Section I.2.
1
1 FRM_ESFRAIM ESF RAI Mode.
0 = alternating eight ones followed by eight zeros.
1 = all ones.
0
0 FRM_RAICLR Clear RAI on Reception of DS1 Idle Signal.
0 = ignore DS1 idle signal for RAI clearing.
1 = clear failure on reception of DS1 idle signal: ANSI
T1.231, Section 6.2.2.2.1.
0
Address*Bit Name Function Reset
Default
0x80P33 15:0 FRM_SFSEST[15:0] SF Severely Errored Second Threshold for All SF For-
matted Channels.
Note: A bursty errored second will be recorded if the number
of events is greater than the errored second threshold
but less than the severely errored second threshold.
There is a separate threshold for ESF and SF because
of the bit error provisioning in ESF (Ft or Fs).
0x0140
Address*Bit Name Function Reset
Default
0x80P34 15:0 FRM_DCT[15:0] DS1 Excessive CRC Threshold—Default 320. This register
sets the 1 s CRC threshold at which an excessive CRC error con-
dition is reported, and the 1 s CRC threshold at which a reframe
may be for ce d.
0x0140
Table 325. FRM_PMGR3, Performance Monitor Global Register 3 (R/W) (continued)
Address*Bit Name Function Reset
Default
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
253Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 328. FRM_PMGR6, Performance Monitor Global Register 6 (R/W)
* P = 0x0 for the receive path, and P = 0x1 for the transmit path.
Table 329. FRM_PMGR7, Performance Monitor Global Register 7 (R/W)
These bits enable the errored events used to determine errored and severely errored seconds in the DS1 modes.
* P = 0x0 for the receive path, and P = 0x1 for the transmit path.
Table 330. FRM_PMGR8, Performance Monitor Global Register 8 (R/W)
* P = 0x0 for the receive path, and P = 0x1 for the transmit path.
Table 331. FRM_PMGR9, Performance Monitor Global Register 9 (R/W)
* P = 0x0 for the receive path, and P = 0x1 for the transmit path.
Address*Bit Name Function Reset
Default
0x80P35 15:0 FRM_ESFSEST[15:0] ESF Severely Errored Second Threshold for All ESF
Formatted Channels. A bursty errored second will be
recorded if the number of events is greater than the errored
second threshold but less than the severely errored second
threshold.
0x0140
Address*Bit Name Function Reset
Default
0x80P36 15:9 RSVD Reserved. Must write to 0. 0x00
8FRM_DSEFDS1 Severely Errored Frame Enable. See FRM_SEFS (Table 412 on
page 293). 0
7 FRM_DLFA DS1 Loss of Frame Alignment Enable. 0
6 FRM_DRFA DS1 Remote Frame Alarm Enable. 0
5FRM_DSLIPDS1 Slip Enable. 0
4FRM_DLOSDS1 Loss of Signal Enable. 0
3FRM_DAISDS1 Alarm Indication Signal Enable. 0
2 FRM_DCRC DS1 CRC-6 Error Enable. 0
1FRM_DFSDS1 Fs Framing Bit Error Enable (SF Only). 0
0FRM_DFTDS1 Ft Framing Bit Error Enable (SF and ESF). 0
Address*Bit Name Function Reset
Default
0x80P37 15:0 FRM_CCT[15:0] CEPT Excessive CRC Threshold—Default 915. This register
sets the 1 s CRC threshold at which an excessive CRC error
condition is reported, and the 1 s CRC threshold at which a
reframe may be forced.
0x0393
Address*Bit Name Function Reset
Default
0x80P38 15:0 FRM_CSEST[15:0] CEPT Severely Errored Second Threshold for All CEPT
Formatted Channels. 0x0000
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
254 Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 332. FRM_PMGR10, Performance Monitor Global Register 10 (R/W)
These bits enable the errored events used to determine errored and severely errored seconds in the CEPT modes.
* P = 0x0 for the receive path, and P = 0x1 for the transmit path.
Table 333. FRM_PMGR11, Performance Monitor Global Register 11 (R/W)
* P = 0x0 for the receive path, and P = 0x1 for the transmit path.
Address*Bit Name Function Reset
Default
0x80P39 15 FRM_CSA6_F CEPT Sa6 = F Enable and Sa5 = 1. (Reception of AIS.) 1
14 FRM_CSA6_E CEPT Sa6 = E Enable and Sa5 = 1. (FC3 and FC4.) 1
13 FRM_CSA6_C CEPT Sa6 = C Enable and Sa5 = 1. (LOS/LFA.) 1
12 FRM_CSA6_8 CEPT Sa6 = 8 Enable and Sa5 = 1. (Loss of power.) 1
11 FRM_CSA6_1X CEPT Sa6 = 001x Event Enable. 1
10 FRM_CSA6_X1 CEPT Sa6 = 00x1 Event Enable. 1
9FRM_CEBITCEPT E bit = 0 Event Enable. 1
8FRM_CLMFACEPT Loss of Multiframe Alignment Enable. 1
7 FRM_CLFA CEPT Loss of Frame Alignment Enable. 1
6 FRM_CRFA CEPT Remote Frame Alarm Enable. 1
5FRM_CSLIPCEPT Slip Enable. 1
4FRM_CLOSCEPT Loss of Signal Enable. 1
3FRM_CAISCEPT Alarm Indication Signal Enable. 1
2 FRM_CCRC CEPT CRC-4 Error Enable. 1
1 FRM_CNOTFAS CEPT Non-FAS Bit Error Enable. 1
0FRM_CFASCEPT FAS Bit Error Enable. 1
Address*Bit Name Function Reset
Default
0x80P3A 15:0 FRM_CRET[15:0] Continuous Received E-Bit Threshold—Default 991. This
register sets the 5 s continuous E-bit threshold for setting the
CRE bit status indication.
0x03DF
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
255Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 334. FRM_PMGR12, Performance Monitor Global Register 12 (R/W)
* P = 0x0 for the receive path, and P = 0x1 for the transmit path.
Address*Bit Name Function Reset
Defau
lt
0x80P3B 15 FRM_CRAI_AIS Send RAI Upon Detection of AIS Enable in CEPT
Mode. 0
14 FRM_CRAI_OOF Send RAI Upon Detection of OOF Enable in CEPT
Mode. 0
13 FRM_CRAI_LOS Send RAI Upon Detection of LOS Enable in CEPT
Mode. 0
12 FRM_CRAI_SA6EQC Send RAI Upon Detection of Sa6 = (0xC) Enable in
CEPT Mode. 0
11 FRM_CRAI_SA6EQ8 Send RAI Upon Detection of Sa6 = (0x8) Enable in
CEPT Mode. 0
10 FRM_CRAI_CRCTX Send RAI Upon Detection of CRCTX Enable in CEPT
Mode. 0
9 FRM_CRAI_LTS0MFA Send RAI Upon Detection of LTS0MF A Enable in CEPT
Mode. 0
8 FRM_CRAI_LTS16MFA Send RAI Upon Detection of LTS16MFA Enable in
CEPT Mode. 0
7 FRM_CRAI_8MSEX Send RAI Upon Detection of 8 ms Timer Expiration
Enable in CEPT Mode. 0
6 SPLIT_400MS_100MS_EN Distinguishing Between CEPT CRC4 with 400 ms
Timer and 100 ms Timer Enable. When
SPLIT_400MS_100MS_EN = 0, there is no distinction
between CEPT CRC4 with 100 ms timer and 400 ms
timer. FRM_CRAI_CRCTX (0x80P3B, bit 10),
FRM_CRAI_LTS0MFA (0x80P3B, bit 9), and
FRM_CRAI_8MSEX (0x80P3B, bit 7) apply to any link that
is configured either as CEPT CRC4 with a 400 ms timer or
a 100 ms timer. When SPLIT_400MS_100MS_EN = 1,
FRM_CRAI_CRCTX (0x80P3B, bit 10),
FRM_CRAI_LTS0MFA (0x80P3B, bit 9), and
FRM_CRAI_8MSEX (0x80P3B bit, 7) apply only to links
that are configured as CEPT CRC4 witha 400 ms timer.
Links configured as CEPT CRC4 with a 100 ms timer are
determined by the configuration in bits
FRM_CRAI_CRCTX_100 ms (0x80P21, bit 10),
FRM_CRAI_LTS0MFA_100 ms (0x80P21, bit 9), and
FRM_CRAI_8MSEX_100 ms (0x80P21, bit 7).
0
5:3 RSVD Reserved. Must write to 0. 0
2 FRM_DSRAI_LOS Send RAI Upon Detection of LOS Enable in DS1 Mode. 0
1 FRM_DSRAI_OOF Send RAI Upon Detec tion of OO F E nable in DS1 Mode. 0
0 FRM_DSRAI_AIS Send RAI Upon Detection of AIS Enable in DS1 Mode. 0
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
256 Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 335. FRM_PMGR13, Performance Monitor Global Register 13 (R/W)
* P = 0x0 for the receive path, and P = 0x1 for the transmit path.
Table 336. FRM_PMGR14, Performance Monitor Global Register 14 (R/W)
* P = 0x0 for the receive path, and P = 0x1 for the transmit path.
Address* Bit Name Function Reset
Default
0x80P3C 15:4 RSVD Reserved. Must write to 0. 0x000
3FRM_CFBE_MODECEPT FBE Mode.
0 = count only FBEs received in FAS frame.
1 = count FBEs received in both FAS and NOTFAS frames.
0
2 FRM_CEBIT_LTS0MFA Set E Bits Upon Detection of LTS0MFA Enable (CEPT
Only). 0
1 FRM_CEBIT_ESMF Set E Bits Upon Detection of an Errored CEPT_CRC4
SMF (Submultiframe) Enable. 0
0FRM_CEBIT_CRCTXSet E Bits Upon Detection of CRCTX Enable (CEPT
Only). 0
Address* Bit Name Function Reset
Default
0x80P3D 15:12 RSVD Reserved. Must write to 0. 0x0
11 FRM_PTRN_EN Enables the Detector Circuitry. FRM_PTRN_LNK[4:0]
should be set to 1 before enabling the detection circuitry. 0
10 FRM_PTRN_INV Receive Pattern Normal/Invert Mode. Selects w h eth e r t o
check for the selected pattern or its inverse.
0 = selected pattern.
1 = inverse.
0
9 FRM_PTRN_FRMT Receive Patter n Framed/ Unframed Mode. Selects moni-
toring for either framed or unframed test pattern.
0 = unframed.
1 = framed.
0
8:4 FRM_PTRN_LNK[4:0] Pattern Detector Link Select. 5-bit link selection to indi-
cate which link to monitor for test patterns. 0
3:0 FRM_PTRN_SEL[3:0] Receive Patter n Sel ect .
0000 = pattern detector deactivate.
0001 = MARK (all ones AIS).
0010 = QRSS (220 – 1 with zero suppression).
0011 = 251.
0100 = 63(26 – 1).
0101 = 511(29 – 1) (V.52).
0110 = 291.
0111 = 2047(211 1) (O.151).
1000 = 211 – 1 (reversed) .
1001 = 215 – 1 (O.151).
1010 = 220 – 1 (V.57).
1011 = 220 1 (CB113/CB114).
1100 = 223 – 1 (O.151).
1101 = 1:1 (alternating).
0x00
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
257Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 337. FRM_PMGR15, Performance Monitor Global Register 15 (R/W)
* P = 0x0 for the receive path, and P = 0x1 for the transmit path.
Table 338. FRM_PMGR16, Performance Monitor Global Register 16 (R/W)
* P = 0x0 for the receive path, and P = 0x1 for the transmit path.
12.4 HDLC Global Configuration and Status Reg is ters
Table 339. FRM_HGR1, Transmit HDLC Global Register 1 (R/W)
Table 340. FRM_HGR2, Transmit HDLC Global Register 2 (R/W)
Address* Bit Name Function Reset
Default
0x80P3E 15:0 FRM_LN_IS[16:1] Per-Link PM Summary Interrupts for Links 16 Down
to 1. 0x0000
Address* Bit Name Function Reset
Default
0x80P3F 15:12 RSVD Reserved. Must write to 0. 0x0
11:0 FRM_LN_IS[28:17] Per-Link PM Summary Interrupts for Links 28 Down
to 17. 0x000
Address Bit Name Function Reset
Default
0x80140 15:10 RSVD Reserved. Must write to 0. 0x00
9:0 FRM_HTTHRSH0[9:0] HDLC Transmit FIFO Threshold 0. These bits indicate
the threshold levels for the Tx FIFOs. When a channel is
enabled and the number of bytes in its FIFO decrements
to this value, its FRM_HTTHRSH (Table 448 on
page 311) bit is set (optionally causes interrupt).
FRM_HTTHRSH0[9:0] or FRM_HTTHRSH1[9:0] is
selected on a per-channel basis with the
FRM_HTTHRSEL (Table 447 on page 310) parameter.
0x000
Address Bit N ame Function Reset
Default
0x80141 15:10 RSVD Reserved. Must write to 0. 0x00
9:0 FRM_HTTHRSH1[9:0] HDLC Transmit FIFO Threshold 1. These bits indicate
the threshold levels for the Tx FIFOs. When a channel is
enabled and the number of bytes in its FIFO decrements
to this value, its FRM_HTTHRSH bit is set (optionally
causes interrupt). FRM_HTTHRSH0[9:0] or
FRM_HTTHRSH1[9:0] is selected on a per-channel basis
with the FRM_HTTHRSEL (Tabl e 447 on page 310)
parameter.
0x000
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
258 Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 341. FRM_HGR3, Transmit HDLC Global Register 3 (R/W)
Table 342. FRM_HGR4, Transmit HDLC Global Register 4 (R/W)
Table 343. FRM_HGR5, Transmit HDLC Global Register 5 (R/W)
Table 344. FRM_HGR6, Transmit HDLC Global Register 6 (R/W)
Address Bit Name Function Reset
Default
0x80142 15:8 RSVD Reserved. Must write to 0. 0x00
7:0 FRM_TXICHAR0[7:0] Transparent Mode Transmit Idle Char 0. These bits are
used in tra ns pare nt mo de. They repr es ent the fi rst 8-bi t pat -
tern the transmitter should send when there is no data
available in the FIFO. One of the four patterns can be
selected on a per-channel basis with the
FRM_HXPIDLE[1:0] (Table 448 on page 311) parameter.
0x00
Address Bit Name Function Reset
Default
0x80143 15:8 RSVD Reserved. Must write to 0. 0x00
7:0 FRM_TXICHAR1[7:0] Transparent Mode Transmit Idle Char 1. These bits are
used in t ran s pa re n t mo d e. T hey re pr esent the se co nd 8-b it
pattern the transmitter will send when there is no data avail-
able in the FIFO. One of the four patterns can be selected
on a per-channel basis with the FRM_HXPIDLE[1:0]
(Table 448 on page 311 ) parameter.
0x00
Address Bit Name Function Reset
Default
0x80144 15:8 RSVD Reserved. Must write to 0. 0x00
7:0 FRM_TXICHAR2[7:0] Transparent Mode Transmit Idle Char 2. These bits are
used in transparent mode. They represent the third 8-bit
pattern the transmitter will send when there is no data avail-
able in the FIFO. One of the four patterns can be selected
on a per-channel basis with the FRM_HXPIDLE[1:0]
(Table 447 on page 310) parameter.
0x00
Address Bit Name Function Reset
Default
0x80145 15:8 RSVD Reserved. Must write to 0. 0x00
7:0 FRM_TXICHAR3[7:0] Transparent Mode Transmit Idle Char 3. These bits are
used in transparent mode. They represent the fourth 8-bit
pattern the transmitter will send when there is no data avail-
able in the FIFO. One of the four patterns can be selected
on a per-channel basis with the FRM_HXPIDLE[1:0]
(Table 447 on page 310) parameter.
0x00
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
259Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 345. FRM_HGR7, Transmit HDLC Global Register 7 (R/W)
Table 346. FRM_HGR8, Transmit HDLC Global Register 8 (R/W)
Table 347. FRM_HGR9, Transmit HDLC Global Register 9 (R/W)
Table 348. FRM_HGR10, Transmit HDLC Global Register 10 (R/W)
Table 349. FRM_HGR11, Transmit HDLC Global Register 11 (RO)
Address Bit Name Function Reset
Default
0x80146 15:5 RSVD Reserved. Must write to 0. 0x000
4:0 FRM_FCNT0[4:0] HDLC Flag Count 0. These values are the number of
additio nal idle fla gs to be sent betw een HDLC pac ke ts.
One of the four values can be selected on a per-channel
basis with the FRM_CFLAGS[1:0] (Table 447 on
page 310) parameter.
00000
Address Bit Name Function Reset
Default
0x80147 15:5 RSVD Reserved. Must write to 0. 0x000
4:0 FRM_FCNT1[4:0] HDLC Flag Count 1. These values are the number of
additio nal idle fla gs to be sent betw een HDLC pac ke ts.
One of the four values can be selected on a per-channel
basis with the FRM_CFLAGS[1:0] parameter.
00000
Address Bit Name Function Reset
Default
0x80148 15:5 RSVD Reserved. Must write to 0. 0x000
4:0 FRM_FCNT2[4:0] HDLC Flag Count 2. These valu es are the number of
additional idle flags to be sent between HDLC packets.
One of the four values can be selected on a per-channel
basis with the FRM_CFL AGS [1:0] (Table 447 on
page 310) parameter.
00000
Address Bit Name Function Reset
Default
0x80149 15:5 RSVD Reserved. Must write to 0. 0x000
4:0 FRM_FCNT3[4:0] HDLC Flag Count 3. These values are the number of
additio nal idle fla gs to be sent betw een HDLC pac ke ts.
One of the four values can be selected on a per-channel
basis with the FRM_CFLAGS[1:0] parameter.
00000
Address Bit Name Function Reset
Default
0x8014A 15:0 FRM_TH_IS[15:0] Transmit HDLC Interrupt Summary. This bitmap shows
what channels have interrupts. This register maps chan-
nels 15—0 to bits 15:0.
0x0000
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
260 Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 350. FRM_HGR12, Transmit HDLC Global Register 12 (R/W)
Table 351. FRM_HGR13, Transmit HDLC Global Register 13 (R/W)
Table 352. FRM_HGR14, Transmit HDLC Global Register 14 (R/W)
Table 353. FRM_HGR15, Receive HDLC Global Register 15 (R/W)
Table 354. FRM_HGR16, Receive HDLC Global Register 16 (R/W)
Table 355. FRM_HGR17, Receive HDLC Global Register 17 (R/W)
Address Bit Name Function Reset
Default
0x8014B 15:0 FRM_TH_IS[31:16] Transmit HDLC Interrupt Summary. This bitmap
shows what channels have interrupts. This register
maps channels 31—16 to bits 15:0.
0x0000
Address Bit Name Function Reset
Default
0x8014C 15:0 FRM_TH_IS[47:32] Transmit HDLC Interrupt Summary. This bitmap
shows what channels have interrupts. This register
maps channels 47—32 to bits 15:0.
0x0000
Address Bit Name Function Reset
Default
0x8014D 15:0 FRM_TH_IS[63:48] Transmit HDLC Interrupt Summary. This bitmap
shows what channels have interrupts. This register
maps channels 63—48 to bits 15:0.
0x0000
Address Bit Name Function Reset
Default
0x80040 15:10 RSVD Reserved. Must write to 0. 0x00
9:0 FRM_HRTHRSH0[9:0] Indicates the Threshold Levels for the Rx FIFOs.
When a channel is enabled and its FIFO count incre-
ments to this value, its FRM_HRTHRSH (Table 455 on
page 314) status bit is set. FRM_HRTHRSH0 or
FRM_HRTHRSH1 is selected on a per-channel basis
with the FRM_RTHRSEL (Table 454 on page 313)
parameter.
0x000
Address Bit Name Function Reset
Default
0x80041 15:10 RSVD Reserved. Must write to 0. 0x00
9:0 FRM_HRTHRSH1[9:0] Indicates the Threshold Levels for the Rx FIFOs.
When a channel is enabled and its FIFO count incre-
ments to this value, its FRM_HRTHRSH status bit is
set. FRM_HRTHRSH0[9:0] or FRM_HRTHRSH1[9:0]
is selected on a per-channel basis with the
FRM_RTHRSEL (Table 454 on page 313) parameter.
0x000
Address Bit Name Function Reset
Default
0x80042 15:0 FRM_RH_IS[15:0] Receive HDLC Interrupt Summary. This bitmap
shows what channels have interrupts. This register
maps channels 15—0 to bits 15:0.
0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
261Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 356. FRM_HGR18, Receive HDLC Global Register 18 (R/W)
Table 357. FRM_HGR19, Receive HDLC Global Register 19 (R/W)
Table 358. FRM_HGR20, Receive HDLC Global Register 20 (R/W)
12.5 System Interface Global Registers
Address Bit Name Function Reset
Default
0x80043 15:0 FRM_RH_IS[31:16] Receive HDLC Interrupt Summary. This bitmap shows what
channels have interrupts. This register maps channels 31—16
to bits 15:0.
0
Address Bit Name Function Reset
Default
0x80044 15:0 FRM_RH_IS[47:32] Receive HDLC Interrupt Summary. This bitmap shows what
channels have interrupts. This register maps channels 47—32
to bits 15:0.
0
Address Bit Name Function Reset
Default
0x80045 15:0 FRM_RH_IS[63:48] Receive HDLC Interrupt Summary. This bitmap shows what
channels have interrupts. This register maps channels 63—48
to bits 15:0.
0
Table 359. FRM_SYSGR1, System Interface Global Register 1 (R/W)
Address Bit Name Function Reset
Default
0x80050 15:12 FRM_SYSMOD[3:0] System Interface Mode Associated Signaling Mode.
0000 = 2.048 Mbits/s CHI.
0001 = 4.096 Mbits/s CHI.
0010 = 8.192 Mbits/s CHI.
0100 = 19.44 Mbits/s PSB (device 0 mode).
0101 = 19.44 Mbits/s PSB (device 1 mode).
0110 = 19.44 Mbits/s PSB (device 2 mode).
1000 = SMI.
All others: Reserved.
0000
11 FRM_ASM System Interface Mode Associated Signaling Mode.
0 = CHI is configured to carry payload data only.
In PSB mode, transmit signaling is 3-stated, and receive sig-
naling ign or ed.
1 = CHI is configured to carry both payload data and signaling
information. Each time slot consists of 16 bits, where
8 bits are data and the remaining 8 bits are signaling infor-
mation. CHI must be programmed for 4.096 Mbits/s or
8.192 Mbits/s modes.
In PSB mode, transmit signaling is driven and receive signal-
ing is forwarded to the signaling block.
0
TMXF2815 5/ 51 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
262 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
12 28-Channel Framer Registers (continued)
0x80050 10 FRM_CMS CHI Clock Mode. This bit is only applicable in the CHI mode.
Otherwise, it should be set to 0.
0 = CHI clock and CHI data have the same rate.
1 = CHI clock is twice the rate of CHI data.
0
9 FRM_CHIDTS CHI Dual Time-Slot Mode. This bit is only applicable in the
CHI 4.096 Mbits/s (no ASM) and 8.192 Mbits/s (without ASM)
modes.
0 = enables 32 contiguous time slots.
1 = enables double time-slot mode in which the transmit CHI
drives data for one time slot and 3-states for the subse-
quent time slot.
0
8 FRM_STUFFL/
FRM_LNKSTART Stuff Position/Link Start. CHI modes only: determines the
position of the stuffed time slots in conjunction with the byte
offset.
0 = SDDDSDDDSDDDS.. . . . . . . (TS0—TS31).
1 = SDDDDDD. . . . . . . SSSSSSS (TS0—TS31).
NSMI modes only: this bit determines how links are numbered
on the NSMI. Internally, links are numbered starting at 1.
0 = NSMI link numbering starts at 0.
1 = NSMI link numbering starts at 1.
1
7 FRM_AISLFA Syst em AIS on Loss of Frame Alignme nt.
0 = no action.
1 = system AIS is transmitted when the receive framer or the
mapper loss of frame alignment (MFA for DS1, BFA for
CEPT) is detected.
0
6 FRM_AISCRCT System AIS on CEP T Timer Expiration .
0 = no action.
1 = system AIS is transmitted when the receive framer loss of
multiframe alignment timer expiration is detected. (CEPT
only.)
0
5 FRM_DNOTFAS CEPT Dual NOTFAS. This bit is applicable in all system
modes.
0 = FAS and NOTFAS time slots are transmitted to the sys-
tem. The receive system interface expects both FAS and
NOTFAS time slots.
1 = NOTFAS is transmitted twice to the system (in the NOT-
FAS and FAS time slots). The receive system expects
time slots 0 to carry NOTFAS that is repeated twice.
0
Table 359. FRM_SYSGR1, System Interface Global Register 1 (R/W) (continued)
Address Bit Name Function Reset
Default
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
12 28-Channel Framer Registers (continued)
263Agere Systems Inc.
Table 360. FRM_SYSGR2, System Interface Global Register 2 (R/W)
Table 361. FRM_SYSGR3, System Interface Global Register 3 (R/W)
0x80050 4 FRM_TFSCKE System Interface Transmit Frame Sync Clock Ed ge Select.
0 = transmit frame sync is sampled on the falling edge of
tran sm it cl oc k.
1 = transmit frame sync is sampled on the rising edge of
tran sm it cl oc k.
In PSB mode, this bit also determines the clock edge used to
drive data. The sampling point of transmit frame sync defines
the zero offset for CHI mode.
0
3 FRM_FSPOL Frame Sync Polarity.
0 = transmit and receive frame sync is active-low.
1 = transmit and receive frame sync is active-high.
0
2:0 RSVD Reserved. Must write to 0. 0
Address Bit Name Function Reset
Default
0x80051 15 FRM_HWYENA Transmit System Interface Highway Enable.
0 = transmit data is forced into a high-impedance state for all
transmitted time slots. Receive system ignores receive
data and inserts the idle code in all time slots transmitted
to the line. This allows the framer to be fully configured
before transmission.
1 = transmit and receive data is enabled.
0
14 FRM_RSTDONE
(Read Only) Framer Reset Status.
0 = indicates internal reset is still in process.
1 = indicates internal reset is complete.
Generally, the FRM_HWYENA bit should not be set to1 until
this bit reads 1.
0
13:0 RSVD Reserved. Must write to 0. 0
Address Bit Name Function Reset
Default
0x80052 15:8 FRM_STUFF[7:0] Stuffed Time-Slot Code. 7F
7:0 FRM_IDLE[7:0] CHI Time-Slot Loopback Idle Code. 7F
Table 359. FRM_SYSGR1, System Interface Global Register 1 (R/W) (continued)
Address Bit Name Function Reset
Default
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
264 Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 362. FRM_SYSGR4, System Interface Global Register 4 (R/W)
Table 363. FRM_SYSGR5, System Interface Global Register 5 (R/W)
Table 364. FRM_SYSGR6, System Interface Global Register 6 (COR)
Address Bit Name Function Reset
Default
0x80053 15 FRM_STSSLB CHI Time-Slot System Loopback.
0 = no action.
1 = receive CHI time slot is looped back to the system. Idle
code, FRM_IDLE[7:0] (Table 361 on page 263), is
inserted in place of the looped back time slot to the
line.
0
14 FRM_STSLLB CHI Time-Slot Line Loopback.
0 = no action.
1 = transmit CHI time slot is looped back to the line. Idle
code, FRM_IDLE[7:0], is inserted in place of the
looped back time slot to the system.
0
13 RSVD Reserved. Must write to 0. 0
12:8 FRM_TSLBA[4:0] CHI Time-Slot Loopback Address. 00000
7:5 RSVD Reserved. Must write to 0. 0
4:0 FRM_TSLBL[4:0] CHI Time-Slot Loopback Link Number. 00000
Address Bit Name Function Reset
Default
0x80054 15 FRM_TS_DPAR Transmit PSB Data Parity. This bit is only applicable in
the parallel system bus mode. Otherwise, it should be set
to zero.
0 = odd data parity is transmitted by the system.
1 = even data parity is transmitted by the system.
0
14 FRM_TS_SPAR Transmit Signa ling Parity. This bit applies to the signaling
information in the parallel system bus mode. It also deter-
mines the parity for CHI ASM mode. Otherwise, it should
be set to 0.
0 = odd signali ng par ity is tra ns mit ted by the sy s tem.
1 = even signaling parity is transmitted by the system.
0
13:0 RSVD Reserved. Must write to 0. 0
Address Bit Name Function Reset
Default
0x80055 15:0 RSVD Reserved. Must write to 0. 0x0000
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
265Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 365. FRM_SYSGR7, System Interface Global Register 7 (COR)
Table 366. FRM_SYSGR8, System Interface Global Register 8 (R/W)
Table 367. FRM_SYSGR9, System Interface Global Register 9 (R/W)
Address Bit Name Function Reset
Default
0x80056 15:1 RSVD Reserved. Must write to 0. 0x0
0 FRM_TPSB_FS_IS Transmit PSB Frame Sync Error Interrupt. A 1 indicates
a frame sync error was detected in PSB mode. The frame
sync was either detected when it should not have been
(misplaced) or was not detected when it should have been
(missing). This bit is cleared on read/write unless the condi-
tion that set it still exists after the read.
0
Address Bit Name Function Reset
Default
0x80057 15:1 RSVD Reserved. Must write to 0. 0
0 FRM_PSB_FS_IM Transmit PSB Frame Sync Interrupt Mask. A 1 prevents
the FRM_TPSB_FS_IS (Table 365 on page 265) status
from causing an interrupt. A 0 allows the interrupt.
1
Address Bit Name Function Reset
Default
0x80150 15 FRM_RS_DPAR Receive PSB Data Parity Select. This bit is only applica-
ble in the parallel system bus interface mode. Otherwise, it
should be set to 0.
0 = odd data parity is expected by the receive system.
1 = even data parity is expected by the receive system.
0
14 FRM_RS_SPAR Receive Signaling Parity Select. This bit applies to the
signaling information in the parallel system bus mode. It
also determines the parity for CHI ASM mode. Otherwise,
it should be set to 0.
0 = odd signaling parity is expected by the receive system.
1 = even signaling parity is expected by the receive system.
0
13 FRM_RFSCKE System Interface Receive Frame Sync Clock Edge
Select.
0 = receive frame sync (and data) is sampled on the falling
edge of receive clock.
1 = receive frame sync (and data) is sample on the rising
edge of receive clock.
In parallel system bus mode, this bit also determines the
clock edge used to sample data.
In CHI mode, the sample point of frame sync defines the
zero offset for the CHI.
0
12:0 RSVD Reserved. Must write to 0. 0
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
266 Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 368. FRM_SYSGR10—FRM_SYSGR14, System Interface Global Register 10—14 (R/W)
Table 369. FRM_SYSGR15, System Interface Global Register 15 (COR)
Table 370. FRM_SYSGR16, System Interface Global Register 16 (R/W)
Address Bit Name Function Reset
Default
0x80151
0x80155
15:0 RSVD Reserved. Must write to 0. 0x0000
Address Bit Name Function Reset
Default
0x80156 15 FRM_DPAR_IS Data Parity Interrupt. In PSB mode, a 1 indicates a data parity
error was detected. This bit is cleared on read unless the con-
dition that set it still exists after the read.
0
14 FRM_SPAR_IS Signaling Parity Interrupt. In PSB mode, a 1 indicates a sig-
naling parity error was detected. In CHI ASM mode, a 1 indi-
cates a parity error was detected.
This bit is cleared on read unless the condition that set it still
exists after the read.
0
13:1 RSVD Reserved. Must write to 0. 0
0 FRM_PSB_FS_IS Receive PSB Frame Sync Interrupt. A 1 indicates a frame
sync error was detected in PSB mode. The frame sync was
either detected when it should not have been (misplaced) or
was not detected when it should have been (missing). This bit
is cleared on read unless the condition that set it still exists
after the read.
0
Address Bit Name Function Reset
Default
0x80157 15 FRM_DPAR_IM Data Parity Interrupt Mask. A 1 prevents the FRM_DPAR_IS
status from causing an interrupt. A 0 allows the interrupt. 1
14 FRM_SPAR_IM Signaling Parity Interrupt Mask. A 1 prevents the
FRM_SP AR_IS status from causing an interrupt. A 0 allows the
interrupt.
1
13:1 RSVD Reserved. Must write to 0. 0
0 FRM_PSB_FS_IM Receive PSB Frame Sync Interrupt Mask. A 1 prevents the
FRM_PSB_FS_IS status from causing an interrupt. A 0 allows
the interrupt.
1
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
267Agere Systems Inc.
12 28-Channel Framer Registers (continued)
12.6 Signaling Global Registers
Table 371. FRM_SGR1, Receive Signaling Global Register 1 (R/W)
Table 372. FRM_SGR2, Receive Signaling Global Register 2 (R/W)
Address Bit Name Function Reset
Default
0x80060 15 FRM_R_TSAISHG System AIS for Handling Groups. When set to 1, this
configuration bit forces AIS to the system interface for
those signaling bits which correspond to a handling
group, which is out of alignment. A 0 disables this fea-
ture. This feature is only applied to those links which are
enabled for byte sync mapping and handling groups
using the per-link signaling configuration registers.
0
14:10 FRM_R_LINKCNT[4:0] Receive Link Count. Indicates the number of links ser-
viced by the signaling block. This value should be set to
28 when the Supermapper is interfacing with only DS1
links; it should be set to the actual number of links active
for mixed mode applications.
28
9 RSVD Reserved. Must write to 0. 0
8:6 FRM_TEST_BIT[2:0] Test Bits. 000
5:2 RSVD Reserved. Must write to 0. 0
1 FRM_R_AFZFBE Automatic Signaling Freeze on Framing Bit Errors.
Set to 1 in order to freeze signaling register updates
based on framing bit errors.
0
0 RSVD Reserved. Must write to 0.
Address Bit Name Function Reset
Default
0x80061 15 FRM_R_SCOSEN Receive Signaling Change of State FIFO Enable.
When set to 1, this configuration bit enables the mainte-
nance of the signaling change of state FIFO. When set to
0, no entries will be made into the FIFO. This bit applies
to all of the links. If an individual time slot is programmed
for no signaling, then no entries will be made for that time
slot. Also, if the signaling source in the receive path is set
to host, then no entries will be made for that time slot.
0
14:10 RSVD Reserved. Must write to 0. 0
9:0 FRM_R_SCOSDTH[9:0] Receive Signaling Change of State FIFO Depth
Threshold. This number can be programmed from 0 to
672. If the number of entries in the signaling change of
state FIFO exceeds the value programmed here, then
the associated interrupt status bit will be set.
0
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
268 Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 373. FRM_SGR3, Receive Signaling Global Register 3 (R/W)
Table 374. FRM_SGR4, Receive Signaling Global Register 4 (RO)
Table 375. FRM_SGR5, Receive Signaling Global Register 5 (RO)
Address Bit Name Function Reset
Default
0x80062 15:0 FRM_R_SCOSTTH[15:0] Receive Signaling Change of State FIFO Timer
Threshold. This number can be programmed from 0 to
0xFFFF. The value indicates the number of 125 µs
increments that the timer counts before interrupting the
processor . The associated interrupt status bit will be set
only if there are valid entries in the FIFO. When set to 0,
the timer is disabled and no interrupt will be generated.
The maximum timer setting is 8 s.
0x0000
Address Bit Name Function Reset
Default
0x80063 15:14 FRM_R_COSFIFOS[1:0] Receive Signaling Change of State FIFO Status.
These bits are located at the address for the signaling
change of state FIFO. These status bits have the fol-
lowing definitions:
01 = the entry being read is the last valid entry.
11 = the entry being read is not the last valid entry.
00 = the entry being read is not valid and should be
ignored.
0
13:9 FRM_R_COSFIFOL[4:0] COS Link Number. These bits are located at the
address for the signaling change of state FIFO. This
number indicates the particular link from which a sig-
naling change of state has been detected.
0
8:4 FRM_R_COSFIFOTS[4:0] COS Time-Slot Number. These bits are located at
the address for the signaling change of state FIFO.
This number indicates the particular time slot in which
a signaling change of state has been detected.
0
3:0 FRM_R_COSFIFOSIG[3:0] New Signaling Code. These bits are located at the
address for the signaling change of state FIFO. This
value indicates the new signaling state received.
0
Address Bit Name Function Reset
Default
0x80064 15:1 RSVD Reserved. 0X0000
0 FRM_R_COSDTHS Receive Signaling Change of State FIFO Depth Thresh-
old Overflow Status. This status bit reflects the actual
depth of the FIFO entries as compared to the threshold pro-
grammed by the host. When set to 1, the threshold is cur-
rently exceeded. When set to 0, the number of FIFO entries
is less than the programmed threshold.
0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
269Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 376. FRM_SGR6, Receive Signaling Global Register 6
Table 377. FRM_SGR7, Receive Signaling Global Register 7 (R/W)
Address Bit Name Function Reset
Default
0x80065 15:3 RSVD Reserved. Reads 0. 0
2 FRM_R_COSDTHI Receive Signaling Change of State FIFO Depth Thresh-
old Overflow Interrupt. This interrupt status bit will be set
when the programmed threshold for the FIFO capacity has
been exceeded. This interrupt bit can be reset based on a
clear-on-read protocol, which is provisioned in the Super-
mapper global registers.
0
1 FRM_R_COSTTHI Receive Signaling Change of State FIFO T imer Thresh-
old Interrupt. This interrupt status bit will be set when the
programmed interrupt timer has expired and there are valid
entries in the FIFO to be processed. This interrupt bit can be
reset based on a clear-on-read protocol, which is provisioned
in the Supermapper global registers.
0
0 FRM_R_COSOFI Receive Signaling Change of State FIFO Overflow Inter-
rupt. This interrupt status bit will be set when the signaling
change of state FIFO overflows. The contents of the FIFO
will be lost and the programmed threshold for the FIFO
capacity has been exceeded. This interrupt bit can be reset
based on a clear-on-read protocol, which is provisioned in
the Supermapper global registers.
0
Address Bit Name Function Reset
Default
0x80066 15:3 RSVD Reserved. Reads 0. 0
2 FRM_R_COSDTHM Receive Signaling Change of State FIFO Depth Thresh-
old Overflow Interrupt Mas k. The corresponding interrupt
status bit will cause a processor interrupt if this bit is set to 0.
The corresponding interrupt status bit will be masked from
causing a processor interrupt if this bit is set to 1.
1
1FRM_R_COSTTHMReceive Signaling Change of State FIFO Timer Thresh-
old Interrupt Mask. The corresponding interrupt status bit
will cause a processor interrupt if this bit is set to 0. The cor-
responding interrupt status bit will be masked from causing a
processor interrupt if this bit is set to 1.
1
0 FRM_R_COSOFM Receive Signaling Change of State FIFO Overflow Inter-
rupt Mask. The corresponding interrupt status bit will cause
a processor interrupt if this bit is set to 0. The corresponding
interrupt status bit will be masked from causing a processor
interrupt if this bit is set to 1.
1
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
270 Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 378. FRM_SGR8, Transmit Signaling Global Register 8 (R/W)
Address Bit Name Function Reset
Default
0x80160 15 RSVD Reserved. Must write to 0. 0
14:10 FRM_T_LINKCNT[4:0] Transmit Link Count. Indicates the number of links ser-
viced by the signaling block. This value should be set to 28
when the Supermapper is interfacing with only DS1 links; it
should be set to the actual number of links active for mixed
mode applications.
28
9:6 RSVD Reserved. Must write to 0. 0000
5 FRM_T_SUBZERO Substitute Zero. A 1 forces signaling data to be 0000 for
those time slots which have a signaling state mode of no
signaling. This only applies to the signaling data trans-
ferred to the VT mapper.
0
4 FRM_T_FAS_NOTFAS FAS/NOTFAS Transmission. Used to force alignment of
the CEPT TS16 multiframe to a FAS or NOTFAS frame. A
0 indicates alignment to a FAS frame. A 1 indicates align-
ment to a NOTFAS frame.
0
3:2 RSVD Reserved. Must write to 0. 0 0
1 FRM_T_AFZFBE Automatic Signaling Freeze on Fr aming Bit Errors. Set
to 1 in order to freeze signaling register updates based on
framing bit erro rs.
0
0RSVDReserved. Must write to 0. 0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
271Agere Systems Inc.
12 28-Channel Framer Registers (continued)
12.7 Frame Formatter (Transmit Framer) Global Register
Table 379. FRM_FFGR1, Transmit Framer Global Register 1 (R/W)
Address Bit Name Function Reset
Default
0x80170 15 FRM_TXFSOOF Transmit Frame Sync when Out-Of-Frame Valid in
Transport Modes Only.
0 = do not transmit FS when out of frame. (FS is present
when in frame.)
1 = transmit an arbitrary FS when out of frame.
0
14 FRM_TPSYSSYNC FAS/NFAS Alignment on the Receive System Data
(CEPT Mode Only).
0 = do not align the transmit framer to the incoming
system data.
1 = align the transmit framer to the incoming system data.
0
13:12 RSVD Reserved. Must write to 0. 0
11 FRM_PTRN_EN Tr ansmit Pattern.
0 = pattern generator off.
1 = pattern generator on.
0
10 FRM_PTRN_INV Transmit Pattern Normal/Invert Mode.
This bit inverts the pattern.
0 = normal.
1 = invert.
0
9 FRM_PTRN_FRMT Transmit Pattern Framed/Unframed Mode.
This bit selects either a framed (1) or unframed (0) pat-
tern.
0
8:4 FRM_PTRN_LNK[4:0] Pattern Generator Link Select.
5-bit link selection to indicate link for pattern insertion. 00001
3:0 FRM_PTRN_SEL[3:0] Transmit Patt ern Select.
0000 = pattern generator deactivated.
0001 = mark (all ones AIS).
0010 = QRSS (220 – 1 with zero suppression).
0011 = 25 – 1.
0100 = 63 (265 – 1).
0101 = 511(29 1) (V.52).
0110 = 29 – 1.
0111 = 2047 (211 – 1) (O.151).
1000 = 211 – 1 (reversed).
1001 = 215 – 1 (O.151).
1010 = 220 – 1 (V.57) .
1011 = 220 – 1 (CB113/CB114).
1100 = 223 – 1 (O.151 ).
1101 = 1:1 (alternating).
1110 = reserved.
1111 = reserved.
0000
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
272 Agere Systems Inc.
12 28-Channel Framer Registers (continued)
12.8 Facility Data Link Global Registers
Table 380. FRM_FDLGR1, Receive Facility Data Link Global Register 1 (R/W)
Table 381. FRM_FDLGR2, Transmit Facility Data Link Global Register 2 (R/W)
12.9 Supermapper Framer Per Link Configuration and Status Registers
12.9.1 Signaling Per Link Registers
Table 382. Receive Path Signaling Register Addressing Map
* L and R represent hexidecimal digits used for abs olu te addressing in Table 384, Table 385, and Table 386.
Table 383. Receive Path Signaling Registers Address Indexing
Read: for link 1, the hexidecimal digit L is 0x0 and the hexidecimal digit R is 0x2.
Address Bit Name Function Reset
Default
0x80090 15:0 RSVD Reserved. Must write to 0. 0x0000
Address Bit Name Function Reset
Default
0x801A1 15:0 RSVD Reserved. Must write to 0. 0x0000
Address Pins (ADDR15—ADDR0)
1514131211109 876543210
0 0 LNK4 LNK3 LNK2 LNK1 LNK0 RXP = 0 0 SIG6 SIG5 SIG4 SIG3 SIG2 SIG1 SIG0
L* R*
Link L R Link L R Link L R Link L R
1 0x00x2 8 0x10x0160x20x0240x30x0
2 0x00x4 9 0x10x2170x20x2250x30x2
3 0x00x6100x10x4180x20x4260x30x4
4 0x00x8110x10x6190x20x6270x30x6
5 0x00xA120x10x8200x20x8280x30x8
6 0x0 0xC 13 0x1 0xA 21 0x2 0xA
7 0x0 0xE 14 0x1 0xC 22 0x2 0xC
15 0x1 0xE 23 0x2 0xE
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
273Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 384. FRM_RSLR0—FRM_RSLR31, Receive Signaling Link Registers 031 (R/W)
* See Table 383 on page 272 for values of L and R.
Notes:
Bit 0 = A, bit 1 = B, bit 2 = C, bit 3 = D, bit 5 = F, and bit 6 = G.
Register includes the following bits: F, G—selects 2, 4, 16, or no state signaling mode; A, B, C, D—signaling data.
For DS1 links, address locations 1 through 24 will contain valid data.
For CEPT links, locations 1 through 15 and 17 through 31 will contain valid data. Writes from the system interface to address 0 and 16 will be
accepted and stored in signaling registers.
Address*Bit Name Function Reset
Default
0x8LR00 6:0 FRM_RPSR0[6:0] Time Slot 0 Receive Signaling Data. 0000000
0x8LR01 6:0 FRM_RPSR1[6:0] Time Slot 1 Receive Signaling Data. 0000000
0x8LR02 6:0 FRM_RPSR2[6:0] Time Slot 2 Receive Signaling Data. 0000000
0x8LR03 6:0 FRM_RPSR3[6:0] Time Slot 3 Receive Signaling Data. 0000000
0x8LR04 6:0 FRM_RPSR4[6:0] Time Slot 4 Receive Signaling Data. 0000000
0x8LR05 6:0 FRM_RPSR5[6:0] Time Slot 5 Receive Signaling Data. 0000000
0x8LR06 6:0 FRM_RPSR6[6:0] Time Slot 6 Receive Signaling Data. 0000000
0x8LR07 6:0 FRM_RPSR7[6:0] Time Slot 7 Receive Signaling Data. 0000000
0x8LR08 6:0 FRM_RPSR8[6:0] Time Slot 8 Receive Signaling Data. 0000000
0x8LR09 6:0 FRM_RPSR9[6:0] Time Slot 9 Receive Signaling Data. 0000000
0x8LR0A 6:0 FRM_RPSR10[6:0] Time Slot 10 Receive Signaling Data. 0000000
0x8LR0B 6:0 FRM_RPSR11[6:0] Time Slot 11 Receive Signaling Data. 0000000
0x8LR0C 6:0 FRM_RPSR12[6:0] Time Slot 12 Receive Signaling Data. 0000000
0x8LR0D 6:0 FRM_RPSR13[6:0] Time Slot 13 Receive Signaling Data. 0000000
0x8LR0E 6:0 FRM_RPSR14[6:0] Time Slot 14 Receive Signaling Data. 0000000
0x8LR0F 6:0 FRM_RPSR15[6:0] Time Slot 15 Receive Signaling Data. 0000000
0x8LR10 6:0 FRM_RPSR16[6:0] Time Slot 16 Receive Signaling Data. 0000000
0x8LR11 6:0 FRM_RPSR17[6:0] Time Slot 17 Receive Signaling Data. 0000000
0x8LR12 6:0 FRM_RPSR18[6:0] Time Slot 18 Receive Signaling Data. 0000000
0x8LR13 6:0 FRM_RPSR19[6:0] Time Slot 19 Receive Signaling Data. 0000000
0x8LR14 6:0 FRM_RPSR20[6:0] Time Slot 20 Receive Signaling Data. 0000000
0x8LR15 6:0 FRM_RPSR21[6:0] Time Slot 21 Receive Signaling Data. 0000000
0x8LR16 6:0 FRM_RPSR22[6:0] Time Slot 22 Receive Signaling Data. 0000000
0x8LR17 6:0 FRM_RPSR23[6:0] Time Slot 23 Receive Signaling Data. 0000000
0x8LR18 6:0 FRM_RPSR24[6:0] Time Slot 24 Receive Signaling Data. 0000000
0x8LR19 6:0 FRM_RPSR25[6:0] Time Slot 25 Receive Signaling Data. 0000000
0x8LR1A 6:0 FRM_RPSR26[6:0] Time Slot 26 Receive Signaling Data. 0000000
0x8LR1B 6:0 FRM_RPSR27[6:0] Time Slot 27 Receive Signaling Data. 0000000
0x8LR1C 6:0 FRM_RPSR28[6:0] Time Slot 28 Receive Signaling Data. 0000000
0x8LR1D 6:0 FRM_RPSR29[6:0] Time Slot 29 Receive Signaling Data. 0000000
0x8LR1E 6:0 FRM_RPSR30[6:0] Time Slot 30 Receive Signaling Data. 0000000
0x8LR1F 6:0 FRM_RPSR31[6:0] Time Slot 31 Receive Signaling Data. 0000000
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
274 Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 385. FRM_RSLR32, Receive Signaling Link Register 32 (COR)
* See Table 383 on page 272 for values of L and R.
Address*Bit Name Function Reset
Default
0x8LR20 15:1
2FRM_R_HGAIS[3:0] HG AIS Detection. Indicates the dete cti on of AIS in the cor -
responding HG. 0000
11:8 FRM_R_HGA[3:0] HG Alignment. Indicates the alignment status for the corre-
sponding HG. A 0 indicates no alignment. A 1 indicates align-
ment for the corresponding group.
0000
7:4 FRM_R_HGRDI[3:0] HG RDI. Indicates the detection of three consecutive zeros in
the Sp bit position of the corresponding HG. 0000
3 FRM_R_TS16A Time Slot 16 Multiframe Alignment Status. A 0 indicates
that, currently, time slot 16 multiframe alignment is not estab-
lished. A 1 indicates that, currently, time slot 16 multiframe
alignment has been established.
0
2 FRM_R_TS16AIS Time Slot 16 AIS Detection Status. If time slot 16 multi-
frame alignment is lost, this bit will reflect the detection of AIS
in time slot 16.
0
1:0 RSVD Reserved. Must write to 0. 0
Table 386. FRM_RSLR33, Receive Signaling Link Register 33 (R/W)
Address*Bit Name Function Reset
Default
0x8LR21 15 FRM_R_FZCON Freeze Conversion. When set to 1, this enables the conver-
sion of certain signaling codes when the signaling buffers
have been frozen. The code translation is 00 to 01 and 0000
to 0101 for 4-state and 16-state signaling, respectively.
0
14:9 RSVD Reserved. Must write to 0. 0
8 FRM_R_SIGI Signaling Insertion. A 1 enables the insertion of signaling
data into the Tx line. A 0 disables the insertion of signaling
data into the Tx line. This bit is valid in the Rx path only when
in transport mode; otherwise, it should be set to 0.
0
7 FRM_R_RXSTOMP Rx Path Stomping . For DS1 links, this bit indicates to stomp
all robbed bit signaling on voice time slots on the correspond-
ing link. Stomping of time slot 16 for CEPT links is performed
in the system interface block.
1 = will enable stomping.
0 = will disable stomping for the corresponding link.
6RSVDReserved. Must write to 0.
5 FRM_R_SIGDEB Signaling Debounce.This bit enables signal debounce on
signaling when extracted from the Rx line. 0
4 FRM_R_HGEN Handling Group Enable . When set to 1 in combination with
selecting the source of signaling data to be the VT mapper,
this indicates to the signaling block that the signaling for this
link is byte sync mapped and uses the handling group format.
0
3 FRM_R_MSIGFZ Manual Signaling Freeze. Used to manually halt the signal-
ing register updates when the source of signaling data is
either the VT mapper or when the signaling is extracted from
the Rx line. A 1 halts the updates.
0
* See Table 383 on page 272 for values of L and R.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
12 28-Channel Framer Registers (continued)
275Agere Systems Inc.
* See Table 383 on page 272 for values of L and R.
Table 387. Transmit Path Signaling Register Addressing Map
* L and T represent hexidecimal digits used for absolute addr essing in Table 389, Table 390, and Table 391.
Read: for link 1 (pertaining to Table 388), the hexidecimal digit L is 0x0 and the hexidecimal digit T is 0x3.
Table 388. Transmit Path Signaling Registers Address Indexing
0x8LR21 2 FRM_R_FGSRC F and G Source . Indicates which entity will be the source for
the F and G values used in handling the ABCD bits.
0 = hos t programmed.
1 = implied by the Tx path ASM.
The Tx path option can only be selected when the Tx path is
configured with an ASM CHI or parallel system bus interface.
Also, the Tx path option can only be selected when the Rx
path is extracting data from the receive line interface vs. byte
sync VT mapped mode.
0
1:0 FRM_R_SIGSRC[1:0] Signaling Data Source. Indicates which of the entities will
be the source for the ABCD bits.
00 = signaling programmed by the host.
01 = signaling extracted from the Rx line.
10 = signaling read from VT mapper in byte sync mode (valid
only for DS1).
00
Address Pins (ADDR15—ADDR0)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 LNK4 LNK3 LNK2 LNK1 LNK0 TX = 1 0 SIG6 SIG5 SIG4 SIG3 SIG2 SIG1 SIG0
L* T*
Link L T Link L T Link L T Link L T
1 0x00x3 8 0x10x1160x20x1240x30x1
2 0x00x5 9 0x10x3170x20x3250x30x3
3 0x00x7100x10x5180x20x5260x30x5
4 0x00x9110x10x7190x20x7270x30x7
5 0x00xB120x10x9200x20x9280x30x9
6 0x0 0xD 13 0x1 0xB 21 0x2 0xB
7 0x0 0xF 14 0x1 0xD 22 0x2 0xD
15 0x1 0xF 23 0x2 0xF
Table 386. FRM_RSLR33, Receive Signaling Link Register 33 (R/W) (continued)
Address*Bit Name Function Reset
Default
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
276 Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 389. FRM_TSLR0—FRM_TSLR31, Transmit Signaling Link Registers 031 (R/W)
* See Table 388 on page 275 for values of L and T.
Notes:
Bit 0 = A, bit 1 = B, bit 2 = C, bit 3 = D, bit 5 = F, and bit 6 = G.
Register includes the following bits: F, G—select s 2, 4, 16, or no state signaling mode; A, B, C, D—signaling data.
For DS1 links, address locations 1 through 24 will contain valid data.
For CEPT links, locations 1 through 15 and 17 through 31 will contain valid data. Writes from the system interface to address 0 and 16 will be
accepted and stored in signaling registers. For CEPT links, inserted time slot 16 X bits are written to locates 0.
Address*Bit Name Function Reset
Default
0x8LT00 6:0 FRM_TPSR0[6:0] Time Slot 0 Transmit Signaling Data. 0000000
0x8LT01 6:0 FRM_TPSR1[6:0] Time Slot 1 Transmit Signaling Data. 0000000
0x8LT02 6:0 FRM_TPSR2[6:0] Time Slot 2 Transmit Signaling Data. 0000000
0x8LT03 6:0 FRM_TPSR3[6:0] Time Slot 3 Transmit Signaling Data. 0000000
0x8LT04 6:0 FRM_TPSR4[6:0] Time Slot 4 Transmit Signaling Data. 0000000
0x8LT05 6:0 FRM_TPSR5[6:0] Time Slot 5 Transmit Signaling Data. 0000000
0x8LT06 6:0 FRM_TPSR6[6:0] Time Slot 6 Transmit Signaling Data. 0000000
0x8LT07 6:0 FRM_TPSR7[6:0] Time Slot 7 Transmit Signaling Data. 0000000
0x8LT08 6:0 FRM_TPSR8[6:0] Time Slot 8 Transmit Signaling Data. 0000000
0x8LT09 6:0 FRM_TPSR9[6:0] Time Slot 9 Transmit Signaling Data. 0000000
0x8LT0A 6:0 FRM_TPSR10[6:0] Time Slot 10 Transmit Signaling Data. 0000000
0x8LT0B 6:0 FRM_TPSR11[6:0] Time Slot 11 Transmit Signaling Data. 0000000
0x8LT0C 6:0 FRM_TPSR12[6:0] Time Slot 12 Transmit Signaling Data. 0000000
0x8LT0D 6:0 FRM_TPSR13[6:0] Time Slot 13 Transmit Signaling Data. 0000000
0x8LT0E 6:0 FRM_TPSR14[6:0] Time Slot 14 Transmit Signaling Data. 0000000
0x8LT0F 6:0 FRM_TPSR15[6:0] Time Slot 15 Transmit Signaling Data. 0000000
0x8LT10 6:0 FRM_TPSR16[6:0] Time Slot 16 Transmit Signaling Data. 0000000
0x8LT11 6:0 FRM_TPSR17[6:0] Time Slot 17 Transmit Signaling Data. 0000000
0x8LT12 6:0 FRM_TPSR18[6:0] Time Slot 18 Transmit Signaling Data. 0000000
0x8LT13 6:0 FRM_TPSR19[6:0] Time Slot 19 Transmit Signaling Data. 0000000
0x8LT14 6:0 FRM_TPSR20[6:0] Time Slot 20 Transmit Signaling Data. 0000000
0x8LT15 6:0 FRM_TPSR21[6:0] Time Slot 21 Transmit Signaling Data. 0000000
0x8LT16 6:0 FRM_TPSR22[6:0] Time Slot 22 Transmit Signaling Data. 0000000
0x8LT17 6:0 FRM_TPSR23[6:0] Time Slot 23 Transmit Signaling Data. 0000000
0x8LT18 6:0 FRM_TPSR24[6:0] Time Slot 24 Transmit Signaling Data. 0000000
0x8LT19 6:0 FRM_TPSR25[6:0] Time Slot 25 Transmit Signaling Data. 0000000
0x8LT1A 6:0 FRM_TPSR26[6:0] Time Slot 26 Transmit Signaling Data. 0000000
0x8LT1B 6:0 FRM_TPSR27[6:0] Time Slot 27 Transmit Signaling Data. 0000000
0x8LT1C 6:0 FRM_TPSR28[6:0] Time Slot 28 Transmit Signaling Data. 0000000
0x8LT1D 6:0 FRM_TPSR29[6:0] Time Slot 29 Transmit Signaling Data. 0000000
0x8LT1E 6:0 FRM_TPSR30[6:0] Time Slot 30 Transmit Signaling Data. 0000000
0x8LT1F 6:0 FRM_TPSR31[6:0] Time Slot 31 Transmit Signaling Data. 0000000
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
277Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 390. FRM_TSLR33, Transmit Signaling Link Register 33 (COR)
* See Table 388 on page 275 for values of L and T.
Address*Bit Name Function Reset
Default
0x8LT20 15:4 RSVD Reserved. Must write to 0. 0x000
3 FRM_T_TS16A Time Slot 16 Multiframe Alignment Status. A 0 indicates
that, currently, time slot 16 multiframe alignment is not estab-
lished. A 1 indicates that, currently, time slot 16 multiframe
alignment has been established.
0
2 FRM_T_TS16AIS Time Slot 16 AIS Detection Status. If time slot 16 multi-
frame alignment is lost, this bit will reflect the detection of AIS
in time slot 16.
0
1:0 RSVD Reserved. Must write to 0. 00
Table 391. FRM_TSLR32, Transmit Signaling Link Register 32 (R/W)
Address*Bit Name Function Reset
Default
0x8LT21 15 RSVD Reserved. Must write to 0. 0
14 FRM_T_ATS16RFA Automatic TS 16 Remote Frame Alarm. Enables automatic
transmission of a 1 in the Y-bit position in the transmit path
when the receive path has lost TS16 alignment.
0
13 RSVD Reserved. Must write to 0. 0
12 FRM_T_ASPLB Automatic Sp Loopback. When set, the Sp bit transmitted
for each individual HG will be set to 0 when the HG align-
ment is lost in the Rx path. Each Sp in the Tx path corre-
sponds to the same HG in the Rx path.
0
11 FRM_T_MSP Manual Sp. Used to manually force the transmission of a 0
in each of the Sp bits of the HGs on each link. 0
10 FRM_T_ZCSM Zero Code Suppression Mode. When set to 1, the signal-
ing block will give an indication to the frame formatter for
each of the data channels. This indication should disable the
zero-code suppression for the associated time slot. Signal-
ing insertion must be enabled for FRM_T_ZCSM to take
effect. FRM_T_ZCSM will not work when byte sync mapping
is enabled.
0
9 FRM_T_VTSIGE VT Signal ing Enable. A 1 enables the transport of signaling
to the VT mapper from the programmed signaling source in
byte sync mode. Byte sync mode cannot be enabled in con-
junction with signaling insertion (bit 8, FRM_T_SIGI). The
robbed-bit positions can be stomped while in byte sync
mode, but no signaling data can be inserted.
0
8 FRM_T_SIGI Signaling Insertion. A 1 enables the insertion of signaling
data into the Tx line. A 0 disables the insertion of signaling
data into the Tx line.
0
7RSVDReserved. Must write to 0. 0
* See Table 388 on page 275 for values of L and T.
TMXF2815 5/ 51 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
278 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
12 28-Channel Framer Registers (continued)
* See Table 388 on page 275 for values of L and T.
12.10 Performanc e Mo nitor Per Link Reg isters
The following tables describe the functions of all bits in the register map. Counters are programmable to either
roll over or saturate, and may be programmed to clear on read.
Registers are only provisionable to clear-on-read (COR).
For each address, the register bits are identified as either read/write (R/W) or read only (RO), and the value of the
bits on reset are given.
Table 392. Performance Monitor Per Link Register Addressing Map
* L and P represent hexidecimal digits used f or absolute addressing in Table 394 through Table 413.
0x8LT21 6 FRM_T_TXSTOMP Tx Path Stomping. For DS1 links, this bit indicates to stomp
all robbed-bit signaling on voice time slots on the corre-
sponding link to 0. Stomping time slot 16 for CEPT links is
done by inserting all ones using the signaling registers. A 1
will enable stomping. A 0 will disable stomping for the corre-
sponding link.
0
5RSVDReserved. Must write to 0. 0
4 FRM_T_HGEN Handling Group Enable. When set to 1 in combination with
(bit 9, FRM_T_VTSIGE), this bit indicates to the signaling
block that the signaling for this link is byte sync mapped and
uses the handling group format.
0
3 FRM_T_MSIGFZ Manual Signaling Freeze. Used to manually halt the signal-
ing register updates when the source of signaling data is
either the Rx system or the Rx line. A 1 halts the updates.
0
2 FRM_T_FGSRC F and G Source. Indicates which entity will be the source
for the F and G values used in handling the ABCD bits.
0 = host programmed.
1 = sourced from the Rx system interface.
The F and G program ming can be impli ed by the syst em
interface only when using the ASM CHI or the parallel sys-
tem interface.
0
1:0 FRM_T_SIGSRC[1:0] Signaling Data Source. Indicates which of the entities will
be the source for the ABCD bits.
00 = signaling programmed by the host.
01 = signaling extracted from the Rx line.
10 = signaling received from the system interface.
00
Address Pins (ADDR15—ADDR0)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 LNK4 LNK3 LNK2 LNK1 LNK0 RXP = 0
TXP = 1 1 0 PM5 PM4 PM3 PM2 PM1 PM0
L* P*
Table 391. FRM_TSLR32, Transmit Signaling Link Register 32 (R/W) (continued)
Address*Bit Name Function Reset
Default
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
279Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 393. Performance Monitor Per Link Register Address Indexing
Read: for link 1 on the receive path, the hexidecimal digit L is 0x0 and the hexidecimal digit P is 0x2.
Table 394. FRM_PMLR1, Performance Monitor Link Register 1 (R/W)
* See Table 393 for values of L and P.
Table 395. FRM_PMLR2, Performance Monitor Link Register 2 (R/W)
* See Table 393 for values of L and P.
Link L P Link L P Link L P Link L P
Receive Path (P is even)
1 0x00x2 8 0x10x0160x20x0240x30x0
2 0x00x4 9 0x10x2170x20x2250x30x2
3 0x00x6100x10x4180x20x4260x30x4
4 0x00x8110x10x6190x20x6270x30x6
5 0x00xA120x10x8200x20x8280x30x8
6 0x0 0xC 13 0x1 0xA 21 0x2 0xA
7 0x0 0xE 14 0x1 0xC 22 0x2 0xC
15 0x1 0xE 23 0x2 0xE
Transmit Path (P is odd)
1 0x00x3 8 0x10x1160x20x1240x30x1
2 0x00x5 9 0x10x3170x20x3250x30x3
3 0x00x7100x10x5180x20x5260x30x5
4 0x00x9110x10x7190x20x7270x30x7
5 0x00xB120x10x9200x20x9280x30x9
6 0x0 0xD 13 0x1 0xB 21 0x2 0xB
7 0x0 0xF 14 0x1 0xD 22 0x2 0xD
15 0x1 0xF 23 0x2 0xF
Address*Bit Name Function Reset
Default
0x8LP80 15:0 FRM_PM_IM4[15:0] Performance Monitoring Register FRM_PMLR4 Inter-
rupt Mask. A 1 masks the corresponding status bit in the
interrupt status registers (Table 398 on page 287) from
generating an interrupt. A 0 allows an interrupt to be gener-
ated.
0xFFFF
Address*Bit Name Function Reset
Default
0x8LP81 15:0 FRM_PM_IM5[15:0] Performance Monitor Register FRM_PMLR5 Interrupt
Mask. A 1 masks the corresponding status bit in interrupt
status re gister s (Table 398 on page 287) from generating
an interrupt. A 0 allows an interrupt to be generated.
0xFFFF
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
280 Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 396. FRM_PMLR3, Performance Monitor Link Register 3 (R/W)
* See Table 393 for values of L and P.
Address*Bit Name Function Reset
Default
0x8LP82 15:11 RSVD Reserved. Must write to 0. 00000
10:7 FRM_MHGALIGN[3:0] Handling Group Alignment Interrupt Mask. A 1 masks
the corresponding status bit in the interrupt status register
(Table 412 on page 293) from generating an interrupt. A 0
allows an interrupt to be generated.
0xF
6FRM_MSEFSSeverely Error ed Fra me Inte rrupt Mas k. A 1 masks the
corresponding status bit in the interrupt status register
(Table 412 on page 293) from generating an interrupt. A 0
allows an interrupt to be generated.
1
5FRM_MFECEPT Functional Element Status Interrupt Mas k. A 1
masks any and all of the FE status bits in Table 406 on
page 291 and Table 407 on page 292 from generating an
interrupt. A 0 allows an interrupt to be generated.
1
4:0 FRM_PM_IM6[15:0] Performance Monitor Register FRM_PMLR6 Interrupt
Mask. A 1 masks the corresponding status bit in the inter-
rupt status register (Table 399 on page 289) from gener-
ating an interrupt. A 0 allows an interrupt to be generated.
0x001F
Table 397. FRM_PMLR4, Performance Monitor Link Register 4 (COR)
Address*Bit Name Function Reset
Default
0x8LP83 15 FRM_SLIPO Receive Elastic Store Slip Overflow. A 1 indicates that the
receive elastic store performed a control slip due to an elastic
store overflow condition. This signal is set when the error
occurs and is cleared when it is read, if there is not another
error during the read.
0
14 FRM_SLIPU Receive Elastic Store Slip Underflow. A 1 indicates that the
receive elastic store performed a control slip due to an elastic
store underflow condition. This signal is set when the error
occurs and is cleared when it is read, if there is not another
error during the read.
0
13 FRM_OOF Out-Of-Frame. A 1 indicates that the receive framer has lost
frame alignment and is currently searching for a new frame
alignment. Section 21.6.1, Loss of Frame Alignment Criteria, on
page 495 lists the loss of frame criteria for the framing bit.
(T1.231, Section 6.1.2.2.1, G.706, Section 4.1). Excessive
(exceeding the provisionable CRC error count) CRC errors may
optionally cause a reframe.
In ESF or J-ESF, more than 320 CRC-6 errors in 1 s result in
loss of frame alignment. The CRC error count is provisionable.
In the CEPT CRC-4 multiframe formats, more than 915 CRC-4
errors in 1 s result in loss of frame alignment (G.706, Section
4.3.2). The CRC error count is provisionable.
0
* See Table 393 on page 279 for values of L and P.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
12 28-Channel Framer Registers (continued)
281Agere Systems Inc.
* See Table 393 on page 279 for values of L and P.
0x8LP83 12 FRM_LSFA Loss of Signaling Frame Alignment. DS1: A 1 indicates that
the receive framer is in a loss of signaling superframe alignment
in the SLC-96 framing format. This bit is a 0 in all other DS1
framing modes. SLC-96 signaling alignment is assumed to have
been lost when mul tiframe alignment is lost .
CEPT: A 1 indicates the loss of the CEPT time slot 16 channel
associated signaling multiframe structure. CEPT time slot 16
multiframe alignment is assumed lost when two consecutive
time slot 16 multiframe alignment patterns (0000) are received
in error, or when time slot 16 is all zeros for one or two multi-
frames. Time slot 16 multiframe alignment is assumed to have
occurred when the first time slot 16 multiframe alignment pat-
tern is found in time slot 16 and, optionally, the preceding time
slot 16 contained at least one. (G.732, Section 5.2; O.162, Sec-
tion 2.1.3.) This is the time slot 16 align input from the signaling
block.
0
11 FRM_OAIS Other Alarm Indication Signals. CEPT RTS16AIS: A 1 indi-
cates the receive framer detected time slot 16 AIS. Time slot 16
AIS is defined to be fewer than three zeros in each of two con-
secutive time slot 16 multiframe periods (G775, Section 5.1.1).
This is the time slot 16 AIS input from the signaling block.
0
Table 397. FRM_PMLR4, Performance Monitor Link Register 4 (COR) (continued)
Address*Bit Name Function Reset
Default
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
282 Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 397. FRM_PMLR4, Perfor mance Monitor Link Register 4 (COR) (continued)
* See Table 393 on page 279 for values of L and P.
Address*Bit Name Function Reset
Default
0x8LP83 10 FRM_AIS Alarm Indication Signal. A 1 indicates the framer is currently
receiving an AIS pattern or receiving an AIS indication on the
TDM bus from the mapper.
DS1: Option 0: AIS occurs upon detection of an unframed sig-
nal with a ones density of at least 99.9% for a time between
3 ms and 75 ms. AIS is removed if the signal does not meet the
99.9% ones density or the unframed criteria for a period
between 3 ms and 75 ms. (ANSI T1.231, Section 6.1.2.2.3,
T1.403, Section H, G.775, Section 5.4.)
Option 1: AIS is detected if the signal has one or less zeros in
24 frames (3 ms/4632 bits). AIS is removed if the signal has two
or more zeros in 24 frames. (ANSI G.775, Section I.2.)
CEPT: Option 0: AIS is detected when loss of frame alignment
occurs and there are two or less zeros in a double frame period
(512 bits per double-frame period). AIS is cleared on receipt of
a signal not conforming to the AIS defect criteria. (ANSI G.775,
Section I.2; G.965, Section 16.1.2.)
Option 1: AIS is detected when there are two or fewer zeros in
each of two consecutive double-frame periods (512 bits per
double frame period). AIS is cleared when each of two consecu-
tive double frame periods contain three or more zeros or the
frame alignment signal (FAS) is found. (ANSI G.775, Section
5.2.)
Option 2: AIS is detected when there are three or less zeros in a
four frame period (0.5 ms/1024 bits) and the signal is out of
frame. AIS is cleared if there are four or more zeros in a four-
frame period or the signal is in frame alignment. (ANSI G.775,
Section I.2.)
Option 3: AIS is detected when there are one or fewer zeros in
each of two consecutive double-frame periods (512 bits per
double-frame period) and the FAS is not detected. AIS is
cleared when each of two consecutive double-frame periods
contain three or more zeros or the frame alignment signal (F AS)
is found. (ANSI G.7 75, Se cti on I.2.)
0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
283Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 397. FRM_PMLR4, Performance Monitor Link Register 4 (COR) (continued)
Address*Bit Name Function Reset
Default
0x8LP83 9 FRM_ORAI Other Remote Alarm Indication. A 1 indicates the receive
framer detected another remote (yellow) alarm. This bit is a 0 in
the modes not indicated below. This bit is set when the alarm is
detected, and is cleared on a read of this register if the alarm is
not detected during the read.
J-D4 RJYA: The frame bit in frame 12 is a 1 two out of three
consecutive times.
ESF, J -ESF: CEPT RTS16MF A: Bit 6 of time slot 16 of signaling
frame 0 is a 1 for three consecutive occurrences. The alarm is
considered inactive when bit 6 of time slot 16 of signaling frame
0 is 1 in less than two consecutive occasions. This is true if time
slot 16 is not carrying a payload, e.g., common channel signal-
ing. If time slot 16 is used for common channel signaling, bit 6
will be continuously 1. In this case, it will be possible to inhibit
the remote alarm to prevent false alarm conditions. (O.162,
Section 2.1.5.) This is the y-bit input from the signaling block.
0
* See Table 393 on page 279 for values of L and P.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
284 Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 397. FRM_PMLR4, Perfor mance Monitor Link Register 4 (COR) (continued)
* See Table 393 on page 279 for values of L and P.
Address*Bit Name Function Reset
Default
0x8LP83 8 FRM_RAI Remote Alarm Indication. A 1 indic at e s the receive fram er
detected a remote (yellow) alarm or detected an RAI indication
on the TDM bus from the mapper.
D4: Bit 2 of all time slots is a 0 for one frame. (ANSI T1.403,
Section 9.1.)
DDS: Bit 6 of time slot 24 is a 0 for 12 frames.
ESF: The user should use register 0x8LP85, bit 4,
ESF_FDL_RAI/Yellow Alarm.
CEPT Basic Frame: RAI is activated when bit 3 of the NOTF AS
frame is 1 RAC consecutive times. RAI is deactivated when bit
3 of the NOTFAS frame is a 0 RDC consecutive times. RAI acti-
vation count (RAC) and RAI deactivation count (RDC) are provi-
sionable in Table 325 on page 251.
Option 0: Bit 3 of the NOTFAS frame is a 1 one consecutive
time. RAI is inactive when bit 3 is set to a 0.
Option 1: RAI is set on three consecutive ones and deactivated
on three consecutive zeros.
Option 2: Bit 3 of the NOTFAS frame is a 1 four consecutive
times. RAI is inactive when bit 3 is set to a 1 in less than two
consecutive occasions. (O.162, Section 2.1.4.)
Option 3: RAI is set on five consecutive ones and deactivated
on five consecutive zeros. (ETS 300.417-1-1.)
CEPT CRC-4 Multiframe: Reception of 1 bit A with a content
of 1. (G.965, Section 16.1.2.)
0
7 FRM_SA600X1E Sa6 = 00x1 Event. This bit indicates detection of an Sa6 = 00x1
event. The Sa6 code is detected synchronously to the CRC-4
multiframe and is not counted during loss of CRC-4 multiframe
alignment. This detection is not qualified by Sa5 = 1, unlike bits
6 and 8 of Table 406 on page 291.
0
6 FRM_SA6001XE Sa6 = 001x Event. This bit indicates detection of an Sa6 = 001x
event. The Sa6 code is detected synchronously to the CRC-4
multiframe and is not counted during loss of CRC-4 multiframe
alignment. This detection is not qualified by Sa5 = 1, unlike bits
7 and 8 of Table 406.
0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
285Agere Systems Inc.
12 28-Channel Framer Registers (continued)
* See Table 393 on page 279 for values of L and P.
Table 397. FRM_PMLR4, Performance Monitor Link Register 4 (COR) (continued)
Address*Bit Name Function Reset
Default
0x8LP83 5 FRM_CRCTX CRC-4 Multiframe Alignment Timer Expired. A 1 indicates
that either the 100 ms or the 400 ms interworking timer expired.
It is only active immediately after basic frame alignment is found
in CEPT CRC-4 modes. This signal is set when the error
occurs, and is cleared when it is read if there is not another
error during the read.
0
4 FRM_LTS0MFA Loss of Time Slot 0 CRC-4 Multiframe Alignment. A 1 indi-
cates the absence of CRC-4 multiframe alignment. This bit is
set when basic frame alignment has been found and multiframe
alignment is being searched for, or when multiframe alignment
is lost but basic frame alignment remains good, or when multi-
frame alignment is lost.
Note: This is a stored version of the status. It is cleared after
one good multiframe bit is seen .
CRC-4 multiframe alignment is assumed lost when there are
three consecutive errors in the CRC-4 multiframe alignment bits
(bit 0 of NOTFAS frames 1, 3, 5, 7, 9, and 11). Loss of CRC-4
multiframe alignment may optionally cause a research for
CRC-4 multiframe alignment without affecting the current basic
frame alignment.
CEPT with CRC-4 only. In all other modes, this bit is a 0.
0
3FRM_TS0MFABETime Slot 0 Multiframe Alignment Signal Bit Error. A 1
indicates that the receive framer detected an error in the CRC-4
multiframe alignment signal. A 0 indicates no errors. Bit 0 of
NOTFAS frames (1, 3, 5, 7, 9, and 11).
0
2FRM_SESSeverely Errored Second (G.826 Annex B). A 1 indicates the
receive framer detected a severely errored second. The events
that can cause an errored second are provisionable for DS1
links in Table 329 and for CEPT links in Table 332. The
severely errored second threshold is provisionable; DS1-SF
links in Table 326 on page 252, DS1-ESF link s in Table 328 on
page 253, and CEPT links in Table 331 on page 253.
0
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
286 Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 397. FRM_PMLR4, Perfor mance Monitor Link Register 4 (COR) (continued)
* See Table 393 on page 279 for values of L and P.
Address*Bit Name Function Reset
Default
0x8LP83 1 FRM_BES Burs ty Errored Second. A 1 indicates the receive framer
detected a bursty errored second. The events that can cause an
errored second are provisionable for DS1 links in Table 329 on
page 253 and for CEPT links in Table 332 on page 254. The
severely errored second threshold is provisionable; DS1-SF
links in Table 326 on page 252, DS1-ESF links in Table 328 on
page 253, and CEPT links in Table 331 on page 253.
BES is not valid in any CEPT mode.
Note: The SES threshold must always be greater than the ES
threshold because BES lies in between (i.e., ES < BES <
SES).
0
0FRM_ESErrored Second (G.826 Annex B). A 1 indicates the receive
framer detected an errored second. The events that can cause
an errored second are provisionable for DS1 links in Table 329
on page 253 and for CEPT links in Table 332 on page 254.
0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
287Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 398. FRM_PMLR5, Performance Monitor Link Register 5 (COR)
* See Table 393 on page 279 for values of L and P.
Address*Bit Name Function Reset
Default
0x8LP84 15:14 RSVD Reserved. Must write to 0. 0
13 FRM_LFV Line Format Violation. A 1 indicates the receive framer detected
a bipolar line coding or excessive zeros violation. The perfor-
mance monitor counts all pulses on the BPV signal from the frame
aligner block. This signal is set when the error occurs and is
cleared when it is read, if there is not another error during the
read. (G.703 Annex A and O.161, Section 2.)
0
12 FRM_FBE Frame-Bit Errored. A 1 indicates the receive framer detected a
frame bit or frame alignment pattern error. For SF formats, either
FT, or FT and FS bits are used and are programmable. This signal
is set when the error occurs and is cleared when it is read, if there
is not another error during the read. In DDS, FT and FS are alway s
counted as FBEs. The PMON is, however, configurable as to
whether TS24 is also counted as an FBE. In CEPT, FAS words
can only gene rate o ne FBE .
0
11 FRM_CRCE CRC Errored. A 1 indicates the receive framer detected a CRC
error. It is the occurrence of a received CRC code that is not iden-
tical to the locally calculated code. This signal is set when the error
occurs and is cleared when it is read, if there is not another error
during the read. This signal is only valid in ESF (G.704, Section
A.1) and CEPT CRC-4 (G.704, Section A.3) modes.
0
10 FRM_ECRCE Excessive CRC Errors. A 1 in dicat es the receiv e fram er det ected
an excessive CRC error condition. This signal is set when the
error occurs and is cleared when it is read, if there is not another
error during the read. This signal is only valid in ESF and CEPT
CRC-4 modes. The CRC error count is provisionable. In ESF, an
excessive CRC error is defined as 320 CRC errors in 1 s. In
CEPT, an excessive CRC error is defined as 915 CRC errors in
1 s.
0
9FRM_REBITReceived E Bit = 0. A 1 indicates the receive framer detected an
E bit = 0 in the CEPT CRC-4 modes. This signal is set when the
error occurs and is cleared when it is read if there is not another
error during the rea d. This signal is only valid in CEPT CRC- 4
modes.
0
8 FRM_CREBIT Continuous Received E Bits. A 1 indicates the detection of a 5 s
interval containing 991 E bit = 0 events in each second. The E-bit
error count is provisionable. The defaults of 991 are shown.
0
7FRM_LTFALoss of Transmit Frame Alignment. DS1: Always 1.
CEPT FRM_LTFA: A 1 indicates that the CEPT biframe alignment
pattern (alternating 0, 1 in bit 2 of time slot 0) received from the
system is in error. This alignment pattern is required when trans-
mitting the Si or Sa bits transparently. Detection of this condition
may optionally be disabled.
0
6FRM_NFANew Frame Alignment. A 1 indicates the receive framer has
reframed. 0
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
288 Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 398. FRM_PMLR5, Perfor mance Monitor Link Register 5 (COR) (continued)
* See Table 393 on page 279 for values of L and P.
Address*Bit Name Function Reset
Default
0x8LP84 5 FRM_SA7LID Sa7 Link Identification. A 1 indicates that a sequence was found
such that two out of three Sa7 bits are 0. (G.965, Section 16.1.2.) 0
4 FRM_LLBON Line Loopback On Code Detect. A 1 indicates the receive framer
detected the DS1 line loopback enable code. The activation signal
consists of repetitions on the pattern 00001 with the framing bits
replacing the pattern bits. (T1.403, Section 9.3.1.1.) Only applica-
ble in DS1 SF formats.
0
3 FRM_LLBOFF Line Loopback Off Code Detect. A 1 indicates the receive
framer detected the DS1 line loopback disable code. The deacti-
vation signal consists of repetitions on the pattern 001 with the
framing bits replacing the pattern bits. (T1.403, Section 9.3.1.2.)
Only applicable in DS1 SF formats.
0
2FRM_AUXPAuxiliary Pattern. DS1 IDLEID: Each of the 24 time slots in a
frame contain the DS1 idle signal, 00010111. (T1.231, Section
6.4.8.)
Note: For ESF, the Supermapper will only check for the idle code;
it does not look for RAI.
CEPT AUXP: A 1 indicates the detection of a valid auxiliary pat-
tern (unframed 10 . . . pattern) in the CEPT mode. When in loss of
frame alignment state, an auxiliary pattern is detected when more
than 255 10 patterns are detected in a 512-bit interval. The alarm
is disabled when three or more non-10 patterns are detected in a
512-bit interval. The search for AUXP is synchronized to the first
alternating 10 pattern found. (ETS 300 233, Section 8.2.2.2,
O.151, Section 2.4.)
0
1 FRM_LOS Loss of Signal. A 1 indicates that the receive line decoder has
detected a loss of signal condition. This status is only valid in the
dual-rai l mod e of opera tio n.
DS1: Loss of signal occurs when, for 100 contiguous pulse posi-
tions, there are no pulses of either the positive or negative polarity
at the line interface. The loss of signal defect is removed upon
detecting 13 pulses over 100 pulse positions following the receipt
of a pulse, and there is no 100 pulse position interval where there
were no pulses. (T1.231, Section 6.1.2.1.1, G.775, Section 4.3.)
CEPT: Loss of signal occurs when, for 100 consecutive pulse
positions, there are no pulses of either the positive or negative
polarity at the line interface. The loss of signal defect is removed
when there are pulses in a 100 consecutive pulse position period
(G.775, Section 4.2). Note that the defect is set and cleared at the
end defined sample period.
0
0FRM_BOMRBit-Oriented Message Received. A 1 indicates a BOM has been
received in the ESF data link bits and FRM_RBOM[7:0]
(Table 411 on page 292) should be read. A BOM is defined in
ANSI T1.403 as a 0xxxxxx0 11111111 pattern (received right-to-
left) repeated 10 consecutive times. The 0xxxxxx0 pattern is
saved in the FRM_RBOM[7:0] register (Table 411 on page 292)
upon the tenth occurrence of the BOM message.
0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
289Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 399. FRM_PMLR6, Performance Monitor Link Register 6 (COR)
* See Table 393 on page 279 for values of L and P.
Table 400. FRM_PMLR7, Performance Monitor Link Register 7 (COR)
* See Table 393 on page 279 for values of L and P.
Address*Bit Name Function Reset
Default
0x8LP85 15:5 RSVD Reserved. 0
4 FRM_FDL_RAI ESF_FDL_RAI/Yellow Alarm. A 1 indicates the receive
framer detected the ESF_FDL_RAI/yellow alarm code in the
payload. This code is defined in ANSI T1.403-1995 as a
00000000 11111111 pattern in the facility data link (received
right-to-left). This signal is set when the pattern is detected
(10 consecutive times) and is cleared when it is read if the pat-
tern is no longer being detected.
0
3 FRM_FDL_PLBON ESF_FDL Payload Loopback Enable. A 1 indicates the
receive framer detected the ESF_FDL payload loopback
enable code in the payload. This code is defined in
ANSI T1.403-1995 as a 00010100 11111111 pattern in the
facility data link (received right-to-left). This signal is set when
the pattern is detected (10 consecutive times) and is cleared
when it is read if the pattern is no longer being detected. This
could also be set by FF_PLB (manual PLB indication) input.
0
2 FRM_FDL_PLBOFF ESF_FDL Payload Loopback Disable. A 1 indicates the
receive framer detected the ESF_FDL payload loopback dis-
able code in the payload. This code is defined in
ANSI T1.403-1995 as a 00110010 11111111 pattern in the
facility data link (received right-to-left). This signal is set when
the pattern is detected (10 consecutive times) and is cleared
when it is read if the pattern is no longer being detected.
0
1 FRM_FDL_LLBON ESF_FDL Line Loopback Enable. A 1 indicates the receive
framer detected the ESF_FDL line loopback enable code in
the payload. This code is defined in ANSI T1.403-1995 as a
00001110 11111111 pattern in the facility data link (received
right-to-left). This signal is set when the pattern is detected
(10 consecutive times) and is cleared when it is read if the pat-
tern is no longer being detected.
0
0 FRM_FDL_LLBOFF ESF_FDL Line Loopback Disable. A 1 indicates the receive
framer detected the ES F _FD L line loop bac k dis ab le co de in
the payload. This code is defined in ANSI T1.403-1995 as a
00111000 11111111 pattern in the facility data link (received
right-to-left). This signal is set when the pattern is detected
(10 consecutive times) and is cleared when it is read if the pat-
tern is no longer being detected.
0
Address*Bit Name Function Reset
Default
0x8LP86 15:0 FRM_BPV[15:0] Bipolar Violation Counter. This register contains the 16-bit
count of received bipolar violations, line code violations, and
excessive zeros.
0x0
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
290 Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 401. FRM_PMLR8, Performance Monitor Link Register 8 (COR)
* See Table 393 on page 279 for values of L and P.
Table 402. FRM_PMLR9, Performance Monitor Link Register 9 (COR)
* See Table 393 on page 279 for values of L and P.
Table 403. FRM_PMLR10, Performance Monitor Link Register 10 (COR)
* See Table 393 on page 279 for values of L and P.
Table 404. FRM_PMLR11, Performance Monitor Link Register 11 (COR)
* See Table 393 on page 279 for values of L and P.
Table 405. FRM_PMLR12, Performance Monitor Link Register 12 (COR)
* See Table 393 on page 279 for values of L and P.
Address*Bit Name Function Reset
Default
0x8LP87 15:0 FRM_FBEC[15:0] Frame Bit Error Counter.
DS1: This register contains the 16-bit count of received framing
bit errors. Framing bit errors are not counted during loss of
frame alignment. (T1.231, Section 6.1.1.2.2.)
CEPT: This register contains the 16-bit count of received frame
alignment signal errors. Optionally, bit 2 of NOTF AS frames can
be counted.
Note: A FAS with errors in two or more bit positions is only
counted once.
0x0
Address*Bit Name Function Reset
Default
0x8LP88 15:0 FRM_CEC[15:0] CRC Error Counter. This register contains the 16-bit count of
received CRC errors. CRC errors are not counted during loss of
CRC multiframe alignment.
0x0
Address*Bit Name Function Reset
Default
0x8LP89 15:0 FRM_REC[15:0] Receive E-bit Counter. This register contains the 16-bit count of
received E bit = 0 events. E bit = 0 events are not counted during
loss of CEPT CRC-4 multiframe alignment.
0x0
Address*Bit Name Function Reset
Default
0x8LP8A 15:0 FRM_CETE[15:0] Sa6 = 00x1 Event Counter. This register contains the 16-bit
count of received Sa6 = 00x1 events. The Sa6 code is detected
synchronously to the CRC-4 multiframe and is not counted dur-
ing loss of CRC-4 multiframe alignment. This detection is not
qualified by Sa5 = 1.
0x0000
Address*Bit Name Function Reset
Default
0x8LP8B 15:0 FRM_CENT[15:0] Sa6 = 001x Event Counter. This register contains the 16-bit
count of received Sa6 = 001x events. The Sa6 code is detected
synchronously to the CRC-4 multiframe and is not counted dur-
ing loss of CRC-4 multiframe alignment. This detection is not
qualified by Sa5 = 1.
0x0000
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
291Agere Systems Inc.
12 28-Channel Framer Registers (continued)
The register in Table 406 provides a status indication of functional elements (FE) exchanged between the access
digital section and the exchange termination (ET), as defined in ETS 300 233, Section 9.3 and Table 2. These are
decoded from the A, Sa5, and Sa6 bits. The Sa6 code words are synchronized to the CRC-4 multiframe.
Table 406. FRM_PMLR13, Performance Monitor Link Register 13 (COR)
* See Table 393 on page 279 for values of L and P.
Address*Bit Name Function
(A, Sa5, Sa6[1:4]) Reset
Default
0x8LP8C 15:14 RSVD Reserved. Must write to 0. 00
13 FRM_FE_OP Defect FCET in the ET or FCDLd in the Digital Link Between V3
and V3 or Defect FCDLu Between V3 and V3. AIS. 0
12 FRM_FE_N Reception of AIS at V3 Reference Point of LT and FC4 Simulta-
neously. (0, 1, 1111.) 0
11 FRM_FE_M Reception of AIS at V 3 Reference Point of LT (Reaction to FCDL
or FCET). (1, 1, 1111.) 0
10 FRM_FE_L LOS at Line Side of LT (FC1). AUXP. 0
9FRM_FE_KLoss of Power at NT1 and LOS/LFA at TE Simultaneously. (1, 1,
1000.) 0
8FRM_FE_ILoss of Power at NTT. (0, 1, 1000.) 0
7FRM_FE_HSimultaneous FC3 and FC4. (0, 1, 1110.) 0
6FRM_FE_GLOS/LFA at T Reference Point of NT1. (0, 1, 1100.) 0
5FRM_FE_FLOS/LFA at V3 Reference Point of ET. (1, 0, 0000.) 0
4FRM_FE_ELOS at Line Side of NT1 or at V3 Reference Point of LT Only. (1,
1, 1110.) 0
3FRM_FE_DLOS/LFA at TE. (1, 1, 00xx.) 0
2FRM_FE_CUnintentional Loopback. (x, 0, xxxx.) 0
1FRM_FE_BNormal Operation of the ET. (x, 0, 0000.) 0
0FRM_FE_ANormal Operation of the DS. (x, 1, 00xx.) 0
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
292 Agere Systems Inc.
12 28-Channel Framer Registers (continued)
The register in Table 407 provides a status indication of functional elements (FE) exchanged between the access
digital section and the exchange termination (ET), as defined in ETS 300 233, Section 9.3 and Table 3 and Table
4.
Table 407. FRM_PMLR14, Performance Monitor Link Register 14 (COR)
* See Table 393 on page 279 for values of L and P.
Table 408. FRM_PMLR15, Performance Monitor Link Register 15 (COR)
* See Table 393 on page 279 for values of L and P.
Table 409. FRM_PMLR16, Performance Monitor Link Register 16 (COR)
* See Table 393 on page 279 for values of L and P.
Table 410. FRM_PMLR17, Performance Monitor Link Register 17 (COR)
* See Table 393 on page 279 for values of L and P.
Table 411. FRM_PMLR18, Performance Monitor Link Register 18 (COR)
* See Table 393 on page 279 for values of L and P.
Address*Bit Name Function
(A, Sa5, Sa6[1:4], E) Reset
Default
0x8LP8D 15:9 RSVD Reserved. Must write to 0. 0x000
8FRM_FE_YSimultaneous Occurrence of FE_W and FE_X. (x, 1, 0011, x.) 0
7FRM_FE_XCRC Error Detected at T Reference Point of NT1. (x, 1, 0010, x.) 0
6FRM_FE_WCRC Error Reported from TE. (x, 1, 0001, x.) 0
5FRM_FE_VCRC Error Information from ET. (x, 0, 0000, 0.) 0
4FRM_FE_UCRC Error Report from NT1 Line Side. (x, 1, xxxx, 0. ) 0
3FRM_FE_TLoopback Release Command. (x, 0, 0000, x.) 0
2FRM_FE_SLoopback Acknowledge. (1, 0, xxxx, x.) 0
1FRM_FE_RLoopback 2 Command. (1, 0, 1010, x.) 0
0FRM_FE_QLoopback 1 Command. (1, 0, 1111, x.) 0
Address*Bit Name Function Reset
Default
0x8LP8E 15:0 FRM_ESC[15:0] Errored Second Counter. This register contains the 16-bit
count of errored seconds. 0x0000
Address*Bit Name Function Reset
Default
0x8LP8F 15:0 FRM_BESC[15:0] Bursts Errored Second Counter. This register contains the
16-bit count of bursty errored seconds. 0x0000
Address*Bit Name Function Reset
Default
0x8LP90 15:0 FRM_SESC[15:0] Severely Errored S econd Counte r. This register contains the
16-bit count of severely errored seconds. 0x0000
Address*Bit Name Function Reset
Default
0x8LP91 15:8 RSVD Reserved. Must write to 0. 0x00
7:0 FRM_RBOM[7:0] Received Bit-Oriented Message (0xxxxxx0). Note that only
storing the 8 bits that contain actual data, the first eight ones are
not stored.
0x00
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
293Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 412. FRM_PMLR19, Performance Monitor Link Register 19 (COR)
This register applies to the receive path only.
* See Table 393 on page 279 for values of L and P.
Table 413. FRM_PMLR20, Performance Monitor Link Register 20 (COR)
* See Table 393 on page 279 for values of L and P.
12.11 Receive Facility Data Link Configuration and Status Registers
Table 414. Receive Facility Data Link Register Addressing Map
* L and R represe nt hexidecimal digits used for absolute addressing in Table 416 on page 294 through Table 420 on page 295.
Address*Bit Name Function Reset
Default
0x8LP92 15:5 RSVD Reserved. Must write to 0. 0x000
4:1 FRM_HGALIGN[3:0] Indicates HG Alignment for the Associated HG on Each
Link. The status will be given for a particular link any time
that link appears on the TDM bus. A 1 in any bit position indi-
cates that alignment has been achieved. A 0 indicates align-
ment is lost or handling groups are disabled.
Note: For receive path only.
0000
0FRM_SEFSSeverely Errored Frame Status. (See ANSI T1.4 0 3
9.4.2.2.2 for ESF and T1.231 6.1.2.2.2 for SF.)
Note: For receive and transmit path.
0
Address*Bit Name Function Reset
Default
0x8LP93 15:13 RSVD Reserved. Must write to 0. 000
12:7 FRM_G[6:1] PRM Message Bit G6—G1. 0
6FRM_SEPRM Message Bit SE. 0
5FRM_FEPRM Message Bit FE. 0
4FRM_LVPRM Message Bit LV. 0
3FRM_SLPRM Message Bit SL. 0
2FRM_LBPRM Message Bit LB. 0
1FRM_N1PRM Message Bit N1. 0
0FRM_N0PRM Message Bit N0. 0
Address Pins (ADDR15—ADDR0)
151413 12 11 10 9 8 7654 3 2 1 0
00LNK4LNK3LNK2LNK1LNK0 RXP = 0 1100RDL3RDL2RDL1RDL0
L* R*
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
294 Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 415. Receive Path Facility Data Link Registers Address Indexing
Read: for link 1, the hexidecimal digit L is 0x0 and the hexidecimal digit R is 0x2.
Table 416. FRM_RFDLLR1—FRM_RFDLLR5, Receive FDL Link Registers 1—5 (RO)
* See Table 415 for values of L and R.
Table 417. FRM_RFDLLR6, Receive FDL Link Register 6 (R/W)
* See Table 415 for values of L and R.
Table 418. FRM_RFDLLR7, Receive FDL Link Register 7 (RO)
* See Table 415 for values of L and R.
Link L R Link L R Link L R Link L R
1 0x00x2 8 0x10x0160x20x0240x30x0
2 0x00x4 9 0x10x2170x20x2250x30x2
3 0x00x6100x10x4180x20x4260x30x4
4 0x00x8110x10x6190x20x6270x30x6
5 0x00xA120x10x8200x20x8280x30x8
6 0x0 0xC 13 0x1 0xA 21 0x2 0xA
7 0x0 0xE 14 0x1 0xC 22 0x2 0xC
15 0x1 0xE 23 0x2 0xE
Address*Bit Name Function Reset
Default
0x8LRC0 15:0 FRM_RXS0[15:0] Rx Stack Data 0. 0x0
0x8LRC1 15:0 FRM_RXS1[15:0] Rx Stack Data 1. 0x0
0x8LRC2 15:0 FRM_RXS2[15:0] Rx Stack Data 2. 0x0
0x8LRC3 15:0 FRM_RXS3[15:0] Rx Stack Data 3. 0x0
0x8LRC4 15:0 FRM_RXS4[15:0] Rx Stack Data 4. 0x0
Address*Bit Name Function Reset
Default
0x8LRC5 15:1 RSVD Reserved. Must write to 0. 0x0
0 FRM_RXCRCS M CEPT CRC-4 Stack Mode. When set to 0, the Sa bits will
be stored based on multiframe alignment. If multiframe
alignment is lost, the stack will not be made available to the
host. When set to 1, the Sa bits will be stored based on an
arbitrary multiframe alignment when only basic frame
alignment can be established.
0
Address*Bit Name Function Reset
Default
0x8LRC6 15:1 RSVD Reserved. Reads 0. 0x0
0FRM_RXSARx Stack Available. A 1 in di ca t es tha t the R x st ac k i s a va il a bl e
for reading. 0 indicates that the stack is being updated and
should not be read. In order to prevent a mix of old and new
data being read, the host should verify that this bit is set to 1
before continuing to read the stack.
0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
295Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 419. FRM_RFDLLR8, Receive FDL Link Register 8 (COR)
* See Table 415 on page 294 for values of L and R.
Table 420. FRM_RFDLLR9, Receive FDL Link Register 9 (R/W)
* See Table 415 on page 294 for values of L and R.
12.12 Transmit Facility Data Link Configura tion an d Status Registers
Table 421. Transmit Facility Data Link Register Addressing Map
* L and R represe nt hexidecimal digits used for absolute addressing in Table 423 through Table 427.
Table 422. Transmit Path Facility Data Link Registers Address Indexing
Read: for link 1, the hexidecimal digit L is 0x0 and the hexidecimal digit T is 0x3.
Table 423. FRM_TFDLLR1—FRM_TFDLR5, Transmit FDL Link Registers 1—5 (COR)
* See Table 422 for values of L and T.
Address*Bit Name Function Reset
Default
0x8LRC7 15:1 RSVD Reserved. Read s 0. 0x0
0 FRM_RXSR_IS Rx Stack Ready Interrupt. A 1 indicates that the Rx stack has
been filled with data following the format of the associated link. 0
Address*Bit Name Function Reset
Default
0x8LRC8 15:1 RSVD Reserved. Must write to 0. 0x0
0 FRM_MRXSR Mask Rx Stack Ready Interrupt. A 1 masks the Rx stack
ready interrupt. 1
Address Pins (ADDR15—ADDR0)
151413 12 11 10 9 8 7654 3 2 1 0
00LNK4LNK3LNK2LNK1LNK0 TXP = 1 1101TDL3TDL2TDL1TDL0
L* T*
Link L T Link L T Link L T Link L T
1 0x00x3 8 0x10x1160x20x1240x30x1
2 0x00x5 9 0x10x3170x20x3250x30x3
3 0x00x7100x10x5180x20x5260x30x5
4 0x00x9110x10x7190x20x7270x30x7
5 0x00xB120x10x9200x20x9280x30x9
6 0x0 0xD 13 0x1 0xB 21 0x2 0xB
7 0x0 0xF 14 0x1 0xD 22 0x2 0xD
15 0x1 0xF 23 0x2 0xF
Address*Bit Name Function Reset Default
0x8LTD0 15:0 FRM_TXS0[15:0] Tx Stack Data 0. 0x0000
0x8LTD1 15:0 FRM_TXS1[15:0] Tx Stack Data 1. 0x0000
0x8LTD2 15:0 FRM_TXS2[15:0] Tx Stack Data 2. 0x0000
0x8LTD3 15:0 FRM_TXS3[15:0] Tx Stack Data 3. 0x0000
0x8LTD4 15:0 FRM_TXS4[15:0] Tx Stack Data 4. 0x0000
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
296 Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 424. FRM_TFDLLR6, Transmit FDL Link Register 6 (R/W)
* See Table 422 on page 295 for values of L and T.
Address*Bit Name Function Reset
Default
0x8LTD5 15:8 RSVD Reserved. Must write to 0. 0x0
7 FRM_SA8SC Sa8 Source Control. A 1 indicates that Sa8 is sourced from the
TXFDL stack. Zero indicates that Sa8 is sourced from the time
slot 0 data of the system interface in switching mode, or from
time slot 0 data received by the transmit path receive aligner in
transp ar ent mod e.
0
6 FRM_SA7SC Sa7 Source Control. A 1 indicates that Sa7 is sourced from the
TXFDL stack. Zero indicates that Sa7 is sourced from the time
slot 0 data of the system interface in switching mode, or from
time slot 0 data received by the transmit path receive aligner in
transp ar ent mod e.
0
5 FRM_SA6SC Sa6 Source Control. A 1 indicates that Sa6 is sourced from the
TXFDL stack. Zero indicates that Sa6 is sourced from the time
slot 0 data of the system interface in switching mode, or from
time slot 0 data received by the transmit path receive aligner in
transp ar ent mod e.
0
4 FRM_SA5SC Sa5 Source Control. A 1 indicates that Sa5 is sourced from the
TXFDL stack. Zero indicates that Sa5 is sourced from the time
slot 0 data of the system interface in switching mode, or from
time slot 0 data received by the transmit path receive aligner in
transp ar ent mod e.
0
3 FRM_SA4SC Sa4 Source Control. A 1 indicates that Sa4 is sourced from the
TXFDL stack. Zero indicates that Sa4 is sourced from the time
slot 0 data of the system interface in switching mode, or from
time slot 0 data received by the transmit path receive aligner in
transp ar ent mod e.
0
2 FRM_TXCRCSM CEPT CRC-4 Stack Mode. When set to 0, the Sa bits will be
transmitted based on being active. If MFA is lost, the stack will
not be transmitted. When set to 1, the Sa bits will be transmitted
based on BFA (basic frame alignment) only.
0
1FRM_ASRCAlignment Source. A 1 indicates that the MFA and BFA will be
used to determine if a BOM or stack is transmitted. A 0 indicates
that, when enabled for insertion, BOMs and stacks will be
inserted whenever the TDM data is requested.
0
0FRM_DS1IDS1 Insertion. A 1 enables this block to insert the contents of
the stack into the associated DS1 link. For SLC-96 links, D bits
will be inserted given the associated stack format. For DDS
links, data-link bits will be inserted given the associated stack
format. For other DS1 link types, this bit has no effect. A 0 dis-
ables this block from inserting D bits or data link bits into the
associated link.
0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
297Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 425. FRM_TFDLLR7, Transmit FDL Link Register 7 (R/W)
* See Table 422 on page 295 for values of L and T.
Table 426. FRM_TFDLLR8, Transmit FDL Link Register 8 (RO/COW)
* See Table 422 on page 295 for values of L and T.
Table 427. FRM_TFDLLR9, Transmit FDL Link Register 9 (R/W)
* See Table 422 on page 295 for values of L and T.
Address*Bit Name Function Reset
Default
0x8LTD6 15:7 RSVD Reserved. Must write to 0. 0x000
6FRM_BOMETransmit Bit-Oriented Message Enable. A 1 indicates that the
BOM message register has been initialized and should be transmit-
ted on the data link of the ESF frame. The pattern will continue to
be transmitted until the enable is removed. When set to 0, the BOM
transmission will stop immediately without completing the current
pattern transmission or without completing the series of 10 pat-
terns.
0
5:0 FRM_TBOM[5:0] Transmit Bit-Oriented Messa ge . Indic ate s the con ten ts of the
BOM to be transmitted when enabled with FRM_BOME. A pattern
of 111110 implies a BOM of 0111110011111111 with the
right-mo st bit being tr ansmi tted first.
0
Address*Bit Name Function Reset
Default
0x8LTD7 15:2 RSVD Reserved. Must write to 0. 0000000
0000000
1 FRM_BOMC_IS BOM Complete Interrupt. (Clear on write.) A 1 indicates that
the BOM register contents have been transmitted 10 times over
the data link of the ESF frame.
0
0 FRM_TXSE_IS Tx Stack Empty Interrupt. (Clear on write.) A 1 indicates that
the Tx stack is empty. 0 indicates that the host has finished
updating the stack. The Tx data link block sets this bit when the
stack is empty, and needs to be filled if the D bits or Sa bits
require changing. If the stack is not refilled, the old data will be
retransmitted.The new data can be written anytime without
interfering with the current transmission. The stack needs to be
updated within 9 ms for an SLC-96 link or 4 ms for a CEPT link
in order for the new information to be transmitted in the next
double multiframe.
1
Address*Bit Name Function Reset
Default
0x8LTD8 15:2 RSVD Reserved. Must write to 0. 0000000
0000000
1 FRM_BOMC_IM Mask BOM Complete Interrupt. A 1 mask s the BOM comp lete
interrupt, FRM_BOMC. 1
0 FRM_TXSE_IM Mask Tx Stack Empty Interrupt. A 1 masks the Tx s tack
empty interrupt, FRM_TXSE. 1
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
298 Agere Systems Inc.
12 28-Channel Framer Registers (continued)
12.13 System Interface, Arbiter, and Frame Fo rmatter Mapping
Table 428. System Interface, Arbiter, and Frame Formatter Link Register Addressing Map
* L and P represent hexidecimal digits used for absolute addressing in Table 431 through Table 437.
Table 429. System Interface, Arbiter, and Frame Formatter Link Register Address Indexing
Read: for link 1 on the receive path, the hexidecimal digit L is 0x0 and the hexidecimal digit P is 0x2.
Address Pins (ADDR15—ADDR0)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 LNK4 LNK3 LNK2 LNK1 LNK0 RXP = 0/TXP = 1 1 1 1 0 0 SYS2 SYS1 SYS0
L* P*
Link L P Link L P Link L P Link L P
Receive Path (P is even)
1 0x00x2 8 0x10x0160x20x0240x30x0
2 0x00x4 9 0x10x2170x20x2250x30x2
3 0x00x6100x10x4180x20x4260x30x4
4 0x00x8110x10x6190x20x6270x30x6
5 0x00xA120x10x8200x20x8280x30x8
6 0x0 0xC 13 0x1 0xA 21 0x2 0xA
7 0x0 0xE 14 0x1 0xC 22 0x2 0xC
15 0x1 0xE 23 0x2 0xE
Transmit Path (P is odd)
1 0x00x3 8 0x10x1160x20x1240x30x1
2 0x00x5 9 0x10x3170x20x3250x30x3
3 0x00x7100x10x5180x20x5260x30x5
4 0x00x9110x10x7190x20x7270x30x7
5 0x00xB120x10x9200x20x9280x30x9
6 0x0 0xD 13 0x1 0xB 21 0x2 0xB
7 0x0 0xF 14 0x1 0xD 22 0x2 0xD
15 0x1 0xF 23 0x2 0xF
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
299Agere Systems Inc.
12 28-Channel Framer Registers (continued)
12.14 System Interface Per Link Reg is ters
Table 430. FRM_SYSLR1, System Interface Link Register 1 (R/W)
* See Table 429 on page 298 for values of L and P.
Table 431. FRM_SYSLR2, System Interface Link Register 2 (R/W)
This register applies to the receive path only, inserted in the transmit system interface on demand.
* See Table 429 on page 298 for values of L and P.
* See Table 429 on page 298 for values of L and P.
Address*Bit Name Function Reset
Default
0x8LPE0 15 RSVD Reserved. Must write to 0. 0
14:8 FRM_BYOFF[6:0] CHI Byte Offset. This bit is only applicable in the CHI mode. 0000000
7RSVDReserved. Must write to 0. 0
6:4 FRM_OFF[2:0] CHI Bit Offset. 000
3:2 RSVD Reserved. Must write to 0. 0
1 FRM_HALFOFF Half Bit Offset. When set to 1, an offset of 1/2 bit is added to
offsets. 0
0 FRM_QUAROFF Quarter Bit Offset. When set to 1, an offset of 1/4 bit is
added to the offsets. CHI CMS mode only. 0
Address*Bit Name Function Reset
Default
0x8LPE1 15 FRM_CEPTMAIS Transmit CEPT TS16 AIS.
0 = no action.
1 = time slot 16 is forced to all ones.
0
14 FRM_CEPTAAIS Transmit CEPT TS16 AIS on Loss of MFA.
0 = no action.
1 = time slot 16 is forced to all ones when time slot 16
multiframe alignment is lost.
0
13 FRM_MANAIS Transmit System AIS.
0 = no action.
1 = transmit system AIS to the system.
0
12 FRM_CEPTSTMP Transmit System CEPT TS16 Stomp.
0 = no action.
1 = if upper or lower nibble of time slot 16 is 0000, then it is
changed to 1111 toward the transmit system interface.
0
11:0 RSVD Reserved. Must write to 0. 0x000
Table 432. FRM_SYSLR3—FRM_SYSLR6, System Interface Link Registers 3—6 (R/W)
Address*Bit Name Function Reset
Default
0x8LPE2 15:0 RSVD Reserved. Must w rite to 0. 0x0000
0x8LPE3 15:0 RSVD Reserved. Must w rite to 0. 0x0000
0x8LPE4 15:0 RSVD Reserved. Must w rite to 0. 0x0000
0x8LPE5 15:0 RSVD Reserved. Must w rite to 0. 0x0000
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
300 Agere Systems Inc.
12 28-Channel Framer Registers (continued)
12.15 Arbiter Framer Per Link Registers
Table 433. FRM_ARLR1, Arbiter Link Register 1 (R/W)
* See Table 429 on page 298 for values of L and P.
Address*Bit Name Function Reset
Default
0x8LPF0 15 FRM_LNK_ENA Link Enable.
0 = link is disabled.
1 = link is enabled.
1
14 FRM_LNK_TRANSP Transparent Mode Selection.
Switching:
0 = the link is in a nontransparent mode. (Regenerate
framing bits and CRC bits.)
1 = the link is in transparent mode. (Flow through framing
bits and CRC bits.)
Transport:
0 = nontransparent mode (regenerate CRC bits and flow
through framing bits).
1 = transparent mode (flow through framing bits and CRC
bits).
0
13 FRM_LNK_RESTARTN Restart Link.
0 = Restart the link.
1 = Normal operational mode for the link.
0
12 FRM_LNK_REFRAME Force Reframe.
0 = normal operational mode for the link.
1 = link is forced to reframe.
0
11:10 RSVD Reserved. Must write to 0. 0
9 FRM_ICKEDGE Input Clock Edge Selection.
0 = sample data on rising edge of input clock.
1 = sample data on falling edge of input clock.
0
8:0 RSVD Reserved. Must write to 0. 000
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
301Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 434. FRM_ARLR2, Arbiter Link Register 2 (R/W)
* See Table 429 on page 298 for values of L and P.
Address*Bit Name Function Reset
Default
0x8LPF1 15 FRM_ESF_CRC_EN CRC Framing Enable.
DS1 Modes: ESF CRC framing algorithm enable:
0 = ESF CRC framing disabled.
1 = ESF CRC framing enabled. (Enables inclusion of CRC
in the frame search algorithm.)
CEPT Modes: CRC-4 multiframe:
0 = multiframe reframe disabled.
1 = multiframe reframe enabled. (Enables the inclusion of
the following criteria to the CEPT loss of multiframe
criteria. Three consecutive multiframe alignment
pattern bit errors will cause a search for a new
multiframe alignment. Basic frame alignment is not
lost.)
0
14 FRM_FAST Fast Frame Mode.
DS1 Modes:
0 = disable quick frame recovery.
1 = enable quick frame recovery as follows:
D4 and J-D4: 36 fewer frame bits are checked.
SLC-96: Eighteen fewer FT bits are checked during the
search for FT framing.
DDS: No change.
CEPT Modes:
0 = disable quick frame recovery.
1 = this bit enables the (n + 2) framing research algorithm
as defined in the note in Recom men dation G.706,
Section 4.1.2. When an FAS is found in frame n,
frame (n + 1) is checked to ensure that it is a non-F AS
frame and frame (n + 2) is checked for F AS. Failure to
meet either of these conditions results in a new
search in frame (n + 2).
0
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
302 Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 434. FRM_ARLR2, Arbiter Link Register 2 (R/W) (continued)
* See Table 429 on page 298 for values of L and P.
Address*Bit Name Function Reset
Default
0x8LPF1 13:12 FRM_OPT[1:0] Frame Options.
DS1 Mode:
00 = the frame aligner will not frame up until all mimics are
gone.
01 = time-out algorithm is enabled. A counter is started
when, for the first time, one of the 193-bit positions
contains a sequence long enough to declare frame
but is prevented from doing so by the presence of a
mimic. The provisionable counter sets a time limit for
mimics to go away. If there are still mimics, a
candidate bit position that has met the minimum
framing requirements is chosen and frame alignment
is made to that position. See FRM_TO[7:0]
(Table 317).
Others reserved.
CEPT Mode:
00 = no change.
01 = enables an extra NOTFAS frame check. This can
prevent frame alignment on PRBS patterns which
contain a pseudoframing pattern. The CEPT framing
sequence now becomes:
Find FAS (n).
Verify NOTFAS frame (n + 1).
Verify second FAS in frame (n + 2).
Verify second NOTFAS frame (n + 3).
Others reserved.
0
11 FRM_FBE_MODE DDS FBE Mode.
0 = allows two FBEs to be detected in a frame in DDS
mode: one FBE for the frame bit (FT and FS) and one
FBE for the time slot 24 frame alignment signal.
1 = only 1 FBE is detected in a frame in DDS mode.
0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
303Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 434. FRM_ARLR2, Arbiter Link Register 2 (R/W) (continued)
* See Table 429 on page 298 for values of L and P.
Address*Bit Name Function Reset
Default
0x8LPF1 10:8 FRM_LF_CRT[2:0] Loss of Frame Criteria.
DS1 Mode:
000 = 2 errored framing bits out of 4 FT and FS bits.
001 = 2 errored framing bits out of 5 FT and FS bits.
010 = 2 errored framing bits out of 6 FT and FS bits.
011 = 3 errored framing bits out of 12 FT, Fs, and channel
24 FAS bits (DDS only).
100 = 2 errored framing bits out of 4 FT bits only.
101 = 2 errored framing bits out of 5 FT bits only.
110 = 2 errored framing bits out of 6 FT bits only.
111 = 4 errored framing bits out of 12 FT, FS, and channel
24 FAS bits (DDS only).
CEPT Mode:
000 = 3 consecutive errored FAS patterns.
x01 = 3 consecutive errored FAS patterns or 3 consecu-
tive errored NOTFAS bits (bit 2).
x10 = 3 consecutive errored frames (FAS and NOTFAS).
Others are reserved.
0
7RSVDReserved. Must write to 0. 0
6FRM_AUTO_AISAuto AIS.
0 = AUTO AIS is disabled.
1 = AUTO AIS is enabled.
When AUTO AIS is enabled, the receive arbiter data is
forced to 1 when out of frame.
0
5:4 FRM_RAIL3_DEC[1:0] Third Rail Option.
00 = third input signal to the frame aligner is ignored.
01 = third input is bipolar violations (in the CMI mode,
CRVs are also included on the RBPV input, but not
passed through the frame aligner).
10 = third rail is frame sync used to indicate time-slot
alignment. The multiframe alignment is determined
by the frame sync.
11 = third rail is frame sync used to indicate framing bit
positi on. Mul tifra me ali gnm ent is searc hed for
expedi ted by the frame sy nc .
0
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
304 Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 434. FRM_ARLR2, Arbiter Link Register 2 (R/W) (continued)
* See Table 429 on page 298 for values of L and P.
Table 435. FRM_ARLR3, Arbiter Link Register 3 (R/W)
This register applies to the transmit path only.
* See Table 429 on page 298 for values of L and P.
Address*Bit Name Function Reset Default
0x8LPF1 3:0 FRM_MODE[3:0] Framing Mode.
0000 = nonalign 256 bit.
0001 = CEPT basic frame.
0010 = CEPT with CRC-4 and 100 ms timer.
0011 = CMI.
0100 = CEPT with CRC-4 and 400 ms timer.
0101 = reserved. (Future J2 - G.704.)
0110 = reserved. (Future J2 - NTT Y.)
0111 = re served.
1000 = nonalign 193 bits.
1001 = SF (FT bits only).
1010 = J-ES F.
1011 = ESF.
1100 = D4.
1101 = J-D4 (SF with Japanese Yellow Alarm).
1110 = DDS.
1111 = SLC-96.
1011
Address*Bit Name Function Reset Default
0x8LPF2 15 FRM_TP_CK_
SRC_EN Framer Transmit Path Clock Source Enable.
0 = FRM_TP_CK_SRC bit is disabled. FRM_SW_TRN
(Table 313 on page 246) bit controls clock source.
1 = FRM_TP_CK_SRC bit is enabled. FRM_SW_TRN bit
is ignored.
Transmit path clock and data is selected with bits
FRM_TP_ CK_ SRC and FR M_TP _DD_ SRC.
0
14 FRM_TP_CK_
SRC Transmit Path Clock Source.
0 = transmit clock comes from the frame aligner (transport
applications).
1 = transmit clock comes from the system interface
(switching applications).
1
13 FRM_TP_DD_
SRC Transmit Path Default Data Source.
0 = transmit data comes from the frame aligner (transport
applications).
1 = transmit data comes from the system interface
(switching applications).
1
12:1 RSVD Reserved. Must write to 0. 0000
0FRM_SYSFSMSystem Frame Sync Mask. A 1 masks the system frame
synchronization signal in the transmit framer formatter.
Note: For those applications that have jitter on the transmit
cloc k signal relative to the system clock signal,
enable this bit so that the jitter is isolated from the
transmit framer.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
305Agere Systems Inc.
12 28-Channel Framer Registers (continued)
12.16 Frame Formatter Per Link Registers
Table 436. FRM_FFLR1, Frame Formatter Link Register 1 (R/W)
* See Table 429 on page 298 for values of L and P.
Address*Bit Name Function Reset
Default
0x8LPF4 15:12 RSVD Reserved. Must write to 0. 0000
11 FRM_ESFRAMD ESF Remote Alarm Indicator Mode.
0 = data link remote alarm sequence is 1111 1111 0000 0000.
1 = data link remote alarm is all ones.
0
10:8 FRM_ZCSMD[2:0] Zero Code Suppression Modes.
000 = ZCS off.
001 = set bit 6 (numbered 0—7) of all time slots.
011 = set bit 6 of all 0-byte time slots.
101 = set bit 6 of all voice time slots.
111 = set bit 6 of all 0-byte voice time slots.
110 = set 0-byte time slots to 1001 1000.
100, 010 = reserved.
(Signaling F and G bits identify voice time slots.)
000
7RSVDReserved. Must write to 0. 0
6 FRM_OCKEDGE Output Clock Edge Selection.
0 = data clocked out on rising clock edge.
1 = data clocked out on falling clock edge.
0
5:4 RSVD Reserved. Must write to 0. 0
3 FRM_AUTOPLB Automatic Payload Loopback (ESF Framing Only).
0 = ignore received payload loopback requests.
1 = automatically start payload loopback when payload loop-
back signal is received.
0
2 FRM_AUTOLLB Automatic Line Loopback (SF a nd ESF Framing Only).
0 = ignore received line loopback requests.
1 = automatically start line loopback when line loopback signal
is rec eived.
0
1 FRM_AUTOEBIT Automatic E-Bit Insertion (CEPT Framing Only).
0 = ignore E-bit insertion requests from PM.
1 = automatically insert E bits when indicated by PM.
0
0 FRM_AUTORAI Automatic RAI Insertion.
0 = ignore RAI insertion requests from PM.
1 = automatically insert RAI when indicated by PM.
0
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
306 Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 437. FRM_FFLR2, Frame Formatter Link Register 2 (R/W)
* See Table 429 on page 298 for values of L and P.
Address*Bit Name Function Re set
Default
0x8LPF5 15:14 FRM_TXLBMD[1:0] Transmit Loopback Modes.
00 = loopbacks off.
01 = line loopback.
10 = payload line loopback pass through. (The received payload
data, the CRC bits, and the frame al ignment bits are looped
back to the line. The data link bits are inserted.)
11 = payload line loopback regenerate. (The received payload
data is looped back to the line. The CRC bits, the frame
alignment bits, and data link bits are r egenerated and
inserted.)
00
13:10 RSVD Reserved. Must write to 0. 0000
9 FRM_TXLLBOFF Transmit D4 SF Line Loopback Off Code.
0 = do not transmit the D4 SF line loopback off code.
1 = transmit the D4 SF line loopback off code. (Repeated 001
patterns with the framing bits overwriting the pattern
T1.403, Section 9.3.1.2.)
0
8 FRM_TXLLBON Transmit D4 SF Line Loopback On Code.
0 = do not transmit the D4 SF line loopback on code.
1 = transmit the D4 SF line loopback on code. (Repeated
00001 patterns with the framing bits overwriting the pat-
tern T1.403, Section 9.3.1.1.)
0
7:6 RSVD Reserved. Must write to 0. 0
5 FRM_TXIID Transmit DS1 Idle ID (Fixed Pattern Defined inT1.403,
Section D.2).
Note: For ESF, the Supermapper only transmits the framed
pattern in the outgoing DS1 to send RAI along with the idle
code. Bit 2 (FRM_TXRAI) of this register has to be set.
0 = on demand idle ID off.
1 = on demand idle ID on (send idle ID).
0
4 FRM_TXAUXP Transmit AUXP.
0 = on demand AUXP off.
1 = on demand AUXP on (send AUXP).
0
3RSVDReserved.
2 FRM_TXRAI Transmit RAI.
0 = on demand RAI off.
1 = on demand RAI on (send RAI).
0
1RSVDReserved.
0FRM_TXAISTransmit AIS.
0 = on demand AIS off.
1 = on demand AIS on (send AIS).
0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
307Agere Systems Inc.
12 28-Channel Framer Registers (continued)
12.17 Line Decoder/Enco de r Pe r Link Reg is ters
Table 438. Line Decoder Per Link Register Addressing Map
* L and R represent hexadecimal digits used for absolute addressing in Table 423 through Table 427.
Table 439. Line Decoder Per Link Registers Address Indexing
Read: for link 1, the hexadecimal digit L is 0x0 and the hexadecimal digit T is 0x3.
Table 440. Line Encoder Per Link Register Addressing Map
* L and R represent hexadecimal digits used for absolute addressing in Table 416 on page 294 through Table 420.
Table 441. Line Encoder Per Link Registers Address Indexing
Read: for link 1, the hexadecimal digit L is 0x0 and the hexidecimal digit R is 0x2.
Address Pins (ADDR15—ADDR0)
151413 12 11 10 9 8 7654 3 2 1 0
00LNK4LNK3LNK2LNK1LNK0 TXP = 1 1111 1 1 0 0
L* T*
Link L T Link L T Link L T Link L T
1 0x00x3 8 0x10x1160x20x1240x30x1
2 0x00x5 9 0x10x3170x20x3250x30x3
3 0x00x7100x10x5180x20x5260x30x5
4 0x00x9110x10x7190x20x7270x30x7
5 0x00xB120x10x9200x20x9280x30x9
6 0x0 0xD 13 0x1 0xB 21 0x2 0xB
7 0x0 0xF 14 0x1 0xD 22 0x2 0xD
15 0x1 0xF 23 0x2 0xF
Address Pins (ADDR15—ADDR0)
151413 12 11 10 9 8 7654 3 2 1 0
00LNK4LNK3LNK2LNK1LNK0 RXP = 0 1111 1 1 0 0
L* R*
Link L R Link L R Link L R Link L R
1 0x00x2 8 0x10x0160x20x0240x30x0
2 0x00x4 9 0x10x2170x20x2250x30x2
3 0x00x6100x10x4180x20x4260x30x4
4 0x00x8110x10x6190x20x6270x30x6
5 0x00xA120x10x8200x20x8280x30x8
6 0x0 0xC 13 0x1 0xA 21 0x2 0xA
7 0x0 0xE 14 0x1 0xC 22 0x2 0xC
15 0x1 0xE 23 0x2 0xE
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
308 Agere Systems Inc.
12 28-Channel Framer Registers (continued)
12.18 Line Encoder/Deco de r Pe r Link Reg is ters
Table 442. FRM_LDLR1, Line Decoder Link Register 1 (R/W)
* See Table 439 on page 307 for values of L and T.
Table 443. FRM_LDLR2, Line Encoder Link Register 2 (R/W)
* See Table 441 on page 307 for values of L and R.
Address*Bit Name Function Reset
Default
0x8LTFC 15:6 RSVD Reserved. Must write to 0. 0x000
5FRM_EXCZEROLine Format Violation Option.
0 = excessive zeros are not included in bipolar violations.
1 = excessive zeros are included in bipolar violations.
0
4 FRM_RLCLK_EDGE Receive Line Clock Edge Select.
0 = data and bipolar violations are latched in on the posi-
tive edge of the receive line interface clock (rlclk).
1 = data and bipolar violations are latched in on the neg-
ative edge of the receive line interface clock
(RLCLK0).
0
3RSVDReserved. Must write to 0. 0
2:0 FRM_LD_MODE[2:0] Line Decoder Mode.
000 = single-rail (CMI use single-rail).
001 = HDB3.
010 = B8ZS.
011 = AMI.
100 = reserved.
101 = reserved.
110 = reserved.
111 = reserved.
000
Address*Bit Name Function Reset
Default
0x8LRFD 15:5 RSVD Reserved. Must write to 0. 0x000
4 FRM_TLCLK_EDGE Transmit Line Clock Edge Select.
0 = data and frame sync are latched out on the positive
edge of the transmit line interface clock (TL_CLK).
1 = data and frame sync are latched out on the negative
edge of the transmit line interface clock (TL_CLK).
0
3RSVDReserved. Must write to 0. 0
2:0 FRM_LE_MODE[2:0] Line Encoder Mode.
000 = single-rail (CMI use single-rail).
001 = HDB3.
010 = B8ZS.
011 = AMI.
100 = reserved.
101 = reserved.
110 = reserved.
111 = reserved.
000
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
309Agere Systems Inc.
12 28-Channel Framer Registers (continued)
12.19 HDLC Per Channel Configura tion and Status Regis ters
Table 444. HDLC Per Channel Register Addressing Map
* H and P represent hexidecimal digits used for absolute addressing in Table 445 through Table 458.
Table 445. FRM_HCR1, Transmit HDLC Channel Register 1 (R/W)
* See Table 444 for mapping of H and P.
Table 446. FRM_HCR2, Transmit HDLC Channel Register 2 (R/W)
* See Table 444 for mapping of H and P.
Address Pins (ADDR15—ADDR0)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
01HDLC Channels 164 (000000111111) RXP= 0/
TXP = 1 000 Per Channel Register
HDL9 HDL8 HDL7 HDL6 HDL5 HDL4 HDL3 HDL2 HDL1 HDL0
H* P*
Address*Bit Name Function Reset
Default
0x8HP80 15:13 RSVD Reserved. Must write to 0. 000
12:8 FRM_TTIMESLOT[4:0] Transmit HDLC Time Slot.
These bits indicate (in binary) the time-slot number
assigned to this channel.
0x0
7:0 FRM_TBIT_IM[7:0] Transmit HDLC Bit Assignment.
These bits indicate which bits of a time slot are to be
assigned to this channel (1 = bit assigned).
In loopback mode, set as follows:
00000000 = slowest (~6 kbits/s at 52 MHz).
10000000 = faster (~2x above).
11000000 = faster still (~4x slowest rate).
. . . .
11111111 = fastest (~1.5 Mbits/s at 52 MHz).
Note: If running a mix of loopback and nonloopback
channels, the loopback speed should not be set
faster than 11100000.
0x00
Address*Bit Name Function Reset
Default
0x8HP81 15:14 FRM_TFRAME_SEL[1:0] Transmit HDLC Frame Select.
These bits are encoded to select odd and/or even num-
bered frames assigned to this channel.
00 = no data selected.
01 = data to even frames selected (FS, FAS).
10 = data to odd frames selected (FT, NOTFAS, ESF-DL).
11 = data to all (even and odd) frames selected.
00
13:5 RSVD Reserved. Must write to 0. 0x000
4:0 FRM_TLINK[4:0] Transmit HDLC Link Select.
These bits indicate (in binary) the link number assigned to
this channel.
00000
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
310 Agere Systems Inc.
12 28-Channel Framer Registers (continued)
* See Table 444 on page 309 for mapping of H and P.
Table 447. FRM_HCR3, Transmit HDLC Channel Register 3 (R/W)
Address*Bit Name Function Reset
Default
0x8HP82 15 FRM_THC_RESET Transmit HDLC Reset. When this bit is 1, the channel is
held in reset.
This clears status for the channel, disables the channel,
and clears the FIFO for the channel.
0
14 FRM_TENABL Transmit HDLC Enable. When this bit is 0, and written
to 1, the channel is reinitialized and enabled. When this bit
is 1, and written to 0, no further data will be transmitted
and any partial data being serialized will be lost. The
channel is disabled.
The user should reset the FIFO to prevent partial packets
from being transmitted once re-enabled. Writing the same
value as currently programmed has no effect.
0
13:11 RSVD Reserved. Must write to 0. 000
Bits 10:0, 3, 1:0 can only be written as the channel is being enabled, (i.e., bit 14 held 0 and is now being
written to 1).
0x8HP82 10:9 FRM_CFLAGS[1:0] Closing Flags. Only valid in HDLC mode. These bits
select one of four values (00 = FRM_FCNT0[4:0],
01 = FRM_FCNT1[4:0], 10 = FRM_FCNT2[4:0],
11 = FRM_F CNT3[4:0] (Table 345Table 348)). This
value indicates the number of additional closing flags
inserted after an HDLC packet (e.g., if FRM_FCNT2[4:0]
is selected and it is set to 00100, then five flags are
inserted).
00
8 FRM_PRMEN PRM Enable. When 1, this channel is enabled to send
PRM packets automatically. When 0, this feature is dis-
abled. (Bit only for channels 1—28, or else reserved.)
When enabled, PRMs will not be sent until all four sec-
onds of PRM information are valid.
0
7 FRM_TLOOP HDLC Controller Loopback. When this bit is set to 1, the
channel will operate in loopback mode. When 0, the chan-
nel operates normally.
Note: The corresponding Rx channel should be enabled
before enabling the Tx channel for loopback.
0
6 FRM_C_R PRM C/R Bit. This bit is inserted as the C/R bit when
sending a PRM packet on this channel. (Bit only for chan-
nels 0—27, or else reserved.)
0
5 FRM_HTTHRSEL Transmit Threshold Select. This bit selec ts which of the
two programmable FIFO threshold values to use for this
channel (0 selects FRM_HTTHRSH0, Table 339, 1
selects FRM_HTTHRSH1, Table 340).
0
4FRM_IFCSFCS In ser t. Only valid in HDLC mode. When 0, this bit
indicates the FCS at the end of an HDLC packet should
be inserted. A 1 indicates that the internally computed
FCS will not be inserted at the end of the packet.
0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
311Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 447. FRM_HCR3, Transmit HDLC Channel Register 3 (R/W) (continued)
* See Table 444 on page 309 for mapping of H and P.
Table 448. FRM_HCR4, Transmit HDLC Channel Register 4 (RO)
* See Table 444 on page 309 for mapping of H and P.
Table 449. FRM_HCR5, Transmit HDLC Channel Register 5 (R/W)
* See Table 444 on page 309 for mapping of H and P.
Address*Bit Name Function Reset
Default
0x8HP82 3 FRM_HTIDLE HDLC Idle Select. Only valid in HDLC mode. This bit indi-
cates the idle fill character when the Tx FIFO is empty. A 0
means fill with flags (01111110). A 1 means fill with idle
(11111111).
0
2FRM_HTMODETransmit Channel Mode Select. A 0 indicates the chan-
nel is in HDLC mode. A 1 indicates the channel is in trans-
parent mode .
0
1:0 FRM_HXPIDLE[1:0] Transparent Idle Mode Character Select. Only valid in
transparent mode. These bits indicate one of the four pos-
sible 8-bit patterns to be sent when the Tx FIFO is empty.
(00 selects TXICHAR0, Table 341, 01 selects TXICHAR1,
Table 342, etc.)
00
Address*Bit Name Function Reset
Default
0x8HP83 15:3 RSVD Reserved. Reads 0. 0x000
2 FRM_HTUND Transmit FIFO Underrun. A 1 indicates this channel has
run out of data in the middle of an HDLC packet. In trans-
parent mode, it simply means the channel has run out of
data.
0
1FRM_HTDONET ransmit Done. A 1 indicates a complete packet has been
sent on this channel. 0
0 FRM_HTTHRSH Transmit FIFO Threshold Interrupt. A 1 indicates this
channel’s FIFO level has dropped below the programmed
threshold value.
0
Address*Bit Name Function Reset
Default
0x8HP84 15:3 RSVD Reserved. Must write to 0. 0x0
2 FRM_MHTUND Transmit FIFO Underrun In terr upt Mask. A 1 ma s ks the
corresponding channel’s FRM_HTUND status from caus-
ing an interrupt.
0
1 FRM_MHTDONE Transmit Done Interrupt Mask. A 1 masks the corre-
sponding channel’s FRM_HTDONE status from causing
an interrupt.
0
0 FRM_MHTTHRSH T ransmit FIFO Threshold Interrupt M ask. A 1 masks the
corresponding channel’s FRM_HTTHRSH status from
causing an interrupt.
0
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
312 Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 450. FRM_HCR6, Transmit HDLC Channel Register 6 (WO)
* See Table 444 on page 309 for mapping of H and P.
Table 451. FRM_HCR7, Transmit HDLC Channel Register 7 (RO)
* See Table 444 on page 309 for mapping of H and P.
Table 452. FRM_HCR8, Receive HDLC Channel Register 8 (R/W)
* See Table 444 on page 309 for mapping of H and P.
Table 453. FRM_HCR9, Receive HDLC Channel Register 9 (R/W)
* See Table 444 on page 309 for mapping of H and P.
Address*Bit Name Function Reset
Default
0x8HP85 15:10 RSVD Reserved. Must write to 0. 0x00
9:8 FRM_HTFUNC[1:0] Transmit Data Function. These two bits indicate the
action to be taken by writing this register:
00 = add DATA to the Tx FIFO (non-EOP).
01 = add DATA to the Tx FIFO as EOP data (i.e., last byte of
packet).
10 = abort last incomplete data packet in FIFO. (If written after
an EOP byte, this may abort the previous packet.)
11 = reserved.
00
7:0 FRM_HTDATA[7:0] Transmit Data Register. When FRM_HTFUNC[1:0] = 00
or 01, then these bits contain a byte of data to be written to
the FIFO.
0x00
Address*Bit Name Function Reset Default
0x8HP86 15:10 RSVD Reserved. Must write to 0. 0x0
9:0 FRM_HTCOUNT[9:0] Transmit FIFO Byte Count. These bits indicate
the number of bytes available to be filled in the Tx
FIFO for the specific channel.
x80 (x200 in
large buffer
mode)
Address*Bit Name Function Reset
Default
0x8HP00 15:13 RSVD Reserved. Must write to 0. 000
12:8 FRM_RTIMESLOT[4:0] Received HDLC Time Slot. These bits indicate (in
binary) the time-slot number assigned to this channel. 00000
7:0 FRM_RBIT_IM[7:0] Received HDLC Bit Assignment. These bits indicate
which bits of a time slot are to be assigned to this channel
(1 = bit assigned).
0x00
Address*Bit Name Function Reset
Default
0x8HP01 15:14 FRM_RFRAME_
SEL[1:0] Receive HDLC Frame Select. These bits are encoded to
select odd and/or even numbered frames assigned to this
channel.
00 = no data selected. (Use for loopback mode.)
01 = data from even frames selected (Fs, FAS).
10 = data from odd frames selected (FT, NOTFAS, ESF-DL).
11 = data from all (even and odd) frames selected.
000
13:5 RSVD Reserved. Must write to 0. 0x0
4:0 FRM_RLINK[4:0] Receive HDLC Link Select. These bits indicate (in binary)
the link number assigned to this channel. 00000
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
313Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 454. FRM_HCR10, Receive HDLC Channel Register 10 (R/W)
* See Table 444 on page 309 for mapping of H and P.
Address*Bit Name Function Reset
Default
0x8HP02 15 FRM_RHC_RESET Receive HDLC Reset. When this bit is 1, the channel is
held in reset. 0
14 RSVD Reserved. Must write to 0. 0
13 FRM_RENABL Receive HDLC Enable. When this bit is 0 and written to 1,
the channel is reinitialized (i.e., HDLC searching for open-
ing flag, transparent searching for alignment character if so
programmed) and enabled. When this bit is 1 and written to
0, any current HDLC packet will be aborted and the chan-
nel disabled. Writing the same value as currently pro-
grammed has no effect.
0
12 RSVD Reserved. Must write to 0. 0
Bits 11:0 can only be written as the channel is being enabled (i.e., bit 13 held 0 and is now being
written to 1).
11 FRM_RTHRSEL Receive FIFO Threshold Select. This bit se lect s whi ch of
the two programmable FIFO threshold values to use for
this channe l. (0 selects FRM _HRTHRSH0[9:0 ]
(Table 353), 1 selects FRM_HRTHRSH1[9:0], Table 354).
0
10 FRM_RFCS Receive FCS Option. Only valid in HDLC mode. When 1,
this bit indicates the FCS at the end of an HDLC packet
should be removed. A 0 indicates it should be kept as part
of the packet.
0
9 FRM_HRMODE Receive Channel Mode Select. A 0 indicates the channel
is in HDLC mode. A 1 indicates the channel is in transpar-
ent mode.
0
8 FRM_BYTAL Byte Alignment. This bit is only used in transparent mode
(forced to 1 in HDLC mode). A 0 indicates no byte align-
ment is done by the receiver. A 1 indicates that byte align-
ment will be done by the receiver once the
FRM_MATCH[7:0] code is found.
0
7:0 FRM_MATCH[7:0] Transparent Mode Pattern Match. Only valid in transpar-
ent mode with byte alignment. These bits indicate the pat-
tern to match to begin receiving transparent data (forced to
ones in HDLC mode).
0x0
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
314 Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 455. FRM_HCR11, Receive HDLC Channel Register 11 (RO)
* See Table 444 on page 309 for mapping of H and P.
Table 456. FRM_HCR12, Receive HDLC Channel Register 12 (R/W)
* See Table 444 on page 309 for mapping of H and P.
Address*Bit Name Function Reset
Default
0x8HP03 15:4 RSVD Reserved. Reads 0. 0x00 0
3 FRM_RIDLE Receive Channel Idle. A 1 indicates this channel has been
detected as idle. 0
2FRM_OVRReceive FIFO Overflow. A 1 indicates this channel’s FIFO
has overflowed. 0
1FRM_EOPEnd of Packet. A 1 indicates an end of packet has been
detected on this channel. 0
0 FRM_HRTHRSH Receive FIFO Threshold Interrupt. A 1 indicates this
channel’s FIFO has exceeded the programmed threshold
value.
0
Address*Bit Name Function Reset
Default
0x8HP04 15:4 RSVD Reserved. Must write to 0. 0x000
3 FRM_MIDLE Receive Channel Idle Interrupt Mask. A 1 masks this
channel’s idle detection interrupt. 1
2FRM_MOVRReceive FIFO Overflow Interrupt Mask. A 1 masks this
channel’s FIFO overflow interrupt. 1
1FRM_MEOPEnd of Packet Interrupt Mask. A 1 masks this channel’s
end of packet inte r ru pt. 1
0 FRM_MHRTHRSH Receive FIFO Thres hold Interr upt Mask. A 1 masks thi s
channel’s exceeded FIFO threshold interrupt. 1
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
315Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 457. FRM_HCR13, Receive HDLC Channel Register 13 (RO)
* See Table 444 on page 309 for mapping of H and P.
Table 458. FRM_HGR14, Receive HDLC Channel Register 14 (COR)
* See Table 444 on page 309 for mapping of H and P.
Address*Bit Name Function Reset
Default
0x8HP05 15:11 RSVD Reserved. Reads 0. 00000
10 FRM_HMDA More Data Available. A 1 indicates that if the FIFO is
read again, valid data will be returned. A 0 indicates no
more data is available.
0
9FRM_HRVALIDReceive FIFO Valid Data. A 1 indicates the information
read from the FIFO is valid. A 0 indicates the FIFO was
empty and no information was available.
0
8FRM_HRTYPEReceive FIFO Data Type. A 0 indicates
FRM_HR_DATA[7:0] is data. A 1 indicates
FRM_HR_DATA[7:0] is status information.
0
7:0 FRM_HR_DATA[7:0] Receive FIFO Data. When FRM_HRTYPE = 0, these
bits contain a byte of data. When FRM_HRTYPE = 1, the
bits are defined below.
0
7FRM_HOVRFIFO Overflow. A 1 indicates the FIFO overflowed. 0
6FRM_HEOPEnd of Packet. A 1 indicates end of packet (normal
packet). 0
5 FRM_HCRCERR HDLC CRC Error. A 1 indicates a CRC error was
detected. 0
4FRM_HABRTHDLC Abort. A 1 indicates an abort was received. 0
3FRM_HIDLHDLC Idle. A 1 indicates idle (as defined by HDLC proto-
col) condition detected. 0
2:0 FRM_HBIT[2:0] Complete Byte Status. 111 indicates the last data
received was a complete byte.
These bits should be ignored if EOP is 0.
0
Address*Bit Name Function Reset
Default
0x8HP06 15:10 RSVD Reserved. Must write to 0. 0x00
9:0 FRM_HRCOUNT[9:0] Receive FIFO Byte Count. These bits indicate the
number of valid bytes contained in the Rx FIFO for the
specific channel.
0x000
TMXF28155 Supermapper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
316 Agere Systems Inc.
12 28-Channel Framer Registers (continued)
12.20 28-Channe l Framer Block Register Map
Table 459. Framer Register M ap
Note: The reset default of all reserved bits is 0. Shading denotes reserved bits.
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Superframer Global Registers—R/W
0x80000
Page 246 FRM_SFGR1 FRM_
SW_TRN FRM_LC_CNTRL[1:0] FRM_LOOP_
TIMING FRM_DS1_
CEPTN FRM_PLL_
BYPAS FRM_LG_BUF_MODE
0x80001
Page 247 FRM_SFGR2 FRM_TP_
SIG_PWDN FRM_RP_
SIG_PWDN FRM_TP_
RDL_PWDN FRM_RP_
TDL_PWDN FRM_TP_
RH_PWDN FRM_RP_
TH_PWDN FRM_TS_
PWDN FRM_RS_
PWDN FRM_TP_
PM_PWDN FRM_RP_
FF_PWDN FRM_TP_
RA_PWDN
0x80002
Page 248 FRM_SFGR3
(RO) FRM_RP_
SIG FRM_AR_IS FRM_TP_
RDL_IS FRM_TP_
TDL_IS FRM_RH_IS FRM_TH_IS FRM_TS_
IS FRM_RS_
IS FRM_TP_
PM_IS FRM_RP_
PM_IS FRM_RP_
RDL_IS FRM_RP_
TDL_IS 000 0
0x80003
Page 248 FRM_SFGR4 FRM_VERSION[2:0]
0x80004
0x80009
RSVD
Arbiter (Framer) Global Registers—R/W
0x80010
Page 248 FRM_FGR1 FM_DIS_
LHSCD
0x80011
Page 249 FRM_FGR2 FRM_TC_
EN FRM_TC[7:0]
0x80012
Page 249 FRM_FGR3 FRM_
TPSSE_IM
0x80014
Page 249 FRM_FGR4
(COR) FRM_TPSSEI[16:1]
0x80015
Page 250 FRM_FGR5
(COR) FRM_TPSSEI[28:17]
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
317Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 459. Framer Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Performance Monitor Global Registe rs—R/W
0x80P20
Page 250 FRM_PMGR1_
BFRM_
SEC_SEL FRM_GLB_
PL_CFG FRM_CT125[11:0]
0x80P30
Page 251 FRM_PMGR1
(COR) FRM_
DETECT FRM_
PTRNBER
0x80P31
Page 251 FRM_PMGR2 FRM_TPERR_CT[15:0]
0x80P32
Page 251 FRM_PMGR3 FRM_RAC[2:0] FRM_RDC[2:0] FRM_
FSFBEEN FRM_
CMFRFEN FRM_
CRCRFEN FRM_CEPTAISM[1:0] FRM_
DS1AISM FRM_
ESFRAIM FRM_
RAICLR
0x80P33
Page 252 FRM_PMGR4 FRM_SFSEST[15:0]
0x80P34
Page 252 FRM_PMGR5 FRM_DCT[15:0]
0x80P35
Page 253 FRM_PMGR6 FRM_ESFSEST[15:0]
0x80P36
Page 253 FRM_PMGR7 FRM_
DSEF FRM_DLFA FRM_DRFA FRM_
DSLIP FRM_
DLOS FRM_DAIS FRM_
DCRC FRM_DFS FRM_DFT
0x80P37
Page 253 FRM_PMGR8 FRM_CCT[15:0]
0x80P38
Page 253 FRM_PMGR9 FRM_CSEST[15:0]
0x80P39
Page 254 FRM_PMGR10 FRM_
CSA6_F FRM_
CSA6_E FRM_
CSA6_C FRM_
CSA6_8 FRM_
CSA6_1X FRM_
CSA6_X1 FRM_
CEBIT FRM_
CLMFA FRM_CLFA FRM_CRFA FRM_
CSLIP FRM_
CLOS FRM_CAIS FRM_
CCRC FRM_
CNOTFAS FRM_
CFAS
0x80P3A
Page 254 FRM_PMGR11 FRM_CRET[15:0]
0x80P3B
Page 255 FRM_PMGR12 FRM_
CRAI_
AIS
FRM_
CRAI_
OOF
FRM_
CRAI_
LOS
FRM_
CRAI_
SA6EQC
FRM_
CRAI_
SA6EQ8
FRM_
CRAI_
CRCTX
FRM_
CRAI_
LTS0MFA
FRM_
CRAI_
LTS16MFA
FRM_CRAI_
8MSEX SPLIT_
400MS_
100MS_EN
FRM_
DSRAI_
LOS
FRM_
DSRAI_
OOF
FRM_
DSRAI_AIS
0x80P3C
Page 256 FRM_PMGR13 FRM_
CFBE_
MODE
FRM_
CEBIT_
LTS0MFA
FRM_
CEBIT_
ESMF
FRM_
CEBIT_
CRCTX
0x80P3D
Page 256 FRM_PMGR14 FRM_
PTRN_EN FRM_
PTRN_INV FRM_
PTRN_
FRMT
FRM_PTRN_LNK[4:0] FRM_PTRN_SEL[3:0]
0x80P3E
Page 257 FRM_PMGR15 FRM_LN_IS[16:1]
0x80P3F
Page 257 FRM_PMGR16 FRM_LN_IS[28:17]
TMXF28155 Supermapper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
318 Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 459. Framer Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
HDLC Global Configuration and Status Registers—R/W
Transmit HDLC Global Registers
0x80140
Page 257 FRM_HGR1 FRM_HTTHRSH0[9:0]
0x80141
Page 257 FRM_HGR2 FRM_HTTHRSH1[9:0]
0x80142
Page 258 FRM_HGR3 FRM_TXICHAR0[7:0]
0x80143
Page 258 FRM_HGR4 FRM_TXICHAR1[7:0]
0x80144
Page 258 FRM_HGR5 FRM_TXICHAR2[7:0]
0x80145
Page 258 FRM_HGR6 FRM_TXICHAR3[7:0]
0x80146
Page 259 FRM_HGR7 FRM_FCNT0[4:0]
0x80147
Page 259 FRM_HGR8 FRM_FCNT1[4:0]
0x80148
Page 259 FRM_HGR9 FRM_FCNT2[4:0]
0x80149
Page 259 FRM_HGR10 FRM_FCNT3[4:0]
0x8014A
Page 259 FRM_HGR11 FRM_TH_IS[15:0]
0x8014B
Page 260 FRM_HGR12 FRM_TH_IS[31:16]
0x8014C
Page 260 FRM_HGR13 FRM_TH_IS[47:32]
0x8014D
Page 260 FRM_HGR14 FRM_TH_IS[63:48]
Receive HDLC Global Registers
0x80040
Page 260 FRM_HGR15 FRM_HRTHRSH0[9:0]
0x80041
Page 260 FRM_HGR16 FRM_HRTHRSH1[9:0]
0x80042
Page 260 FRM_HGR17 FRM_RH_IS[15:0]
0x80043
Page 261 FRM_HGR18 FRM_RH_IS[31:16]
0x80044
Page 261 FRM_HGR19 FRM_RH_IS[47:32]
0x80045
Page 261 FRM_HGR20 FRM_RH_IS[63:48]
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
319Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 459. Framer Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 B it 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
System Interface Global Registers—R/W
Receive System Interface Global Registers
0x80050
Page 261 FRM_SYSGR1 FRM_SYSMOD[3:0] FRM_ASM FRM_CMS FRM_
CHIDTS FRM_
STUFFL/FRM_
LNKSTART
FRM_
AISLFA FRM_
AISCRCT FRM_
DNOTFAS FRM_
TFSCKE FRM_
FSPOL
0x80051
Page 263 FRM_SYSGR2 FRM_HWYENA FRM_RSTDONE
(Read Only)
0x80052
Page 263 FRM_SYSGR3 FRM_STUFF[7:0] FRM_IDLE[7:0]
0x80053
Page 264 FRM_SYSGR4 FRM_
STSSLB FRM_
STSLLB FRM_TSLBA[4:0] FRM_TLSBL[4:0]
0x80054
Page 264 FRM_SYSGR5 FRM_TS_
DPAR FRM_TS_
SPAR
0x80055
Page 264 FRM_SYSGR6
0x80056
Page 265 FRM_SYSGR7 FRM_TPSB_FS_IS
0x80057
Page 265 FRMSYSGR8 FRM_PSB_FS_IM
Transmit System Interface Global Registers
0x80150
Page 265 FRM_SYSGR9 FRM_RS_
DPAR FRM_RS_
SPAR FRM_
RFSCKE
0x80151
Page 266 FRM_SYSGR10
0x80152
Page 266 FRM_SYSGR11
0x80153
Page 266 FRM_SYSGR12
0x80154
Page 266 FRM_SYSGR13
0x80155
Page 266 FRM_SYSGR14
0x80156
Page 266 FRM_SYSGR15 FRM_
DPAR_IS FRM_
SPAR_IS FRM_PSB_FS_IS
0x80157
Page 266 FRM_SYSGR16 FRM_
DPAR_IM FRM_
SPAR_IM FRM_PSB_FS_IM
TMXF28155 Supermapper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
320 Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 459. Framer Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Signaling Global Registers—R/W
0x80060
Page 267 FRM_SGR1 FRM_R_
TSAISHG FRM_R_LINKCNT[4:0] FRM_TEST_BIT[2:0] FRM_R_
AFZFBE
0x80061
Page 267 FRM_SGR2 FRM_R_
SCOSEN FRM_R_SCOSDTH[9:0]
0x80062
Page 268 FRM_SGR3 FRM_R_SCOSTTH[15:0]
0x80063
Page 268 FRM_SGR4
(Read Only) FRM_R_COSFIFOS[1:0] FRM_R_COSFIFOL[4:0] FRM_R_COSFIFOTS[4:0] FRM_R_COSFIFOSIG[3:0]
0x80064
Page 268 FRM_SGR5
(Read Only) FRM_R_
COSDTHS
0x80065
Page 269 FRM_SGR6
(COR) 00 00000000000FRM_R_
COSDTHI FRM_R_
COSTTHI FRM_R_
COSOFI
0x80066
Page 269 FRM_SGR7 0 0 0 0 0 0 0 0 0 0 0 0 0 FRM_R_
COSDTHM FRM_R_
COSTTHM FRM_R_
COSOFM
0x80160
Page 270 FRM_SGR8 FRM_T_LINKCNT[4:0] FRM_T_
SUBZERO FRM_T_
FAS_NOTFAS FRM_T_
AFZFBE
Frame Formatter Global Register—R/W
0x80170
Page 271 FRM_FFGR1 FRM_
TXSOOF FRM_
PTRN_EN FRM_
PTRN_INV FRM_PTRN_
FRMT FRM_PTRN_LNK[4:0] FRM_PTRN_SEL[3:0]
Facility Data Link Global Registers—R/W
0x80090
Page 272 FRM_FDLGR1
0x801A1
Page 272 FRM_FDLGR2
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
321Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 459. Framer Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Receive Signaling Link Registers—R/W
See Table 382 for values of L and R in the register address field.
Reference Table 384 on Page 273 for the following addresses.
0x8LR00 FRM_RSLR0 FRM_RPSR0[6:0]
0x8LR01 FRM_RSLR1 FRM_RPSR1[6:0]
0x8LR02 FRM_RSLR2 FRM_RPSR2[6:0]
0x8LR03 FRM_RSLR3 FRM_RPSR3[6:0]
0x8LR04 FRM_RSLR4 FRM_RPSR4[6:0]
0x8LR05 FRM_RSLR5 FRM_RPSR5[6:0]
0x8LR06 FRM_RSLR6 FRM_RPSR6[6:0]
0x8LR07 FRM_RSLR7 FRM_RPSR7[6:0]
0x8LR08 FRM_RSLR8 FRM_RPSR8[6:0]
0x8LR09 FRM_RSLR9 FRM_RPSR9[6:0]
0x8LR0A FRM_RSLR10 FRM_RPSR10[6:0]
0x8LR0B FRM_RSLR11 FRM_RPSR11[6:0]
0x8LR0C FRM_RSLR12 FRM_RPSR12[6:0]
0x8LR0D FRM_RSLR13 FRM_RPSR13[6:0]
0x8LR0E FRM_RSLR14 FRM_RPSR14[6:0]
0x8LR0F FRM_RSLR15 FRM_RPSR15[6:0]
0x8LR10 FRM_RSLR16 FRM_RPSR16[6:0]
0x8LR11 FRM_RSLR17 FRM_RPSR17[6:0]
0x8LR12 FRM_RSLR18 FRM_RPSR18[6:0]
0x8LR13 FRM_RSLR19 FRM_RPSR19[6:0]
0x8LR14 FRM_RSLR20 FRM_RPSR20[6:0]
0x8LR15 FRM_RSLR21 FRM_RPSR21[6:0]
0x8LR16 FRM_RSLR22 FRM_RPSR22[6:0]
0x8LR17 FRM_RSLR23 FRM_RPSR23[6:0]
0x8LR18 FRM_RSLR24 FRM_RPSR24[6:0]
0x8LR19 FRM_RSLR25 FRM_RPSR25[6:0]
0x8LR1A FRM_RSLR26 FRM_RPSR26[6:0]
0x8LR1B FRM_RSLR27 FRM_RPSR27[6:0]
0x8LR1C FRM_RSLR28 FRM_RPSR28[6:0]
0x8LR1D FRM_RSLR29 FRM_RPSR29[6:0]
0x8LR1E FRM_RSLR30 FRM_RPSR30[6:0]
0x8LR1F FRM_RSLR31 FRM_RPSR31[6:0]
0x8LR20
Page 274 FRM_RSLR32 FRM_R_HGAIS[3:0] FRM_R_HGA[3:0] FRM_R_HGRDI[3:0] FRM_R_
TS16A FRM_R_
TS16AIS
0x8LR21
Page 274 FRM_RSLR33 FRM_R_
FZCON FRM_R_
SIGI FRM_R_
RXSTOMP FRM_R_
SIGDEB FRM_R_
HGEN FRM_R_
MSIGFZ FRM_R_
FGSRC FRM_R_SI
GSRC[1:0]
TMXF28155 Supermapper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
322 Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 459. Framer Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Transmit Signaling Link Registers—R/W
See Table 387 for values of L and T in the register address field.
Reference Table 389 on Page 276 for the following addresses.
0x8LT00 FRM_TSLR0 FRM_TPSR0[6:0]
0x8LT01 FRM_TSLR1 FRM_TPSR1[6:0]
0x8LT02 FRM_TSLR2 FRM_TPSR2[6:0]
0x8LT03 FRM_TSLR3 FRM_TPSR3[6:0]
0x8LT04 FRM_TSLR4 FRM_TPSR4[6:0]
0x8LT05 FRM_TSLR5 FRM_TPSR5[6:0]
0x8LT06 FRM_TSLR6 FRM_TPSR6[6:0]
0x8LT07 FRM_TSLR7 FRM_TPSR7[6:0]
0x8LT08 FRM_TSLR8 FRM_TPSR8[6:0]
0x8LT09 FRM_TSLR9 FRM_TPSR9[6:0]
0x8LT0A FRM_TSLR10 FRM_TPSR10[6:0]
0x8LT0B FRM_TSLR11 FRM_TPSR11[6:0]
0x8LT0C FRM_TSLR12 FRM_TPSR12[6:0]
0x8LT0D FRM_TSLR13 FRM_TPSR13[6:0]
0x8LT0E FRM_TSLR14 FRM_TPSR14[6:0]
0x8LT0F FRM_TSLR15 FRM_TPSR15[6:0]
0x8LT10 FRM_TSLR16 FRM_TPSR16[6:0]
0x8LT11 FRM_TSLR17 FRM_TPSR17[6:0]
0x8LT12 FRM_TSLR18 FRM_TPSR18[6:0]
0x8LT13 FRM_TSLR19 FRM_TPSR19[6:0]
0x8LT14 FRM_TSLR20 FRM_TPSR20[6:0]
0x8LT15 FRM_TSLR21 FRM_TPSR21[6:0]
0x8LT16 FRM_TSLR22 FRM_TPSR22[6:0]
0x8LT17 FRM_TSLR23 FRM_TPSR23[6:0]
0x8LT18 FRM_TSLR24 FRM_TPSR24[6:0]
0x8LT19 FRM_TSLR25 FRM_TPSR25[6:0]
0x8LT1A FRM_TSLR26 FRM_TPSR26[6:0]
0x8LT1B FRM_TSLR27 FRM_TPSR27[6:0]
0x8LT1C FRM_TSLR28 FRM_TPSR28[6:0]
0x8LT1D FRM_TSLR29 FRM_TPSR29[6:0]
0x8LT1E FRM_TSLR30 FRM_TPSR30[6:0]
0x8LT1F FRM_TSLR31 FRM_TPSR31[6:0]
0x8LT21
Page 277 FRM_TSLR32 FRM_T_
ATS16RFA FRM_T_
ASPLB FRM_T_MSP FRM_T_
ZCSM FRM_T_
VTSIGE FRM_T_
SIGI FRM_T_
TXSTOMP FRM_T_
HGEN FRM_T_
MSIGFZ FRM_T_
FGSRC FRM_T_SIGSRC[1:0]
0x8LT20
Page 277 FRM_TSLR33 FRM_T_
TS16A FRM_T_
TS16AIS
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
323Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 459. Framer Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Performance Monitor Link Registers—COR
See Table 393 for values of L and P in the register address field.
0x8LP80
Page 279 FRM_PMLR1
(R/W) FRM_PM_IM4[15:0]
0x8LP81
Page 279 FRM_PMLR2
(R/W) FRM_PM_IM5[15:0]
0x8LP82
Page 280 FRM_PMLR3
(R/W) FRM_MHGALIGN[3:0] FRM_
MSEFS FRM_MFE FRM_PM_IM6[4:0]
0x8LP83
Page 280 FRM_PMLR4 FRM_SLIPO FRM_SLIPU FRM_OOF FRM_LSFA FRM_OAIS FRM_AIS FRM_ORAI FRM_RAI FRM_
SA600X1E FRM_
SA6001XE FRM_
CRCTX FRM_
LTS0MFA FRM_
TS0MFABE FRM_SES FRM_BES FRM_ES
0x8LP84
Page 287 FRM_PMLR5 FRM_LFV FRM_FBE FRM_CRCE FRM_ECRCE FRM_
REBIT FRM_
CREBIT FRM_LTFA FRM_NFA FRM_
SA7LID FRM_
LLBON FRM_
LLBOFF FRM_
AUXP FRM_LOS FRM_
BOMR
0x8LP85
Page 289 FRM_PMLR6 FRM_
FDL_RAI FRM_FDL_
PLBON FRM_FDL_
PLBOFF FRM_FDL_
LLBON FRM_FDL_
LLBOFF
0x8LP86
Page 289 FRM_PMLR7 FRM_BPV[15:0]
0x8LP87
Page 290 FRM_PMLR8 FRM_FBEC[15:0]
0x8LP88
Page 290 FRM_PMLR9 FRM_CEC[15:0]
0x8LP89
Page 290 FRM_PMLR10 FRM_REC[15:0]
0x8LP8A
Page 290 FRM_PMLR11 FRM_CETE[15:0]
0x8LP8B
Page 290 FRM_PMLR12 FRM_CENT[15:0]
0x8LP8C
Page 291 FRM_PMLR13 FRM_FE_OP FRM_FE_N FRM_FE_M FRM_FE_L FRM_FE_K FRM_FE_I FRM_FE_H FRM_FE_G FRM_FE_F FRM_FE_E FRM_FE_D FRM_FE_C FRM_FE_B FRM_FE_A
0x8LP8D
Page 292 FRM_PMLR14 FRM_FE_Y FRM_FE_X FRM_FE_W FRM_FE_V FRM_FE_U FRM_FE_T FRM_FE_S FRM_FE_R FRM_FE_Q
0x8LP8E
Page 292 FRM_PMLR15 FRM_ESC[15:0]
0x8LP8F
Page 292 FRM_PMLR16 FRM_BESC[15:0]
0x8LP90
Page 292 FRM_PMLR17 FRM_SESC[15:0]
0x8LP91
Page 292 FRM_PMLR18 FRM_RBOM[7:0]
0x8LP92
Page 293 FRM_PMLR19 FRM_HGALIGN[3:0] FRM_SEFS
0x8LP93
Page 293 FRM_PMLR20 FRM_G6 FRM_G5 FRM_G4 FRM_G3 FRM_G2 FRM_G1 FRM_SE FRM_FE FRM_LV FRM_SL FRM_LB FRM_N1 FRM_N0
TMXF28155 Supermapper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
324 Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 459. Framer Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Receive FDL Link Registers—R/W
See Table 415 for values of L and R in the register address field. For the following five addresses, please reference Table 416 on Page 294.
0x8LRC0 FM_RFDLLR1 FRM_RXS0[15:0]
0x8LRC1 FM_RFDLLR2 FRM_RXS1[15:0]
0x8LRC2 FM_RFDLLR3 FRM_RXS2[15:0]
0x8LRC3 FM_RFDLLR4 FRM_RXS3[15:0]
0x8LRC4 FM_RFDLLR5 FRM_RXS4[15:0]
0x8LRC5
Page 294 FM_RFDLLR6 FRM_RXCRCSM
0x8LRC6
Page 294 FM_RFDLLR7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FRM_RXSA
0x8LRC7
Page 295 FM_RFDLLR8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FRM_RXSR_IS
0x8LRC8
Page 295 FM_RFDLLR9 FRM_MRXSR
Transmit FDL Link Register s—R/W
See Table 422 for values of L and T in the register address field.
For the following five addresses, please reference Table 423 on Page 295.
0x8LTD0 FM_TFDLLR1 FRM_TXS0[15:0]
0x8LTD1 FM_TFDLLR2 FRM_TXS1[15:0]
0x8LTD2 FM_TFDLLR3 FRM_TXS2[15:0]
0x8LTD3 FM_TFDLLR4 FRM_TXS3[15:0]
0x8LTD4 FM_TFDLLR5 FRM_TXS4[15:0]
0x8LTD5
Page 296 FM_TFDLLR6 FRM_
SA8SC FRM_
SA7SC FRM_
SA6SC FRM_
SA5SC FRM_
SA4SC FRM_
TXCRCSM FRM_
ASRC FRM_DS1I
0x8LTD6
Page 297 FM_TFDLLR7 FRM_BOME FRM_TBOM[5:0]
0x8LTD7
Page 297 FM_TFDLLR8
(RO/COW) FRM_
BOMC_IS FRM_TXSE_IS
0x8LTD8
Page 297 FM_TFDLLR9 FRM_
BOMC_IM FRM_TXSE_IM
Syste m Interface Link Registers—R/W
See Table 429 for values of L and P in the register address field.
0x8LPE0
Page 299 FRM_SYSLR1 FRM_BYOFF[6:0] FRM_OFF[2:0] FRM_
HALFOFF FRM_QUAROFF
0x8LPE1
Page 299 FRM_SYSLR2 FRM_
CEPTMAIS FRM_
CEPTAAIS FRM_
MANAIS FRM_
CEPTSTMP
For the following four addresses, please reference Table 432 on Page 299.
0x8LPE2 FRM_SYSLR3
0x8LPE3 FRM_SYSLR4
0x8LPE4 FRM_SYSLR5
0x8LPE5 FRM_SYSLR6
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
325Agere Systems Inc.
12 28-Channel Framer Registers (continued)
Table 459. Framer Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Arbi ter L ink Re gisters—R/W; See Table 429 for values of L and T in the register address field.
0x8LPF0
page 300 FRM_ARLR1 FRM_
LNK_ENA FRM_LNK_
TRANSP FRM_LNK_
RESTARTN FRM_LNK_
REFRAME FRM_
ICKEDGE
0x8LPF1
page 301 FRM_ARLR2 FRM_ESF_
CRC_EN FRM_FAST FRM_OPT[1:0] FRM_FBE_
MODE FRM_LF_CRT[2:0] FRM_
AUTO_AIS FRM_RAIL3_DEC[1:0] FRM_MODE[3:0]
0x8LPF2
page 304 FRM_ARLR3 FRM_TP_CK
_SRC_EN FRM_TP_
CK_SRC FRM_TP_
DD_SRC FRM_
SYSFSM
Frame Formatter Link Re gisters—R/W; See Table 429 for values of L and T in the register address field.
0x8LPF4
page 305 FRM_FFLR1 FRM_
ESFRAMD FRM_ZCSMD[2:0] FRM_
OCKEDGE FRM_
AUTOPLB FRM_
AUTOLLB FRM_
AUTOEBIT FRM_
AUTORAI
0x8LPF5
page 306 FRM_FFLR2 FRM_TXLBMD[1:0] FRM_
TXLLBOFF FRM_
TXLLBON FRM_TXIID FRM_
TXAUXP FRM_
TXRAI FRM_
TXAIS
Line Decoder/Encoder Link Registers—R/W; see Table 439 and Table 441 for values of L and T in the register address field.
0x8LTFC
page 308 FRM_LDLR1 FRM_
EXCZERO FRM_RLCLK_
EDGE FRM_LD_MODE[2:0]
0x8LRFD
page 308 FRM_LDLR2 FRM_TLCLK_
EDGE FRM_LE_MODE[2:0]
HDLC Channel Registers—R/W; See Table 444 for mapping of H and P in the register address field.
Transmit HDLC Channel Registers
0x8HP80
page 309 FRM_HCR1 FRM_TTIMESLOT[4:0] FRM_TBIT_IM[7:0]
0x8HP81
page 309 FRM_HCR2 FRM_TFRAME_SEL[1:0] FRM_TLINK[4:0]
0x8HP82
page 310 FRM_HCR3 FRM_THC_
RESET FRM_
TENABL FRM_CFLAGS[1:0] FRM_
PRMEN FRM_
TLOOP FRM_C_R FRM_
HTTHRSEL FRM_IFCS FRM_
HTIDLE FRM_
HTMODE FRM_HXPIDLE[1:0]
0x8HP83
page 311 FRM_HCR4 (RO) 0 0000 00000000FRM_
HTUND FRM_
HTDONE FRM_
HTTHRSH
0x8HP84
page 311 FRM_HCR5 FRM_
MHTUND FRM_
MHTDONE FRM_
MHTTHRSH
0x8HP85
page 309 FRM_HCR6(WO) FRM_HTFUNC[1:0] FRM_HTDATA[7:0]
0x8HP86
page 312 FRM_HCR7 FRM_HTCOUNT[9:0]
Receive HDLC Channel Registers
0x8HP00
page 312 FRM_HCR8 FRM_RTIMESLOT[4:0] FRM_RBIT_IM[7:0]
0x8HP01
page 312 FRM_HCR9 FRM_RFRAME_SEL[1:0] FRM_RLINK[4:0]
0x8HP02
page 313 FRM_HCR10 FRM_RHC_
RESET FRM_
RENABL FRM_
RTHRSEL FRM_RFCS FRM_
HRMODE FRM_
BYTAL FRM_MATCH[7:0]
0x8HP03
page 314 FRM_HCR11 (RO) 0 0000 0000000FRM_
RIDLE FRM_
OVR FRM_EOP FRM_
HRTHRSH
0x8HP04
page 314 FRM_HCR12 FRM_
MIDLE FRM_
MOVR FRM_
MEOP FRM_
MHRTHRSH
0x8HP05
page 315 FRM_HCR13 (RO) 0 0 0 0 0 FRM_HMDA FRM_
HRVALID FRM_
HRTYPE FRM_HR_DATA[7:0]
FRM_HOVR FRM_HEOP FRM_
HCRCERR FRM_HABRT FRM_HIDL FRM_HBIT[2:0]
0x8HP06
page 315 FRM_HCR14
(COR) FRM_HRCOUNT[9:0]
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
326 Agere Systems Inc.
13 Cross Connect (XC) Registers
Table of Con t ents
Contents Page
13 Cross Connect (XC) Registers ........................................................................................................................326
13.1 Cross Connect Register Descriptions ......................................................................................................327
13.2 Cross Connect Register Map...................................................................................................................333
Tables Page
Table 460. XC_ID_R, XC Global Register 1 (RO).................................................................................................327
Table 461. XC_CHI_MODE1_R, XC System Interface Global Register 1 (R/W) ..................................................327
Table 462. XC_CHI_MODE2_R, XC System Interface Global Register 2 (R/W) ..................................................327
Table 463. XC_PIND_SRC[1—15], XC1 External I/O TXDATA and TXCLK Source Configuration (R/W)............328
Table 464. XC_FRP_SRC[1—14], XC1 Framer Receive Path Data Source Configuration (R/W)........................328
Table 465. XC_M13_SRC[1—14], XC1 M13 Data Source Configuration (R/W)...................................................328
Table 466. XC_VT_SRC[1—14], XC1 VT Mapper Source Configuration (R/W)...................................................329
Table 467. XC_DJA_SRC[1—14], XC1 Digital Jitter Attenuator Source Configuration (R/W) ..............................329
Table 468. XC_FTP_SRC[1—14], XC1 Framer Transmit Path Data Source Configuration (R/W) .......................329
Table 469. XC_FRS_SRC[1—14], XC1 Framer Receive System Interface Source Configuration (R/W).............329
Table 470. XC_TPM_SRC[1—4], XC1 Test-Pattern Monitor Source Configuration (R/W)....................................330
Table 471. XC2_M12_SRC[1—7], XC2 M12 DS2 Clock and Data Source Configuration (R/W)..........................330
Table 472. XC2_M23_SRC[1—7], XC2 M23 DS2 Data Source Configuration (R/W)...........................................330
Table 473. XC2_TPM_SRC, XC2 Test-Pattern Monitor Source Configuration (R/W)...........................................330
Table 474. XC_MISC, XC Global Register 2 (R/W)...............................................................................................330
Table 475. XC3_TPM_SRC, XC3 Test-Pattern Monitor Source Configuration (R/W)...........................................331
Table 476. XC3_MDS3_SRC, XC3 DS3 Source Configuration (R/W) ..................................................................332
Table 477. XC_PINS_SRC[1—15], XC1 External I/O TXSYNC Source Configuration (R/W)...............................332
Table 478. XC_ALCO_SRC[1—15], XC1 External I/O RXCLK Clock Out Source Configuration (R/W)...............332
Table 479. Register Address Map .........................................................................................................................333
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
327Agere Systems Inc.
13 Cross Connect (XC) Registers (continued)
13.1 Cross Connect Regis ter Descriptions
Table 460. XC_ID_R, XC Global Register 1 (RO)
Table 461. XC_CHI_MODE1_R, XC System Interface Global Register 1 (R/W)
Table 462. XC_CHI_MODE2_R, XC System Interface Global Register 2 (R/W)
Address Bit Name Function Reset
Default
0x50000 15:11 RSVD Reserved. 0x0005
10:8 XC_VERSION[2:0] Version. These bits identify the version number of the XC.
7:0 XC_ID[7:0] XC_ID. XC_ID register returns a fixed value (0x05) when
read.
Address Bit Name Function Reset
Default
0x5000E 15:3 RSVD Reserved. 0x0000
2RSVDReserved. Must write to 0.
1 XC_SYNC_FOR_DATA Sync for Data. This bit should set to 1 if the transmit sys-
tem interface is in use (CHI, PSB, and NSMI). Setting this
bit allows the external I/O pins LINETXSYNC[29—1] to
output transmit system data. Otherwise, set to 0.
0 XC_SI_CHI PSB/CHI. This bit should be set to 1 if the transmit system
interface is in PSB mode; otherwise, 0 in CHI mode.
Address Bit Name Function Reset
Default
0x5000F 15:14 RSVD Reserved. 0x0000
13:0 XC_CHI_MODE[1—7][1:0] CHI Mode. The 28 transmit system links are broken
down into seven groups of four. Each group is con-
trolled by 2 bits, XC_CHI_MODE[1—7][1:0].
XC_CHI_MODE[1—7][1:0] controls the group of links
4i – 3, 4i – 2, 4i – 1, and 4i, where i = 1 to 7. The defini-
tion of CHI_MODE[1—7][1:0] is as follows:
00 = all four links within the group are normal outputs at
2 Mbits/s or 4 Mbits/s.
01 = links 4i – 3 and 4i – 2 are normal outputs; links
4i – 1 and 4i are combined into a single output on 4i;
and output 4i – 1 is used as T1/E1 line output.
10 = links 4i – 1 and 4i are combined into a single output
on 4i; links 4i – 3 and 4i – 2 are combined into a
single output on 4i – 2; and outputs 4i – 1 and
4i – 3 are used as T1/E1 line outputs.
11 = all four links are combined into a single output on 4i;
the other three outputs are used as T1/E1 line
outputs.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
328 Agere Systems Inc.
13 Cross Connect (XC) Registers (continued)
DS1/E1 crosspoint connectivity is determined by a set of source identifiers (SOURCE_IDs), one for each channel
leaving the crosspoint switch. A DS1/E1 SOURCE_ID is therefore defined as follows:
The SOURCE_BLOCK is defined as:
The CHANNEL_ID typically ranges from 1 to 28 (29 for external). Values 0, 30, and 31 (and usually 29 as well) are
unused. The above definition is valid for XC_PDATA[1—29], XC_RP_RDATA[1—28], XC_MDS1DATA[1—29]
(Table 465 on page 328), XC_VDATA[1—28] (Table 466 on page 329), XC_SYNC[1—29] (Table 477 on
page 332), and XC_ALCO[1—29] (Table 478 on page 332).
Table 464. XC_FRP_SRC[1—14], XC1 Framer Receive Path Data Source Configuration (R/W)
Table 465. XC_M13_SRC[1—14], XC1 M13 Data Source Configuration (R/W)
Bit 76543210
SOURCE_ID SOURCE_BLOCK[2:0] CHANNEL_ID[4:0]
Index Block Identifier Index Block Identifier
000 TPG (Test-Pattern Generator)/Special 100 VTMPR (VT Mapper)
001 PIN (External I/O) 101 DJA (Jitter Attenuator)
010 FRM TP (Superframer) 110 FRM RP (Framer Line Interface)
011 M13 (M13 MUX) 111 FRM TS (Framer System Interface)
Table 463. XC_PIND_SRC[1—15], XC1 External I/O TXDATA and TXCLK Source Configuration (R/W)
Address Bit Name Function Reset
Default
0x50010—
0x5001D 15:8 XC_PDATA[2, 4, . . . 28][7:0]
(SOURCE_ID) Source Identifier for External I/O Pin LINETX-
DATA and LINETXCLK Connection. External I/O
DS1/E1 data and clock (even channels).
0x1E
(invalid)
0x5001E 15:8 RSVD Reserved.0x00
0x50010—
0x5001E 7:0 XC_PDATA[1, 3, . . . 29][7:0]
(SOURCE_ID) Source Identifier for External I/O Pin LINETX-
DATA and LINETXCLK Connection. External I/O
DS1/E1 data and clock (odd channels).
Note: External I/O has 29 channels.
0x1E
(invalid)
Address Bit Name Function Reset
Default
0x50020—
0x5002D 15:8 XC_RP_RDATA
[2, 4, . . . 28][7:0]
(SOURCE_ID)
Source Identifier for Framer Receive Path Connection.
Framer receive path DS1/E1 input signals RP_RDATA,
RP_RCLK, RP_RFS, RP_AIS, and RP_RAI (even channels).
0xFF
(invalid)
7:0 XC_RP_RDATA
[1, 3, . . . 27][7:0]
(SOURCE_ID)
Source Identifier for Framer Receive Path Connection.
Framer receive path DS1/E1 input signals RP_RDATA,
RP_RCLK, RP_RFS, RP_AIS, and RP_RAI (odd channels).
0xFF
(invalid)
Address Bit Name Function Reset
Default
0x50030—
0x5003D 15:8 XC_MDS1DATA
[2, 4, . . . 28][7:0]
(SOURCE_ID)
Source Identifier for M13 MUX Connection. M13 DS1/E1
data and clock inputs (even channels). Also for stuff request
inputs if operating in LOW_CLOCK_OUT mode.
0xFF
(invalid)
7:0 XC_MDS1DATA
[1, 3, . . . 27][7:0]
(SOURCE_ID)
Source Identifier for M13 MUX Connection. M13 DS1/E1
data and clock inputs (odd channels). Also for stuff request
inputs if operating in LOW_CLOCK_OUT mode.
0xFF
(invalid)
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
329Agere Systems Inc.
13 Cross Connect (XC) Registers (continued)
Table 466. XC_VT_SRC[1—14], XC1 VT Mapper Source Configuration (R/W)
Table 467. XC_DJA_SRC[1—14], XC1 Digital Jitter Attenuator Source Configuration (R/W)
Table 468. XC_FTP_SRC[1—14], XC1 Framer Transmit Path Data Source Configuration (R/W)
Table 469. XC_FRS_SRC[1—14], XC1 Framer Receive System Interface Source Configuration (R/W)
Address Bit Name Function Reset
Default
0x50040
0x5004D
15:8 XC_VDATA
[2, 4, . . . 28][7:0]
(SOURCE_ID)
Source Identifier for VT Mapper Connection. VT mapper
DS1/E1 data, clock, sync, and RAI inputs (even channels). 0xFF
(invalid)
7:0 XC_VDATA
[1, 3, . . . 27][7:0]
(SOURCE_ID)
Source Identifier for VT Mapper Connection. VT mapper
DS1/E1 data, clock, sync, and RAI inputs (odd channels). 0xFF
(invalid)
Address Bit Name Function Reset
Default
0x50050
0x5005D
15:8 XC_JDATA
[2, 4, . . . 28][7:0]
(SOURCE_ID)
Source Identifier for Jitter Attenuator Connection. DJA
DS1/E1 data, clock, pointer adjustment, and AUTO AIS inputs
(even ch ann els ).
0xFF
(invalid)
7:0 XC_JDATA
[1, 3, . . . 27][7:0]
(SOURCE_ID)
Source Identifier for Jitter Attenuator Connection. DJA
DS1/E1 data, clock, pointer adjustment, and AUTO AIS inputs
(odd channels).
0xFF
(invalid)
Address Bit Name Function Reset
Default
0x50060
0x5006D
15:8 XC_TP_RDATA
[2, 4, . . . 28][7:0]
(SOURCE_ID)
Source Identifier for Framer Transmit Path Connection.
Framer transmit path DS1/E1 input signals (even channels). 0xFF
(invalid)
7:0 XC_TP_RDATA
[1, 3, . . . 27][7:0]
(SOURCE_ID)
Source Identifier for Framer Transmit Path Connection.
Framer transmit path DS1/E1 input signals (odd channels). 0xFF
(invalid)
Address Bit Name Function Reset
Default
0x50070
0x5007D
15:8 XC_RS_D
[2, 4, . . . 28][7:0]
(SOURCE_ID)
Source Identifier for Framer Receive System Interface
Connection. Framer receive system (RS) data input (even
channels).
0x00
(invalid)
7:0 XC_RS_D
[1, 3, . . . 27][7:0]
(SOURCE_ID)
Source Identifier for Framer Receive System Interface
Connection. Framer receive system (RS) data input (odd
channels).
0x00
(invalid)
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
330 Agere Systems Inc.
13 Cross Connect (XC) Registers (continued)
Table 470. XC_TPM_SRC[1—4], XC1 Test-Pattern Monitor Source Configuration (R/W)
The DS2 crosspoint’s connectivity is determined by a smaller set of source2 identifiers (SOURCE2_IDs), one for
each channel leaving the DS2 crosspoint switch XC2. A DS2 SOURCE2_ID is therefore defined as follows:
The SOURCE2_BLOCK is defined as follows:
The CHANNEL2_ID typically ranges from 1 to 7. For test data (SOURCE2_BLOCK = 0), value 4 represents the
DS2 test pattern. For DS2 signals routed from external pins to the input of M23 MUX or TPM, the CHANNEL2_ID
can range from 1 to 29.
Table 471. XC2_M12_SRC[1—7], XC2 M12 DS2 Clock and Data Source Configuration (R/W)
Table 472. XC2_M23_SRC[1—7], XC2 M23 DS2 Data Source Configuration (R/W)
Address Bit Name Function Reset
Default
0x50080 15:8 RSVD Reserved. 0x00
7:0 XC_TPM_DS1_DATA[7:0]
(SOURCE_ID) Source Identifier for TPM DS1 Data Pattern. Source
identifier for test-pattern monitor (TPM) DS1 test channel
inputs.
0xFF
(invalid)
0x50081 15:8 RSVD Reserved. 0x00
7:0 XC_TPM_DS1_IDLE[7:0]
(SOURCE_ID) Source Identifier for TPM DS1 Idle Pattern. Source
identifier for TPM DS1 idle channel inputs. 0xFF
(invalid)
0x50082 15:8 RSVD Reserved. 0x00
7:0 XC_TPM_E1_DATA[7:0]
(SOURCE_ID) Source Identifier for TPM E1 Data Pattern. Source
identifier for TPM E1 test channel inputs. 0xFF
(invalid)
0x50083 15:0 RSVD Reserved. 0x0000
Bit 7 6 5 43210
SOURCE2_ID 0 SOURCE2_BLOCK[1:0] CHANNEL2_ID[4:0]
Index Block2 Identifier
00 TPG (DS 2 Tes t- Pa tter n Ge nerator)
01 M13:M12 MUX
10 M13:M23 DeMUX
11 External I/O
Address Bit Name Function Reset
Default
0x50090
0x50096
15:8 XC2_DS2M12CLK
[1—7][7:0]
(SOURCE_ID)
Source Identifier for High-Speed DS2 Clock Input to M12
Multiplexers Connection. DS2 clock input to M12 multiplex-
ers, see Section 20.5.1 M12 Multiplexers, on page 467.
0x0040
(invalid)
7:0 XC2_M21[1—7][7:0]
(SOURCE_ID) S ource Id ent ifier for Hig h-S pee d DS2 Data and Clock
Connection. DS2 data and clock inputs to M12 demultiplex-
ers, see Section 22.7.3 on page 567.
Address Bit Name Function Reset
Default
0x500A0
0x500A6
15:8 RSVD Reserved. 0x0040
(invalid)
7:0 XC2_MDS2M23DATA
[1—7][7:0]
(SOURCE2_ID)
Source Identifier for M23 Input DS2 Signals Connec-
tion. When SOURCE2_BLOCK = 11, CHANNEL2_ID
can range from 1 to 29.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
331Agere Systems Inc.
13 Cross Connect (XC) Registers (continued)
Table 473. XC2_TPM_SRC, XC2 Test-Pattern Monitor Source Configuration (R/W)
Table 474. XC_MISC, XC Global Register 2 (R/W)
Table 475. XC3_TPM_SRC, XC3 Test-Pattern Monitor Source Configuration (R/W)
Address Bit Name Function Reset
Default
0x500A8 15:8 RSVD Reserved. 0x0000
(invalid)
7:0 XC2_TSOURCE_ID[7:0] XC2 TPM So urce Connectio n. Sour ce2 i dent ifie r for T PM
DS2 test data. When external I/O is selected
(SOURCE2_BLOCK = 1 1), CHANNEL2_ID can range from
1 to 29.
Address Bit Name Function Reset
Default
0x500C0 15:6 RSVD Reserved. 0
5XC_DS2ALCOENM23 DS2 Clock Out. Setting this bit to 1 enables DS2 low
clock-out mode from M23. Setting this bit to 0 selects the nor-
mal DS2 clock and data in put mod e.
0
4XC_DS1ALCOENM12/M 13 DS1 Clo ck Out . Setting this bit to 1 enables DS1
low clock-out mode from M12/M13. Setting this bit to 0 selects
the normal DS1 clock and data input mode.
0
3 XC_RPOAC_EN Receive POAC Enable. Setting this bit to 1 enables RPOAC
channel output and 0 to disable. 0
2XC_TPOAC_ENTransmit POAC Enable. Setting this bit to 1 enables TPOAC
channel output and 0 to disable. 0
1 XC_RSTS1_TUG3 Receive POAC Channel Select. Selector for TMUX (logic 1)/
SPEMPR (logic 0) receive POAC channel. 0
0 XC_TSTS1_TUG3 Transmit POAC Channel Select. Selector for TMUX
(logic 1)/SPEMPR (logic 0) transmit POAC channel. 0
Address Bit Name Function Reset
Default
0x500D3 15:8 RSVD Reserved.0x0000
7RSVDReserved. Must write to 0.
6:5 XC3_TSOURCE_ID[1:0] TPG/TPM DS3 Sourc e. Source identifier for TPM DS3 test
data.
00 = TPM receives DS3 from external pins.
01 = TPG and TPM are connected to M13 through NSMI
interface.
10 = TPM receives DS3 from SPE.
11 = Reserved.
4:0 RSVD Reserved. Must write to 0.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
332 Agere Systems Inc.
13 Cross Connect (XC) Registers (continued)
Table 476. XC3_MDS3_SRC, XC3 DS3 Source Configuration (R/W)
Table 477. XC_PINS_SRC[1—15], XC1 External I/O TXSYNC Source Configuration (R/W)
Table 478. XC_ALCO_SRC[1—15], XC1 External I/O RXCLK Clock Out Source Configuration (R/W)
Address Bit Name Function Reset
Default
0x500D4 15:2 RSVD Reserved. 0x0000
1:0 XC3_SOURCE_ID[1:0] DS3 Level Connections. This register defines the connec-
tivity at DS3 level among external I/O, M13, and SPE.
00 = M13 inputs/outputs DS3 through external pins.
01 = M13 and SPE pass data to each other.
10 = SPE inputs/outputs DS3 through external pins and M13
is used as a monitor for the transmit DS3.
11 = SPE inputs/outputs DS3 through external pins and M13
is used as a monitor for the receive DS3.
Address Bit Name Function Reset
Default
0x500E0
0x500ED
15:8 XC_SYNC
[2, 4, . . . 28][7:0]
(SOURCE_ID)
Source Identifier for External I/O Pin LINETXSYNC. (Even
channels.) In the LIU mode, these registers must be pro-
grammed the same as XC_PIND_SRC[1—15] (Table 463 on
page 328) registers; in the system interface mode (CHI, PSB,
and framer only), these registers will be programmed sepa-
rately to ensure the system data output properly.
0xFF
(invalid)
0x500EE 15:8 RSVD Reserved. 0x00
0x500E0
0x500EE
7:0 XC_SYNC
[1, 3, . . . 29][7:0]
(SOURCE_ID)
Source Identifier for External I/O Pin LINETXSYNC. (Odd
channels.)
Note: External I/O has 29 channels.
0xFF
(invalid)
Address Bit Name Function Reset
Default
0x500F0
0x500FD
15:8 XC_ALCO
[2, 4, . . . 28][7:0]
(SOURCE_ID)
Source Identifier for External I/O Pin LINERXCLK when
Operating in Low Clock Output Mode. (Either DS1/E1 or
DS2.) For DS1/E1 channels, the programmed value of these
registers should be consistent with those of registers
XC_PIND_SRC[1—15] (Table 463 on page 328) to ensure
that clock and data for the same channel will always be routed
together; while for DS2 channels, the value of these registers
should match thos e of regis ters XC2 _M2 3_S RC[1 7]
(Table 472 on page 330) (even channels).
0xFF
(invalid)
0x500FE 15:8 RSVD Reserved. 0x00
0x500F0
0x500FE
7:0 XC_ALCO
[1, 3, . . . 29][7:0]
(SOURCE_ID)
Source Identifier for External I/O Pin LINERXCLK when
Operating in Low Clock Output Mode. (Either DS1/E1 or
DS2.) For DS1/E1 channels, the programmed value of these
registers should be consistent with those of registers
XC_PIND_SRC[1—15] (Table 463 on page 328) to ensure
that clock and data for the same channel will always be routed
together; while for DS2 channels, the value of these registers
should match thos e of regist ers XC2 _M2 3_S RC[1 —7] (o dd
channels).
Note: External I/O has 29 channels.
0xFF
(invalid)
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
333Agere Systems Inc.
13 Cross Connect (XC) Registers (continued)
13.2 Cross Connect Regis ter Map
Table 479. Register Address Map
Note: The reset default of all reserved bits is 0. Shading denotes reserved bits.
Addr Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Cross Connect Glob a l—RO
0x50000
Page 327 XC_ID_R XC_VERSION[2:0] XC_ID[7:0]
0x50001
0x5000D
RSVD
Framer System Interface Control—R/W
0x5000E
Page 327 XC_CHI_MODE1_R 0 XC_SYNC_FOR_DATA XC_SI_CHI
0x5000F
Page 327 XC_CHI_MODE2_R XC_CHI_MODE7[1:0] XC_CHI_MODE6[1:0] XC_CHI_MODE5[1:0] XC_CHI_MODE4[1:0] XC_CHI_MODE3[1:0] XC_CHI_MODE2[1:0] XC_CHI_MODE1[1:0]
DS1/ E1 Cr os spoint Config ur a tio n— R /W
External I/O (LINETXDATA[1—29] and LINETXCLK[1—29] Pins) Data and Clock Output Selects
0x50010
0x5001D
Page 328
XC_PIND_SRC[1—14] XC_PDATA[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28][7:0] Source_ID XC_PDATA[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27][7:0] Source_ID
0x5001E
Page 328 XC_PIND_SRC15 XC_PDA TA29[7:0] Source_ID
0x5001F RSVD
DS1/ E1 Cr os spoint Config ur a tio n— R /W
Framer Receive Path Selects
0x50020
0x5002D
Page 328
XC_FRP_SRC[1—14] XC_RP_RDATA[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28][7:0] Source_ID XC_RP_RDATA[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27][7:0] Source_ID
0x5002E RSVD
0x5002F RSVD
DS1/ E1 Cr os spoint Config ur a tio n— R /W
M13 MUX Selects
0x50030
0x5003D
Page 328
XC_M13_SRC[1—14] XC_MDS1DATA[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28][7:0] Source_ID XC_MDS1DATA[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27][7:0] Source_ID
0x5003E RSVD
0x5003F RSVD
DS1/ E1 Cr os spoint Config ur a tio n— R /W
VT Mapper Selects
0x50040
0x5004D
Page 329
XC_VT_SRC[1—14] XC_VDATA[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28][7:0] Source_ID XC_VDATA[1, 3, 5, 7, 9, 11, 13, 15, 1 7, 19, 21, 23, 25, 27][7:0] Source_ID
0x5004E RSVD
0x5004F RSVD
TMXF28155 Supermapper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
334 Agere Systems Inc.
13 Cross Connect (XC) Registers (continued)
Table 479. Register Address Map (continued)
Addr Symbol Bit 15 Bit 14 Bit 13 Bit 12 B it 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DS1/E1 Crosspoint Configuration—R/W
Jitter Attenuation Selects
0x50050
0x5005D
Page 329
XC_DJA_SRC[1—14] XC_JDATA[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28][7:0] Source_ID XC_JDATA[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27][7:0] Source_ID
0x5005E RSVD
0x5005F RSVD
DS1/E1 Crosspoint Configuration—R/W
Framer Transmit Path Selects
0x50060
0x5006D
Page 329
XC_FTP_SRC[1—14] XC_TP_RDATA[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28][7:0] Source_ID XC_TP_RDATA[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27][7:0] Source_ID
0x5006E
0x5006F
RSVD
DS1/E1 Crosspoint Configuration—R/W
Framer RS (System Interface) Selects
0x50070
0x5007D
Page 329
XC_FRS_SRC[1—14] XC_RS_D[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28][7:0] Source_ID XC_RS_D[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27][7:0] Source_ID
0x5007E
0x5007F
RSVD
Test-Pattern Monitor (TPM) Inputs
0x50080
Page 330 XC_TPM_SRC1 XC_TPM_DS1_DATA[7:0] Source_ID
0x50081
Page 330 XC_TPM_SRC2 XC_TPM_DS1_IDLE [7:0] Source_ID
0x50082
Page 330 XC_TPM_SRC3 XC_TPM_E1_DATA[7:0] Source_ID
0x50083
Page 330 XC_TPM_SRC4
0x50084
0x5008F
RSVD
DS2 Crosspoint Configuration—R/W
M12 MUX/DeMUX Selects
0x50090
0x50096
Page 330
XC2_M12_SRC[1—7] XC2_DS2M12CLK[1—7][7:0] Source_ID XC2_M21_[1—7][7:0] Source_ID
0x50097
0x5009F
RSVD
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
335Agere Systems Inc.
13 Cross Connect (XC) Registers (continued)
Table 479. Register Address Map (continued)
Addr Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
DS2 Crosspoint Configuration—R/W
M23 MUX Selects
0x500A0
0x500A6
Page 330
XC2_M23_SRC[1—7] XC2_MDS2M23DATA[1—7][7:0] Source2_ID
0x500A7 RSVD
DS2 Crosspoint Configuration—R/W
Test-Pattern Monitor (TPM) Inputs
0x500A8
Page 331 XC2_TPM_SRC XC2_TSOURCE_ID[7:0] Data Source2_ID
0x500A9
0x500BF
RSVD
Miscellaneous
0x500C0
Page 331 XC_MISC XC_DS2 ALCOEN XC_DS1 ALCOEN XC_RPOAC_EN XC_TPOAC_EN XC_RSTS1_TUG3 XC_TSTS1_ TUG3
0x500C1
0x500D2
RSVD
DS3 Crosspoint Configuration—R/W
0x500D3
Page 331 XC3_TPM_SRC 0 XC3_TSOURCE_ID[1:0] 0 0 0 0 0
0x500D4
Page 332 XC3_MDS3_SRC XC3_SOURCE_ID[1:0]
0x500D5
0x500DF
RSVD
DS1/ E1 Cr os spoint Config ur a tio n— R /W
External I/O (LINETXSYNC Pins) Sync Selects
0x500E0
0x500ED
Page 332
XC_PINS_SRC[1—14] XC_SYNC[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28][7:0]
SOURCE ID XC_SYNC[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21 , 23, 25, 27][7:0] SOURCE_ID
0x500EE
Page 332 XC_PINS_SRC15 XC_SYNC29[7 :0] SOURCE_ID
0x500EF RSVD
DS1/ E1 Cr os spoint Config ur a tio n— R /W
Low Clock Out Selects
0x500F0
0x500FD
Page 332
XC_ALCO_SRC[1—14] XC_ALCO[2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28][7:0]
Source_ID XC_ALCO[1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27][7:0] Source_ID
0x500FE
Page 332 XC_ALCO_SRC15 XC_ALCO29 Source_ID
0x500FF RSVD
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
336 Agere Systems Inc.
14 Digital Jitter Attenuation Controller Registers
Table of Con t ents
Contents Page
14 Digital Jitter Attenuation Controller Registers ..................................................................................................336
14.1 Digital Jitter Attenuation Controller Register Descriptions........................................................................337
14.2 Digital Jitter Attenuation Controller Register Map ....................................................................................340
Tables Page
Table 480. DJA_VERSION, DJA Version and Identification (RO).........................................................................337
Table 481. DJA_EVENT1—DJA_EVENT2, Loss of Clock and Overflow/Underflow Delta (COR/COW) ..............337
Table 482. DJA_MASK1—DJA_MASK2, Loss of Clock and Overflow/Underflow Masks (R/W)...........................337
Table 483. DJA_STATE1—DJA_STATE2, Loss of Clock and VT Pointer Adjustment Indicators (R/W)...............338
Table 484. DJA_E1GAINH—DJA_E1GAINL, E1 Accumulator Gain Threshold (R/W) .........................................338
Table 485. DJA_DS1GAINH—DJA_DS1GAINL, DS1 Accumulator Gain Threshold (R/W)..................................338
Table 486. DJA_E1SCALE, E1 Scale Factor (R/W)..............................................................................................338
Table 487. DJA_DS1SCALE, DS1 Scale Factor (R/W).........................................................................................338
Table 488. DJA_E1PTRH—DJA_E1PTRL, E1 First-Order Loop Counter (R/W) .................................................339
Table 489. DJA_DS1PTRH—DJA_DS1PTRL, DS1 First-Order Loop Counter (R/W) ..........................................339
Table 490. DJA_DS1SELH—DJA_DS1SELL, DS1 E1 Mode Select (R/W) .........................................................339
Table 491. DJA_CLK_CTL1—DJA_CLK_CTL4, Reference Clock Rate and Edge Transitions (R/W) .................339
Table 492. DJA Register Map................................................................................................................................340
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
337Agere Systems Inc.
14 Digital Jitter Attenuation Controller Registers (continued)
14.1 Digital Jitter Attenuation Controller Regis ter Descriptions
This section gives a brief description of each register bit and its functionality. The abbreviations after each register
indicate if the register is read only (RO), clear-on-read/clear-on-write (COR/COW), or read/write (R/W).
Table 480. DJA_VERSION, DJA Version and Identification (RO)
Table 481. DJA_EVENT1—DJA_EVENT2, Loss of Clock and Overflow/Underflow Delta
(COR/COW)
Table 482. DJA_MASK1—DJA_MASK2, Loss of Clock and Overflow/Underflow Masks (R/W)
Address Bit Name Function Re set
Default
0x70000 15:11 RSVD Reserved. 00000
10:8 DJA_VERSION[2:0] Block Version Number. Block version register
will change each time the device is changed. 0x0
7:0 DJA_ID[7:0] Block ID Number. 0x7
Address Bit Name Function Reset
Default
0x70003 15 DJA_G_DS1_DLT G_PIN_DS1XCLK Loss of Clock Delta. 0
14 DJA_DS1_DLT PIN_DS1XCLK Loss of Clock Delta. 0
13 DJA_G_E1_DLT G_PIN_E1XCLK Loss of Clock Delta. 0
12 DJA_E1_DLT PIN_E1XCLK Loss of Clock Delta. 0
0x70003
0x70004 11:0
15:0 DJA_ESOVFL[28:17]
DJA_ESOVFL[16:1] Elastic Store Overflow/Underflow Event. 0x0
Address Bit Name Function Reset
Default
0x70006 15 DJA_G_DS1_MSK G_PIN_DS1XCLK Loss of Clock Indication
Mask. 1
14 DJA_DS1_MSK PIN_DS1XCLK Loss of Clock Indication
Mask. 1
13 DJA_G_E1_MSK G_PIN_E1XCLK Loss of Clock Indication
Mask. 1
12 DJA_E1_MSK PIN_E1XCLK Loss of Clock Indication Mask. 1
0x70006
0x70007 11:0
15:0 DJA_ESOVFL_MSK[28:17]
DJA_ESOVFL_MSK[16:1] Elastic Store Over/Underflow Indication
Mask. 0xFFFFFFF
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
338 Agere Systems Inc.
14 Digital Jitter Attenuation Controller Registers (continued)
Table 483. DJA_STATE1—DJA_STATE2, Loss of Clock and VT Pointer Adjustment Indicators (R/W)
Table 484. DJA_E1GAINHDJA_E1GAINL, E1 Accumulator Gain Threshold (R/W)
Table 485. DJA_DS1GAINHDJA_DS1GAINL, DS1 Accumulator Gain Threshold (R/W)
Table 486. DJA_E1SCALE, E1 Scale Factor (R/W)
Table 487. DJA_DS1SCALE, DS1 Scale Factor (R/W)
Address Bit Name Function Reset
Default
0x70009 15 DJA_G_DS1LOC G_PIN_DS1XCLK Loss of Clock Indication. (1 = LOC.) 0
14 DJA_DS1LOC PIN_DS1XCLK Loss of Clock Indication. (1 = LOC.) 0
13 DJA_G_E1LOC G_PIN_E1XCLK Loss of Clock Indication. (1 = LOC.) 0
12 DJA_E1LOC PIN_E1XCLK Loss of Clock Indication. (1 = LOC.) 0
11:0 RSVD Reserved.
0x7000A 15:0 DJA_PTRADJS[16:1] VT Pointer Adjustment Indicator State. When this state
is high, the associated PLL has experienced a VT pointer
adjustment within the last PTRADJCNT register specified
time interval.
0
Address Bit Name Function Reset
Default
0x7000B
0x7000C
15:11
10:0
15:0
RSVD
DJA_E1GAIN[26:16]
DJA_E1GAIN[15:0]
Reserved.
E1 Gain. Accumulator gain threshold at which a
clock adjustment takes place for E1 signals (see
Table 634 on page 580).
0x7FFFFFF
Address Bit Name Function Reset
Default
0x7000D
0x7000E
15:11
10:0
15:0
RSVD
DJA_DS1GAINTHR[26:16]
DJA_DS1GAINTHR[15:0]
Reserved.
DS1 Gain. Accumulator gain threshold at which
a clock adjustment takes place for DS1 signals
(see Table 634).
0x7FFFFFF
Address Bit Name Function Reset
Default
0x7000F 15:0 DJA_E1SCALE[15:0] E1 Scale. Scale factor that controls clock adjust-
ment rates for E1 signals (see Table 634). 0xFFFF
Address Bit Name Function Reset
Default
0x70010 15:2 DJA_DS1SCALE[15:2] DS1 Scale. Scale factor that controls clock
adjustment rates for DS1 signals (see
Table 634).
1
1 DJA_BLUECLKSWITCH DJA Blue Clock Switch Fix. If this bit is a 1,
then the fix is disabled. If this bit is a 0, then the
DJA does not respond to AIS and the clock does
not switch from the DJA generated.
0 DJA_DS1SCALE[0] DS1 Scale.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
339Agere Systems Inc.
14 Digital Jitter Attenuation Controller Registers (continued)
Table 488. DJA_E1PTRHDJA_E1PTRL, E1 First-Order Loop Counter (R/W)
Table 489. DJA_DS1PTRHDJA_DS1PTRL, DS1 First-Order Loop Counter (R/W)
Table 490. DJA_DS1SELH—DJA_DS1SELL, DS1 E1 Mode Select (R/W)
Table 491. DJA_CLK_CTL1—DJA_CLK_CTL4, Reference Clock Rate and Edge Transitions (R/W)
Address Bit Name Function Reset
Default
0x70011
0x70012
15:5
4:0
15:0
RSVD
DJA_E1PTRADJCNT[20:16]
DJA_E1PTRADJCNT[15:0]
Reserved.
E1 First-Order Loop Count. Count value that
determines the amount of time spent as a first-
order loop following a VT pointer adjustment in
E1 mode (see Table 635 on page 580).
0x177000
Address Bit Name Function Reset
Default
0x70013
0x70014
15:5
4:0
15:0
RSVD
DJA_DS1PTRADJCNT[20:16]
DJA_DS1PTRADJCNT[15:0]
Reserved.
DS1 First-Order Loop Count. Count value that
determines the amount of time spent as a first-
order loop following a VT pointer adjustment in
DS1 mode (see Table 635).
0x11AB70
Address Bit Name Function Reset
Default
0x70015
0x70016
15:12
11:0
15:0
RSVD
DJA_DS1SEL[28:17]
DJA_DS1SEL[16:1]
Reserved.
DS1 E1 Mode Select. Control signal that deter-
mines the operating mode of each jitter attenua-
tion block (1 = DS1, 0 = E1).
0xFFFFFFF
Address B it Name Func tion Reset
Default
0x70017 15:14 RSVD Reserved.
13:12 DJA_BLUECLKD1[1:0] Reference Clock Rate. Control signal that indi-
cates that the input XCLK runs at 32 X (11) or
16 X (01) the line rate or exactly the line rate
(00).
111
0x70017
0x70018 11:0
15:0 DJA_TXEDGE[28:17]
DJA_TXEDGE[16:1] Tr ansmit Edge Select. Control signal that deter-
mines on which edge of the clock the output
DS1/ E1 data transit ions (1 = rising edge).
0xFFFFFFF
0x70019
0x7001A
15:12
11:0
15:0
RSVD
DJA_RXEDGE[28:17]
DJA_RXEDGE[16:1]
Reserved.
Receive Edge Select. Control signal that deter-
mines on which edge of the clock the input
DS1/E1 data is retimed (1 = rising edge).
0xFFFFFFF
TMXF28155 Supermapper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
340 Agere Systems Inc.
14 Digital Jitter Attenuation Controller Registers (continued)
14.2 Digital Jitter Attenuation Controller Register Map
The register bank architecture of the microprocessor interface is shown in Table 86 on page 75.
Note: The reset default of all reserved bits is 0. Shading denotes reserved bits.
Table 492. DJA Register Map
Addr Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
ID and Interrupt Registers (RO)
0x70000
Page 337 DJA_VERSION DJA_VERSION[2:0] DJA_ID[7:0]
0x70001
0x70002 RSVD
Delta and Event Parameters (COR/COW)
0x70003
Page 337 DJA_EVENT1 DJA_G_DS1_
DLT DJA_DS1_DLT DJA_G_E1_
DLT DJA_E1_DLT DJA_ESOVFL[28:17]
0x70004
Page 337 DJA_EVENT2 DJA_ESOVFL[16:1]
0x70005 RSVD Interrupt Mask Parameters for INT Pins (R/W)
0x70006
Page 337 DJA_MASK1 DJA_G_DS1_
MSK DJA_DS1_MSK DJA_G_E1_
MSK DJA_E1_MSK DJA_ESOVFL[28:17]
0x70007
Page 337 DJA_MASK2 DJA_ESOVFL[16:1]
0x70008 RSVD State and Value Parameters (RO)
0x70009
Page 338 DJA_STATE1 DJA_G_DS1L
OC DJA_DS1LOC DJA_G_
E1LOC DJA_E1LOC
0x7000A
Page 338 DJA_STATE2 DJA_PTRADJS[16:1]
Control Parameters for PLL Bandwidth and Mode (R/W)
0x7000B
Page 338 DJA_E1GAINH DJA_E1GAIN[26:16]
0x7000C
Page 338 DJA_E1GAINL DJA_E1GAIN[15:0]
0x7000D
Page 338 DJA_DS1GAINH DJA_DS1GAINTHR[26:16]
0x7000E
Page 338 DJA_DS1GAINH DJA_DS1GAINTHR[15:0]
0x7000F
Page 338 DJA_E1SCALE DJA_E1SCALE[15:0]
0x70010
Page 338 DJA_DS1SCALE DJA_DS1SCALE[15:0] DJA_BLUECLK
SWITCH DJA_DS1SCALE[0]
0x70011
Page 339 DJA_E1PTRH DJA_E1PTRADJCNT[20:16]
0x70012
Page 339 DJA_E1PTRL DJA_E1PTRADJCNT[15:0]
0x70013
Page 339 DJA_DS1PTRH DJA_DS1PTRADJCNT[20:16]
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
14 Digital Jitter Attenuation Controller Register Map (continued)
341Agere Systems Inc.
0x70014
Page 339 DJA_DS1PTRL DJA_DS1PTRADJCNT[15:0]
0x70015
Page 339 DJA_DS1SELH DJA_DS1SEL[28:17]
0x70016
Page 339 DJA_DS1SELL DJA_DS1SEL[16:1]
0x70017
Page 339 DJA_TXEDGEH DJA_BLUECLKD1[1:0] DJA_TXEDGE[28:17]
0x70018
Page 339 DJA_TXEDGEL DJA_TXEDGE[16:1]
0x70019
Page 339 DJA_RXEDGEH DJA_RXEDGE[28:17]
0x7001A
Page 339 DJA_RXEDGEL DJA_RXEDGE[16:1]
0x7001B
0x700FF
RSVD
Table 492. DJA Register Map (continued)
Addr Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
342 Agere Systems Inc.
15 Test-P attern Genera tion/Detection Registers
Table of Con t ents
Contents Page
15 Test-Pattern Generation/Detection Registers .................................................................................................342
15.1 Test-Pattern Generation/Detection Register Descriptions .......................................................................343
15.2 Test-Pattern Generation/Detection Register Map....................................................................................356
Tables Page
Table 493. TPG_ID, Status Register (RO).............................................................................................................343
Table 494. TPG_ISRC_OOFD, Delta Register (RO).............................................................................................343
Table 495. TPG_ISRC_OOSD, Delta Register (RO).............................................................................................343
Table 496. TPG_ISRC_BERE, Event Register (RO).............................................................................................344
Table 497. TPG_ISRC_FERE, Event Register (RO).............................................................................................344
Table 498. TPG_ISRC_BPVE, Event Register (RO).............................................................................................344
Table 499. TPG_ISRC_AISD, Delta Register (RO)...............................................................................................345
Table 500. TPG_ISRC_CRCE, Event Register (RO) ............................................................................................345
Table 501. TPG_IMSK_OOFD, Register (R/W).....................................................................................................345
Table 502. TPG_IMSK_OOSD, Register (R/W) ....................................................................................................345
Table 503. TPG_IMSK_BERE, Register (R/W).....................................................................................................346
Table 504. TPG_IMSK_FERE, Register (R/W) .....................................................................................................346
Table 505. TPG_IMSK_BPV, Register (R/W)........................................................................................................346
Table 506. TPG_IMSK_AISD, Register (R/W).......................................................................................................347
Table 507. TPG_IMSK_CRCE, Register (R/W).....................................................................................................347
Table 508. TPG_VAL_OOF, Register (RO) ...........................................................................................................347
Table 509. TPG_VAL_OOS, Register (RO)...........................................................................................................348
Table 510. TPG_VAL_AIS, Register (RO).............................................................................................................348
Table 511. TPG_VAL_FER, Register (RO)............................................................................................................348
Table 512. TPG_VAL_CRCE, Register (RO).........................................................................................................349
Table 513. TPG_BER_INSRT, Register (R/W)......................................................................................................349
Table 514. TPG_FER_INSRT, Register (R/W) ......................................................................................................349
Table 515. TPG_CRCE_INSRT, Register (R/W) ...................................................................................................349
Table 516. TPG_ESFDL_TX, Register (R/W)........................................................................................................350
Table 517. TPG_E1SA_TX12, Register (R/W)......................................................................................................350
Table 518. TPG_E1SA_TX34, Register (R/W)......................................................................................................350
Table 519. TPG_CONFIG0, Register (R/W)..........................................................................................................351
Table 520. TPG_CONFIG2, Register (R/W)..........................................................................................................352
Table 521. TPG_CONFIG4, Register (R/W)..........................................................................................................353
Table 522. TPG_CONFIG5, Register (R/W)..........................................................................................................354
Table 523. TPG_USER, Register (R/W)................................................................................................................354
Table 524. TPM_USER, Register (R/W)................................................................................................................354
Table 525. TPG_BERCNT0, Register (RO)...........................................................................................................354
Table 526. TPG_BERCNT2, Register (RO)...........................................................................................................355
Table 527. TPG_BERCNT4, Register (RO)...........................................................................................................355
Table 528. TPG_BERCNT5, Register (RO)...........................................................................................................355
Table 529. TPM_ESFDL_RX, Register (RO).........................................................................................................355
Table 530. TPM_E1SA_RX12, Register (RO).......................................................................................................355
Table 531. TPM_E1SA_RX34, Register (RO).......................................................................................................355
Table 532. Test-Pattern Generation/Detection Register Map................................................................................356
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
343Agere Systems Inc.
15 Test-Pattern Generation/Detection Registers (continued)
15.1 Test-Pattern Generation/Detection Register Descriptions
The following tables describe the functions of all bits in the microprocessor register map. For each address, the
register bits are indicated as either read/write (R/W) or read only (RO), and the value of the bits on reset is given.
Table 493. TPG_ID, Status Register (RO)
Table 494. TPG_ISRC_OOFD, Delta Register (RO)
Table 495. TPG_ISRC_OOSD, Delta Register (RO)
Address Bit Name Function Reset
Default
0x60000 15 TPG_READY This bit signifies that TPG reset/initialization is complete. 1
14:11 RSVD Reserved. 0x0
10:8 TPG_VERSION[2:0] These bits identify the version number of the TPG. 0x0
7:0 TPG_ID[7:0] TPG_ID returns a fixed value (0x06) when read. 0x06
Address Bit Name Function Reset
Default
0x60004 15:3 RSVD Reserved. 0x0000
2 TPM_OOF2D This bit is set when the TPM monitor E1 test signal out of
frame detector changes state (transitions). 0
1RSVDReserved. 0
0 TPM_OOF0D This bit is set when the TPM monitor DS1 test signal out of
frame detector changes state (transitions). 0
Address Bit Name Function Reset
Default
0x60005 15:6 RSVD Reserved. 0x000
5 TPM_OOS5D This bit is set when the TPM monitor DS3 test signal out-of-
sync detector changes state (transitions). 0
4 TPM_OOS4D This bit is set when the TPM monitor DS3 test signal out-of-
sync detector changes state (transitions). 0
3RSVDReserved. 0
2 TPM_OOS2D This bit is set when the TPM monitor E1 test signal out of sync
detector changes state (transitions). 0
1RSVDReserved. 0
0 TPM_OOS0D This bit is set when the TPM monitor DS1 test signal out of
sync detector changes state (transitions). 0
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
344 Agere Systems Inc.
15 Test-Pattern Generation/Detection Registers (continued)
Table 496. TPG_ISRC_BERE, Event Register (RO)
Table 497. TPG_ISRC_FERE, Event Register (RO)
Table 498. TPG_ISRC_BPVE, Event Register (RO)
Address Bit Name Function Reset
Default
0x60006 15:6 RSVD Reserved. 0x000
5 TPM_BERE5 This bit is set when the TPM monitor determines that the incom-
ing DS3 test signal has a single bit error. 0
4 TPM_BERE4 This bit is set when the TPM monitor determines that the incom-
ing DS2 test signal has a single bit error. 0
3RSVDReserved. 0
2 TPM_BERE2 This bit is set when the TPM monitor determines that the incom-
ing E1 test signal has a single bit error. 0
1RSVDReserved. 0
0 TPM_BERE0 This bit is set when the TPM monitor determines that the incom-
ing DS1 test signal has a single bit error. 0
Address Bit Name Function Reset
Default
0x60007 15:3 RSVD Reserved. 0x000
2 TPM_FERE2 This bit is set when the TPM monitor determines that the incom-
ing E1 test signal has a framing error. 0
1RSVDReserved. 0
0 TPM_FERE0 This bit is set when the TPM monitor determines that the incom-
ing DS1 test signal has a framing error. 0
Address Bit Name Function Reset
Default
0x60008 15:3 RSVD Reserved. 0x0000
2 TPM_BPVE2 This bit is set when the TPM monitor determines that the incom-
ing E1 test signal has a bipolar violation error. 0
1RSVDReserved. 0
0 TPM_BPVE0 This bit is set when the TPM monitor determines that the incom-
ing DS1 test signal has a bipolar violation error. 0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
345Agere Systems Inc.
15 Test-Pattern Generation/Detection Registers (continued)
Table 499. TPG_ISRC_AISD, Delta Register (RO)
Table 500. TPG_ISRC_CRCE, Event Register (RO)
Tab le 501. TPG_IM SK_ OOF D, Regist er (R/W)
Table 502. TPG_IMSK_OOSD, Register (R/W)
Address Bit Name Function Reset
Default
0x60009 15:6 RSVD Reserved. 0x000
5 TPM_AIS5D This bit is set when the TPM monitor DS3 test signal AIS detector
changes state (transitions). 0
4 TPM_AIS4D This bit is set when the TPM monitor DS2 test signal AIS detector
changes state (transitions). 0
3RSVDReserved. 0
2 TPM_AIS2D This bit is set when the TPM monitor E1 test signal AIS detector
changes state (transitions). 0
1RSVDReserved. 0
0 TPM_AIS0D This bit is set when the TPM monitor DS1 test signal AIS detector
changes state (transitions). 0
Address Bit Name Function Reset
Default
0x6000A 15:3 RSVD Reserved. 0x000
2 TPM_CRCE2 This bit is set when the TPM monitors E1 CRC errors. 0
1RSVDReserved. 0
0 TPM_CRCE0 This bit is set when the TPM monitors DS1 CRC errors. 0
Address Bit Name Function Reset
Default
0x60010 15:3 RSVD Reserved. 0x000
2 TPM_OOF2DM This mask bit is set to suppress an interrupt when the TPM moni-
tors E1 test signal out of frame indicator changes. 1
1RSVDReserved. 0
0 TPM_OOF0DM This mask bit is set to suppress an interrupt when the TPM moni-
tors DS1 test signal out of frame indicator changes. 1
Address Bit Name Function Reset
Default
0x60011 15:6 RSVD Reserved. 0x000
5 TPM_OOS5DM This mask bit is set to suppress an interrupt when the TPM moni-
tor DS3 test signal out of sync indicator changes. 1
4 TPM_OOS4DM This mask bit is set to suppress an interrupt when the TPM moni-
tor DS2 test signal out of sync indicator changes. 1
3RSVDReserved. 0
2 TPM_OOS2DM This mask bit is set to suppress an interrupt when the TPM moni-
tor E1 test signal out of sync indicator changes. 1
1RSVDReserved. 0
0 TPM_OOS0DM This mask bit is set to suppress an interrupt when the TPM moni-
tor DS1 test signal out of sync indicator changes. 1
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
346 Agere Systems Inc.
15 Test-Pattern Generation/Detection Registers (continued)
Table 503. TPG_IMSK_BERE, Register (R/W)
Table 504. TPG_IMSK_FERE, Register (R/W)
Table 505. TPG_IMSK_BPV, Register (R/W)
Address Bit Name Function Reset
Default
0x60012 15:6 RSVD Reserved. 0x000
5 TPM_BERE5M This mask bit is set to suppress an interrupt when the TPM moni-
tor determines that the incoming DS3 test signal has a bit error. 1
4 TPM_BERE4M This mask bit is set to suppress an interrupt when the TPM moni-
tor determines that the incoming DS2 test signal has a bit error. 1
3RSVDReserved. 0
2 TPM_BERE2M This mask bit is set to suppress an interrupt when the TPM moni-
tor determines that the incoming E1 test signal has a bit error. 1
1RSVDReserved. 0
0 TPM_BERE0M This mask bit is set to suppress an interrupt when the TPM moni-
tor determines that the incoming DS1 test signal has a bit error. 1
Address Bit Name Function Reset
Default
0x60013 15:3 RSVD Reserved. 0x0000
2 TPM_FERE2M This mask bit is set to suppress an interrupt when the TPM moni-
tor determines that the E1 test signal has a framing error. 1
1RSVDReserved. 0
0 TPM_FERE0M This mask bit is set to suppress an interrupt when the TPM moni-
tor determines that the DS1 test signal has a framing error. 1
Address Bit Name Function Reset
Default
0x60014 15:3 RSVD Reserved. 0x0000
2 TPM_BPV2M This mask bit is set to suppress an interrupt when the TPM moni-
tor determines that the E1 test signal ha s a bipolar violation error. 1
1RSVDReserved. 0
0 TPM_BPV0M This mask bit is set to suppress an interrupt when the TPM moni-
tor determines that the DS1 test signal has a bipolar violation
error.
1
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
347Agere Systems Inc.
15 Test-Pattern Generation/Detection Registers (continued)
Table 506. TPG_IMSK_AISD, Register (R/W)
Table 507. TPG_IMSK_CRCE, Register (R/W)
Table 508. TPG_VAL_OOF, Register (RO)
Address Bit Name Function Reset
Default
0x60015 15:6 RSVD Reserved. 0x000
5 TPM_AIS5DM This mask bit is set to suppress an interrupt when the TPM moni-
tor determines that the DS3 test signal AIS indicator changes. 1
4 TPM_AIS4DM This mask bit is set to suppress an interrupt when the TPM moni-
tor DS2 test signal AIS indicator changes. 1
3RSVDReserved. 0
2 TPM_AIS2DM This mask bit is set to suppress an interrupt when the TPM moni-
tor E1 test signal AIS indicator changes. 1
1RSVDReserved. 0
0 TPM_AIS0DM This mask bit is set to suppress an interrupt when the TPM moni-
tor DS1 test signal AIS indicator changes. 1
Address Bit Name Function Reset
Default
0x60016 15:3 RSVD Reserved. 0x0000
2 TPM_CRCE2M This mask bit is set to suppress an interrupt when the TPM moni-
tor detects an E1 test signal CRC-4 error. 1
1RSVDReserved. 0
0 TPM_CRCE0M This mask bit is set to suppress an interrupt when the TPM moni-
tor detects a DS1 test signal CRC-6 error. 1
Address Bit Name Function Reset
Default
0x60020 15:3 RSVD Reserved. 0x0000
2 TPM_OOF2 This status bit is set whenever the TPM E1 test monitor has
encountered an out of frame condition. 1
1RSVDReserved. 0
0 TPM_OOF0 This status bit is set whenever the TPM DS1 test monitor has
encountered an out of frame condition. 1
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
348 Agere Systems Inc.
15 Test-Pattern Generation/Detection Registers (continued)
Table 509. TPG_VAL_OOS, Register (RO)
Table 510. TPG_VAL_AIS, Register (RO)
Table 511. TPG_VAL_FER, Register (RO)
Address Bit Name Function Reset
Default
0x60021 15:6 RSVD Reserved. 0x000
5 TPM_OOS5 This status bit is set whenever the TPM DS3 test monitor has
encountered an out of sync condition. 1
4 TPM_OOS4 This status bit is set whenever the TPM DS2 test monitor has
encountered an out of sync condition. 1
3RSVDReserved. 0
2 TPM_OOS2 This status bit is set whenever the TPM E1 test monitor has
encountered an out of sync condition. 1
1RSVDReserved. 0
0 TPM_OOS0 This status bit is set whenever the TPM DS1 test monitor has
encountered an out of sync condition. 1
Address Bit Name Function Reset
Default
0x60022 15:6 RSVD Reserved. 0x000
5 TPM_AIS5 This status bit is set whenever the TPM DS3 test monitor has
encountered an AIS condition. 0
4 TPM_AIS4 This status bit is set whenever the TPM DS2 test monitor has
encountered an AIS condition. 0
3RSVDReserved. 0
2 TPM_AIS2 This status bit is set whenever the TPM E1 test monitor has
encountered an AIS condition. 0
1RSVDReserved. 0
0 TPM_AIS0 This status bit is set whenever the TPM DS1 test monitor has
encountered an AIS condition. 0
Address Bit Name Function Reset
Default
0x60023 15:3 RSVD Reserved. 0x0000
2 TPM_FER2 This status bit is set whenever the TPM E1 test monitor has
encountered an FER condition. 0
1RSVDReserved. 0
0 TPM_FER0 This status bit is set whenever the TPM DS1 test monitor has
encountered an FER condition. 0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
349Agere Systems Inc.
15 Test-Pattern Generation/Detection Registers (continued)
Table 512. TPG_VAL_CRCE, Register (RO)
Table 513. TPG_BER_INSRT, Register (R/W)
Table 514. TPG_FER_INSRT, Register (R/W)
Table 515. TPG_CRCE_INSRT, Register (R/W)
Address Bit Name Function Reset
Default
0x60024 15:3 RSVD Reserved. 0x0000
2 TPG_CRCEINS2 This bit is set when the user desires to inject a single CRC error
into the E1 test signal (via 0 to 1 transition). 0
1RSVDReserved. 0
0 TPG_CRCEINS0 This bit is set when the user desires to inject a single CRC error
Into the DS1 test signal (via 0 to 1 transition). 0
Address Bit Name Function Reset
Default
0x60028 15 TPG_BER_EN This bit, when set, allows automatic bit error insertion by the
microprocessor. 0
14:6 RSVD Reserved. 0x000
5 TPG_BERINS5 This bit is set when the user desires to inject a single bit error into
the DS3 test signal via S MPR_BER_INSRT (Table 75 on
page 68).
0
4 TPG_BERINS4 This bit is set when the user desires to inject a single bit error into
the DS2 test signal via SMPR_BER_INSRT. 0
3RSVDReserved. 0
2 TPG_BERINS2 This bit is set when the user desires to inject a single bit error into
the E1 test signal via SMPR_BER_INSRT. 0
1RSVDReserved. 0
0 TPG_BERINS0 This bit is set when the user desires to inject a single bit error into
the DS1 test signal via SMPR_BER_INSRT. 0
Address Bit Name Function Reset
Default
0x60029 15:3 RSVD Reserved. 0x0000
2 TPG_FERINS2 This bit injects a single framing error into the E1 test signal (via 0
to 1 transition). 0
1RSVDReserved. 0
0 TPG_FERINS0 This bit injects a single framing error into the DS1 test signal (via
0 to 1 transition). 0
Address Bit Name Function Reset
Default
0x6002A 15:3 RSVD Reserved. 0x0000
2 TPG_CRC4EINS2 This bit is set when the user desires to inject a single
CRC-4 error into the E1 test signal (via 0 to 1 transition). 0
1 RSVD Reserved. 0
0 TPG_CRC6EINS0 This bit is set when the user desires to inject a single
CRC-6 error into the DS1 test signal (via 0 to 1 transition). 0
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
350 Agere Systems Inc.
15 Test-Pattern Generation/Detection Registers (continued)
Table 516. TPG_ESFDL_TX, Register (R/W)
Table 517. TPG_E1SA_TX12, Register (R/W)
Table 518. TPG_E1SA_TX34, Register (R/W)
Address Bit Name Function Reset
Default
0x6002C 15:0 TPG_ESFDL[15:0] Data-Link Field to Be Sent with Each DS1 Idle Frame. 0x7E7E
Address Bit Name Function Reset
Default
0x6002E 15:13 RSVD Reserved. 0x0
12:8 TPG_E1SA2[4:0] Sa (spare bits [8:4]) to Be Sent with E1 Idle Frame. 0x00
7:5 RSVD Reserved. 0x0
4:0 TPG_E1SA1[4:0] Sa (spare bits [8:4]) to Be Sent with E1 Idle Frame. 0x00
Address Bit Name Function Reset
Default
0x6002F 15:13 RSVD Reserved. 0x0
12:8 TPG_E1SA4[4:0] Sa (spare bits [8:4]) to Be Sent with E1 Test Frame. 0x00
7:5 RSVD Reserved. 0x0
4:0 TPG_E1SA3[4:0] Sa (spare bits [8:4]) to Be Sent with E1 Test Frame. 0x00
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
351Agere Systems Inc.
15 Test-Pattern Generation/Detection Registers (continued)
Table 519. TPG _CONF IG0, Reg iste r (R/W)
Address Bit Name Function Reset
Default
0x60030 15:13 TPM_SEQ0[2:0] These bits select the test pattern to be monitored by the
TPG on the DS1 test input. 000
12 TPM_TPINV0 This bit, if set, inverts the received data for DS1 test sig-
nals. 0
11 TPG_TPINV0 This bit, if set, inverts the transmitted data for DS1 test
signals. 0
10 TPM_EDGE0 This bit, if set, selects the rising edge of XC_TCLK[0] for
use as the retiming clock edge, or else selects the falling
edge.
1
9 TPG_EDGE0 This bit, if set, selects the rising edge of TPG_CLK[0] for
use as the transmit clock edge, or else selects the falling
edge.
1
8 TPG_TPM_ESF_0 This bit selects extended superframe mode for DS1 test
signals. 0
7:6 TPG_TPM_CODE0[1:0] Do not use line coding/decoding when 00.
Use HDB3 coding/decoding when 01.
Use B8ZS coding/decoding when 10.
Use AMI coding/decoding when 11.
This code is common to the generator and monitor sides.
00
5 TPM_FRAME0 This bit is set to select a framed DS1 test pattern in the
monitor. 0
4 TPG_FINV0 If this bit is set, the frame bit in the twelfth frame of each
superframe is inverted in the DS1 test pattern. 0
3 TPG_FRAME0 This bit is set to select a framed DS1 test pattern in the
generator. 0
2:0 TPG_SEQ0[2:0] These bits select the test pattern to be generated and
transmitted by the TPG on the DS1 test output.
000 = PRBS15
001 = PRBS20
010 = QRSS
011 = PRBS23
100 = alternating 01
101 = all ones
110 = unused
111 = user defined
000
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
352 Agere Systems Inc.
15 Test-Pattern Generation/Detection Registers (continued)
Tabl e 520. TPG_CO NFIG2, Reg ister (R/W)
Address Bit Name Function Reset
Default
0x60032 15:13 TPM_SEQ2[2:0] These bits select the test pattern to be monitored by the
tpg on the E1 test input. 000
12 TPM_TPINV2 This bit, if set, inverts the received data for E1 test sig-
nals. 0
11 TPG_TPINV2 This bit, if set, inverts the transmitted data for E1 test sig-
nals. 0
10 TPM_EDGE2 This bit, if set, selects the rising edge of XC_TCLK[2] for
use as the retiming clock edge, or else selects falling
edge.
1
9 TPG_EDGE2 This bit, if set, selects the rising edge of TPG_CLK[2] for
use as the transmit clock edge, or else selects falling
edge.
1
8 TPG_TPM_CRC4_EN2 This bit, if set, enables CRC-4 insertion if E1 framing is
selected.
This bit is common to the generator and monitor sides.
0
7:6 TPG_TPM_CODE2[1:0] Do not use line coding/decoding when 00.
Use HDB3 coding/decoding when 01.
Use B8ZS coding/decoding when 10.
Use AMI coding/decoding when 11.
This code is common to the generator and monitor sides.
00
5 TPM_FRAME2 This bit is set to select a framed E1 test pattern. 0
4 TPG_FINV2 If this bit is set, the frame alignment sequence (normally
0011011) is transmitted with the last bit inverted
(0011010).
0
3 TPG_FRAME2 This bit is set to select a framed E1 test pattern. 0
2:0 TPG_SEQ2[2:0] These bits select the test pattern to be generated and
transmitted by the TPG on the E1 test output
(TPG_DATA[2]).
000 = PRBS15.
001 = PRBS20.
010 = QRSS.
011 = PRBS23.
100 = alternating 01.
101 = all ones.
110 = unused.
111 = user defined.
000
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
353Agere Systems Inc.
15 Test-Pattern Generation/Detection Registers (continued)
Table 521. TPG _CONF IG4, Reg iste r (R/W)
Address Bit Name Function Reset
Default
0x6 003 4 15:13 TPM_ SEQ 4[ 2 : 0] These bi ts sel ec t th e te st pat t er n t o be mo n it o re d by th e TPG on
the DS2 test input. 000
12 TPM_TPINV4 This bit, if set, inverts the received data for DS2 test signals. 0
11 TPG_TPINV4 This bit, if set, inverts the transmitted data for DS2 test signals. 0
10 TPM_EDGE4 This bit, if set, selects the rising edge of XC_TCLK[4] for use as
the retiming clock edge, or else selects falling edge. 1
9 TPG_EDGE4 This bit, if set, selects the rising edge of TPG_CLK[4] for use as
the transmit clock edge, or else selects falling edge. 1
8:3 RSVD Reserved.
2:0 TPG_SEQ4[2:0] These bits select the test pattern to be generated and transmit-
ted by the TPG on the DS2 output (TPG_DATA[4]).
000 = PRBS1 5.
001 = PRBS2 0.
010 = QRSS.
011 = PRBS23.
100 = alternating 01.
101 = all ones.
110 = unused.
111 = user defined.
0
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
354 Agere Systems Inc.
15 Test-Pattern Generation/Detection Registers (continued)
Tabl e 522. TPG_CO NFIG5, Reg ister (R/W)
Table 523. TPG_USER, Register (R/W)
Table 524. TPM_USER, Register (R/W)
Table 525. TPG_BERCNT0, Register (RO)
Address Bit Name Function Reset
Default
0x60035 15:13 TPM_SEQ5[2:0] These bits select the test pattern to be monitored by the TPG on
the DS3 test input. 000
12 TPM_TPINV5 This bit, if set, inverts the received data for DS3 test signals. 0
11 TPG_TPINV5 This bit, if set, inverts the transmitted data for DS3 test signals. 0
10 TPM_EDGE5 This bit, if set, selects the rising edge of XC_TCLK[5] for use as
the retiming clock edge, or else selects falling edge. 1
9 TPG_EDGE5 This bit, if set, selects the rising edge of TPG_CLK[5] for use as
the transmit clock edge, or else selects falling edge. 1
8:3 RSVD Reserved.
2:0 TPG_SEQ5[2:0] These bits select the test pattern to be generated and transmitted
by the TPG on the DS3 output (TPG_DATA[5]).
000 = PRBS1 5.
001 = PRBS2 0.
010 = QRSS.
011 = PRBS23.
100 = alternating 01.
101 = all ones.
110 = unused.
111 = user defined.
0
Address Bit Name Function Reset
Default
0x60036 15:0 TPG_USER[15:0] User-Programmed Test Pattern Generator Da ta. 0xDEAD
Address Bit Name Function Reset
Default
0x60037 15:0 TPM_USER[15:0] User-Programmed Test Pattern Monitor Data. 0xBEEF
Address Bit Name Function Reset
Default
0x60040 15:0 TPM_CNT0[15:0] This field holds the current counter value for DS1 test pattern bit
errors as detected by the TPM. 0x0000
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
355Agere Systems Inc.
15 Test-Pattern Generation/Detection Registers (continued)
Table 526. TPG_BERCNT2, Register (RO)
Table 527. TPG_BERCNT4, Register (RO)
Table 528. TPG_BERCNT5, Register (RO)
Table 529. TPM_ESFDL_RX, Register (RO)
Table 530. TPM_E1SA_RX12, Register (RO)
Table 531. TPM_E1SA_RX34, Register (RO)
Address Bit Name Function Reset
Default
0x60042 15:0 TPM_CNT2[15:0] This field holds the current counter value for E1 test pattern bit
errors as detected by the TPM. 0x0000
Address Bit Name Function Reset
Default
0x60044 15:0 TPM_CNT4[15:0] This field holds the current counter value for DS2 test pattern bit
errors as detected by the TPM. 0x0000
Address Bit Name Function Reset
Default
0x60045 15:0 TPM_CNT5[15:0] This field holds the current counter value for DS3 test pattern bit
errors as detected by the TPM. 0x0000
Address Bit Name Function Reset
Default
0x6004C 15:0 TPM_ESFDL[15:0] Data-Link Field Received from Last DS1 Idle Frame. 0x0000
Address Bit Name Function Reset
Default
0x6004E 15:13 RSVD Reserved. 0x0
12:8 TPM_E1SA2[4:0] Sa (spare bits [4:8]) Received from E1 Frame. 0x00
7:5 RSVD Reserved. 0x0
4:0 TPM_E1SA1[4:0] Sa (spare bits [4:8]) Received from E1 Frame. 0x00
Address Bit Name Function Reset
Default
0x6004F 15:13 RSVD Reserved. 0x0
12:8 TPM_E1SA4[4:0] Sa (spare bits [4:8]) Received from E1 Frame. 0x00
7:5 RSVD Reserved. 0x0
4:0 TPM_E1SA3[4:0] Sa (spare bits [4:8]) Received from E1 Frame. 0x00
TMXF28155 Supermapper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
356 Agere Systems Inc.
15 Test-Pattern Generation/Detection Registers (continued)
15.2 Test-Pattern Generation /De tection Reg ister M ap
Table 532. Test-Pattern Generation/Detection Register Map
Note: The reset default of all reserved bits is 0. Shading denotes reserved bits.
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Block-Level Status—RO
0x60000
Page 343 TPG_ID TPG_READY TPG_VERSION[2:0] TPG_ID[7:0]
0x60001
0x60003
RSVD
TPM Interrupt Sources (Deltas and Events)—RO
0x60004
Page 343 TPG_ISRC_OOFD TPM_OOF2D TPM_OOF0D
0x60005
Page 343 TPG_ISRC_OOSD TPM_OOS5D TPM_OOS4D TPM_OOS2D TPM_OOS0D
0x60006
Page 344 TPG_ISRC_BERE TPM_BERE5 TPM_BERE4 TPM_BERE2 TPM_BERE0
0x60007
Page 344 TPG_ISRC_FERE TPM_FERE2 TPM_FERE0
0x60008
Page 344 TPG_ISRC_BPVE TPM_BPEV2 TPM_BPEV0
0x60009
Page 345 TPG_ISRC_AISD TPM_AIS5D TPM_AIS4D TPM_AIS2D TPM_AIS0D
0x6000A
Page 345 TPG_ISRC_CRCE TPM_CRCE2 TPM_CRCE0
0x6000B
0x6000F
RSVD
TPM Interrupt Masks—R/W and Edge Controls
0x60010
Page 345 TPG_IMSK_OOFD TPM_OOF2DM TPM_OOF0DM
0x60011
Page 345 TPG_IMSK_OOSD TPM_OOS5DM TPM_OOS4DM TPM_OOS2DM TPM_OOS0DM
0x60012
Page 346 TPG_IMSK_BERE TPM_BERE5M TPM_BERE4M TPM_BERE2M TPM_BERE0M
0x60013
Page 346 TPG_IMSK_FERE TPM_FERE2M TPM_FERE0M
0x60014
Page 346 TPG_IMSK_BPV TPM_BPV2M TPM_BPV0M
0x60015
Page 347 TPG_IMSK_AISD TPM_AIS5DM TPM_AIS4DM TPM_AIS2DM TPM_AIS0DM
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
357Agere Systems Inc.
15 Test-Pattern Generation/Detection Registers (continued)
Table 532. Test-Pattern Generation/Detection Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0x60016
Page 347 TPG_IMSK_CRCE TPM_CRCE2M TPM_CRCE0M
0x60017
0x6001F
RSVD
TPM State and Value Parameters—RO
0x60020
Page 347 TPG_VAL_OOF TPM_OOF2 TPM_OOF0
0x60021
Page 348 TPG_VAL_OOS TPM_OOS5 TPM_OOS4 TPM_OOS2 TPM_OOS0
0x60022
Page 348 TPG_VAL_AIS TPM_AIS5 TPM_AIS4 TPM_AIS2 TPM_AIS0
0x60023
Page 348 TPG_VAL_FER TPM_FER2 TPM_FER0
0x60024
Page 349 TPG_VAL_CRCE TPG_CRCEINS2 TPG_CRCEINS0
0x60025
0x60027
RSVD
TPG Error Insert Enables—R/W
(Error Injection Triggered by SMPR_BER_INSRT (Table 75 on Page 68))
0x60028
Page 349 TPG_BER_INSRT TPG_BER_EN TPG_BERINS5 TPG_BERINS4 TPG_BERINS2 TPG_BERINS0
TPG Error Insert Triggers (rising edge)—R/W
0x60029
Page 349 TPG_FER_INSRT TPG_FERINS2 TPG_FERINS0
0x6002A
Page 349 TPG_CRCE_INSRT TPG_CRC4EINS2 TPG_CRC6EINS0
0x6002B RSVD
TPG (Transmit) ESF Data Link and E1 SA-Bits Contents—R/W
0x6002C
Page 350 TPG_ESFDL_TX TPG_ESFDL[15:0]
0x6002D RSVD
0x6002E
Page 350 TPG_E1SA_TX12 TPG_E1SA2[4:0]TPG_E1SA1[4:0]
0x6002F
Page 350 TPG_E1SA_TX34 TPG_E1SA4[4:0]TPG_E1SA3[4:0]
TMXF28155 Supermapper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
358 Agere Systems Inc.
15 Test-Pattern Generation/Detection Registers (continued)
Table 532. Test-Pattern Generation/Detection Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
TPG/TPM Configuration—R/W
(Test Channels Only)
0x60030
Page 351 TPG_CONFIG0 TPM_SEQ0[2:0] TPM_TPINV0 TPG_TPINV0 TPM_EDGE0 TPG_EDGE0 TPG_TPM_
ESF_0 TPG_TPM_CODE0[1:0] TPM_
FRAME0 TPG_
FINV0 TPG_
FRAME0 TPG_SEQ0[2:0]
0x60031 RSVD
0x60032
Page 352 TPG_CONFIG2 TPM_SEQ2[2:0] TPM_TPINV2 TPG_TPINV2 TPM_EDGE2 TPG_EDGE2 TPG_TPM_
CRC4_EN2 TPG_TPM_CODE2[1:0] TPM_
FRAME2 TPG_
FINV2 TPG_
FRAME2 TPG_SEQ2[2:0]
0x60033 RSVD
0x60034
Page 353 TPG_CONFIG4 TPM_SEQ4[2:0] TPM_TPINV4 TPG_TPINV4 TPM_EDGE4 TPG_EDGE4 TPG_SEQ4[2:0]
0x60035
Page 354 TPG_CONFIG5 TPM_SEQ5[2:0] TPM_TPINV5 TPG_TPINV5 TPM_EDGE5 TPG_EDGE5 TPG_SEQ5[2:0]
0x60036
Page 354 TPG_USER TPG_USER[15:0]
0x60037
Page 354 TPM_USER TPM_USER[15:0]
0x60038
0x6003F
RSVD
TPM Bit Error Counters—RO
(See Also PMRST (Table 3 on Page 17), SMPR_SAT_ROLLOVER and SMPR_COR_COW (Table 77 on Page 70))
0x60040
Page 354 TPG_BERCNT0 TPM_CNT0[15:0]
0x60041 RSVD
0x60042
Page 355 TPG_BERCNT2 TPM_CNT2[15:0]
0x60043 RSVD
0x60044
Page 355 TPG_BERCNT4 TPM_CNT4[15:0]
0x60045
Page 355 TPG_BERCNT5 TPM_CNT5[15:0]
0x60046
0x6004B
RSVD
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
359Agere Systems Inc.
15 Test-Pattern Generation/Detection Registers (continued)
Table 532. Test-Pattern Generation/Detection Register Map (continued)
Address Symbol Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
TPM Received DS1-ESF Data Link and E1 Sa-Bits Contents—RO
0x6004C
Page 355 TPM_ESFDL TPM_ESFDL[15:0]
0x6004D RSVD
0x6004E
Page 355 TPM_E1SA_RX12 TPM_E1SA2[4:0] TPM_E1SA1[4:0]
0x6004F
Page 355 TPM_E1SA_RX34 TPM_E1SA4[4:0] TPM_E1SA3[4:0]
0x60050
0x600FF
RSVD
360 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
Functional Descriptions
16 Microprocessor Interface Functional Description
Table of Con t ents
Contents Page
16 Microprocessor Interface Functional Description ............................................................................................360
16.1 Introduction...............................................................................................................................................361
16.2 Features...................................................................................................................................................361
16.3 Microprocessor Interface..........................................................................................................................361
16.4 MPU Block Diagram.................................................................................................................................362
16.5 Supermapper Register Address Mapping................................................................................................362
16.6 Performance Monitoring (PM) Counters Operation..................................................................................362
16.7 Supermapper Global Interrupt Status and Control...................................................................................364
16.8 Global Control ..........................................................................................................................................364
Figures Page
Figure 19. Microprocessor Interface......................................................................................................................362
Figure 20. PM Reset Counter................................................................................................................................363
Figure 21. PM Reset Signal Generation................................................................................................................363
Tables Page
Table 533. Supermapper Register Address Mapping............................................................................................362
361Agere Systems Inc.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
16 Microprocessor Interface Functional Description (continued)
16.1 Introducti on
The Supermapper microprocessor interface consists of a 20-bit address and a 16-bit data bus. In addition, this
block contains global control and status registers. These registers include the summary of interrupt status of major
functional blocks and the control to enable them or power them down.
16.2 Features
20-bit address/16-bit data bus microprocessor interface.
Synchronous (16 MHz to 60 MHz)/asynchronous microprocessor interface modes.
Microprocessor data bus parity monitoring.
Summary of interrupts from major functional blocks/maskable.
Separate device interrupt outputs for automatic protection switch and the Supermapper global interrupt.
Global configuration of network performance monitoring counters operation.
Global software resets.
Global enabling and powering down of major functional blocks.
Miscellaneous global configuration and control.
16.3 Microprocessor Interface
This device is equipped with a generic 20-bit address/16-bit data microprocessor interface that allows operation
with most commercially available microprocessors. Device input pin MPMODE (pin AD17) is used to configure this
interface into one of two possible modes (synchronous or asynchronous). In synchronous mode (MPMODE = 1),
the microprocessor interface can operate at speeds from 16 MHz up to 60 MHz. In asynchronous mode
(MPMODE = 0), a 16 MHz to 60 MHz clock is required on the MPCLK (pin AE17) pin for proper operation.
Two parity detectors are provided for the microprocessor data bus, one for the higher-order byte and one for the
lower-order byte. The parity sense is programmed as even or odd with register bit SMPR_PARITY_EVEN_ODD
(Table 77 on page 70). The composite status of both parity detectors is indicated in register bit SMPR_PARITY_IS
(Table 73 on page 66). The interrupt from this status indicator may be masked with register bit SMPR_PARITY_IM
(Table 74 on page 67 ). A bad parity event does not inhibit a data transfer. The microprocessor interface is fully
functional without parity supplied by the host processor.
The interrupt status from each of the major blocks, the automatic protection switch, and the microprocessor data
bus parity are summarized in Table 73 on page 66. Each interrupt is maskable with the complementary bit set in
the interrupt mask register; see Table 74 on page 67.
362 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
16 Microprocessor Interface Functional Description (continued)
16.4 MPU Block Diagram
5-9039(F)r.2
Figure 19. Micr op roce sso r Inte rface
16.5 Supermapper Register Ad dress Mapp ing
Each of the Supermapper’s major functional blocks is selected with an address mapping of the highest-order nib-
ble, device pins ADDR[19:16], and allocated a 16-bit address range, pins ADDR[15:0], as defined in Table 533.
Table 533. Supermapper Register Address Mapping
16.6 Performance Mo ni tori ng (PM ) Cou nters Operation
PM counters are error counters or other statistics counters. In general, two internal registers are needed to imple-
ment a PM counter: a running count register (1), maintained by the core logic, which is incremented by 1 every time
an error (or statistics event) happens. At a defined interval, 1 s for example, the content of the running counter is
transferred to a holding register (2), while the running count register is reset to 0 and starts to count anew. The
count holding register holds the data that the microprocessor actually reads.
ADDR[19:16] Block ID Block Name ADDR
0000 0 TOP [15:0]
0001 1 M13 [15:0]
0010 2 VTMPR [15:0]
0011 3 SPEMPR [15:0]
0100 4 TMUX [15:0]
0101 5 XC [15:0]
0110 6 TPG [15:0]
0111 7 DJA [15:0]
1000 8 FRAMER [15:0]
MPCLK
ADDR[19:0]
CSN
ADSN
DSN
RWN
DATA[15:0]
DTN
MPMODE
INTN
APS_INTN
INTERNAL
ADDRESS
INTERNAL
DATA
INTERNAL
CONTROL
PAR[1:0]
363Agere Systems Inc.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
16 Microprocessor Interface Functional Description (continued)
5-9040(F)r.3
Figure 20. PM Reset Count er
The PM counter control signal controls the transfer and reset of all performance monitoring registers (collecting
events/statistics). The source of this signal is configurable and can come from external pin (PMRST pin T25), an
internal timer , or be controlled by software, depending on the SMPR_PMMODE[1:0] bits (Table 77 on page 70, bits
9:8), described as follows:
SMPR_PMMODE[1:0] = 00, 10: PM counter control is sourced from external pin PMRST.
SMPR_PMMODE[1:0] = 01: PM counter control is sourced from internal 1 s timer. Writing a logic 1 to the
SMPR_PMRESET bit (Table 75 on page 68, bit 8) will reset the timer so that a transition occurs on the internal PM
counter control signal within 10 MPCLK clock cycles. The timer is based on the period of the MPCLK and the pro-
grammed value of the registers in Table 82 on page 73 and Table 83. Once initially reset and synchronized, the
PM counter reset interval is determined by the combined delay of the programmed registers. The device pin,
PMRST, is enabled as an output.
SMPR_PMMODE[1:0] = 11: The PM counter control signal is software controlled. Writing a logic 1 to the
SMPR_PMRESET bit will cause a PM reset within 10 MPCLK cycle times after writing. This pulse will be
100 cycles high and 100 cycles low at the MPCLK frequency. During this 200 cycle time, writing to PM bit will have
no effect. The device pin, PMRST, is enabled as an output.
5-9931(F)
Figure 21. PM Reset Signal Generation
PM COUNT EVENT HOLDING
MPU READABLE MPUCLK
MPU READ HOLDING
REGISTER
(ONE PER BLOCK)
COUNTER
PM COUNT EVENT CLOCK
RESET
PM COUNTER CONTROL
PM COUNTER
BUFFERED
ENABLE
RUNNING
COUNTER
MPUCLK DELAY
1/2 SECOND
COUNTERS
SMPR_PMRESET_HIGH_COUNT
SMPR_PMRESET_LOW_COUNT
SMPR_PMMODE
(REGIST E R SM P R_ GC R bits[9:8])
SMPR_PMRESET
(REGISTER SMPR_GTR bit 8)
FREE RUNNING
(SMPR_PMMODE[1:0] = 01)
SOFTWARE CONTROLLED
(SMPR_PMMODE[1:0] = 11)
EXTERNAL
(SMPR_ PM M O DE [1:0] = 00, 10)
MPUCLK
OUTPUT ENABLED
SMPR_PMMODE[1:0] = 01, 11
OUTPUT DISABLED
SMPR_PMMODE[1:0] = 00, 10
PMRST (TO BLOCKS)
PMRSTO
PMRSTI
MPU BLOCK
364 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
16 Microprocessor Interface Functional Description (continued)
16.7 Supermapper Global Interrupt Status and Control
The Supermapper provides two hardware interrupt output pins: one global (INTN pin AB24) and one for the
SONET automatic protection switching (APS_INTN pin AC25). Both interrupt pins are active-low and are open-
drain outputs to allow a wired OR with complementary devices.
Interrupt status for major functional blocks are summarized in Table 73 on page 66 and maskable in Table 74.
16.8 Global Control
Several registers in this block provide global control of Supermapper features. The register descriptions are selfex-
planatory, but some highlights follow:
Global enabling and powering down of major functional blocks is shown in Table 81 on page 73.
Software resets for major functional blocks are shown in Table 76 on page 68.
Global reset of the Supermapper is controlled with SMPR_SWRS, bit 8, in Table 75 on page 68.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
365Agere Systems Inc.
17 TMUX Functional Description
Table of Con t en ts
Contents Page
17 TMUX Functional Description ..........................................................................................................................365
17.1 TMUX Introduction ...................................................................................................................................367
17.2 TMUX Features........................................................................................................................................367
17.3 TMUX Receive Path Overview.................................................................................................................368
17.3.1 Receive Line Framer and Transport Overhead Termination ........................................................ 368
17.3.2 Receive Transport Overhead Monitor and RTOAC Drop ............................................................. 368
17.3.3 Receive MSP 1 + 1 Payload Switch ............................................................................................. 369
17.3.4 R eceiv e Pointe r Interpreter ............................. ...... ...... ....... ...... ....... ................... ....... .................... 369
17.3.5 Receive High-Order Path Overhead Termination and RPOAC Drop ........................................... 369
17.3.6 Receive Byte Interleave Demultiplexer ......................................................................................... 369
17.3.7 Receive Telecom Bus ................................................................................................................... 369
17.4 TMUX Transmit Path Overview................................................................................................................370
17.4.1 Transm it Tele co m Bus ................ .................... ...... ...... ....... ...... ....... ................... ....... .................... 370
17.5 Receive Direction (Receive Path from SONET Global/SDH)...................................................................374
17.5.1 Input Clock and Loss-of-Signal Monitoring ................................................................................... 375
17.5.2 High-Speed Loopback Select Logic .............................................................................................. 375
17.5.3 Frame Alignment—STS-3/STM-1 (AU-4) Framing or STS-1 Framing .......................................... 375
17.5.4 B1 BIP -8 Check ............. .................... ...... ....... ...... ...... ....... ................... ....... ...... ....... .................... 375
17.5.5 J0 Mon itor ... ...... ....... ...... ....... ...... .................... ...... ...... ....... ...... .................... ...... ........................... 376
17.5.6 D escram bler ...... ....... ...... ....... ...... ....... ...... ....... ...... ................... ....... ...... ....... ...... ........................... 376
17.5.7 F1 Monito r ......... ....... ...... ....... ...... ....... ...... ....... ...... ...... ....... ...... ....... ...... ....... ................................. 377
17.5.8 B2 BIP -8 Check ............. .................... ...... ....... ...... ...... ....... ................... ....... ...... ....... .................... 377
17.5.9 Automatic Protection Switch (APS) Monitor .................................................................................. 377
17.5.10 K2 Monitor, AIS-L, and RDI-L Detect .......................................................................................... 377
17.5.11 M1 REI-L Detect ......................................................................................................................... 378
17.5.12 Sync Status Monitor .................................................................................................................... 378
17.5.13 Receive Transport Overhead Access Channel (RTOAC) ........................................................... 378
17.5.14 MSP 1 + 1 Payload Switch ......................................................................................................... 380
17.5.15 Pointer Interpreter ....................................................................................................................... 380
17.5.16 Path Monitoring Functions .......................................................................................................... 383
17.6 Transmit Direction (Transmit Path to SONET/SDH Line).........................................................................392
17.6.1 Transm it Si de Telecom Bus Interface ......................... ....... ...... ....... ...... .................... ...... ....... ....... 392
17.6.2 Transmit Path and Transport Overhead Insertion Diagram .......................................................... 392
17.6.3 PO AC Insert ............. ...... ....... ...... ....... ...... ....... ...... ...... ....... ................... ....... ...... ........................... 394
17.6.4 AIS Path Generation ..................................................................................................................... 395
17.6.5 J1 Insert Control ............. ....... ...... ....... ...... ....... ...... ...... ....... ...... .................... ...... ........................... 395
17.6.6 B3 BIP-8 Calculation and Insert .................................................................................................... 395
17.6.7 C2 Signal Label Byte Insert .......................................................................................................... 395
17.6.8 Pat h RDI (RDI-P) Insert . ....... ................... ....... ...... ...... ....... ...... ....... ...... .................... .................... 396
17.6.9 REI-P: G1(7:4) Insert .................................................................................................................... 397
17.6.10 F2 Byte Insert .............................................................................................................................. 397
17.6.11 H4 Insert Control ......................................................................................................................... 397
17.6.12 F3 Byte Insert .............................................................................................................................. 397
17.6.13 K3 Byte Insert ............................................................................................................................. 397
17.6.14 N1 Byte Insert ............................................................................................................................. 397
17.6.15 MSP 1 + 1 Payload Switch ......................................................................................................... 397
17.6.16 Transmit Transport Overhead Access Channel (TTOAC) .......................................................... 397
17.6.17 Sync Status Byte (S1) Insert ....................................................................................................... 399
17.6.18 REI-L: M1 Insert .......................................................................................................................... 399
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
366 Agere Systems Inc.
17 TMUX Functional Description (continued)
Table of Conten ts (continued)
Contents Page
17.6.19 APS Value and K2 Insert Control Parameters ............................................................................ 400
17.6.20 Criteria for Insert Line RDI .......................................................................................................... 400
17.6.21 Line AIS Generation ................................................................................................................... 400
17.6.22 B2 BIP-8 Calculation and Insert .................................................................................................. 400
17.6.23 F1 Byte Insert ............................................................................................................................. 401
17.6.24 B1 Generate and Error Insert ..................................................................................................... 401
17.6.25 Scrambler ................................................................................................................................... 401
17.6.26 J0 Insert Control ......................................................................................................................... 401
17.6.27 Z0-2, Z0-3 Insert Control ............................................................................................................. 401
17.6.28 A2 Error Insert ............................................................................................................................ 401
Figures Page
Figure 22. TMUX RTOAC Timing Diagram ...........................................................................................................368
Figure 23. TMUX TTOAC and RTOAC Timing Diagram.......................................................................................371
Figure 24. High-Level TMUX Interconnect............................................................................................................371
Figure 25. Detailed Block Diagram of the TMUX...................................................................................................372
Figure 26. Receive Direction Functional Block Diagram .......................................................................................373
Figure 27. Pointer Interpretation State Diagram....................................................................................................380
Figure 28. Receive Low-Speed Bus Interface Signals for STS-3/STM-1 Signals.................................................391
Figure 29. Transmit Low-Speed Bus Interface Signals for STS-3/STM-1 Signals................................................392
Figure 30. Transmit Direction POH and TOH Insertion Diagram ..........................................................................393
Tables Page
Table 534. Receive TOAC Modes .........................................................................................................................379
Table 535. Transport Overhead Byte Access—Receive Direction ........................................................................379
Table 536. STS Signal Label Defect Conditions....................................................................................................385
Table 537. STS-1 P-REI Interpretation..................................................................................................................386
Table 538. Signal Degrade (SD) Parameters........................................................................................................388
Table 539. Signal Fail Parameters.........................................................................................................................389
Table 540. Signal Fail or Signal Degrade Recommended Programming Values ..................................................390
Table 541. Path Overhead Byte Access................................................................................................................390
Table 542. Path Overhead Byte Access—Transmit Direction ...............................................................................394
Table 543. TPOAC Control Bits.............................................................................................................................395
Table 544. RDI-P Defects for Enhanced RDI-P Mode...........................................................................................396
Table 545. Transmit TOAC Modes ........................................................................................................................398
Table 546. Transmit Transport Overhead Byte Full Access Mode ........................................................................398
Table 547. TTOAC Control Bits in Full Access Mode............................................................................................399
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
367Agere Systems Inc.
17 TMUX Functional Description (continued)
17.1 TMUX Introduction
The TMUX multiplexer block implements SDH/SONET-compliant, byte-interleave multiplexing/demultiplexing,
overhead insertion and termination, multiplex section protection (MSP) 1 + 1 switch capability, and serializer/dese-
rializer for 155.52 Mbits/s and 51.84 Mbits/s traffic.
As shown in Figure 24 on page 371, the TMUX provides three modes of operation: STS-3 mode, STM-1 mode,
and STS-1 mode. In STS-3 mode, the TMUX implements the functions necessary to multiplex and demultiplex up
to three STS-1 signals to/from a SONET STS-3 signal. In STM-1 (VC-4) mode, the TMUX provides the functionality
to multiplex and demultiplex up to three TUG-3 signals to/from an STM-1 (VC-4) signal. The device can also build/
extract up to three AU-3 signals to/from an STM-1 (VC-3) stream. In STS-1 mode, the TMUX implements the func-
tions necessary to interface a single STS-1 to/from an external serial link.
On the high-speed side or line side, the block can be configured for either a 155.52 Mbits/s (STS-3/STM-1) or
51.84 Mbits/s (STS-1) serial data interface. On the low-speed side or tributary side, the TMUX provides a byte-
wide bus that can communicate with up to three STS-1/TUG-3/AU-3 devices at a 19.44 MHz rate. If single STS-1
mode is employed, th e bus rate will be 6.48 MHz. The TMUX therefore provides complete multiplexing/demulti-
plexing to/from an STS-3/STM-1 signal for up to 84 DS1, 84 JT1, or 63 E1 signals. In STS-1 mode, the TMUX pro-
vides multiplexing/demultiplexing for up to 28 DS1, 28 JT1, or 21 E1 streams. In STS-3/STM-1 mode, the TMUX
from only one device is required. The TMUX in other connected devices may be powered down to reduce con-
sumed power. This architecture allows flexible and modular growth in equipment capacity for both 51.84 Mbits/s
and 155.52 Mbits/s links.
17.2 TMUX Features
Multiplexes three STS-1 signals into a SONET STS-3 signal.
Multiplexes three VC-3 signals into an SDH STM-1 (AU-4) signal via a TUG-3 construction.
Multiplexes three VC-3 signals into an SDH STM-1 (AU-3) signal.
Demultiplexes three STS-1 signals from a SONET STS-3 signal.
Demultiplexes three VC-3 signals from an SDH STM-1 (AU-4) signal via a TUG-3 deconstruction.
Demultiplexes three VC-3 signals from an SDH STM-1 (AU-3) signal.
Provides STS-1-only mode for receive and transmit directions.
Provides complete functionality for SDH MSP 1 + 1 protection switching.
Detects STS-3/STM-1 loss-of-signal (LOS) conditions.
Detects STS-3/STM-1 out of frame and loss-of-frame (OOF/LOF) conditions.
Provides an 8-bit parallel bus interface that can accommodate up to three STS-1/AU-3s.
Provides STS-3/STM-1/STS-1 selectable scrambler/descrambler functions and B1/B2/B3 generation/detection.
Provides STS-3/STM-1/STS-1 pointer interpretation. Detects AIS-P and LOP.
Complies with GR-253-CORE, T1.105, G.707, G.783, G.806, G.821, and ETSI 417-1-1.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
368 Agere Systems Inc.
17 TMUX Functional Description (continued)
17.3 TMUX Receive Path Overview
A detailed drawing of the TMUX receive path is provided in the bottom half of Figure 25 on page 372. For the
receive path, the TMUX implements two serial inputs for both the work and protect streams of an MSP 1 + 1 net-
work interface. Synchronous data (SDH/SONET) framers are implemented to frame on the incoming receive data
streams. One or both may be employed depending on system architecture. The incoming traffic is converted from
serial to byte-wide parallel. The transport overhead bytes of the incoming traffic are monitored and dropped via the
receive path TOAC drop interface. A multiplexer implements the receive MSP 1 + 1 payload switch and only one of
the incoming streams is passed to the downstream processing blocks. The pointer interpreter passes pointer infor-
mation to the 1:3 demultiplexer logic, and bus control circuitry provides functions necessary to manage traffic on
the telecom bus drop interface which drops traffic from up to three STS-1/TUG-3 paths on the TMUX receive path.
The path overhead bytes are monitored by the path overhead monitor and are dropped via the receive path POAC
drop inter fac e.
17.3.1 Receive Line Framer and Transport Overhead Termination
Input receive data is received at the TMUX synchronous data framer from the high-speed line interface block. The
framer performs a multitude of functions including frame alignment (STS-3/STM-1 or STS-1), B1 BIP-8 check,
J0 byte monitoring, descrambling, F1 byte monitoring, B2 BIP-8 check, automatic protection switch (APS) and K2
byte monitoring, AIS-L and RDI-L detection, M1 byte REI-L detection, S1 byte sync status monitoring, and receive
transport overhead access channel (RTOAC) drop. The states of the framer as well as all state changes are
reported, and, if not masked, cause an interrupt. The B1 and B2 byte parity check supports bit and block modes.
The TMUX implements internal performance monitor counters. These counters can count up to one second worth
of BIP errors. The counters operate in either a saturation mode, so that the maximum value is retained once
reached, or in a rollover mode. These counters should be optimally read (and cleared) at least once per second.
The J0 monitor supports nonframed, SONET-framed, and SDH-framed 16-byte sequences as well as single
J0 byte monitoring mode. APS monitoring is performed on bytes K1[7:0] and K2[7:3]. The value of each is stored
and changes are reported. Bits [2:0] of the K2 byte are monitored independently. Line AIS (AIS-L/MS-AIS) and
RDI-L/MS-RDI are monitored separately and changes are reported. This AIS-L/MS-AIS and RDI-L/MS-RDI infor-
mation is also sent to the protection device for add/drop multiplex (ADM) applications. The M1 byte monitor oper-
ates either in bit or block mode and allows access to the REI-L/MS-REI errored bit count. The S1 byte can be
monitored in two modes: as an entire 8-bit word or as one 4-bit nibble (bits 7 to 4). Continuous N-times detection
counters are implemented for these monitoring functions. All automatic receive monitoring functions can be config-
ured to provide an interrupt to the control system, or the device can be operated in a polled mode.
17.3.2 Receive Transport Overhead Monitor and RTOAC Drop
The receive RTOAC provides access to all of the line section overhead bytes. Even or odd parity is calculated over
all bytes. It has a data rate of 5.184 Mbits/s and consists of a clock, data, and an 8 kHz sync pulse. In an alternate
operating mode, the data communication channel bytes D1—D3 or D4—D12 may transmit a serial 192 kbits/s or a
576 kbits/s data stream onto the RTOAC drop channel.
0783(F)
Figure 22. TMUX RTOAC Timing Diagram
rtoac clk
rtoac sync
rtoac data
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
369Agere Systems Inc.
17 TMUX Functional Description (continued)
17.3.3 Receive MSP 1 + 1 Payload Switch
Output from both receive framer blocks provides the input to the MSP 1 + 1 payload switch. This portion of the
TMUX implements a payload 1 + 1 protection switch. In the receive direction, this occurs prior to pointer interpreta-
tion. If the protection switch is activated, then the data is selected from the receive protection interface rather than
from the high-speed input path. Only the selected input traffic is provided downstream to the pointer interpreter.
The interface consists of a 155.52 MHz or 51.84 MHz clock, data, and sync pulse.
17.3.4 Receive Pointer Interpreter
The pointer interpreter is implemented via a state machine which implements the pointer interpretation algorithm
described in ETS 300 417-1-1: January 1996-Annex B. The pointer interpreter evaluates the current pointer state
for the normal state, path AIS state, or LOP conditions, as well as pointer increments and decrements. The current
pointer state and any changes in pointer condition are reported to the control system. The number of consecutive
frames for invalid pointer and invalid concatenation indication is fixed at 9.
17.3.5 Receive High-Order Path Overhead Termination and RPOAC Drop
Path overhead (POH) termination is performed in the receive path on either all three STS-1s or on the VC-4 POH
only. The receive POH circuitry includes J1 byte monitoring, B3 byte BIP-8 checking, C2 byte signal label monitor-
ing, REI-P and RDI-P detection, H4 byte multiframe monitoring; F2, F3, and K3 byte APS monitoring, N1 byte tan-
dem connection monitoring (TCM), signal degrade BER and signal fail BER detection; receive path overhead
access channel (RPOAC) drop, and AIS-P/HO-AIS insertion and automatic AIS generation (with individual inhibit).
The J1 monitor provides five modes of operation for a programmable length (1 byte to 64 bytes) of the trace identi-
fier. These five modes are comprised of cyclic checking against the last received sequence, compare against a
programmed sequence, SONET framing mode, SDH framing mode, and consecutive consistent occurrences of a
new pattern. B3 is monitored either in bit or block mode. Provisionable N-times detection counters are imple-
mented for the C2, F2, F3, N1, and K3 bytes. The K3 APS byte and N1 TCM byte can be monitored as an entire
8-bit word or two 4-bit nibbles.
The receive RPOAC provides access to all the path overhead bytes. Even or odd parity is calculated over all bytes.
The RPOAC has a data rate of 9 bytes per 8 kHz frame and consists of clock, data, and an 8 kHz sync pulse.
17.3.6 Receive Byte Interleave Demultiplexer
The byte interleave demultiplexer accepts serial traffic and demultiplexes that information into one (STS-1 mode)
or three (STS-3/STM-1 mode) traffic streams for input via the telecom bus to the VT/VC mapper . The demultiplexer
takes the bytes in the order they are presented and places that traffic onto the telecom bus.
17.3.7 Receive Telecom Bus
The TMUX can communicate with up to three SPE mappers via the telecom bus interface. In typical applications,
since one SPE mapper is included in the Supermapper device, two external SPE mappers reside on the telecom
bus. The bus operates at 19.44 MHz for STS-3/STM-1 modes and at 6.48 MHz for STS-1 mode. In the receive
direction, the Supermapper outputs one parallel clock at 19.44 MHz, three sync signals (SPE, J0J1V1, and V1), an
8-bit data bus, and an odd/even parity bit. The data bus carries either three STS-1/TUG-3 signals, each in their
own time slot, or it carries one STS-1 signal. A 51.84 MHz low-speed clock and sync signal is also output from this
circuit.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
370 Agere Systems Inc.
17 TMUX Functional Description (continued)
17.4 TMUX Tr ans mit Path O verv iew
The TMUX transmit path is depicted in the top half of Figure 25 on page 372. The transmit path of the TMUX imple-
ments the inverse function to the receive path. Transmit input traffic at the telecom bus interface from up to three
STS-1/TUG-3 paths is managed via the transmit path bus control circuitry. Transmit traffic, alarms, or unequipped
indication information is inserted as needed depending on the status and provisioning of the device. The 3:1 multi-
plexer provides byte interleave multiplexing of the incoming traffic and insertion of the path overhead bytes. A serial
path provides input for the transmit protection traffic and the framer and serial-to-parallel converter formats this traf-
fic for input to the transmit MSP 1 + 1 payload switch. The selected output from the transmit MSP 1 + 1 switch is
input to the transport overhead insert block and the parallel-to-serial converter sends a serial stream to the device
output. The TMUX transmit path provides path overhead byte insertion and transport overhead byte insertion via
the respective POAC insert and TOAC insert interfaces.
Local clock and frame generation control circuitry is implemented in the TMUX for controlling the STS-1, STS-3,
and STM-1 termination and generation functions. Internal loopbacks in the TMUX provide near-end line loopback
and far-end line loopback capability.
17.4.1 Transmit Telecom Bus
The transmit side of Supermapper drives a clock and three sync signals (SPE, J0J1V1, and V1) onto the telecom
bus. These signals control when the internal SPE mapper or one of the mate devices talks on the data bus.
Because it is on the receive side, the transmit telecom bus operates at 19.44 MHz for STS-3/STM-1 modes and at
6.48 MHz for STS-1 mode. The TMUX communicates with up to three VT/VC mappers, via an 8-bit data word and
an odd/even parity bit from the telecom bus. The data consists of the STS-1/TUG-3 from up to three mappers,
each in its own time slot, or it carries one single STS-1 signal. A 51.84 MHz low-speed clock and sync are also out-
put.
Transmit High-Order Path Overhead Generation and TPOAC Insert. In the transmit direction, J1 path trace
byte insertion, B3 byte calculation and insertion, C2 signal label byte insertion, REI-P and RDI-P insertion; F2 byte
insertion, H4 multiframe byte insertion, F3 path user byte insertion, K3 byte insertion, N1 byte insertion, and AIS-P
insertion via POAC or software control is supported. The transmit TPOAC allows insertion of all overhead bytes
other than the B3 byte, which is automatically calculated. Even or odd parity is checked over all bytes. Bytes which
are not enabled for insertion are set to an all-ones or all-zeros stuff value. Transport path overhead bytes are
added to the payload stream during multiplexing in the byte interleave multiplexer.
Transmit Byte Interleave Multiplexer. In STS-3/STM-1 mode, the transmit byte interleave multiplexer block multi-
plexes up to three STS-1/TUG3 signals to form a SONET/SDH STS-3/STM-1 structured signal. The STS-3/STM-1
multiplexer function processes the input bytes in the order in which they are presented on the transmit telecom bus
and multiplexes these bytes into a single high-speed stream. Grooming of the VTs/VCs is performed in the SPE
mapper of each of the three devices. High-order path overhead bytes are interleaved with the data traffic during the
byte interleave multiplexing.
Transmit Payload Framer and MSP 1 + 1 Payload Switch. In the transmit direction, the MSP 1 + 1 switch func-
tion incorporates dual MSP 1 + 1 payload switch structures. In operation, the traffic from the transmit byte inter-
leave multiplexer is presented to both MSP 1 + 1 payload switches. The output of the signal from the 3:1 multiplex
is broadcast to both switch paths, and the output of the receive payload framers is also input respectively to one of
the two switch paths. For normal operation, one of the two outputs from the two MSP 1 + 1 blocks is selected. The
path from the receive framer to the MSP switch structures provides a means to perform far-end loopback.
Transmit Transport Overhead Generation and TTOAC Insert. The transmit transport overhead generator per-
forms TTOAC byte insertion, sync status byte (S1) insertion, M0/M1—REI-L insertion, K1 and K2 byte insertion,
AIS-L insertion, B2 byte calculation and insertion, F1 byte insertion, B1 byte generation and error insertion, scram-
bling, J0 byte insertion control, and A2 byte error insertion. All insert control functions that are inhibited will option-
ally insert either an all-zeros or an all-ones word.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
371Agere Systems Inc.
17 TMUX Functional Description (continued)
The transmit TTOAC allows the users to insert the following overhead bytes: E1, F1, D1—D3, D4—D12, S1, and
E2. Even or odd parity is checked over all bytes. Bytes which are not enabled for insertion are set to an all-ones or
all-zeros st u ff value.
The data communication channels D1—D3 or D4—D12 may also be received via the TTOAC interface. In this
mode, the TTOAC channel will comprise a serial 192 kbits/s or a 576 kbits/s data stream.
The insertion (overwrite by TOAC) of programmed S1, F1, J0, Z0-2, and Z0-3 bytes can be enabled via registers.
Automatic insertion of M0/M1 may also be inhibited via registers. A protection switch selects the REI-L value for
insertion to be taken from the protection board rather than from the receive side. The entire APS value or K2[2:0]
can be inserted via writable registers. Automatic RDI insertion is supported with individual inhibit for each contribu-
tor. A protection switch selects the RDI-L value for insertion to be taken from the protection board rather than from
the receive side. B1 and B2 BIP-8 values are calculated and inserted. Both values can be optionally inverted.
0784(F)
Figure 23. TMUX TTOAC and RTOAC Timing Diagram
5-9004(F)
Figure 24. High-Level TMUX Interconnect
ttoac clk
ttoac sync
ttoac data
TMUX
SPE
TELECOM BUS
VT/TU
MAPPER
M13
TUG-2DS3
MAPPER
STS-1/TUG-3
(TIME SLOT #1)
STS-1/TUG-3
(TIME SLOT #2)
STS-1/TUG-3
(TIM E SLOT #3)
STS-3/STM-1
OR STS-1
DEVICE #1
DEVICE #2
DEVICE #3
HIGH-SPEED
SONET/SDH INTERFACE
VT MPR RDI_P, REI_P
VT MPR RDI_L, REI_L
TMUX RDI_L, REI_L
TMUX RDI_P, REI_P
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
372 Agere Systems Inc.
17 TMUX Functional Description (continued)
5-9005(F)r.1
Figure 25. Detailed Block Diagram of the TMUX
PATH RDI
POAC
DROP
1:3
DEMUX
LOGIC
MSP 1 + 1
STS#1
STS#2
STS#3
TOAC
INSERT
TRANSMIT DIRECTION
RECEIVE DIRECTION
STS#3
TLSCLK
PAIS, UEQ
INSERT
BUS
CONTROL
TLSPAR
TLSDATA[7:0]
RLSCLK
BUS
CONTROL
RLSPAR
RLSDATA[7:0]
TTOACCLKO,
POINTER
INTERPRETER
TTOACSYNCO,
TTOACDATI
TLSV1
(19.44 MHz)
(19.44 MHz)
RTPOACSYNC,
RTPOACDATA
THSD
RLSJ0J1V1
RLSV1
RLSSPE
TLSJ0J1V1
TLSSPE
TLSSYNC52
TLSCLK52
RLSSYNC52
RLSCLK52
TOH
MONITOR
TOAC
DROP
RTOACCLK,
RTOACSYNC,
RTOACDATA
POAC
INSERT
TPOACCLK,
TPOACSYNC,
TPOACDATA
POH
MONITOR
STM-1
TOH
STS#2
PAIS, UEQ
INSERT
STS#1
PAIS, UEQ
INSERT
FRAMER
PAYLOAD
SWITCH 1
AND S/P
3:1
AND
POH
INSERT
MUX
LOGIC
PATH REI
INSERT
MSP 1 + 1
PAYLOAD
SWIT CH 2
LINE RDI
LINE REI
P/S
VTMPR RDI_L, REI_L
VTMPR RDI_P,
AUTO_AISO[1—3] RHSC
RPSD155
FRAMER,
S/P, AND
RPSC155
TPSC155
RHSD
B2 ERR
INSERT,
MSP 1 + 1
PAYLOAD
SWITCH 3
TPSD155
P/S
L-REI INS
B2 MON,
LOC, OOF,
LOF, B2E
LOC, OOF,
LOF, B2E
L-REI MON
LOCAL CLOCK
GENERATION
THSC THSSYNC
AND FRAME
RPSC155
RPSSYNC155 (FROM RECEIVE SI DE)
TPSMUXSEL2
RPSSYNC155
TIMING SIGNALS TO TX SI D E
RTPOACCLK,
REI_P
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
373Agere Systems Inc.
17 TMUX Functional Description (continued)
The following block diagram describes the receive side transport overhead functions. Data is received from the
high-speed interface at 155 Mbits/s (51.84 Mbits/s for STS-1 mode) and the output is driven onto the low-speed
telecom bus in a parallel format. The TOH receive side functional blocks are shown in Figure 26.
5-9006(F)r.2
Figure 26. Receive Direction Functional Block Diagram
INSERT
C2
MONITOR
B3
BIP N K3
CHECK
G1
RDI-P G1
REI-L
DETECT
APS
MONITOR
B3 K3
DETECT
G1 G1N1C2
POAC
DROP
RECEIVE DATA
REI
COUNTER
G1
AIS-P
BER
ALGORITHM
FRAME DESCR-
AMBLER
B1
BIP-8
J0
MONITOR
LOS
CHECK
F1
MONITOR
B2
BIP N K1/K2
CHECK
AIS-L
RDI-L M1
REI-L SYNC
MONITOR
DETECT
APS
MONITOR
B2 K1
K2
DETECT
K2 M1 S1
STATUS
B1
DETECTOR
J0 F1
TOAC
DROP
LOF
MONITOR
OOF
ALIGN
MONITOR
INPUT
REI
COUNTER
M1
BER
ALGORITHM
J1
MONITOR
J1
F3
MONITOR
F3
F2
MONITOR
F2
MONITOR
H1, H2, H3
INTERPRETER
POINTER
TELECOM BUS
N1
MONITOR
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
374 Agere Systems Inc.
17 TMUX Functional Description (continued)
17.5 Receive Direction (Receive Path from SONET Global/SD H)
All functi ons supp orted by the TM UX in the rece iv e dir ect io n are summarize d here:
Input clock monitoring and loss-of-signal monitoring
High-sp eed loo pba ck
Frame alignment
Receive si de frame sy nc output
B1 BIP-8 check
J0 monitor
Descrambler
F1 monitor
B2 BIP-8 check
APS (automatic protection switch) monitor
K2 monitor, AIS-L and RDI- L detect
M1 REI-L detect
Sync status monitor
Receive transport overhead access channel (RTOAC)
MSP 1 + 1 payload switch
Pointer int erpreter
J1 monitor
B3 BIP-8 check
Signal label C2 byte monitor
RDI-P detect
REI-P detect
Path user byte F2 monitor
H4 multiframe indicator
Path user byte F3 monitor
K3 byte monitor
N1 tandem connection byte monitor
Signal degrade BER algorithm
Signal fail BER algorithm
Path overhead access channel (POAC) drop
AIS-P insertion and AUTO_AISO[1—3] generation
Receive si de tele co m bus int erf ace
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
375Agere Systems Inc.
17 TMUX Functional Description (continued)
17.5.1 Input Clock and Loss-o f-Signal Monitoring
The TMUX detects and reports the loss of the 155 MHz input clock for the STS-3 mode and the loss of the
51.84 MHz clock for the STS-1 mode with register bits TMUX_RHSILOC—state (Table 101, starting on page 94),
TMUX_RHSILOCD—delta state (Table 101, starting on page 94), and TMUX_RHSILOCM—interrupt mask
(Table 101, starting on page 94). LOC is determined by a stuck high or stuck low for a time greater than 10 µs and
uses the microprocessor clock as its reference.
The TMUX will detect and report a loss-of-signal condition with register bits TMUX_RHSLOS—state (Table 101 on
page 94), TMUX_RHSLOSD—delta state (Table 101, starting on page 94), TMUX_RHSLOSM—interrupt mask
(Table 96 on page 90 ), by monitoring the external input signal pin, LOSEXT (pin AE5), or detecting a continuous
all-zeros/ones pattern for 51.44 ns to 105 µs in 51.44 ns steps before data is descrambled. The detection time is
determined by the value programmed in register bits, TMUX_LOSDETCNT[10:0] (Table 107 on page 99). The
LOS state will clear after reception of two consecutive receive frames with the correct framing pattern spaced 125
µs apart without an incoming LOS all-zeros/ones pattern. This recovery applies to both internal and external LOS
failure cau ses.
17.5.2 High-Speed Loopback Select Logic
The device can be configured to loop back the transmit STS-3/STM-1 (AU-4) TMUX_THS2RHSLB = 1 (Table 103
on page 96) or accept the local STS-3/STM-1 (AU-4) signal TMUX_THS2RHSLB = 0.
17.5.3 Frame Alignment—STS-3/STM-1 (AU-4) Framing or STS-1 Framing
The device will frame on the incoming signal. The state of the framer, out of frame (OOF) (register bit
TMUX_RHSOOF; see Table 101 on page 94) as well as any changes to this state (register bits
TMUX_RHSO OFD —del ta sta te; see Table 101, starting on page 94 and TMUX_RHSOO FM —interrupt mas k; see
Table 96 on page 90) will be reported.
The 32-bit (A1-2, A1-3, A2-1, and A2-2) framing pattern will be used in the frame detection for the
STS-3/STM-1 case and a 16-bit pattern will be used for the STS-1 case. The device will be considered out of frame
until two successive framing patterns separated in time by 125 µs occur without framing byte errors.
The device will be considered in frame until five successi ve fram es, se parat ed in t ime by 125 µs, occur w ith er rore d
framing patterns. If the framer transitions to the out of frame state, the framer will remain synchronized to the last
known frame boundary or the latest detected unerrored framing pattern.
A loss of frame (LOF) (register bit TMUX_RHSLOF; see Table 101 on page 94) state bit as well as any changes to
this state (register bits TMUX_RHSLOFD—delta state; see Table 101, starting on page 94, TMUX_RHSLOFM—
interrupt mask; see Table 96 on page 90) will be reported. These state and mask and delta bits are the same for
both types of input data, STS-3/STM-1 or STS-1.
The device will be considered in the LOF state when an OOF condition persists for 24 consecutiv e frames (3 ms).
The device will transition out of the LOF state after receiving 24 consecutive frames with the correct framing pat-
terns spaced 125 µs apart and the OOF condition is clear.
17.5.4 B1 BIP-8 Check
A BIP-8 even parity will be computed over all the incoming bits of the STS-3/STM-1 frame (STS-1 frame in STS-1
mode), which are scrambled (except for the bits in the A1, A2, and J0/Z0 bytes) and compared to the B1 byte
receiv ed in the next frame.
The total number of B1 BIP-8 bit errors (raw count), or block errors (as determined by register bit
TMUX_BITBLKB1; see Table 105 on page 97), are counted. Upon the assertion of the performance monitor con-
trol signal as configured in the microprocessor interface block, the raw count will be reset to zero and the value
transferred to a 16-bit counter for B1 error counts B1ECNT[15:0] (Table 134 on page 120).
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
376 Agere Systems Inc.
17 TMUX Functional Description (continued)
In case of overflow, depending on the value programmed in the microprocessor interface register bit
SMPR_SAT_ROLLO V ER (Table 77 on page 70), the B1 error counter will either roll over or saturate at the maxi-
mum value until cleared.
17.5.5 J0 Monitor
J0 (section trace overhead) monitoring is done via register bits TMUX_J0MONMODE[2:0]; see Table 105 on
page 97. This J0 monitoring has six different monitoring modes, as follows:
TMUX_J0MONMODE[2:0] = 000: the TMUX latches the value of the J0 byte every frame for a total of
16 bytes into registers TMUX_J0DMON[16—1][7:0]; see Table 142 on page 123. The TMUX compares the
incoming J0 byte with the next expected value (the expected value is obtained by cycling through the previously
stored 16 received bytes in round-robin fashion). The TMUX will perform a byte-by-byte comparison and, if differ-
ent, set the section trace identifier mismatch state register bit, TMUX_RTIMS; see Table 101 on page 94. Any
change to TMUX_RTIMS will be reported via delta and interrupt register bits TMUX_RTIMSD; see Table 92,
starting on page 81 and TMUX_RTIMSM; see Table 96 on page 90.
TMUX_J0MONMODE[2:0] = 001: this is the SONET framing mode. The hardware looks for a 0x0A character to
indicate that the next byte is the first byte of the path trace message. The J0 byte message is continuously writ-
ten into TMUX_J0DMON[1—16][7:0] registers with the first byte residing at the first address. If any received byte
does not match the previously received byte for its location, then the state register bit, TMUX_RTIMS, is set. Any
change to RTIMS will be reported via delta and interrupt mask register bits TMUX_RTIMSD and
TMUX_RTIMSM.
TMUX_J0MONMODE[2:0] = 010: this is the SDH framing mode. The hardware looks for the byte with the most
significant bit (MSB) set to one, which indicates that the next byte is the second byte of the message. The rest of
operation is the same as in SONET framing mode.
TMUX_J0MONMODE[2:0] = 011: a new J0 byte (TMUX_J0DMON[1][7:0]) will be detected after the number of
consecutive consistent occurrences of a new pattern in the J0 overhead byte as determined by the values in reg-
isters TMUX_CNTDJ0[3:0]; see Table 108 on page 100. Any changes to this byte are reported via delta and
interrupt mask registers TMUX_RTIMSD and TMUX_RTIMSM. The TMUX_RTIMSD delta bit in this mode indi-
cates a change in state for the TMUX_J0DMON[1][7:0] byte and the state register bit, TMUX_RTIMS, is not
used.
TMUX_J0MONMODE[2:0] = 100: the user will program the 16 expected values of J0 in the SONET frame into
registers TMUX_ EXPJ0DMON[1— 16][7:0]; see Table 141 on page 123. The first expected byte (the byte follow-
ing the 0x0A character) is written into the first location, TMUX_J0DMON[1][7:0]. The TMUX performs a byte-by-
byte comparison of the incoming J0 sequence with the stored expected value. If different, the TMUX will set the
section trace identifier mismatch state register bit, TMUX_RTIMS (Table 101 on page 94). Any change to
TMUX_RTIMS is reported via register bits TMUX_RTIMSD (delta state) and TMUX_RTIMSM (interrupt mask).
TMUX_J0MONMODE[1:0] = 101: the user will program the 16 expected values of J0 in the SDH frame in regis-
ters TMUX_EXPJ0DMON[1—16][7:0]. The first byte of the message has the MSB set to 1. The TMUX performs
a byte-by-byte comparison of the incoming J0 sequence with the stored expected value. If different, the TMUX
will set the section trace identifier mismatch state register bit, TMUX_RTIMS (Table 101 on page 94). Any
change to TMUX_RTIMS will be reported via register bits TMUX_RTIMSD (delta state) and TMUX_RTIMSM
(interrupt mask).
TMUX_J0MONMODE[1:0] = 110 and 111 are currently undefined.
17.5.6 Descrambler
A frame synchronous descrambler of length 127 and generating polynomial x7 + x6 + 1 will descramble the entire
STS-3/STM-1 (or STS-1) signal except for the first row of overhead. The scrambler will be set to 1111111 on the
first byte following the last section overhead byte in the first row (i.e., after byte J0 for STS-1). The descrambler
operates in a byte-wide mode.
The frame descrambler can be enabled or disabled using register bit TMUX_RHSDSCR (Table 103 on page 96).
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
377Agere Systems Inc.
17 TMUX Functional Description (continued)
17.5.7 F1 Monitor
The TMUX monitors the fault location byte TMUX_RF1MON0[7:0] (Table 111 on page 102). A new fault location
state will be detected after the number of consecutive consistent occurrences of a new pattern in the F1 overhead
byte as determined by the value programmed in TMUX_CNTDF1[3:0] (Table 108 on page 100).
The TMUX maintains a history of the previous valid F1 byte in TMUX_RF1MON1[7:0] (Table 111 on page 102),
and any changes will be reported via TMUX_RF1MOND (delta state) (Table 92, starting on page 81) and
TMUX_RF1MONM— (interrupt mask) (Tab le 96 on page 90).
This continuous N-times detection counter will be reset to 0 upon the transition of the framer into the out of frame
state.
17.5.8 B2 BIP-8 Check
A B2 BIP-8 even parity is computed over all the incoming bits (except for the 9 section overhead bytes) of the STS-
1 frame after descrambling, and compared to the B2 byte received in the next frame. The total number of B2 BIP-8
bit errors (raw count), or block errors (as determined by TMUX_BITBLKB2; Table 104 on page 96), is counted.
Upon the assertion of the performance monitor control signal as configured in the microprocessor interface, the
raw count will be reset to zero and the value transferred to an 18-bit holding register for B2 error counts
(TMUX_B2ECNT[17:0]; see Table 135 on page 121). In case of overflow, depending on the value programmed in
the microprocessor interface register bit SMPR_SAT_ROLLOVER (Table 77 on page 70), the B2 error counter will
either roll over or saturate at the maximum value until cleared.
17.5.9 Automatic Protection Switch (APS) Monitor
The TMUX monitors the receive APS value (the K1 byte, and the five most significant bits of the K2 byte) and
stores this value in TMUX_RAPSMON[12:0] (Table 112 on page 102). This register is updated after the reception
of a programmed number of identical consecutive frames as determined by the value in TMUX_CNTDK1K2[3:0]
(Table 108 on page 100). Whenever the contents of TMUX_RAPSMON[12:0] changes, a delta bit,
TMUX_RAPSMOND will be set (Table 92, starting on page 81) and the interrupt can be masked using
TMUX_RAPSMONM (Table 96 on page 90). This indication also contributes to a separate device interrupt indica-
tion specifically intended for automatic protection switching.
The TMUX monitors this same 13-bit APS value (K1[7:0], K2[7:3]) in the receive direction and reports when the
APS value is inconsistent, using TMUX_RAPSBABE—Receive APS Babble Event (Table 92 on page 81) and
TMUX_RAPSBABM—Receive APS Babble Mask (Table 96 on page 90). Inconsistent APS bytes are defined as
the number of successive frames of ASP data where no frames satisfy the criteria for updating the
TMUX_RAPSMON register (Table 112 on page 102). The number of inconsistent frames allowed before reporting
is programmed in TMUX_CNTDK1K2FRAME[3:0] (default = 12; see Table 108 on page 100). This continuous N-
times detection counter will be reset to 0 upon the transition of the framer into the out of frame state or upon the
detection of a B1 error.
17.5.10 K2 Monitor, AIS-L, and RDI-L Detect
The three least significant bits of K2 are independently monitored and the current value is stored in
TMUX_K2MON[2:0] (Table 112 on page 102). The register will be updated after the programmed number of con-
secutive identical K2[2:0] bits. This number is programmed by the value in TMUX_CNTDK2[3:0] (Table 108 on
page 100). Whenever the contents of TMUX_K2MON[2:0] changes, a delta bit, TMUX_RK2MOND, will be set
(Table 92, starting on page 81), and the interrupt can be masked using TMUX_RK2MONM (Table 96 on page 90).
The TMUX monitors for line AIS (AIS-L/MS-AIS) in the K2[2:0] bits (K2[2:0] = 111). When line AIS is detected,
TMUX_RLAISMON (Table 101 on page 94) will be set to 1 after a number of consecutive occurrences of line AIS
as determined by the value programmed in TMUX_CNTDK2[3:0]. Once set, AIS-L will be cleared after a number of
consecutive frames of no line AIS as determined by this same value in TMUX_CNTDK2[3:0].
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
378 Agere Systems Inc.
17 TMUX Functional Description (continued)
Any change to TMUX_RLAISMON will be reported in TMUX_RLAISMOND (Table 92 , st art ing on pa ge 81 ) and the
interrupt can be masked using TMUX_RLAISMONM (Table 96 on page 90).
The TMUX monitors for a remote defect indication (RDI-L/MS-RDI) condition in the K2[2:0] bits (K2[2:0] = 110). A
line RDI condition will be detected and TMUX_RLRDIMON (Table 1 01 on page 94) will be set to 1 after a number
of consecutive occurrences of RDI as determined by the value in TMUX_CNTDK2[3:0]. Once set, RDI-L will be
cleared after a number of consecutive frames of no RDI as determined by this same value programmed in
TMUX_CNTDK2[3:0]. Any change to TMUX_RLRDIMON will be reported in TMUX_RLRDIMOND (Table 92, start-
ing on page 81), and the interrupt can be masked using TMUX_RLRDIMONM (Table 96 on page 90). This contin-
uous N-times detection counter will be reset to 0 upon the transition of the framer into the out of frame state.
17.5.11 M1 REI-L Detect
One byte (M1) is allocated for use as a line remote error indication function (REI-L). For STS-3/STM-1 signals, all
eight bits of the M1 byte are allocated for REI-L information. The REI-L value reflects the error count detected by
the line terminating equipment (LTE) (using the line BIP-8 code) back to its peer LTE. For STS-3/STM-1 signals,
the value of the error count can be up to 24. A value of 25 and above will be interpreted as no errors. If
TMUX_R_M1_B IT 7 (Tab le 106 on page 98) is 1, then the most significant bit of the byte is ignored.
The TMUX allows access to the accumulated M1-REI errored bit count from the M1 byte via TMUX_M1ECNT[17:0]
(Table 136 on page 121). The counter will count in bit or block mode, depending upon the value of
TMUX_BITBLKM1 (Table 104 on page 96). At the selected performance monitor (PM) interval, the value of the
internal running raw counter is placed into a holding register, TMUX_M1ECNT[17:0], and then cleared. Depending
on the value of SMPR_SAT_ROLLOVER (Table 77 on page 70) in the microproces s or inter fac e, the inte rnal
counter will either roll over or saturate at its maximum value until cleared.
17.5.12 Sync Status Monitor
The S1 byte is allocated for synchronization status. S1 bits [7:4] are used t o convey a 4-bit code of which only six
patterns are defined, with the remaining codes reserved for quality levels defined by individual administrations.
The S1 byte can be monitored in two modes: as an entire 8-bit word or as one 4-bit nibble (bits [7:4]), as pro-
grammed by TMUX_S1MODE4 (Table 105 on page 97).
TMUX_S1MODE4 = 0. The associated state, delta, and mask registers are TMUX_RS1MON[7:0] (Table 113 on
page 102), TMUX_RS1MOND (Table 92, starting on page 81), and TMUX_RS1MONM (Table 96 on page 90),
respectively.
TMUX_S1MODE4 = 1. The associated state, delta, and mask registers are TMUX_RS1MON[7:4],
TMUX_RS1MOND, and TMUX_RS1MONM.
A new value will be detected after a programmed number of consecutive occurrences of a consistent new value in
the incoming S1 byte as determine by the value in TMUX_CNTDS1[3:0] (Table 108 on page 100). A maskable
event, TMUX_RS1BABE (Table 92, starting on page 81), is set if a programmed number of consecutive frames
pass without a validated message occurring as determined by the value in TMUX_CNTDS1FRAME[3:0]
(Table 108 on page 100).
In 8-bit mode, the entire value is monitored for an inconsistent value, while in 4-bit mode, only the most significant
nibble is monitored for an inconsistent value. This continuous N-times detection counter will be reset to 0 upon the
transition of the framer into the out of frame state.
17.5.13 Receive Transport Overhead Access Channel (RTOAC)
A transport overhead access channel (TOAC) is provided on-chip to drop the transport overhead (TOH) portion of
the incoming SDH or SONET frame. The TOAC channel supports three modes of operation based on the configu-
ration of TMUX_RTOAC_D13MODE and TMUX_RTOAC_D412MODE (Table 127 on page 115).
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
379Agere Systems Inc.
17 TMUX Functional Description (continued)
The TOAC channel consists of the following signals:
A clock signal sourced by the device pin, RTOACCLK (external output pin AD1). The clock frequency depends
on the values of TMUX_RTOAC_D13MODE and TMUX_RTOAC_D412MODE. See Table 534.
A data signal out of RTOACDAT A (external output pin AD3). The data rate and the values transmitted depend on
the values of TMUX_RTOAC_D13MODE and TMUX_RTOAC_D412MODE. See Table 534.
An 8 kHz synchronization signal, out to output pin, RTOACSYNC (external output pin AA5). The sync signal is
normally low. During the last clock period of each frame coincident with the least significant bit of the last byte
(the eighty-first byte for all TOH modes), the sync signal is driven high.
Receive TOAC DCC1—DCC3 Mode. In this mode, DCC bytes 1 to 3 are transmitted serially on the data pin. The
clock rate is 192 kHz. The data bytes are transmitted MSB first, and the data bytes are driven out in sequential
order: DCC1, DCC2, and DCC3. The data signal is partitioned into frames of 3 bytes with a repetition rate of 8 kHz.
Receive TOAC DCC4—DCC12 Mode. In this mode, DCC bytes 4—12 are transmitted serially on the data output.
The clock rate is 576 kHz. The data bytes are transmitted MSB first, and the data bytes are driven out in sequential
order: DCC4, DCC5, DCC6, DCC7, DCC8, DCC9, DCC10, DCC11, and DCC12. The data signal is partitioned into
frames of 9 bytes. The frame repetition rate is 8 kHz.
Receive TOAC Full TOH Access Mode. In this mode, the data signal is partitioned into frames of 81 bytes. The
frame repetition rate is 8 kHz. Each byte consists of 8 bits that are transmitted/received most significant bit first.
The MSB of the first byte of each frame contains an odd/even parity bit over the 648 bits of the previous frame. The
remaining 7 bits of this byte are not specified.
Bytes shown in Table 535 summarize the access capabilities of the receive TAOC in full access mode. The trans-
port overhead bytes shown in this table are always dropped by the receive side. There is programmability on the
transmit side regarding the insertion of these bytes. Bytes indicated in bold type are not specified in the standard,
but are available on the receive TOAC data signal.
Tab le 534. Receive TOAC Modes
TOAC Mode TMUX_RTOAC_D13MODE
Value TMUX_RTOAC_D412MODE
Value Number of Data
Bytes per Frame Clock Rate
DCC1—DC C3 1 X 3 192 kHz
DCC4—DCC 12 0 1 9 576 kHz
Full TOH Mode 0 0 81 5.184 MHz
Table 535. Transport Overhead Byte Access—Receive Direction
OH Parity A1-2 A1-3 A2-1 A2-2 A2-3 J0 Z0-2 Z0-3
B1 B1-2 B1-3 E1 E1-2 E1-3 F1 F1-2 F1-3
D1 D1-2 D1-3 D2 D2-2 D2-3 D3 D3-2 D3-3
H1-1 H1-2 H1-3 H2 H2-2 H2-3 H3 H3-2 H3-3
B2-1 B2-2 B2-3 K1 K1-2 K1-3 K2 K2-2 K2-3
D4 D4-2 D4-3 D5 D5-2 D5-3 D6 D6-2 D6-3
D7 D7-2 D7-3 D8 D8-2 D8-3 D9 D9-2 D9-3
D10 D10-2 D10-3 D11 D11-2 D11-3 D12 D12-2 D12-3
S1 Z1-2 Z1-3 Z2-1 Z2-2 M1 E2 E2-2 E2-3
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
380 Agere Systems Inc.
17 TMUX Functional Description (continued)
Receive TOACOH Parity. Even or odd parity can be inserted into the first bit of the MSB byte of the TOAC out-
going frame by programmi ng TMUX _RTOAC_OEP INS (Tab le 127 on page 115 ).
17.5.14 MSP 1 + 1 Payload Switch
The TMUX supports a payload 1 + 1 protection switch. In the receive direction, this occurs prior to pointer interpre-
tation. If TMUX_RPSMUXSEL1 = 1 (Table 103 on page 96), then the input receive data and clock are selected
from the protection path: device pins RPSD155P/N (pins AD10/AE10) and RPSC155P/N (pins AC10/AD11), rather
than from the normal (working) path device pins, RHSDP/N (pins AF7/AE7) and RHSCP/N (pins AC7/AD8).
17.5.15 Pointer Interpreter
The STS-3/STM-1 pointer interpreter logic block performs all necessary functions to support STS-3/STM-1, as well
as STS-1, pointer interpretation. The pointer interpreter operates as one machine in STM-1 mode and as three
independent machines in STS-3 mode. The following features are implemented:
The pointer interpreter consists of the following states:
— LOP: loss of pointer
— AIS: alarm indiction signal (all ones in H1 and H2)
— NDF: new data flag enabled (1001,0001,1101,1011, and 1000)
— NORM: normal (disabled NDF, normal pointer)
— INC: increment (inverted I bits)
— DEC: decrement (inverted D bits)
* This state diagram is based on the ETS-417-1-1 pointer interpretation state diagram (Figure B.1). T ransitions of eight invalid pointers fro m t he
INC, DEC, and NDF states into the LOP state have been added. 5-9007(F)
Figure 27. Pointer Interpretation State Diagram
NORM
DEC
INC
NDF
AISLOP
FROM ALL STATES
8 INVALID POINTERS
FROM AL L STATES
3 NEW POINTERS
INCREMENT DECREMENT
8 NDF ENABLE
NDF ENABLE
NDF ENAB L E
NDF
NDF
NDF
3 ANY 3 AN Y
3 NEW POINTERS
3 NEW POINTERS
3 ANY PO INTERS
3 NEW POINTERS
8 INVALID
8 INVALID POINTERS*
INDICATION INDICATION
3 AIS INDICATIONS ENABLE
ENABLE
POINTERS POINTERS
POINTERS ENABLE
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
381Agere Systems Inc.
17 TMUX Functional Description (continued)
The pointer interpreter transitions into the LOP state based on the following conditions:
— Continuous NDF. If NDF (1001, 0001, 1101, 1011, and 1000) is received in 8, 9, or 10 consecutive frames, as
determined by the value in TMUX_CTDLOPCNT[1:0] (Tab le 108 on page 100), then LOP will be declared.
— Invalid pointer values. If 8, 9, or 10 consecutive frames (determined by TMUX_CTDLOPCNT[1:0]) are received
with a pointer that is not a normal value, NDF, AIS, increment, or decrement, then LOP will be declared.
The pointer interpreter will transition out of the LOP state based on the following conditions:
— Following three consecutive frames with all ones in the H1 and H2 bytes, the pointer interpreter will transition
from the LOP state into the AIS state.
— Following three new , consecutive, consistent, and valid pointers, the pointer interpreter will transition from the
LOP state into the NORM state.
— The pointer interpreter will not transition from the LOP state into the NDF state.
The pointer interpreter will transition into the AIS state based on the following conditions:
— Following three consecutive frames with all ones in the H1 and H2 bytes, AIS will be declared.
The pointer interpreter will transition out of the AIS state based on the following conditions:
— Following three new , consecutive, consistent, and valid pointers, the pointer interpreter will transition from the
AIS state into the NORM state.
— Following eight consecutive invalid pointers, the pointer interpreter will transition from the AIS state into the
LOP state.
— If NDF is enabled on the incoming H1 and H2 bytes, the pointer interpreter will transition from the AIS state
into the NDF state.
The pointer interpreter will transition into the NDF state based on the following condition:
— If NDF is enabled on the incoming H1 and H2 bytes, the pointer interpreter will transition from the NORM,
NDF, AIS, INC, and DEC states into the NDF state.
The pointer interpreter will transition out of the NDF state based on the following conditions:
— Continuous NDF. If NDF (1001, 0001, 1101, 1011, and 1000) is received for eight consecutive frames, the
pointer interpreter will transition from the NDF state into the LOP state.
— Following any three consecutive, consistent, and valid pointers, the pointer interpreter will transition from the
NDF state into the NORM state.
— Following three consecutive frames with all ones in the H1 and H2 bytes, the pointer interpreter will transition
from the NDF state into the AIS state.
— Following three new , consecutive, consistent, and valid pointers, the pointer interpreter will transition from the
NDF state into the NORM state.
— Following eight consecutive invalid pointers, the pointer interpreter will transition from the NDF state into the
LOP state.
The pointer interpreter will transition into the NORM state based on the following conditions:
— Following three new, consecutive, consistent, and valid pointers, the pointer interpreter will transition into the
NORM state.
— Following any three consecutive, consistent, and valid pointers, the pointer interpreter will transition into the
NORM state, i.e., transitioning from the INC, DEC, and NDF states.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
382 Agere Systems Inc.
17 TMUX Functional Description (continued)
The pointer interpreter will transition out of the NORM state based on the following conditions:
— Following eight consecutive invalid pointers, the pointer interpreter will transition from the NORM state into
the LOP state.
— If NDF is enabled on the incoming H1 and H2 bytes, the pointer interpreter will transition from the NORM
state into the NDF state.
— Following three consecutive frames with all ones in the H1 and H2 bytes, the pointer interpreter will transition
from the NORM state into the AIS state.
— When operating in the 8 of 10 mode, controlled by TMUX_8ORMAJORITY = 1 (Table 105 on page 97), if 8 of
the 10 I and D bits are correct for a pointer decrement on the incoming H1 and H2 bytes, the pointer inter-
preter will transition from the NORM state into the DEC state. Otherwise, if 3 of the 5 I bits and 3 of the 5 D
bits are correct for a pointer decrement on the incoming H1 and H2 bytes, the pointer interpreter will transition
from the NORM state into the DEC state.
— When operating in the 8 of 10 mode (TMUX_8ORMAJORITY = 1), if 8 of the 10 I and D bits are correct for a
pointer increment on the incoming H1 and H2 bytes, the pointer interpreter will transition from the NORM
state into the INC state. Otherwise, if 3 of the 5 I bits and 3 of the 5 D bits are correct for a pointer increment
on the incoming H1 and H2 bytes, the pointer interpreter will transition from the NORM state into the INC
state.The pointer interpreter will transition into the INC state based on the following conditions.
— When operating in the 8 of 10 mode (TMUX_8ORMAJORITY = 1), if 8 of the 10 I and D bits are correct for
a pointer increment on the incoming H1 and H2 bytes, the pointer interpreter will transition into the INC
state. Otherwise, if 3 of the 5 I bits and 3 of the 5 D bits are correct for a pointer increment on the incoming
H1 and H2 bytes, the pointer interpreter will transition into the INC state.
The pointer interpreter will transition out of the INC state based on the following conditions:
— If NDF is enabled on the incoming H1 and H2 bytes, the pointer interpreter will transition from the INC state
into the NDF state.
— Following three consecutive frames with all ones in the H1 and H2 bytes, the pointer interpreter will transition
from the INC state into the AIS state.
— Following three new , consecutive, consistent, and valid pointers, the pointer interpreter will transition from the
INC state into the NORM state.
— Following any three consecutive, consistent, and valid pointers, the pointer interpreter will transition from the
INC state into the NORM state.
— Following eight consecutive invalid pointers, the pointer interpreter will transition from the INC state into the
LOP state.
The pointer interpreter will transition into the DEC state based on the following conditions:
— When operating in the 8 of 10 mode (TMUX_8ORMAJORITY = 1), if 8 of the 10 I and D bits are correct for a
pointer decrement on the incoming H1 and H2 bytes, the pointer interpreter will transition into the DEC state.
Otherwise, if 3 of the 5 I bits and 3 of the 5 D bits are correct for a pointer decrement on the incoming H1 and
H2 bytes, the pointer interpreter will transition into the DEC state.
The pointer interpreter will transition out of the DEC state based on the following conditions:
— If NDF is enabled on the incoming H1 and H2 bytes, the pointer interpreter will transition from the DEC state
into the NDF state.
— Following three consecutive frames with all ones in the H1 and H2 bytes, the pointer interpreter will transition
from the DEC state into the AIS state.
— Following three new , consecutive, consistent, and valid pointers, the pointer interpreter will transition from the
DEC state into the NORM state.
— Following any three consecutive, consistent, and valid pointers, the pointer interpreter will transition from the
DEC state into the NORM state.
— Following eight consecutive invalid pointers, the pointer interpreter will transition from the DEC state into the
LOP state.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
383Agere Systems Inc.
17 TMUX Functional Description (continued)
Pointer increments and decrements will be counted and presented to the microprocessor as follows:
— Pointer increments and decrements will be monitored and counted internally.
— The internal and latched counts will be forced to clear (0x00) if TMUX_RLOP[3—1] = 1 (Table 102 on
page 94) or TMUX_RPAIS[3—1] = 1 (Table 102), where [3—1] designates the tributary number.
— Upon the configured performance monitoring interval, raw counts are transferred to holding registers for
pointer increments (TMUX_RPTR_INC[1—3][10:0] (Table 139 on page 123)) and decreme nts
TMUX_RPTR_DEC[1—3][10:0] (Table 140 on page 123), allowing access by the microprocessor. The raw
counters will reset (to 0x00).
— Depending on the value of SMPR_SAT_ROLLOVER (Table 77 on page 70) in the microprocessor interface
block, the internal running counts saturate at their maximum value or rollover.
— However, increment and decrement event indications should be ignored during LOP station.
The current pointer state is read from TMUX_RLOP[3—1] and TMUX_RPAIS[3—1]. Any changes in pointer con-
dition are read from the delta state bits TMUX_RLOPD[3—1] and TMUX_RPAISD[3—1] (Table 93 on page 83).
The associat ed interrupt mask bits are TMUX_RLOPM[3—1] (Table 97 on page 91) and TMUX_RPAISM[3—1]
(Table 97 on page 91). When the device is receiving a concatenated signal (STM-1(AU-3)), the receive concate-
nation mode register bit, TMUX_RCONCATMODE (Table 105 on page 97), must be set for the concatenation
state machi nes (registe r bit s TM UX_CO NCAT_STATE[3—2 ][1:0 ] (Table 102 on page 94)) on ports 2 and 3 to
contribute to pointer evaluation. This state machine implements the pointer interpretation algorithm described in
ETS 300 417-1-1: January 1996 - Annex B.
17.5.16 Path Monitoring Functions
The following sections describe the path monitoring functions. For STM-1 signals, the values corresponding to
STS-1 #1 are the relevant signals. For STS-3 input data, there are three versions of each path monitor, one corre-
sponding to each STS-1. The mode bits are applied to the monitors of all three STS-1s.
J1 Monitor . J1 (path trace) monitoring has six different monitoring modes controlled by TMUX_J1MONMODE[2:0]
(Table 105 on page 97). The J1 monitoring mode for all three STS-1s within an STS-3 signal is the same.
TMUX_J1MONMODE[2:0] = 000: The TMUX latches the value of the J1 byte every frame for a total of 64 bytes
in TMUX_J1DMON[1—3][1—64][7:0] (Table 147 on page 124, Table 148, and Table 149). The TMUX compares
the incoming J1 byte with the next expected value (the expected value is obtained by cycling through the previ-
ously stored 16 received bytes in round-robin fashion). The TMUX will perform a byte-by-byte comparison and, if
different, set the path trace identifier state register bit(s), TMUX_RTIMP[1—3] (Table 102 on page 94). The state
bit is cleared at a single byte match. Any change to the path trace identifier is reported in TMUX_RTIMPD[1—3]
(Table 93 on page 83) with interrupt mask bits, TMUX_RTIMPM[1—3] (Table 97 on page 91).
TMUX_J1MONMODE[2:0] = 001: This is the SONET framing mode. The hardware looks for the 0x0A character
to indicate that the next byte is the first byte of the path trace message. The J1 byte message is continuously
written into registers, TMUX_J1DMON[1—3][1—64][7:0], with the first byte residing at the first address. If any
received byte does not match the previously received byte for its location, then the state bit(s),
TMUX_RTIMP[1—3], is set. Any change to the path trace identifier is reported in TMUX_RTIMPD[1—3], with
interrupt masks bits, TMUX_RTIMPM[1—3].
TMUX_J1MONMODE[2:0] = 010: This is the SDH framing mode. The hardware looks for the byte with the MSB
set to one, which indicates that the next byte is the second byte of the message. The rest of operation is the
same as in SONET framing mode, except that there are 16 bytes instead of 64.
TMUX_J1MONMODE[2:0] = 011: A new J1 byte (TMUX_J1DMON[1][7:0]) will be detected after a number of
consecutive consistent occurrences of a new pattern (determined by the value in TMUX_CNTDJ1[3:0]
(Table 109 on page 101)) in the J1 overhead byte. Any changes to this byte must be reported in
TMUX_RTIMPD[1—3] with the interrupt mask bits, TMUX_RTIMPM[1—3]. The delta bit(s) in this mode indicate
a change in state for the TMUX_J1DMON[1][7:0] byte and the state bits, TMUX_RTIMP[1—3], are not used.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
384 Agere Systems Inc.
17 TMUX Functional Description (continued)
TMUX_J1MONMODE[1:0] = 100: The user will program the 64 expected values of J1 in
TMUX_EXPJ1DMON[1—3][1—64][7:0] (Table 144 on page 124, Table 145, and Table 146), in SONET framing
mode, where the first expected byte (the byte following the 0x0A character) is written into the first location of
TMUX_EXPJ1DMON[1][7:0]. The TMUX performs a byte-by-byte comparison of the incoming J1 sequence with
the stored expected value. If different, the TMUX will set the path trace identifier state bit(s),
TMUX_RTIMP[1—3]. Any change to the path trace identifier is reported in TMUX_RTIMPD[1—3] with interrupt
mask bits, TMUX_RTIMPM[1—3].
TMUX_J1MONMODE[1:0] = 101: The user will program the 16 expected values of J1 in
EXPJ1DMON[1—16][7:0] in SDH framing mode, where the first byte of the message has the MSB set to 1. The
TMUX performs a byte-by-byte comparison of the incoming J1 sequence with the stored expected value. If differ-
ent, the TMUX will set the path trace identifier state bit(s), TMUX_RTIMP[1—3]. Any change to path trace identi-
fier is reported in register bits, TMUX_RTIMPD[1—3] with interrupt mask bits, TMUX_RTIMPM[1—3].
TMUX_J1MONMODE[1:0] = 110 and 111 are currently undefined.
B3 BIP-8 Check. A B3 BIP-8 even parity is computed over all the incoming synchronous payload envelope bits of
the STS-3/STM-1/STS-1 signal after descrambling, and compared to the B3 byte received in the next frame. The
total number of B3 BIP-8 bit errors (raw count), or block errors (as determined by TMUX_BITBLKB3 (Table 105 on
page 97), is counted. Upon the configured performance monitor (PM) interval, the value of the internal running
counter is placed into holding registers TMUX_B3ECNT[1—3][15:0] (Table 136 on page 121) and then cleared.
Depending on the value of SMPR_SAT_ROLLOVER (Table 77 on page 70) in the microprocessor interface block,
the internal counter will either roll over or stay at its maximum value until cleared.
Signal Label C2 Byte Monitor. The C2 byte per STS-1/STM-1 is stored in TMUX_C2MON[1—3][7:0] (Table 114
on page 10 3 ). Each register will be updated after a number, determined by the value in TMUX_CNTDC2[3:0]
(Table 109 on page 101), of consecutive frames of identical C2 bytes for a given STS-1/STM-1, i.e., the 8-bit pat-
tern must be identical for a programmed number frames prior to updating the C2 register. Any change to C2 byte
monitor is reported via the corresponding delta and mask register bits, TMUX_RC2MOND[1—3] (Table 93) and
TMUX_RC2MONM[1—3] (Table 97 on page 91).
In addition, there are programmable expected value(s) for the C2 bytes of each STS-1/STM-1 in
TMUX_C2EX P[1—3][7:0] (Table 110 on page 102). If the current value of a C2 byte in TMUX_C2MON[1—3][7:0]
does not equal the expected C2 value in TMUX_C2EXP[1—3][7:0]), then a payload label mismatch defect may be
declared for that STS-1/STM-1 in TMUX_RPLMP[1—3] (Table 102 on page 94). Also, if the current value of a
C2 byte is all zeros, then the corresponding unequipped defect is declared in TMUX_RUNEQP[1—3] (Table 102).
Note: The payload label mismatch and unequipped defects are mutually exclusive and unequipped takes priority.
The Table 536 describes the conditions for generating payload label mismatch (TMUX_RPLMP[1—3]) and
unequipped defects (TMUX_RUNEQP).
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
385Agere Systems Inc.
17 TMUX Functional Description (continued)
Table 536. STS Signal Label Defect Conditions
TMUX_FORCEC2DEF[2:0] will force path payload label mismatch defects on those conditions that are shown in
Table 536.
The continuous N-times detection counter(s) will be reset to 0 upon the transition of the framer into the out of frame
state.
RDI-P Detection. A remote defect indication-path (RDI-P) signal indicates to STS path terminating equipment
(PTE) that its peer STS PTE has detected a defect on the signal that it originated. The TMUX supports a 1-bit
RDI-P code as well as a 3-bit enhanced RDI-P code; the mode is selectable using the TMUX_REPRDI_MODE
(Table 105 on page 97). If TMUX_REPRDI_MODE = 0, then the 1-bit code is supported, and if
TMUX_REPRDI_MODE = 1, then the 3-bit enhanced path RDI code is supported.
The TMUX monitors for a 1-bit RDI-P code in G1[3] or a 3-bit enhanced remote defect indication (RDI-P) condition
in G1[3:1]. The current value of the path RDI state will be detected after a number of consecutive occurrences
determined by the value in TMUX_CNTDRDIP[3:0] (Table 109 on page 101). The current value(s) will be stored in
TMUX_RDIPMON[1—3][2:0]] (Table 114 on page 103), for nonenhanced RDI-P mode, and the current value(s)
will be stored in TMUX_RDIPMON[1—3][2:0], for enhanced RDI-P mode. Any change to
TMUX_RDIPMON[1—3][2:0] will be reported in TMUX_RRDIPD[1—3] with interrupt mask
bits,TMUX_RRDIPM[1—3] (Table 97 on page 91).
The continuous N-times detection counter(s) will be reset to 0 upon the transition of the framer into the out of frame
state.
Provisioned STS PTE
Functionality, Expected C2 Received Payload Label
(C2 in hex) Defect TMUX_FORCEC2DEF = 1
(Table 107 on page 99)
Any Equipped Functionality Unequipped (00) TMUX_RUNEQP No Change
Any Equipped Functionality Equipped—Nonspecific (01) None No Change
Equipped—Nonspecific Any Value (02 to E0, FD to FE) None No Change
Any Payload Specific Code The Same Payload Specific
Code (02 to E0, FD to FE) None No Change
Any Payload Specific Code A Different Payload Specific
Code (02 to E0, FD to FE) TMUX_ RPL MP No Change
Equipped—Nonspecific (01) or
VT-Structured STS-1 (02) PDI, 1 to 27 VTx Defects
(E1 to FB) None TMUX_RPLMP
Any Payload Specific Code
Except VT-Structured
STS-1 (02)
PDI, 1 to 27 VTx Defects
(E1 to FB) TMUX_ RPL MP No Change
Any Equipped Functionality PDI, 28 VT1.5 Defects or 1
Non-VT Payload Defect (FC) None TMUX_RPLMP
Any Equipped Functionality Reserved (FF) None TMUX_RPLMP
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
386 Agere Systems Inc.
17 TMUX Functional Description (continued)
REI-P Detection. Bits [7:4] of the G1 byte are allocated for use as a path remote error indication function (REI-P).
For STS-1 and STM-1 signals, bits [7:4] of the G1 byte are allocated for REI-P, which conveys the error count
detected by the PTE (using the path BIP-8 code B3) back to its peer PTE as shown in Table 537.
Table 537. STS-1 P-REI Interpretation
The TMUX allows access to the G1-REI errored bit count for each STS-1/STM-1 in TMUX_G1ECNT[1—3][15:0]
(Table 138 on page 122), which is the accumulated error count from G1[3:0] byte of the STS-1/STM-1 signal. The
counter(s) will count in bit or block mode, depending on the value of TMUX_BITBLKG1 (Table 105 on page 97).
Upon the configured performance monitor (PM) interval, the value of the internal running counter is placed into the
holding registers TMUX_G1ECNT[1—3][15:0] and then cleared. Depending on the value of
SMPR_SAT_ROLLOVER (Table 77 on page 70) in the microprocessor interface block, the internal counter will
either roll over or stay at its maximum value until cleared.
Path User Byte F2 Monitor. The TMUX monitors the path user channel in the F2 byte of each STS-1/STM-1. The
F2 byte(s) will be stored in TMUX_F2MON0[1—3][7:0] (Tabl e 114, starting on page 103). Each register will be
updated after a number of consecutive frames of identical F2[7:0], as determined by the value in
TMUX_CNTDF2[3:0] (Table 109 on page 101). That is, the 8-bit pattern must be identical for the programmed
number of frames prior to updating the F2 register. Any change to F2 monitor registers will be reported in
TMUX_RF2MOND[1—3] (Table 93) with interrupt mask bits, TMUX_RF2MONM[1—3] (Table 97 on page 91). The
TMUX also maintains a history of the previous valid F2 byte in TMUX_F2MON1[1—3][7:0] (Table 114). The contin-
uous N-times detection counter(s) will be reset to 0 upon the transition of the framer into the out of frame state.
H4 Multif rame Indicator. The H4 byte is allocated for use as a mapping specific indicator byte. For VT-structured
SPEs, this byte is used as a multiframe indicator.
The TMUX passes the H4 byte of each STS-1 onto the low-speed telecom bus so that it can be monitored by the
VT mapper block. The TMUX also indicates when the H4 byte(s) has a value of 0x01 by asserting the RLSV1 out-
put pin (pin number W4) on the telecom bus during that frame.
Note: The three H4 bytes of an STS-3 signal can occur at any time with respect to one another within a frame.
Path User Byte F3 Monitor. The TMUX monitors the second path user channel in the F3 byte for each
STS-1/STM-1 . The F3 b yte(s) for each STS-1/STM-1 is stored in TMUX_F3MON0[1—3][7:0] (Table 114 on
page 103). Each register will be updated after a number determined by the value in TMUX_CNTDF3[3:0]
(Table 109 on page 101) of consecutive frames of identical F3[7:0] monitor bytes on that particular STS-1. That is,
the 8-bit pattern must be identical for the programmed number of frames prior to updating the F3 register.
G1[7:4] Code Code Interpretation
0000 0 (no errors )
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001 0 (no errors )
. . . . . .
1111 0 (no errors)
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
387Agere Systems Inc.
17 TMUX Functional Description (continued)
Any change to F3 byte monitor registers is reported in TMUX_RF3MOND[1—3] (Table 93 on page 83) with inter-
rupt mask bits, TMUX_RF3MONM[1—3] (Table 97 on page 91).
The TMUX also maintains a history of the previous valid F3 byte in TMUX_F3MON1[1—3][7:0] (Table 114 on
page 103). The continuous N-times detection counter(s) will be reset to 0 upon the transition of the framer into the
out of frame state.
K3 Byte Monitor. The TMUX monitors the K3 byte for each STS-1/STM-1. The K3 byte(s) is stored in
TMUX_K3MON[1—3][7:0] (Tab le 114 on page 103). Each register will be updated after a number determined by
the value in TMUX_CNTDK3[3:0] (Table 109 on page 101) of consecutive frames of identical K3[7:0] for that par-
ticular
STS-1/STM-1. That is, the 8-bit pattern must be identical for a number of frames prior to updating the K3 register.
Any change to K3 monitor registers is reported in TMUX_RK3MOND[1—3] (Table 93 on page 83) with interrupt
mask bits, TMUX_RK3MONM[1—3] (Table 97 on page 91). The continuous N-times detection counter(s) will be
reset to 0 upon the transition of the framer into the out of frame state.
N1 Byte Monitor. The TMUX monitors the N1 byte for each STS-1/STM-1. The N1 byte(s) is stored in
TMUX_N1MON[1—3][7:0] (Table 114 on page 103). Each register will be updated after a number determined by
the value in TMUX_CNTDN1[3:0] (Table 109 on page 101) of consecutive frames of identical N1[7:0] for that par-
ticular STS-1/STM-1. That is, the 8-bit pattern must be identical for a number of frames prior to updating the N1
register. Any change to N1 monitor registers will be reported in TMUX_RN1MOND[1—3] (Table 93 on page 83),
with interrupt mask bits, TMUX_RN1MONM[1—3] (Table 97 on page 91). The continuous N-times detection
counter(s) will be reset to 0 upon the transition of the framer into the out of frame state.
Signal Degrade BER Algorithm. A signal degrade state in register bit TMUX_RHSSD (Table 101 on page 94)
and change of state indication is reported in register bit TMUX_RHSSDD (Table 92, starting on page 81), with the
interrupt mask bit, TMUX_RHSSDM (Table 97 on page 91). This bit error rate algorithm can operate on either B1
or B2 errors, determined by the value of TMUX_SDB1B2SEL (Table 105 on page 97). Each B3 mon ito r ha s an
independent signal degrade function as well in TMUX_RSDB3[1—3] (Table 102 on page 94).
Declaring the signal degrade state requires the definition of two measurement windows, a monitoring block con-
sisting of a number of frames in TMUX_SDNSSET[18:0] (Table 130 on page 118), and a measurement interval
consisting of a number of monitoring blocks in TMUX_SDBSET[11:0] (Table 130). A block is determined bad when
the number of bit errors equals or exceeds a threshold set in TMUX_SDLSET[3:0] (Table 130). Signal degrade is
declared when a number of bad monitoring blocks equals or exceeds the threshold in TMUX_SDMSET[7:0]
(Table 538) for the measurement interval.
Clearing the signal degrade state requires the definition of two measurement windows, a monitoring block consist-
ing of a number of frames in TMUX_SDNSCLEAR[18:0] (Table 130), and a measurement interval consisting of a
number of monitoring blocks in TMUX_SDBCLEAR[11:0] (Table 130). A block is determined good when the num-
ber of bit err ors i s l ess th an a thr esh old s e t in TMUX _SD LCL EAR [3:0 ] ( Table 130). Signal degrade is cleared when
a number of good monitoring blocks equals or exceeds the threshold in TMUX_SDMCLEAR[7:0] (Table 130) for
the measur ement interval.
The set parameters are used when the signal degrade state is clear, and the clear parameters are used when the
signal degrade state is declared.
The signal degrade state may be forced to the declared state with TMUX_SDSET (Table 88 on page 79) and
forced to the cleared state with TMUX_SDCLEAR (Table 88). One shot signal must be provided to force the BER
algorithm into the failed state or normal state, respectively.
The algorithm described above can detect bit error rates from 1 x 10–3 to 1 x 10–9.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
388 Agere Systems Inc.
17 TMUX Functional Description (continued)
Table 538. Signal Degrade (SD) Parameters
Note: The thresholds written by the control system will be one less than the desired number, except for the
TMUX_SDLSET[3:0] and TMUX_SDLCLEAR[3:0] parameters.
Signal Fail BER Algorithm. A signal degrade state in register bit TMUX_RHSSF (Table 101) and change of state
indication is reported in register bit TMUX_RHSSFD (Table 92, starting on page 81), with the interrupt mask bit,
TMUX_RHSSFM (Table 96 on page 90). This bit error rate algorithm can operate on either B1 or B2 errors
selected with register bit TMUX_SDB1B2SEL (Tab le 105 on page 97). Each B3 monitor has its own bit error rate
algorithm as well as the failure indicated in TMUX_RSFB3[1—3] (Table 102 on page 94).
Declaring the signal degrade state requires the definition of two measurement windows, a monitoring block con-
sisting of a number of frames in TMUX_SFNSSET[18:0] (Table 131 on page 119), and a measurement interval
consisting of a number of monitoring blocks in TMUX_SFBSET[11:0] (Table 131). A block is determined bad when
the number of bit errors equals or exceeds a threshold set in TMUX_SFLSET[3:0] (Table 131). Signal degrade is
declared when a number of bad monitoring blocks equals or exceeds the threshold in TMUX_SFMSET[7:0]
(Table 131) for the measurement interval.
Name Function
TMUX_SDNSSET[18:0] (Table 130 on page 118)Signal Degrade Ns Set. Number of frames in a monitoring
block for SD.
TMUX_SDLS ET[3:0] (Table 130)Signal Degrade L Set. Error threshold for determining if a
monitoring block is bad.
TMUX_SDMSET[7:0] (Table 130)Signal Degrade M Set. Threshold of the number of bad moni-
toring blocks in an observation interval. If the number of bad
blocks is below this threshold, then SD is cleared.
TMUX_SDBSET[15:0] (Table 130)Signal Degrade B Set. Number of monitoring blocks in a
measurement interval.
TMUX_SDNSCLEAR[18:0] (Table 130)Signal Degrade Ns Clear. Number of frames in a monitoring
block for SD.
TMUX_SDLCLEAR[3:0] (Table 130)Signal Degrade L Clear. Error threshold for determining if a
monitoring block is bad.
TMUX_SDMCLEAR[7:0] (Table 130)Signal Degrade M Clear. Threshold of the number of bad
monitoring blocks in an observation interval. If the number of
bad blocks is below this threshold, then SD is cleared.
TMUX_SDBCLEAR[15:0] (Table 130)Signal Degrade B Clear. Number of monitoring blocks in a
measurement interval.
TMUX_SDSET (Table 88 on page 79)Signal Degrade Set. Allows the signal degrade algorithm to
be forced into the failed state (active 0 to 1).
TMUX_SDCLEAR (Table 88)Signal Degrade Clear . Allows the signal degrade algorithm to
be forced into the normal state (active 0 to 1).
TMUX_SDB1B2SEL (Table 105 on page 97)Signal Degrade B1/B2 Error Count Select. Control bit, when
set to a logic 0, causes the signal fail bit error rate algorithm to
use B1 errors; otherwise, B2 errors are used to calculate the
error rate.
TMUX_RHSSD (Table 101 on page 94)Signal Degrade BER Algorithm State Bit.
TMUX_RHSSDD (Table 92 on page 81)Signal Degrade BER Algorithm Delta Bit.
TMUX_RHSSDM (Table 96 on page 90)Signal Degrade BER Algorithm Mask Bit.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
389Agere Systems Inc.
17 TMUX Functional Description (continued)
Clearing the signal degrade state requires the definition of two measurement windows, a monitoring block consist-
ing of a number of frames in TMUX_SFNSCLEAR[18:0] (Table 131 on page 119), and a measurement interval
consisting of a number of monitoring blocks in TMUX_SFBCLEAR[11:0] (Table 131). A block is determined good
when the number of bit errors is less than a threshold set in TMUX_SFLCLEAR[3:0] (Table 131).
Signal degrade is cleared when a number of good monitoring blocks equals or exceeds the threshold in
TMUX_SFMCLEAR[7:0] (Table 131) for the measurement interval.
The set parameters are used when the signal fail state is clear , and the clear parameters are used when the signal
fail state is declared.
The signal degrade state may be forced to the declared state with TMUX_SFSET (Table 88 on page 79) and
forced to the cleared state with TMUX_SFCLEAR (Table 88). One shot signal must be provided to force the BER
algorithm into the failed state or normal state, respectively.
The above algorithm can detect bit error rates from 1 x 10–3 to 1 x 10–9.
Table 539. Signal Fail Parameters
Note: The thresholds written by the control system will be one less than the desired number, except for the
TMUX_SFLSET[3:0] and TMUX_SFLCLEAR[3:0] parameters.
Name Function
TMUX_SFNSSET[18:0] (Table 131 on page 119)Signal Fail Ns Set. Number of frames in a monitoring block
for SF.
TMUX_SFLSET[3:0] (Table 131)Signal Fail L Set. Error threshold for determining if a monitor-
ing block is bad.
TMUX_SFMSET[7:0] (Table 131)Signal Fail M Set. Threshold of the number of bad monitoring
blocks in an observation interval. If the number of bad blocks
is below this threshold, then SF is cleared.
TMUX_SFBSET[15:0] (Table 131)Signal Fail B Set. Number of monitoring blocks.
TMUX_SFNSCLEAR[18:0] (Table 131)Signal Fail Ns Clear . Number of frames in a monitoring block
for SF.
TMUX_SFLCLEAR[3:0] (Table 131)Signal Fail L Clear. Error threshold for determining if a moni-
toring block is bad.
TMUX_SFMCLEAR[7:0] (Table 131)Signal Fail M Clear. Threshold of the number of bad monitor-
ing blocks in an observation interval. If the number of bad
blocks is below this threshold, then SF is cleared.
TMUX_SFBCLEAR[15:0] (Table 131)Signal Fail B Clear. Number of monitoring blocks.
TMUX_SFB1B2SEL (Table 105 on page 97)Signal Fail B1/B2 Error Count Select. Control bit, when set
to a logic 0, causes the signal fail bit error rate algorithm to
use B1 errors; when set to a logic 1, causes the signal fail bit
error rate algorithm to use B2 errors.
TMUX_SFSET (Table 88 on page 79)Signal Fail Set. Allows the signal degrade algorithm to be
forced into the failed state (active 0 to 1).
TMUX_SFCLEAR (Table 88)Signal Fail Clear. Allows the signal degrade algorithm to be
forced into the normal state (active 0 to 1).
TMUX_RHSSF (Table 101 on page 94)Signal Fail BER Algorithm State Bit.
TMUX_RHSSFD (Table 92 on page 81)Signal Fail BER Algorithm Delta Bit.
TMUX_RHSSFM (Table 96 on page 90)Signal Fail BER Algorithm Mask Bit.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
390 Agere Systems Inc.
17 TMUX Functional Description (continued)
Path Overhead Access Channel (POAC) Drop. The TMUX provides one path overhead access channel (POAC
output channel). The TMUX can receive up to three STS-1 signals. There are two register bits,
TMUX_RPOAC_SEL[1:0] (Table 128 on page 117), to designate which STS-1s POH will be dropped onto the
POAC channel. TMUX_RPOAC_SEL[1:0] = 01 designates STS-1 #1, TMUX_RPOAC_SEL[1:0] = 10 designates
STS-1 #2, and TMUX_RPOAC_SEL[1:0] = 11 designates STS-1 #3. TMUX_RPOAC_SEL[1:0] = 00 designates
that the RPOAC channel is not driven by the TMUX.
The POAC channel consists of the following signals:
A 576 kHz inverted clock signal sourced by the TMUX (RPOACCLK, pin AE3).
A 576 kbits/s data signal sourced by the TMUX (RPOACDATA, pin AD4).
An 8 kHz synchronization signal, sourced by the TMUX (RPOACSYNC, pin AF4). The sync signal is normally
low. During the last clock period of each frame coincident with the least significant bit of the last byte, the sync
signal is high.
The data signal is partitioned into frames of 9 bytes. The frame repetition rate is 8 kHz. Each byte consists of 8 bits
that are transmitted/received most significant bit first. The MSB of the second byte of each frame contains an
odd/even parity bit over the 72 bits of the previous frame. The remaining 7 bits of this byte are not specified.
Bytes shown in Table 541 summarize the access capabilities of the receive POAC.
Table 541. Path Overhead Byte Access
Even or odd parity can be inserted into the first bit of the MSB byte of the POAC outgoing frame. Parity is selected
with TMUX_RPOAC_OEPINS (Table 128 on page 117).
AIS-P Insertion and AUTO_AISO Generation. Upon detecting certain failure conditions, the TMUX asserts the
external output signals named AUTO_AIS[1—3] (pins AD6, AE6, and AC6). The AUTO_AIS[1—3] signals, one per
STS-1, also informs the other blocks within the Supermapper to insert AIS downstream due to detected failures.
The following conditions can cause AUTO_AISO[1—3] signals to be asserted: line AIS, LOC (STS-1 mode only),
LOS, LOF, OOF, LOP-P, SF (B1, B2, or B3), SD (B1, B2, or B3), payload label mismatch, or payload unequipped.
Each condition can be individually inhibited from contributing to the internal AUTO_AISO[1—3] signals. For concat-
enated signals (STS-3c or STM-1), all AUTO_AISO[1—3] signals should be driven coincidentally. In STS-3 mode,
each STS-1 signal has a corresponding AUTO_AISO signal.
Table 540. Signal Fail or Signal Degrade Recommended Programming Values
Set
Threshold NsSet LSet MSet BSet Clear
Threshold NsClear LClear MClear BClear
1x10–3 0x00001 0x5 0x3D 0x003D 1x10–4 0x00001 0x6 0x03 0x0007
1x10–4 0x00006 0x8 0x03 0x0007 1x10–5 0x00006 0x2 0x03 0x0007
1x10–5 0x00030 0x6 0x03 0x0007 1x10–6 0x00030 0x2 0x03 0x0007
1x10–6 0x001E0 0x6 0x03 0x0007 1x10–7 0x001E0 0x2 0x03 0x0007
1x10–7 0x01275 0x6 0x04 0x0009 1x10–8 0x01275 0x2 0x04 0x0009
1x10–8 0x0B5A4 0x6 0x04 0x0009 1x10–9 0x0B5A4 0x2 0x03 0x0009
1x10–9 0x3F7A0 0x4 0x05 0x0013 1x10–10 0x3F7A0 0x2 0x02 0x000F
J1
POH Parity
C2
G1
F2
H4
F3
K3
N1
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
391Agere Systems Inc.
17 TMUX Functional Description (continued)
The following boolean expression is the criteria for AUTO_AIS and send path AIS. The expressions represent com-
binations of signal status states register bits and inhibit state register bits that form the criteria.
Criteria for AUTO_AISO<n> =
((TMUX_RLAISMON AND TMUX_RLAISMON_AISINH AND TMUX _RPSMUXSEL) OR
(TMUX_RILOC AND TMUX_RILOC_AISINH AND TMUX_RPSMUXSEL) OR
(TMUX_RHSLOS AND TMUX_RHSLOS_AISINH AND TMUX_RPSMUXSEL) OR
(TMUX_RHSLOF AND TMUX_RHSLOF_AISINH) OR
(TMUX_RHSOOF AND TMUX_RHSOOF_AISINH) OR
(TMUX_RLOP<n> AND TMUX_RLOP_AISINH) OR
(TMUX_RHSSF AND TMUX_RHSSF_AISINH AND TMUX_RPSMUXSEL) OR
(TMUX_RHSSD AND TMUX_RHSSD_AISINH AND TMUX_RPSMUXSEL) OR
(TMUX_RSFB3<n> AND TMUX_RSFB3_AISINH) OR
(TMUX_RSDB3<n> AND TMUX_RSDB3_AISINH) OR
(TMUX_RPLMP<n> AND TMUX_RHPLMP_AISINH) OR
(TMUX_RUNEQP<n> AND TMUX_RUNEQP_AISINH) OR
(TMUX_RTIMP<n> AND TMUX_RTIMP_AISINH) OR
(TMUX_RPAIS_INS))
In addition to generating the external AUTO_AIS signal, the TMUX can insert path AIS into the received signal prior
to driving it onto the low-speed telecom bus. The conditions for sending path AIS include some of the above condi-
tions. The same inhibit bits are used as above. Note that the above AUTO_AISO[1—3] signal generation is on a
per STS-1 basis, while sending path AIS occurs on the complete STS-3/STM-1 signal (or STS-1 for STS-1 only
mode).
Criteria for Send Path AIS =
((TMUX_RLAISMON AND TMUX_RLAISMON_AISINH AND TMUX_RPSMUXSEL) OR
(TMUX_RHSLOS AND TMUX_RHSLOS_AISINH AND TMUX_RPSMUXSEL) OR
(TMUX_RHSLOF AND TMUX_RHSLOF_AISINH) OR
(TMUX_RHSOOF AND TMUX_RHSOOF_AISINH) OR
(TMUX_RLOP<n> AND TMUX_RLOP_AISINH) OR
(TMUX_RHSSF AND TMUX_RHSSF_AISINH AND TMUX_RPSMUXSEL) OR
(TMUX_RHSSD AND TMUX_RHSSD_AISINH AND TMUX_RPSMUXSEL) OR
(TMUX_RPAIS_INS))
Receive Side Telecom Bus Interface. The TMUX outputs one parallel clock (RLSCLK, pin V4), three sync signals
(RLSSPE, RLSJ0J1V1, and RLSV1; pin numbers V1, V3, and W4), an 8-bit data bus (RLSDATA[7:0], pins R1, R3,
T4, T2, T3, U4, U2, and U3), and an odd/even (RLSPAR, pin V2) parity signal. The data bus carries either three
STS-1/TUG-3 signals, each in their own time slot, or it carries one STS-1 signal where the parallel clock operates
at 6.48 MHz instead of 19.44 MHz.
5-9008(F)
Figure 28. Receive Low-Speed Bus Interface Signals for STS-3/STM-1 Signals
A1-1 A1-2 A1-3 A2-1 A2-3 J0-1 J0-2 J0-3 J1-1 J1-2 J1-3 V1-1 V1-2 V1-3A2-2
A1 A2 J0 J1 V1
3 BYTES 3 BYTES 3 BYTES 3 BYTES 3 BY TES
RLSSPE
RLSJ0J1V1
RLSV1
RLSDATA[7:0]
RLSCLK
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
392 Agere Systems Inc.
17 TMUX Functional Description (continued)
17.6 Transmit Direction (Transmit Path to SONET/SDH Line)
All functions supported by TMUX in the transmit direction are summarized below:
Tran sm it si de tele co m b us inter fac e
Path overhead access channel (POAC) insert
Path overhead insertion functions
MSP 1 + 1 payload switch
Transport overhead access channel (TOAC) insert
Section and line overhead insertion functions
17.6.1 Transmit Side Telecom Bus Interface
The TMUX transmit side drives a parallel clock (TLSCLK, pin AA2) and three sync signals (TLSSPE, TLSJ0J1V1,
and TLSV1; pins AB2, AB4, and AB3) onto the telecom bus. From these sync signals, the SPE mappers can deter-
mine when to drive data onto the bus. The TMUX receives an 8-bit data bus (TLSDAT A[7:0], pins W2, W1, W3, Y4,
Y2, Y1, Y3, and AA4), and an odd/even (TLSPAR, pin AA3) parity signal from the telecom bus. The data consists
of the SPE for up to 3 STS-1s.
The parallel clock operates at 19.44 MHz for STS-3/STM-1 modes and at 6.48 MHz for STS-1 mode.
5-9009(F)
Figure 29. Transmit Low- Speed Bus Interface Signals for STS-3/STM-1 Signals
17.6.2 Transmit Path and Transport Overhead Insertion Diagram
The transmit block consists of two overhead insertion sections. The first section inserts the path overhead (POH)
bytes into the payload data to create an STS-3/STM-1/STS-1 SPE. After POH insertion, there is an MSP 1 + 1 pro-
tection switch on the payload. After the switch selection is made, the transport overhead bytes are added to the
SPE to generat e a compl ete SONE T /SDH frame .
A1-1 A1-2 A1-3 A2-1 A2-3 J0-1 J0-2 J0-3 J1-1 J1-2 J1-3 V1-1 V1-2 V1-3A2-2
A1 A2 J0 J1 V1
3 BYTES 3 BYTES 3 BYTES 3 BYTES 3 BYTES
TLSSPE
TLSJ0J1V1
TLSV1
TLSDATA[7:0]
TLSCLK
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
393Agere Systems Inc.
17 TMUX Functional Description (continued)
5-9010(F)r.2
Figure 30. Transmit Direction POH and TOH Insertion Diagram
The first section, which is the path overhead section, is broken down into the following functional parts:
J1 path trace insert
B3 calculation and insert
C2 signal label insert
REI-P and RDI-P insert
Path user byte F2 insert
H4 multiframe insert
Path user byte F3 insert
K3 insert
Tandem connection byte N1 insert
AIS-P insert
SCRAM. INSERT INSERT
AIS
MSOH
INSERT LINE/MSOH
F1 B2
GENERATE K1/K2 RDI-L M0
REI-L SYNC
APS
B2 K1
K2
INSERT
K2 M0 S1
STATUS
B1 F1
SECTION/RSOH
INSERT J0
A1/A2
TRANSMIT PATH TO SONET/SDH LINE (TRANSMIT DIRECTION)
TRANSMIT DATA
TOAC INSERT
D4—D12 AND E2
B1, E1, F1, D1—3 INSERT
H4
INSERT
F2
INSERT
F3
INSERT
J1 INSERT
N1 INSERT
C2 INSERT
H4
G1
REI-P
INSERT
G1
RDI-P
INSERT
K3
APS
INSERT
N1 C2 F3 F2K3 G1 G1J1
INSERT
AIS-P
POAC IN SERT
F2, F3, C2, N1, AND J1
INSERT PATH OVERHEAD BYTES
INSERT
TELECOM BUS
TRANSMIT PROTECTION
MSP 1 + 1
SWITCH
SWITC H BU S DATA
[2:0]
B1
GENERATE
B3
GENERATE
B3
INSERT
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
394 Agere Systems Inc.
17 TMUX Functional Description (continued)
The second section after the switch, the transport overhead section, is broken down into the following functional
parts:
TOAC insert
Sync status byte (S1) insert
M0/M1—REI-L insert
K1 and K2 insert
AIS-L insert
B2 calculation and insert
F1 byte insert
B1 generate and error insert
Scrambler
J0 inse rt control
A2 error insert
All insert control functions that are inhibited will insert all zeros or all ones, depending on the value of microproces-
sor register bit, SMPR_OH_DEFLT (Table 77 on page 70).
17.6.3 POAC Insert
One path overhead access channel (POAC) is provided on-chip to provision the path overhead (POH) portion of
the outgoing frame. The TMUX transmits up to three STS-1s. The register bits TMUX_TPOAC_SEL[1:0]
(Table 128 on page 117) designate which STS-1s POH is inserted from the transmit POAC channel.
TMUX_TPOAC_SEL[1:0] = 00 designates no TMUX_TPOAC insertion, TMUX_TPOAC_SEL[1:0] = 01 designates
STS-1 #1, TMUX_TPOAC_SEL[1:0] = 10 designates STS-1 #2, and TMUX_TPOAC_SEL[1:0] = 11 designates
STS-1 #3.
A POAC channel consists of the following signals:
A 576 kHz inverted clock signal sourced by the TMUX (TPOACCLK, pin AE4).
A 576 kbits/s serial data signal received by the TMUX in the transmit direction (TPOACDATA, pin AD5).
An 8 kHz synchronization signal (TPOACSYNC, pin AC5), sourced by the TMUX. The sync signal is normally low.
During the last clock period of each frame, coincident with the least significant bit of the eighth byte, the sync signal
is high.
The data signal is partitioned into frames of 9 bytes. The frame repetition rate is 8 kHz. Each byte consists of 8 bits
that are transmitted/received most significant bit first. The MSB of the first byte of each frame contains an odd/even
parity bit over the 72 bits of the previous frame. The remaining 7 bits of this byte are not specified. The B3, G1, and
H4 transmit path overhead bytes are not provisionable via the POAC channel.
Bytes shown in Table 542 summarize the access capabilities of the transmit POAC channel. X indicates a don’t
care.
Table 542. Path Overhead Byte Access—Transmit Direction
J1 X F3
POH Parity F2 K3
C2 X N1
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
395Agere Systems Inc.
17 TMUX Functional Description (continued)
An event indication TMUX_TPOAC_PE (Table 90 on page 80), interrupt mask bit TMUX_TPOAC_PM (Table 94
on page 89), is provided to indicate parity errors for the POAC channel. Odd (logic 0)/even (logic 1) parity is
checked and is configured with TMUX_TPOAC_OEPMON (Table 127 on page 115).
Table 543 summarizes the insertion options for the specified overhead bytes for POAC. The TMUX allows a fixed
default value (all zeros or all ones) to be inserted on the corresponding POAC value. All control signals are active-
high.
Table 543. TPOAC Control Bits
17.6.4 AIS Path Generation
Path AIS is specified as all ones in the entire STS-1 signal before scrambling, excluding the transport overhead
(section and li ne ove rhead ).
Path AIS can be inserted for each STS-1 in the STS-3 using register bits TMUX_TLS_PAISINS[3:1] (Table 115 on
page 104).
17.6.5 J1 Insert Control
A 64-byte sequence stored in TMUX_TJ1DINS[1—3][1—64][7:0] (Table 150 on page 125, Table 151, and
Table 152), will be inserted into the outgoing J1 byte if TMUX_THSJ1INS (Table 118 on page 107) is set to 1. Oth-
erwise, the associated POAC value is inserted when TMUX_TPOAC_J1 (Table 128 on page 117) is a logic 1, or
the default value is inserted when TMUX_TPOAC_J1 is logic 0.
17.6.6 B3 BIP-8 Calculation and Insert
The B3 bytes are allocated for a path overhead error monitoring function. This function will be a bit interleaved par-
ity 8 code (BIP-8) using even parity. The BIP-8 is computed before scrambling over all bits of the previous STS-1
frame except for the first three columns consisting of the section and line overhead and is placed in byte B3 of the
current frame, also before scrambling.
A bit error rate can be inserted on any B3 byte with TMUX_THSB3ERRINS[1—3] (Table 125 on page 114) and
microprocessor interface block SMPR_BER_INSRT (Table 75 on page 68) bit. When TMUX_THSB3ERRINS[1—
3] is asserted, the corresponding B3 byte is inverted each time the SMPR_BER_INSRT bit is asserted.
17.6.7 C2 Signal Label Byte Insert
When TMUX_THSC2INS[1—3] = 1 (Table 118 on page 107), the value in TMUX_TC2INS[1—3][7:0] (Table 134
on page 120) is inserted into the C2 byte of the outgoing signal. Otherwise, the associated POAC value is inserted
when TMUX_TPOAC_C2 = 1 (Table 128 on page 117). If both TMUX_THSC2INS and TMUX_TPOAC_C2 = 0,
then the value inserted depends on the microprocessor interface block, SMPR_OH_DEFL T (Table 77 on page 70),
bit value. If SMPR_OH_DEFLT = 0, then all zeros are inserted. If SMPR_OH_DEFLT = 1, then all ones are
inserted.
Overhead Bytes Register Control Bits Values
0 (Default Value) 1
J1 TMUX_TPOAC_J1 (Table 128 on page 117)SMPR_OH_DEFLT
(00000000/11111111) TPOAC
Data
C2 TMUX_TPOAC_C2 (Table 128)
F2 TMUX_TPOAC_F 2 (Table 128)
F3 TMUX_TPOAC_F 3 (Table 128)
K3 TMUX_TPOAC_K3 (Table 128)
N1 TMUX_TPOAC_N1 (Table 128)
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
396 Agere Systems Inc.
17 TMUX Functional Description (continued)
17.6.8 Path RDI (RDI-P) Insert
When TMUX_THSRDIPINS = 1 (Table 118 on page 107), then data from TMUX_TRDIPINS[1—3][2:0] (Table 124
on page 112) is written into the corresponding three STS-1 G1 byte output bits (G1[3:1]). For STS-3 mode, each
STS-1 signal carries its own G1 value. For STM-1 mode, only TMUX_TRDIPINS1[2:0] is written into the first
STS-1 location. When TMUX_THSRDIPINS = 0, hardware insert is enabled for RDI-P insertion. Each defect contri-
bution to the RDI-P outgoing code can be inhibited. There are two modes supported for path RDI insertion. One
mode conforms to the earlier 1-bit version of the standard. The other mode, enhanced RDI-P mode, uses a 3-bit
RDI-P code and conforms to the current version of the standard. When TMUX_TEPRDI_MODE = 0 (Tabl e 12 0 on
page 111), the TMUX sends a 3-bit code that conforms to the earlier 1-bit version of the standards. If
TMUX_TEPRDI_MODE = 1, the TMUX will send a 3-bit code conforming to the current enhanced path RDI encod-
ing. Note that for nonenhanced RDI-P mode, the relevant defects are AIS-P and LOP-P. For enhanced RDI-P
mode, the relevant defects are AIS-P, LOP-P, PLM-P, and UNEQ-P.
When a failure condition exists that will cause RDI-P to be generated via hardware, the generation of RDI-P must
last for at least 20 frames before clearing, even if the original failure cause has cleared in less than 20 frames.
Table 544 describes the encoding of the path RDI defects.
Table 544. RDI-P Defects for Enhanced RDI-P Mode
The TMUX provides a protection switch MUX for RDI-P insertion. The MUX is controlled by TMUX_TPREIRDISEL
(Table 117 on page 105). If TMUX_TPREIRDISEL = 1, then the RDI-P value for insertion is taken from the value
on the protection board rather than from the receive side of the same TMUX.
17.6.9 REI-P: G1(7:4) Insert
Four bits of the G1 byte G1(7:4) are allocated for use as path remote error indication (REI). For STS-1 signals and
for STM-1 signals, these bits convey the count (in the range of 0 to 8) of interleaved bit blocks that have been
detected in error by the BIP-8 (B3) detector on the received signal.
The automatic insertion of path REI can be inhibited on an STS-1 basis by programming the corresponding register
bits TMUX_TPREIINS[1:3] (Table 125 on page 114) to 1. For STM-1 mode, only TMUX_TPREIINS[1] is relevant. If
the register bit(s) TMUX_TPREIINS[1:3] are programmed to 1, then one error is inserted into the G1 byte for that
particular STS-1(s) each time the microprocessor interface block SMPR_BER_INSRT (Table 75 on page 68) bit is
asserted.
The TMU X pro v id es a p ro t ec t io n s w it ch MU X fo r R E I- P i nsertio n. T h e M UX i s con tr ol l e d by TMUX_TP R EI RD I SE L
(Table 117 on page 105). If TMUX_TPREIRDISEL = 1, then the REI-P value for insertion is taken from the value
on the protection board rather than from the receive side of the same TMUX.
G1 Triggers
Bit 3 Bit 2 Bit 1
0 0 0 No defects (nonenhanced RDI-P mode).
0 0 1 No defects (enhanced RDI-P mode).
0 1 0 LCD-P, PLM-P (LCD-P not supported in Supermapper).
0 1 1 No defects (nonenhanced RDI-P mode).
1 0 0 AIS-P, LOP-P (nonenhanced RDI-P mode).
1 0 1 AIS-P, LOP-P (enhanced RDI-P mode).
1 1 0 TIM-P, UNEQ-P (enhanced RDI-P mode).
1 1 1 AIS-P, LOP-P (nonenhanced RDI-P mode).
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
397Agere Systems Inc.
17 TMUX Functional Description (continued)
17.6.10 F2 Byte Insert
When TMUX_THSF2INS = 1 (Table 118 on page 107), the value in TMUX_TF2INS[1—3][7:0] (Table 124 on
page 112) is inserted into the outgoing signal. Otherwise, the associated POAC value is inserted when
TMUX_TPOAC_F2 = 1 (Table 128 on page 117). If both TMUX_THSF2INS and TMUX_TPOAC_F2 = 0, then the
value inserted depends on the value of microprocessor interface block SMPR_OH_DEFLT (Table 77 on page 70)
bit. If SMPR_OH_DEFLT = 0, then all zeros are inserted. If SMPR_OH_DEFLT = 1, then all ones are inserted.
17.6.11 H4 Insert Control
A 4-byte sequence (0, 1, 2, and 3) will be inserted into the outgoing H4 bytes. Note that the assertion of pin TLSV1
(pin AB3) occurs after the J1 byte(s) during the frame where the H4 count equals one.
17.6.12 F3 Byte Insert
When TMUX_THSF3INS = 1 (Table 118), the value in TMUX_TF3INS[1—3][7:0] (Table 124 on page 112) is
inse rte d into the outg oin g signal. Otherwise, the associated POAC value is inserted when TMUX_TPOAC_F3 = 1
(Table 128 on page 117). If both TMUX_THSF3INS and TMUX_TPOAC_F3 = 0, then the value inserted depends
on the value of microprocessor interface block SMPR_OH_DEFLT (Table 77 on page 70) bit. If
SMPR_OH_DEFLT = 0, then all zeros are inserted. If SMPR_OH_DEFLT = 1, then all ones are inserted.
17.6.13 K3 Byte Insert
When TMUX_THSK3INS = 1 (Table 118 on page 107), the value in TMUX_TK3INS[1—3][7:0] (Table 124) is
inse rte d into the outg oin g signal. Otherwise, the associated POAC value is inserted when TMUX_TPOAC_K3 = 1
(Table 128 on page 117). If both TMUX_THSK3INS and TMUX_TPOAC_K3 = 0, then the value inserted depends
on the value of microprocessor interface block SMPR_OH_DEFLT (Table 77 on page 70) bit. If
SMPR_OH_DEFLT = 0, then all zeros are inserted. If SMPR_OH_DEFLT = 1, then all ones are inserted.
17.6.14 N1 Byte Insert
When TMUX_THSN1INS = 1 (Table 118 on page 107), the value in TMUX_TN1INS[1—3][7:0] (Table 124 on
page 112) is inserted into the outgoing signal. Otherwise, the associated POAC value is inserted when
TMUX_TPOAC_N1 = 1 (Table 128). If both TMUX_THSN1INS and TMUX_TPOAC_N1 = 0, then the value
inserted depends on the value of microprocessor interface block SMPR_OH_DEFLT (Table 77 on page 70) bit. If
SMPR_OH_DEFLT = 0, then all zeros are inserted. If SMPR_OH_DEFLT = 1, then all ones are inserted.
17.6.15 MSP 1 + 1 Payload Switch
For the working transmit high-speed data output (THSDP/N, pins AF9/AE9), it is possible to select the normal
transmit path low-speed data by setting TMUX_TPSMUXSEL2 = 0 (Table 116 on page 105), or the receive-side
protection input data by setting TMUX_TPSMUXSEL2 = 1. Note that if the receive-side protection input is selected,
then the local clock and frame sync are generated based on the receive-side protection inputs as well.
To create the transmit high-speed protection outputs (TPSD155P/N and TPSC155P/N; pins AF13/AE13 and
AC12/AD13), it is possible to select the normal transmit path low-speed input data with TMUX_TPSMUXSEL3 = 0
(Table 116 on page 105) or the receive-side working inputs with TMUX_TPSMUXSEL3 = 1.
Note: Clocks and timing signals are selected by TMUX_TPSMUXSEL3 as well as the parallel data.
17.6.16 Transmit Transport Overhead Access Channel (TTOAC)
The TMUX provides a transmit transport overhead access channel (TTOAC) to provision the TOH portion of the
outgoing frame. The TTOAC channel supports three modes of operation based on values in
TMUX_TTOAC_D13MODE and TMUX_TTOAC_D412MODE (Table 127 on page 115).
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
398 Agere Systems Inc.
17 TMUX Functional Description (continued)
The TTOAC channel consists of the following signals:
A data signal received by the TMUX in the transmit direction (TTOACDATA, pin AE2). The data bytes per frame
received depend on the values of TMUX_TTOAC_D13MODE and TMUX_TTOAC_D412MODE. See Table 545.
A clock signal sourced by the TMUX (TTOACCLK, pin AB6). The clock frequency depends on the values of
TMUX_TTOAC_D13MODE and TMUX_TTOAC_D412MODE. See Table 545.
An 8 kHz synchronization signal (TTOACSYNC, pin AF3) is sourced by the TMUX. This sync signal is normally
low; during the last clock period of each frame, coincident with the least significant bit of the last byte, the sync
signal is high.
Table 545. Transmit TOAC Modes
Transmit TOACDCC1 Through DCC3 Mode. In this mode, DCC bytes 1 to 3 are received serially on the data
pin. The clock rate is 192 kHz. The data bytes are received MSB first, and the sequence of data bytes is DCC1,
DCC2, and DCC3. The data signal is partitioned into frames of 3 bytes. The frame repetition rate is 8 kHz.
Transmit TOACDCC4 Through DCC12 Mode. In this mode, DCC bytes 4 to 12 are received serially on the
data output. The clock rate is 576 kHz. The data bytes are received MSB first, and the sequence of data bytes is
DCC4, DCC5, DCC6, DCC7, DCC8, DCC9, DCC10, DCC11, and DCC12. The data signal is partitioned into
frames of 9 bytes. The frame repetition rate is 8 kHz.
Transmit TOACFull TOH Access Mode. In this mode, where TMUX_TTOAC_D13MODE = 0 and
TMUX_TTOAC_D412MODE = 0 (Table 127 on page 115 ), the data signal (TTOACDATA, pin AE2) is partitioned
into frames of 81 bytes. The frame repetition rate is 8 kHz. Each byte consists of 8 bits that are transmitted/
received most significant bit first. The MSB of the first byte of each frame contains an odd/even parity bit over the
648 bits of the previous frame. The remaining 7 bits of this byte are not specified.
Bytes shown in Table 546 summarize the access capabilities of the transmit TOAC. This table describes the possi-
ble bytes in the outgoing frame that can be provisioned from the values on the TOAC channel. There are additional
mode bits described in Table 547 that must be programmed to allow insertion from the TOAC channel. Bytes indi-
cated in bold type below are not specified in the standard, but are available for insertion into the outgoing frame via
the registe r bit TMUX_T TOAC_AVAIL (Table 127 on page 115). An X in Table 546 indicates bytes that are don’t
cares; the values of these bytes in the outgoing transmit frame are not related to the values on the TTOAC chan-
nel.
Table 546. Transmit Transport Overhead Byte Full Access Mode
TOAC Mode TMUX_TTOAC_D13MODE
Value TMUX_TTOAC_D412MODE
Value Data Bytes
per Frame Clock Rate
DCC1—DCC3 1 X 3 192 kHz
DCC4—DCC12 0 1 9 576 kHz
Full TOH mode 0 0 81 5.184 MHz
OH ParityXXXXXXXX
XB1-2 B1-3 E1 E1-2 E1-3 F1 F1-2 F1-3
D1 D1-2 D1-3 D2 D2-2 D2-3 D3 D3-2 D3-3
XXXXXXXXX
XXXXK1-2K1-3XK2-2K2-3
D4 D4-2 D4-3 D5 D5-2 D5-3 D6 D6-2 D6-3
D7 D7-2 D7-3 D8 D8-2 D8-3 D9 D9-2 D9-3
D10 D10-2 D10-3 D11 D11-2 D11-3 D12 D12-2 D12-3
S1 Z1-2 Z1-3 Z2 Z2-2 X E2 E2-2 E2-3
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
399Agere Systems Inc.
17 TMUX Functional Description (continued)
Table 547 summarizes the insertion options for the specified overhead bytes for TOAC in full TOH access mode.
The TMUX allows a default value (all zeros if microprocessor interface block SMPR_OH_DEFLT = 0 (Table 77 on
page 70), and all ones if SMPR_OH_DEFLT = 1) to be inserted on the corresponding TOAC value. All control sig-
nals are active-high.
Table 547. TTOAC Control Bits in Full Access Mode
An event indication must be provided to indicate parity errors for the TOAC channel. Odd or even parity is checked
depending on TMUX_TTOAC_OEPMON (Table 127 on page 115); 0 selects odd parity and 1 selects even parity.
A parity error is reported in status register bit TMUX_TTOAC_PE (Table 90 on page 80), and the interrupt is
maskable with TMUX_TTOAC_PM (Table 94 on page 89).
17.6.17 Sync Status Byte (S1) Insert
When TMUX_THSS1INS = 1 (Table 117 on page 105), the value in TMUX_TS1INS[7:0] (Table 122 on page 112)
is inserted into the S1 byte of the outgoing signal; otherwise, the associated TOAC value is inserted when
TMUX_TTOAC_S1 = 1 (Table 127 on page 115). If both TMUX_THSS1INS and TMUX_TTOAC_S1 are a logic 0,
then the value inserted depends on the value of the microprocessor interface block SMPR_OH_DEFLT (Table 77
on page 70) bit. If SMPR_OH_DEFLT = 0, then all zeros are inserted. If SMPR_OH_DEFLT = 1, then all ones are
inserted.
17.6.18 REI-L: M1 Insert
For STS-3/STM-1 modes, the M1 byte is allocated for use as a line remote error indication (REI). For STS-1, bits 0
to 3 of the M0 byte are used. The M0 or M1 bytes convey the count of interleaved bit blocks that have been
detected in error by the line BIP-8 (B2) detector on the received signal.
This function can be inhibited by asserting TMUX_THSLREIINH (Table 117 on page 105). A bit error in the M0/M1
byte can be inserted under user control. When TMUX_TLREIINS (Tab le 125 on page 114 ) is asserted, the corre-
sponding M0 or M1 byte will indicate one error each time the microprocessor interface block SMPR_BER_INSRT
(Table 75 on page 68 ) bit is asserted.
The TMUX provides a protection switch MUX for REI-L insertion, controlled by TMUX_TLREIRDISEL (Table 117
on page 105). If TMUX_TLREIRDISEL = 1, then the REI-L value for insertion is taken from the value on the protec-
tion board rather than from the receive side of the same TMUX.
Overhead Bytes Register Control Bits Value of the Register Control Bits
0 (Default Value) 1
E1 TMU X_T TO AC_ E1 (Table 1 27 on page 115)SMPR_OH_DEFLT
(00000000 or 11111111) TOAC Data
F1 TMUX_TTOAC_F1 (Table 127)
D1—D3 TMUX_TTOAC_D1TO3 (Table 127)
D4—D12 TMUX_TTOAC_D4T O12 (Table 127)
S1 TMU X_T TO AC_ S1 (Table 127)
E2 TMU X_T TO AC_ E2 (Table 127)
All remai n ing b yte s in
Table 546 TMUX_TTOAC_AVAIL (Table 127)
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
400 Agere Systems Inc.
17 TMUX Functional Description (continued)
17.6.19 APS Value and K2 Insert Control Parameters
When TMUX_THSAPSINS = 1 (Table 117 on page 105), the K1 byte and the five most significant bits of the K2
byte are written from TMUX_TAPSINS[12:0] (Table 123 on page 112). When TMUX_THSAPSINS = 0, either all
zeros or all ones will be written, depending on the value of microprocessor interface block SMPR_OH_DEFLT
(Table 77 on page 70) bit.
An APS babbling test is controlled with TMUX_TAPSBABINS (Table 126 on page 115). Setting
TMUX_TAPSBABINS = 1 forces the K1[7:0], K2[7:3) to an inconsistent state; no three consecutive values are con-
tinuou sl y the sam e.
When the transmit K2 software insert bit TMUX_THSK2INS = 1 (Table 117 on page 105), data from bits
TMUX_TK2INS[2:0] (Table 123 on page 112) is written into the K2[2:0] output bits. When TMUX_THSK2INS = 0,
hardware insertion of RDI-L is enabled.
17.6.20 Criteria for Insert Line RDI
Hardware insertion of line RDI is generated using the following equation. Each defect contribution to line RDI can
be individ ual ly inhi bit ed.
(TMUX_RHLOC AND TMUX_ TRILOC_L RDIINH ) OR
(TMUX_RHSLOS AND TMUX_TRLOS_LRDIINH) OR
(TMUX_RHSLOF AND TMUX_TRLOF_LRDIINH) OR
(TMUX_RHSOOF AND TMUX_TROOF_LRDIINH) OR
(TMUX_RLAISMON AND TMUX_TRLAISMON_LRDIINH) OR
(TMUX_RHSSF AND TMUX_TRSF_LRDIINH) OR
(TMUX_RHSSD AND TMUX_TRSD_LRDIINH)
When a failure condition exists that will cause RDI-L to be generated, the generation of RDI-L must last for at least
20 frames before clearing, even if the original failure cause has cleared in less than 20 frames.
The TMUX provides a protection switch MUX for RDI-L insertion. The MUX is controlled by TMUX_TLREIRDISEL
(Table 117 on page 105). If TMUX_TLREIRDISEL = 1, then the RDI-L value for insertion is taken from the value on
the protection board rather than from the receive side of the same TMUX.
17.6.21 Line AIS Generation
Line AIS is specified as all ones in the entire STS/STM signal before scrambling, excluding the section overhead.
Line AIS can be generated by setting TMUX_THSLAISINS = 1 (Table 117 on page 105).
17.6.22 B2 BIP-8 Calculation and Insert
The B2 byte is allocated for a line overhead error monitoring function. This function will be a bit interleaved parity-8
code (BIP-8) using even parity. The BIP-8 is computed before scrambling, over all the bits of the previous STS-1
frame (except for the 9 bytes of section overhead) and is placed in byte B2 of the current frame also before scram-
bling.
A bit error rate can be inserted on any B2 byte. When bit(s) TMUX_THSB2ERRINS[1—3] (Table 125 on page 114)
is (are) asserted, the corresponding B2 byte is inverted each time the microprocessor interface block
SMPR_BER_INSRT (Tab le 75 on page 68) bit is asserted.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
401Agere Systems Inc.
17 TMUX Functional Description (continued)
17.6.23 F1 Byte Insert
When TMUX_THSF1INS = 1 (Table 117 on page 105), the value in TMUX_TF1INS[7:0] (Table 122 on page 112)
is inserted into the F1 byte of the outgoing signal. Otherwise, the associated TOAC value is inserted when
TMUX_TTOAC_F1 = 1 (Table 127 on page 115). If both TMUX_THSF1INS and TMUX_TTOAC_F1 = 0, then the
value inserted depends on the value of microprocessor interface block SMPR_OH_DEFLT (Table 77 on page 70)
bit. If SMPR_OH_DEFLT = 0, then all zeros are inserted. If SMPR_OH_DEFLT = 1, then all ones are inserted.
17.6.24 B1 Generate and Error Insert
The section bit interleaved parity code (BIP-8) byte (even parity) is used to check for transmission errors over a
section. Its value is calculated over all bits in the previous frame after scrambling and placed in the B1 byte of time
slot 1 before scrambling.
A bit error rate can be inserted on the B1 byte. When TMUX_THSB1ERRINS = 1 (Table 125 on page 114), the B1
byte is inverted each time the microprocessor interface block SMPR_BER_INSRT (Table 75 on page 68) bit is
asserted.
17.6.25 Scrambler
The outgoing frame will be scrambled with the frame synchronous scrambler of length 127 and generating polyno-
mial x7 + x6 + 1. The entire STS/STM signal will be scrambled except for the first row of overhead. The scrambler
will be set to 1111111 on the first byte following the last overhead byte in the first row.
For test purposes, the scrambler will be disabled when TMUX_THSSCR = 0 (Table 116 on page 105).
17.6.26 J0 Inser t Control
A 16-byte sequence stored in TMUX_TJ0DINS[1—16][7:0] (Table 143 on page 123) will be inserted into the outgo-
ing J0 byte if TMUX_THSJ0INS = 1 (Table 117 on page 105). If TMUX_THSJ0INS = 0, then the value inserted
depends on the value of microprocessor interface block SMPR_OH_DEFLT (Table 77) bit. If SMPR_OH_DEFLT =
0, then all zeros are inserted. If SMPR_OH_DEFLT = 1, then all ones are inserted.
17.6.27 Z0-2, Z0-3 Insert Control
The two bytes, Z0-2 and Z0-3, that follow J0 are not scrambled. If TMUX_THSZ0INS = 1 (Table 117), then the val-
ue s s t ored in TM UX_TZ0 2I NS [ 7 :0] ( Table 121 on page 1 12) and TMUX_TZ03INS[7:0] (Table 121) will be inserted.
If TMUX_THSZ0INS = 0, then the value inserted depends on the value of microprocessor interface block
SMPR_OH_DEFLT bit. If SMPR_OH_DEFLT = 0, then all zeros are inserted. If SMPR_OH_DEFLT = 1, then all
ones are inse r ted.
17.6.28 A2 Error Insert
The TMUX allows, under software control, from 1 to 32 continuous frames to have an inverted A2-1 (0x28 to 0xD7)
pattern in the outgoing frame. The value in TMUX_TA2ERRINS[4:0] (Table 116) specifies the number of frames to
insert errors while assertion of microprocessor interface block, SMPR_BER_INSRT bit, starts the error insertion
process.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
402 Agere Systems Inc.
18 SPE Mapper Functional Description
Table of Con t ents
Contents Page
18 SPE Mapper Functional Description ...............................................................................................................402
18.1 Introduction...............................................................................................................................................404
18.2 Features...................................................................................................................................................404
18.3 SPE Mapper Functional Block Diagrams.................................................................................................405
18.4 TUG-2 to AU-3/STS-1 SPE Mapping (Used in North American Systems)...............................................408
18.5 TUG-2 to TUG-3 Mapping (Used in ITU/ETSI Standard-Based Systems)...............................................408
18.6 DS3 to AU-3/STS-1 SPE Mapping (Used in Telcordia/ANSI Standards-Based Systems).......................409
18.7 DS3 to TUG-3 Mapping (Used in ITU/ETSI Standards-Based Systems).................................................409
18.8 SPE Mapper Basic Configuration.............................................................................................................409
18.9 DS3 Configuration....................................................................................................................................409
18.9.1 D S3 M13 .................. ...... ....... ...... ....... ...... ....... ...... ....... ...... ...... .................... ...... ........................... 410
18.9.2 D S3 Loopbac k Channe l ........ ...... ....... ...... ....... ...... ....... ...... ................... ....... ...... ....... .................... 410
18.9.3 DS3 Clear Channel from External Pins ......................................................................................... 410
18.10 Phase Dete ctor for External DS3 PLL.............. ....... ...... ....... ...... ...... ....... ...... .................... ...... ...............410
18.11 Serial STS-1 SPE Channel (NSMI)........................................................................................................411
18.12 TMUX Interface to the SPE Mapper.......................................................................................................412
18.13 PATH Termination Block........................................................................................................................412
18.13.1 Pointer Interpretation Block ........................................................................................................ 413
18.14 SPE Mapper Receive Direction Requirements ......................................................................................416
18.14.1 Loss of Clock and Loss of Sync Monitors ................................................................................... 417
18.14.2 J1 Monitor ................................................................................................................................... 417
18.14.3 B3 BIP-8 Check .......................................................................................................................... 418
18.14.4 Signal Label C2 Byte Monitor ..................................................................................................... 418
18.14.5 Path User Byte F2 Monitor .......................................................................................................... 419
18.14.6 Path User Byte F3 Monitor .......................................................................................................... 420
18.14.7 N1 Monitor .................................................................................................................................. 420
18.14.8 K3 Byte Monitor .......................................................................................................................... 421
18.14.9 AIS-P and RDI-P Detect ............................................................................................................. 421
18.14.10 REI-P Detect ............................................................................................................................. 422
18.14.11 Signal Degrade BER Algorithm ................................................................................................. 422
18.14.12 Signal Fail BER Algorithm ......................................................................................................... 423
18.14.13 POAC Drop ............................................................................................................................... 424
18.14.14 Insertion of AIS-P ...................................................................................................................... 425
18.15 Transmit Direction (to SONET/SDH Line)..............................................................................................426
18.15.1 PATH Insertion Block .................................................................................................................. 426
18.15.2 Loss of Clock and Loss of Sync Detectors ................................................................................. 427
18.15.3 J1 Byte Insert .............................................................................................................................. 427
18.15.4 B3 BIP-8 Calculation and Insert .................................................................................................. 427
18.15.5 C2 Signal Label Byte Insert ........................................................................................................ 427
18.15.6 REI-P G1(7:4) Insert ................................................................................................................... 427
18.15.7 Path RDI (RDI-P) Insert .............................................................................................................. 428
18.15.8 F2 Byte Insert ............................................................................................................................. 428
18.15.9 H4 Insert Control ......................................................................................................................... 428
18.15.10 F3 Byte Insert ........................................................................................................................... 428
18.15.11 K3 Insert Control Parameters ................................................................................................... 429
18.15.12 N1 Insert Control Parameters ................................................................................................... 429
18.16 POAC Insert...........................................................................................................................................429
18.17 AIS Path Generation ..............................................................................................................................430
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
403Agere Systems Inc.
18 SPE Mapper Functional Description (continued)
Table of Conten ts (continued)
Figures Page
Figure 31. SPE Mapper Block with Connections to External Pins and Other Blocks in the Device ......................405
Figure 32. Basic Functional Flow of the SPE Mapper Transmit Section...............................................................404
Figure 33. Basic Functional Flow of the SPE Mapper Receive Section................................................................407
Figure 34. STS-1 NSMI Receive Operation ..........................................................................................................411
Figure 35. STS-1 NSMI Transmit Operation .........................................................................................................412
Figure 36. Receive Direction Path Termination Block...........................................................................................413
Figure 37. Pointer Interpretation State Diagram....................................................................................................414
Figure 38. Transmit Direction Path Insertion Block...............................................................................................426
Tables Page
Table 548. J1 Monitor ............................................................................................................................................418
Table 549. STS Signal Label Defect Conditions....................................................................................................418
Table 550. C2MON Processing .............................................................................................................................419
Table 551. F2 Monitor............................................................................................................................................420
Table 552. F3 Monitor............................................................................................................................................420
Table 553. N1 Monitor ...........................................................................................................................................420
Table 554. K3 Monitor............................................................................................................................................421
Table 555. AIS-P and RDI-P Detect ......................................................................................................................421
Table 556. STS-1 P-REI Interpretation..................................................................................................................422
Table 557. Signal Degrade Parameters.................................................................................................................423
Table 558. Signal Fail Parameters.........................................................................................................................424
Table 559. Path Overhead Byte Access................................................................................................................425
Table 560. RDI-P Defects for Enhanced RDI-P Mode...........................................................................................428
Table 561. Path Overhead Byte Access—Transmit Direction ...............................................................................429
Table 562. TPOAC Control Bits ............................................................................................................................430
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
404 Agere Systems Inc.
18 SPE Mapper Functional Description (continued)
18.1 Introducti on
This section describes the functions of the SPE mapper block.
The SPE mapper is highly configurable; it can operate in two different modes: as an AU-3/STS-1 mapper or as a
TUG-3 mapper. In both modes, it can map/demap data from/to either the VT mapper block, the M13 MUX/deMUX
block, the DS3 clear channel, or the DS3 loopback channel.
The SPE mapper supports numerous automatic monitoring functions. It can provide interrupts to the control sys-
tem, or it can be operated in a polled mode.
Additionally, this block has a built-in auxiliary channel known as the path overhead access channel (POAC). This
channel is mainly used for path overhead insertion and drop functions.
18.2 Features
The SPE mapper accepts/delivers TUG-2 data from/to the VT mapper. The TUG-2 data is mapped/demapped
either to/from an AU-3/STS-1 signal for the North American digital systems or to/from a TUG-3 signal for the
European digital systems.
Flexibility down to TUG-2 level is provided for choosing which TUG-2s (between 1 and 7) are mapped into which
TUG-3s (between 1 and 3) for generating STM-1 signals. Similarly, any TUG-2s (up to 7) may be dropped/termi-
nated from the 21 TUG-2s of an STM-1 signal.
The SPE mapper accepts/delivers DS3 data from/to the M13 MUX/deMUX. The DS3 data is mapped/demapped
either to/from an AU-3/STS-1 signal for the North American digital systems or to/from a TUG-3 signal for the
European digital systems.
The SPE mapper accepts/delivers a clear DS3 signal at 44.736 Mbits/s rate. The clear DS3 signal is mapped/
demapped essentially the same way as the M13 signal described above.
The SPE mapper has a DS3 loopback circuit placed for the functions of demapping and remapping a DS3 signal.
It is particularly useful in cases where a DS3 signal mapped as an AU-3/STS-1 signal is needed to be remapped
as a TUG-3 signal, or vice versa.
The SPE mapper supports a path overhead access channel more commonly known as the POAC channel.
Seven path overhead bytes, namely J1, C2, F2, H4, F3, K3, and N1 may be inserted/dropped through this chan-
nel. This channel works as the master, which means that this channel provides a clock in both transmit and
receive directions, and POH data may be inserted by the user on the transmit side or dropped by the block in the
receive side.
Path overhead byte B3 (BIP error) generation/detection and programmable BIP-2 bit error rate insertion.
Programmable clear on read/clear on write registers.
Signal fail and signal degrade indicators available to report bit error rates above a certain programmable thresh-
old.
Capable of detecting/inserting alarm indication signals (AIS), remote defect indication signals (RDI) and remote
error indication signals (REI).
Numerous monitoring functions provided on all the TUG-3 path overhead bytes.
Supports unidirectional path switch ring (UPSR) applications.
N1 tandem connection support is provided.
Complies with GR-253-CORE, T1.105, ITU-T G.707, ITU-T G.831, G.783, ETS 300 417-1-1.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
405Agere Systems Inc.
18 SPE Mapper Functional Description (continued)
18.3 SPE Mapper Functional Block Diagrams
5-9065(F)
Figure 31. SPE Mapper Block with Connections to External Pins and Other Blocks in the Device
VT
MICRO INTERFACE
SPE MAPPER
DS3DATAINCLK
DS3DATAOUTCLK
DS3NEGDATAIN
PHASEDETUP
PHASEDETDOWN
DS3NEGDATAOUT
AUTO_AIS,
TPOAC
DS3POSDATAOUT
DS3POSDATAIN
REI DS3
AUTO_AIS
DATA, CLK, SYNC
TRANSMIT
RECEIVE
TELECOM
BUS
CLK, DATA
RPOAC
TRANSMIT
RECEIVE
CLK, DATA
TRANSMIT RECEIVE
TRANSMIT
PATH OVERHEAD
INSERT
POAC CHANNEL
TELECOM
BUS
RDI, REI
MAPPER
TRANSMIT
SECTION
VT
MAPPER
RECEIVE
SECTION
M13
MAPPER
TRANSMIT
SECTION
M13
MAPPER
RECEIVE
SECTION
DS3
CLEAR INPUT
TRANSMIT
PINS
DS3
CLEAR INPUT
RECEIVE
PINS
RECEIVE
PATH OVERHEAD
EXTRACT
POAC CHANNEL
TMUX
RECEIVE
SECTION
TMUX
TRANSMIT
SECTION
DATA, CLK, SYNC
DATA, CLK,
CONTROL
DATA, CLK,
CONTROL
LOOPBACKRDI
TRANSMIT
SECTION
SPE MAPPER
RECEIVE
SECTION
MISC SIGNALS
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
406 Agere Systems Inc.
18 SPE Mapper Functional Description (continued)
5-9066(F)
Figure 32. Basic Functional Flow of the SP E Mapper Transmit Section
TELECOM BUS DATA[7:0], CLOCK, PARITY, SYNC (19.44 MHz OR 6.48 MHz)
TO/FROM TMUX TRANSMIT SIDE
DS3 _EXT_CLK
DS3 POS_DATA
51.84 MHz CLOCK FROM TMUX
51.84 MHz CLOCK, CONTROL FROM TMUX
B3ZS
M13
DS3 DATA
DS3 CLK
DS3 CLK_EN
DS3 INPUT CONTROL &
VT/TU
FIFO
DS3
TUG-2
PATH
TUG-2_DATA
SYNC_V1
CLK_6MHz
MUX
TUG-3 MAPPER
AU-3 MAPPER
MUX
TUG-3 OR AU-3
MUX
MICRO-
C-3
TUG-2
MUX
LOOPBACK_CLK
LOOPBACK_DATA
TX_POACDATA
TX_POACSYNC
TX_POACINH
TX_POACCLKO
PATH OVERHEAD
LOOPBACK_CLK_EN
DS3 NEG_DATA
STS3_TIME SLOT
AU3_TUG3
VT_DS3
AU3_TUG3
AU3_TUG3
AU3_TUG3
VT_DS3
VT_DS3
VT_DS3
TDS3_BIPOLAR
DS3_SRC_TYPE
DS3_SRC_TYPE
VT_DS3
VT_DS3
VT_DS3
84 x 9 bytes
84 x 9 bytes
84 x 9
85 x 9 bytes
87 x 9 bytes
87 x 9 bytes 87 x 9 bytes
TU11_TU12
TUG2_NO[2:0]
TUG3_NO[1:0]
AU3_TUG3
VT_DS3
MPUCLKDS3CLK
TELECOM BUS
OUTPUT (87 x 9 bytes)
CONTROL CIRCUITRY
ADD 1 COLUMN
OF FIXED STUFFING &
TU-3 PTR BYTES
ADD 2 COLUMNS
OF FIXED STUFFING
OVERHEAD
INSERTION
INSERT
POAC CHANNEL
MAPPERMAPPER
DECODE
SERIAL-TO-PARALLEL
CONVERSION INPUT
CONTROL
MAPPED AS
CONTAINER C-3
INTERFACE
CLOCK
bytes
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
407Agere Systems Inc.
18 SPE Mapper Functional Description (continued)
5-9067(F)r.1
Figure 33. Basic Functional Flow of the SP E Mapper Receive Section
TELECOM BUS DATA[7:0], CLOCK, PARITY, SYNC (19.44 MHz OR 6.48 MHz)
FROM TMUX RECEIVE SIDE
DS3 _EXT_CLK
DS3 POS_DATA
51.84 MHz CLOCK, CONTROL FROM TMUX
AUTO AIS SIGNAL FROM TMUX
B3ZS
M13
DS3 DATA
DS3 CLK
DS3 CLK_EN
DS3 OUTPUT CONTROL &
VT/TU
FIFO
C-3
TUG-2
PATH
TUG-2_DATA
SYNC_V1
CLK_6MHz
TUG-3 DEMAPPER
AU-3 DEMAPPER
TUG-3 OR AU-3
MICRO
C-3
TUG-2
RX_POACSYNCO
RX_POACCINH
RX_POACSINH
RX_POACDATAO
PATH OVERH EAD
DS3 NEG_DATA
STS3_TIME SLOT
VT_DS3
AU3_TUG3
AU3_TUG3
AU3_TUG3
VT_DS3
VT_DS3
VT_DS3
DS3CLK
VT_DS3
VT_DS3
VT_DS3
84 x 9 bytes
84 x 9
85 x 9 byte s
87 x 9 bytes 87 x 9 bytes
TU11_TU12
TUG2_NO[2:0]
TUG3_NO[1:0] AU3_TUG3
VT_DS3
TELECOM BUS
INPUT (87 x 9 BYTES)
CONTROL CIRCUITRY
REMOVE 1 COLUMN
OF FIXED STUFFING &
TU-3 PTR BYTES
REMOVE 2 COLUMNS
OF FIXED STUFFING
OVERHEAD
EXTRACTION/
EXTRACT
POAC CHANNEL
DEMAPPER
DEMAPPER
ENCODER
PARALLEL-TO-SERIAL
CONVERSION OUTPUT
CONTROL
DE MAPPED AS
AS DS3
INTERFACE
CLOCK
bytes
DS3
TERMINATION
POINTER
INTERPRETER
MUX
85 x 9 bytes
VT_DS3
RX_POACCLKO
RX_POACDINH
85 x 9 bytes
VC-3
DS3_OUT_TYPE
DS3_BIPOLAR
PHASE_DET_UP
PHASE_DET_DOWN
DS3 _LOOPBACK_DATA
DS3 _LOOPBACK_CLK
LOOPBACK_CLK_EN
TUG3MPR_DS3_AIS
MPUCLK
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
408 Agere Systems Inc.
18 SPE Mapper Functional Description (continued)
The SPE mapper basically interfaces to three other blocks within the Supermapper device:
The VT mapper.
The M13 MUX/deMUX.
The TMUX.
The interface between the SPE mapper and the VT mapper consists of clock, parallel data, sync, and control type
interfaces and is completely internal to the Supermapper device.
The interface between the SPE mapper and the M13 MUX/deMUX consists of a serial clock, serial data, and clock
enable type interface and is also completely internal to the Supermapper device.
The interface between the SPE mapper and the TMUX consists of the telecom bus, and every signal that flows
between these two blocks is also brought in/out through external device pins connected to the telecom bus.
As outlined in the features, the SPE mapper can map/demap seven TUG-2 or a DS3 to/from AU3/STS-1 or TUG-3.
Each TUG-2 assembled/disassembled by the VT mapper consists of three TU-12 (E1) or four TU-11 (DS1) virtual
tributaries.
The following is a brief description of the supported standards based mappings. For greater details, please refer to
the appropriate standard.
18.4 TUG-2 to AU-3/STS-1 SPE Mapping (Used in North American Systems)
A TUG-2 payload capacity, which is 9 rows by 12 columns or 108 bytes, may contain four TU-11s or three TU-12s
byte interleavingly multiplexed.
The 27-byte capacity of a TU-11 is equivalent to three-column capacity in an STS-1 frame of 125 µs. Four TU-11s
are byte interleavingly multiplexed into a TUG-2 payload capacity which has a capacity of 12 columns. Seven
TUG-2s can then be byte interleavingly multiplexed into the payload capacity of a VC-3. The VC-3 has a structure
of 9 rows by 85 columns: one column is VC-3 path overhead and the other 84 columns are seven TUG-2s evenly
distributed within the payload. Two columns of fixed stuffing are then added to the payload to build the complete
STS-1 SPE frame of 9 rows by 87 columns.
The 36-byte capacity of a TU-12 is equivalent to four-column capacity in an STS-1 frame of 125 µs. Three TU-12s
are byte interleavingly multiplexed into a TUG-2 payload capacity which has a capacity of 12 columns. Seven
TUG-2s can then be byte interleavingly multiplexed into the payload capacity of a VC-3. The VC-3 has a structure
of 9 rows by 85 columns: one column is VC-3 path overhead and the other 84 columns are seven TUG-2s evenly
distributed within the payload. Two columns of fixed stuffing are then added to the payload to build the complete
STS-1 SPE frame of 9 rows by 87 columns.
18.5 TUG-2 to TUG-3 Mapping (Used in ITU/ETSI Standar d-Bas ed Systems)
A TUG-2 payload capacity, which is 9 rows by 12 columns or 108 bytes, may contain four TU-11s or three
TU-12s byte interleavingly multiplexed.
The 27-byte capacity of a TU-11 is equivalent to three-column capacity in an STM-1 frame of 125 µs. Four TU-11s
are byte interleavingly multiplexed into a TUG-2 payload capacity which has a capacity of 12 columns. Seven
TUG-2s can then be byte interleavingly multiplexed into the payload capacity of a TUG-3. The TUG-3 has a struc-
ture of 9 rows by 86 columns: one column of NPI (null pointer indication) plus fixed stuffing bytes, one column of
fixed stuffing, and the other 84 columns are seven TUG-2s evenly distributed within the TUG-3 payload.
The 36-byte capacity of a TU-12 is equivalent to four-column capacity in an STM-1 frame of 125 µs. Three TU-12s
are byte interleaving multiplexed into a TUG-2 payload capacity which has a capacity of 12 columns. Seven
TUG-2s can then be byte interleavingly multiplexed into the payload capacity of a TUG-3.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
409Agere Systems Inc.
18 SPE Mapper Functional Description (continued)
The TUG-3 has a structure of 9 rows by 86 columns: one column of null pointer indication (NPI) plus fixed stuffing
bytes, one column of fixed stuffing, and the other 84 columns are seven TUG-2s evenly distributed within the
TUG-3 payload.
18.6 DS3 to AU-3/STS- 1 SPE Mapping (Used in Telcordia/ANSI Standards-Based Systems)
DS3 is an asynchronous signal with a rate of 44.736 Mbits/s. This payload with other information bits (total
3.648 Mbits/s) is used to form the container C-3 (48.384 Mbits/s) which occupies 84 columns of an STS-1 frame.
One column of path overhead bytes is added to the C-3 container to make a VC-3. Finally, two columns of fixed
stuffing (column numbers 30 and 59) are added to VC-3 to form an STS-1 SPE (87 columns).
Stuffing (S bits) is used to rate adapt the DS3 payload to the SPE. Nine stuffing S bits are included in the C-3 con-
tainer. When no stuffing is used, the STS-1 SPE can accommodate a rate of 44.712 Mbits/s. When all 9 stuffing
S bits are used, the STS-1 SPE can accommodate 44.784 Mbits/s. Since the DS3 coming from the M13 has a
nominal rate of 44.736 Mbits/s, stuffing is used for every third row of an STS-1 frame; or, in other words, three S
bits per 125 µs are used for stuffing to achieve the DS3 rate.
18.7 DS3 to TUG-3 Mapping (Used in ITU/ETSI Standards-Based Systems)
DS3 is an asynchronous signal with a rate of 44.736 Mbits/s. This payload with other information bits (total
3.648 Mbits/s) is used to form the container C-3 (48.384 Mbits/s), which occupies 84 columns of an STM-1 frame.
One column of path overhead bytes are added to the C-3 container to make a VC-3 (85 columns). Now a TUG-3
signal consists of 86 columns by 9 rows; therefore, 3 bytes of TU-3 pointer (H1, H2, and H3 bytes) are placed on
rows 1 through 3 of the newly added column and fixed stuffing bits are placed on the remaining rows. Thus, a
TUG-3 frame of 9 rows by 86 columns is formed. Three TUG-3s are byte interleavingly multiplexed by the TMUX to
form an STM-1 signal.
Stuffing (S bits) is used to rate adapt the DS3 payload to the TUG-3. Nine stuffing S bits are included in the C-3
container. When no stuffing is used, the TUG-3 payload can accommodate a rate of 44.712 Mbits/s. When all 9
stuffing S bits are used, the TUG-3 payload can accommodate 44.784 Mbits/s. Since the DS3 coming from the
M13 has a nominal rate of 44.736 Mbits/s, stuffing is used for every third row of a TUG-3 frame; or, in other words,
three S bits per 125 µs are used for stuffing to achieve the DS3 rate.
18.8 SPE Mapper Basic Configuration
SPE mapper configuration programming is provided through registers SPE_MAP_CTL1—SPE_MAP_CTL3
(Table 163 on page 143).
When mapping to an STS-3/STM-1 rate, the SPE mapper requires configuration to select one of the three time
slots on the telecom bus that interfaces the TMUX. The register bits for selection are SPE_TSTS3TMSLOT[1:0]
and SPE_RSTS3TMSLOT[1:0] (Table 163).
Selection of AU-3/STS-1 or TUG-3 mapping is provided through bits SPE_T_AU3_TUG3 and SPE_R_AU3_TUG3
(Table 163).
TUG-2 (virtual tributary) or DS3 data is selected with bits SPE_T_AU3_TUG3 and SPE_R_AU3_TUG3.
18.9 DS3 Configuration
The SPE mapper is configured to select the source and destination of the DS3 signals. The configuration is deter-
mined with register bits SPE_TDS3SRCTYP[1:0] and SPE_RDS3OUTTYP[1:0] (Table 163). DS3 source/destina-
tion may be selected as loopback, external device pins, or M13.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
410 Agere Systems Inc.
18 SPE Mapper Functional Description (continued)
18.9.1 DS3 M13
The SPE mapper is configured to/from the M13 MUX/deMUX as the source/destination of data by setting bits
SPE_TDS3SRCTYP[1:0] = SPE_RDS3OUTTYP[1:0] = 00 or 01.
18.9.2 DS3 Loopback Channel
The DS3 loopback circuit is placed in the SPE mapper to allow demapping and remapping of a DS3 signal.
When SPE_TDS3SRCTYP[1:0] = SPE_RDS3OUTTYP[1:0] = 10, the SPE mapper extracts the asynchronous DS3
data and clock from the received payload. The recovered DS3 is looped back to the transmit path and either
mapped as AU-3/STS-1 SPE signal for the North American digital systems or mapped as TUG-3 for the European
digital systems. It is particularly useful in cases where a DS3 signal mapped as an AU-3/STS-1 signal is needed to
be remapped as a TUG-3 signal or vice versa.
18.9.3 DS3 Clear Channel from External Pins
The SPE mapper is configured for a DS3 signal at 44.736 MHz rate from external device pins by setting
SPE_TDS3SRCTYP[1:0] = SPE_RDS3OUTTYP[1:0] = 11.
The DS3 data can either be unipolar or bipolar. Unipolar data and clock is selected (device pins DS3POSDATAIN,
DS3DATAINCLK, DS3POSDATAOUT, and DS3DATAOUTCLK (pins M22, J22, R22, and N22, respectively)) when
bits SPE_TDS3_BIPOLAR and SPE_RDS3_BIPOLAR = 0 (Table 163 on page 143). Bipolar data and clock are
selected (device pins DS3POSDATAIN, DS3NEGDATAIN, DS3DATAINCLK, DS3POSDATAOUT,
DS3NEGDATAOUT, and DS3DATAOUTCLK (pins M22, K22, J22, R22, P22, and N22, respectively)) when bits
SPE_TDS3_BIPOLAR and SPE_RDS3_BIPOLAR = 1.
When bipolar data is selected for the transmit path (SPE_TDS3_BIPOLAR = 1), the data received from the exter-
nal pins is expected to be B3ZS encoded. A B3ZS decoder is used to recover the DS3 data prior to being mapped
into a container.
The B3ZS decoder also checks for bipolar coding violations. The SPE mapper contains a counter that increments
on each occurrence of a received bipolar coding violation (BPV). It also monitors the occurrence of excessive
zeros (EXZ), which is defined as any zero string length equal to or greater than three. These are part of the perfor-
mance monitoring counters that can be sampled and simultaneously reset. Their last sampled values are available
through SPE_BIPOL_CNT[23:0] and SPE_EXZ_CNT[23:0] (Table 170 on page 150).
When bipolar data is selected for the receive path (SPE_RDS3_BIPOLAR = 1), the data out from the external pins
will be B3ZS encoded. A single bipolar violation may be inserted in the data when SPE_BIPOL_ERR is asserted
(Table 155 on page 136).
The clock edge for sampling the transmit path data (device pin DS3DATAINCLK (pin J22)) is selected with
SPE_TDS3CLK_EDGE (Table 163 on page 143).
18.10 Phase Detector for Extern al DS3 PLL
The receive section of the SPE mapper has a phase detector circuit built inside the device. This phase detector cir-
cuit generates the necessary up and down signals (device pins PHASEDETUP and PHASEDETDOWN (pins V22
and U22, respectively)) for an external phase-lock loop (PLL) circuit to generate a smooth DS3 clock at
44.736 MHz rate.
The logic sense of the phase detector up and down outputs may be inverted with bits SPE_PHDETUP_INV
(Table 163 on page 143) and SPE_PHDETDN_INV, respectively.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
411Agere Systems Inc.
18 SPE Mapper Functional Description (continued)
18.11 Serial STS-1 SPE Channel (NSMI)
The SPE mapper has the capability of accepting a clear serial STS-1 SPE signal at 51.84 MHz rate. The intent is to
map/demap the network serial multiplexed interface (NSMI) interface data.
The receive section of the SPE mapper outputs a serial data at 51.84 MHz rate, a clock enable signal inhibited dur-
ing overhead insertion times, and a sync signal whose position within the STS-1 frame is programmable to a cer-
tain extent (is programmable to occupy any STS-1 column position (numbers 0—89) within a fixed row (# 8)),
through bits SPE_R_NSMI_BIT[2:0] (Table 163 on page 143) and SPE_R_NSMI_COL[6:0] (Table 163).
The transmit section of the SPE mapper inputs serial data at 51.84 MHz rate, outputs a clock enable signal inhib-
ited during overhead insertion times and a sync signal whose position within the STS-1 frame is programmable to
a certain extent (is programmable to occupy any STS-1 column position (numbers 0—89) within a fixed row (#8)),
through bits SPE_T_NSMI_BIT[2:0] and SPE_T_NSMI_COL[6:0] (Table 163).
The STS-1 SPE data is then mapped as AU-3 signal for the North American digital systems.
0786(F)(F)
Figure 34. STS-1 NSMI Receive Operat ion
UNUSED
VARIABLE
LINE_RXCLK29
RXDATAEN
RXSYNC (OPTIONAL)
LINE_RXDATA29
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
412 Agere Systems Inc.
18 SPE Mapper Functional Description (continued)
0785(F)(F)
Figure 35. STS-1 NSMI Transmit Operation
18.12 TMUX Interface to the SPE Mapper
The SPE mapper sends/receives data mapped as an AU-3/STS-1 SPE signal or as a TUG-3 signal to/from the
TMUX. The interface required for this exchange of data, clock, and control signals is called the high-speed telecom
bus. The high-speed telecom bus is accessible from external pins so that the TMUX can send/receive data to/from
other external Supermapper devices in the system. The TMUX can byte interleavingly multiplex three STS-1s or
three TUG-3 signals, receiving through the telecom bus, to form one STS-3 or STM-1 signal, respectively.
The high-speed telecom bus consists of a byte-wide data bus running at 19.44 Mbits/s for STS-3/STM-1 mode, or
6.48 Mbits/s for STS-1 stand-alone mode. It also consists of a parity bit line, a clock line which is 19.44 MHz or
6.48 MHz depending on STS-3/STM-1 or STS-1 mode, respectively; one sync line and two sync control lines. The
sync line outputs the J0, J1, and V1 time-slot signals of the STS-3/STM-1 frame and the two sync control signals
distinguish between the three sync bytes. The sync signals are used to synchronize the byte counters in the SPE
mapper, and the information is also passed along to the VT mapper for synchronizing the V1 counters.
The TMUX also provides through the external pins one 51.84 MHz serial clock and 1 clock control signal which
synchronizes the 51.84 MHz to the J0 byte of the STS-3/STM-1 frame. This serial clock is required for the M13
MUX/deMUX because of its serial mode of working.
In the case where the SPE mapper has to drive the telecom bus in the transmit side, there is a 3-state control sig-
nal (active-high) which is an output from the SPE mapper . This signal enables the 3-state drivers on the high-speed
telecom bus at the time period when the clock is low.
18.13 PATH Termination Block
The path termination block of the SPE mapper is shown Figure 36. The block consists of a pointer interpreter which
monitors the TU-3 pointer bytes H1, H2, and H3, and interprets the beginning of the path overhead bytes for the
TUG-3 frames. After monitoring and terminating the path overhead bytes, the TUG-3 payload is passed on to the
output blocks.
UNUSED
VARIABLE
LINE_TXCLK29
TXDATAEN
TXSYNC (OPTIONAL)
LINE_TXDATA29
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
413Agere Systems Inc.
18 SPE Mapper Functional Description (continued)
5-9068(F)
Figure 36. Receive Direction Path Termination Block
18.13.1 Pointer Interpretation Block
The TUG-3 pointer interpreter logic block performs all necessary functions to support TU-3 pointer interpretation.
The following features are implemented:
The pointer interpreter consists of the following states:
— LOP-TU3—loss of pointer
— AIS-TU3—TUG-3-AIS (all ones in H1 and H2)
— NDF—NDF enabled (1001, 0001, 1101, 1011, 1000)
— NORM—normal (disabled NDF, normal pointer)
— INC—increment (inverted I bits)
— DEC—decrement (inverted D bits)
The SPE mapper includes event or change of state indicators for pointer interpreter states except the NORM state.
States NDF, DEC, and INC are reported with event status bits SPE_RNDFE (Table 156 on page 136),
SPE_RDECE (Table 156), and SPE_RINCE (Table 156), respectively. States AIS and LOP are reported with
change of state (delta) status bits SPE_RAISD (Table 156) and SPE_RLOPD (Table 156), respectively. Interrupts
for each event or delta state may be masked with bits SPE_RNDFM, SPE_RDECM, SPE_RINCM, SPE_RAISM,
and SPE_RLOPM (all in Table 157 on page 138).
INSERT
B3 K3 AIS-P G1
B3 K3 G1 G1N1C2
POAC G1
J1F3
F2
F2
H1, H2, H3 POINTER
PATH
POAC DAT A
TUG-3 DATA VC-3 DATA
TUG-2 DATA
PAYLOAD DATA TO OUTPU T BLOCKS
MUX
MONITOR INTERPRETER
MONITOR F3
MONITOR C2
MONITOR J1
MONITOR N1
MONITOR BIP N
CHECK APS
MONITOR RDI-P
DETECT REI-L
DETECT
AIS-P
TERMINATE
REI
COUNTER
DROP
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
414 Agere Systems Inc.
18 SPE Mapper Functional Description (continued)
5-9007(F)
* This state diagram is based on the ETS 417-1-1 pointer interpretation state diagram (Figure B.1). Transiti ons of eight invalid pointers from the
INC, DEC, and NDF states into the LOP state have been added.
Figure 37. Pointer Interpretation State Diagram
The pointer interpreter transitions into the LOP-TU3 state based on the following conditions:
— Continuous NDF. If NDF (1001, 0001, 1101, 1011, 1000) is received for the number of consecutive frames
(determined by the value programmed in bits SPE_CNTDLOPCNT[1:0] (Table 159 on page 141)), then LOP-
TU3 is declared.
— Invalid pointer values. If the number of consecutive frames (determined by the value programmed in
SPE_CNTDLOPCNT[1:0]) are received with a pointer that is not a normal value, NDF, AIS-TU3, increment, or
decrement, then LOP-TU3 is declared.
The pointer interpreter transitions out of the LOP-TU3 state based on the following conditions:
— Following three consecutive frames with all ones in the H1 and H2 bytes, the pointer interpreter transitions from
the LOP-TU3 state into the AIS-TU3 state.
— Following three new, consecutive, consistent, valid pointers, the pointer interpreter transitions from the
LOP-TU3 state into the NORM state.
— The pointer interpreter will not transition from the LOP-TU3 state into the NDF state.
The pointer interpreter transitions into the AIS-TU3 state based on the following conditions:
— Following three consecutive frames with all ones in the H1 and H2 bytes, AIS-TU3 is declared.
The pointer interpreter transitions out of the AIS-TU3 state based on the following conditions:
— Following three new, consecutive, consistent, valid pointers, the pointer interpreter transitions from the AIS-
TU3 state into the NORM state.
— Following the number of consecutive invalid pointers (determined by the value programmed in
SPE_CNTDLOPCNT[1:0]), the pointer interpreter transitions from the AIS-TU3 state into the LOP-TU3 state.
— If NDF is enabled on the incoming H1 and H2 bytes, the pointer interpreter transitions from the AIS-TU3 state
into the NDF state.
NORM
DECINC
NDF
AISLOP
FROM ALL STATES
8 INVALID POINTERS
FROM ALL STAT ES
3 NEW POINTERS
INCREMENT DECREMENT
8 NDF ENABLE
NDF ENAB L E
NDF ENABLE
NDF
NDF
NDF
3 ANY 3 ANY
3 NEW POINTERS
3 NEW POINTERS
3 ANY POINTERS
3 NEW POINTERS
8 INVALID
8 INVALID POINTERS*
INDICATION INDICATION
3 AIS INDICATIONS ENABLE
ENABLE
POINTERS POINTERS
POINTERS ENABLE
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
415Agere Systems Inc.
18 SPE Mapper Functional Description (continued)
The pointer interpreter transitions into the NDF state based on the following conditions:
— If NDF is enabled on the incoming H1 and H2 bytes, the pointer interpreter transitions from the NORM, NDF,
AIS, INC, and DEC states into the NDF state.
The pointer interpreter transitions out of the NDF state based on the following conditions:
— Continuous NDF. If NDF (1001, 0001, 1101, 1011, 1000) is received for the number of consecutive frames
(determined by the value programmed in SPE_CNTDLOPCNT[1:0] (Table 159 on page 141)), the pointer in-
terpreter transitions from the NDF state into the LOP-TU3 state.
— Following any three consecutive, consistent, and valid pointers, the pointer interpreter transitions from the NDF
state into the NORM state.
— Following three consecutive frames with all ones in the H1 and H2 bytes, the pointer interpreter transitions from
the NDF state into the AIS-TU3 state.
— Following three new, consecutive, consistent, and valid pointers, the pointer interpreter transitions from the
NDF state into the NORM state.
— Following the number of consecutive invalid pointers (determined by the value programmed in
SPE_CNTDLOPCNT[1:0]), the pointer interpreter transitions from the NDF state into the LOP-TU3 state.
The pointer interpreter transitions into the NORM state based on the following conditions:
— Following three new, consecutive, consistent, and valid pointers, the pointer interpreter transitions into the
NORM state.
— Following any three consecutive, consistent, and valid pointers, the pointer interpreter transitions into the
NORM state, i.e., transitioning from the INC, DEC, and NDF states.
The pointer interpreter transitions out of the NORM state based on the following conditions:
— Following the number of consecutive invalid pointers (determined by the value programmed in
SPE_CNTDLOPCNT[1:0]), the pointer interpreter transitions from the NORM state into the LOP-TU3 state.
— If NDF is enabled on the incoming H1 and H2 bytes, the pointer interpreter transitions from the NORM state
into the NDF state.
— Following three consecutive frames with all ones in the H1 and H2 bytes, the pointer interpreter transitions from
the NORM state into the AIS-TU3 state.
— When operating in the 8 of 10 mode (SPE_8ORMAJORITY = 1 (Table 159 on page 141)), if 8 of the 10 I and
D bits are correct for a pointer decrement on the incoming H1 and H2 bytes, the pointer interpreter transitions
from the NORM state into the DEC state. Otherwise, if 3 of the 5 I bits and 3 of the 5 D bits are correct for a
pointer decrement on the incoming H1 and H2 bytes, the pointer interpreter transitions from the NORM state
into the DEC state.
— When operating in the 8 of 10 mode (SPE_8ORMAJORITY = 1), if 8 of the 10 I and D bits are correct for a
pointer increment on the incoming H1 and H2 bytes, the pointer interpreter transitions from the NORM state
into the INC state. Otherwise, if 3 of the 5 I bits and 3 of the 5 D bits are correct for a pointer increment on the
incoming H1 and H2 bytes, the pointer interpreter transitions from the NORM state into the INC state.
The pointer interpreter transitions into the INC state based on the following conditions:
— When operating in the 8 of 10 mode (SPE_8ORMAJORITY = 1), if 8 of the 10 I and D bits are correct for a
pointer increment on the incoming H1 and H2 bytes, the pointer interpreter transitions into the INC state. Oth-
erwise, if 3 of the 5 I bits and 3 of the 5 D bits are correct for a pointer increment on the incoming H1 and H2
bytes, the pointer interpreter transitions into the INC state.
The pointer interpreter transitions out of the INC state based on the following conditions:
— If NDF is enabled on the incoming H1 and H2 bytes, the pointer interpreter transitions from the INC state into
the NDF state.
— Following three consecutive frames with all ones in the H1 and H2 bytes, the pointer interpreter transitions from
the INC state into the AIS-TU3 state.
— Following three new, consecutive, consistent, and valid pointers, the pointer interpreter transitions from the INC
state into the NORM state.
— Following any three consecutive, consistent, and valid pointers, the pointer interpreter transitions from the INC
state into the NORM state.
— Following the number of consecutive invalid pointers (determined by the value programmed in
SPE_CNTDLOPCNT[1:0] (Table 159 on page 141)), the pointer interpreter transitions from the INC state into
the LOP-TU3 state.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
416 Agere Systems Inc.
18 SPE Mapper Functional Description (continued)
The pointer interpreter transitions into the DEC state based on the following conditions:
— When operating in the 8 of 10 mode (SPE_8ORMAJORITY = 1 (Table 159 on page 141)), if 8 of the 10 I and
D bits are correct for a pointer decrement on the incoming H1 and H2 bytes, the pointer interpreter transitions
into the DEC state. Otherwise, if 3 of the 5 I bits and 3 of the 5 D bits are correct for a pointer decrement on
the incoming H1 and H2 bytes, the pointer interpreter transitions into the DEC state.
The pointer interpreter transitions out of the DEC state based on the following conditions:
— If NDF is enabled on the incoming H1 and H2 bytes, the pointer interpreter transitions from the DEC state into
the NDF state.
— Following three consecutive frames with all ones in the H1 and H2 bytes, the pointer interpreter transitions from
the DEC state into the AIS-TU3 state.
— Following three new, consecutive, consistent, and valid pointers, the pointer interpreter transitions from the
DEC state into the NORM state.
— Following any three consecutive, consistent, and valid pointers, the pointer interpreter transitions from the DEC
state into the NORM state.
— Following the number of consecutive invalid pointers (determined by the value programmed in
SPE_CNTDLOPCNT[1:0]), the pointer interpreter transitions from the DEC state into the LOP-TU3 state.
Pointer increments and decrements will be counted and presented to the microprocessor as follows:
— Pointer increments and decrements will be monitored and counted internally.
— The internal and latched counts will be forced to 0x00 if device pin AUTO_AIS (AC6, AE6, and AD6) = 1 (from
TMUX), bit SPE_RLOP = 1 (Table 158 on page 140), or bit SPE_RAIS = 1 (Table 158).
— Latched counts, SPE_RPTR_INC[10:0] (Table 171 on page 151) and SPE_RPTR_DEC[10:0] (Table 171), will
be updated coincident with the end of a performance monitor interval.
— The internal counters will reset to 0x00 coincident with the end of a performance monitor interval.
— If SMPR_SAT_ROLLOVER = 1 (Table 77 on page 70), the internal running counts will hold at their maximum
value. Otherwise, the counts will roll over.
— However, increment and decrement event indications should be ignored during LOP state.
LOP-TU3 (TU-3 path LOP) and AIS-TU3 (TU-3 path AIS) will be detected and reported to the microprocessor.
Both the LOP-TU3 and AIS-TU3 conditions will contribute to the AUTO AIS control signal from the SPE mapper
to the VT mapper. Any change in state of SPE_RLOP (Table 158 on page 140) or SPE_ RAI S (Table 158) will be
rep or te d t o t he micropro ce ss or via SPE _R L OP D (Table 156 on page 136) and SPE_RAISD (Table 156). Unless
the appropriate mask bit is set (SPE_RLOPM/SPE_RAISM (Table 157 on page 138)), SPE_RLO PD = 1 or
SPE_RAISD = 1 will generate an interrupt.
The current TU-3 pointer value is stored in SPE_STORED_PTR[9:0] (Table 171 on page 151).
18.14 SPE Mapper Receive Dire ction Req uire m ents
All monitoring functions supported by the SPE mapper in the receive direction are summarized here:
Loss o f CLOCK and loss of sync monitors
J2 monitor
B3 BIP-8 check
C2 signal label monitor
F2 monitor
F3 monitor
N1 monitor
K3 monitor
AIS-P and RDI-P detect
REI-P detect
Signal degrade BER algorithm
Signal fail BER algorithm
Path overhead access channel (POAC) drop
Insertion of AIS-P
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
417Agere Systems Inc.
18 SPE Mapper Functional Description (continued)
Whenever the continuous N-times detect signals are defined, they require not only that the monitored signal be
consistent for N consecutive frames, but also that the frame bytes be error free for all N frames before the status
can be updated. If there are any errors in the framing pattern, then the consecutive N-times detection counters
must be reset to 0. N can range from 1 to 15. Programming a CNTD block with any value less than 1 will set the
CNTD to 1 time detect.
18.14.1 Loss of Clock and Loss of Sync Monitors
The SPE mapper detects and reports loss of the input clocks state for RLSCLK (pin V4) (19 MHz clock) in bit
SPE_RLSLOC (Table 158 on page 140), RLSC52 (pin AC2) (52 MHz clock) in bit SPE_RC52LOC (Table 158),
and DS3DATAINCLK (pin J22) (DS3 external clock) in bit SPE_RDS3LOC (Table 158), as determined by stuck
high or stuck low for time T. The detection time T will be greater than 10 µs but less than 125 µs. The function uses
the microprocessor clock as its reference. The device will report changes in the states using bits, SPE_RLSLOCD
(Table 156 on page 136), SPE_RC52LOCD (Table 156), and SPE_RDS3LOCD (Table 156); interrupt mask bits
SPE_RLSLOCM, SPE_RC52LOCM, and SP E_ RDS3 LO CM (Tabl e 157 on page 138), resp ec t iv e l y.
The SPE mapper will detect loss-of-sync conditions for the telecom bus sync signals. The states are reported in the
bits, SPE_RSY52LOS, SPE_RJ0J1V1LOS, SPE_RSPELOS, and SPE_RV1LOS (Table 158 on page 140). The
device will report changes in the states in bits SPE_RSY52LOSD (Table 156 on page 136), SPE_RJ0J1V1LOSD
(Table 156), SPE_RSPELOSD (Table 156), SPE_RV1LOSD (Table 156); interrupt mask bits SPE_RSY52LOSM,
SPE_RJ0J1V1LOSM, SPE_RSPELOSM, and SPE_RV1LOSM (Table 157 on page 138), respectively.
18.14.2 J1 Monitor
J1 (path trace) monitoring has six different monitoring modes controlled by bits SPE_J1MONMODE[2:0]
(Table 159 on page 141):
SPE_J1MONMODE[2:0] = 000: the SPE mapper will latch the value of the J1 byte every frame for a total
64 bytes in SPE_RJ1 DMO N[1 —64] [7:0 ] (Table 172 on page 151). The SPE mapper compares the incoming J1
byte with the next expected value (the expected value is obtained by cycling through the previous stored 64
received bytes in round-robin fashion). The SPE mapper will perform a byte-by-byte comparison and, if different,
set the path trace identifier state bit SPE_RTIM (Table 158 on page 140). Any change in state is reported in bit
SPE_RTIMD (Table 156 on page 136), using interrupt mask bit SPE_RTIMM (Table 157 on page 138). CRC is
not checked by the hardware.
SPE_J1MONMODE[2:0] = 001: this is the SONET framing mode. The hardware looks for 0x0D and then the
0x0DA characters to indicate that the next byte is the first byte of the path trace message. The J1 byte message
is continuously written into SPE_RJ1DMON[1—64][7:0] with the first byte residing at the first address. If any
received byte does not match the previously received byte for its location, then the state bit SPE_RTIM is set.
Any change in state is reported in bit SPE_RTIMD, using interrupt mask bit SPE_RTIMM.
SPE_J1MONMODE[2:0] = 010: this is the SDH framing mode. The hardware looks for the byte with the most sig-
nificant bit (MSB) set to 1, which indicates that the next byte is the second byte of the message. The rest of oper-
ation is the same as in SONET framing mode.
SPE_J1MONMODE[2:0] = 011: a new J1 byte (SPE_RJ1DMON[1][7:0]) will be detected after a number of con-
secutive consistent occurrences (SPE_CNTDJ1[3:0] (Table 160 on page 142)) of a new pattern in the J1 over-
head byte. Any changes to this byte is reported in bit SPE_RTIMD, using interrupt mask bit SPE_RTIMM. The
delta bit in this mode indicates a change in state for the J1 byte, and the bit SPE_RTIM is not used.
SPE_J1MONMODE[2:0] = 100: the user will program the 64 expected values of J1 in registers,
SPE_RJ1DEXP[1—64][7:0] (Table 174 on page 151), in SONET framing mode, where the first expected byte,
the byte following the 0x0A character, is written into the first register location, SPE_RJ1DEXP[1][7:0]. The SPE
mapper performs a byte-by-byte comparison of the incoming J1 sequence with the stored expected value. If dif-
ferent, the SPE will set the SPE_RTIM state bit. Any changes in the state are reported in bit SPE_RTIMD, using
interrupt mask bit SPE_RTIMM.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
418 Agere Systems Inc.
18 SPE Mapper Functional Description (continued)
SPE_J1MONMODE[2:0] = 101: the user will program the 16 expected values of J1 in
SPE_RJ1DEXP[1—16][7:0] in SDH framing mode, where the first byte of the message has the MSB set to 1.
The SPE mapper performs a byte-by-byte comparison of the incoming J1 sequence with the stored expected
value. If different, the SPE will set the SPE_RTIM state bit. Any change in state is reported in bit SPE_RTIMD,
using interrupt mask bit SPE_RTIMM.
SPE_J1MONMODE[1:0] = 110 and 111 are currently undefined.
Unless bit PAIS_TIMINH (Table 159 on page 141) is set, bit SPE_RTIMD contributes to the AUTO AIS control
signal from the SPE mapper to the VT mapper.
Unless mask bit SPE_RTIMM is set, bit SPE_RTIMD can generate an interrupt.
Table 548. J1 Monitor
18.14.3 B3 BIP-8 Check
A B3 BIP-8 even parity is computed over all the incoming bits of the TUG-3 frame, after descrambling, and com-
pared to the B3 byte received in the next frame. The total number of B3 BIP-8 bit errors (raw count) or block errors
is counted (selected through SPE_B3BITBLKCNT (Table 159 on page 141)). Upon a performance monitor (PM)
interval, the internal running counter is placed into SPE_B3ECNT[15:0] (Table 170 on page 150) and then cleared.
Depending on the value of microprocessor bit SMPR_SAT_ROLLOVER (Table 77 on page 70), the internal
counter will roll over or stay at its maximum value until cleared.
18.14.4 Signal Label C2 Byte Monitor
Table 549. STS Signal Label Defect Conditions
Name Function
SPE_J1MONMODE[2:0] (Table 159 on page 141)J1 Monitoring Type.
SPE_RJ1DEXP[1—64][7 :0] (Table 174 on page 151)J1 Expected Data Storage (64/1 Byte).
SPE_RJ1DMON[1—64][7:0] (Table 172 on page 151)J1 Received Data Storage (64/1 Byte).
SPE_CNTDJ1[3:0] (Table 160 on page 142)Continuous Times Detect Value.
SPE_RTIM (Table 158 on page 140)J1 Mismatch State Bit.
SPE_RTIMD (Table 156 on page 136)J1 Mismatch Delta Bit, Active-High.
SPE_RTIMM (Table 157 on page 138)J1 Mismatch Mask Bit, Active-High.
Provisioned STS PTE
Functionality, Expected C2 Received Payload Label
(C2 in hex) Defect TMUX_FORCEC2DEF = 1
(Table 107 on page 99)
Any Equipped Functionality Unequipped (00) TMUX_RUNEQP No Change
Any Equipped Functionality Equipped—Nonspecific (01) None No Change
Equipped—Nonspecific Any Value (02 to E0, FD to FE) None No Change
Any Payload Specific Code The Same Payload Specific
Code (02 to E0, FD to FE) No ne No Chan ge
Any Payload Specific Code A Different Payload Specific
Code (02 to E0, FD to FE) TMUX_ RPL MP No Change
Equipped—Nonspecific (01) or
VT-Str uctur ed STS -1 (02) PDI, 1 to 27 VTx Defects
(E1 to FB) None TMUX_RPLMP
Any Payload Specific Code
Except VT-Structured
STS-1 (02)
PDI, 1 to 27 VTx Defects
(E1 to FB) TMUX_ RPL MP No Change
Any Equipped Functionality PDI, 28 VT1.5 Defects or 1
Non-VT Payload Defect (FC) None TMUX_RPLMP
Any Equipped Functionality Reserved (FF) None TMUX_RPLMP
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
419Agere Systems Inc.
18 SPE Mapper Functional Description (continued)
The C2 byte is stored in SPE_C2DMON[7:0] (Table 162 on page 143). This is updated after a number of consecu-
tive frames (determined by the value programmed in SPE_CNTDC2[3:0] (Table 160 on page 142)) of identical C2
bytes, i.e., the 8-bit pattern must be identical for the number of frames in the programmed SPE_CNTDC2[3:0] prior
to updating SPE_C2DMON[7:0].
Whenever the contents of the C2 byte monitor SPE_C2DMON[7:0] change, a delta bit SPE_C2DMOND
(Table 156 on page 136) is set and bit SPE_C2DMONM (Table 157 on page 138) is the interrupt mask bit.
The SPE mapper maintains a programmable expected value of the C2 byte in SPE_C2DEXP[7:0] (Table 161 on
page 143). If the current value of the C2 byte (SPE_C2DMON[7:0]) does not equal the expected C2 value
(C2DEXP[7:0]), then a payload label mismatch (PLM-P) defect is declared and reported in SPE_RPLM
(Table 158). The change in PLM-P state is reported in SPE_RPLMD (Table 156) with an interrupt mask bit
SPE_RPLMM (Table 157 on page 138).
Also, if the current value of the C2 byte (SPE_C2DMON[7:0]) is all zeros, then an unequipped (UNEQ-P) defect is
declared and reported in SPE_RUNEQ (Tab le 158 on page 140). The change in UNEQ-P state is reported in
SPE_RUNEQD (Table 156 on page 136) with an interrupt mask SPE_RUNEQM (Table 157 on page 138).
Table 550. C2MON Processing
18.14.5 Path User Byte F2 Monitor
The SPE mapper monitors the path user channel in the F2 byte. The current value of the F2 byte is stored in
SPE_F2DMON0[7:0] (Table 162 on page 143) after a number of consecutive frames (determined by the value pro-
grammed in SPE_CNTDF2[3:0] (Table 160 on page 142)) of identical F2 byte has been received, i.e., the 8-bit pat-
tern must be identical for a number of frames equal to the value of SPE_CNTDF2[3:0] prior to updating
SPE_F2DMON0[7:0].
Whenever the contents of the F2 byte monitor (SPE_F2DMON0[7:0]) change, a delta bit SPE_F2DMOND
(Table 156 on page 136) is set. The interrupt mask is SPE_F2DMONM (Table 157 on page 138).
The SPE mapper maintains a history of the previous valid F2 byte in SPE_F2DMON1[7:0] (Table 162 on
page 143).
Name Function
SPE_C2DMON[7:0] (Table 162 on page 143)C2 Current Data Monitor.
SPE_C2DEXP[7:0] (Table 161 on page 143)Expected Value of C2 Byte.
SPE_CNTDC2[3:0] (Table 160 on page 142)Continuous Times Detect Count Value for C2.
SPE_C2DMOND (Table 156 on page 136)C2 Data Monitor Event Bit.
SPE_C2 DMONM (Table 157 on page 138)C2 Data Monitor Mask Bit.
SPE_RPLM (Table 158 on page 140)Payload Label Mismatch State.
SPE_RPLMD (Table 156 on page 136)Payload Label Mismatch Delta Bit.
SPE_RPLMM (Table 157 on page 138)Payload Label Mismatch Mask Bit.
SPE_RUNEQ (Table 158 on page 140)Unequipped Path State.
SPE_RUNEQD (Table 156 on page 136)Unequipped Path Delta Bit.
SPE_RUNEQD (Table 157 on page 138)Unequipped Path Mask Bit.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
420 Agere Systems Inc.
18 SPE Mapper Functional Description (continued)
Table 551. F2 Monitor
18.14.6 Path User Byte F3 Monitor
The SPE mapper monitors the second path user channel in the F3 byte. The current value of the F3 byte is stored
in SPE_F3DMON0[7:0] (Table 162 on page 143) after a number of consecutive frames (determined by the value
programmed in SPE_CNTDF3[3:0] (Table 160 on page 142)) of identical F3 bytes has been received, i.e., the 8-bit
pattern must be identical for a number of frames, determined by SPE_CNTDF3[3:0], prior to updating
SPE_F3DMON0[7:0].
Whenever the contents of the F3 byte monitor (SPE_F3DMON0[7:0]) change, a delta bit SPE_F3DMOND
(Table 156 on page 136) is set. The interrupt mask is in register bit SPE_F3DMONM (Table 157 on page 138).
The SPE mapper maintains a history of the previous valid F3 byte in SPE_F3DMON1[7:0] (Table 162 on
page 143).
Table 552. F3 Monitor
18.14.7 N1 Monitor
The SPE mapper stores the current value of the N1 byte in SPE_N1DMON[7:0] (Table 162 on page 143). This is
updated after a number of consecutive frames (determined by the value programmed in bits SPE_CNTDN1[3:0]
(Table 160 on page 142)) of identical N1 bytes, i.e., the 8-bit pattern must be identical for a number frames deter-
mined by the value in register bits SPE_CNTDN1[3:0] prior to updating the N1 register.
Whenever the contents of the N1 byte monitor (SPE_N1DMON[7:0]) change, a delta bit SPE_N1DMOND
(Table 156 on page 136) is set. The interrupt generated by SPE_N1DMOND can be masked off by
SPE_N1DMONM (Table 157 on page 138).
Table 553. N1 Monitor
Name Function
SPE_F2DMON0[7:0] (Table 162 on page 143)Fault Location Current Consistent Value.
SPE_F2DMON1[7:0] (Table 162 on page 143)Fault Location Previous Consistent Value.
SPE_CNTDF2[3:0] (Table 160 on page 142)Continuous N-Time s Detect (3—15).
SPE_F2DMOND (Table 156 on page 136)F2 Data Monitor Delta Bit.
SPE_F2DMONM (Table 157 on page 138)F2 Data Monitor Mask Bit.
Name Function
SPE_F3DMON0[7:0] (Table 162 on page 143)User Channel Current Consistent Value.
SPE_F3DMON1[7:0] (Table 162 on page 143)User Channel Previous Consistent Value.
SPE_CNTDF3[3:0] (Table 160 on page 142)Continuous N-Times Detect (3—15).
SPE_F3DMOND (Table 156 on page 136)F3 Data Monitor Delta Bit.
SPE_F3DMONM (Table 157 on page 138)F3 Data Monitor Mask Bit.
Name Function
SPE_N1DMON[7:0] (Table 162 on page 143)Fault Location Current Consistent Value.
SPE_CNTDN1[3:0] (Table 160 on page 142)Continuous N-Times Detect (3—15).
SPE_N1DMOND (Table 156 on page 136)N1 Data Monitor Delta Bit.
SPE_N1 DMONM (Table 157 on page 138)N1 Data Monitor Mask Bit.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
421Agere Systems Inc.
18 SPE Mapper Functional Description (continued)
18.14.8 K3 Byte Monitor
The SPE mapper stores the current value of the K3 byte in SPE_K3DMON[7:0] (Table 162 on page 143). This is
updated after a number of consecutive frames (determined by the value programmed in bits SPE_CNTDK3[3:0]
(Table 160 on page 142)) of identical K3 bytes, i.e., the 8-bit pattern must be identical for a number of frames
determined by the value of SPE_CNTDK3[3:0] prior to updating the K3 register.
Whenever the contents of the K3 byte monitor (SPE_K3DMON[7:0]) change, a delta bit SPE_K3DMOND
(Table 156 on page 136) is set. The interrupt generated by SPE_K3DMOND can be masked off by the
SPE_K3DMONM (Table 157).
Table 554. K3 Monitor
18.14.9 AIS-P and RDI-P Detect
The SPE mapper monitors for path AIS in the H1 and H2 bytes (all H1 and H2 bits = 1) of the TUG-3 pointer . When
path AIS is detected, SPE_RAIS (Table 158 on page 140) will be set to 1 after three consecutive occurrences. Any
changes to SPE_RAIS will be reported in SPE_RAISD (Table 156 on page 136) and the interrupt can be masked,
using SPE_RAISM (Table 157 on page 138).
A remote defect indication-path (RDI-P) signal indicates to STS PTE that its peer STS PTE has detected a defect
on the signal that it originated. The SPE mapper supports both the single bit RDI-P and the 3-bit enhanced RDI-P;
the mode is selectable using bit SPE_RPRDI_MODE (Table 159 on page 141). When SPE_RPRDI_MODE = 0,
1-bit code is supported and when SPE_RPRDI_MODE = 1, 3-bit enhanced RDI-P code is supported. Three bits of
the G1 byte (G1[3:1]) are reserved for the RDI-P signal.
The SPE mapper monitors for a 1-bit RDI-P code in G1[3] bit or a 3-bit enhanced remote defect indication (RDI-P)
condition in the G1[3:1] bits and stores the current value in bits SPE_PRDIDMON[2:0] (Table 162 on page 143).
The current value is updated after a number of consecutive frames (determined by the value of bits
SPE_CNTDPRDI[3:0] (Table 160 on page 142)) of identical G1[3:1], i.e., the 3-bit pattern must be identical for a
number of frames, determined by the value of SPE_CNTDPRDI[3:0] prior to updating SPE_PRDIDMON[2:0].
Whenever the contents of SPE_PRDIDMON[2:0] change, a delta bit SPE_PRDIDMOND (Table 156 on page 136)
is set. The interrupt generated by SPE_PRDIDMOND can be masked off by SPE_PRDIDMONM (Table 157 on
page 138).
Table 555. AIS-P and RDI-P Detect
Name Function
SPE_K3DMON[7:0] (Table 162 on page 143)Fault Location Current Consistent Value.
SPE_CNTDK3[3:0] (Table 160 on page 142)Continuous N-Times Detect (3—15).
SPE_K3DMOND (Table 156 on page 136)K3 Data Monitor Delta Bit.
SPE_K3DMONM (Table 157 on page 138)K3 Data Monitor Mask Bit.
Name Function
SPE_CNTDPRDI[ 3:0] (Tab le 160 on page 142)Continuous Times Dete ct Count Value for
G1[3:1] Bits (3—15 ).
SPE_PRDIDMOND (Table 156 on page 136)Path RDI Delta Bit.
SPE_PRDIDMONM (Table 157 on page 138)Path RDI Mask Bit.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
422 Agere Systems Inc.
18 SPE Mapper Functional Description (continued)
18.14.10 REI-P Detect
Bits 7 through 4 of the G1 byte are allocated for use as a path remote error indication function (REI-P).
For STS-1 signals, bits 7 through 4 of the G1 byte are allocated for REI-P, which conveys the error count
detected by the PTE (using the path BIP-8 code B3) back to its peer PTE as follows.
Table 556. STS-1 P-REI Interpretation
The SPE mapper provides a counter to accumulate G1-REI errored bit count in SPE_G1ECNT[15:0] (Table 170 on
page 150) from G1[7:4]. This counter will hold at its maximum value or roll over (depending on the value of micro-
processor bit SMPR_SAT_ROLLOVER (Table 77 on page 70)) and update upon the performance monitoring inter-
val.
18.14.11 Signal Degrade BER Algorithm
A signal degrade state bit is SPE_SDB3 (Table 158 on page 140) with a change of state indication reported in
delta bit SPE_SDB3D (Table 156 on page 136) and the interrupt mask bit is SPE_SDB3M (Table 157). This bit
error rate algorithm operates on B3 errors.
Declaring the signal degrade state requires the definition of two measurement windows: a monitoring block con-
sisting of a number of frames, Ns (SPE_SDNSSET[18:0] (Table 168 on page 149)), and a measureme nt inte rval
consisting of a number of monitoring blocks, B (SPE_SDBSET[11:0] (Table 168)). A block is determined bad when
the number of bit errors equals or exceeds a threshold, L (SPE_SDLSET[3:0] (Table 168)). Signal degrade is
declared when a number of bad monitoring blocks equals or exceeds the threshold, M (SPE_SDMSET[7:0]
(Table 168)), for the measurement interval.
Clearing the signal degrade state requires the definition of two measurement windows: a monitoring block consist-
ing of a number of frames, Ns (SPE_SDNSCLEAR[18:0] (Table 168)), and a measurement interval consisting of a
number of monitoring blocks, B (SPE_SDBCLEAR[11:0] (Table 168)). A block is determined good when the num-
ber of bit errors is less than a threshold, L (SPE_SDLCLEAR[3:0] (Table 168)). Signal degrade is cleared when a
number of good monitoring blocks equals or exceeds the threshold, M (SPE_SDMCLEAR[7:0] (Table 168)) , for th e
measurement interval.
The set parameters are used when the signal degrade state is clear, and the clear parameters are used when the
signal degrade state is declared.
The signal degrade state may be forced to the declared state with bit SPE_SDSET (Tab le 155 on page 136) and
forced to the cleared state with bit SPE_SDCLEAR (Table 155). The controls are provided to force the BER algo-
rithm into the failed state or normal state, respectively.
The above algorithm can detect bit error rates from 1 x 10–3 to 1 x 10–9.
G1[7:4] Code Code Interpretation
0000 0 (no errors )
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 8
1001—1111 0 (no errors )
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
423Agere Systems Inc.
18 SPE Mapper Functional Description (continued)
Table 557. Signal Degrade Paramete rs
Note: The threshold written by the c ontrol system is one less than the desired number, except for the SPE_SDLSET[3:0]/SDLCLEA R[3:0]
parameter.
18.14.12 Signal Fail BER Algorithm
A signal fail state is reported by bit SPE_SFB3 (Table 158 on page 140) and change of state in bit SPE_SFB3D
(Table 156) with the interrupt mask bit SPE_SFB3M (Table 157). This bit error rate algorithm operates on B3
errors.
Declaring the signal fail state requires the definition of two measurement windows: a monitoring block consisting of
a number of frames, Ns (SPE_SFNSSET[18:0] (Tab le 169 on page 150)), and a measurement interval consisting
of a number of monitoring blocks, B (SPE_SFBSET[15:0] (Table 169)). A block is determined to be bad when the
number of bit errors equals or exceeds a threshold, L (SPE_SFLSET[3:0] (v)). Signal fail is declared when the
number of bad monitoring blocks equals or exceeds the threshold, M (SPE_SFMSET[7:0] (Table 169)), for the
measurement interval.
Clearing the signal fail state requires the definition of two measurement windows: a monitoring block consisting of
a number of frames, Ns (SPE_SFNSCLEAR[18:0] (Table 169)), and a measurement interval consisting of a num-
ber of monitoring blocks, B (SPE_SFBCLEAR[11:0] (v)). A block is determined to be good when the number of bit
errors is less than a threshold, L (SPE_SFLCLEAR[3:0] (Table 169)). Signal fail is cleared when a number of good
monitoring blocks equals or exceeds the threshold, M (SPE_SFMCLEAR[7:0] (v)), for the measurement interval.
The set parameters are used when the signal fail state is clear , and the clear parameters are used when the signal
fail state is declared.
The signal fail state may be forced to the declared state with bit SPE_SFSET (Table 155 on page 136), and forced
to the cleared state with bit SPE_SFCLEAR (Table 155).
The above algorithm can detect bit error rates from 1 x 10–3 to 1 x 10–9.
Name Function
SPE_SDNSSET[18:0] (Table 168 on page 149)Signal Degrade Ns Set. Number of frames in a monitoring
block for SD.
SPE_SDLSET[3:0] (Table 168)Signal Degrade L Set. Error threshold for determining if a mon-
itoring block is bad.
SPE_SDMSET[7:0] (Table 168)Signal Degrade M Set. Threshold of the number of bad moni-
toring blocks in an observation interval. If the number of bad
blocks is below this threshold, then SD is cleared.
SPE_SDBSET[15:0] (Table 168)Signal Degrade B Set. Number of monitoring blocks in a mea-
surement interval.
SPE_SDNSCLEAR[18:0] (Table 168)Signal Degrade Ns Clear. Number of frames in a monitoring
block for SD.
SPE_SDLCLEAR[3:0] (Table 168)Signal Degrade L Clear. Error threshold for determining if a
monitoring block is bad.
SPE_SDMCLEAR[ 7:0] (Table 168)Signal Degrade M Clear. Threshold of the number of bad mon-
itoring blocks in an observation interval. If the number of bad
blocks is below this threshold, then SD is cleared.
SPE_SDBCLEAR[15:0] (Table 168)Signal Degrade B Clear. Number of monitoring blocks in a
measurement interval.
SPE_SD SET (Table 155 on page 136)Signal Degrade Set. Allows the signal degrade algorithm to be
forced into the failed state (active 0 to 1).
SPE_SDCLEAR (Table 155)Signal Degrade Clear. Allows the signal degrade algorithm to
be forced into the normal state (active 0 to 1).
SPE_SDB3 (Table 158 on page 140)Signal Degrade BER Algorithm State Bit.
SPE_SDB3D (Table 156 on page 136)Signal Degrade BER Algorithm Delta Bit.
SPE_SDB3M (Table 157 on page 138)Signal Degrade BER Algorithm Mask Bit.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
424 Agere Systems Inc.
18 SPE Mapper Functional Description (continued)
Table 558. Signal Fail Parameters
Note: The threshold written by the c ontrol sys tem is one less than the desired number, except for the SPE_SFLSET[3:0]/SFLCLE AR[ 3:0]
parameter.
18.14.13 POAC Drop
The SPE mapper accommodates one path overhead access channel (POAC output channel).
The POAC channel consists of the following signals:
A 576 kHz inverted clock signal sourced by the TMUX (RPOACCLK, pin AE3).
A 576 kbits/s data signal sourced by the TMUX (RPOACDATA, pin AD4).
An 8 kHz synchronization signal, sourced by the TMUX (RPOACSYNC, pin AF4). The sync signal is normally
low; during the last clock period of each frame coincident with the least significant bit of the last byte, the sync
signal is high.
The data signal is partitioned into frames of 9 bytes. The frame repetition rate is 8 kHz. Each byte consists of 8 bits
that are transmitted/received most significant bit first (MSB). The MSB of the second byte of each frame contains
an odd/even parity bit over the 72 bits of the previous frame. The remaining 7 bits of this byte are not specified.
Name Function
SPE_SFNSSET[18:0] (Table 169 on page 150)Signal Fail Ns Set. Number of frames in a monitoring block for
SF.
SPE_SFLSET[3:0] (Table 169)Signal Fail L Set. Error threshold for determining if a monitoring
block is bad.
SPE_SFMSET[7:0] (Table 169)Signal Fail M Set. Threshold of the number of bad monitoring
blocks in an observation interval. If the number of bad blocks is
below this threshold, then SF is cleared.
SPE_SFBSET[15:0] (Table 169)Signal Fail B Set. N umber of monitoring blocks.
SPE_SFNSCLEAR[18:0] (Table 169)Signal Fail Ns Clear. Number of frames in a monitoring block
for SF.
SPE_SFLCLEAR[3:0] (Table 169)Signal Fail L Clear. Error threshold for determining if a monitor-
ing block is bad.
SPE_SFMCLEAR[7:0] (Table 169)Signal Fail M Clear. Threshold of the number of bad monitoring
blocks in an observation interval. If the number of bad blocks is
below this threshold, then SF is cleared.
SPE_SFBCLEAR[15:0] (Table 169)Signal Fail B Clear. Number of monitoring blocks.
SPE_SFSET (Table 155 on page 136)Signal Fail Set. Allows the signal degrade algorithm to be
forced into the failed state (active 0 to 1).
SPE_SFCLEAR (Table 155)Signal Fail Clear. Allows the signal degrade algorithm to be
forced into the normal state (active 0 to 1).
SPE_SFB3 (Table 1 58 on page 140 )Signal Fail BER Algorithm State Bit.
SPE_SFB3D (Table 156 on page 136)Signal Fail BER Algorithm Delta Bit.
SPE_SFB3M (Table 157 on page 138)Signal Fail BER Algorithm Mask Bit.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
425Agere Systems Inc.
18 SPE Mapper Functional Description (continued)
Bytes shown in Table 559 summarize the access capabilities of the receive POAC.
Table 559. Path Overhead Byte Access
Even or odd parity can be inserted into the first bit of the second byte of the POAC outgoing frame. Parity is
selected with register bit SPE_RPOAC_OEPINS (Table 159 on page 141).
18.14.14 Insertion of AIS-P
The SPE mapper automatically generates AIS path (AIS-P) when:
The pointer interpreter declares the receive AIS state (SPE_RAIS in Table 158 on page 140) or rece ive loss-of-
pointer state (SPE_RLOP (Table 158)) and the appropriate inhibit signals are inactive.
AIS is requested by signals from the TMUX interface.
AIS is forced by setting bit SPE_PAISINS (Table 159).
Any one of the loss-of-clock or loss-of-sync bits are active and their corresponding inhibit bits are inactive.
Any of bits SPE_RUNEQ, SPE_RPLM, and SPE_RTIM (all are in Table 158) are active, and the appropriate
inhibit signals are inactive.
Criteria for PATH_AIS_GE NE RATE =
((SP E_RLOP AND (SPE_PAIS_LOPINH)) OR
(SPE_RAIS AND (SPE_PAIS_AISIN H)) OR
(SPE_RUNEQ AND (SPE_PAIS_UNEQINH)) OR
(SPE_RPLM AND (SPE_PAIS_PLMINH)) OR
(SPE_RTIM AND (SPE_PAI S_TIMINH)) OR
(SPE_SFB3 AND (SPE_PAIS_SFB3INH)) OR
(SPE_SDB3 AND (SPE_PAIS_SDB3INH)) OR
(SPE_RSY52LOS AND (SPE_AIS_LOSSY52INH)) OR
(SPE_RV1LOS AND (SPE_AIS_LOSV1INH)) OR
(SPE_RSPELOS AND (SPE_AIS_LOSSPEINH)) OR
(SPE_RJ0J1V1LOS AND (SPE_AIS_LOSJ0J1V1INH)) OR
(SPE_RDS3LOC AND (SPE_AIS_LOCDS3INH)) OR
(SPE_RC52LOC AND (SPE_AIS_LOC52INH)) OR
(SPE_RLSLOC AND (SPE_AIS_LOCINH)) OR
SPE_PAISINS OR
RAUTO_AIS (signal from TMUX))
The SPE mapper starts/stops generating AIS-P within 125 µs of the detection/absence of a failure condition.
AIS-P consists of writing all ones into the H1, H2, and H3 bytes and into the entire payload.
J1
POH Parity
C2
G1
F2
H4
F3
K3
N1
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
426 Agere Systems Inc.
18 SPE Mapper Functional Description (continued)
18.15 Tran smit Direction (to SONET /SDH Line)
The transmit block inserts the path overhead (POH) bytes to the payload data and outputs an STS-1 SPE or a
TUG-3 payload as required.
The transmit section is broken down into the following functional parts:
Loss of clock and loss of sync detectors
N1 insert
K3 insert
Path user byte F3 insert
Path user byte F2 insert
AIS-P insert
REI-P insert
RDI-P insert
C2 signal label insert
B3 calculation and insert
J1 path trace insert
All insert control functions that are inhibited will insert all zeros or all ones into the outgoing bytes, depending on the
value of microprocessor register bit SMPR_OH_DEFLT (Ta ble 77 on page 70).
18.15.1 PATH Insertion Block
The path overhead insertion block of the SPE mapper is shown below. The block computes and inserts the B3 BIP
error bytes and the rest of the path overhead bytes to form a TUG-3 frame.
5-9069(F)
Figure 38. Transmit Direction Path Insertion Block
H4
INSERT K3
N1 C2 F3 F2K3 G1 G1J1
INSERT
AIS-P
B3
POAC INSERT
B3
INSERT PATH OVERHEAD BYTES
MUX
TO TMUX INTERFACE
BLOCK
VC-3 DATA
TUG-3 DATA
J1 APS
INSERT
G1
RDI-P
INSERT
G1
REI-P
INSERT INSERT
N1 INSERT
C2 INSERT
F3 INSERT
F2 INSERT H4
FIXED VAL
GENERATEINSERT
F2, F3, C2, N1, AND J1
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
427Agere Systems Inc.
18 SPE Mapper Functional Description (continued)
18.15.2 Loss of Clock and Loss of Sync Detectors
The SPE mapper detects and reports the loss of the input clocks for the transmit telecom bus clock, device pin
TLSCLK (A A2), i n bit SPE_ TLS LOC (Table 158 on page 140), the 51.84 MHz transmit low-speed clock, device pin
TLSC52 (AC3), in bit SPE_TC52LOC (Table 158), and the external DS3 clock, device pin DS3DATAINCLK (J22),
in bit SPE_TDS3LOC (Table 158). Loss of clock is determined by stuck high or stuck low for time T. The detection
time T will be greater than 10 µs but less than 125 µs. The function uses the microprocessor clock as its reference.
The device will report a change in the loss of clock state for the monitored clocks using bits SPE_TLSLOCD
(Table 156 on page 136), SPE_TC52LOCD (Table 156), and SPE_TDS3LOCD (Table 156), respectively. The
microprocessor interrupt may be masked using bits SPE_TLSLOCM, SPE_TC52LOCM, and SPE_TDS3LOCM
(Table 157 on page 138), respectively.
The SPE mapper detects loss-of-sync conditions for the telecom bus sync signals, device pins TLSSYNC52 (AD2),
TLSJ0 J1V1 (AB4), TLSSPE (AB2), and TLSV1 ( AB3). The loss of syn c states are repo rted in bits SPE_ TSY52LOS
(Table 158), SPE_TJ0J1V1LOS (Table 158), SPE_TSPELOS (Table 158), and SPE_TV1LOS (Table 158),
respectively. The device will report a change in the loss of sync state for the monitored sync signals in bits
SPE_TSY52LOSD (Table 156), SPE_TJ0J1V1LOSD (Table 156), SPE_TSPELOSD (Table 156), and
SPE_TV1LOSD (Table 156), respectively. The microprocessor interrupt may be masked using bits
SPE_TSY52LOSM, SPE_TJ0J1V1LOSM, SPE_TSPELOSM, and SPE_TV1LOSM (Table 157), respec ti v el y.
18.15.3 J1 Byte Insert
A 64-byte sequence stored in SPE_TJ1DINS[1—64][7:0] (Table 173 on page 151) will be inserted into the outgo-
ing J1 byte when bit SPE_TJ1INS = 1 (Table 164 on page 146); otherwise, the associated POAC value is inserted
when bit SPE_TPOAC_J1 = 1 (Table 164) or the default value, determined by the value of microprocessor bit
SMPR_OH_DEFLT (Table 77 on page 70), is inserted when SPE_TPOA C_J1 = 0.
The CRC for the J1 trace has to be programmed into the J1 bytes by the user.
18.15.4 B3 BIP-8 Calculation and Insert
The B3 bytes are allocated for path overhead error monitoring function. This function is a bit interleaved parity
8 code (BIP-8) using even parity. The BIP-8 is computed before scrambling over all bits of the previous AU-3/TUG-
3 frame, and is placed in byte B3 of the current frame also before scrambling. When enabled with control bit,
SPE_TB3ERRINS (Table 166 on page 148), a single B3 byte can be inverted each time bit SPE_BERR_INS
(Table 166) is asse rted.
18.15.5 C2 Signal Label Byte Insert
When bit SPE_TC2INS = 1 (Table 164 on page 146), the value in SPE_TC2DINS[7:0] (Table 167 on page 149) is
inserted into the outgoing C2 byte; otherwise, insert the associated POAC value when SPE_TPOAC_C2 = 1
(Table 164) or insert the default value determined by the microprocessor bit SMPR_OH_DEFLT when bit
SPE_T PO A C_C2 = 0.
18.15.6 REI-P G1(7:4) Insert
Four bits of the G1 byte G1(7:4) are allocated for use as a path remote error indication (REI). For AU-3/TUG-3 sig-
nals, these bits convey the count (in the range of 0 to 8) of interleaved bit blocks that have been detected in error
by the BIP-8 (B3) detector on the received signal.
This function can be inhibited with bit SPE_TREIP_INH (Table 165 on page 148) and the value in
SPE_TG1DINS[7:4] (Table 167 on page 149) is inserted in G1(7:4) bits. A continuous error in the G1 byte can be
transmitted using control bit SPE_TREIERRINS (Table 166 on page 148). A value of 0x03 will be inserted when
SPE_TREIERRINS = 1, subject to SPE_BERR_INS and SMPR_BER_INSRT being enabled.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
428 Agere Systems Inc.
18 SPE Mapper Functional Description (continued)
18.15.7 Path RDI (RDI-P) Insert
When transmit RDI software insert control bit SPE_TPRDIINS = 1 (Table 165 on page 148), data from
SPE_TG1DINS[3:1] (Table 167 on page 149) is written into the G1[3:1] output bits. When SPE_TPRDIINS = 0,
hardware insert is enabled for RDI-P insertion. Each defect contribution to the RDI-P outgoing code can be inhib-
ited. There are two modes supported for path RDI Insertion. One mode conforms to the earlier 1-bit version of the
standard. The other mode, enhanced RDI-P mode, uses a 3-bit RDI-P code and conforms to the current version of
the standard. When the mode selection bit SPE_TPRDI_MODE = 0 (Table 165 on page 148), the SPE mapper
sends a 3-bit code that conforms to the earlier 1-bit version of the standards. When SPE_TPRDI_MODE = 1, the
SPE mapper sends a 3-bit code conforming to the current enhanced path RDI encoding. Note that for nonen-
hanced RDI-P mode, the relevant defects are AIS-P and LOP-P. For enhanced RDI-P mode, the relevant defects
are AIS-P, LOP-P, TIM-P, PLM-P, UNEQ-P, and TIM-P.
When a failure condition exists that will cause RDI-P to be generated via hardware, the generation of RDI-P must
last for at least 20 frames before clearing, even if the original failure cause has cleared in less than 20 frames.
The following table describes the encoding of the path-RDI defects.
Table 560. RDI-P Defects for Enhanced RDI-P Mode
18.15.8 F2 Byte Insert
When control bit SPE_TF2INS = 1 (Table 164 on page 146), insert the value in SPE_TF2DINS[7:0] (Table 167 on
page 149) in the outgoing F2 byte; otherwise, insert the associated POAC value when bit SPE_TPOAC_F2 = 1
(Table 164), or insert the default value determined by the microprocessor bit SMPR_OH_DEFLT (Table 77 on
page 70) when SPE_TPOAC_F2 = 0.
18.15.9 H4 Insert Control
When control bit SPE_TH4INS = 1 (v), insert the value in SPE_TH4DINS[7:0] (Table 167 on page 149) in the out-
going H4 byte; otherwise, insert the associated POAC value when bit SPE_TPOAC_H4 = 1 (Table 164 on
page 146), or insert the default value determined by the microprocessor bit SMPR_OH_DEFLT when
SPE_T PO A C_H4 = 0.
18.15.10 F3 Byte Insert
When control bit SPE_TF3INS = 1 (Table 164 on page 146), insert the value in SPE_TF3DINS[7:0] (Table 167 on
page 149) in the outgoing F3 byte; otherwise, insert the associated POAC value when bit SPE_TPOAC_F3 = 1
(Table 164), or insert the default value determined by the microprocessor bit SMPR_OH_DEFLT (Table 77 on
page 70) when SPE_TPOAC_F3 = 0.
G1 Triggers
Bit 3 Bit 2 Bit 1
0 0 0 No defects (nonenhanced RDI-P mode)
0 0 1 No defects (enhanced RDI-P mode)
0 1 0 LCD-P, PLM-P (LCD-P not supported in Supermapper)
0 1 1 No defects (nonenhanced RDI-P mode)
1 0 0 AIS-P, LOP-P (nonenhanced RDI-P mode)
1 0 1 AIS-P, LOP-P (enhanced RDI-P mode)
1 1 0 TIM-P, UNEQ-P (enhanced RDI-P mode)
1 1 1 AIS-P, LOP-P (nonenhanced RDI-P mode)
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
429Agere Systems Inc.
18 SPE Mapper Functional Description (continued)
18.15.11 K3 Insert Control Parameters
When control bit SPE_TK3INS = 1 (Table 164 on page 146), insert the value in SPE_TK3DINS[7:0] (Table 167 on
page 149) in the outgoing K3 byte; otherwise, insert the associated POAC value when bit SPE_TPOAC_K3 = 1
(Table 164), or insert the default value determined by the microprocessor bit SMPR_OH_DEFLT when
SPE_TPOAC_K3 = 0.
18.15.12 N1 Insert Control Parameters
When control bit SPE_TN1INS = 1 (Table 164 on page 146), insert the value in SPE_TN1DINS[7:0] (Table 167 on
page 149) in the outgoing N1 byte; otherwise, insert the associated POAC value when bit SPE_TPOAC_N1 = 1
(Table 164), or insert the default value determined by the microprocessor bit SMPR_OH_DEFLT when
SPE_T PO A C_N1 = 0.
18.16 POAC Insert
One overhead access channel (POAC) is provided on-chip to provision the path overhead portion of the outgoing
frame. A POAC channel consists of the following signals:
A 576 kHz inverted clock signal sourced by the SPE mapper (TPOACCLK, pin AE4).
A 576 kbits/s data signal received by the SPE mapper in the transmit direction (TPOACDATA, pin AD5).
An 8 kHz synchronization signal (TPOACSYNC, pin AC5), sourced by the SPE mapper. The sync signal is nor-
mally low; during the first clock period of each frame coincident with the most significant bit of the first byte, the
sync signal is high.
The data signal is partitioned into frames of 9 bytes. The frame repetition rate is 8 kHz. Each byte consists of 8 bits
that are transmitted/received most significant bit first. The MSB of the second byte of each frame contains an odd/
even parity bit over the 72 bits of the previous frame. The remaining 7 bits of this byte are not specified. The POAC
input has full access to all the path overhead bytes of the STS-1 frame. Bytes shown in the table below summarize
the access capabilities of the transmit POAC channel.
Table 561. Path Overhead Byte Access—Transmit Direction
An event indication is provided to indicate parity errors for the POAC channel. Monitoring of odd or even parity is
sel ected with bit SPE_TPOAC_OEPMON (Table 164 on page 146). Parity errors are reported with bit
SPE_TPOAC_PE (Table 156 on page 136). The interrupt can be masked with bit SPE_TPOAC_PM (Table 157 on
page 138).
Table 562 on page 430 summarizes the insertion options for the specified overhead bytes for POAC. The SPE
mapper allows a predefined default value determined by the value of the microprocessor bit SMPR_OH_DEFLT
(Table 77 on page 70 ) to be inserted on the corresponding POAC value.
J1
POH Parity
C2
G1
F2
H4
F3
K3
N1
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
430 Agere Systems Inc.
18 SPE Mapper Functional Description (continued)
Table 562. TPOAC Control Bits
18.17 AIS Path Generation
Path AIS is specified as all ones in the entire STS-1 SPE/TUG-3 frame. Path AIS can be forced by setting bit
SPE_TAISPINS = 1 (Table 164 on page 146).
Overhead Bytes Control Bits
(Table 164 on page 146)Values
0 (Default Value) 1
J1 SPE_TPOAC_ J1 SMPR_OH_DE FLT TPOAC Data
H4 SPE_TPOAC_H4
F2 SPE_TPOAC_F2
F3 SPE_TPOAC_F3
C2 SPE_TPOAC_C2
K3 SPE_TPOAC_K3
N1 SPE_TPOAC_N1
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
431Agere Systems Inc.
19 VT/TU Mapper Functional Description
Table of Con t en ts
Contents Page
19 VT/TU Mapper Functional Description ............................................................................................................431
19.1 VT/TU Mapper Introduction......................................................................................................................433
19.2 VT/TU Mapper Features...........................................................................................................................433
19.3 VT/TU Mapper Functional Block Diagram................................................................................................434
19.4 VT/TU Mappings ......................................................................................................................................436
19.5 VT/TU Locations.......................................................................................................................................437
19.6 VT/TU Mapper Receive Path Description ................................................................................................438
19.7 VT Demultiplexer (VTDEMUX).................................................................................................................438
19.8 VT Pointer Interpre ter (VTPI) .......... ...... ....... ...... ....... ...... ...... ....... ...... ....... ...... .........................................438
19.9 VT Termination (VTTERM).......................................................................................................................441
19.9.1 V5 Term in ation ......... ................... ....... ...... ....... ................... ...... ....... ...... ....... ................................. 441
19.9.2 Z6/N2 Term in ation ................ ...... ....... ...... ....... ...... ...... .................... ...... ....... ...... ....... .................... 442
19.9.3 Z7/K4 Termination ............................. ...... ....... ...... ...... ....... ...... .................... ...... ....... .................... 443
19.9.4 Pay load Te rmin ation ...... ....... ...... ....... ...... ....... ...... ...... ....... ...... .................... ...... ....... .................... 443
19.10 Output Signal Selection (OUTSEL)........................................................................................................444
19.11 J2 Byte Monitor and Termination (J2MON)............................................................................................444
19.12 Receive Signaling (RX_VTSIG) .............................................................................................................445
19.13 Receive Lower-Order Path Overhead (RX_LOPOH).............................................................................446
19.14 VT/TU Mapper Transmit Path Requirements.........................................................................................447
19.14.1 Input Selector (INSEL) ................................................................................................................ 447
19.14.2 Transmit Elastic Store (TES) ...................................................................................................... 448
19.14.3 Virtual Tributary Generator (VTGEN) .......................................................................................... 449
19.14.4 Pointer Generation ...................................................................................................................... 449
19.14.5 VT Multiplexer (VTMUX) ............................................................................................................. 457
19.14.6 Transmit Signaling (TX_VTSIG) ................................................................................................. 457
19.14.7 Transmit Lower Path Overhead (TX_LOPOH) ........................................................................... 457
19.15 VT Mapper System Interface Timing......................................................................................................458
19.15.1 VT Mapper DS1/E1 Receive Interface (to System Interface) ..................................................... 458
19.15.2 VT Mapper DS1/E1 Transmit Interface (from System Interface) ................................................ 459
19.16 VT Mapper Lower-Order Path Overhead Interface Timing ....................................................................459
19.16.1 VT Mapper Receive Path Overhead Interface Description ......................................................... 459
19.16.2 VT Mapper Transmit Path Overhead Interface Description ........................................................ 460
Figures Page
Figure 39. VT Mapper Interface Diagram..............................................................................................................434
Figure 40. VT Mapper Functional Block Diagram..................................................................................................435
Figure 41. Pointer Interpretation State Diagram....................................................................................................439
Figure 42. DS1 Mode Gapped Clocking Scheme..................................................................................................458
Figure 43. E1 Mode Gapped Clocking Scheme ....................................................................................................458
Figure 44. DS1 Interface .......................................................................................................................................458
Figure 45. E1 Interface..........................................................................................................................................459
Figure 46. VT Mapper Receive Path Overhead Serial Access Channel...............................................................459
Figure 47. VT Mapper Transmit Path Overhead Serial Access Channel..............................................................460
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
432 Agere Systems Inc.
19 VT/TU Mapper Functional Description (continued)
Table of Conten ts (continued)
Tables Page
Table 563. VT2/TU-12 Payload Mapping...............................................................................................................436
Table 564. VT1.5/TU-11 Payload Mapping............................................................................................................436
Table 565. VT2/TU-12 Locations...........................................................................................................................437
Table 566. VT1.5/TU-11 Locations ........................................................................................................................437
Table 567. Receive VT/TU Demapping Selection .................................................................................................443
Table 568. Rx Signaling Behavior Per Channel.....................................................................................................446
Table 569. Data Type Header Definitions..............................................................................................................447
Table 570. Transmit VT/TU Mapping Selection per Channel, VT_TX_MAPTYPE[1—28][3:0]..............................448
Table 571. V5 Overhead Byte Format...................................................................................................................450
Table 572. BIP-2 Error Insertion Modes ................................................................................................................450
Table 573. RDI-V, RFI-V, and REI-V Automatic Generation..................................................................................451
Table 574. VT Signal Label Definition....................................................................................................................451
Table 575. J2 Overhead Byte Insertion Modes Per Channel.................................................................................452
Table 576. Z6/N2 Overhead Byte Insertion Modes Per Channel...........................................................................452
Table 577. Z7/K4 Overhead Byte Insertion Modes Per Channel...........................................................................452
Table 578. O-Bit Insertion Modes Per Channel.....................................................................................................453
Table 579. Asynchronous VT1.5............................................................................................................................454
Table 580. Bit-Synchronous VT1.5........................................................................................................................454
Table 581. Byte-Synchronous VT1.5.....................................................................................................................454
Table 582. Asynchronous VT2...............................................................................................................................455
Table 583. Bit-Synchronous VT2...........................................................................................................................455
Table 584. Byte-Synchronous VT2........................................................................................................................455
Table 585. VC-11 to TU-12 Conversion.................................................................................................................456
Table 586. Framing Byte Generation Per Channel................................................................................................457
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
433Agere Systems Inc.
19 VT/TU Mapper Functional Description (continued)
19.1 VT/TU Mapper Introd uction
This section describes the requirements of the SONET/SDH virtual tributary payload mapping block. This block
supports the following mappings:
28 asynchronous, byte-synchronous, or bit-synchronous DS1 signals into seven virtual tributary groups (VTGs).
28 asynchronous, byte-synchronous, or bit-synchronous DS1 signals into seven tributary unit groups (TUG-2s).
28 asynchronous, byte-synchronous, or bit-synchronous J1 signals into seven virtual tributary groups (VTGs).
28 asynchronous, byte-synchronous, or bit-synchronous J1 signals into seven tributary unit groups (TUG-2s).
21 asynchronous, byte-synchronous, or bit-synchronous E1 signals into seven tributary unit groups (TUG-2s).
Any valid DS1/E1 combination resulting in mixed VTGs and TUG-2s.
Additionally, this block has two auxiliary channels: one for DS1/E1 signaling insertion and drop, and another for
low-order path overhead (LOPOH) insertion and drop. Control inputs and outputs for each internal block are speci-
fied, along with appropriate control register bit definitions.
19.2 VT/TU Mapper Fea t ure s
Maps T1/E1/J1 into VT/TU structures:
— T1 into VT1.5/TU-1 1/TU-12.
— J1 into VT1.5/TU-11/TU-12.
— E1 into VT2/TU-12.
Supports async hr ono us, byte- synchro nou s, and bit -sy nc hr ono us map p in gs.
Supports automatic generation or microprocessor overwrite of one bit RDI and one bit RFI.
Supports automatic generation or microprocessor overwrite of enhanced RDI.
Supports ADM applications via tributary loopback and tributary pointer processing.
Supports unidirectional path switch ring (UPSR) applications via low-order path overhead access channel.
Supports five J2 trace identifier modes.
Programmable BIP-2 error insertion.
Monitors BIP-2 bit error rate.
Programmable clear-on-read/clear-on-write registers.
Supports automatic AIS generation for downstream devices.
VC-BIP-2, VC -REI 1 s error counters.
Programmable saturation or rollover of internal counters.
Complies with GR-253-CORE, G.707, T1.105, G.704, G.783, JT-G707, GR-499, ETS 300 417-1-1.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
434 Agere Systems Inc.
19 VT/TU Mapper Functional Description (continued)
19.3 VT/TU Mapper Fu nction al Blo ck Diagr am
The following block diagram shows a high-level view of the VT/TU mapper block and the interface to the T1/E1
framer, cross connect, SPE mapper (SPEMPR), digital jitter attenuator (DJA), and control (microprocessor inter-
face).
5-9011(F)r.2
Figure 39. VT Mapper Interface Diagram
DATA
RECEIVE
TRANSMIT
RECEI VE VT / TU MAPPER
TRANS MI T VT / TU MA PPER
FRAMER
[28:1]
LOPOHDATAOUT
LOPOHDATAIN
TRIBUTARY
LOPOHCLKIN
CROSS
CONNECT
DJA
CONTROL INTERFACE
DS1XCLK
E1XCLK
LOPOHVALIDOUT
LOPOHVALIDIN
RDI-V
REI-V
RX PATH SIGNALING
TX PATH SIGNALING
SPEM PR R D I , R EI
TUG3 RDI, REI
TRANSMIT
RECEIVE
LOOPBACK
TMUX
TMUX
DATA CLOCK
FSYNC ALARM
[28:1]
DATA CLOCK
FSYNC ALARM
RDI, REI PATH, AND LINE ALARMS
RDI, REI PATH, A ND LINE ALARMS
DATA CLOCK
CLOCK CONTROL
ALARM CONTROL SPE
SPEMPR
SPE
SPEMPR
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
435Agere Systems Inc.
19 VT/TU Mapper Functional Description (continued)
5-9012(F)
Figure 40. VT Mapper Functional Block Diagram
TES
SOFTWARE REGISTERS
LOPOHDATAIN
LOPOHDATAOUT
LOPOHCLKIN
VTRXDATA[7:0]
RX_EN
V1TIME
VTTXDATA[7:0]
DATA[28:1]
CLK[28:1]
FSYNC[28:1]
DATA[28:1]
CLK[28:1]
FSYNC[28:1]
CLK7M_RX
CLK7M_TX
J1TIME
DS1XCLK
E1XCLK
LOPOHVALIDIN
LOPOHVALIDOUT
INSEL
AUTO_AIS[28:1]
VTPI
RX_LOPOH
J2MON
VTTERM
OUTSEL VTDEMUX
RX_VTSIG
VT LOOPBACK (VTLBSEL = 1)
VTGEN
TX_VTSIG TX_LOPOH
VTMUX
TUG3_REI[3:0]
TUG3_RDI[2:0]
RDI_L
RDI[2:0]
REI_L[4:0]
REI[3:0]
RDI[2:0]
REI[3:0]
RDI_L
RDI_P[2:0]
REI_L[4:0]
REI_P[3:0]
J0TIME
RAI[28:1]
RAI[28:1]
16-BIT MICROPROCESSOR
TX_EN
DEVICE I/O
TRANSMIT PATH
DS1/E1 TO
RECEIVE PATH
DEVICE I/O
DEVICE I/O
SPE MAPPER TMUX
SPE MAPPER
TMUX
DS1/E1 FROM
SIGNALING TO
FRAMERS
x28
SPE MAPPER
CROSS CONNECT
CROSS CONNECT
X28
X28X28X28
INTERFACE SIGNALING FROM
FRAMERS
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
436 Agere Systems Inc.
19 VT/TU Mapper Functional Description (continued)
19.4 VT/TU Mappings
Table 563. VT2/TU-12 Payload Mapping
Table 564. VT1.5/TU-11 Payload Mapping
Column X 1 2 • • • 2
02
12
2• • • 2
8X2
9• • • 4
14
24
3• • • 5
6X5
7• • • 6
36
4• • • 8
38
4
J1 V
T
2
#
1
V
T
2
#
2
• • • V
T
2
#
2
0
V
T
2
#
2
1
V
T
2
#
1
• • • V
T
2
#
7
F
I
X
E
D
S
T
U
F
F
V
T
2
#
8
• • • V
T
2
#
2
0
V
T
2
#
2
1
V
T
2
#
1
• • • V
T
2
#
1
4
F
I
X
E
D
S
T
U
F
F
V
T
2
#
1
5
• • • V
T
2
#
2
1
V
T
2
#
1
• • • V
T
2
#
2
0
V
T
2
#
2
1
B3
C2
G1
F2
H4
Z3
Z4
Z5
Column X 1 2 • • 2
72
8X2
93
0• • • 5
55
6X5
75
8• • • 8
38
4
J1 V
T
1
.
5
#
1
V
T
1
.
5
#
2
• • • v
T
1
.
5
#
2
7
V
T
1
.
5
#
2
8
F
I
X
E
D
S
T
U
F
F
V
T
1
.
5
#
1
V
T
1
.
5
#
2
• • • V
T
1
.
5
#
2
7
V
T
1
.
5
#
2
8
F
I
X
E
D
S
T
U
F
F
V
T
1
.
5
#
1
V
T
1
.
5
#
2
• • • V
T
1
.
5
#
2
7
V
T
1
.
5
#
2
8
B3
C2
G1
F2
H4
Z3
Z4
Z5
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
437Agere Systems Inc.
19 VT/TU Mapper Functional Description (continued)
19.5 VT/TU Locations
Table 565. VT2/TU-12 Locations
* This column is for the I/O of the VTMPR. The cross connect can be
provisioned to map any external E1 to any VT2.
See Table 563 on page 436.
Table 566. VT1.5/TU-11 Locations
* This column is for the I/O of the VTMPR. The cross connect can be
provisioned to map any external DS1 to any VT1.5.
See Table 564 on page 436.
VTG VT E1* Columns
1 1 1 1, 22, 43, 64
2 1 2 2, 23, 44, 65
3 1 3 3, 24, 45, 66
4 1 4 4, 25, 46, 67
5 1 5 5, 26, 47, 68
6 1 6 6, 27, 48, 69
7 1 7 7, 28, 49, 70
1 2 8 8, 29, 50, 71
2 2 9 9, 30, 51, 72
3 2 10 10, 31, 52, 73
4 2 11 11, 32, 53, 74
5 2 12 12, 33, 54, 75
6 2 13 13, 34, 55, 76
7 2 14 14, 35, 56, 77
1 3 15 15, 36, 57, 78
2 3 16 16, 37, 58, 79
3 3 17 17, 38, 59, 80
4 3 18 18, 39, 60, 81
5 3 19 19, 40, 61, 82
6 3 20 20, 41, 62, 83
7 3 21 21, 42, 63, 84
VTG VT DS1* Columns
1 1 1 1, 29, 57
2 1 2 2, 30, 58
3 1 3 3, 31, 59
4 1 4 4, 32, 60
5 1 5 5, 33, 61
6 1 6 6, 34, 62
7 1 7 7, 35, 63
1 2 8 8, 36, 64
2 2 9 9, 37, 65
3 2 10 10, 38, 66
4 2 11 11, 39, 67
5 2 12 12, 40, 68
6 2 13 13, 41, 69
7 2 14 14, 42, 70
1 3 15 15, 43, 71
2 3 16 16, 44, 72
3 3 17 17, 45, 73
4 3 18 18, 46, 74
5 3 19 19, 47, 75
6 3 20 20, 48, 76
7 3 21 21, 49, 77
1 4 22 22, 50, 78
2 4 23 23, 51, 79
3 4 24 24, 52, 80
4 4 25 25, 53, 81
5 4 26 26, 54, 82
6 4 27 27, 55, 83
7 4 28 28, 56, 84
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
438 Agere Systems Inc.
19 VT/TU Mapper Functional Description (continued)
19.6 VT/TU Mapper Rece ive Path Descrip tion
This section describes all necessary functions of the receive logic (see Figure 40, right to left):
Virtual tributary demultiplexor (VTDEMUX)
Virtual tributary pointer interpreter (VTPI)
Virtual tributary terminator (VTTERM)
Output selector (OUTSEL)
J2 16-byte sequence monitor (J2MON)
Receive VT/TU signaling (RX_VTSIG)
Receive low-order path overhead (RX_LOPOH)
19.7 VT Demultiplexer (VTDEMUX)
The VTDEMUX logic block (in Figure 40 on page 435) will perform all necessary functions to decode which virtual
tributary (VT) is active on the data bus.
This block monitors the H4 byte and frames on the H4 multiframe indication. In frame (VT_H4LOMF = 0 (Table 189
on page 16 2 )) will be declared following two consecutive, nonerrored multiframe indications. A multiframe indica-
tion consists of four consecutive frames containing a (00, 01, 10, 11) pattern in the two LSBs of the H4 byte. Once
fram ed, H4 los s of m ult ifra me (V T_H4 LOM F = 1) will be de cla red fo llow ing the n umb er of cons ecut ive mism atc hes
in the H4 multiframe indication programmed into bits VT_H4_NTIME[3:0] (Table 195 on page 165). Loss of H4
multiframe alignment will generate AIS downstream. A change in H4 multiframe alignment is indicated by bit
VT_H 4 L OM F _D ( Table 181 on page 158) and will generate an interrupt unless the mask is set (VT_H4LOMF_M =
1 (Table 193 on page 164)).
Bits VT_RX_GRP_TYPE[6:0] (Table 193) are programmed to determine whether the incoming tributary is a
VT1.5/TU-11 or a VT2/TU-12.
See Table 563 on page 436, through Table 566 on page 436 through page 437, for VT/TU mapping formats.
19.8 VT Pointer Interpreter (VTPI)
The VTPI logic block (in Figu re 40 on pag e 435) will perform all necessary functions to support VT/TU pointer inter-
pretation. The following features are implemented:
The pointer interpreter consists of the following states:
Loss-of-pointer (LOP-V)
VT-AIS (AIS-V) (all ones in V1 and V2)
NDF enabled (NDF) (1001, 0001, 1101, 1011, 1000)
Normal (NORM) (disabled NDF, normal pointer)
Increment (INC) (inverted I bits)
Decrement (DEC) (inverted D bits)
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
439Agere Systems Inc.
19 VT/TU Mapper Functional Description (continued)
5-9007(F)
* This state diagram is based on the ETS 417-1-1 pointer interpretation state diagram (Figure B.1). Transiti ons of eight invalid pointers from the
INC, DEC, and NDF states into the LOP state have been added.
Figure 41. Pointer Interpretation State Diagram
The pointer interpreter will transition into the LOP-V state based on the following conditions:
— Continuous NDF. If NDF (1001, 0001, 1101, 1011, 1000) is received for the number of consecutive super-
frames programmed in bits VT_NDF_NTIME[3:0] (Table 196 on page 165), then LOP-V will be declared.
— Invalid pointer values. If the number of consecutive superframes programmed in register bits
VT_INV_NTIME[3:0] (Table 196) are received with a pointer that is not a normal value, NDF, AIS-V, increment,
or decrement, then LOP-V will be declared. The SS bits contribute to an invalid pointer indication.
The pointer interpreter will transition out of the LOP-V state based on the following conditions:
— Following three consecutive superframes with all ones in the V1 bytes and V2 bytes, the pointer interpreter will
transition from the LOP-V state into the AIS-V state.
— Following three new, consecutive, consistent, and valid pointers, the pointer interpreter will transition from the
LOP-V state into the NORM state.
— The pointer interpreter does not transition from the LOP-V state into the NDF state.
The pointer interpreter will transition into the AIS-V state based on the following conditions:
— Following three consecutive superframes with all ones in the V1 bytes and V2 bytes, AIS-V will be declared.
The pointer interpreter will transition out of the AIS-V state based on the following conditions:
— Following three new, consecutive, consistent, and valid pointers, the pointer interpreter will transition from the
AIS-V state into the NORM state.
— Following the number of consecutive invalid pointers programmed in bits VT_INV_NTIME[3:0], the pointer in-
terpreter will transition from the AIS-V state into the LOP-V state.
— If NDF is enabled on the incoming V1 bytes and V2 bytes, the pointer interpreter will transition from the AIS-V
state into the NDF state.
*
NORM
DECINC
NDF
AISLOP
FROM ALL STATES
8 INVALID POINTERS
FROM ALL STAT ES
3 NEW POINTERS
INCREMENT DECREMENT
8 NDF ENABLE
NDF ENAB L E
NDF ENABLE
NDF
NDF
NDF
3 ANY 3 ANY
3 NEW POINTERS
3 NEW POINTERS
3 ANY POINTERS
3 NEW POINTERS
8 INVALID
8 INVALID POINTERS*
INDICATION INDICATION
3 AIS INDICATIONS ENABLE
ENABLE
POINTERS POINTERS
POINTERS ENABLE
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
440 Agere Systems Inc.
19 VT/TU Mapper Functional Description (continued)
The pointer interpreter will transition into the NDF state based on the following conditions:
— If NDF is enabled on the incoming V1 bytes and V2 bytes, the pointer interpreter will transition from the NORM,
NDF, AIS, INC, and DEC states into the NDF state.
The pointer interpreter will transition out of the NDF state based on the following conditions:
— Continuous NDF. If NDF (1001, 0001, 1101, 1011, 1000) is received for the number of consecutive super-
frames programmed in bits VT_NDF_NTIME[3:0] (Table 196 on page 165), the pointer interpreter will transi-
tion from the NDF state into the LOP-V state.
— Following any three consecutive, consistent, and valid pointers, the pointer interpreter will transition from the
NDF state into the NORM state.
— Following three consecutive superframes with all ones in the V1 bytes and V2 bytes, the pointer interpreter will
transition from the NDF state into the AIS-V state.
— Following three new, consecutive, consistent, and valid pointers, the pointer interpreter will transition from the
NDF state into the NORM state.
— Following the number of consecutive invalid pointers programmed in bits VT_INV_NTIME[3:0] (Table 196), the
pointer interpreter will transition from the NDF state into the LOP-V state.
The pointer interpreter will transition into the NORM state based on the following conditions:
— Following three new, consecutive, consistent, and valid pointers, the pointer interpreter will transition into the
NORM state.
— Following any three consecutive, consistent, and valid pointers, the pointer interpreter will transition into the
NORM state, i.e., transitioning from the INC, DEC, and NDF states.
The pointer interpreter will transition out of the NORM state based on the following conditions:
— Following the number of consecutive invalid pointers programmed in bits VT_INV_NTIME[3:0], the pointer in-
terpreter will transition from the NORM state into the LOP-V state.
— If NDF is enabled on the incoming V1 bytes and V2 bytes, the pointer interpreter will transition from the NORM
state into the NDF state.
— Following three consecutive superframes with all ones in the V1 bytes and V2 bytes, the pointer interpreter will
transition from the NORM state into the AIS-V state.
— When operating in the 8 of 10 mode (VT_8ORMAJORITY = 1 (Table 194 on page 164)), if 8 of the 10 I and D
bits are correct for a pointer decrement on the incoming V1 bytes and V2 bytes, the pointer interpreter will tran-
sition from the NORM state into the DEC state. Otherwise, if 3 of the 5 I bits and 3 of the 5 D bits are correct
for a pointer decrement on the incoming V1 bytes and V2 bytes, the pointer interpreter will transition from the
NORM state into the DEC state.
— When operating in the 8 of 10 mode (VT_8ORMAJORITY = 1), if 8 of the 10 I and D bits are correct for a pointer
increment on the incoming V1 bytes and V2 bytes, the pointer interpreter will transition from the NORM state
into the INC state. Otherwise, if 3 of the 5 I bits and 3 of the 5 D bits are correct for a pointer increment on the
incoming V1 bytes and V2 bytes, the pointer interpreter will transition from the NORM state into the INC state.
The pointer interpreter will transition into the INC state based on the following conditions:
— When operating in the 8 of 10 mode (VT_8ORMAJORITY = 1), if 8 of the 10 I and D bits are correct for a pointer
increment on the incoming V1 bytes and V2 bytes, the pointer interpreter will transition into the INC state. Oth-
erwise, if 3 of the 5 I bits and 3 of the 5 D bits are correct for a pointer increment on the incoming V1 bytes and
V2 bytes, the pointer interpreter will transition into the INC state.
The pointer interpreter will transition out of the INC state based on the following conditions:
— If NDF is enabled on the incoming V1 bytes and V2 bytes, the pointer interpreter will transition from the INC
state into the NDF state.
— Following three consecutive superframes with all ones in the V1 bytes and V2 bytes, the pointer interpreter will
transition from the INC state into the AIS-V state.
— Following three new, consecutive, consistent, and valid pointers, the pointer interpreter will transition from the
INC state into the NORM state.
— Following any three consecutive, consistent, and valid pointers, the pointer interpreter will transition from the
INC state into the NORM state.
— Following the number of consecutive invalid pointers programmed in bits VT_INV_NTIME[3:0], the pointer in-
terpreter will transition from the INC state into the LOP-V state.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
441Agere Systems Inc.
19 VT/TU Mapper Functional Description (continued)
The pointer interpreter will transition into the DEC state based on the following conditions:
— When operating in the 8 of 10 mode (VT_8ORMAJORITY = 1 (Table 194 on page 164)), if 8 of the 10 I and D
bits are correct for a pointer decrement on the incoming V1 bytes and V2 bytes, the pointer interpreter will tran-
sition into the DEC state. Otherwise, if 3 of the 5 I bits and 3 of the 5 D bits are correct for a pointer decrement
on the incoming V1 bytes and V2 bytes, the pointer interpreter will transition into the DEC state.
The pointer interpreter will transition out of the DEC state based on the following conditions:
— If NDF is enabled on the incoming V1 bytes and V2 bytes, the pointer interpreter will transition from the DEC
state into the NDF state.
— Following three consecutive superframes with all ones in the V1 bytes and V2 bytes, the pointer interpreter will
transition from the DEC state into the AIS-V state.
— Following three new, consecutive, consistent, and valid pointers, the pointer interpreter will transition from the
DEC state into the NORM state.
— Following any three consecutive, consistent, and valid pointers, the pointer interpreter will transition from the
DEC state into the NORM state.
— Following the number of consecutive invalid pointers programmed in bits VT_INV_NTIME[3:0] (Table 196 on
page 165), the pointer interpreter will transition from the DEC state into the LOP-V state.
Pointer increments and decrements are monitored and counted internally. The performance monitoring reset signal
transfers the count to the holding registers for pointer increment (VT_PTR_INC[1—28][3:0] (Table 221 on
page 174)), and pointer decrement (VT_PTR_DEC[1—28][3:0] (Table 221)) for microprocessor read, and rese ts
the running count registers to 0. When SMPR_SAT_ROLLOVER = 1 (Table 77 on page 70), the inte rnal running
counts will hold at their maximum value. Otherwise, the counts will roll over. The running count and holding register
counts will be forced to 0, if the SPE mapper is requesting AUTO AIS or VT_LOP[1—28] = 1 (loss-of-pointer)
(Table 190 on page 163) or VT_AIS[1—28] = 1 (VT AIS) (Table 190 on page 163), or VT_H4LOMF = 1 (loss of H4
multiframe alignment), see Table 189 on page 162.
LOP-V (VT_LOP) and AIS-V (VT_AIS) will be detected and reported to the microprocessor. Both the LOP-V and
AIS-V conditions will contribute to the VT/TU mapper automatic AIS generation that is driven over a 28-bit internal
output bus to the cross connect (XC). Any change in state of VT_LOP or VT_AIS will be reported to the micropro-
cessor via VT_LOP_D[1—28] and VT_AIS_D[1—28] (Tab le 182 on page 159). Unless the appropriate mask bit is
set (VT_LOP_M[1—28] or VT_AIS_M[1—28]) (Table 186 on page 161), VT_LOP_D[1—28] = 1 or
VT_AIS_D[1—28] = 1 will generate an interrupt.
A check for VT/TU size mismatches is performed by comparing the expected VT/TU size bits (VT1.5 = 11,
VT2 = 10) with the actual received SS bits in the V1 byte. After three consecutive mismatches, size errors will be
reported with bit VT_SIZERR[1—28] (Table 190 on page 163). Any change in state of VT_SIZERR[1—28] will be
reported with bit VT_SIZERR_D[1—28] (Table 182 on page 159). Unless the VT_SIZ ER R_M[ 1—2 8] (Table 186
on page 16 1 ) mask bit is set, VT_SIZERR_D[1—28] = 1 will generate an interrupt.
The accepted pointer is stored and accessible by the microprocessor.
This block supports tributary loopback.
19.9 VT Termination (VTTERM)
The VTTERM logic block (in Figure 40) will perform all necessary functions to support complete VT/TU termination.
The following features are implemented.
19.9.1 V5 Termination
The V5 byte is checked for BIP-2 errors. If BIP-2 errors are detected, REI-V is transmitted in the V5 byte of the cor-
responding transmit VT, if enabled by bit VT_REI_EN[1—28] = 1 (Table 211 on page 170). BIP-2 errors and recep-
tion of REI-V in the V5 byte are counted on a per-superframe basis. BIP-2 errors can counted on either a bit or
block basis selected by bit VT_BIT_BLOCK_CNT (1 = bit, 0 = block) (Table 194 on page 164).
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
442 Agere Systems Inc.
19 VT/TU Mapper Functional Description (continued)
BIP-2 errors and REI-V reception are monitored and counted internally. The performance monitoring reset signal
transfers the count to the holding registers for BIP-2 error count (VT_BIP2ERR_CNT[1—28][11:0]; Table 219 on
page 173), and REI-V count (VT_REI_CNT[1—28][10:0] (Table 220 on page 173)) for microprocessor read, and
resets the running count registers to 0. When SMPR_SAT_ROLLOVER = 1 (Table 77 on page 70), the inte r nal
running counts will hold at their maximum value. Otherwise, the counts will roll over . The running count and holding
register counts will be forced to 0; if the SPE mapper is requesting AUTO AIS, VT_LOP[1—28] = 1 (loss-of-
pointer), VT_AIS[1—28] = 1 (VT AIS) (Table 190 on page 163), or VT_H4LOMF = 1 (loss of H4 multiframe align-
ment) (Table 189 on page 162).
The V5 byte will be checked for received RFI-V via VT_RFI[1—28] bits (Table 190 on page 163). New values will
be latched into the register after the number of consecutive values programmed in bits VT_RDI_NTIME[3:0]
(Table 197 on page 166) have been received. A VT_RFI[1—28] change of state is reported by bit VT_RFI_D[1—
28] (Table 182). When operating in the DS1 byte-synchronous mode, RFI-V = 1 will force DS1 RAI downstream to
the framer . Unless the VT_RFI_M mask bit (Table 186 on page 161) is set, VT_RFI_D[1—28] = 1 will generate and
cause an interrupt.
When operating in normal RDI-V mode (VT_RX_ERDI_EN[1—28] = 1 (Table 217, starting on page 172)), the V5
byte will be checked for received RDI-V and reported via VT_RDI[1—28] bits (Table 190 on page 163). New values
will be latched to this register after VT_RDI_NTIME[3:0] consecutive values have been received. A VT_RDI[1—28]
change of state is reported via VT_RDI_D[1—28] (Table 182 on page 159). Unless the VT_RDI_M[1—28]
(Table 186) mask bit is set, VT_RDI_D[1—28] = 1 will generate and cause an interrupt.
When operating in enhanced RDI-V mode (VT_RX_ERDI_EN[1—28] = 0 (Table 217, starting on page 172)), the
V5 byte will be checked for received RDI-V and reported via VT_RDI[1—28] bit (Table 190 on page 163). New val-
ues will be latched to this register after VT_ERDI_NTIME[3:0] (Table 197 on page 166) consecutive ERDI-V values
(V5 bit 8 and Z7 bits 5—7) have been received. A VT_ERDI[1—28][2:0] change of state is reported via
VT_ERDI_D[1—28] (Table 182). Unless the VT_ERDI_M[1—28] mask bit (Tab le 186 on page 161) is set,
VT_ERDI_ D[1— 28] = 1 will gen er ate and ca us e an interr upt.
The V5 byte VT/TU signal label will be monitored and reported to the microprocessor using bits
VT_LAB[1—28][2:0] (Table 190 on page 163). New values will be latched to the microprocessor after the number
of consecutive values programmed in bits VT_LAB_NTIME[3:0] (Table 197 on page 166) has been received. An
all- zeros signal label will set bit VT_UNEQ[1—28] (Table 190). Any change in state of VT_UNEQ[1—28] will be
reported to the microprocessor via bit VT_UNEQ_D[1—28] (Table 182 on page 159). Unless the VT_UNEQ_M[1—
28] (Table 186 on page 161) mask bit is set, VT_UNEQ_D[1—28] = 1 will generate an interrupt. VT_UNEQ[1—28]
will contribute to automatic AIS generation. The latched signal label will be compared to the expected signal label.
If the expected signal label is 001 or if VT_UNEQ[1—28] is detected, the detection of PLM-V is disabled. Other-
wise, any mismatch is reported to the microprocessor via bit VT_PLM[1—28] (Table 190). Any change in state of
VT_PLM[1—28] will be reported to the microprocessor via bit VT_PLM_D[1—28] (Table 182). Unless the
VT_PLM_M[1—28] mask bit is set (Table 186), VT_PLM_D[1—28] = 1 will generate an interrupt.
19.9.2 Z6 /N2 Termination
For SONET applications, the Z6 byte is monitored and presented to the microprocessor using bits
VT_Z6_BYTE[1—28][7:0] (Table 218 on page 173) for growth and monitoring purposes only. The Z6 byte is
updated when three consecutive consistent bytes are received. N2 is defined for tandem connection applications
per ETS 300 417-1-1 and ITU-T G.707/G.783. Low-order tandem connection is not supported.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
443Agere Systems Inc.
19 VT/TU Mapper Functional Description (continued)
19.9.3 Z7 /K4 Termination
This termination will support enhanced RDI when bit VT_RX_ERDI_EN[1—28] = 1 (Table 217, starting on
page 172). The Z7/K4[3:1] byte will be monitored and reported to the microprocessor with bits
VT_ERDI[1—28][2:0] (Table 190 on page 163). New values will be latched to the microprocessor after the number
of consecutive values programmed in register bits VT_ERDI_NTIME[3:0] (Table 197 on page 166) has been
received. A change of state is reported using bit VT_ERDI_D[1—28] (Table 182 on page 159). Unless the
VT_ERDI_M[1—28] (Table 186 on page 161) mask bit is set, VT_ERDI_D[1—28] = 1 will generate an interrupt.
The Z7/K4[7:4] byte will be monitored and reported to the microprocessor via bits VT_APS[1—28][3:0] (Table 191
on page 16 3 ). New values will be latched to the microprocessor after the number of consecutive values pro-
grammed in bits VT_APS_NTIME[3:0] (Tabl e 197 on page 166) has been received. A change of state is reported
using bit VT_APS_D[1—28] (Table 182). Unless the VT_APS_M[1—28] (Table 186) mask bit is set,
VT_APS_D[1—28] = 1 will generate an interrupt.
19.9.4 Pay lo ad Terminatio n
Payload termination will support asynchronous, byte-synchronous, and bit-synchronous demappings for SONET
VT1.5s and VT2s per Bellcore GR-253 and ANSI T1.105.
Payload termination will support asynchronous, byte-synchronous, and bit-synchronous demappings for
SDH TU11s and TU12s per ITU-T G.707 and ETS 300 417-4-1.
Demapping modes are selected with bits VT_RX_MAPTYPE[1—28][3:0] (Table 217, starting on page 172), as
defined in Table 567.
Table 567. Receive VT/TU Demapping Selection
The payload termination provides an elastic store for rate adoption. An elastic store overflow is indicated in bit
VT_RX_ESOVFL_D[1—28] (Table 182 on page 159). Unless the VT_RX_ESOVFL_M[1—28] mask bit is set
(Table 186 on page 161), VT_RX_ESOVFL_D[1—28] = 1 will generate an interrupt.
When an overflow condition exists, the read/write count will be forced to the center of the FIFO. The FIFO is 64 bits
deep.
The payload termination circuitry will generate a gapped DS1/E1 clock (VT_TERM_CLK). Figure 42 and Figure 43
on page 45 8 describe the DS1 and E1 gapped clocking schemes, respectively. A frame sync is generated and
transmitted from the device coincident with the frame bit for DS1 and the MSB of time slot 0 for E1 when demap-
ping a byte-synchronous payload.
VT_RX_MAPTYPE[1—28][3:0] (See Tab le 217 on page 172.)Description
0 0 0 0 Asynchronous VT1.5/TU-11 (DS1 output)
0 0 0 1 Asynchronous VT2/TU-12 (E1 output)
0 0 1 0 Byte-Synchronous VT1.5/TU-11 (DS1 output)
0 0 1 1 Byte-Synchronous VT2/TU-12 (E1 output)
0 1 0 0 Bit-Sy nc hrono us VT1. 5/TU- 11 (DS1 output)
0 1 0 1 Bit-Synchronous VT2/TU-12 (E1 output)
01100111 Undefined, Generates AIS
1 0 0 0 Asynchronous VT2/TU-12 (DS1 output)
1 0 0 1 Byte-Synchronous VT2/TU-12 (DS1 output)
1 0 1 0 Bit-Synchronous VT2/TU-12 (DS1 output)
10111111 Undefined, Generates AIS
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
444 Agere Systems Inc.
19 VT/TU Mapper Functional Description (continued)
19.10 Output Signal Selection (OUTSEL)
The OUTSEL logic block (in Figure 40 on page 435) will perform all necessary functions to overwrite the outgoing
DS1/E1 signals with the appropriate AIS clock, data, and frame synchronization.
VT/TU mapper automatic AIS, which is driven over a 28-bit internal output bus to the cross connect (XC), is gener-
ated according to the following equation:
SPEMPR_AUTO_AIS
or
VT_LOP[1—28]
or
VT_AIS[1—28]
or
(VT_H4LOMF and (VT_LOMF_AIS_INH))
or
(VT_UNEQ [1— 28] and (V T _UNEQ _A IS_ INH))
or
(VT_PLM[1—28] and (VT_PLM_AIS_INH))
or
(VT_J2TIM[1—28] and (VT_J2TIM_AIS_INH))
or
(VT_LOPS[1—28] and VT_LOPS_AIS_INH))
The output of the VT/TU mapper receive path will be as shown in Figure 44 on page 458 and Figure 45 on
page 459.
19.11 J2 Byte Monitor and Termination (J2M ON)
The J2MON logic block (in Figure 40 on page 435) will perform all necessary functions to monitor the incoming J2
trace identifier. The following features are implemented:
J2 monitoring will support five different monitoring modes defined by VT_J2MON_MODE[1—28][2:0]; see
Table 217 on page 172:
— VT_J2MON_MODE[1—28][2:0] = 000: this mode captures an incoming 16-byte sequence and stores it in
VT_J2BYTE_DET[1—28][1—16][7:0] (Table 222 on page 174). TIM-V is disabled for this mode.
— VT_J2MON_MODE[1—28][2:0] = 001: this mode captures an incoming 16-byte sequence with SDH framing
and stores it in VT_J2BYTE_DET[1—28][1—16][7:0]. TIM-V is disabled for this mode.
— VT_J2MON_MODE[1—28][2:0] = 010: this mode captures a constant 1-byte sequence and stores it in
VT_J2BYTE_DET[1—28][1][7:0]. TIM-V is disabled for this mode.
— VT_J2MON_MODE[1—28][2:0] = 011: this mode monitors a 16-byte sequence with SDH framing and com-
pares it to a programmable expected value. The expected value is programmed by the user using register bits
VT_J2BYTE_EXP[1—28][1—16][7:0] (Table 222). The hardware frames by looking for the byte with the MSB
set to one, which indicates that the next byte is the second byte of the message. CRC is verified based on the
value programmed in VT_J2BYTE_EXP[1—28][1—16][7:0]. TIM-V is enabled for this mode.
— VT_J2MON_MODE[1—28][2:0] = 100: this mode monitors a constant 1-byte sequence and compares it to a
programmable expected value. The expected value is programmed by the user using register bits
VT_J2BYTE_EXP[1—28][1][7:0]. TIM-V is enabled for this mode.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
445Agere Systems Inc.
19 VT/TU Mapper Functional Description (continued)
Trace identifier mismatch (TIM-V) will be detected following the number of consecutively errored sequences
(1-byte or 16-byte sequences) programmed in bits VT_J2_NTIME[3:0] (Table 196 on page 165), and reported to
the microprocessor via bit VT_J2TIM[1—28] (Tab le 190 on page 163). If TIM-V is detected, the J2 byte monitor
will transition into the capture mode and start searching for two consecutive consistent 1-byte or 16-byte
sequences. Once two consecutive consistent sequences are detected, the J2 byte monitor will transition into the
monitor mode and start searching for the number of consecutive mismatches programmed in register bits
VT_J2_NTIME[3:0] on a per 1-byte or 16-byte sequence basis. Once the hardware finds synchronization
(VT_J2TIM[1—28] = 0), the new sequence is latched into VT_J2BYTE_DET[1—28][1—16][7:0] (Table 222 on
page 174). The synchronization algorithm used will not allow single bit errors to pass through to
VT_J2BYTE_DET[1—28][1—16][7:0].
Unless bit VT_J2TIM_AIS_INH (Table 194 on page 164) is set to a 1, VT_J2TIM[1—28] will contribute to auto-
matic AIS generation.
Any change in sta te of VT_J2TIM[1—28][1—16][7:0] will be reported in bit VT_J2TIM_D[1—28] (Table 182 on
page 159). Unless the VT_J2TIM_M[1—28] (Table 186 on page 161) mask bi t is set, VT_J2TIM_D[1—28] = 1
will generate an interrupt.
19.12 Receive Signaling (RX_VTSIG)
The RX_VTSIG logic block (in Figure 40 on page 435) will perform all necessary function s to extract and transmit
the received signaling bits when operating in DS1 byte-synchronous mode. The following features are imple-
mented:
The signaling is sent to the appropriate framer link selected by bits VT_RXSIG_CH_SEL[1—28][4:0] (Table 217
on page 172). VT_RXSIG_CH_SEL[1—28][4:0] is a necessary duplication of the routing information pro-
grammed with in the cros s co nne ct (X C) bloc k.
When VT_SYNC_PBIT[1—28] = 1 (Table 217 on page 172), the RX_VTSIG block will synchronize to the incom-
ing VT/TU phase indication (P1, P0). Otherwise, VT_LOPS[1—28] (Table 190 on page 163) and
VT_LOPS_D[1—28] (Table 182 on page 159) will be forced to 0.
P-bit phase synchronization (VT_LOPS[1—28] = 0) is declared following two consecutive nonerrored multi-
frames (48 frames). Loss of phase synchronization (VT_LOPS[1—28] = 1) is declared following the number of
consecutive errored multiframes programmed in bits VT_LOPS_NTIME[3:0] (Table 195 on page 165). Any
change in VT_LOPS[1—28] state will be detected and reported to the microprocessor with bit VT_LOPS_D[1—
28].
If the loss of phase synchronization (VT_LOPS[1—28] = 1) condition exists and VT_LOPS_AIS_INH = 0, DS1
AIS is transmitted downstream and the signaling bits will be forced to the value in SMPR_OH_DEFLT (Table 77
on page 70) in the MPU block. Otherwise (VT_LOPS[1—28] = 0), the VT_RX_VTSIG logic block will behave as
described in Table 568.
Unless VT_LOPS_M[1—28] (Table 186 on page 161) mask bit is set, VT_LOPS_D[1—28] will generate an inter-
rupt.
See Table 568 for signaling behavior based on the receive status and control.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
446 Agere Systems Inc.
19 VT/TU Mapper Functional Description (continued)
Table 568. Rx Signaling Behavior Per Channel
* If the P1 bits and P 0 bits are not used for phase indication and the F bit is not passed transparently, the F bit is overwritten with the appropri-
ate SF or ESF framing pattern based on a random starting position. Robbed-bit signaling will not be accessible under such a condition.
When operating in the ESF mode, the Ft bits will be overwritten with the ESF frame and the C bits and M bits passed transparently.
19.13 Receive Lower-Order Path Overhead (RX_LOPOH)
The RX_LOPOH logic block (in Figure 40 on page 435) will perform all necessary functions to store and transmit
the overhead associated with each VT/TU, specifically, V5, J2, Z6/N2, Z7/K4, and the O bits. The following fea-
tures will be implemented:
V5, J2, Z6/N2, Z7/K4, and the 0 bits, on a per-VT basis, are stored for one complete superframe and transmitted
during the next superframe. REI and RDI values received from the SPEMPR and TMUX are stored on a per-
frame basis and transmitted during the next frame. REI and RDI values are latched during the A1 time of the
receiv ed SO NET fra me.
When operating in UPSR mode (bit VT_UPSR = 1 (Table 186 on page 161)), REI, RDI, and ERDI values in the
V5 and Z7 bytes will be modified based on the receive status. See Table 573 on page 451 for automatic genera-
tion requirements.
The REI and RDI received from the SPEMPR and TMUX blocks is the first data type transmitted in each frame
as a burst of 34 bits on the rising edge of the SPE mapper Rx clock (6.48 MHz). All other data types are transmit-
ted as a burst of 224 bits on the rising edge of the SPE mapper Rx clock.
Note: The number of valid bits transmitted is dependent upon the VT/TU group types, i.e., full VT2 equals 168 bits.
The first frame of the four frame multiframe contains data types 001, 010, 01 1, and 100, respectively. The second
frame of the multiframe contains data types 001, 101, and 110, respectively. The remaining frames contain only
data type 001. Data type headers will be defined as shown in Table 569 on page 447.
All data types must be transmitted within 500 µs.
VT_SYNC_PBIT
[1—28] VT_WR_FBIT
[1—28] VT_SF_ESF
[1—28] VT_LOPS
[1—28] Action
See Table 217 on page 172. See Table 190 on
page 163.
0 0 X X Pass F-bit transparently.
0 1 0* X Overwrite outgoing F bit with ESF pattern.
0 1 1 X Overwrite outgoing F bit with SF pattern.
11
00 Overwrite outgoing F bit with ESF pattern.
1 1 1 0 Overwrite outgoing F bit with SF pattern.
1 X X 1 Transmit DS1 AIS downstream.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
447Agere Systems Inc.
19 VT/TU Mapper Functional Description (continued)
Table 569. Data Type Header Definitions
* All overhead bytes will be transmitted from MSB to LSB.
O bits are received in the byte following J2 and the byte following Z6/N2 in asynchronous mode. The O bits will be transmitted in the order in
which they are received within a VT, starting with the MSB of the nibble following the J2 byte.
Figure 46 on page 459 contains the RX_LOPOH block serial channel format and timing.
19.14 VT/TU Mapper Transmit Path Requireme nts
This section describes all necessary functions of the transmit logic (see Figure 40 on page 435, left to right).
Input selector (INSEL)
Transmit elastic store (TES)
Virtual tributary generator (VTGEN)
Virtual tributary multiplexer (VTMUX)
Transmit DS1/E1 signaling (TX_VTSIG)
Transmit low-order path overhead (TX_LOPOH)
19.14.1 Input Selector (INSEL)
The INSEL logic block (in Figure 40 on page 435) will perform loss of clock (LOC), AIS, and loss of frame sync
detection. The following features will be implemented:
The incoming DS1/E1 signal will be retimed immediately using the selected DS1/E1 clock edge
(VT_TX _CLK ED GE [1— 28] (Table 211 on page 170)). If VT_TX_CLKEDGE[1—28] = 1, the rising edge of the
incoming DS1/E1 CLOCK is used to retime the signal; otherwise, the falling edge is used.
The incoming DS1/E1 signals will be checked for a digital loss of clock (LOC) condition and reported with bit
VT_TX_LOC[1—28] (Table 192 on page 163). Any change in state of VT_TX_LOC[1—28] will be reported to the
microprocessor via bit VT_TX_LOC_D[1—28] (Tab le 184 on page 160). Unless the VT_TX_LOC_M[1—28]
(Table 188 on page 162) mask bit is set, VT_TX_LOC_D = 1 will generate an interrupt.
If LOC is detected (VT_TX_LOC[1—28] = 1), DS1/E1 AIS will be inserted in the appropriate transmit path VT.
DS1/E1 AIS consists of a valid VT/TU pointer, valid VT/TU overhead, and an all-ones payload.
In the byte-synchronous mode, the incoming DS1/E1 frame sync is monitored for the loss of frame sync condi-
tion (LOFS) and reported in bit VT_LOFS[1—28] (Table 192 on page 163). In frame sync, (VT_LOFS[1—28] = 0)
is declared following three consecutive valid frame sync pulses (375 µs). Loss of frame sync (VT_LOFS[1—28] =
1) is declared following six consecutive frame sync mismatches (750 µs). Any change in state of VT_LOFS[1—
28] will be reported in bit VT_LOFS_D[1—28] (Table 184 on page 160). Unless the VT_LOFS_M[1—28]
(Table 188 on page 162) mask bit is set, VT_LOFS_D[1—28] = 1 will generate an interrupt.
If LOFS is detected (VT_LOFS[1—28] = 1), AIS-V is inserted in the appropriate VT location. AIS-V consists of
writing an all-ones pattern into the entire VT, including V1~4.
Header Description
0 0 0 Reserved.
0 0 1 TMUX and SPE mapper RDI/REI.
0 1 0 V5 byte, 28/21 bytes starting with VT 1*.
0 1 1 J2 byte, 28/21 bytes starting with VT 1.
1 0 0 Z6/N2 byte, 28/21 bytes starting with VT 1.
1 0 1 Z7/K4 byte, 28/21 bytes starting with VT 1.
110
O bits, 28/21 bytes starting with VT 1.
1 1 1 Reserved. Data will be ignored.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
448 Agere Systems Inc.
19 VT/TU Mapper Functional Description (continued)
The incoming DS1/E1 signal will be checked for the AIS condition and reported in bit VT_TX_AIS[1—28]
(Table 192 on page 163). Any change in state of VT_TX_AIS[1—28] is reported in bit VT_TX_AIS_D[1—28]
(Table 184). Unless the VT_TX_AIS_M[1—28] (Table 188 on page 162) mas k b it i s s et , V T_T X_ AI S_ D[ 1— 2 8] =
1 will generate an interrupt.
If the incoming data is DS1, AIS will be declared if there are less than 9 zeros out of 8192 clock periods. If the
incoming data is E1, AIS will be declared if there are less than three zeros in each of two consecutive 512-bit
periods, and cleared when each of two consecutive 512-bit periods contains more than two zeros.
Transmit mapping modes are shown in Table 570.
Table 570. Transmit VT/TU Mapping Selection Per Channel, VT_TX_MAPTYPE[1—28][3:0]
19.14.2 Transmit Elastic Store (TES)
The TES logic block (in Figure 40 on page 435) will perform all functions necessary to synchronize the incoming
DS1/E1 or VT1.5/VT2 signals to the local STS-1/STS-3 clock.
This logic block will support the following modes of operation:
— Asynchronous, bit-synchronous, and byte-synchronous mapping from DS1/E1 input.
— Asynchronous, bit-synchronous, and byte-synchronous mapping from loopback VT1.5/VT2 input.
The TES logic block has programmable stuffing thresholds. The value programmed in the VT_HIGH_THRES[6:0]
(Table 223 on page 174) controls positive justification. The value programmed in the VT_LOW_THRES[6:0]
(Table 223) controls negative justification. The recommended values for nontributary loopback (VT_LB_SEL[1—
28] = 0 (Table 211 on page 170)) are VT_HIGH_THRES[6:0] = 0x28 and VT_LOW_THRES[6:0] = 0x27. Otherwise
(VT_LB_SEL[1—28] = 1), the recommended values are VT_HIGH_THRES[6:0] = 0x05 and VT_LOW_THRES[6:0]
= 0x04.
The TES logic block monitors for elastic store overflow conditions and reports with bit VT_TX_ESOVFL_E[1—28]
(Table 184 on page 160). Unless the VT_TX_E SO VFL _M[ 1—2 8] (Table 188 on page 162) mask bit is set,
VT_TX_ESOVFL_E[1—28] = 1 will generate an interrupt.
VT_TX_MAPTYPE[1—28][3:0]
(See Table 211 on page 170.) Description
0 0 0 0 Asynchronous VT1.5/TU-11 (DS1 input).
0 0 0 1 Asynchronous VT2/TU-12 (E1 input).
0 0 1 0 Byte-Synchronous VT1.5/TU-11 (DS1 input).
0 0 1 1 Byte-Synchronous VT2/TU-12 (E1 input).
0 1 0 0 Bit-Synchr ono us VT1.5/T U- 11 (DS1 input) .
0 1 0 1 Bit-Synchronous VT2/TU-12 (E1 input).
0110—0111 Undefined, Generates VT1.5/TU-11 UNEQ-V.
1 0 0 0 Asynchronous VT2/TU-12 (DS1 input).
1 0 0 1 Byte-Synchronous VT2/TU-12 (DS1 input).
1 0 1 0 Bit-Synchronous VT2/TU-12 (DS1 input).
10111111 Undefined, Generates VT2/TU-12 UNEQ-V.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
449Agere Systems Inc.
19 VT/TU Mapper Functional Description (continued)
19.14.3 Virtual Tributary Generator (VTGEN)
The VTGEN logic block (in Figure 40 on page 435) performs all functions necessary to map all possible DS1/E1
inputs to the appropriate VT/TU structure. This includes VT/TU pointer generation, positive/negative stuffing,
VT/TU overhead generation/insertion, and DS1/E1 data insertion. The following features will be implemented:
This logic block will support the following modes of operation:
— Asynchronous
— Byte-synchronous
— Bit-synchronous
19.14.4 Pointer Generation
The pointer generator will support the following features when operating in asynchronous or bit-synchronous
mode:
— If transmit AIS-V is not requested, the following requirements apply:
1. A fixed pointer value of decimal 78 is generated for VT1.5/TU-11 mappings.
2. A fixed pointer value of decimal 105 is generated for VT2/TU-12 mappings.
3. The VT size field will be set to binary 11 for VT1.5/TU-11 mappings.
4. The VT size field will be set to binary 10 for VT2/TU-12 mappings.
5. The new data flag (NDF) is set to binary 0110 for VT1.5/VT2 mappings.
6. V3 and V4 are set to the selected overhead default (SMPR_OH_DEFLT (Table 77 on page 70) in the
microprocessor interface block) for all mappings:
— If transmit AIS-V is requested, V1~V4 will be forced to 0xFF.
— Bit stuffing, using the C and S bits, will be performed based on the fullness of the elastic store.
The pointer generation will support the following features when operating in byte-synchronous mode:
— If transmit AIS-V is not requested, the following requirements apply:
1. The pointer value is generated based on the location of the incoming frame sync for VT1.5/VT2 mappings.
2. The VT size field is set to 11 for VT1.5/TU-11 mappings.
3. The VT size field is set to 10 for VT2/TU-12 mappings.
4. The new data flag (NDF) is set to 0110 for normal VT1.5/VT2 mappings. If an NDF is requested, the NDF
will be set to 1001 (binary) .
5. If an increment is requested, the pointer bytes, V1 and V2, are programmed with the I bits inverted. The
pointer action byte, V3, will be programmed to the selected default (microprocessor bit
SMPR_FXD_STFF_DEFLT (Table 77 on page 70)), as well as the byte directly following V3. However,
when incrementing from 139 to 0 for VT2 mapping, the pointer generator sends out NDF-V indication with
the correct pointer (0) instead of the increment indication.
6. If a decrement is requested, the pointer bytes, V1 and V2, will be programmed with the D bits inverted. The
pointer action byte, V3, will be programmed to actual customer data. However, when decrementing from 0
to 139 for VT2 mapping, the pointer generator sends out NDF-V indication with the correct pointer (139)
instead of the decrement indication.
7. The V4 byte will be programmed to the selected overhead default (microprocessor bit SMPR_OH_DEFLT)
for all mappings.
— If transmit AIS-V is requested, V1~V4 will be forced to 0xFF.
Overhead Byte Generation (V5, J2, Z6/N2, Z7/K4, and O Bits). This portion of the VTGEN logic block will gener-
ate and insert the V5, J2, Z6/N2, and Z7/K4 overhead bytes into the appropriate virtual tributary. O bits are only
accessible in the asynchronous and bit-synchronous modes.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
450 Agere Systems Inc.
19 VT/TU Mapper Functional Description (continued)
V5 Overhead Byte Format/Generation. The V5 overhead byte will be mapped as defined in Table 571.
Tab le 571. V5 Ov erh e ad Byte For mat
The following features are supported:
When operating in tributary loopback mode (bit VT_LB_SEL[1—28] = 1 (Tab le 211 on page 170)), all bits are
simply passed through transparently.
When operating in UPSR mode VT_V5_INS[1—28] = 1 (Table 212 on page 171), only a new BIP-2 and signal
label is generated and inserted while all other bits are programmed from the received LOPOH serial access
channel storage. BIP-2 will be automatically calculated and inserted. The signal label is determined based on
bits VT_TX_MAPTYPE[1—28][3:0] (Table 211) and automatically inserted.
AIS-V is forced by setting bit VT_AIS_INS[1—28] (Table 211) to a 1. AIS-V consists of overwriting the entire VT,
including V1~4, with all ones.
Bits VT_TX_MAPTYPE[1—28][3:0] may be programmed to insert an UNEQ-V signal label. See Table 574 on
page 451.
User-controlled bits VT_BIP2ERR_INS[1—28][1:0] (Table 212) will force BIP-2 errors for troubleshooting pur-
poses. See Table 572 for er ror insertion modes.
Table 572. BIP-2 Error Insertion Modes
When operating in UPSR mode VT_V5_INS[1—28] = 1, REI-V is set to the value in the received LOPOH serial
access channel storage when enabled by bit VT_REI_EN[1—28] =1 (Table 211 on page 170). When operating
in normal mode VT_V5_INS[1—28] = 0, REI-V is set to 1 for any detected BIP-2 errors in the corresponding
received VT when enabled by bit VT_REI_EN = 1. Otherwise, the REI-V bit is set to 0.
RFI-V is supported. Manual control of the RFI-V bit is enabled with bit VT_RFI_EN[1—28] = 1 (Table 211). The
RFI-V bit is programmed with the value of bit VT_RFI_INS[1—28] (Table 213 on page 171). When
VT_RFI_EN[1—28] = 0 and operating in UPSR mode VT_V5_INS[1—28] = 1, RFI-V is set to the value in the
received LOPOH serial access channel storage. Otherwise, RFI-V is automatically generated and inserted as
defined in Table 573 on page 451. When operating in byte-synchronous mode, RFI-V is also based on the
incoming DS1 RAI from the framer.
One bit RDI-V is supported when bit VT_TX_ERDI_EN[1—28] = 0 (Table 211). Manual control of the RDI-V bit is
enabled with bit VT_RDI_EN[1—28] = 1 (Table 211). The RDI_V bit is programmed with the value of bit
VT_RDI_INS [1— 28] ( Table 213). When VT_RDI_EN[1—28] = 0 and is operating in UPSR mode
VT_V5_INS[1—28] = 1 (Table 212), RDI-V is set to the value in the received LOPOH serial access channel stor-
age. Otherwise, RDI-V is automatically generated and inserted as defined in Table 573.
Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8
BIP-2 REI-V RFI-V SIGNAL LABEL RDI-V
VT_BIP2ERR_INS[1—28][1:0]
(See Table 212 on page 171.) Action
00 No BIP-2 errors inserted.
01 Insert continuous BIP-2 errors.
10 Insert BIP-2 errors based on microprocessor register bit
SMPR_BER_INSRT (Table 75 on page 68).
11 No BIP-2 errors inserted.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
451Agere Systems Inc.
19 VT/TU Mapper Functional Description (continued)
Enhanced RDI will be supported when bit VT_TX_ERDI_EN[1—28] = 1. Manual control of the ERDI bits 5, 6,
and 7 of the Z7 byte is enabled with bit VT_ERDI_EN[1—28] = 1 (Table 211 on page 170). The ERDI bits, in bit
positions 5, 6, and 7 of the Z7 byte are programmed with the value of bits VT_ERDI_INS[1—28][2:0] (Table 213
on page 171), respectively. When VT_ERDI_EN[1—28] = 0 and is operating in UPSR mode VT_V5_INS[1—28]
= 1 (Table 212 on page 171), ERDI-V is set to the value in the received LOPOH serial access channel storage.
Otherwise, bits 5, 6, and 7 of the Z7 byte are automatically generated and inserted as defined in Table 573.
Table 573. RDI-V, RFI-V, and REI-V Automatic Generation
The signal label will be automatically generated based on bits VT_TX_MAPTYPE[1—28][3:0] (Table 211 on
page 170) . The va lue s sup porte d are defi ned in Table 574.
Remote Er ro r Indic at io n
REI-V Anomaly/defect
0 No BIP-2 errors detected.
1 BIP-2 errors detected.One-Bit Remote Failure Indication
RFI-V Anomaly/defect
0 No alarms.
1 AIS-V, LOP-V, UNEQ-V, PLM-V or automatic AIS detected from SPEMPR.
One-Bit Remote Defect Indication
RDI-V Anomaly/defect
0 No alarms.
1 AIS-V, LOP-V, UNEQ-V, or TIM-V.
Enhanced Remote Defect Indication (Bellcore GR-253)
RDI-V
(V5 bit 8) RDI-V
(Z7 bit 5) RDI-V
(Z7 bit 6) RDI-V
(Z7 bit 7) Anomaly/Defect
0 001No defects.
0 0 1 0 PLM-V (VT payload mismatch).
1 1 0 1 AIS-V or LOP-V.
1 1 1 0 UNEQUIP-V or TIM-V.
Table 574. VT Signal Label Definition
V5(5) V5(6) V5(7) Description
0 0 0 Unequipped
0 0 1 Equipped Nonspecific
0 1 0 Asynchronous DS1
0 1 0 Asynchronous E1
0 1 1 Bit-Sy nchr ono us DS1
0 1 1 Bit-Sy nc hrono us E1
1 0 0 Byte-Synchronous DS1
1 0 0 Byte-Synchronous E1
Others Undefined
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
452 Agere Systems Inc.
19 VT/TU Mapper Functional Description (continued)
J2 Overhe ad Byte Inser ti on. Three modes of programming the J2 byte, as defined in Table 575, will be sup-
ported.
Table 575. J2 Overhead Byte Insertion Modes Per Channel
Z6/N2 Overhead Byte Insertion. The modes of programming the Z6/N2 byte, defined in Table 576, are sup-
ported.
Table 576. Z6/N2 Overhead Byte Insertion Modes Per Channel
Z7/K4 Overhead Byte Insertion. Three modes of programming the Z7/K4 APS bits are supported and controlled
by register bits VT_Z7_INS[1—28][1:0], as defined in Table 577.
Table 577. Z7/K4 Overhead Byte Insertion Modes Per Channel
Note: When bits Z7_INS[1—28][1:0] = 01, the APS bits in the Z7/K4 byte (bits 1:4) are based on
VT_APS_INS [1—28][3:0] (Table 213 on page 171), while Z7/K4 bits 5:7 are either automatically inserted
(when VT_ERDI_EN[1—28] = 0 (Table 211 on page 170) and VT_TX_ERDI_EN[1—28] = 1 (Table 211 on
page 170), or inserted based on VT_ERDI_INS[1—28][2:0] (Table 213 on page 171) (when
VT_ERDI_EN[1—28] = 1). In all other modes, all bits are overwritten.
VT_J2_INS[1—28][1:0]
(See Table 212 on page 171.) Insertion Mode
00 Default based on SMPR_OH_DEFLT (Table 77 on page 70).
01 Microprocessor insert (VT_J2BYTE_INS[1—28][1—16][7:0]; see Table 216 on
page 172).
10 LOPOH serial access channel insert.
11 Default based on SMPR_OH_DEFLT.
VT_Z6_INS[1—28][1:0]
(See Table 212 on page 171.) Insertion Mode
00 Default based on SMPR_OH_DEFLT.
01 Insert from bits VT_Z6BYTE_INS[1—28][7:0] (Tab le 214 on page 171).
10 LOPOH seri al access channel insert.
11 Reserved.
VT_Z7_IN S[1—28][1:0]
(See Table 212 on page 171.) Insertion Mode
00 Default based on microprocessor bits SMPR_OH_DEFLT (Table 77 on page 70).
01 Insert from bits VT_APS_INS[1—28][3:0] (Table 213 on page 171) and
VT_ERDI_INS[1—28][2:0] (Table 213).
10 LOPOH serial access channel insert.
11 Default based on microprocessor bits SMPR_OH_DEFLT.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
453Agere Systems Inc.
19 VT/TU Mapper Functional Description (continued)
O-Bit Insertion (Asynchronous/Bit-Synchronous Modes Only). Three modes of programming the O bits,
defined in Table 578 will be supported.
Table 578. O-Bit Insertion Modes Per Channel
VT Mappings. Detailed mapping formats are shown in Table 579 through Table 585, where:
I = information bit.
O = overhead bit.
R = fixed stuff bit.
P = phase bit.
S = signaling bit.
F = frame bit.
S1, S2 = stuff bits.
C1, C2 = stuff indication bits.
V5 = VT overhead byte.
J2 = VT path trace byte.
Z6/N2 = growth/t and em byte.
Z7/K4 = ERDI/APS byte.
V1, V2 = pointer bytes.
V3 = pointer action byte.
V4 = reserved.
VT_O_INS[1—28][1:0]
(See Table 212 on page 171.) Insertion Mode
00 Default based on microprocessor bits SMPR_OH_DEFLT.
01 Insert from bits VT_OBIT_INS[1—28][7:0] (Table 214 on page 171).
10 LOPOH serial access channel insert.
11 Default based on microprocessor bits SMPR_OH_DEFLT.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
454 Agere Systems Inc.
19 VT/TU Mapper Functional Description (continued)
Table 579. Asynchronous VT1.5
* R—value based on
SMPR_FXD_STFF_ DEFLT (Table 77 on
page 70).
Table 580. Bit-Synchronous VT1.5
* R—value based on
SMPR_FX D_ST FF_DE F LT (Table 77 on
page 70).
Table 581. Byte-Synchronous VT1.5
* R—value based on
SMPR_FX D_ST FF_DE F LT (Table 77 on
page 70).
V1
V5
RRRRRRIR*
Byte 1
.
.
Byte 24
V2
J2
C1C2OOOOIR
Byte 1
.
.
Byte 24
V3
Z6/N2
C1C2OOOOIR
Byte 1
:
Byte 24
V4
Z7/K4
C1C2RRRS1S2R
Byte 1
.
.
Byte 24
V1
V5
10RRRRIR*
Byte 1
.
.
.
Byte 24
V2
J2
10OOOOIR
Byte 1
.
.
.
Byte 24
V3
Z6/N2
10OOOOIR
Byte 1
.
.
.
Byte 24
V4
Z7/K4
10RRRRIR
Byte 1
.
.
.
Byte 24
V1
V5
P1P0S1S2S3S4FR*
Byte 1
.
.
.
Byte 24
V2
J2
P1P0S1S2S3S4FR
Byte 1
.
.
.
Byte 24
V3
Z6/N2
P1P0S1S2S3S4FR
Byte 1
.
.
.
Byte 24
V4
Z7/K4
P1P0S1S2S3S4FR
Byte 1
.
.
.
Byte 24
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
455Agere Systems Inc.
19 VT/TU Mapper Functional Description (continued)
Table 582. Asynchronous VT2
* R—value based on
SMPR_FXD_STFF_DE F LT (Table 77 on
page 70).
Table 583. Bit-Synchronous VT2
* R—value based on
SMPR_FX D_ST FF_DE F LT (Table 77 on
page 70).
Table 584. Byte-Synchronous VT2
* R—value based on
SMPR_FX D_ST FF_DE F LT (Table 77 on
page 70).
V1
V5
RRRRRRRR*
Byte 1
.
.
.
Byte 32
RRRRRRRR
V2
J2
C1C2OOOORR
Byte 1
.
.
.
Byte 32
RRRRRRRR
V3
Z6/N2
C1C2OOOORR
Byte 1
.
.
.
Byte 32
RRRRRRRR
V4
Z7/K4
C1C2RRRRRS1
S2 Byte 1[6:0]
.
.
.
Byte 32
RRRRRRRR
V1
V5
10RRRRRR*
Byte 1
.
.
.
Byte 32
RRRRRRRR
V2
J2
10OOOORR
Byte 1
.
.
.
Byte 32
RRRRRRRR
V3
Z6/N2
10OOOORR
Byte 1
.
.
.
Byte 32
RRRRRRRR
V4
Z7/K4
10RRRRRR
Byte 1
.
.
.
Byte 32
RRRRRRRR
V1
V5
P1P0RRRRRR*
R
Channels 1—15
Superframer
Alignment/Signal
Channels 16—30
RRRRRRRR
V2
J2
P1P0RRRRRR
Ra
Channels 1—15
Superframer
Alignment/Signal
Channels 16—30
RRRRRRRR
V3
Z6/N2
P1P0RRRRRR
Ra
Channels 1—15
Superframer
Alignment/Signal
Channels 16—30
RRRRRRRR
V4
Z7/K4
P1P0RRRRRR
Ra
Channels 1—15
Superframer
Alignment/Signal
Channels 16—30
RRRRRRRR
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
456 Agere Systems Inc.
19 VT/TU Mapper Functional Description (continued)
Table 585. VC-11 to TU-12 Conversion
* R—value based on SMPR_FXD_STFF_DEFLT (Table 77 on page 70).
V1/V2/V3/V4
V5/J2/Z6/Z7
RRRRRRIR/P1P0S1S2S3S4FR*
Fixed Stuff/Even Parity
Byte 1
Byte 2
Byte 3
Fixed Stuff/Even Parity
Byte 4
Byte 5
Byte 6
Fixed Stuff/Even Parity
Byte 7
Byte 8
Byte 9
Fixed Stuff/Even Parity
:
:
:
Fixed Stuff/Even Parity
Byte 16
Byte 17
Byte 18
Fixed Stuff/Even Parity
Byte 19
Byte 20
Byte 21
Fixed Stuff/Even Parity
Byte 22
Byte 23
Byte 24
Fixed Stuff/Even Parity
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
457Agere Systems Inc.
19 VT/TU Mapper Functional Description (continued)
19.14.5 VT Multiplexer (VTMUX)
The VTMUX logic block (in Figure 40 on page 435) performs all functions necessary to place the appropriate VT
data onto the outgoing mapper transmit path data bus.
Bits VT_TX_GRP_TYPE[6:0] (Table 193 on page 164) are programmed to determine whether the outgoing tribu-
tary is a VT1.5/TU-11 or a VT2/TU-12.
See Table 563 on page 436 through Table 566 on page 436 for VT/TU mapping formats.
19.14.6 Transmit Signaling (TX_VTSIG)
The TX_V TSI G lo gi c bl oc k ( in Figure 40 on page 435) will perform all necessary functions to retrieve the signaling
phase and data from the framer and insert it into the outgoing VT/TU.
Note: This block is only enabled when operating in the byte-synchronous mode.
The signaling is received from the appropriate framer link selected with the value programmed in bits
VT_TXSIG_ CH_SEL [1— 28][4 :0] (Table 215 on page 172). VT_TXSIG_CH_SEL[1—28][4:0] is a necessary
duplication of the routing information programmed within the cross connect (XC) block.
The TX_VTSIG block determines whether the phase and signaling bits are to be used in the VT/TU mapping. If
the phase or signaling bits are not being used (VT_USE_PBIT[1—28] = 0, VT_USE_SBIT[1—28] = 0
(Table 215)), they will be set to SMPR_FXD_STFF_DEFLT (Table 77 on page 70) in the microprocessor inter-
face block. Stomping of the F bit is controlled by VT_USE_FBIT[1—28] = 0 (Table 215). Refer to Table 586 for
programming signaling inserting.
Table 586. Framing Byte Generation Per Channel
* X—value based on SMPR_OH_DEFLT (Table 77 on page 70), R—value based on SMPR_FXD_STFF_DEFLT (Table 77).
19.14.7 Transmit Lower Path Overhead (TX_LOPOH)
The TX_LOPOH logic block (in Figure 40 on page 435) performs all necessary functions to receive and store the
low-order path overhead, as well as the REI and RDI values from the external LOPOH serial access channel. The
following functions are supported:
The TX_LOPOH logic block retimes all incoming signals on the falling edge of the external input pin
LOPOHCLKIN (AC13).
The source of the external inputs LOPOHDATAIN (AC14), LOPOHVALIDIN, and LOPOHCLKIN is required to
hold the LOPOHVALIDIN at 0 for a minimum of eight LOPOHCLKIN cycles. The TX_LOPOH logic block moni-
tors the incoming LOPOHVALIDIN and detects failure conditions. A failure exists if there are less than eight
LOPOHCLKIN cycles between a falling edge of LOPOHVALIDIN and the next rising edge, or if the internal bit
counter reaches its maximum count, for the active data type, and LOPOHVALIDIN does not transition to 0.
VT_USE_FBIT[1—28] VT_USE_PBIT[1—28] VT_USE_SBIT[1—28] Action
See Table 215 on page 172.
0 0 0 VT/TU frame byte* = XXXXXXXR
0 0 1 VT/TU frame byte* = XXS1S2S3S4XR
0 1 0 VT/TU frame byte* = P1P0XXXXXR
0 1 1 VT/TU fr ame byt e* = P1 P0S1S2 S3S 4XR
1 0 0 VT/TU frame byte* = XXXXXXFR
1 0 1 VT/TU frame byte* = XXS1S2S3S4FR
1 1 0 VT/TU frame byte* = P1P0XXXXFR
1 1 1 VT/TU frame byte* = P1P0S1S2S3S4FR
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
458 Agere Systems Inc.
19 VT/TU Mapper Functional Description (continued)
The first three bits received, following a rising edge of external input pin LOPOHVALIDIN (AB14), define the data
type on the incoming stream. Data types are defined in Tabl e 569 on page 447.
LOPOH failure is reported in bit VT_LOPOH_FAIL_E (Table 183 on page 159). If an LOPOH failure exists (indi-
cated by VT_LOPOH_FAIL_E = 1), the incoming data will be ignored. Unless the mask bit VT_LOPOH_FAIL_M
(Table 187 on page 162) is set, VT_LOPOH_FAIL_E = 1 will generate an interrupt.
Figure 47 on page 460 contains the TX_LOPOH block serial channel format and timing.
19.15 VT Mapper System Interfa ce Timing
19.15.1 VT Mapper DS1/E1 Receive Interface (to System Interface)
Figure 42 and Figure 43 show the minimum, typical, and maximum gaps of the clock and data out of the VT map-
per for DS1 and E1. An asymmetric VT/TU mapper clock (VTMPR_RCLK) is derived from an internal 6.48 MHz
clock. The rising edge of this VT mapper clock is delayed by one 6.48 MHz clock cycle with respect to the data
(VTMPR_RDATA) and is one cycle in widt h.
5-8986(F)r.2
Figure 42. DS1 Mode Gapped Clocking Scheme
5-8987(F)r.2
Figure 43. E1 Mode Gapped Clocking Scheme
Figure 44 and Figure 45 show a typical frame of VT mapper output. The VT mapper 8 kHz frame sync output
(VTMPR_RFSYNC) is coincident with the DS1 frame-bit position and with the MSB of E1 time slot 0.
Note: The VT mapper 8 kHz frame sync is only transmitted for byte-synchronous mappings.
5-8988(F)r.1
* Maximum gap between rising clock edges = 1848 ns.
Figure 44. DS1 Interface
VTMPR_RCLK
VTMPR_RDATA
1232 ns 1848 ns
616 ns
154 ns154 ns
VTMPR_RCLK
VTMPR_RDATA
462 ns 924 ns 1386 ns
154 ns 154 ns
VTMPR_RCLK
VTMPR_RDATA
VTMPR_RFSYNC
DS0 #1 DS0 #2
F
DS0 #1 DS0 #2
F
125 µs
154 ns 616 ns 1232 ns*
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
459Agere Systems Inc.
19 VT/TU Mapper Functional Description (continued)
5-8989(F)r.1
* Maximum gap between rising clock edges = 1386 ns.
Figure 45. E1 Interface
19.15.2 VT Mapper DS1/E1 Transmit Interface (from System Interface)
The VT mapper input clock and data will meet the timing requirements of G.703, 1.544 MHz ± 50 ppm and
2.048 MHz ± 50 ppm. The VT mapper will accommodate up to ±200 ppm to allow operation under maintenance or
trouble conditions. The clock edge to retime the data is programmable with VT_TX_CLKEDGE[1—28] bit
(Table 211 on page 170). The receive data is clocked on the rising edge when VT_TX_CLKEDGE[1—28] = 1 and
the falling edge when VT_TX_CLKEDGE[1—28] = 0.
See VT Mapper Timing on page 47 for VT mapper interface and clock timing numbers.
19.16 VT Mapper Lower-Ord er Path O verh ead Interface Timing
19.16.1 VT Mapper Receive Path Overhead Interface Description
Figure 46 contains the VT mapper receive path overhead serial channel format and timing.
5-8327(F)r.2
Figure 46. VT Mapper Receive Path Overhead Serial Access Channel
VTMPR_RCLK
VTMPR_RDATA
VTMPR_RFSYNC
TS #0 TS #1 TS #1 TS #1
125 µs
154 ns 462 ns 924 ns*
TMUX/SPEM PR RDI/REI VTMPR VT#1—28 V5(MSB–>LSB) VTMPR VT#1—28 J2(MSB–>LS B ) VTMPR VT#1—28 Z6(MSB–>LSB)
FRAME #1 OF MULTIFRAME
125 µs
MINIMUM OF 8 CYCLES 154 ns
LOPOHCLKOUT
LOPOHVALIDOUT
LOPOHDATAOUT 001 010 011 100
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
460 Agere Systems Inc.
19 VT/TU Mapper Functional Description (continued)
The Supermapper provides access to all necessary functions associated with the receive path overhead for each
VT/TU, specifically V5, J2, Z6/N2, Z7/K4, and the O bits. The following features are supported:
V5, J2, Z6/N2, Z7/K4, and the O bits, on a per-VT basis, will be stored for one complete superframe and transmit-
ted out on external output pin LOPOHDATAOUT (AB17) during the next superframe. REI and RDI values
received from the SPE mapper and TMUX will be stored on a per-frame basis and transmitted during the next
frame. REI and RDI values will be latched during the A1 time of the received SONET frame.
When operating in unidirectional path switch ring (UPSR) mode (VT_UPSR = 1 (Table 194 on page 164)), REI,
RDI, and ERDI values in the V5 and Z7 bytes will be modified based on the receive status. See Table 569 on
page 447 for automatic generation requirements.
Each data type out of LOPOHDATAOUT will be transmitted serially as a burst of 227 bits (VT1.5 mode) or
171 bits (VT2 mode) on the rising edge of the clock, LOPOHCLKOUT, which is driven out on external pin AB15.
The REI and RDI received from the SPE mapper and TMUX will be transmitted serially as a burst of 37 bits on
the rising edged of the clock, LOPOHCLKOUT.
The LOPOHVALIDOUT signal (driving external output pin AB18) is set to 1 when valid data is being transmitted.
Following transmission of any complete data type, LOPOHVALIDOUT is held at 0 for at least eight
LOPOHCLKOUT cycles.
The first 3 bits transmitted, following a rising edge of LOPOHVALIDOUT, make up the data type header. Data
type 001 will be the first data type transmitted in each frame. V5, J2, and Z6 are transmitted respectively in the
first frame of the superframe. Z7 and the O bits are transmitted respectively in the second frame of the super-
frame. Note that the LOPOHDATAOUT data types are only transmitted in the first and second frames of the four
frame multif ra me.
All data types must be transmitted within 500 µs.
19.16.2 VT Mapper Transmit Path Overhead Interface Description
Figure 47 contains the VT mapper transmit path overhead serial channel format and timing.
5-8329(F)r.2
Figure 47. VT Mapper Transmit Path Overhead Serial Access Channel
TMUX/SPEMPR RDI/REI VTMPR VT # 1— 2 8 V5 (M S B –> L SB ) VTMPR VT#1—28 J2(MSB–>LSB) VTMPR VT#1—28 Z6(MSB– >LSB)
FRAME #1 OF MULTIFRA ME
125 µs
MINIMUM OF 8 CYCLES 154 ns
LOPOHCLKIN
LOPOHVALIDIN
LOPOHDATAIN
LOPOH BITCNT 0 1 2
37
012
226
012
226
012
226
001 010 011 100
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
461Agere Systems Inc.
19 VT/TU Mapper Functional Description (continued)
The VT mapper transmit path overhead will perform all necessary functions for the low-order path overhead, as
well as the REI and RDI values from the internal SPE mapper and TMUX blocks. The following are supported:
The interface clocks all incoming signals on the falling edge of external input LOPOHCLKIN (pin AC13).
The first 3 bits received, following a rising edge of external input pin LOPOHVALIDIN (AB14), will define the data
type on the incoming stream. Data types are defined in Table 569 on page 447.
The source of the external input LOPOHDATAIN (AC14), LOPOHVALIDIN, and LOPOHCLKIN signals is
required to hold the LOPOHVALIDIN at 0 for a minimum of eight LOPOHCLKIN cycles. The VT mapper will mon-
itor the incoming LOPOHV ALIDIN and detect failure conditions. A failure exists if there are less than eight LOPO-
HCLKIN cycles between a falling edge of LOPOHVALIDIN and the next rising edge, or if the LOPOH bit count
(LOPOH BITCNT) reaches its maximum count for the active data type and LOPOHVALIDIN does not transition
to 0.
LOPOH failure is reported in bit VT_LOPOH_FAIL_E (Table 183 on page 159). If a failure exists
(VT_LOPOH_FAIL_E = 1), the incoming data will be ignored and unless the mask bit, VT_LOPOH_FAIL_M
(Table 187 on page 162), is set, the LOPOH failure will generate an interrupt.
The VT mapper logic block will latch new REI and RDI values for the TMUX and SPE mapper during the A1 time
of the SONET/SDH frame.
The timing figures in this section are functional timing diagrams. See VT Mapper T iming on page 47 for VT mapper
interface and clock timing numbers.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
462 Agere Systems Inc.
20 M13/M23 MUX/DeMUX Block Functional Descripti on
Table of Con t ents
Contents Page
20 M13/M23 MUX/DeMUX Block Functional Description ....................................................................................462
20.1 M13 Introduction.......................................................................................................................................463
20.2 Features...................................................................................................................................................463
20.2.1 M13 App li catio ns ........... ....... ...... ....... ...... ....... ...... ....... ...... ................... ....... ...... ....... .................... 463
20.3 Block Diagrams........................................................................................................................................464
20.4 M13 Functional Description......................................................................................................................467
20.5 M13 Multiplexing Path..............................................................................................................................467
20.5.1 M12 Mul tip le xe rs ...... ...... .................... ...... ....... ...... ................... ....... ...... ....... ................................. 467
20.5.2 D S1/E1 Inte rfa ce ........... ....... ...... ....... ................... ....... ...... ...... ....... ...... .................... .................... 467
20.5.3 Loop bac k Select ................... ...... ....... ................... ....... ...... ...... ....... ................... ....... .................... 468
20.5.4 D S1/E1 FIFOs ......... ...... .................... ...... ....... ...... ....... ...... ................... ....... ...... ....... .................... 468
20.6 DS2 Frame Generation............................................................................................................................468
20.6.1 D S1 Mode ................ ...... ....... ...... ....... ................... ....... ...... ...... ....... ...... ........................................ 468
20.6.2 E1 Mode ........... ....... ...... ....... ...... ....... ...... ....... ................... ...... ....... ...... ....... ................................. 469
20.7 M23 Multiplexer........................................................................................................................................470
20.7.1 D S2 Interfa ce ................. ....... ...... ....... ...... ....... ................... ...... ....... ...... ....... ................................. 470
20.7.2 D S2 Select Logi c ..... ................... ....... ...... ....... ................... ...... ....... ...... ....... ................................. 470
20.7.3 Overhead Bit Generation (GR-499) .............................................................................................. 471
20.7.4 M23 Mod e .. ...... ....... ...... ....... ...... ....... ...... ....... ...... ....... ...... ...... .................... ...... ........................... 471
20.7.5 C-Bit Parity Mode .......................................................................................................................... 471
20.7.6 FEAC .... ...... ...... ....... ...... ....... ...... .................... ...... ....... ...... ...... ....... ...... ........................................ 472
20.7.7 FEBE .......... ...... ....... ...... ....... ...... ....... ...... ....... ...... ................... ....... ...... ....... ...... ........................... 473
20.7.8 Terminal-to-Terminal Path Maintenance Data Link ...................................................................... 473
20.8 AIS/Idle Insertion......................................................................................................................................474
20.9 B3ZS Encoder (GR-499)..........................................................................................................................474
20.10 DS3 R-to-T Loopback.............................................................................................................................475
20.10.1 DS3 Transmit Path Interface ....................................................................................................... 475
20.11 M13/M23 Demultiplexer .........................................................................................................................475
20.11.1 DS3 LOC and LOS ..................................................................................................................... 475
20.11.2 DS3 T-to-R Loopback ................................................................................................................. 476
20.11.3 M23 Demultiplexer ...................................................................................................................... 476
20.11.4 M12 Demultiplexers .................................................................................................................... 479
20.11.5 DS1 Mode ................................................................................................................................... 480
20.11.6 E1 Mode ..................................................................................................................................... 480
20.11.7 Output Select Logic .................................................................................................................... 481
Figures Page
Figure 48. M13 Block Diagram..............................................................................................................................464
Figure 49. M12 Functional Block Diagram ............................................................................................................465
Figure 50. M23 Functional Block Diagram ............................................................................................................466
Figure 51. DS3 NSMI Transmit Operation.............................................................................................................469
Figure 52. DS3 NSMI Receive Operation..............................................................................................................469
Tables Page
Table 587. C-Bit Parity Description and Transmit Value........................................................................................472
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
463Agere Systems Inc.
20 M13/M23 MUX/DeMUX Block Functional Description (continued)
20.1 M13 Introduction
The M13 block is a highly configurable multiplexer/demultiplexer . It can operate as an M13 in either the C-bit parity
or M23 mode, a mixed M13/M23, or an M23.
In the C-bit parity mode, the M13 provides a far-end alarm and control (FEAC) code generator and receiver, an
HDLC transmitter and receiver, and automatic far-end block error (FEBE) generation and detection.
Each internal M12 MUX/deMUX and the M23 MUX/deMUX may be configured to operate as independent MUX/
deMUX.
The M13 supports numerous automatic monitoring functions. It can provide an interrupt to the control system, or it
can be operated in a polled mode.
20.2 Features
Configurable multiplexer/demultiplexer for up to 28 DS1 signals, 21 E1 signals, or 7 DS2 signals to/from a DS3
signal.
M23 or C-bit parity mode operation.
Seven configurable independent M12 multiplexer/demultiplexers for up to 28 DS1 signals or 21 E1 signals
to/from 7 DS2 signals.
Provisionable time-slot selection for DS1, E1, and DS2 insertion or drop.
DS3 multiplexer capable of generating alarm indication signal (AIS), remote alarm indicator (RAI), idle, far-end
alarm and control (FEAC), and far-end block error (FEBE) signals.
Automatic DS3 receive monitor that detects loss of signal (LOS), bipolar violation (BPV), excessive zeros (EXZ),
out of frame (OOF), severely errored frame (SEF), AIS, RAI, FEAC codes, P-bit parity errors, C-bit parity errors,
and FEBE indications.
HDLC transmitter with 128-byte data buffer and HDLC receiver with 128-byte data FIFO for the C-bit parity path
maintenanc e data link.
DS3, DS2, DS1, and E1 loopback and loopback request generation.
Complies with T1.102, T1.107, T1.231, T1.403, T1.404, GR-499, G.747, and G.775.
20.2.1 M13 Applications
M13 and M23 multiplexers.
M13 multiplexers supporting G.747 format.
Independent M12 multiplexers.
Digita l acc es s cr os s co nne ct s (DA CS) .
DS1/E1/DS2 broadcast.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
464 Agere Systems Inc.
20 M13/M23 MUX/DeMUX Block Functional Description (continued)
20.3 Block Diagrams
The following diagram illustrates the high-level interface between M13 block and other functional blocks.
5-9013(F)r.1
Figure 48. M13 Block Diagram
M13 MULTIPLEXER
M13 DEMULTIPLEX ER
CROSS
CONNECT
CONTROL INTERFACE
DS1XCLK
DS2AISCLK
DS1/E1/DS2
LOOPBACK DS3
LOOPBACK
E1XCLK
M13 AUTO AIS
SMPR_TDS3CLK
SMPR_TDS3CLK_EN
M13_DS3CLK
M13_DS3NEG
SMPR_RDS3CLK
SMPR_RDS3CLK_EN
SMPR_DS3NEG_BPV
SPEMPR_AUTOAIS
RCBSYNC
RCBCLK
RCBDATA
RDLCLK
RDLDATA TCBSYNC
TCBCLK
TCBDATA
TDLCLK
TDLDATA
SMPR_DS3POS_DAT
M13_DS3POS_DATA
NSMI_RELATED
DNSMI_RELATED
DEVICE I/O
DEVICE I/O
SPE
CROSS
CONNECT
DS3
DS1/E1
DS2
MAPPER
DEVICE I/O
M12 DS1 DATA/
M23 DS2 DATA/
M12 DS2 DATA /CLOCK
CLOCK/STFREQ
CLOCK/STFREQ
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
465Agere Systems Inc.
20 M13/M23 MUX/DeMUX Block Functional Description (continued)
5-9014(F)r.1
Figure 49. M12 Functional Block Diagram
XC_DS1DATA[1—4] M12 MUX
#1
DS1AISCLK
M12 MUX
#7
DS1/E1
LOC & AIS
MONITOR
#[1—4]
M13_DS1DATA[1—4]
M13_DS1DATA[25—28]
XC_DS1CLK[25—28]
XC_DS1CLK[1—4]
M13_DS1CLK[1—4]
M13_DS1CLK[25—28]
E1AISCLK
XC_DS1STFREQ[25—28]
M13_AUTOAIS[1—4]
M13_AUTOAIS[25—28]
XC_DS1STFREQ[1—4]
M13_DS1M12CLK[1—4]
DS1/E1
LOC & AIS
MONITOR
#[25—28]
DS1/E1
LB
SELECT
#[1—4]
M13_DS1M12CLK[25—28]
XC_DS1DATA[25—28]
4
OUTPUT
SELECT
#[1—4]
DS1/E1
OUTPUT
SELECT
#[25—28]
DS1/E1
DS1/E1
LB
SELECT
#[25—28]
M12 DEMUX
#1
XC_DS2DMXCLK[1—7]
XC_DS2M12CLK[1—7]
XC_DS2DMXDATA[1—7]
M13_DS2M12DATA[1—7]
M13_M12DS2DATA[1—7]
DEVICE I/O
DS1/E1 FROM
CROSS CONNECT
DS1/E1 TO
CROSS CONNECT
M12 DEMUX
#7
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
44
4
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
466 Agere Systems Inc.
20 M13/M23 MUX/DeMUX Block Functional Description (continued)
5-9015(F)
Figure 50. M23 Functional Block Diagram
M13_DS3NEG
SMPR_RDS3NEG_BPV
DS2
SELECT
#1
TCBDATA
TDLDATA
RDLDATA
RCBDATA
DS3
LOOP-
BACK
SELECT
DS3
LOOP-
BACK
SELECT
AIS/
IDLE
INSERT
TCBCLK
TCBSYNC
TDLCLK
RDLCLK
RCBSYNC
RCBCLK
SMPR_RDS3CLK
SMPR_RDS3CLK_EN
SMPR_TDS3CLK
M23
MUX B3ZS
ENCODE
SPEMPR_AUTOAIS
M23
DEMUX B3ZS
DECODE
LOC &
DETECT
LOS
MICROPROCESSOR
INTER FACE AND
REGISTER MAP
M13_M12DS2
DNSMI_RELATED
DS3
LOOP-
BACK
SELECT
M23
DEMUX B3ZS
DECODE
DS2 LOC
& AIS
MONITOR
#[1—7]
XC_DS2M23
XC_DS2M23
XC_DS2ST
DS2AISCLK
M13_DS2
M13_DS2
OUTPUT
SELECT
#[1—7]
DS2
M13_DS2M12
M13_DS2M23
SMPR_TDS3CLK_EN
M13_DS3POS_DATA
SMPR_RDS3POS_DATA
DEVICE I/O
DEVICE I/O
DS2
SELECT
#7
7
DEVICE I/O
NSMI_RELATED
7
DATA[1—7]
DATA[1—7]
CLK[1—7]
FREQ[1—7]
CLK[1—7]
DATA[1—7]
DATA[1—7]
CLK[1—7]
7
7
7
DS3 FROM/TO
CROSSCONNECT
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
467Agere Systems Inc.
20 M13/M23 MUX/DeMUX Block Functional Description (continued)
20.4 M13 Functional Description
In the descriptions below, some of the register bits exist for each of the DS1, E1, or DS2 signals. The names of
these register bits have a lower case x or a y suffix to show that there are actually 28 or 7 of them, respectively.
20.5 M13 Multiplexing Path
There are seven M12 multiplexers and one M23 multiplexer on the transmit side of this M13 block, and all of them
can operate independently. Twenty-eight DS1 inputs in groups of four , or twenty-one E1 input signals in groups of
three can feed into individual M12 MUXs, while the M23 MUX can take DS2 signals from outputs of M12 MUXs, or
direct DS2 inputs, or loopback deMUXed DS2s.
20.5.1 M12 Multiplexers
M12 multiplexers have four operation modes provisionable through M13_M12_MODEy[1:0] (Table 275 on
page 220):
M13_M12_MODEy[1:0] = 00: the M12 operates as the first stage of M13 multiplexing. It takes 4 DS1s
(M13_DS1_E1Ny = 1(Table 275)) or 3 E1s (M13_DS1_E1Ny = 0) and MUXes into a DS2 signal which will be fed
into the M23 MUX. In this mode, the DS1/E1 clocks are independent inputs to the block. There should be no
valid DS2 input (XC_DS2M23DATAy). This is the default mode.
M13_M12_MODEy[1:0] = 01: the M12 operates as an independent multiplexer. It takes 4 DS1s
(M13_DS1_E1Ny = 1) or 3 E1s (M13_DS1_E1Ny = 0) and MUXes into a DS2 signal which will be sent directly to
the DS2 output (M13_DS2M12DATAy) of the block and not be passed to M23 MUX input. In this mode, the
DS1/E1 clocks are independent inputs to the block and a DS2 input clock (XC_DS2M12CLKy) is required.
M13_M12_MODEy[1:0] = 10: the M12 operates as an independent multiplexer. It takes 4 DS1s (register bit
M13_DS1_E1Ny = 1) or 3 E1s (register bit M13_DS1_E1Ny = 0) and MUXes into a DS2 signal which will be sent
directly to the DS2 output (M13_DS2M12DATAy) of the block and not be passed to M23 MUX input. In this
mode, the associated DS1/E1 clocks are outputs from the block and derived from the DS2 input clock
(XC_DS2M12CLKy).
M13_M12_MODEy[1:0] = 11: the M12 is idle. The output from this M12 multiplexer will be held low.
20.5.2 DS1/E1 Interface
The incoming DS1/E1 clock signals (XC_DS1CLK[28—1]) are first checked for activity or loss of clock (LOC). This
is reported to the microprocessor via bits M13_DS1_LOC[28:1] (Table 259 on page 214). Once LOC is detected,
AIS will be inserted into the associated DS1/E1 channel using DS1AISCLK and E1AISCLK, generated by the DJA
using the DS1CXCLK/W1XCLK.
The incoming DS1/E1 data signals are retimed immediately by the associated clocks. The edge of the clocks that
is used to retime the data is user provisionable to either the rising edge (M13_RDS1_EDGEx = 1 (Table 276 on
page 220)) or falling edge (M13_RDS1_EDGEx = 0).
After being retimed, the incoming data stream is checked for AIS. When the input is DS1, the M13 will declare AIS
if the input data is logic 0 for fewer than 9 out of 8192 clock periods (T1.231). When the input is E1, AIS is declared
if there are less than 3 zeros in each of two consecutive 512-bit periods and cleared when each of two consecutive
512-bit periods contains more than 2 zeros (G.775). If AIS is detected on any of the DS1/E1 inputs
(XC_DS1DATA[28—1]), the associated M13_DS1_AIS_DET[28:1] (Table 260 on page 215) bit is set.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
468 Agere Systems Inc.
20 M13/M23 MUX/DeMUX Block Functional Description (continued)
20.5.3 Loopback Select
DS1/E1 loopback selectors allow DS1 or E1 received within the DS2 or DS3 inputs from the deMUX path to be
looped back. This loopback can be performed automatically if M13_AUTO_FLB (Table 271 on page 218) or
M13_AUTO_LB (Table 271) bits are set. Regardless of the state of M13_AUTO_FLB and M13_AUTO_LB, the
user can force a DS1 or E1 loopback by setting M13_SEL_DS1_LBx (Table 276 on page 220) to 1.
When M13_AUTO_LB = 1, loopback of channel x is activated if M13_DS1_LB_DETx = 1 (Table 261 on page 215)
(see Section 20.11.4 on page 479). In the C-bit parity mode, automatic loopback can also be activated as a result
of receiving a loopback request through the far-end alarm and control (FEAC) channel. Such a request is indicated
by status bit M13_DS1_FEAC_LB_DETx (Table 263 on page 216) (see Section 20.7.6 on page 472). If status bit
M13_DS1_FEAC_LB_DETx = 1 and M13_AUTO_FLB = 1, loopback of channel x is activated.
20.5.4 DS1/E1 FIFOs
When M13_M12_MODEy[1] = 0 (Table 275 on page 220), the 4 selected DS1 or 3 selected E1 signals for each
M12 MUX are fed into single bit 16-word-deep FIFOs that are used to synchronize the selected signals to the DS2
frame generation clock. The DS2/DS3 transmit clock (XC_DS2M12CLKy) is used to derive the clock source for
DS2 frame generation blocks. In the C-bit parity mode, all DS2 stuff opportunities are used, which produces a nom-
inal 6.306 MHz DS2 clock. In the M23 mode, the DS2 stuffing ratio is fixed so that the DS2 clock is nominally 6.312
MHz.
The fill level of each FIFO determines the need for bit stuffing its DS1/E1 input. This block allows the M13 to accept
DS1/E1 signals with nominal frequency offsets of ±130 ppm and up to 5 unit intervals peak jitter.
When operating in M13_M12_MODEy[1:0] = 10 mode, the FIFOs are not used.
20.6 DS2 Frame Generation
Each M12 MUX generates a DS2 frame either from 4 DS1 signals multiplexed as specified in T1.107 and GR-499-
CORE when M13_DS1_E1Ny = 1 (Table 275 on page 220), or from 3 E1 signals multiplexed using the format
specifi ed in ITU-T reco mme ndation G.747 when M13_DS1_E1 Ny = 0.
When M13_M12_MODEy[1:0] = 01/10 (Table 275), each M12 MUX is operating independently. In this case, the
output DS2 signals are retimed by the associated clocks. The edge of the clocks that is used to retime the data is
user provisionable to either the rising edge (M13_DS2M12_EDGEy = 1; see Table 287 on page 223) or falling
edge (M13_DS2M12_EDGEy = 0). The AIS signal can be inserted into any DS2 output by setting
M13_DS2_FORCE_AISy to 1; see Table 283.
20.6.1 DS1 Mode
In the DS1 mode, the 4 signals interleaved to generate the yth DS2 signal are the outputs from DS1/E1 loopback
selectors 4y – 3, 4y – 2, 4y – 1, and 4y. Bits multiplexed into the second and fourth channels (from selectors 4y – 2
and 4y) are inverted before being interleaved (T1.107) when bit M13_MUXCH2_4_INVy = 1 (Table 275 on
page 220).
Loopback requests for a DS1 channel are indicated by inverting the third C bit for that channel (T1.107). This is
done when bit M13_DS1_LB_REQx is set to 1 (Table 275). The 4 M13_DS1_LB_REQx bits that affect the yth DS2
are 4y – 3, 4y – 2, 4y – 1, and 4y.
The X bit is set to the inverse of the remote alarm indication (RAI) bit (T1.107) M13_DS2_RAI_SENDy (Table 277
on page 22 0 ).
For testing purposes, the M-frame alignment signal (normally 011) is generated with the last bit inverted (010) if
M13_DS2_MPINVy is set (Table 279 on page 221), and the M-subframe alignment signal (01) is generated as (00)
if M13_DS2_FINVy is set (Table 280 on page 221).
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
469Agere Systems Inc.
20 M13/M23 MUX/DeMUX Block Functional Description (continued)
20.6.2 E1 Mode
In the E1 mode, the 3 signals interleaved to generate the yth DS2 signal are the outputs from DS1/E1 loopback
selectors 4y – 3, 4y – 2, and 4y – 1.
Although it is not part of the G.747 standard, loopback requests for an E1 channel can be indicated as in the DS1
mode by inverting the third C bit for that channel. This is done if the M13_DS1_LB_REQx bit is set. The
three M13_DS1_LB_REQx bits that affect the yth DS2 are 4y – 3, 4y – 2, and 4y – 1.
The remote alarm indication (RAI) bit and the reserved bit are set to the value of M13_DS2_RAI_SENDy and
M13_DS2_RSV_SENDy register bits, (Table 278 on page 220) respectively (G.747).
For testing purposes, the frame alignment signal (normally 11 1010000, as specified in G.747) is generated with the
last bit inverted (111010001) if M13_DS2_FINVy is set, and the parity bit is inverted if M13_DS2_MPINVy is set.
The first parity bit after a 0 to 1 transition of SMPR_BER_INSRT (Table 75 on page 68) is also inverted if
M13_DS2_P_BERy is set to 1 (Table 281 on page 221).
0781(F)
Figure 51. DS3 NSMI Transmit Operation
0782(F)
Figure 52. DS3 NSMI Receive Operation
UNUSED
FRAM E BI T
VARIABLE
LINE_TXCLK29
TXDATAEN
TXSYNC (OPTIONAL)
LINE_TXDATA29
DS3POSDATAOUT
UNUSED
FRAME B I T
VARIABLE
LINE_RXCLK29
RXDATAEN
RXSYNC (OPTIONAL)
LINE_RXDATA29
DS3POSDATAOUT
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
470 Agere Systems Inc.
20 M13/M23 MUX/DeMUX Block Functional Description (continued)
20.7 M23 Multiplexer
The M23 multiplexer generates a transmit DS3 frame and fills the information bits in the frame with data either from
the 7 DS2 select blocks when M13_NSMI_MODE = 0 (Table 289 on page 224), or from the serial payload input
XC_NSMI_DATA (when M13_NSMI_MODE = 1). It generates the frame using either the SMPR_TDS3CLK or the
SMPR_RDS3CLK input clocks. In the receive loop-timing mode (M13_LOOP_TIME = 1 (Table 271 on page 218)),
the received clock, SMPR_RDS3CLK, is selected. Otherwise, SMPR_TDS3CLK is used for DS3 frame generation.
SMPR_TDS3CLK is monitored for loss of clock, which is reported through bit M13_TDS3_LOC (Table 237 on
page 209).
The serial data interface, when enabled (M13_NSMI_MODE = 1), generates a clock M13_NSMI_CLK and an
enable M13_NSMI_EN for accepting DS3 payload data XC_NSMI_DATA. A sync pulse, in reference to and ahead
of the first M bit within a DS3 frame, is also generated. The offset from the sync pulse to the first M bit is program-
mable through bits M13_NSMI_SP_OFFSET[7:0] (Table 273 on page 219).
The M23 MUX can be provisioned to operate in either the M23 mode (M13_M23_CBP = 1 (Table 272 on
page 219)) or the C-bit parity mode (M13_M23_CBP = 0).
An unframed all ones data stream is generated if M13_TDS3_FORCE_ALL1 is set to 1 (Table 288 on page 223).
20.7.1 DS2 Interface
The clocks associated with input DS2 signals can be either inputs to the M23 MUX (M13_M23CLK_MODE = 0
(Table 288 on page 223)) or outputs from the M23 MUX (M13_M23CLK_MODE = 1).The incoming DS2 clock sig-
nals are checked for activity or loss of clock (LOC). This is reported to the microprocessor via bits
M13_XC_DS2_LOC[7:1] (Table 250 on page 212). In case LOC is detected, AIS will be inserted into the associ-
ated DS2 channel using DS2AISCLK
(pin E10).
The incoming DS2 data signals (XC_DS2M23DATA[7—1]) are retimed immediately by the associated clocks. The
edge of the clocks that is used to retime the data is user provisionable to either the rising edge
(M13_RDS2_EDGEy = 1 (Table 295 on page 226)) or falling edge (M13_RDS2_EDGEy = 0).
After being retimed, the incoming data stream is checked for AIS. The M13 will declare AIS if the input data is 0 for
fewer than five clock cycles in each of two consecutive 840 clock periods. The AIS is not cleared until there are
more than four zeros in each of two consecutive 840-bit periods (G.775). If AIS is detected on any of DS2 inputs,
the associated M13_XC_DS2_AIS_DET[7:1] bit is set (Table 251 on page 212).
20.7.2 DS2 Select Logic
The selection of DS2 signal source for each DS2 time slot is controlled by M13_AUTO_LB (Table 271 on
page 218), M13_DS2_LB_DETy (Table 256 on page 214), M13_SEL_DS2_LBy (Table 294 on page 226), and
M13_M12_MODEy (Table 275 on page 220) bits.
When M13_AUTO_LB = 1 and M13_DS2_LB_DET y = 1, the DS2 signal from time slot y in the received DS3 signal
is looped back into time slot y of the transmitted DS3 signal (see C Bit Processing Section on page 477). The user
can also force a loopback by setting M13_SEL_DS2_LBy to 1. DS2 loopback should not be done in the C-bit parity
mode.
If a loopback is not active, the DS2 signal selector is controlled by bits M13_M12_MODEy[1:0]. If register bits
M13_M12_MODEy[1:0] = 00, the output of M12 multiplexer y is chosen for the yth DS2 time slot in the transmitted
DS3 signal; otherwise, the input DS2 signal XC_DS2M23DAT A y is selected for the yth DS2 time slot in the transmit-
ted DS3 signal.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
471Agere Systems Inc.
20 M13/M23 MUX/DeMUX Block Functional Description (continued)
20.7.3 Overhead Bit Generation (GR-499)
For testing purposes the F bits, M bits, and P bits can be generated with errors. The frame alignment signal (F-bit
pattern that is normally 1001) is generated with the last bit inverted (1000) if M13_DS3_FINV (Table 288 on
page 223) is set. The multiframe alignment signal (M-bit pattern that is normally 010) is generated as (011) if
M13_DS3_MINV (Table 288) is set.
The parity bits (P bits) are generated as odd rather than the normal even parity if M13_DS3_PINV (Table 288) is
set. Both P bits within the first DS3 frame after a 0 to 1 transition of SMPR_BER_INSRT (Table 75 on page 68) are
also inverted if M13_DS3_P_BERy (Table 289 on page 224) is set to 1.
The X bits are set to the inverse of the remote alarm indication (RAI) bit (GR-499) M13_DS3_RAI_SEND
(Table 289).
C-bit transmission is a function of whether the M13 MUX/deMUX is in the M23 mode or the C-bit parity mode.
20.7.4 M23 Mode
Please refer to M13_M2 3_CB P = 1 in Table 272 on page 219. The information bits in the DS3 frame are drawn
from the 7 DS2 select blocks. If M13_M23CLK_MODE = 0 (Table 288 on page 223) and a select block is in the
loopback or direct DS2 input state, the selected DS2 must be synchronized to the DS3 frame generation clock. To
do this, the M13 contains seven DS2 FIFOs each with a depth of 8. The fill level of each FIFO determines the need
for bit stuffing its DS2 input.
When M13_M23CLK_MODE = 0 and DS2 select blocks are not in the loopback or direct DS2 input state, the
selected DS2s are generated using the DS3 frame generation clock. In this case, a fixed stuffing ratio is used for
the DS2s in order to produce a nominal 6.312 MHz DS2 clock rate.
When M13_M23CLK_MODE = 1, the FIFOs are not used and DS2 stuff request inputs (XC_DS2STFREQ[7—1])
will determine when stuff bits are needed.
The three C bits in each M-subframe of the DS3 frame are stuff indication bits. If the stuff opportunity bit in an M
subframe is filled by a DS2 bit, the first and second C bits in that M-subframe are transmitted as zeros. If the stuff
opportunity bit in an M-subframe is filled with a stuff bit, the first and second C bits in that M-subframe are transmit-
ted as ones.
The third C bit in each M-subframe is normally transmitted with the same value as the first and second C bits. How-
ever, if M13_DS2_LB_REQy = 1 (Table 293 on page 225), the third C bit is transmitted as the inverse of the first
two C bits (which indicates a loopback request for DS2 channel y).
20.7.5 C-Bit Parity Mode
Please refer to M13_M23_CBP = 0 in Table 272 on page 219. The M23 MUX can operate in the C-bit parity mode
under the following two circumstances:
When M13_M23CLK_MODE = 0 and 28 DS1 or 21 E1 signals are being MUXed into the DS3.
When M13_M23CLK_MODE = 1 and 7 DS2 signals are being MUXed into the DS3.
In the C-bit parity mode, every DS2 stuffing opportunity is filled with a stuff bit. Because stuffing is not used for syn-
chronization, the selected DS2s cannot come directly from the M13 inputs, and the selected DS2s cannot be
looped back from the M23 demultiplexer. The 21 C bits in each DS3 frame are not required as stuffing indicators.
Their use is described in Table 587 on page 472.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
472 Agere Systems Inc.
20 M13/M23 MUX/DeMUX Block Functional Description (continued)
Table 587. C-Bit Parity Description and Transmit Value
20.7.6 FEAC
The third C bit of each DS3 frame provides a far-end alarm and control (FEAC) signal. The use of this signal and
FEAC code words are defined in T1.107 and GR-499-CORE.
When the FEAC signal is not active, it is transmitted continuously as a 1. The user can provision the M13 to trans-
mit continuous ones by setting M13_TFEAC_CTL[1:0] to 00 (Table 290 on page 224).
Active FEAC signals consist of repeating 16-bit code words of the form 0 x5x4x3x2x1x0 0 11111111, where xi can
be a 1 or a 0. The code words are transmitted right to left one bit each DS3 frame for 16 consecutive frames.
Alarm and Status Signals. EAC alarm and status signals should be transmitted continuously for the duration of
the condition being reported, or for a minimum of 10 repetitions of the code word. FEAC signals are transmitted
continuously by setting M13_TFEAC_CTL[1:0] to 01, and M13_TFEAC_CODE[5:0] to x5x4x3x2x1x0 (Table 290),
where x5x4x3x2x1x0 is the appropriate value for the alarm or status code word.
Control Signals. EAC control signals are defined for activating or deactivating a loopback. Code words for loop-
back activation, deactivation, and specifying the type of loopback can be transmitted using the same method as
described above for alarm and status signals. Alternatively, the user may provision the M13 to automatically send
the activate or deactivate commands.
In order to activate a loopback, the user may set M13_TFEAC_CTL[1:0] to 11, and M13_TFEAC_CODE[5:0] to
x5x4x3x2x1x0, where x5x4x3x2x1x0 is the appropriate value for the loopback code word. The M13 will then trans-
mit 10 repetitions of the activate code word, 0 000111 0 11111111 followed by 10 repetitions of
0x5x4x3x2x1x0 0 11111111. After transmitting this 40 octet sequence, it will set M13_TFEAC_DONE to 1
(Table 229 on page 204).
In order to deactivate a loopback, the user may set M13_TFEAC_CTL[1:0] to 10, and M13_TFEAC_CODE[5:0] to
x5x4x3x2x1x0, where x5x4x3x2x1x0 is the appropriate value for the loopback code word. The M13 will then trans-
mit 10 repetitions of the deactivate code word, 0 011100 0 11111111, followed by 10 repetitions of
0x5x4x3x2x1x0 0 11111111. After transmitting this 40 octet sequence, it will set M13_TFEAC_DONE to 1.
C Bit Number Description Transmit Value
C1 C-Bit Parity Identification 1.
C2 Network Requirements Bit If M13_CBIT2_ACT = 0 (Table 289 on page 224), the C2 bit
is set to 1.
If M13_CBIT2_ACT = 1, the transmit value of C2 is input
through pin TCBDATA (E12).
C3 Far-End Alarm and Control (FEAC) See FEAC below.
C4—C6,
C16—C21 Unused If M13_UNUSED_ACT = 0 (Table 289), all are transmitted
as 1.
If M13_UNUSED_ACT = 1, the transmit values are input
through pin TCBDATA (E12).
C7—C9 CP Bits (path DS3 parity) Set to the same value as the P bits.
C10C12 Far-End Block Error (FEBE) Bits See Section 20.7.7 on page 473.
C13—C15 Terminal-to-Terminal Data Link See Section 20.7.8 on page 473.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
473Agere Systems Inc.
20 M13/M23 MUX/DeMUX Block Functional Description (continued)
20.7.7 FEBE
C bits 10, 11, and 12 provide a far-end block error (FEBE) indication. Each frame of the received DS3 signal is
checked for errors in the F-bit or M-bit framing sequences and for errors in the CP-bit path parity. If no errors are
found, the FEBE bits are set to 1 11 in the next transmitted DS3 frame. If one or more errors are detected, the FEBE
bits are transmitted as 000. The user can force the transmission of FEBE error indications by setting
M13_FEBE_ERR to 1 (Table 289 on page 224). This causes all DS3 frames to be transmitted with the FEBE bits
set to 000, regardless of whether or not errors were detected in the received DS3 signal.
20.7.8 Terminal-to-Terminal Path Maintenance Data Link
C bits 13, 14, and 15 can be used as a 28.2 kbits/s data link. If the data link is not used, the user should set
M13_TDL_ACT to 0 (Table 291 on page 225), which causes all ones to be transmitted. When M13_TDL_ACT = 1
and M13_TDL_NTRNL = 0 (Table 291), the data transmitted on this link comes directly from the M13 input pin, pin
TDLDATA (E8). Otherwise (M13_TDL_ACT = 1 and M13_TDL_NTRNL = 1), the data link is controlled by the inter-
nal HDLC transmitter.
HDLC Transmitter. The internal HDLC transmitter circuitry is composed of two 64-byte data buffers (registers
M13_TDL_0DA T A_R[0—63] (Table 310 on page 230) and M13_TDL_1DA TA_R[0—63] (Table 31 1 on page 230)),
a CRC-16 frame check sequence (FCS) generator, and control circuits. The HDLC transmitter continually outputs
flag bytes (01 1 1 1 110) with MSB first until the user sets M13_TDL_NTRNL_ACT to 1 (Table 291 on page 225). Fol-
lowing the completion of the next flag byte, the HDLC transmitter begins transmitting the first byte of the first data
buffer (register M13_TDL_0DA TA_R[0]), which should be filled by the user with the first byte of the address field.
(For LAPD messages, this byte contains the service access point identifier , the command/response bit, and a zero
extended address bit.)
Bytes from the data buffer are transmitted least significant bit (LSB) first (GR-499). The HDLC controller inserts a 0
after any sequence of five consecutive ones in the data buffer to prevent the occurrence of a flag pattern prior to
the closing flag.
Buffer Usage. The number of bytes transmitted from the data buffers before completing the frame is controlled as
follows. M13_TDL_BUF0_END (Table 291 on page 225) and M13_TDL_BUF1_END (Table 291) are two bits
which indicate whether or not the final buffer byte to be transmitted is currently in buffer 0 or buffer 1. While bytes
from buffer 0 are being transmitted, the HDLC controller checks the value of M13_TDL_BUF0_END bit. If it is 0, all
bytes from buffer 0 and at least one byte from buffer 1 are transmitted. If it is 1, bytes from buffer 0 are transmitted
sequentially up to and including byte K, where M13_TDL_BYTE_END[5:0] = K (Table 292 on page 225).
Similarly, the number of bytes transmitted from buffer 1 is controlled by the value of M13_TDL_BUF1_END and
M13_TDL_BYTE_END[5:0] bits. Bytes are transmitted alternately from buffer 0 and buffer 1 until bit
M13_TDL_BUF[0, 1]_END = 1 for the active transmission buffer and the value of bits M13_TDL_BYTE_END[5:0]
is equal to the byte number being transmitted.
When the HDLC controller completes transmission of register M13_TDL_0DATA_R[63] (the last byte of buf fer 0),
the interrupt bit M13_TDL_BUF0_INT is set to 1 (Table 229 on page 204). Similarly, the interrupt bit
M13_TDL_BUF1_INT (Table 229) is set after the last byte of buffer 1 is transmitted. These bits indicate that the
corresponding buffer has been emptied and is available for refilling.
The user may abort the transmission of an HDLC frame by clearing M13_TDL_NTRNL_ACT to 0 prior to complet-
ing transmission of the last byte from the data buffers. If so, the HDLC controller will stop transmission from the
buffers and send an abort byte (01111111) transmitted MSB first. The abort byte will then be followed by flag bytes
until M13_TDL_NTRNL_ACT is again set to 1, starting transmission of a new frame.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
474 Agere Systems Inc.
20 M13/M23 MUX/DeMUX Block Functional Description (continued)
FCS Generation. Once the last buffer byte is transmitted, the HDLC controller either transmits a closing flag byte
(when M13_TDL_FCS = 0 (Table 291 on page 225)), or it first appends the 2-byte ITU-T FCS with the necessary
zero stuffing before sending the closing flag (when M13_TDL_FCS = 1). In either case, the HDLC controller sets
M13_TDL_DONE (Table 2 29 on page 204 ) to 1 after the transmission of the frame is complete. For testing pur-
poses, the user can send corrupted FCS bytes by clearing M13_TDL_FCS to 0 and filling the last 2 bytes in the
buffer with an incorrect CRC value.
LAPD Exam ple. T1.107 defines three standard LAPD messages that may be transmitted on the path maintenance
data link. After the opening flag, each of these messages contains 79 bytes of address, control, and information.
These are followed by the 2-byte FCS and the closing flag.
To transmit one of these messages using the internal HDLC transmitter, the microprocessor should first set
M13_TDL_ACT (Table 291) to 1, M13_TDL_NTRNL (Table 291) to 1, and M13_TDL_NTRNL_ACT (Table 291) to
0. This causes the continuous generation of flag bytes.
The microprocessor may then fill buffer 0 with the first 64 bytes of the message and fill bytes 0 through 14 of buffer
1 with the last 15 bytes prior to the FCS of the message. By setting M13_TDL_BUF0_END (Table 291) to 0,
M13_TDL_BUF1_END (Table 291) to 1, and M13_TDL_BYTE_END[5:0] (Table 292 on page 225) to 001110, the
microprocessor can indicate that 79 buffer bytes are to be transmitted.
The microprocessor can then set M13_TDL_FCS to 1 and M13_TDL_NTRNL_ACT to 1. This will cause the inter-
nal HDLC transmitter to send the 79 buffer bytes, append the FCS and closing flag, set M13_TDL_DONE to 1, and
resume co nti nuou s fla g trans m is sion.
If the same LAPD message is to be transmitted later without first having transmitted a different message, the
microprocessor only needs to toggle M13_TDL_NTRNL_ACT to 0 and back to 1, since the values of the other con-
trol parameters and the buffer bytes are not modified by the internal HDLC transmitter.
20.8 AIS/Idle Insertion
The AIS/idle insertion block can be provisioned to operate in the normal mode (M13_DS3_FORCE_AIS = 0
(Table 288 on page 223) and M13_DS3_FORCE_IDLE = 0 (Table 288) ), gener ate DS3 AIS
(M13_DS3_FORCE_AIS = 1), or generate DS3 idle (M13_DS3_FORCE_AIS = 0 and M13_DS3_FORCE_IDLE =
1).
In the normal mode, data from the M23 multiplexer is passed unchanged to the B3ZS encoder block.
During AIS insertion (M13_DS3_FORCE_AIS = 1), the generated DS3 frame is altered by overwriting the informa-
tion bits with an alternating 1010 . . . pattern, starting with a 1 after each overhead bit. In addition, the X bits are
overwritten with ones, and the C bits are overwritten with all zeros (T1.107 and T1.404).
During idle signal generation (M13_DS3_FORCE_AIS = 0 and M13_DS3_FORCE_IDLE = 1), the information bits
are overwritten with 11001100 . . ., starting with 11 after each overhead bit. The X bits are overwritten with ones. In
the M23 mode (M13_M23_CBP = 1 (Table 272 on page 219)), the C bits are overwritten with all zeros. In the C-bit
parity mode, the C bits are passed unchanged (T1.107 and T1.404).
20.9 B3ZS Encoder (GR-499 )
The transmit DS3 device output can either be in the form of unipolar data (M13_DS3POS_DATA when
M13_BIPOLAR = 0 (Table 272 on page 219)) or positive data and negative data (M13_DS3POS_DATA, and
M13_DS3NEG when M13_BIPOLAR = 1). If M13_BIPOLAR = 1, the DS3 data is B3ZS encoded with
M13_DS3POS_DATA = 1 indicating a positive pulse and M13_DS3NEG = 1 indicating a negative pulse.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
475Agere Systems Inc.
20 M13/M23 MUX/DeMUX Block Functional Description (continued)
The B3ZS encoder block accepts data output from the M23 multiplexer and when M13_BIPOLAR = 1, performs
coding as follows: for each input data bit that is a 1, the encoder outputs a 1 (or pulse) on either its positive or neg-
ative output. The positive or negative output is chosen so that the resulting pulse is opposite in polarity to the last
nonzero output.
For each input data bit that is a 0, the encoder outputs zeros on both its positive and negative outputs, unless doing
so would cause three consecutive output periods of positive and negative zeros. In the latter case, the three con-
secutive input zeros are output as either [00V] or [B0V], where B is a pulse on either the positive or negative output
that is opposite in polarity to the last nonzero output, and V is a pulse that is the same polarity as the last nonzero
output. The choice of [00V] or [B0V] is made so that the polarity of consecutive V-pulses alternates (which is equiv-
alent to forcing the number of B-pulses between successive V-pulses to be odd).
When M13_BIPOLAR = 1, the user can force errors in the bipolar coding by setting M13_BIPOL_ERR (Table 270
on page 21 8 ) to 1. When this is done, the M13 transmits the next 1 as a bipolar violation.
20.10 DS3 R-to-T Loopba ck
The received DS3 signal can be looped directly back to the transmit DS3 output. If either M13_LOOP_R_TO_T = 1
(Table 272 on page 219), or both M13_AUTO_FLB = 1 (Table 271 on page 218) and M13_DS3_FLB_DET = 1
(Table 263 on page 216) (see Section 20.7.6 FEAC on page 472), the loopback is activated. (During loopback, the
SMPR_RDS3POS_DATA and SMPR_RDS3NEG_BPV input signals are looped to the M13_DS3POS_DATA and
M13_DS3NEG outputs, respectively.)
20.10.1 DS3 Transmit Path Interface
When cross connected to the DS3 device pins, the DS3 data out DS3POSDATAOUT (pin R22) and
DS3NEGDATAOUT (pin P22) are clocked out on the falling edge of DS3DATAOUTCLK (pin N22).
If the M13 DS3 interface is optioned for loop timing (M13_LOOP_TIME = 1), the DS3 data is clocked out on the ris-
ing edge of DS3DATAINCLK (pin J22).
20.11 M13/M23 Demultiplexer
20.11.1 DS3 LOC and LOS
SMPR_RDS3CLK is monitored for loss of clock, which is reported through bit M13_RDS3_LOC (Tab le 237 on
page 209). The user can configure which edge of SMPR_RDS3CLK retimes the data (M13_RDS3_EDGE = 1
(Table 299 on page 227) selects the rising edge; M13_RDS3_EDGE = 0 selects the falling edge).
The receive DS3 signal is also checked for loss of signal (LOS), which is reported through bit M13_RDS3_LOS
(Table 237 on page 209). An LOS defect, according to T1.231, is the occurrence of 175 ± 75 contiguous pulse
positions with no pulses of either positive or negative polarity at the DS3 input. An LOS defect is terminated upon
detecting an average pulse density of at least 33% over a period of 175 ± 75 contiguous pulse positions starting
with the receipt of a pulse. An LOS defect will not be terminated if, at the end of the pulse-position interval, any sub-
intervals of
100 pulse positions containing no pulses of either polarity were observed (T1.231).
B3ZS Decoder. The receive DS3 device input can either be in the form of unipolar clock and data
(SMPR_RDS3CLK and SMPR_RDS3POS_DATA when M13_BIPOLAR = 0 (Table 272 on page 219)) or unipolar
clock, positive data, and negative data (SMPR_RDS3CLK, SMPR_RDS3POS_DATA, and
SMPR_RDS3NEG_BPV when M13_BIPOLAR = 1 and M13_BPV_IN = 0 (Table 271 on page 218)) or unipolar
clock, data, and bipolar violation indication (external input) (SMPR_RDS3CLK, SMPR_RDS3POS_DATA, and
SMPR_RDS3NEG_BPV when M13_BIPOLAR = 0 and M13_BPV_IN = 1).
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
476 Agere Systems Inc.
20 M13/M23 MUX/DeMUX Block Functional Description (continued)
When M13_BIPOLAR = 0, the received DS3 data and clock are passed directly to the M23 demultiplexer. When
M13_BIPOLAR = 0 and M13_BPV_IN = 1, the received DS3 data and clock are passed to the M23 demultiplexer
while the bipolar violation indication is forwarded to the internal BPV counter for performance monitoring (B3ZS
decoder is not used). When M13_BIPOLAR = 1 and M13_BPV_IN = 0, the received SMPR_RDS3POS_DATA and
SMPR_RDS3NEG_BPV data inputs are first B3ZS decoded.
The B3ZS decoder block performs decoding as follows. For each clock period that both SMPR_RDS3POS_DATA
and SMPR_RDS3NEG_BPV are 0 (no pulse), the decoder outputs a 0. For each clock period that either
SMPR_RDS3POS_DATA or SMPR_RDS3NEG_BPV is 1 (pulse), the decoder determines whether or not the
pulse is part of a zero substitution (ZS) sequence. A ZS sequence is [00V] or [B0V], where B is a pulse on either
the positive or negative input that is opposite in polarity to the last nonzero input, and V is a pulse that is the same
polarity as the last nonzero input.
If the received pulse is not part of a ZS sequence, the decoder outputs a 1. Otherwise, the decoder outputs three
consecutive zeros in place of the received ZS sequence.
The B3ZS decoder also checks for bipolar coding violations. Bipolar coding violations are defined as received
V-pulses that are not opposite in polarity to the last V-pulse or are not immediately preceded by a 0, or received
zeros that are immediately preceded by two other zeros.
The M13 contains a counter that increments on each occurrence of a received bipolar coding violation (BPV). It
also monitors the occurrence of excessive zeros (EXZ), which is defined as any zero string length equal to or
greater than 3 (T1.231). These are part of the performance monitoring counters that can be sampled and simulta-
neously reset (see DS3 Performance Monitors Section on page 479). Their last sampled values are available in
registers M13_BPV_CNT_R[1—3] (Table 3 07 on page 229) and M13 _EXZ _CN T_ R[1— 3] (Table 308 on
page 230).
20.11.2 DS3 T-to-R Loopback
The M13 can be configured to loopback the internal transmit DS3 from the output of the M23 MUX
(M13_LOOP_T_TO_R = 1 (Table 271 on page 218)), or accept the received DS3 signal after B3ZS decoding
(M13_LOOP_T_TO_R = 0) and send it into the M23 deMUX block.
20.11.3 M23 Demultiplexer
The M23 demultiplexer will take the received DS3 signal and either deMUX it into 7 DS2 data streams or strip off the
overhead bits and send payload out through the NSMI serial interface when M13_NSMI_MODE = 1; see Table 289
on page 22 4 .
The serial data interface, when enabled (M13_NSMI_MODE = 1), generates a clock M13_DNSMI_CLK and an
enable M13_DNSMI_EN for outputting DS3 payload data M13_DNSMI_DATA. A sync pulse M13_DNSMI_SYNC,
in reference to and ahead of the first M bit within a DS3 frame, is also generated. The offset from the sync pulse to
the first M bit is programmable through bits M13_D_SP_OFFSET[7:0] (Table 274 on page 219).
In the case of the received DS3 signal being deMUXed into 7 DS2s, those DS2s can be sent out of the device, or
looped back to the transmit side, or passed to M12 demultiplexers for further breakdown into DS1s/E1s.
DS3 Framer. After being B3ZS decoded, the incoming DS3 data stream is checked for the presence of unframed
all ones. If the input data is 0 for fewer than 9 out of 8192 clock periods, bit M13_RDS3_ALL1_DET (Table 237 on
page 209) will be set.
The M23 demultiplexer determines if the input signal contains valid DS3 framing. This is done in two stages by first
finding a bit position that matches the frame alignment pattern (F bits), and then locating the multiframe alignment
signal (M bits). After a matching F-bit sequence is found, in-frame is declared (M13_DS3_OOF = 0 (Table 236 on
page 208)) when correct M bits are received for three consecutive M frames (T1.231). The maximum average
reframe time is 0.5 ms in the presence of a bit error rate of 10–3.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
477Agere Systems Inc.
20 M13/M23 MUX/DeMUX Block Functional Description (continued)
Once the deMUX is in-frame, the received frame bits are monitored for out of frame. Out-of-frame is declared
(M13_DS3_OOF = 1) when too many errors are received in either the F bits (three errors in 16 bits when
M13_DS3_MODE = 0 (Table 299 on page 227), or at least 1 F-bit error in each of four consecutive M-subframes
when M13_DS3_MODE = 1) or the M bits (at least 1 error in each of three consecutive M frames) (T1.231). For
testing purposes, the user may also force the framer out of frame by setting M13_DS3_FORCE_OOF (Table 270
on page 21 8 ) to 1.
The traditional algorithm for declaring out of frame (three errors in 16 F bits) results in false out of frame approxi-
mately every 30 s when the received bit error rate is 10–3. By waiting for four consecutive M-subframes with F bit
errors before declaring out of frame (M13_DS3_MODE = 1), the M13 normally stays in frame for over an hour
when the bit error rate is 10–3.
The M13_DS3_LOF (Table 236 on page 208) bit is set if bit M13_DS3_OOF is high continuously for 28 frame peri-
ods (approximately 3 ms). Once set, M13_DS3_LOF is not cleared until M13_DS3_OOF is continuously low for 28
frame periods.
The user can provision the M13 to automatically output AIS if either bit M13_DS3_OOF = 1 (by setting
M13_AUTO_AIS_OOF (Table 271 on page 218) to 1), or M13_DS3_L OF = 1 (by setting M13_AUTO_AIS_LOF to
1).
The received DS3 frames are also checked for severely errored frames (SEF). An SEF defect is the occurrence of
three or more F-bit errors in 16 consecutive F bits and is reported through bit M13_RDS3_SEF (Table 237). An
SEF defect is terminated when the signal is in-frame and there are less than three F-bit errors in 16 consecutive
F bits.
AIS, Idle, and RAI Detection. In each M frame, the 4704 information bits are checked for the presence of the AIS
(1010) or idle (1100) pattern. In order to detect these patterns in the presence of a high error rate, AIS
(M13_DS3_AISPAT_DET = 1 (Table 236 on page 208)) or idle (M13_DS3_IDLEPAT_DET = 1 (Table 236)) pat-
tern detection is declared if fewer than five pattern errors are received in each of two consecutive frames. Once
AIS or idle is declared, these bits are not cleared until at least 16 pattern errors are received in each of 2 consecu-
tive frames (T1.2 31) .
In addition to the fixed information bit patterns, AIS and idle signals are transmitted with all C bits set to 0 and both
X bits set to 1. These conditions are monitored by the M13 and reported in bits M13_DS3_CBZ_DET (Table 236)
and M13_DS3_RAI_DET (Table 236).
If every C bit in three consecutive DS3 frames is 0, the M13 sets M13_DS3_CBZ_DET to 1. If the three C bits in a
single M-subframe are all 1, M13_DS3_CBZ_DET is cleared. If both X bits in two consecutive frames are received
as 0, the device sets M13_DS3_RAI_DET to 1. Once M13_DS3_RAI_DET is set, it is not cleared until both X bits
in two consecutive frames are received as 1.
The user may wish to declare AIS or idle based on a combination of some or all of the following bits:
M13_DS3_CBZ_DET, M13_DS3_RAI_DET, and M13_DS3_AISPAT_DET or M13_DS3_IDLEPAT_DET.
C-Bit Processing. The M13 can be provisioned to operate in either the M23 mode (M13_M23_CBP = 1
(Table 272 on page 219)) or the C-bit parity mode (M13_M23_CBP = 0). In the M23 mode, the C bits in each M-
subframe are interpreted as stuff indicator bits, and they are checked for loopback requests. If the third C bit differs
from the first and second C bits in the yth M-subframe for five successive DS3 frames, M13_DS2_LB_DETy is set
to 1; see Table 256 on page 214. The M13_DS2_LB_DETy bit is cleared when the third C bit does not differ from
the first two C bits in subframe y for five successive DS3 frames.
The first C bit of each frame, C1, provides C-bit parity identification. If for eight consecutive frames it is received as
a 1, the M13 sets M13_DS3_C1_DET to 1; see Table 236 on page 208. Once M13_DS3_C1_DET bit is set, three
consecutive frames with C1 = 0 must be received before it is cleared.
The RCBDAT A (pin E15) output provides access to the received C2, C4, C5, C6, and C16 through C21 C bits. The
received data link bits, C13 through C15, are output as a serial stream on RDLDATA pin (H22).
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
478 Agere Systems Inc.
20 M13/M23 MUX/DeMUX Block Functional Description (continued)
FEAC. In the C-bit parity mode, the third C bit of each DS3 frame, C3, is monitored for FEAC signals. Active FEAC
signals consist of repeating 16-bit code words of the form 0 x5x4x3x2x1x0 0 11111111, where xi can be a 1 or a 0,
and the bits are received right-to-left. The same code word must be received four consecutive times before it is
accepted.
When a code word is accepted, the action taken by the M13 depends on the value of x5x4x3x2x1x0, which may be
an alarm indication, a loopback activation, or a loopback deactivation.
The values of M13_DS1_FEAC_LB_DETx and M13_DS3_FLB_DET bits are not changed if an activate or deacti-
vate control signal is accepted, but the next code word to be accepted is not a channel indication control signal
(010011, 011011, or 100001 throug h 111100).
Alarm, Status, or Unassigned Signals. If an FEAC signal is accepted that is not a loopback activate (000111),
deactivate (011 100), or channel indication (01001 1, 011011, or 100001 through 111100) signal, the M13 will set bits
M13_RFEAC_CODE [5:0] = x5x4x3x2x1x0 and M13_RFEAC_ALM_INT to 1; see Table 229 on page 204.
Control Signals. EAC control signals are defined for activating or deactivating a loopback. If a loopback activate
(000111), deactivate (011100), or channel indication (010011, 011011, or 100001 through 111100) is accepted, the
M13 will s et bi ts M1 3_ RFEA C _COD E [5: 0 ] = x5 x4 x3x2 x1 x0 ( Table 264 on page 216) and M13_RFEAC_LB_INT to
1; see Table 229 on page 204.
If a loopback activate (000111), followed by the all-DS1 channels indication (010011) is accepted, the device sets
all M13_DS1_FEAC_LB_DETx bits (Tab le 263 on page 216). All M13_DS1_FEAC_LB_DETx bits are cleared if a
loopback deactivate (011100), followed by the all-DS1 channels indication, is accepted.
If a loopback activate (000111), followed by the DS3 indication (011011) is accepted, the device sets the
M13_DS3_FLB_DET bit (Table 263). The M13_DS3_FLB_DET bit is cleared if a loopback deactivate (011100),
followed by the DS3 indication, is accepted.
Similarly, if the M13 accepts an activate or deactivate control signal followed by a DS1 channel indication (100001
through 111100), it sets or clears the M13_DS1_FEAC_LB_DETx bit, where x is equal to the binary value of
x5x4x3x2x1x0.
Terminal-to-Terminal Path Maintenance Data Link. C bits 13, 14, and 15 can be used as a 28.2 kbits/s data link.
These bits are available directly at device output pin RDLDATA (H22). The M13 also contains an internal HDLC
receiver for processing the received data link bits.
HDLC Receiver. The internal HDLC receiver circuitry is composed of a 128-byte FIFO, a CRC-16 frame check
sequence (FCS) error detector, and control circuits.
The HDLC receiver searches for flag bytes (01111110) and processes the bits received between flag bytes as fol-
lows. The receiver removes zeros that immediately follow any sequence of five consecutive ones. Sequences of
8 bits after zero destuffing are grouped into bytes and written into the FIFO.
As bytes are received, the CRC-16 value, based on the ITU-T polynomial, is calculated. When the closing flag is
received, the receiver checks that the received FCS in the final 2 bytes matches the calculated CRC-16. If
M13_RDL_FCS = 1 (Table 299 on page 227) and the FCS does not match, M13_RDL_FCS_ERR (Tab le 265 on
page 216) is set. If M13_RDL_FCS = 0, M13_RDL_FCS_ERR is held reset at 0. M13_RDL_FCS bit also deter-
mines whether or not the final 2 bytes of the frame are written into the FIFO. They are written into the FIFO only
when M13_RDL_FCS = 0.
The receiver allows frames to be sent back-to-back with the closing flag of one frame shared as the opening flag of
the next frame. If fewer than three complete destuffed bytes are received between flag bytes, the receiver ignores
the data and writes nothing into the FIFO.
FIFO Usage. The FIFO is large enough to hold one full and two partial standard DS3 LAPD frames of 79 bytes. In
case shorter frames are being transmitted, the M13 can keep track of up to four frames in the FIFO that have not
been read.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
479Agere Systems Inc.
20 M13/M23 MUX/DeMUX Block Functional Description (continued)
The receive data-link frame interrupt bit, M13_RDL_FRM_INT (Table 229 on page 204), is set when a frame clos-
ing flag or an abort byte is received. The M13_RDL_FIFO_UF bit is set (Table 237 on page 209) if the buffer
underflows, and the M13_RDL_FIFO_AF bit is set (Table 237 on page 209) if the buffer reaches a provisionable fill
level. The fill level can be set to 16 bytes (M13_RDL_FILL[1:0] = 00 (Table 299)), 32 bytes (M13_RDL_FILL[1:0] =
01), 64 bytes (M13_RDL_FILL[1:0] = 10), or 96 bytes (M13_RDL_FILL[1:0] = 11).
The user may read bytes from the FIFO through register M13_RDL_DATA_R (Table 266 on page 217). The por-
tion of the earliest frame still in the FIFO can be deleted by setting M13_RDL_FRM_CLR to 1 (Tab le 270 on
page 218). (This is normally done to purge a corrupted or aborted frame.) The user must reset
M13_RDL_FRM_CLR before another frame can be deleted. If M13_RDL_FRM_CLR is set before the closing flag
of the frame currently being read from the FIFO has been received, all subsequent bytes of the frame will be dis-
carded without being written into the FIFO.
Frame Status and Error Reporting. The M13 provides information on the earliest frame still in the FIFO through
status register M13_RHDLC_STATUS_R (Table 268 on page 217).
The status register has 1 bit to indicate whether or not the closing flag (or an abort byte) for the current frame has
been received, 1 bit to indicate if the current frame is corrupted, 5 bits to indicate the size of the current frame mod-
ulo-32, and 1 bit to indicate whether or not there are less than 32 bytes of the earliest frame left in the FIFO.
There are four ways in which the M13 can identify that the current frame has been corrupted. The frame may have
been aborted (M13_RDL_ABORT = 1 (Table 265 on page 216)), it may have failed the CRC check
(M13_RDL_FCS_ERR = 1 (Table 265 on page 216)), the number of bits between opening and closing flags may
not have been a multiple of 8 (M13_RDL_NOT_BYTE = 1 (Table 265 on page 216)), or it may have been overwrit-
ten before being read from the FIFO (M13_RDL_OVFL = 1 (Table 265)). Also, there is a separate bit
M13_RDL_FLAG (Table 265) to indicate whether or not the closing flag (or an abort byte) for the current frame has
been received.
The size of the current frame modulo-128 (including FCS bytes only if M13_RDL_FCS = 0 (Table 299 on
page 227)) is indicated by register M13_RDL_FRAME_SIZE_R (Table 267 on page 217).
DS3 Performance Monitors. For performance monitoring purposes, there are a number of error counters in the
M13. All of these internal counters are comprised of a running error counter and a hold register that presents stable
results to the microprocessor. The counts in all of the running counters are latched to the hold registers, and the
running counters cleared with the configured internal performance monitor reset signal.
The latched results are then held to be read by the microprocessor. All of the internal counters have the ability to
store more than the maximum possible count in a one second interval for a bit error rate of 10–3. As long as the per-
formance monitor reset occurs at least once every second, no counts will be lost. In case this doesn’t happen, all of
the running counters will either hold their maximum value or roll over to zero, depending on the control signal input
SMPR_SAT_ROLLO V ER (Table 77 on page 70).
Within the M23 demultiplexer, there are four performance monitoring counters. M13_DS3_FERR_CNT[11:0]
(Table 301 on page 227) increments each time an error is detected in either an F bit or M bit, and
M13_DS3_PERR_CNT[13:0] (Table 304 on page 228) increments if at least one of the P bits disagrees with the
parity of the previous frame. In the C-bit parity mode only, M13_DS3_CPERR_CNT[13:0] (Table 303 on page 228)
counts frames with at least two of the three C-bit parity bits indicating an error, and M13_DS3_FEBE_CNT[13:0]
(Table 302 on page 228) accumulates FEBE error indications (1 error indication for each DS3 frame with at least
one FEBE bit equal to zero).
20.11.4 M12 Demultiplexers
Each M12 demultiplexer outputs either 4 DS1 signals from the DS2 frame as specified in GR-499-CORE (when
M13_DS1_E1Ny = 1 (Table 275 on page 220)), or three E1 signals from the DS2 format specified in ITU-T Recom-
mendation G.747 (when M13_DS1_E1Ny = 0). In the DS1 mode, the demultiplexed second and fourth channels
are inverted before being sent to the output selectors when M13_DEMUXCH2_4_INVy = 1 (Table 284 on
page 222).
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
480 Agere Systems Inc.
20 M13/M23 MUX/DeMUX Block Functional Description (continued)
Each M12 deMUX can be programmed independently to receive DS2 signal either from M23 deMUX (when
M13_M12DMX_MODEy[1:0] = 00 (Table 284 on page 222)) or direct DS2 input XC_DS2DMXDATAy (when
M13_M12DMX_MODEy[1:0] = 01). In the latter case, an input DS2 clock XC_DS2DMXCLKy is also required.
When M13_M12DMX_MODEy[1:0] = 10/11, the M12 demultiplexer is idle and the outputs are held low.
The DS2 signal is monitored for AIS, which is declared (M13_DS2_AIS_DETy = 1 (Table 254 on page 213)) if the
demultiplexer input is 0 for fewer than five clock cycles in each of two consecutive 840 clock periods, and cleared if
there are more than 4 zeros in each of two consecutive 840-bit periods (G.775).
20.11.5 DS1 Mode
Framer. The M12 demultiplexers determine if the input signal contains valid DS2 framing. This is done in two stages
by first finding a bit position that matches the M-subframe alignment pattern (F bits), and then locating the M frame
alignment signal (M bits). After a matching F-bit sequence is found, in-frame is declared (M13_DS2_OOFy = 0
(Table 252 on page 213)) whe n correct M bits ar e rece ived fo r three consec utiv e M frames . The m aximum averag e
reframe time is 2.5 ms in the presence of a bit error rate of 10–3.
Once the deMUX is in-frame, the received frame bits are monitored for out of frame. Out-of-frame is declared
(M13_DS2_OOFy = 1) if too many errors are received in either the F bits (two errors in 4 bits when
M13_DS2_MODE = 0 (Table 286 on page 222), or at least one F-bit error in four consecutive M-subframe pairs
when M13_DS2_MODE = 1) or the M-bits (at least one error in three consecutive M frames). For testing purposes,
the user may also force the framer out of frame by setting M13_DS2_FORCE_OOFy to 1 (Table 269 on pa ge 217 ).
The traditional algorithm for declaring out of frame (two errors in 4 F bits) results in false out of frame approximately
every 5 s when the bit error rate is 10–3. By waiting for four consecutive errored M-subframe pairs (containing 4-F
bits) before declaring out of frame (M13_DS2_MODE = 1), the M13 normally stays in frame for over four days
when the bit error rate is 10–3.
Overhead Processing. The C bits for each DS1 channel are checked for loopback requests. If the third C bit dif-
fers from the first and second C bits in the zth M-subframe for five successive DS2 frames, M13_DS1_LB_DETx is
set to 1 (Table 261 on page 215), where x = (4y – 4 + z). M13_DS1_LB_DETx is cleared when the third C bit does
not differ from the first two C bits in the zth M-subframe for five successive DS2 frames.
If the X bit in four consecutive frames is received as 0, the M13 sets M13_DS2_RAI_DETy to 1 (Table 255 on
page 213). Once M13_DS2_RAI_DETy is set, it is not cleared until the X bit is received as 1 in four consecutive
frames.
20.11.6 E1 Mode
Framer. The M12 demultiplexers determine if the input signal contains a valid frame format as specified in ITU-T
Recommendation G.747. Frame alignment is declared (M13_DS2_OOFy = 0 (Tab le 252 on page 213)) when a
correct frame alignment signal is received for three consecutive frames. The maximum average reframe time is
0.5 ms in the presence of a bit error rate of 10–3. Out-of-frame is declared (M13_DS2_OOFy = 1) if the frame align-
ment signal contains at least 1-bit error for four consecutive frames. For testing purposes, the user may also force
the framer out of frame by setting M13_DS2_FORCE_OOFy to 1 (Table 269 on page 217).
Overhead Processing. The C bits for each E1 channel are checked for loopback requests. If the third Cz bit differs
from the first and second Cz bits for five successive frames, M13_DS1_LB_DETx is set to 1 (Table 261 on
page 215), where x = (4y – 4 + z). M13_DS1_LB_DETx is cleared when the third Cz bit does not differ from the first
two Cz bits for five successive frames.
If the RAI bit in four consecutive frames is received as 1, the M13 sets M13_DS2_RAI_DETy to 1 (Table 255 on
page 213). Once M13_DS2_RAI_DETy is set, it is not cleared until the RAI bit is received as 0 in four consecutive
frames. The received reserved bit is reported through the M13_DS2_RSV_RCVy (Table 257 on page 214), which
is updated only when a new value is received in four consecutive frames.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
481Agere Systems Inc.
20 M13/M23 MUX/DeMUX Block Functional Description (continued)
Loss of Frame and Automatic AIS Inse rtion. The M13_DS2_LOFy bit is set (Table 253 on page 213) when
M13_DS2_OOFy is high continuously for 28 DS3 frame periods (approximately 3 ms). Once set, M13_DS2_LOFy
is not cleared until M13_DS2_OOFy is continuously low for 28 DS3 frame periods.
The user can provision the M13 to automatically output AIS if either bit M13_DS2_OOFy = 1 (by setting
M13_AUTO_AIS_OOF to 1), or M13_DS2_LOFy = 1 (by setting M13_AUTO_AIS_LOF to 1).
DS2 Performance Monitors. Within each M12 demultiplexer, there are two performance monitoring counters.
These counters are cleared and read as described above (see DS3 Performance Monitors Section on page 479).
Registers M13_DS2_FERR_CNT[7—1]_R (Table 306 on page 229) count errors in the frame alignment signal. In
the DS1 mode, M13_DS2_FERR_CNTy (Table 306) increments each time an error is detected in either an F bit or
M bit. In the E1 mode, this counter increments either for each frame alignment signal bit error (when
M13_DS2_FERR_MODE = 0 (Table 286 on page 222)), or once for each frame alignment signal that contains at
least one bit error (when M13_DS2_FERR_MODE = 1).
In the E1 mode only, registers M13_DS2_PERR_CNT[7—1]_R[1—2] (Table 305 on page 228) count errors in P
bits.
20.11.7 Output Select Logic
DS2 Output Selection. The M23 demultiplexer outputs are fed into seven DS2 output selection logic blocks. This
allows the M13 to output the demultiplexed DS2 signals or insert AIS.
Each selector is identified by a number y that ranges from one to seven and corresponds directly to M13 outputs
M13_DS2DATA[7—1]. The outgoing DS2 signals are retimed by an associated clock, M13_DS2CLK[7—1]. The
edge of the clocks that is used to retime the data is provisionable to either the rising edge (M13_TDS2_EDGE = 1
(Table 306)) or falling edge (M13_TDS2_EDGE = 0).
The output from each selection block is controlled by the values of bits M13_DS2_OUT_IDLEy (Table 2 96 on
page 226) and M13_DS2_OUT_AISy (Table 297 on page 226).
Output is held low when M13_DS2_OUT_IDLEy = 1; otherwise, the deMUXed DS2 signal is output when
M13_DS2_OUT_AISy = 0 and DS2 AIS is output when M13_DS2_OUT_AISy = 1.
The all-ones DS2 AIS signal is also output under all failure conditions at DS3 level which require automatic AIS
insertion at DS2 level.
DS1/E1 Output Selection. The M12 demultiplexer outputs are fed into 28 DS1/E1 output selection logic blocks.
This allows the M13 to output the demultiplexed DS1/E1 (M13_DS1_OUT_AISx = 0 (Table 285 on page 222)), or
insert AIS (M13_DS1_OUT_AISx = 1). The all-ones AIS signal is also output under all failure conditions at DS3 or
DS2 level which require automatic AIS insertion at DS1/E1 level.
Each selector is identified by a number x that ranges from 1 to 28 and corresponds directly to a block output
M13_DS1DATA[28—1]. The outgoing DS1 and/or E1 signals are retimed by an associated clock,
M13_DS1CLK[28—1]. The edge of the clock that is used to retime the data is provisionable to either the rising
edge (M13_TDS1_EDGEx = 1 (Table 284 on page 222)) or falling edge (M13_TDS1_EDGEx = 0).
Each output selector number, x can be expressed as either 4y – 3, 4y – 2, 4y – 1, or 4y, where y ranges from 1
to 7. For a given y, the four selectors in the group output DS1 signals when M13_OUT_TYPEy = 1 (Table 284), or
E1 signals when M13_OUT_TYPEy = 0. In either of these modes, the four selectors in the group are controlled by the
2-bit values OUTSELx, where x = 4y – 3, 4y – 2, 4y – 1, and 4y.
When M13_OUT_TYPEy = 0, the output of selector 4y is held low.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
482 Agere Systems Inc.
21 28-Channel Framer Block Functional Description
Table of Con t ents
Contents Page
21 28-Channel Framer Block Functional Description .........................................................................................4802
21.1 28-Channel Framer Introduction ..............................................................................................................486
21.1.1 D S0/E0 Swi tc hin g Applic ation s ............................. ....... ...... ................... ....... ...... ....... .................... 486
21.2 Transport Applications..............................................................................................................................489
21.3 Framer-to-Line Interface Unit Physical Interface......................................................................................492
21.3.1 Line Interface References/Standards ........................................................................................... 492
21.3.2 Frame Formats . ....... ...... ....... ...... ....... ...... ....... ...... ....... ...... ...... ....... ...... ....... ...... ....... .................... 492
21.3.3 Transm it Fram er Functions ......... ....... ...... ....... ...... ....... ...... ...... ....... ...... ....... ...... ....... .................... 493
21.3.4 Framin g Referenc es/S tand ards .. ....... ...... ....... ...... ................... ....... ...... ....... ...... ....... .................... 493
21.4 DS1 Transparent Framing Format ...........................................................................................................493
21.5 CEPT 2.048 Basic Frame Structure Transparent Framing Format..........................................................494
21.6 Receive Framer Nonalignment Mode (DS1/E1).......................................................................................495
21.6.1 Loss of Frame Alignment Criteria ................................................................................................. 495
21.7 Frame Alignment Criteria .........................................................................................................................496
21.8 Receive and Transmit Signaling Processor .............................................................................................496
21.8.1 Si gnalin g Intr oducti on and Featu re Description ........... ...... ...... ....... ...... ....... ................... ....... ....... 496
21.8.2 Si gnalin g Refer ences /S tan dards .................... ...... ....... ...... ................... ....... ...... ....... .................... 497
21.9 Receive Signaling Per-Link Feature Provisioning ....................................................................................497
21.9.1 Signaling State Mode Source Selection ........................................................................................ 498
21.9.2 Signaling State Mode Selection .................................................................................................... 498
21.9.3 Signaling Source Selection ........................................................................................................... 498
21.9.4 Signaling Destination Selection .................................................................................................... 499
21.10 Optional Receive Signaling Features Provisioned for Each Link ...........................................................501
21.10.1 Support of DS1 Robbed-Bit Stomping ........................................................................................ 501
21.10.2 Support of CEPT Time Slot 16 Stomping ................................................................................... 501
21.10.3 Support of Signaling Debounce .................................................................................................. 501
21.10.4 Support of Japanese Handling Groups ....................................................................................... 501
21.11 Receive Signaling Global Feature Provisioning .....................................................................................501
21.11.1 Link Count Selection ................................................................................................................... 502
21.12 Other Receive Signaling Global Features..............................................................................................502
21.12.1 Support of Automatic Signaling Freeze on Framing Bit Errors ................................................... 502
21.12.2 Support of Change of Signaling State FIFO ............................................................................... 502
21.13 Receive Signaling Interrupts ..................................................................................................................503
21.13.1 Maintenance of the Change of Signaling State FIFO Status Bits ............................................... 503
21.13.2 Maintenance of Handling Group-Related Status Bits ................................................................. 503
21.14 Transmit Signaling Per-Link Feature Provisioning.................................................................................504
21.14.1 Signa li ng Sta te Mode Sou rce Se lec ti on . ....... ...... ....... ...... ...... .................... ...... ....... .................... 504
21.14.2 Signaling State Mode Selection .................................................................................................. 505
21.14.3 Signa li ng Sou rce Selec tio n . ...... ....... ...... ....... ...... ....... ...... ...... ....... ...... .................... ...... .............. 505
21.14.4 Signaling Destination Selection .................................................................................................. 507
21.15 Optional Transmit Signaling Features Provisioned for Each Link..........................................................508
21.15.1 Support of Automatic Maintenance of the Time Slot 16 Remote Frame Alarm .......................... 508
21.15.2 Support of DS1 Robbed-Bit Stomping ........................................................................................ 508
21.15.3 Support of CEPT Time Slot 16 Stomping ................................................................................... 508
21.15.4 Support of Signaling Debounce .................................................................................................. 508
21.15.5 Support of Japanese Handling Groups ....................................................................................... 508
21.15.6 Support of Zero-Code Suppression ............................................................................................ 508
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
483Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
Table of Conten ts (continued)
Contents Page
21.16 Transmit Signaling Global Feature Provisioning ....................................................................................509
21.16.1 Link-Count Selection ................................................................................................................... 509
21.17 Other Transmit Signaling Global Features.............................................................................................509
21.17.1 Support of Automatic Signaling Freeze on Framing Bit Errors ................................................... 509
21.17.2 Support of Byte-Sync SONET Mapping ...................................................................................... 509
21.18 Transmit Signaling Status Registers ......................................................................................................509
21.18.1 Maintenance of CEPT Related Status Bits ................................................................................. 509
21.19 Performance-Monitoring Functional Integration into Superframer .........................................................510
21.20 Performance Report Message ...............................................................................................................514
21.21 Performance-Monitoring References/Standards....................................................................................515
21.22 Facility Data Link....................................................................................................................................516
21.22.1 Facility Data Link References/Standards .................................................................................... 516
21.22.2 Receive Data Link Functional Description .................................................................................. 516
21.22.3 SLC-96 Superfra me Receiv e Data Lin k ........ ...... ...... ....... ...... ....... ...... .................... ...... ....... ...... . 516
21.22.4 DDS Receive Data Link Stack .................................................................................................... 516
21.22.5 CEPT; CEPT CRC-4 (100 ms); CEPT CRC-4 (400 ms) Multiframe Sa Bits Receive Stack ....... 517
21.22.6 Receive Data Link Stack Idle Modes .......................................................................................... 518
21.22.7 Receive Data Link Stack Pointer ................................................................................................ 518
21.22.8 Transmit Facility Data Link Functional Description ..................................................................... 520
21.22.9 SLC-96 Superframe Transmit Data Link ..................................................................................... 520
21.22.10 DDS Transmit Data Link Stack ................................................................................................. 521
21.22.11 Transmit ESF Data Link Bit-Oriented Messages ...................................................................... 522
21.22.12 CEPT, CEPT Multiframe Transmit Data Link Sa Bits Stack ..................................................... 522
21.22.13 Transmit Data Link Stack Idle Modes ....................................................................................... 523
21.22.14 SLC-96, DDS, or CEPT ESF Frame Alignment ........................................................................ 523
21.23 HDLC Functional Description.................................................................................................................524
21.24 HDLC Operation.....................................................................................................................................524
21.24.1 Zero-Bit Insertion/Deletion (Bit Stuffing/Destuffing) .................................................................... 524
21.24.2 Flags ........................................................................................................................................... 524
21.24.3 Aborts .......................................................................................................................................... 525
21.24.4 Receive IDLES ............................................................................................................................ 525
21.24.5 CRC ............................................................................................................................................ 525
21.24.6 HDLC Mode ................................................................................................................................ 526
21.24.7 Receive HDLC Transparent Mode .............................................................................................. 526
21.24.8 Receive HDLC ............................................................................................................................ 526
21.24.9 Receive HDLC Features ............................................................................................................. 526
21.24.10 Transmit HDLC FIFO Features ................................................................................................. 527
21.25 Framer Phase-Lock Loop (PLL).............................................................................................................529
21.25.1 Framer Timing Selection ............................................................................................................. 530
21.26 System Interface ....................................................................................................................................530
21.26.1 System Interface Introduction ..................................................................................................... 530
21.26.2 System Interface References/Standards .................................................................................... 531
21.26.3 Transmit/Receive System Interface Features ............................................................................. 531
21.26.4 Double NOTFAS System Time Slot (FRM_DNOTFAS) Mode ................................................... 532
21.26.5 Transparent Mode ....................................................................................................................... 532
21.26.6 Loopbacks ................................................................................................................................... 532
21.26.7 System AIS ................................................................................................................................. 532
21.26.8 Slip Detection .............................................................................................................................. 533
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
484 Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
Table of Conten ts (continued)
Contents Page
21.26.9 The Concentration Highway (CHI) Mode .................................................................................... 533
21.26.10 Nominal CHI Timing .................................................................................................................. 533
21.26.11 CHI Timing with CHI Double Time-Slot Timing (CHIDTS) Mode Enabled ................................ 535
21.26.12 CHI Timing with Associated Signaling Mode Enabled .............................................................. 535
21.26.13 ASM 2-Byte Time-Slot Format .................................................................................................. 536
21.26.14 CEPT: Time Slot 16 Signaling ASM 2-Byte Time-Slot Format ................................................. 537
21.26.15 CHI Offset Programming ........................................................................................................... 537
21.26.16 The Parallel Bus System Interface Mode .................................................................................. 539
21.26.17 Distributed Stuffing: DS1 .......................................................................................................... 540
21.26.18 Distributed Stuffing: E1 ............................................................................................................. 542
21.26.19 Drive to 3-State and 3-State to Drive Timing ............................................................................ 543
21.27 Serial Multiplex Interface........................................................................................................................543
21.27.1 Signals (6-Pin Mode) .................................................................................................................. 544
21.27.2 Signals (8-Pin Mode) .................................................................................................................. 544
21.27.3 Timing Diagrams ......................................................................................................................... 545
21.27.4 Time-Slot Sequencing ................................................................................................................ 546
21.27.5 Timing Between Transmit and Receive ...................................................................................... 546
21.28 Superframer Host Interface....................................................................................................................547
21.28.1 Superframer Register Addressing ............................................................................................... 547
21.29 Superframer Register Addressing..........................................................................................................548
21.29.1 Per Link Register Sections in the Above Table ........................................................................... 548
Figures Page
Figure 53. Switching Application of the Supermapper...........................................................................................486
Figure 54. Supermapper Switching Configuration.................................................................................................487
Figure 55. Supermapper Switching Mode for Framer in DS0 Interface (Parallel or Serial) Configuration ............488
Figure 56. Transport Application of the Supermapper...........................................................................................489
Figure 57. Supermapper Transport Configuration.................................................................................................480
Figure 58. Supermapper Transport (with Intrusive Performance Monitoring) Mode .............................................491
Figure 59. DS1 Transparent Frame Structure.......................................................................................................493
Figure 60. CEPT Transparent Frame Structure ....................................................................................................494
Figure 61. HG Alignment Algorithm.......................................................................................................................504
Figure 62. Rx Data Link Block Diagram ................................................................................................................518
Figure 63. Stack Available and Stack Ready Bit Formatting.................................................................................519
Figure 64. Tx Data Link Block Diagram.............. ....... ...... ....... ...... ................... ....... ...... ....... ...... ............................523
Figure 65. Receive HDLC Block Diagram.............................................................................................................526
Figure 66. Transmit HDLC FIFO Block Diagram...................................................................................................527
Figure 67. Framer PLL ..........................................................................................................................................529
Figure 68. Framer Block Transmit Path Timing Selection.....................................................................................530
Figure 69. System Loopbacks...............................................................................................................................532
Figure 70. CHI Mode of the Transmit System Interface........................................................................................533
Figure 71. Nominal Concentration Highway Interface Timing...............................................................................534
Figure 72. CHIDTS Mode Concentration Highway Interface Timing.....................................................................535
Figure 73. Associated Signaling Mode Concentration Highway Interface Timing.................................................536
Figure 74. TCHIDATA and RCHIDATA to CHICK Relationship with FRM_CMS = 0............................................538
Figure 75. CHI TCHIDATA and RCHIDATA to CHICK Relationship with FRM_CMS = 1.....................................539
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
485Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
Table of Conten ts (continued)
Figures (continued) Page
Figure 76. Parallel Bus System Interface Mode of the Transmit System Interface ...............................................539
Figure 77. Parallel Bus System Interface Turnaround Timing...............................................................................543
Figure 78. Signals (6-Pin Mode)............................................................................................................................544
Figure 79. Signals (8-Pin Mode)............................................................................................................................544
Figure 80. Network Serial Multiplexed Interface (Single Octet).............................................................................545
Figure 81. Network Serial Multiplexed Interface (Multiple Octets).........................................................................546
Tables Page
Table 588. Frame Alignment Criteria.....................................................................................................................496
Table 589. Receive Signaling Link Registers 0—31 Bit Description......................................................................498
Table 590. Receive Signaling Link Registers 0—31 G-Bit and F-Bit Description..................................................498
Table 591. Receive Signaling Link Registers 0—31 DS1/CEPT/CMI Data...........................................................500
Table 592. Receive Signaling Link Registers 0—31 Expected Data.....................................................................501
Table 593. Signaling Receive Global Register 3, Bit Definition .............................................................................502
Table 594. Transmit Signaling Link Registers 0—31 Bit Description.....................................................................505
Table 595. Transmit Signaling Link Registers 0—31 G-Bit and F-Bit Description.................................................505
Table 596. Transmit Signaling Link Registers 0—31 DS1/CEPT/CMI Data..........................................................506
Table 597. Transmit Signaling Link Registers 0—31 Expected Data ....................................................................507
Table 598. Performance Monitor Functional Descriptions.....................................................................................510
Table 599. Performance Report Message Format.................................................................................................514
Table 600. Performance Report Message Field Definition....................................................................................514
Table 601. Shared Rx Stack Format for SLC-96 Frames......................................................................................516
Table 602. Shared Rx FDL Stack Format for DDS Frames...................................................................................517
Table 603. Shared Rx Stack Format for CEPT Frames.........................................................................................517
Table 604. Shared Tx FDL Stack Format for SLC-96 Frames...............................................................................520
Table 605. Shared Tx FDL Stack Format for DDS Frames ...................................................................................521
Table 606. Shared Tx Stack Format for CEPT Frame...........................................................................................522
Table 607. HDLC Frame Format ...........................................................................................................................524
Table 608. Performance Report Message Structure .............................................................................................528
Table 609. Clock Mode Programming for PLL Mode Device Pins.........................................................................529
Table 610. Associated Signaling Mode CHI 2-Byte Time-Slot Format for DS1 Frames........................................536
Table 611. Associated Signaling Mode CHI 2-Byte Time-Slot Format for Stuffed Channels.................................537
Table 612. Associated Signaling Mode CHI 2-Byte Time-Slot Format for CEPT...................................................537
Table 613. Programming Values for FRM_TOFF[2:0] and FRM_ROFF[2:0] when FRM_CMS = 0 ......................537
Table 614. Programming Values for FRM_TOFF[2:0] when FRM_CMS = 1.........................................................537
Table 615. Programming Values for FRM_ROFF[2:0] when FRM_CMS = 1 ........................................................537
Table 616. Parallel System Bus Interface Time-Slot Arrangement for DS1...........................................................541
Table 617. Parallel System Bus Interface Ti me-Slot Arrangement for E1 .............................................................542
Table 618. PSB System I/O Definition...................................................................................................................542
Table 619. Serial ID ...............................................................................................................................................545
Table 620. Current Number of Global and Per-Link/Channel Registers for Each Block........................................547
Table 621. Framer Addressing Map for the Global and Per-Link/Channel Registers of the Superframer.............548
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
486 Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.1 28-Channel Framer Introd uction
The next two sections describe the switching and transport mode of the superframer . The framer can be configured
into two basic modes: DS0/E0 switching mode and DS1/E1 transport/monitoring mode.
21.1.1 D S0/ E0 Swit chin g Applic at ion s
The switching application of the Supermapper/superframer is shown in Figure 53 and Figure 54. The system inter-
face is either a parallel interface (e.g., system telecom bus interface) or a serial system interface (e.g., CHI) that
transmits or receives framed (channelized) or unframed (unchannelized) DS0/E0 time slots.
In the transmit line direction (Tx, to the mapper), the framer receives data from the DS0/E0 switch through the sys-
tem interface and sends this data (framed or unframed) to the mapper Section via the internal DS1 cross connect
block. The data consists of data, clock, and frame sync.
In the receive line direction (Rx), the mapper sends the line data and clock (through the internal DS1 cross con-
nect) to the framer block. The framer then takes this data and transmits it to a DS0/E0 switch through the system
interface. Links provisioned for extended superframe format (ESF) can automatically generate and send perfor-
mance message reports (PRMs) from the Rx path performance monitor through a Tx path HDLC channel assigned
to the facility data link in the transmit line path.
5-8924(F)r.1
Figure 53. Switching Application of the Supermapper
FRAMER MAPPER
PM
FRAMER MAPPER
PM
FRAMER MAPPER
PM
FRAMERMAPPER
PM
FRAMERMAPPER
PM
FRAMERMAPPER
PM
SUPERMAPPER #1 SUPERMAPPER #1
SUPERMAPPER #2 SUPERMAPPER #2
SUPERMAPPER #3SUPERMAPPER #3
MAPPER
TELECOM
BUS
STS-3
SYSTEM
INTERFACE SYSTEM
INTERFACE
DS0/E0
SWITCH DS0/E0
SWITCH
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
487Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
5-9017(F)r.1
Figure 54. Supermapper Switching Configuration
FRAMER
RECEIVE LINE TO TRANSMIT
SYSTEM PATH
(Rx PATH)
FRAM ER R EC E IVE SYST EM
TO TRANSMIT LINE PATH
(Tx PATH )
SUPERMAPPER: FRAMER
FDL PRMs
LOOPBACKS
RFS1,
RCLK1,
RDATA28
TFS1,
TCLK1,
TDATA28
SYSTEM INTERFACE
DS0 I/O
DS2 I/O DS3 I/O SONET/SDH DS3
MAPPED I/O
DS3 OR T1/E1 TO STS-1
MAPPED O UT PU T
(HIGH-SPEED TELECOM BUS)
M12
MULTIPLEXER DS3 MAPPER
8-bit DATA + 1-bit PARITY
VT/VC
MAPPER VC-4
MULTIPLEXER STM-1
MULTPLEXER
MAPPER
TO
FRAMER
DS1 CROSS
CONNECT
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
488 Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
Figure 55 shows the framer block in a switching application. The framer system interface for the transmit path is
labeled receive and the receive path is labeled transmit. This may seem an error but is chosen based on estab-
lished, his to ri ca l naming conventi on.
5-9018(F)
Note: The Optional Byte-Synchronous VT Mapping Path Is Shown
Figure 55. Supermapper Switching Mode for Framer in DS0 Interface (Parallel or Serial) Configuration
VT MAPP ER :
BYTE-SYNCHRONOUS ROBBED-BIT
SIGNALING RECEIVE DATA
RECEIVE SIGNALING DATA
(TO SIGNALING REGISTERS)
VT MAPP ER :
BYTE-SYNCHRONOUS ROBBED-BIT
SIGNALING TRANSMIT DATA
RECEIVE
HDLC RECEIVE
FACILITY
DATA LINK
SUPERMAPPER
VT MAPPER
INTERFACE
RECEIVE
FRAME
ALIGNER
SIGNALING
PROCESSOR
(EXTRACTION)
TRANSMIT
SYSTEM
INTERFACE
TFS1, TCLK1, TDATA 28
SIGNALING
PROCESSOR
(INSERTION)
RECEIVE
SYSTEM
INTERFACE
TRANSMIT
FACILITY DATA
LINK
TRANSMIT
FRAME
FORMATTER
SUPERMAPPER
M12
MULTIPLEXER
INTERFACE
Rx PATH
Tx P ATH
ESF PRM PATH
TFS1, TCLK1, TDATA8,
TDATA_PARITYA1
TSIGNALING8,
TSIGNALING_PARITYA1
RFS1, RCLK1, RDATA28
RFS1, RCLK1, RDATA8,
RDATA_PARITYA1
RSIGNALING8,
RSIGNALING_PARITYA1
SYSTEM INTERFACE
PARALLEL DS0 BUS
SYSTEM INTERFACE
SERIAL DS0 BUS
SUPERMAPPER: FRAMER
TRANSMIT SIGNALI NG DATA (EXTRACTED
FROM SYSTEM INTERFACES OR
SIGNALING REGISTERS)
PERFORMANCE
MONITOR
TRANSMIT
HDLC
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
489Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.2 Transport Applications
The transport application of the Supermapper is depicted in Figure 56, Figure 57, and Figure 58. The Superm ap-
per interfaces with LIUs at the DS1/E1 rate in this mode. The data is either framed or unframed DS1s. In the trans-
mit path direction (Tx, to the mapper), the framer receives framed or unframed DS1/E1 data from its line interface
and sends this line data and clock (via the DS1 cross connect) to the mapper block. The framer can be provisioned
to frame align the data prior to sending it to the mapper Section. The framer can be provisioned for performance
monitoring on the data and in ESF mode, transmit PRMs back to its line interface.
In the receive path direction (Rx), the mapper sends the line data and clock (through the DS1 cross connect) to the
framer block. This data may be framed or unframed DS1/E1 data. The framer can be provisioned to frame align the
data and transmit a frame sync signal in addition to the data and clock. The framer can be provisioned for perfor-
mance monitoring on the data. In ESF mode, it can automatically generate and send PRMs back to the mapper
interface.
5-8925(F)r.1
Figure 56. Transport Application of the S upermapper
FRAMER MAPPER
PM
FRAMER MAPPER
PM
FRAMER MAPPER
PM
FRAMERMAPPER
PM
FRAMERMAPPER
PM
FRAMERMAPPER
PM
SUPERMAPPER #1 SUPERMAPPER #1
SUPERMAPPER #2 SUPERMAPPER #2
SUPERMAPPER #3SUPERMAPPER #3
MAPPER
TELECOM
BUS
STS-3
LINE
INTERFACE LINE
INTERFACE
PM PM
PM PM
PMPM
T1/E1
LINE INTERFACE
UNIT
(T7690 OR T7698)
T1/E1
LINE INTERFACE
UNIT
(T7690 OR T7698)
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
490 Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
5-9020(F)r.1
Figure 57. Supermapper Transport Configuration
FRAMER
DS1 RECEIVE LINE PATH
PERFORMANCE MONITORING
(Rx PATH)
DS1 TRANSMIT LINE PATH
PERFORMANCE MONITORING
(Tx PATH )
SUPER M APPER : FRAMER
FDL PRM s
LOOPBACKS
MAPPER-
TO-
FRAMER I/O
CROSS
CONNECT
VT/VC
MAPPER VC-4
MULTIPLEXER STM-1
MULTIPLEXER
8-bit DATA + 1-bit PARITY
DS3
MAPPER
M12
MULTIPLEXER
DS2 I/O DS3 I/O SONET/SDH DS3
MAPPED I/O
RLCK28,
RPD28,TLCK28,
LINE INTERFACE
DS1 I/O
TPD28,
TND28
RND28 DS3 OR T1/E1 TO ST S- 1
MAPPED OUTPUT
(HIGH- SPE ED T ELE C O M BU S )
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
491Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
5-9021(F)r.2
Note: The Optional Byte-Synchronous VT Mapping Path is Shown
Figure 58. Supermapper Transport (with Intrusive Performance Monitoring) Mode
RECEIVE
SIGNALING
PROCESSOR
RX SIGNALING DA TA
(TO SIGNALING REGISTERS)
RECEIVE
HDLC RECEIVE
FACILITY
DATA
LINK
RECEIVE
FRAME
ALIGNER
VT MAPPER:
BYTE-SYNCHRONOUS ROBBED-BIT
SIGNALING RECEIVE DATA
VT MAPPER:
BYTE-SYNCHRONOUS ROBBED-BIT
SIGNALING TRANSMIT DATA
SUPERMAPPER
VT MAPPER
INTERFACE
SUPERMAPPER
M12
MULTIPLEXER
INTERFACE
ESF PRM PATH
PERFORMANCE
MONITOR
TRANSMIT
FRAME
FORMATTER
TRANSMIT
HDLC
TRANSMIT
FRAME
FORMATTER
RECEIVE
FRAME
ALIGNER
TRANSMIT
HDLC
PERFORMANCE
MONITOR
ESF PRM PA TH
TX PATH
SIGNALING
PROCESSOR
TRANSMIT
FACILITY
DATA
LINK
TRANSMIT SIGNALIN G DATA
SUPERMAPPER: FRAMER
RX PATH
TX PATH
TX LINE
ENCODER
RX LINE
DECODER
RLCK28, RPD28, RND28
TLCK28, TPD28, TND28
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
492 Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.3 Framer-to-Line Interface Unit Physical Interface
The framer-LIU interface of the Supermapper framer consists of 28 groups of six connections. The internal DS1
cross connect must be configured to connect the framer-LIU interface through the multifunction system interface to
external T1/E1 line interface devices. The six connections for each framer are TND, TPD, and TLCK driven from
the transmit framer (receive path) and RPD, RND, and RCLK (transmit path) sourced from the external line inter-
face device. The connections can optionally be from/to the protected switch. See Table 3 on page 17 for the exter-
nal pin names that correspond to the desired six connections.
The line interface may operate in single-rail or dual-rail mode. The default mode of the line encoder is single-rail
(FRM_LD_MODE[2:0] = 000 (Table 442 on page 308), FRM_LE_MODE[2:0] = 000 (Table 443 on page 308)). In
this mode, the input signals are passed transparently through the line encoder.
In single-rail mode, the link’s framer internal bipolar line encoder/decoder is disabled, and monitoring of received
line format violation is accomplished with the use of the RND input. When RND = 1 on the rising edge of RLCK, the
line format violation FRM_BPV[15:0] (Table 400 on page 289) counter increments by one. The link’s transmit
framer transmits data via the TPD output pin while TND is forced to a 0 state.
In dual-rail mode, the internal line encoder/decoder and monitoring are enabled. The line code may be selected by
provisioning FRM_LD_MODE[2:0] and FRM_LE_MODE[2:0]:
1. Alternate Mark Inversion (AMI).
2. High-Density Bipolar of Order 3—G.703, A.1 (HDB3).
3.Binary 8 Zero Code Suppression—G.703, A.2 (B8ZS).
Line format violations due to excessive zeros will be optionally monitored as follows:
1. B8ZS—8 consecutive zeros cause a violation.
2. HDB3—4 consecutive zeros cause a violation.
21.3.1 Line Interface References/Standards
1. ITU-T Recommendation G.703, Physical/Electrical Characteristics of Hierarchical Digital Interfaces;1991.
2. ANSI T1.403-1995, Network-to-Customer Installation - DS1 Metallic Interface; March 21, 1995.
21.3.2 Fr ame Form ats
The 28 superframers support the following frame formats:
1. DS1 super fr ame D4.
2. DS1 superframe J-D4 with Japanese remote alarm.
3. DS1 super frame DDS.
4. DS1 sup erfr ame SLC-96.
5. DS1 ext end ed super fr ame (ESF).
6. Japanese extended superframe J-ESF (J1 standard with different CRC-6 algorithm).
7. Nonalig n DS1 (tran sp ar ent 193 bit s).
8. CEPT basic frame {ITU G.706}.
9. CEPT CRC-4 multiframe with 100 ms timer {ITU G.706}.
10. CEPT CRC-4 multiframe with 400 ms timer (automatic CRC-4/nonCRC-4 equipment interworking) {ITU G.706
Annex B}.
11. Nona li gn E1 (tran spar ent 256 bit s).
12. 2.048 coded mark inversion (CMI) coded interface (TTC Standards JJ-20.11).
13. 6.312 Mbits/s interface (ITU G.704/NTT J2).
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
493Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.3.3 Transmit Framer Functions
1. Transmits alarm indication signal (AIS) to the line automatically and on demand.
2. Transmits AIS-CI to the line automatically and on demand.
3. Transmits remote alarm indication (RAI) to the line automatically and on demand. Conditions for transmitting
RAI include: loss of received frame alignment, CEPT loss of received time slot 0 multiframe alignment, CEPT
CRC-4 timer expiration, CEPT loss of received time slot 16 signaling multiframe alignment, CEPT received Sa6
equals 8, and received Sa6 equals C.
4. Transmits RAI-CI to the line automatically and on demand.
5. Transmits auxiliary test pattern (AUXP) to the line automatically and on demand.
6. Transmits CEPT E bits based received CRC-4 errors.
7. Support the CEPT double NOTFAS system mode.
8. Transmits a PRBS test pattern to the line on demand.
9. Transmits line loopback on and off codes to the line on demand (T1.403 Section 9.3.1).
10. In transport mode, when not in frame alignment, to optionally send AIS or transparently pass data.
21.3.4 Fr aming Referen c es/St and ards
1. ANSI T1.403, 1997.
2. ITU-T Recommendation G.703, Physical/Electrical Characteristics of Hierarchical Digital Interfaces; 1991.
3. ITU-T Recommendation G.704, Synchronous Frame Structures used at 1554, 6312, 2048, 8488, and
44736 kbits/s Hierarchical Levels; July 1995.
4. ITU-T Recommendation G.706, Frame Alignment and Cyclic Redundancy Check (CRC) Procedures Relating to
Basic Frame Structures defined in Recommendation G.704; 1991.
5. TTC Standard JT-G704, Synchronous Frame Structures used at 1554, 6312, 2048, 8488, and 44736 kbits/s
Hierarc hic al Lev el s; Ju ly 1995.
21.4 DS1 Transparent Framing Format
The transmit framer can be programmed to transparently transmit 193 bits of CHI system data to the line.
When configured for transparent framing, the transmit framer extracts from the receive CHI system data bit 8 of
time slot 1 and inserts this bit into the framing bit position of the transmit line data. The other 7 bits of the receive
system time slot 1 are ignored by the transmit framer. The receive framer will extract the framing bit (or 193rd bit) of
the receive line data and insert it into bit 8 of time slot 1 of the CHI system data. The other bits of time slot 1 are set
to 0.
Frame integrity is maintained in both the transmit and receive framer sections.
5-5989(F).ar.1
Figure 59. DS1 Transparent Frame Structure
TIME SLOT 1
(STUFF TIME SLOT)
32 TIME SLOT CHI FRAMETIME SLOT 2 TIME SLOT 3 TIME SLOT 31 TIME SLOT 32
0000000F BIT
TRAMSMIT FRAMER’S
193-bit FRAME
DS 1 = 125 µs
TIME SLOT 1 TIME SLOT 2 TIME SLOT 24F BIT
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
494 Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
In transparent framing mode 1, the receive framer is forced not to reframe on the receive line data. Other than bipo-
lar violations and unframed AIS monitoring, there is no processing of the receive line data. The receive framer will
insert the 193rd bit of the receive line data into bit 8 of time slot 1 of the transmit system data.
Bit 8 of time slot 1 of the receive system interface is inserted as the 193rd data bit into the transmit line data.
Transparent framing mode 1 is selected by setting FRM_LNK_TRANSP to 1 (Table 433 on page 300) and
FRM_MO DE[ 3:0] to 1000 (Tab le 434 on page 301) (nonalign 193rd bit).
In transparent framing mode 2, the receive framer functions normally on receive line data. All normal monitoring of
receive line data is performed and data is passed to the transmit CHI as programmed. The receive framer will
insert the extracted framing bit of the receive line data into bit 8 of time slot 1 of the transmit system data. The
remaining bits in time slot 1 are set to 0.
Bit 8 of time slot 1 of the receive system interface is inserted in the transmit line framing bit position.
Transparent framing mode 2 is selected by setting FRM_LNK_TRANSP to 1 (Table 433 on page 300) and select-
ing the appropriate framing mode with FRM_MODE[3:0] (Table 434 on page 301).
21.5 CEPT 2.048 Basic Frame Structu re Transparent Framing Fo rma t
The transmit framer can be programmed to transparently transmit 256 bits of CHI system data to the line. The
transmit framer must be programmed to transparent framing mode 1.
In transparent mode, the transmit framer transmits all 256 bits of the system payload unmodified to the line. time
slot 1 of the CHI system interface, determined by the system frame sync signal, is inserted into the FAS/NOTFAS
time slot of the transmit line interface.
Frame integrity is maintained in both the transmit and receive framer sections.
5-5988(F)
Figure 60. CEPT Transparent Frame Structure
In transparent framing mode 1, the receive framer is forced not to reframe on the receive line data. Other than bipo-
lar violations and unframed AIS monitoring, there is no processing of the receive line data. The entire receive line
payload is transmitted unmodified to the CHI.
Transparent framing mode 1 is selected by setting FRM_LNK_TRANSP to 1 (Table 433 on page 300) and
FRM_MO DE[ 3:0] to 0000 (Tab le 434 on page 301) (nonalign 256th bit).
In transparent framing mode 2, the receive framer functions normally on the receive line data. All normal monitor-
ing of receive line data is performed and data is transmitted to the CHI as programmed.
Transparent framing mode 2 is selected by setting FRM_LNK_TRANSP to 1 (Table 433) and selecting the appro-
priate framing mode with FRM_MODE[3:0] (Table 434).
TIME SL OT 1 32 TIME SLOT CHI FRAMETIME SLOT 2 TIME SLOT 3 TIME SLOT 31 TIME SLOT 32
TIME SL OT 1 32 TIME SLOT LINE FRAMETIME SLOT 2 TIM E SLO T 3 T IM E SLO T 31 TIME SLOT 32
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
495Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.6 Receive Framer Nonalignment Mode (DS1/E1)
In the nonalign framing modes, the receive frame aligner does not frame to the receive line data. Other than bipolar
violations, AIS, and AUXP monitoring, there is no processing of the receive line data. The entire receive line frame
is given unmodified to the system interface.
21.6.1 Loss of Frame Alignment Criteria
There are two criteria for declaring loss of frame: frame bit errors and CRC errors.
Frame Bit Errors.
1. T1: two frame bit errors out of 4 frame bits (FT and FS bits checked).
2. T1: two frame bit errors out of 5 frame bits (FT and FS bits checked).
3. T1: two frame bit errors out of 6 frame bits (FT and FS bits checked).
4. T1: three frame bit errors out of 12 frame bits—DDS only (FT, FS, and time slot 24 F bits).
5. T1: two frame bit errors out of 4 frame bits (only FT bits checked).
6. T1: two frame bit errors out of 5 frame bits (only FT bits checked).
7. T1: two frame bit errors out of 6 frame bits (only FT bits checked).
8. T1: four frame bit errors out of 12 frame bits—DDS only (FT, FS, and time slot 24 FAS pattern).
9. E1: three consecutive incorrect frame alignment signals.
10. E1: three consecutive incorrect frame alignment signals or three consecutive incorrect non-F AS frames as indi-
cated by bit 2 in time slot 0 in frames not containing the frame alignment signal.
11. E1: 3 consecutive incorrect FAS or non-FAS frames.
12. 2.048 Mbits/s CMI: 2 consecutive missing code rule violations (CRVs).
CRC Errors.
The use of CRC errors to declare loss of frame is optional. CRC errors are monitored in the performance monitor
block.
In DS1 mode, ESF, and J-ESF formats only, N or more CRC-6 errors in a 1 s interval results in loss of frame align-
ment. N is provisionable. N defaults to 320 in DS1 mode.
In CEPT mode, N or more CRC-4 errors in a 1 s interval results in loss of frame alignment. N is provisionable. N
defaults to 915 in CEPT modes.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
496 Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.7 Frame Alignment Criteria
Table 588 describes the frame alignment criteria for the formats supported by the superframer.
Table 588. Frame Alignment Criteria
21.8 Receive and Transmit Signaling Processor
21.8.1 Signaling Intr oduction and Feat ure Description
The signaling processor, which is duplicated in the receive and transmit paths, moves signaling data to and from
the following interfaces:
T1/E1/J1/CMI line interface
System interface
VT mapper interface
Host interface
The following frame types are supported when processing signaling to and from the line interface (no special provi-
sioning is needed for the signaling processor to distinguish between these frame types):
DS1: ESF; J-ESF; D4; J-D4 (2-, 4-, or 16-state mode)
CEPT Basic Frame; CEPT CRC-4 (100 ms); CEPT CRC-4 (400 ms)
CMI
Frame Format Alignment Procedure
SF Frame alignment is established when six consecutive error-free superframes are
received. Only the FT framing bits are checked (36 bits checked).
D4 and J-D4 Frame alignment is established when six consecutive error-free superframes are
received (72 bits checked in D4, 66 bits checked in J-D4).
DDS Frame alignment is established when six consecutive error-free frames are
received (42 bits checked: FT, FS, and time slot 24).
SLC-96 The FT frame position is established when four consecutive error-free superframes
are received (24 FT bits checked). After establishing the FT frame position, SLC-96
superframe alignment is established on the first valid FS sequence of
000111000111. All the while, the FT frame position must remain error free.
ESF and J-ESF Frame alignment is established when three consecutive error-free superframes
are received (18 bits checked).
CEPT Basic Frame Uses the strategy outlined in G.706 paragraph 4.1.2.
CEPT CRC-4 100 ms Timer Uses the strategy outlined in G.706 paragraphs 4.1.2 and 4.2.
CEPT CRC-4 400 ms Timer Uses the strategy outlined in G.706 paragraph 4.1.2 and ANNEX B.
2.048 Mbits/s CMI Coded
Interface Frame alignment is established on the first detection of the CRV violation. Multi-
frame alignment is achieved the first time the 01111111 multiframe alignment pat-
tern is detected.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
497Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
The following system bus modes are supported (no special provisioning is needed for the signaling processor to
distinguish between these system bus modes):
Parallel syste m bus
CHI bus in ASM mode
The VT mapper interface in the signaling processor supports VT1.5, VT 2 byte sync mapping, as well as VC-11
byte sync mapping using handling groups.
The host can read the signaling data extracted from the line, system, or VT mapper interface at any time. The
transmit signaling processor can be configured so that the host provides the signaling data to be forwarded to the
line, system, or VT mapper interface.
Other signaling features include:
Debounce on all signaling data extracted from the line interface or the VT mapper interface.
Host interrupt upon change of signaling state in the receive path.
Signaling extraction inhibit based on frame alignment and framing bit errors.
Stomping of DS1 robbed-bit signaling positions.
Support of zero-code suppression on the line interface in the transmit path.
Superframe signaling integrity. No signaling data transmitted will be a mix of old and new due to a mid-super-
frame update of signaling information.
21.8.2 Sig nali ng Ref ere nces /St and ar ds
ITU Rec. G.704 10/98 CEPT Multiframe Signaling Structure
ITU Rec. G.775 10/98 CEPT TS16 AIS Detection, Remote Alarm Detection
ITU Rec. G.732 1998 CEPT time slot 16 mfa, Time Slot 16 rfa
ITU Rec. O.162 10/92 CEPT Ti me Slot 16 rfa Detection
T1.403 1995 Robbed-Bit Signaling
TTC JJ-20.11 CMI Coded Interface
ANSI T1.105 SONET Payload Mapping
Telcordia GF-25 3- CO RE SO NE T Transpor t System s
ITU Rec G.707 10/98 Network Node Interface for SDH
TTC JT G.704 Japanese Synchronous Frame Structures
21.9 Receive Signaling Per-Link Featu re Prov isioning
The receive signaling processor requires the provisioning of four items for each link in order to enable signaling
extraction and delivery:
1. Signaling state mode source (host or Rx CHI interface).
2. Signaling state mode (2-, 4-, and 16-state mode or no-signaling).
3. Signaling source (receive line, VT mapper, or host interface).
4. Signaling destination (transmit system or transmit line interface).
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
498 Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.9.1 Signaling State Mode Source Selection
The signaling state mode source is selected by programming FRM_R_FGSRC, bit 2; see Table 386, sta rting on
page 274. The typical application will select the host for programming the state mode. If so, the host will have to
program the state mode for all of the time slots on each of the links. The default state mode selected is 16-state
signaling.
It is possible for the state mode to be set by the values received on the CHI bus by the receive system interface. In
this mode, the signaling processor will constantly monitor those values and update the state mode for each of the
time slots on each link.
21.9.2 Sig naling State Mo de Selec tion
The signaling state mode for each time slot is selected by programming bits 5 and 6 of FRM_RSLR0—
FRM_RSLR31, receive signaling link registers 0—31 (R/W) in Table 384 on page 273 for each link. The bit defini-
tion for each of those 32 registers is shown below.
Tab le 589. Rece ive Sign ali ng Lin k Registers 031 Bit Description
The signaling state mode definitions are shown in the table below.
Tab le 590. Rece ive Sign ali ng Lin k Registers 031 G-Bit and F-Bit Description
The signaling state mode for DS1 type links should be set to match the function of each time slot. The signaling
state mode does not apply to CEPT type links and the value must be kept in the reset state, which is 00. The sig-
naling state mode for CMI type links must be set to 11.
The 16-state mode, which is the state mode selected out of reset, can be used on SF type DS1 links in order to
detect a toggle code. In this case, signaling will be collected over two superframes and stored as a 4-bit code.
When programming the state mode for each time slot, the host can also program the D, C, B, and A bits in the
same register. Doing this will determine the default code forwarded to the transmit system or the transmit line inter-
face before the first valid signaling code has been extracted from the receive line or VT mapper interface.
Each of the links and time slots is completely independent from one another with respect to the signaling state
mode selection. Any combination is acceptable.
21.9.3 Sig nali ng So urc e Selec tion
The signaling source is selected by programming FRM_R_SIGSRC, bits [1:0]; see Table 386 on page 274. If the
source selected is the receive line interface, the receive signaling processor will start extracting data from the
receive line and store valid signaling codes into the D, C, B, and A locations of FRM_RSLR0—FRM_RSLR31,
receive signaling link registers 0—31 (R/W), Table 384 on page 273 for each of the links.
The receive signaling processor will automatically determine the link type and extract the correct signaling bit posi-
tions from each link. The receive signaling processor can simultaneously service any combination of CEPT, DS1,
and CMI type links. The receive signaling processor will extract robbed-bit signaling from DS1 links, common chan-
nel signaling from CEPT links, and time slot 0 signaling from CMI links compliant with the following standards.
Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
GFDCBA
G and F Signaling State Mode Selected
00 16 state (reset state)
01 4 state
10 no signaling
11 2 state
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
499Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
ITU Rec G.704 10/98 CEPT multiframe signaling structure
T1.403 1995 robbed-bit signaling
TTC JJ-20.11 CMI coded interface
If the VT mapper is transporting byte sync mapped DS1 links into SONET frames, then the signaling source should
be set to VT mapper interface. In that case, the receive signaling processor will start collecting valid signaling
codes from the VT mapper and store them into the D, C, B, and A locations of FRM_RSLR0—FRM_RSLR31,
receive signaling link registers 0—31 (R/W), (Table 384 on page 273) for each of the links.
If the VT mapper is the source of signaling, data will be extracted based on the standards listed below.
ANSI T1.105SONET payload mapping
Bellcore GF-253-CORE SO NET transport syste ms
ITU Rec G.707 10/98 network node interface for SDH
If the VT mapper is transporting byte sync mapped CEPT links into SONET frames, then the signaling source
should be set to the receive line interface. In that case, the receive signaling processor will extract the entire time
slot 16 multiframe and store that information into FRM_RSLR0—FRM_RSLR31, receive signaling link registers
0—31 (R/W) for each of the links.
If the signaling source is set to be the host, the host may write to FRM_RSLR0—FRM_RSLR31, receive signaling
link registers 0—31 (R/W), and those values will be forwarded to the selected destination. The host mode can also
be used to manually freeze signaling. When the source is switched from receive line to host, for example, the exist-
ing signaling codes will be held until modified by the host or until the signaling source is switched back to the
receive line interface. If the host mode is used to manually freeze signaling, then the signaling debounce feature
must be enabled. To enable signaling debounce set FRM_R_SIGDEB in bits 5 to 1; see Table 386 on page 274.
Each of the links is completely independent from one another with respect to the signaling source selection. Any
combination of receive line, VT mapper, and host is acceptable.
21.9.4 Sig nali ng Destin atio n Sele ctio n
There are three destinations for the signaling extracted from the receive line or VT mapper interface:
1. Transmit system interface.
2. Transmit line interface.
3. FRM_RSLR0—FRM_RSLR31, receive signaling link registers 0—31 (R/W), Table 384 on page 273.
The signaling extracted from the receive line or VT mapper interface will automatically be delivered to the transmit
system interface when the framer Section of the Supermapper is programmed for switch mode. This is done by
setting FRM_SW_TRN in FRM_SFGR1, superframer global register 1 (R/W), Table 313 on page 246, bits 15 to 1.
The system interface will need to be configured for ASM mode in order for the signaling to be transmitted on the
PSB or CHI buses. ASM mode is controlled by bit 11 of the FRM_SYSGR1 register; see Table 359 on page 261.
The signaling extracted from the VT mapper interface can be inserted into the transmit line interface when the
framer Section of the Supermapper is programmed for transport mode. This is done by setting FRM_SW_TRN in
FRM_SFGR1, superframer global register 1 (R/W), Table 313 on page 246, bits 15 to 0, and by setting
FRM_R_SIGI in Table 386 on page 274, bits 8 to 1. The signaling will be inserted based on the programming of
state modes of each time slot.
The receive signaling processor cannot provide data to the transmit system and the transmit line interface on differ-
ent links simultaneously.
Signaling extracted from the VT mapper or receive line interface will always be available in
FRM_RSLR0—FRM_RSLR31, receive signaling link registers 0—31 (R/W), Table 384 on page 273, for each link.
The host can read these registers regardless of whether or not the signaling is forwarded to the transmit system or
transmit line interface. Receive signaling link registers 0—31 DS1/CEPT/CMI data, Table 589 on page 498, shows
the position of the data in those 32 registers for each of the receive line formats.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
500 Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
Tab le 591. Rece ive Sign ali ng Lin k Registers 031 DS1/CEPT/CMI Data
For CEPT links, the entire time slot 16 multiframe is stored in FRM_RSLR0—FRM_RSLR31, receive signaling link
registers 0—31 (R/W), Table 384 on page 273. The spare bits X[2:0] and the time slot 16 remote frame alarm Y bit
are stored in RSLR0. When time slot 16 multiframe alignment is lost, X[2:0] will automatically be set to 111 and the
Y bit will be set to 0.
The format of the data stored in FRM_RSLR0—FRM_RSLR31, receive signaling link registers 0—31 (R/W),
Table 384 on page 273, also depends on the signaling state mode selected for each time slot as shown in
Table 592 on page 501.
RSLR Address RSLR Bit[6:0] (DS1) RSLR Bit[6:0] (CEPT) RSLR Bit[6:0] (CMI)
0 000 X0 Y X1 X2
1 GF0 DCBA (Channel 1) 000 DCBA (Channel 1) 110 DCBA (Channel 1)
2 GF0 DCBA (Channel 2) 000 DCBA (Channel 2) 110 DCBA (Channel 2)
3 GF0 DCBA (Channel 3) 000 DCBA (Channel 3) 110 DCBA (Channel 3)
4 GF0 DCBA (Channel 4) 000 DCBA (Channel 4) 110 DCBA (Channel 4)
5 GF0 DCBA (Channel 5) 000 DCBA (Channel 5) 110 DCBA (Channel 5)
6 GF0 DCBA (Channel 6) 000 DCBA (Channel 6) 110 DCBA (Channel 6)
7 GF0 DCBA (Channel 7) 000 DCBA (Channel 7) 110 DCBA (Channel 7)
8 GF0 DCBA (Channel 8) 000 DCBA (Channel 8) 110 DCBA (Channel 8)
9 GF0 DCBA (Channel 9) 000 DCBA (Channel 9) 110 DCBA (Channel 9)
10 GF0 DCBA (Channel 10) 000 DCBA (Channel 10) 110 DCBA (Channel 10)
11 GF0 DCBA (Channel 11) 000 DCBA (Channel 11) 110 DCBA (Channel 11)
12 GF0 DCBA (Channel 12) 000 DCBA (Channel 12) 110 DCBA (Channel 12)
13 GF0 DCBA (Channel 13) 000 DCBA (Channel 13) 110 DCBA (Channel 13)
14 GF0 DCBA (Channel 14) 000 DCBA (Channel 14) 110 DCBA (Channel 14)
15 GF0 DCBA (Channel 15) 000 DCBA (Channel 15) 110 DCBA (Channel 15)
16 GF0 DCBA (Channel 16)
17 GF0 DCBA (Channel 17) 000 DCBA (Channel 17) 110 DCBA (Channel 17)
18 GF0 DCBA (Channel 18) 000 DCBA (Channel 18) 110 DCBA (Channel 18)
19 GF0 DCBA (Channel 19) 000 DCBA (Channel 19) 110 DCBA (Channel 19)
20 GF0 DCBA (Channel 20) 000 DCBA (Channel 20) 110 DCBA (Channel 20)
21 GF0 DCBA (Channel 21) 000 DCBA (Channel 21) 110 DCBA (Channel 21)
22 GF0 DCBA (Channel 22) 000 DCBA (Channel 22) 110 DCBA (Channel 22)
23 GF0 DCBA (Channel 23) 000 DCBA (Channel 23) 110 DCBA (Channel 23)
24 GF0 DCBA (Channel 24) 000 DCBA (Channel 24) 110 DCBA (Channel 24)
25 000 DCBA (Channel 25) 110 DCBA (Channel 25)
26 000 DCBA (Channel 26) 110 DCBA (Channel 26)
27 000 DCBA (Channel 27) 110 DCBA (Channel 27)
28 000 DCBA (Channel 28) 110 DCBA (Channel 28)
29 000 DCBA (Channel 29) 110 DCBA (Channel 29)
30 000 DCBA (Channel 30) 110 DCBA (Channel 30)
31 000 DCBA (Channel 31) 110 DCBA (Channel 31)
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
501Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
Table 592. Receive Signaling Link Registers 0—31 Expected Data
If the state mode is 4 state or 2 state, then the unused bits will be set to 0.
21.10 Optional Receive Signaling Feat ure s Provision ed for Each Lin k
21.10.1 Suppor t of DS1 Robbed-Bit Stomping
The DS1 robbed-bit positions of voice time slots will be set to 1 in the payload when FRM_R_RXSTOMP in
FRM_RSLR 33, (Table 386 on page 274), bit 7 is set to 1. The robbed-bit positions in the payload will be stomped;
however, the signaling will be transmitted untouched by the system interface.
21.10.2 Support of CEPT Time Slot 16 Stomping
Stomping of time slot 16 for CEPT links is enabled in the system interface block.The Supermapper can also be
configured to transmit AIS on the system bus in time slot 16 when the signaling block loses time slot 16 alignment.
The configuration bits related to these two features are located in the FRM_SYSLR2, Table 431 on page 299.
When using these features, the signaling codes forwarded to the transmit system bus will continue to reflect the
contents of FRM_RSLR0—FRM_RSLR31, Table 384 on page 273.
21.10.3 Support of Signaling Debounce
If programmed to do so, the signaling extracted from the selected source will be debounced. This implies that a
valid signaling code would have to be detected twice before it is updated in FRM_RSLR0—FRM_RSLR31,
Table 384 on page 273. This feature is enabled by setting FRM_R_SIGDEB in FRM_RSLR33, (Table 386 on
page 274), bit 5.
21.10.4 Support of Japanese Handling Groups
If the signaling is transported by the VT mapper within four handling groups compliant to the Japanese standard,
TTC JT G.704, then FRM_R_HGEN in FRM_RSLR33, (Table 386 on page 274), bit 4 must be set to 1. The signal-
ing state mode must be set to either 2 state or no-signaling when using handling groups.
If the signaling transported by the VT mapper uses handling groups, then the status of the handling group alignment
can be transmitted across the system interface. The transmission of this status is enabled by setting
FRM_R_TSAISHG in FRM_SGR1 , (Table 3 71 on page 267) , bits 15 to 1. This mode forces the signaling data for
the channels contained in each handling group to 1 if HG alignment has not been achieved by the receive signaling
processor . For example, if HG2 is unaligned then the A bit for time slots 2, 6, 10, 14, 18, and 22 forwarded to the sys-
tem would be forced to 1.
21.11 Receive Signaling Global Feature Provision i ng
The receive signaling processor requires the provisioning of one global item in order to enable signaling extraction
and delivery.
Link count (number of active receive links).
Signaling State Mode Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
16 state 0 0 0 D C B A
4 state 01 000BA
2 state 11 000 0A
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
502 Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.11.1 Link Count Selection
The link count is specified by programming FRM_R_LINKCNT[4:0] in FRM_SGR1, receive signaling global register
1 (R/W), Table 371 on page 267, bits [14:10]. The reset value is 28, which is appropriate for a 28-link DS1 applica-
tion. A value of 21 is appropriate for a 21-link CEPT application. If the application mixes DS1 and CEPT links or the
TDM clock supplied to the framer section is less than 51.84 MHz, this value should match the terminal count set in
FRM_FGR2, framer global register 2 (R/W), Table 318 on page 249, bits [7:0].
21.12 Other Receive Signaling Glob al Featu res
21.12.1 Support of Automatic Signaling Freeze on Framing Bit Errors
By default, signaling extraction from a particular link will halt when the appropriate alignment has been lost. In order
to guarantee that signaling freeze takes place as soon as possible, FRM_R_AFZFBE in FRM_SGR1, (Table 371
on page 26 7 ), bit 1 must set to 1. When enabled, FRM_R_AFZFBE halts signaling extraction for 32 frames upon
detection of a frame bit error. This configuration bit is applicable to DS1, CEPT, and CMI type frames and for sig-
naling extracted from the receive line or the VT mapper interface. When FRM_R_AFZFBE is enabled, the receive
signaling debounce feature must also be enabled. The FRM_R_SIGDEB feature is enabled in FRM_RSLR33, bit 5
(Table 386 on page 274).
21.12.2 Support of Change of Signaling State FIFO
Signaling can be terminated in the framer section of the Supermapper by polling FRM_RSLR0—FRM_RSLR31, for
each link (Table 384 on page 273). An alternative method is to enable the operation of a signaling change of state
FIFO. In doing so, the host will be interrupted when there have been signaling state changes which need to be pro-
cessed. In order to enable the operation of the signaling change of state FIFO, set FRM_R_SCOSEN in
FRM_SGR2, bit 15 to 1 (Table 372 on page 267 ).
The FIFO is located at signaling receive global register 3. The word read by the host has the following format.
Table 593. Signaling Receive Global Register 3, Bit Definition
The data read by the host indicates the link number (L[4:0]), time-slot number (TS[4:0]), and the signaling informa-
tion for a time slot whose value has changed. The word read by the host will also indicate whether or not the entry
is valid (V = 1) and whether or not there are more entries yet to be read (M = 1). A word with V set to 0 indicates
that the FIFO is empty. The signaling code presented will reflect the associated GF value programmed by the host.
The unused signaling bits will be set to 0. For example, if the time slot is programmed for 4-state signaling, the D
and C bits will be set to 0. The A and B bit will identify the valid signaling code.
This feature can be used in combination with any other feature (i.e., debounce).
When the change of state FIFO is enabled, the host will be interrupted when one of two conditions is satisfied. If
the number of entries in the FIFO exceed the threshold programmed by the host or if there are valid entries to be
processed and the signaling interrupt timer has expired, then the host will be interrupted.
The host sets the FIFO depth threshold by programming FRM_R_SCOSDTH[9:0] in FRM_SGR2, receive signal-
ing global register 2 (R/W), bits [9:0]. The depth of the FIFO is 672, which is sufficient to store an entry for every
time slot processed by the 28-link framer. The timer interval is selected by programming FRM_R_SCOSTTH[15:0]
in FRM_SGR3, bits [15:0] (Table 373 on page 268). The timer increments are 125 µs and the maximum interval
possible is 8 s. The default setting for the depth and timer threshold is 0, which results in the host being interrupted
whenever an entry is made into the FIFO.
If the FIFO overflows, the processor will immediately be interrupted. The current contents of the FIFO will be lost,
however, subsequent entries will be stored normally.
The host can poll the change of state FIFO without the use of interrupts.
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
M V L4 L3 L2 L1 L0 TS4 TS3 TS2 TS1 TS0 D C B A
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
503Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.13 Receive Signaling Interrup ts
There are three interrupts that are maintained in the receive signaling processor, which are located in FRM_SGR7
(Table 377 on page 269). The three interrupts reflect the status of the change of signaling state FIFO. These inter-
rupt bits can be reset based on a clear-on-read protocol, which is provisioned in the Supermapper global registers.
Threshold overflow interrupt. This bit is set to 1 when the programmed threshold for the FIFO capacity has been
exceeded.
Interrupt timer interrupt. This bit is set to 1 when the programmed interrupt timer has expired, and there are valid
entries in the FIFO to be processed.
FIFO overflow interrupt. This bit is set to 1 when the FIFO overflows.
There are mask bits associated with each of the three interrupt status bits, which are located in FRM_SGR7,
receive signaling global register 7 (R/W).
21.13.1 Maintenance of the Change of Signaling State FIFO Status Bits
There is 1 bit that reflects the status of the change of signaling state FIFO. The location of this status bit is in
FRM_SGR5 (Table 375 on page 268).
FIFO depth threshold overflow status. This bit is set to 1 when the programmed threshold for the FIFO capacity
has been exceeded.
21.13.2 Maintenance of Handling Group-Related Status Bits
There are 3 bits that reflect the status of the handling groups extracted from the VT mapper interface. There are
four handling groups on each link; therefore, there will be three copies of the following bits for each link. The loca-
tion of these status bits are in FRM_RSLR33; see Table 386 on page 274.
Loss of HG alignment. Alignment uses the 0101010 . . . framing pattern and follows the alignment algorithm
shown in Figu re 61 on page 504.
AIS detection within each handling group (AIS detection 48 consecutive ones, AIS loss any two zeros).
RDI detection within each handling group (RDI detection is the presence of three consecutive zeros in the Sp bit
position).
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
504 Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
5-9024(F)r.1
Figure 61. HG Alignment Algorithm
21.14 Transmit Signaling Per-Link Feature Provisioning
The transmit signaling processor requires the provisioning of four items for each link to enable signaling extraction
and delivery.
Signaling state mode source (host or Rx CHI interface)
Signaling state mode (2-, 4-, and 16-state mode or no-signaling)
Signaling source (receive line, receive system, or host interface)
Signaling destination (VT mapper or transmit line interface)
21.14.1 Signaling State Mode Source Selection
The signaling state mode source is selected by programming FRM_T_FGSRC in FRM_TSLR32, transmit signaling
link register 32 (R/W), bit 2; see Table 386 on page 274. The typical application will select the host for program-
ming the state mode. If so, the host will have to program the state mode for all of the time slots on each link.
It is possible for the state mode to be implied by the values received on the CHI or PSB bus by the receive system
interface. In this mode, the signaling processor will constantly monitor those values and update the state mode for
each of the time slots on each link.
RESET
n = 1
S
X
(n) = 0 AND
S
X
(n + 8) = 1 AND
S
X
(n + 16 ) = 0 AND
S
X
(n + 24) = 1 NO
YES
LOF FOR HG
X
n = n + 1
n = n + 32
S
X
(n) = 0 AND
S
X
(n + 8) = 1 AND
S
X
(n + 16 ) = 0 AND
S
X
(n + 24) = 1
NO
NO
n = n + 25
YES n = n + 16
YES n = n + 32
MFA FOR HG
X
S
X
—INDICATES S bits FROM VT MAPPER (S1, 2, 3, 4)
n—INDICATES THE SEQUENCE OF EACH S
X
bit RECEIVED
HG
X
—INDICATES THE HG (HG1, 2, 3, 4) ASSOCIATED
LOF FOR HG
X
WITH THE CORRESPONDING S BIT (S1, S2, S3, AND S4)
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
505Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.14.2 Signaling State Mode Selection
The signaling state mode is selected by programming bits 5 and 6 in FRM_TSLR0—FRM_TSLR31 (Table 384 on
page 273) for each link. The bit definition for each of those 32 registers is illustrated below.
Table 594. Transmit Signaling Link Registers 0—31 Bit Description
The signaling state mode definitions are illustrated in the table below.
Table 595. Transmit Signaling Link Registers 0—31 G-Bit and F-Bit Description
The signaling state mode for DS1 type links should be set to match the function of each time slot. The signaling
state mode does not apply to CEPT type links, and the value must be kept in the reset state which is 00. The sig-
naling state mode for CMI type links must be set to 11.
The sixteen state mode, which is the state mode selected out of reset, can be used on SF-type DS1 links in order
to detect a toggle code. In this case, signaling will be collected over two superframes and stored as a 4-bit code.
When programming the state mode for each time slot, the host can also program the DCBA bits in the same regis-
ter. Doing this will determine the default code forwarded to the transmit line or the transmit VT mapper interface
before the first valid signaling code has been extracted from the receive line or receive system interface.
Each of the links and time slots is completely independent from one another with respect to the signaling state
mode selection. Any combination is acceptable.
21.14.3 Signaling Source Selection
There are three sources for signaling in the transmit path.
Transmit signaling link registers 0—31 (host programmed)
Receive sys tem int er fac e
Receive line inte rf ace
The signaling source is selected by programming FRM_T_SIGSRC[1:0] in FRM_TSLR32 (Table 385 on
page 274), bits [1:0]. If the source of signaling is the host, then the Transmit Signaling Link Registers 0—31 must
be programmed with valid signaling. Table 596 on page 506 shows the organization of signaling data in those reg-
isters for the different types of links.
Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
GFDCBA
G and F Signaling State Mode Selected
00 16 state (reset state)
01 4 state
10 No signali ng
11 2 state
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
506 Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
Table 596. Transmit Signaling Link Registers 0—31 DS1/CEPT/CMI Data
For CEPT links, the entire time slot 16 multiframe is sourced from the transmit signaling link registers
(TSLR) 0—31.
The time slot 16 multiframe alignment pattern is transmitted from TSLR 16. That location must be written to 0 if the
correct time slot 16 multiframe alignment pattern is to be transmitted. The reset value of all TSLR locations is 0.
The spare bits (X2, X1, and X0) and the time slot 16 remote frame alarm (Y bit) to be transmitted must be written
by the host into TSLR0. If the source of signaling is the receive system interface and the X or Y bits must be
changed, then switch the signaling source back to host temporarily, write the new values, and then switch the sig-
naling source back to the receive system interface.
If the source of signaling is the host, only the relevant bits need to be written in each transmit signaling link register.
The format of the data written in each transmit signaling link register depends on the signaling state mode selected
for each time slot as shown in Table 597.
TSLR Address TSLR Bit[6:0] (DS1) TSLR Bit[6:0] (CEPT) TSLR Bit[6:0] (CMI)
0 000 X2 X1 Y X0
1 GF0 DCBA (Channel 1) 000 DCBA (Channel 1) 110 DCBA (Channel 1)
2 GF0 DCBA (Channel 2) 000 DCBA (Channel 2) 110 DCBA (Channel 2)
3 GF0 DCBA (Channel 3) 000 DCBA (Channel 3) 110 DCBA (Channel 3)
4 GF0 DCBA (Channel 4) 000 DCBA (Channel 4) 110 DCBA (Channel 4)
5 GF0 DCBA (Channel 5) 000 DCBA (Channel 5) 110 DCBA (Channel 5)
6 GF0 DCBA (Channel 6) 000 DCBA (Channel 6) 110 DCBA (Channel 6)
7 GF0 DCBA (Channel 7) 000 DCBA (Channel 7) 110 DCBA (Channel 7)
8 GF0 DCBA (Channel 8) 000 DCBA (Channel 8) 110 DCBA (Channel 8)
9 GF0 DCBA (Channel 9) 000 DCBA (Channel 9) 110 DCBA (Channel 9)
10 GF0 DCBA (Channel 10) 000 DCBA (Channel 10) 110 DCBA (Channel 10)
11 GF0 DCBA (Channel 11) 000 DCBA (Channel 11) 110 DCBA (Channel 11)
12 GF0 DCBA (Channel 12) 000 DCBA (Channel 12) 110 DCBA (Channel 12)
13 GF0 DCBA (Channel 13) 000 DCBA (Channel 13) 110 DCBA (Channel 13)
14 GF0 DCBA (Channel 14) 000 DCBA (Channel 14) 110 DCBA (Channel 14)
15 GF0 DCBA (Channel 15) 000 DCBA (Channel 15) 110 DCBA (Channel 15)
16 GF0 DCBA (Channel 16) 000 0000
17 GF0 DCBA (Channel 17) 000 DCBA (Channel 17) 110 DCBA (Channel 17)
18 GF0 DCBA (Channel 18) 000 DCBA (Channel 18) 110 DCBA (Channel 18)
19 GF0 DCBA (Channel 19) 000 DCBA (Channel 19) 110 DCBA (Channel 19)
20 GF0 DCBA (Channel 20) 000 DCBA (Channel 20) 110 DCBA (Channel 20)
21 GF0 DCBA (Channel 21) 000 DCBA (Channel 21) 110 DCBA (Channel 21)
22 GF0 DCBA (Channel 22) 000 DCBA (Channel 22) 110 DCBA (Channel 22)
23 GF0 DCBA (Channel 23) 000 DCBA (Channel 23) 110 DCBA (Channel 23)
24 GF0 DCBA (Channel 24) 000 DCBA (Channel 24) 110 DCBA (Channel 24)
25 000 DCBA (Channel 25) 110 DCBA (Channel 25)
26 000 DCBA (Channel 26) 110 DCBA (Channel 26)
27 000 DCBA (Channel 27) 110 DCBA (Channel 27)
28 000 DCBA (Channel 28) 110 DCBA (Channel 28)
29 000 DCBA (Channel 29) 110 DCBA (Channel 29)
30 000 DCBA (Channel 30) 110 DCBA (Channel 30)
31 000 DCBA (Channel 31) 110 DCBA (Channel 31)
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
507Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
Table 597. Transmit Signaling Link Registers 0—31 Expected Data
The host mode can also be used to manually freeze signaling. For example, if the source is switched from receive
system to host, the existing signaling codes will be held until modified by the host or the signaling source is
switched back to the receive system. If the host mode is used to manually freeze signaling when the actual source
is the receive line interface, then signaling debounce must be enabled. Signaling debounce is enabled by setting
T_SIGDEB in the transmit signaling link register, bit 5 to 1.
If the signaling source is set to the receive system interface, the transmit signaling processor will copy exactly what
is extracted from the bus into the D, C, B, and A locations of the Transmit Signaling Link Registers 0—31 for each
of the links.
The system interface will need to be configured for ASM mode in order for the signaling to be received on the PSB
or CHI buses. ASM mode is controlled by FRM_ASM in FRM_SYSGR1 (Table 359 on page 261), bit 11.
If the signaling source is set to the receive line interface, the transmit signaling processor will start extracting data
from the receive line and store valid signaling codes into the D, C, B, and A locations of the transmit signaling link
registers 0—31 for each of the links.
The transmit signaling processor will automatically determine the link type and extract the correct signaling bit posi-
tions from each link. The transmit signaling processor can simultaneously service any combination of CEPT, DS1,
and CMI type links. The transmit signaling processor will extract robbed-bit signaling from DS1 links, common
channel signaling from CEPT links, and time slot 0 signaling from CMI links compliant with the following standards.
ITU Rec G.704 10/98 CEPT Multiframe Signaling Structure
T1.403 1995 Robbed-Bit Signaling
TTC JJ-20.11 CMI Coded Interface
The transmit signaling processor can accommodate any combination of CEPT, DS1, and CMI type links when the
signaling source is set to the receive system interface.
The transmit signaling processor cannot extract signaling from the receive system and the receive line interface on
different links simultaneously.
21.14.4 Signaling Destination Selection
There are two destinations for transmit path signaling:
Tran sm it li ne inte rf ace
VT mapper interface
The signaling extracted from the receive system or programmed by the host will be inserted into the transmit line if
FRM_T_SIGI in FRM_TSLR32 (Table 391 on page 277), bit 8, is set to 1. The transmit signaling processor will
automatically detect the format of each link and insert the signaling accordingly. In the case of DS1, no signaling
will be inserted for those time slots whose signaling state mode is set to no-signaling (G bit and F bit = 10). In the
case of CEPT, the entire time slot 16 multiframe is supplied from the transmit signaling link registers 0—31.
The signaling programmed by the host or extracted from the receive system or line interface can be transported by
the VT mapper by setting FRM_T_VTSIGE in FRM_TSLR32 (Table 391 on page 277), bit 9, to 1.
Signaling State Mode Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
16 State 0 0 D C B A
4 State 0 1 B A
2 State 1 1 ———A
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
508 Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
The signaling will be byte-synchronization mapped based on the standards listed below:
ANSI T1.105 SONET Payload Mapping
Telcordia GF-25 3 -CO RE SO NE T Tr an sp or t Systems
ITU Recommendation G.707 10/98 Network Node Interface for SDH
21.15 Optional Transmit Signaling Features Provision ed for Ea ch L ink
21.15.1 Support of Automatic Maintenance of the Time Slot 16 Remote Frame Alarm
For CEPT links, the time slot 16 remote frame alarm (Y bit) can be automatically maintained in the transmit path by
setting FRM_T_ATS16RFA in FRM_TSLR32 (Table 391 on page 277), bit 14, to 1. In that case, the Y bit transmit-
ted will reflect the TS16 multiframe alignment status in the receive path. Bit 1 in the transmit signaling link register
0 will be ignored. If the receive path time slot 16 alignment for a particular link is lost, then the corresponding Y bit
in the transmit path will be set to 1.
21.15.2 Suppor t of DS1 Robbed-Bit Stomping
The DS1 robbed-bit positions of voice time-slots will be set to 0 in the payload when FRM_T_TXSTOMP in
FRM_TSLR32 (Table 391 on page 277), bit 7, is set to 1. This feature is a programmable option required for byte-
synchr on izati on mappin g.
21.15.3 Support of CEPT Time Slot 16 Stomping
Stomping of time slot 16 for CEPT links can by accomplished by setting the source of signaling to be the host and
then programming the transmit signaling link registers 0—31 to all ones.
21.15.4 Support of Signaling Debounce
If programmed to do so, the signaling extracted from the receive line interface will be debounced. This implies that
a valid signaling code would have to be detected twice before it is updated in the Transmit Signaling Link Registers
0—31. This feature is enabled by setting FRM_T_SIGDEB in FRM_TSLR32 (Table 391 on page 277), bit 5, to a 1.
21.15.5 Support of Japanese Handling Groups
If the signaling is transported by the VT mapper within four handling groups compliant to the Japanese standard,
TTC JT G.704, then FRM_T_HGEN in FRM_TSLR32 (Table 391 on page 277), bit 4, must be set to 1. The signal-
ing state mode will be assumed to be 2-state signaling, and the value programmed into the GF bits of the Transmit
Signaling Link Registers 0—31 will be ignored.
By default, the transmit signaling processor will drive the Sp bit of each handling group on each link to 1. This bit
can be manually forced to 0 for all the handling groups within a link by setting FRM_T_MSP in FRM_TSLR32
(Table 391 on page 277), bit 11, to 1. The Sp bit can be automatically maintained by setting FRM_T_ASPLB in
FRM_TSLR32 ( Table 391 on page 277), bit 12, to 1. In that case, the Sp bits in the transmit path will reflect the cor-
responding handling group alignment in the receive path. For example, if HG2 on link 3 is the only HG out of align-
ment on that link, then the Sp bit transmitted to the VT mapper for HG2 will be set to 0. The Sp bit for HG 1, 3, and
4 will be set to 1.
21.15.6 Support of Zero-Code Suppression
If the frame formatter is configured to perform zero-code suppression, then FRM_T_ZCSM in FRM_TSLR32
(Table 391 on page 277), bit 10, must be set to 1. Zero-code suppression in the frame formatter is enabled by pro-
gramming FRM_ZCSMD[2:0] in FRM_FFLR1 (Table 436 on page 305), bits [10:8].
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
509Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.16 Transmit Signaling Global Feature Provisioning
The transmit signaling processor requires the provisioning of one global item in order to enable signaling extraction
and delivery.
Link Count (number of active transmit links).
21.16.1 Link-Count Se lection
The link count is specified by programming FRM_T_LINKCNT[4:0] in FRM_SGR8 (Table 378 on page 270), bits
[14:10]. The reset value is 28, which is appropriate for a 28-link DS1 application. A value of 21 is appropriate for a
21-link CEPT application. If the application mixes DS1 and CEPT links or the TDM clock supplied to the framer is
less than 51.84 MHz, this value should match the terminal count (FRM_TC[7:0]) set in FRM_FGR2 (Table 318 on
page 249), bits [7:0].
21.17 Other Transmit Signaling Global Features
21.17.1 Support of Automatic Signaling Freeze on Framing Bit Errors
This feature is valid when extracting signaling from the receive line interface (transport mode). By default, signaling
extraction from a particular receive line will halt when the appropriate alignment has been lost. In order to guaran-
tee that signaling freeze takes place as soon as possible, FRM_T_AFZFBE in FRM_SGR8 (Table 378 on
page 270), bit 1, must be set to 1. When enabled, FRM_T_AFZFBE halts signaling extraction for 32 frames upon
detection of a frame bit error. When FRM_T_AFZFBE is enabled, the transmit signaling debounce feature must
also be enabled. The FRM_T_SIGDEB feature is enabled in FRM_TSLR32 (Table 391 on page 277), bit 5.
21.17.2 Support of Byte-Sync SONET Mapping
A provisionable feature related to SONET byte-sync mapping requires that those time slots which are configured
for no-signaling should have a signaling value of 0 transported by the VT mapper. This feature can be enabled by
settin g FRM_ T_SUB ZERO in F RM_SGR 8 (Table 378 on page 270), bit 5, to 1. In that case, those time slots with a
signaling state mode of no-signaling (GF = 10) will automatically forward a value of 0 to the VT mapper.
21.18 Transmit Signaling Status Registers
There are two status values that are maintained for each of the links.
21.18.1 Maintenance of CEPT Related Status Bits
There are 2 bits which reflect the status of the CEPT time slot 16 signaling multiframe. These status bits are valid
when the source of signaling is set to be the receive line interface (transport mode). The location of these status
bits is in FRM_TSLR33, Transmit Signaling Link Register 33 (COR) Table 390 on page 277.
The receive signaling register searches for AIS in time slot 16 when time slot 16 alignment is lost. The status of
this sear ch is maint ain ed.
The status of TS16 multiframe alignment is maintained.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
510 Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.19 Performanc e-Monitoring Functional Integration into Superframer
The framer monitors the recovered line data for alarm conditions and errored events, and then presents this infor-
mation to the system through the microprocessor registers. To a lesser degree of importance, the framer also mon-
itors the receive system data when in the switching mode and presents the information to the system through the
microprocessor registers.
In the transport mode, both directions are monitored for alarm conditions and error events.
Table shows the functions provided by the performance monitor function, identifies the associated status register
bits and event counter register, and establishes the functions validity in particular framing modes.
Table 598. Performance Monitor Functional Descriptions
Function Description Register or Bit Name Valid Framing
Modes for
Functions
1 Performance report messages (PRMs) as per G.704
Section 2.1.3.1.3.3, G.963, T1.231 Section 6.3, and
T1.403 Section 9.4.2.
ESF and J-ESF only
2 Provides status for errored seconds, bursty errored
seconds, severely errored seconds, and at ET,
ET-RE, NT, and NT-RE.
All modes
3 Maintains a count of errored seconds, bursty errored
seconds, severely errored seconds, and at the ET. All modes
4 Provides a status indication for a loss of signaling
frame alignment condition. FRM_LSFA
(Table 397 on page 280)All modes
5 Provides a status indication for an out of frame con-
dition. FRM_OOF
(Table 397 on page 280)All modes
6 Provides a status indication for a loss of time slot 0
CRC-4 multiframe alignment. FRM_LTS0MFA
(Table 397 on page 280)CEPT CRC-4 only
7 Provides a status indication for a time slot 0 CRC-4
multiframe alignment signal bit error. FRM_TS0MFABE
(Table 397 on page 280)CEPT CRC-4 only
8 Provides a status indication for auxiliary pattern
detection. FRM_AUXP
(Table 398 on page 287)CEPT CRC-4 only
9 Provides a status indication for detection of the DS1
idle signal. FRM_IDLEID
(Table 398 on page 287)All modes except
CEPT CRC-4
10 Provides a status indication for detection of an alarm
indicati on si gna l. FRM_AIS
(Table 397 on page 280)All modes
11 Provides a status indication for detection of an alarm
indication signal at the customer installation (AIS-CI). FRM_OAIS
(Table 397 on page 280)All modes except
CEPT-CRC4
12 Provides a status indication for detection of remote
alarm indication. FRM_RAI
(Table 397 on page 280)All modes
13 Provides a status indication for detection of remote
alarm indication at the customer installation (RAI-CI). FRM_ORAI
(Table 397 on page 280)ESF and J-ESF only
14 Provides a status indication for detection of time slot
16 AIS (FRM_R_TS16AIS (Table 385 on page 274)). FRM _OAIS
(Table 397 on page 280)CEPT CRC-4 only
15 Provides a status indication for detection of remote
multiframe alarm in time slot 16 (RTS16MFA). FRM_ORAI
(Table 397 on page 280)CEPT CRC-4 only
16 Provides a status indication for the loss of CEPT
biframe alignment (LBFA). FRM_LTFA
(Table 398 on page 287)CEPT CRC-4 only
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
21 28-Channel Framer Block Functional Description (continued)
511Agere Systems Inc.
17 Provides a status indication for detection of remote
Japanese yellow alarm (RJYA). FRM_ORAI
(Table 397 on page 280)J-D4 only
18 Provides a status indication for continuous E-bit
reception. FRM_CREBIT
(Table 398 on page 287)CEPT CRC-4 only
19 Provides a status indication for detection of Sa6
states. FRM_SA6
(Table 406 on page 291)CEPT CRC-4 only
20 Provides a status indication for detection of line for-
mat violati ons. FRM_LFV
(Table 398 on page 287)All modes
21 Provides a status indication for detection of frame bit
errors. FRM _FBE
(Table 398 on page 287)All modes
22 Provides a status indication for detection of CRC
errors. FRM_CRCE
(Table 398 on page 287)ESF, J-ESF, and
CEPT CRC-4 only
23 Provides a status indication for detection of exces-
sive CRC errors. FRM_ECRCE
(Table 398 on page 287)ESF, J-ESF, and
CEPT CRC-4 only
24 Provides a status indication for detection of an E bit
equal to 0. FRM_REBIT
(Table 398 on page 287)CEPT CRC-4 only
25 Provides a status indication for expiration of CRC-4
multifra me ali gnm ent timer. FRM_CRCTX
(Table 397 on page 280)CEPT CRC-4 only
26 Provides a status indication for new frame alignment. FRM_NFA
(Table 398 on page 287)All modes
27 Provides a status indication for detection of Sa7 link
identification code. FRM_SA7LID
(Table 398 on page 287)CEPT CRC-4 only
28 Provides a status indication for detection of an SF
line loopback on code. FRM_LLBON
(Table 398 on page 287)SF only
29 Provides a status indication for detection of an SF
line loopback off code. FRM_LLBOFF
(Table 398 on page 287)SF only
30 Provides a status indication for detection of an over-
flow in the receiv e elastic store. FRM_SLIPO
(Table 397 on page 280)All modes
31 Provides a status indication for detection of an
underflow in the receive elastic store. FRM_SLIPU
(Table 397 on page 280)All modes
32 Provides a status indication for detection of loss of
signal. FRM_LOS
(Table 398)All modes
33 Maintains a count of received CRC errors. FRM_CEC
(Table 402)ESF/J-ESF and
CEPT CRC-4 only
34 Maintains a count of received bipolar violations, line
code violations, and excessive zeros. FRM_BPV
(Table 400)All modes
35 Provides a status indication for detection of a bit-ori-
ented message in the ESF data link bits. FRM_BOMR
(Table 398)ESF only
36 Provides a status indication of a test pattern detector
lock. FRM_DETECT
(Table 323)All modes
37 Provides a status indication for detection of a test-
pattern bit error. FRM_PTRNBER
(Table 323)All modes
38 Provides a status indication for detection of an ESF-
FDL RAI/yellow alarm code. FRM_FDL_RAI
(Table 399 on page 289)ESF only
Table 598. Performance Monitor Functional Descriptions (continued)
Function Description Register or Bit Name Valid Framing
Modes for
Functions
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
21 28-Channel Framer Block Functional Description (continued)
512 Agere Systems Inc.
38 Provides a status indication for detection of an ESF-
FDL RAI/yellow alarm code. FRM_FDL_RAI
(Table 399 on page 289)ESF only
39 Provides a status indication for detection of the ESF-
FDL payload loopback enable code. FRM_FDL_PLBON
(Table 399 on page 289)ESF only
40 Provides a status indication for detection of the ESF-
FDL payload loopback disable code. FRM_FDL_PLBOFF
(Table 399 on page 289)ESF only
41 Provides a status indication for detection of the ESF-
FDL line loopback enable code. FRM_FDL_LLBON
(Table 399 on page 289)ESF only
42 Provides a status indication for detection of the ESF-
FDL line loopback disable code. FRM_FDL_LLBOFF
(Table 399 on page 289)ESF only
43 Maintains a 16-bit count of received framing bit
errors. FRM _FBEC
(Table 401 on page 290)All modes
44 Maintains a 16-bit count of received E bit = 0 events. FRM_REC
(Table 403 on page 290)CEPT CRC-4 only
45 Maintains a 16-bit count of received Sa6 = 00x1
events. FRM_CETE
(Table 404 on page 290)CEPT CRC-4 only
46 Maintains a 16-bit count of received Sa6 = 001x
events. FRM_CENT
(Table 405 on page 290)CEPT CRC-4 only
47 Provides a status indication for detection of an (A,
Sa5, Sa6[1:4]) = (x, x, AIS). FRM_FE_OP
(Table 406 on page 291)CEPT CRC-4 only
48 Provides a status indication for detection of an (A,
Sa5, Sa6[1:4]) = (0, 1, 1111). FRM_FE_N
(Table 406 on page 291)CEPT CRC-4 only
49 Provides a status indication for detection of an (A,
Sa5, Sa6[1:4]) = (1, 1, 1111). FRM _FE_M
(Table 406 on page 291)CEPT CRC-4 only
50 Provides a status indication for detection of an (A,
Sa5, Sa6[1:4]) = (x, x, AUXP). FRM_FE_L
(Table 406 on page 291)CEPT CRC-4 only
51 Provides a status indication for detection of an (A,
Sa5, Sa6[1:4]) = (1, 1, 1000). FRM_FE_K
(Table 406 on page 291)CEPT CRC-4 only
52 Provides a status indication for detection of an (A,
Sa5, Sa6[1:4]) = (0, 1, 1000). FRM_FE_I
(Table 406 on page 291)CEPT CRC-4 only
53 Provides a status indication for detection of an (A,
Sa5, Sa6[1:4]) = (0, 1, 1110). FRM_FE_H
(Table 406 on page 291)CEPT CRC-4 only
54 Provides a status indication for detection of an (A,
Sa5, Sa6[1: 4]) = (0, 1, 1100). FRM_FE_G
(Table 406 on page 291)CEPT CRC-4 only
55 Provides a status indication for detection of an (A,
Sa5, Sa6[1:4]) = (1, 0, 0000). FRM_FE_F
(Table 406 on page 291)CEPT CRC-4 only
56 Provides a status indication for detection of an (A,
Sa5, Sa6[1:4]) = (1, 1, 1110). FRM_FE_E
(Table 406 on page 291)CEPT CRC-4 only
57 Provides a status indication for detection of an (A,
Sa5, Sa6[1:4]) = (1, 1, 00xx). FRM_FE_D
(Table 406 on page 291)CEPT CRC-4 only
58 Provides a status indication for detection of an (A,
Sa5, Sa6[1:4]) = (x, 0, xxxx). FRM _FE_C
(Table 406 on page 291)CEPT CRC-4 only
59 Provides a status indication for detection of an (A,
Sa5, Sa6[1:4]) = (x, 0, 0000). FRM_FE_B
(Table 406 on page 291)CEPT CRC-4 only
Table 598. Performance Monitor Functional Descriptions (continued)
Function Description Register or Bit Name Valid Framing
Modes for
Functions
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
21 28-Channel Framer Block Functional Description (continued)
513Agere Systems Inc.
60 Provides a status indication for detection of an (A,
Sa5, Sa6[1:4]) = (x, 1, 00xx). FRM_FE_A
(Table 406 on page 291)CEPT CRC-4 only
61 Provides a status indication for detection of an (A,
Sa5, Sa6[1:4], E) = (x, 1, 0011, x). FRM_FE_Y
(Table 407 on page 292)CEPT CRC-4 only
62 Provides a status indication for detection of an (A,
Sa5, Sa6[1:4], E) = (x, 1, 0010, x). FRM_FE_X
(Table 407 on page 292)CEPT CRC-4 only
63 Provides a status indication for detection of an (A,
Sa5, Sa6[1:4], E) = (x, 1, 0001, x). FRM_FE_W
(Table 407 on page 292)
CEPT CRC-4 only
64 Provides a status indication for detection of an (A,
Sa5, Sa6[1:4], E) = (x, 0, 0000, 0). FRM_FE_V
(Table 407 on page 292)CEPT CRC-4 only
65 Provides a status indication for detection of an (A,
Sa5, Sa6[1:4], E) = (x, 1, xxxx, 0). FRM_FE_U
(Table 407 on page 292)CEPT CRC-4 only
66 Provides a status indication for detection of an (A,
Sa5, Sa6[1:4], E) = (x, 0, 0000, x). FRM_FE_T
(Table 407 on page 292)CEPT CRC-4 only
67 Provides a status indication for detection of an (A,
Sa5, Sa6[1:4], E) = (1 , 0, xxxx, x). FRM_FE_S
(Table 407 on page 292)CEPT CRC-4 only
68 Provides a status indication for detection of an (A,
Sa5, Sa6[1:4], E) = (1, 0, 1010, x). FRM_FE_R
(Table 407 on page 292)
CEPT CRC-4 only
69 Provides a status indication for detection of an (A,
Sa5, Sa6[1:4], E) = (1, 0, 1111, x). FRM_FE_Q
(Table 407 on page 292)CEPT CRC-4 only
70 Provides storage for bit-oriented messages. FRM_RBOM[7:0]
(Table 411 on page 292)ESF only
71 Provides an indication to frame aligner (does not
have to be stored) to reframe (in CEPT and ESF
modes) based on CRC errors and to re-establish
multiframe alignment (in CEPT) based on bit 0 of the
NOTFAS frames (except 15 and 17).
CEPT, ESF/J-ESF,
J2 only
72 Provides indication to frame formatter to set RAI. All modes
73 Provides indication to frame formatter to set AIS. All modes
74 Provides indication to frame formatter to set E bits. CEPT CRC-4 only
75 Provides status indication of parallel bus system
interface mode data and signaling parity errors. FRM_DPARERR,
FRM_SPARERR
(Table 406 on page 291)
Parallel bus system
interface mode only,
monitor all the time
Table 598. Performance Monitor Functional Descriptions (continued)
Function Description Register or Bit Name Valid Framing
Modes for
Functions
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
514 Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.20 Performanc e Repo rt Message
The performance monitor block monitors for errored second events and generates the one-second data for the
extended superframe (ESF) performance report message (PRM) (G.704 Section 2.1.3.1.3.3, G.963, T1.231 Sec-
tion 6.3, and T1.403 Section 9.4.2.). The form of the PRM message is shown in Table 599. The definition of the
fields is given in Table 600.
The superframer performance monitor block outputs fields G1—G6, FE, SE, LV, SL, and LB. The remaining fields
are generated in the HDLC block.
A severely errored frame (SEF) defect is determined by examining contiguous time windows for frame bit errors. In
ESF, the window size is 3 ms, and only the frame pattern sequence bits are checked. An SEF defect occurs when
two or more frame bit errors in a window are detected. An SEF defect is terminated when the signal is in frame and
there are less than two frame bit errors in a window.
Table 599. Performance Report Message Format
Table 600. Performance Report Message Field Definition
Octet Number PRM B7 PRM B6 PRM B5 PRM B4 PRM B3 PRM B2 PRM B1 PRM B0
1Flag
2SAPIC/REA
3TEIEA
4 Control
5 G3LVG4U1U2G5SLG6
6 FESELBG1 R G2NmNI
7 G3LVG4U1U2G5SLG6
8 FESELBG1 R G2NmNI
9 G3LVG4U1U2G5SLG6
10 FE SE LB G1 R G2 Nm NI
11 G3 LV G4 U1 U2 G5 SL G6
12 FE SE LB G1 R G2 Nm NI
13—14 FCS
15 FLAG
Field Definition
G1 = 1 CRC Error Event = 1
G2 = 1 1 < CRC Error Event 5
G3 = 1 5 < CRC Error Event 10
G4 = 1 10 < CRC Error Event 100
G5 = 1 100 < CRC Error Event 319
G6 = 1 CRC Error Event 320
SE = 1 Severely Errored Framing Event 1 (FE will = 0)
FE = 1 Frame Synchronization Bit Error Event 1 (SE will = 0)
LV = 1 Line Code Violation Event 1 (BPV 1 or EXZ 1)
SL = 1 Slip Event 1
LB = 1 Payload Loopback Activated
U1, U2 = 0 Reserved
R = 0 Reserved (default value = 0)
Nm, NI = 00, 01, 10, 11 One Second Report Modulo 4 Counter
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
515Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.21 Performanc e-Mon itoring Refe ren ces/Stand ard s
ANSI T1.231-1997, Digital Hierarchy—Layer 1 In-Service Digital Transmission Performance Monitoring.
ANSI T1-403-1995, Network-To-Customer Installation—DS1 Metallic Interface.
ETS 300 233 Integrated Services Digital Network (ISDN); Access Digital Section for ISDN Primary Rate;
May 1994.
ETS 300 417-1-1 Transmission and Multiplexing (TM); Generic Functional Requirement for Synchronous Digital
Hierarchy (SDH) Equipment; Part 1-1: Generic Processes and Performance; January 1996.
ITU-T Recommend ati on G.703, Physical/Electrical Characteristics of Hierarchical Digital Interfaces; 1991.
ITU-T Recommend ati on G.704, Synchronous Frame Structures used at 1554, 6312, 2048, 8488 and
44736 kbits/s Hierarchical Levels; July 1995.
ITU-T Recommendation G.706, Frame Alignment and Cyclic Redundancy Check (CRC) Procedures Relating to
Basic Frame Structures defined in Recommendation G.704; 1991.
ITU-T Recommend ati on G.732, Characteristics of Primary PCM Multiplex Equipment Operating at 2048 kbits/s;
1993.
ITU-T Recommend ati on G.733, Characteristics of Primary PCM Multiplex Equipment Operating at 1544 kbits/s;
1993.
ITU-T Recommend ati on G.7 75, Loss of Signal (LOS) and Alarm Indication Signal (AIS) Defect Detection and
Clearance Criteria; November 1994.
ITU-T Recommend ati on G.826, Error Performance Parameters and Objectives for International, Constant Bit
Rate Digital Paths at or Above the Primary Rate; Aug us t 1996.
ITU-T Recommend ati on G.963, Access Digital Section for ISDN Primary Rate at 1544 kbits/s; Marc h 1993.
ITU-T Recommend ati on G.964, V-Interfaces at the Digital Local Exchange (LE) - V5.1 Interface (Based on
2048 kbits/s) for the Support of Access Network (AN); June 1994.
ITU-T Recommend ati on G.965, V-Interfaces at the Digital Local Exchange (LE) - V5.2 Interface (Based on
2048 kbits/s) for the Support of Access Network (AN); March 1995.
ITU-T Recommend ati on O.151, Error Performance Measuring Equipment Operating at the Primary Rate and
Above; October, 1992.
ITU-T Recommend ati on O.152, Error Performance Measuring Equipment for Bit Rates of 64 kbits/s and
N X 64 kbits/s; October, 1992.
ITU-T Recommendation O.153, Basic Parameters for the Measurement of Error Performance at Bit Rates Below
the Primar y Rate ; October, 1992.
ITU-T Recommend ati on O.161, In-Service Code Violation Monitors for Digital Systems; 1993.
ITU-T Recommend ati on O.162, Equipment to Perform In-Service Monitoring on 2048, 8448, 34 368 and
139 264 kbits/s Signals; October, 1992.
ITU-T Recommend ati on O.163, Equipment to Perform In-Service Monitoring on 1544 kbits/s Signals; Octo ber,
1992.
TTC Standard JT-G704, Synchronous Frame Structures Used at 1554, 6312, 2048, 8488 and 44736 kbits/s
Hierarchi c al Lev els; Ju ly 1995.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
516 Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.22 Facility Data Link
21.22.1 Facility Data Link References/Standards
ANSI T1.403-1995—Bit-Oriented Messages (BOM).
21.22.2 Receive Data Link Functional Description
This block extracts facility data links bits and stores them in a microprocessor access register bank:
D bits from the SLC-96 multisuperframe.
Sa bits from time slot 0 in CEPT basic and CRC-4 multiframes.
Data link bits from DDS frames.
The respective bits will always be extracted from the framed aligned receive line payload and stored in the facility
data link stack, regardless of other configuration bits. The processor will have control of being alerted to stack
updates through the interrupt mask registers.
All frame types:
Support clear-on-read status and interrupt bits based on the setting of the input select signal.
21.22.3 SLC-96 Superframe Receive Data Link
Delineates the SLC-96 data link in the Fs signaling frame, extracts the 24 D bits, and stores in the internal mem-
ory stack.
Provides interrupt for stack ready.
Provides host access to stack using processor clock.
Supports loss of frame status.
Both basic frame alignment and multiframe alignment must be established before the data can be assumed valid.
The SLC-96 Fs bits are stored in the Rx stack as follows.
Table 601. Shared Rx Stack Format for SLC-96 Frames
* The value held in the bits left blank should be ignored by the host.
When the entire stack has been filled, the host is notified using the Rx stack ready interrupt. After the Rx stack
ready interrupt bit is set, the host has approximately 9 ms to read the stack.
21.22.4 DDS Receive Data Link Stack
Extracts data link bit (bit 6) from time slot 24 and stores into stack.
Provides interrupt for stack ready.
Provides host access to stack using the processor clock to provide fast access.
Supports loss of frame status.
Word1514131211109876543210
0 0001110001110000
1* C1C2C3C4C5C6C7C8C9C10C11SB10000
2*SB2SB3M1M2M3A1A2S1S2S3S4SB40000
3* 0000000000000000
4* 0000000000000000
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
517Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
DDS frames are numbered 1 through 12 with the data link bits located in bit 6 of time slot 24 in every frame. Only
basic frame alignment must be established for the data link bits to be extracted.
The DDS stack is stored in the shared Rx stack, as shown in Table 602.
Table 602. Shared Rx FDL Stack Format for DDS Frames
Starting at every superframe boundary, the data link bits are stored in an internal copy of the shared Rx stack. As
the data link bits are accumulated, the data link bits from the first superframe are stored in word 0. The frame
aligner block will give an indication of loss of frame alignment, which is used by the data link block to determine if
the data link bits collected are invalid. In this case, they will not be made available to the system.
When the entire stack has been filled (three superframes), the host is notified using the Rx stack ready interrupt.
After the Rx stack ready interrupt bit is set, the host has approximately 4.5 ms to read the stack.
21.22.5 CEPT; CEPT CRC-4 (100 ms); CEPT CRC-4 (400 ms) Multiframe Sa Bits Receive Stack
Extracts two multiframes of Sa bits from CEPT links and stores them in internal memory.
Supports loss of frame status.
Provides host access to the stack using the processor clock.
Provides interrupt for stack ready.
CEPT frames are numbered 0 through 15, with the Sa bits located in time slot 0 of the odd-numbered frames. The
Sa bits can only be extracted from CEPT links when the proper alignment has been established.
For basic CEPT frames, the Sa bits will be extracted given the arbitrary alignment selected by the frame aligner
block when basic frame alignment is established. For CEPT CRC-4 links, the Sa bits will be extracted based on the
alignment determined by the frame aligner block when multiframe frame alignment is established.
Optionally, the Sa bits will be extracted from CEPT CRC-4 links only after basic frame alignment is established
(RxCRCSM).
The Sa bits are stored in the stack as follows:
Table 603. Shared Rx Stack Format for CEPT Frames
It takes two multiframes to fill the Rx stack; bit 15 is received first. The frame aligner block will give an indication of
loss of frame alignment, which is used by the data link block to determine if the Sa bits collected are invalid. In this
case, they will not be made available to the system.
When the entire stack has been filled, the host is notified using the Rx stack ready interrupt. After the Rx stack
ready interrupt bit is set, the host has approximately 4 ms to read the stack.
Word 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 D1D2D3D4D5D6D7D8D9D10D11D12————
1 D1D2D3D4D5D6D7D8D9D10D11D12————
2 D1D2D3D4D5D6D7D8D9D10D11D12————
3 —————— ————
4 —————— ————
Word 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 SA41 SA43 SA45 SA47 SA49 SA411 SA413 SA415 SA41 SA43 SA45 SA47 SA49 SA411 SA413 SA415
1 SA51 SA53 SA55 SA57 SA59 SA511 SA513 SA515 SA51 SA53 SA55 SA57 SA59 SA511 SA513 SA515
2 SA61 SA63 SA65 SA67 SA69 SA611 SA613 SA615 SA61 SA63 SA65 SA67 SA69 SA611 SA613 SA615
3 SA71 SA73 SA75 SA77 SA79 SA711 SA713 SA715 SA71 SA73 SA75 SA77 SA79 SA711 SA713 SA715
4 SA81 SA83 SA85 SA87 SA89 SA811 SA813 SA815 SA81 SA83 SA85 SA87 SA89 SA811 SA813 SA815
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
518 Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.22.6 Receive Data Link Stack Idle Modes
No data link stack features for the following frame are:
D4
J-D4
ESF
J-ESF
J2
CMI
21.22.7 Receive Data Link Stack Pointer
The stack pointer maintains two pointers: an internal pointer and a host pointer. The pointer identifies which stack
is active for the host and which stack is active for the internal logic. These pointers will always point to opposite
stacks. When the TDM interface block is writing Sa bits or D bits to the stack, then the internal pointer may be
selecting the upper stack. In this case, the host pointer is selecting the lower stack for the host reads. At the begin-
ning of each double multiframe or each superframe, a pointer switch takes place. This switch takes place during
the time in which the host is prevented from accessing the stack for a particular link.
A stack pointer is maintained for each of the links individually.
5-9025(F)r.1
Figure 62. Rx Data Link Block Diagram
RECEIVE SYSTEM
INTERFACE
TDM ID
TDM DATA
TDM INTERFACE
SHARED
R
X
LOWER
INTE RNAL
INTE RNAL BUS
STACK FULL
CEPT AND
SLC-96
DATA
R
X
TRANSMIT
STACK
POINTER
DATA LINK INTERRUPT
SHARED
R
X
UPPER
HOST
REGISTERS
PROCESSOR
LINE SYSTEM
FRAMER
STACK
STACK
CLOCK FDL
CLOCK
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
519Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
Receive Stack Host Interface. Host access to the shared system stack will be managed using a stack availability
status bit. This bit reflects the stack availability status for each individual port. The host will use this status bit for
each port to determine when the stack is available for reading. Each stack is made unavailable only to enable a
window for the data link block to update the system stack. The window will be large enough so that any small
amount of overlap will not allow the possibility of a collision.
D, Sa, or DDS data link bits are collected over the multiple frame time periods appropriate for each frame type. The
stack is available for reading during that entire time period, except for the last frame. During that one frame time,
the internal stack will be switched to the system stack. The stack will be made accessible once the transfer is done,
after which the Rx stack ready sta t us bit will be set.
If the host is managing the stack via interrupts from the data link block and the interrupt can be serviced within
8.8 ms for SLC-96, 3.8 ms for CEPT, or 4.3 ms for DDS, then the host simply reads the stack. If the host is polling
the Rx stack ready status and reading the stack arbitrarily, then the host is required to read the Rx stack available
status bit FRM_RXSA (Table 418 on page 294) which corresponds to the respective port. If that bit is set to 1, then
the host can access the corresponding stack locations. If that bit is set to 0, the host should poll on that bit until it
changes.
Stack Available and Stack Ready Bit Formats. As described above, when the stack has been filled, the stack
available bit goes high. One or two frames before the stack is about to be filled, the stack available bit goes low and
stays low for one or two frames. This prevents the host from reading when a pointer switch is about to happen, pre-
venting the host from getting the data mixed. The stack ready bit is set to 1, also, when the stack has been filled.
The host clears this bit. Figure 63 shows the dynamics of these bits.
5-9026(F)r.1
Figure 63. Stack Available and Stack Ready Bit Formatting
Receive Stack Pointer. The stack pointer maintains two pointers: an internal pointer and a host pointer. The
pointer identifies which stack is active for the host and which stack is active for the internal logic. These pointers
will always point to opposite stacks. When the TDM interface block is writing Sa bits or D bits to the stack, then the
internal pointer may be selecting the upper stack. In this case, the host pointer is selecting the lower stack for the
host reads. At the beginning of each double multiframe or each superframe, a pointer switch takes place. This
switch takes place during the time in which the host is prevented from accessing the stack for a particular link.
A stack pointer is maintained for each of the links individually.
Sa bit
Sr bit
DDS: 35 FRAMES (4 .4 ms ) 1 FRAME
SLC-96: 70 FRAMES (8.75 ms) 2 FRAME S
CEPT: 30 FRAMES (3.75 ms) 2 FRAMES
ONE STACK OF DATA NEXT STACK
STACK NOT AVAILABLE
SET HIGH HERE
(HOST C LEARS THI S BI T WHENEV ER)
(0.125 ms)
(0.25 ms)
(0.25 ms)
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
520 Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.22.8 Transmit Facility Data Link Functional Description
This block performs the transmission of D bits into SLC-96 superframes, SA bits into CEPT multiframes, and data
link bits into DDS frames.
For SLC-96 frames, the D bits are always sourced from this block when the block is enabled for insertion
(FR M _D S 1 I (Table 424 on page 296)). The D-bit delineator bits (SLC-96 Fs frame) are also sourced from this
block and stored in the stack with the D bits.
For CEPT frames, the Sa bits are sourced from either the Sa stack or outside of the data link block. The data link
block only responds with valid data when selected by the Sa source control bits (FRM_SA4SC—FRM_SA8SC
(Table 424)).
For DDS frames, the data link bits are always sourced from this block when this block is enabled for insertion
(FRM_DS1I).
This block also provides the capability to transmit BOMs in the data link channel of ESF links.
All frame types:
Support clear-on-read status and interrupt bits based on the setting of the input select signal.
21.22.9 SLC-96 Superframe Transmit Data Link
Provides storage for D bits and delineator bits for transmission on SLC-96 links.
Provides interrupt for stack empty.
Provides host access to stack using processor clock.
Performs retransmission of stack when update is yet to be performed.
When enabled for insertion, this block will always source the D bits to any SLC-96 Tx link. The delineator bits
(SLC-96 Fs frame), which bound the 24 D bits, are also sourced from this block.
The 12-frame SLC-96 superframe is composed of a terminal frame (FT) alternating with a subframe that consists of
a combined signaling (FS) frame and data link. The subframe shares establishing the signaling frame (FS) and
SLC-96 data link. The FDL stack bits are inserted into the signaling and data link subframe position in the super-
frame. Seventy-two superframes are required to deliver the 24 D bits and 12-bit delineator. The front-end delinea-
tor is 00111, which is followed by 24 D bits and trailed by 0001110. The alignment of the FS bits within the
superframe is determined and indicated by the frame aligner block.
The SLC-96 FS bits are stored in the shared Tx stack as shown in Table 604.
Table 604. Shared Tx FDL Stack Format for SLC-96 Frames
* The value held in the bits left blank should be ignored by the host.
The transmission of the SLC-96 stack will take 9 ms to complete, during which time the host should refill the sys-
tem stack if the D bits need to change.
Near the beginning of each SLC-96 superframe, the Tx data link block will determine whether a new set of D bits is
available to be transmitted.
Word 1514131211109876543210
0 0001110001110000
1* C1C2C3C4C5C6C7C8C9C10C11SB10000
2* SB2SB3M1M2M3A1A2S1S2S3S4SB40000
3* 0000000000000000
4* 0000000000000000
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
521Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
The host will indicate this state by resetting the Tx stack empty bit, FRM_TXSE_IS (Table 426 on page 297). If this
is the case, the new D bits will be transmitted; otherwise, the previous D bits will be retransmitted. If the Tx stack
empty bit was 0 at the beginning of the SLC-96 superframe, then the bit will be set to 1, indicating a request for new
D bits.
When enabled using the FRM_ASRC (Table 424) bit, the D bits should only be inserted when the proper alignment
has been reached. For SLC-96, both terminal (FT) and signaling (FS) frames need to be valid. This condition
affects the insertion of D bits and the reporting of stack empty to the host.
Before enabling a link for the SLC-96 format or enabling this block for insertion, the host should initialize the stack
and set the Tx stack empty bit to 0. If not, the data link block will transmit the reset state of the stack, which is arbi-
trary.
21.22.10 DDS Transmit Data Link Stack
Provides three superframes of data link bit storage for transmission on DDS links.
Provides interrupt for stack empty.
Performs retransmission of stack when update has yet to be performed.
Provides host access to stack using proce ssor clock to provide fast access.
If enabled for insertion, this block will always source the DDS data link bits to any DDS Tx link. DDS superframes
are 12 frames with the data link bits located in bit number 6 of time slot 24 of every frame. Thirty-six frames of data
link bits are stored in the stack.
The DDS stack is stored in the shared Tx stack as follows.
Table 605. Shared Tx FDL Stack Format for DDS Frames
* The value held in the bits left blank should be ignored by the host.
Transmission of the DDS stack will take 4.5 ms to complete, during which time the host should refill the system
stack if the data link bits need to change.
Near the beginning of every third DDS superframe, the Tx data link block will determine whether a new set of data
link bits is available to be transmitted. The host will indicate this state by resetting the Tx stack empty bit. If this is
the case, the new data link bits will be transmitted; otherwise, the previous data link bits will be retransmitted. If the
Tx stack empty bit was 0 at the beginning of the set of superframes, then the bit will be set to 1, indicating a request
for new data link bits.
When enabled, using the FRM_ASRC bit, the Sa bits should only be inserted when the proper alignment has been
reached. For DDS links, only terminal frame (FT) is required for insertion. This condition affects the insertion of data
link bits and the reporting of stack empty to the host.
Before enabling a link for the DDS format or enabling this block for insertion, the host should initialize the stack and
set the Tx stack empty bit to 0. If not, the data link block will transmit the reset state of the stack, which is arbitrary.
Word1514131211109876543210
0* D1D2D3D4D5D6D7D8D9D10D11D12————
1* D1D2D3D4D5D6D7D8D9D10D11D12————
2 D1D2D3D4D5D6D7D8D9D10D11D12————
3 ————————————————
4 ————————————————
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
522 Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.22.11 Transmit ESF Data Link Bit-Oriented Messages
Provides capability to transmit bit-oriented messages.
When enabled through a configuration bit (FRM_BOME (Table 425 on page 297)), bit-oriented messages will be
transmitted on the data link channel of the frame bit for ESF links. The ESF superframe is numbered 1 through 24
with the data link channel transmitted in the odd numbered frames (4 kbits/s).
The BOM is a 16-bit message defining an alarm or command and response action, and sent repeatedly for a
period of time determined by the event. The message consists of eight ones, a zero, a 6-bit code to identify the
alarm or action, and a zero (1111_1111_0 in front and 0 behind the 6-bit code).
The message can occur at any point in the extended superframe without respect to boundaries. The exact mes-
sage to be sent will reflect what has been programmed into a register (FRM_TBOM{5:0] (Table 425) bits). The
BOM format is as follows:
0 X X X _ X X X 0 _ 1111_1111: (right-most bit being transmitted first).
When the BOM pattern is enabled, it will be transmitted until disabled. When disabled, the pattern will cease to be
transmitted immediately.
A BOM status bit will indicate when the pattern has been sent 10 times. That status bit will be reset on read.
When enabled using the FRM_ASRC (Table 424 on page 296) bit, the BOMs should only be inserted when the
proper alignment has been reached. For ESF links, both BFA and MFA are required for insertion. This condition
affects the insertion of BOMs bits and the reporting of stack empty to the host.
21.22.12 CEPT, CEPT Multiframe Transmit Data Link Sa Bits Stack
Provides two multiframes of Sa-bit storage for transmission on CEPT links.
Provides interrupt for stack empty.
Performs retransmission of stack when update has yet to be performed.
Provides capability to source Sa bits from blocks other than the data link block.
Provides host access to stack using proce ssor clock to provide fast access.
This block will always present the Sa bits stored in the Tx stack to the TDM data stream. The data valid signal will
reflect the programming of the Sa source control bits (FRM_SA4SC—FRM_SA8SC, Table 424). In CEPT, the Sa
bits are located in time slot 0 of the NOTFAS frames (odd-numbered frames). CEPT multiframe format frames are
numbered 0 through 15 with the Sa bits located in time slot 0 of the odd numbered frames (NOTFAS frames).
The Sa bits are stored in the Tx stack as follows.
Table 606. Shared Tx Stack Format for CEPT Frame
Transmission of the Sa stack will take 4 ms, during which time the host should refill the system stack if the Sa bits
need to change.
Near the beginning of each CEPT double multiframe, the Tx data link block will determine whether a new set of Sa
bits is available to be transmitted. The host will indicate this state by resetting the Tx stack empty bit. If this is the
case, the new Sa bits will be transmitted; otherwise, the previous Sa bits will be retransmitted.
Word151413121110 9 8 76543 2 1 0
0 SA41 SA43 SA45 SA47 SA49 SA411 SA413 SA415 SA41 SA43 SA45 SA47 SA49 SA411 SA413 SA415
1 SA51 SA53 SA55 SA57 SA59 SA511 SA513 SA515 SA51 SA53 SA55 SA57 SA59 SA511 SA513 SA515
2 SA61 SA63 SA65 SA67 SA69 SA611 SA613 SA615 SA61 SA63 SA65 SA67 SA69 SA611 SA613 SA615
3 SA71 SA73 SA75 SA77 SA79 SA711 SA713 SA715 SA71 SA73 SA75 SA77 SA79 SA711 SA713 SA715
4 SA81 SA83 SA85 SA87 SA89 SA811 SA813 SA815 SA81 SA83 SA85 SA87 SA89 SA811 SA813 SA815
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
523Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
If the Tx stack empty bit was 0 at the beginning of the CEPT double multiframe, then the bit will be set to 1, indicat-
ing a request for new Sa bits.
When enabled using the FRM_ASRC bit (Table 424 on page 296), the Sa bits should only be inserted when the
proper alignment has been reached. For CEPT links, only BFA is required for insertion. For CEPT CRC-4 links,
both BFA and MFA need to be valid. This affects the insertion of Sa bits and the reporting of stack empty to the
host. There is another configuration bit, FRM_TXCRCSM (Table 424), which allows the CEPT CRC-4 links to
insert when only BFA is active (FRM_TXCRCSM).
Before enabling a link for CEPT format, the host should initialize the stack and set the Tx stack empty bit to 0. If
not, the data link block will transmit the reset state of the stack which is arbitrary.
21.22.13 Transmit Data Link Stack Idle Modes
D4
J-D4
J2
CMI
No data link features
21.22.14 SLC-96, DDS, or CEPT ESF Frame Alignment
For CEPT, DDS, or SLC-96 frames, loss of frame alignment is not an issue since the framer is the source of time
slot 0 or the F bits. Once a link is enabled, the frame sequence always starts at the beginning.
In the case of the system being the source of multiframe alignment, the data link block will simply deliver what is
requested.
5-9027(F)r.1
Figure 64. Tx Data Link Block Diagram
TRANSMIT SYSTEM
INTERFACE
TDM ID
TDM DATA
TDM INTERF AC E
DATA/
VALID
INTERNAL BUS
T
X
R
X
STACK
DATA LINK INTER RUP T
SHARED
R
X
STACK
READ RE Q UEST LOGIC
READ ARBITRATION LOGIC
HOST
REGISTERS
WRITE
REQUEST
FDL
PROCESSOR
SYSTEM
T
X
STACK READ
REQUEST
TRANSFER
REQUEST STACK WRITE
STACK READ
SYSTEM
LINE FRAMER
CLOCK
CLOCK
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
524 Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.23 HDLC Functional Description
The Supermapper framer is capable of inserting and extracting HDLC data to and from multiple logical channels.
The system may specify any bit as an HDLC channel. For ESF, DDS, and CEPT framing formats, the facility data
link (FDL) bit may be programmed as a logical HDLC channel. Multiple bits within a time slot may be concatenated
to form a logical HDLC channel. The maximum number of bits in a logical channel is 8 bits (all within a single time
slot) and corresponds to a maximum data rate of 64 kbits/s. Multiple logical HDLC channels may be assigned to a
single payload time slot.
Received data from a HDLC channel is placed into a 128-byte FIFO. Transmit HDLC channels are read from a
separate 128-byte FIFO.
Once the HDLC channels are defined and the HDLC is enabled, the framer extracts and inserts the HDLC frames
in these channels. The function of the receive and transmit HDLC sections will be described separately.
21.24 HDLC Operation
This section describes the standard HDLC functions performed by the framer’s HDLC block. The HDLC transmitter
accepts parallel data from the transmit FIFO, converts it to a serial bit stream, provides bit stuffing as necessary,
adds the CRC and the opening and closing flags, and sends the framed serial bit stream to the transmit framer.
The HDLC receiver unit receives time-slot data from the receive framer, identifies frames for proper format, recon-
structs data bytes, provides bit destuffing as necessary, and loads parallel data in the receive FIFO. HDLC frames
on the serial link have the following format.
Table 607. HDLC Frame Format
All bits between the opening flag and the CRC are considered user payload. User payload data such as the
address, control, and information fields are fetched from the transmit FIFO for transmission. Received user pay-
load data is stored in the receive FIFO buffers. The 16 bits preceding the closing flag are the frame check
sequence or cyclic redundancy check (CRC) bits.
21.24.1 Zero-Bit Insertion/Deletion (Bit Stuffing/Destuffing)
The HDLC protocol recognizes three special bit patterns: flags, aborts, and idles. These patterns have the common
characteristic of containing at least six consecutive ones. A user data byte can contain one of these special pat-
terns. Transmitter zero-bit stuffing is done on user data and CRC fields of the frame to avoid transmitting one of
these special patterns. Whenever five ones occur between flags, a 0 bit is automatically inserted after the fifth 1,
prior to transmission of the next bit. On the receive side, if five successive ones are detected followed by a 0, the 0
is assumed to have been inserted and is deleted (bit destuffing).
21.24.2 Flags
All flags* have the bit pattern 01111110 and are used for frame synchronization. The framers HDLC block automat-
ically sends one flag at the beginning of each frame. If the FRM_HTIDLE bit is cleared to 0 (Tabl e 447 on
page 310), the FLAG byte (01111110) is continuously sent between frames if no data is present in the FIFO. If the
FRM_HTIDLE bit is set to 1, the HDLC block sends continuous FRM_IDLE (Table 361 on page 263) bytes
(11111111) when the transmit FIFO is empty. Once there is data in the transmit FIFO, an opening flag is sent, fol-
lowed by the frame. During transmission, two successive flags will not share the intermediate 0.
* Regardless of the time-fill byte used, there always is an opening and closing flag with each frame. Back-to-back frames are separated by two
flags.
Opening Flag User Data Field Frame Check Sequence (CRC) Closing Flag
01111110 8 bits (multiple of 8 bits) 16 bits 01111110
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
525Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
An opening flag is always generated at the beginning of a frame (indicated by the presence of data in the transmit
FIFO and the transmitter enabled). FRM_CFLAGS[1:0] (Table 447 on page 310) determines which
FRM_FCNT[0—3][4:0] parameter to use. The FRM_FCNT[0—3][4:0] parameters define the number of idle flags
that are sent between HDLC packets. Data is transmitted per the HDLC protocol until a byte is read from the FIFO
with Tx HDLC register bits FRM_HTFUNC[1:0] = 01 set (Table 450 on page 312). The HDLC block follows this
byte with the CRC sequence and a closing flag.
The HDLC receiver recognizes the 01111110 pattern as a flag. Two successive flags may or may not share the
intermediate 0 bit and are identified as two flags (i.e., both 011111101111110 and 0111111001111110 are recognized
by the HDLC block). When another flag is identified, it is treated as the closing flag. As mentioned above, a flag
sequence in the user data or FCS fields is prevented by zero-bit insertion and deletion.
21.24.3 Aborts
The bit pattern of the abort sequence is 0111 1111, with 0 transmitted first. A frame can be aborted by writing setting
Tx HDLC register bits FRM_HTFUNC[1:0] = 01. This causes the last byte written to the transmit FIFO to be fol-
lowed by the abort sequence upon transmission. Once a byte is tagged by a write to Tx HDLC register bits
FRM_HTFUNC[1:0] = 01, it cannot be cleared by subsequent writes.
When receiving a frame, the receiver recognizes the abort sequence whenever it receives a 0 followed by seven
consecutive ones. This status results in the abort bit, and possibly the bad byte count bit and/or bad CRC bits,
being set in the status of frame status byte which is appended to the receive data queue. The last bytes of user
data are assumed to be CRC bits and are placed in the queue in the regular HDLC mode. All subsequent
FRM_IDLE or flag bytes are ignored until a valid opening flag is received.
21.24.4 Receive IDLES
In accordance with the HDLC protocol, the HDLC block recognizes 15 or more contiguous received ones as idle.
When the HDLC block receives 15 contiguous ones, the receiver FRM_IDLE[7:0] bit, idle is set.
21.24.5 CRC
For a given frame of bits, 16 additional bits that constitute an error-detecting code are added by the transmitter. As
called for in the HDLC protocol, the frame check sequence bits are transmitted most significant bit first and are bit
stuffed. The cyclic redundancy check (or frame check sequence) is calculated as a function of the transmitted bits
by using the ITU-T standard polynomial:
x16 + x12 + x5 + 1
At the other end, the receiver performs the same calculation on the received bits after destuffing and compares the
results to an expected result. An error occurs if, and only if, there is a mismatch.
The transmitter can be instructed to transmit a corrupted CRC by setting the transmit bad CRC bit DXBCRC
(DCI-DCR-1-B6). As long as the DXBCRC bit is set, the CRC is corrupted for each frame transmitted by logically
flipping the least significant bit of the transmitted CRC.
The receiver calculates and verifies the CRC for an incoming frame. The result of the CRC check is reported in
bit 7 of the status of frame byte, which is placed in the receive FIFO after the last data byte of the frame. The CRC
is stored in the FIFO at all times.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
526 Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.24.6 HDLC Mode
The receive queue manager forms a status of frame (SF) word for each HDLC frame and stores the SF word in the
receive HDLC FIFO after the last data byte of the associated frame. HDLC frames that include the payload and the
frame check sequence (FCS) bytes and consist of n bytes will have n + 1 bytes stored in the receive FIFO. The
FCS bytes of the received HDLC frame are stored in the receive FIFO.
21.24.7 Receive HDLC Tr ansparent Mode
The receive FIFO receives data from the receive framer and directly stores this data information bit-for-bit, least
significant bit first.
If the FRM_MODE[3:0] (Table 434 on page 301) and FRM_MATCH[7:0] (Table 454 on page 313) bits are set, the
receive HDLC FIFO will load data only after the matched pattern has been detected. The search for the match
character is in a sliding window fashion and data is aligned accordingly. The octet is aligned relative to the first
HDLC clock after frame alignment is established. The match character and all subsequent bytes are placed into
the receive FIFO. A receive reset command causes the receive to realign to the match character if enabled.
21.24.8 Receive HDLC
Data is presented to the TDM to channel conversion block from the TDM bus (see Figure 65). This block deter-
mines which channel, if any, the data belongs to. When data is found that belongs to a channel, it is sent to the
HDLC serial to parallel block. This block buffers up bits into bytes and does HDLC processing on channels so pro-
grammed. When a valid byte of data (or status) has been grouped together for a specific channel, that data is then
sent to the FIFOs interrupt block. Here, the data is further buf fered in separate FIFOs for each channel where data
can be read by the microprocessor.
5-9028(F)r.1
Figure 65. Receive HDLC Block Diagram
21.24.9 Receive HDLC Features
In transparent mode, bits are simply gathered into bytes with the option of waiting for an initial provisionable 8-bit
pattern to be detected before starting.
In HDLC mode, incoming data is correctly formatted and packetized according to the HDLC standard.
In HDLC mode, aborted packets, idle status, and CRC errors are checked for and reported.
TDM TO
CHANNEL
CONVERSION
HDLC
SERIAL-TO-PARALLEL
CHAN
ENABLE
TDM BUS
µP DATA
µP ADDR
µP CNTL
FIFOs/
INTERRUPTS
CHAN
DATA
TYPE
VALID
8
INTS.
LOOPBACK
FROM TX
DATA
1
INTERNAL
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
527Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
128 bytes of FIFO buffering for each channel with the ability to interrupt on end of packet (EOP), exceed pro-
grammable FIFO threshold or FIFO overrun.
Each channel has independent reset and enable. Reset will reset all state machines, disable the channel, reset
FIFO pointers, and clear pending interrupts. Disabling a channel will reset the state machine but not affect the
FIFO pointers or interrupts.
Any channel can be programmed to run from any combination of bits from any one time slot of either odd or even
(or both) frame num bers of any link.
A loopback mode (from transmit HDLC, through HDLC to FIFO) is supported.
Channels will not operate if the corresponding link/framer goes out of frame (function is equivalent to channel
disabled).
Data is ignored if the link/framer is not in basic frame alignment.
Upon selection from the top level, the 128 bytes of FIFO per-channel can be converted into 512 bytes of FIFO,
with a quarter of the channels.
Data received from the receive framer is stored in the appropriate channel receive FIFO. In the HDLC mode, the
receiver also places a status of frame byte in the receive FIFO for every complete frame received. The receive
HDLC channel FIFO register bits FRM_HRCOUNT[9:0] (Table 458 on page 315) report the number of bytes av ail-
able for this particular channel since the last byte received by the HDLC receive block, regardless of how many
bytes were read by the host. The host loads the data from the RFIFO of the various channels through the micropro-
cessor interface.
5-9029(F)r.1
Figure 66. Transmit HDLC FIFO Block Diagram
21.24.10 Transmit HDLC FIFO Features
In transparent mode, simply transform the data to a serial output.
In HDLC mode, correctly format and packetize the outgoing data bits.
In HDLC mode, send normal packets (close with flag) or abort packets (via command or absence of data).
Provide 128 bytes of FIFO buffering for each channel with the ability to interrupt on packet done, below program-
mable FIFO threshold or underrun (FIFO empty in middle of packet).
Each channel has independent reset and enable. Reset will reset all state machines, disable the channel, reset
FIFO pointers, and clear pending interrupts. Disabling a channel will reset the state machine but not affect the
FIFO pointers or interrupts.
TDM TO
CHANNEL
CONVERSION
FIFOs/
INTERRUPTS
CHAN
DATA
ENABLE
TDM BUS
µP DATA
µ
P ADDR
µP CNTL
HDLC/
PARALLEL-TO-
SERIAL
CHAN
DATA
TYPE
VALID
8
ACK/UNDERFLOW
LOOPEN
TDMEN
CHAN
INTS.
PRM
INFO
1
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
528 Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
Any channel can be programmed to run for any combination of bits for any one time slot of either odd or even (or
both) frame numbers of any link.
A local loopback is supported. (From transmit FIFO through the HDLC back to the receive FIFO.)
The PRM data is received from the framer performance monitoring block approximately once per second per
link. If the link is enabled to send PRM data, then the PRM packet will be sent as the next packet on that link. The
PRM packet contains data for the current and three previous seconds. The format of the PRM packet is shown in
Table 599 on page 514.
Table 608. Performance Report Message Structure
In Table 608, the flags (octet 1 and 15) are normal HDLC flags (note that the CFLAGS bit must be programmed to
1 to force nonshared flags), SAPI = 001110, C/R is programmable, EA = 0 in octet 2 and 1 in octet 3, TEI =
0000000, control = 00000011. Octets 5 and 6 contain the most recent data received from the performance monitor
(except U1, U2, R = 0 always). Octets 7 and 8 contain the same data from the previous second. Octets 9 and 10
contain data from the second before that (antepenultimate second) and octets 11 and 12 contain data for the sec-
ond before that. The FCS is automatically generated by the HDLC.
The data normally received from the performance monitor will be initialized to all zeros.
Transmit HDLC data is loaded into the channel transmit FIFO (TFIFO) via the Tx HDLC channel data bits
FRM_HTDATA[7:0] (Tab le 450 on page 312). Multiframes can be placed in the Tx HDLC FIFO. In HDLC mode,
the final byte of each frame is marked by writing the Tx HDLC FRM_HTFUNC[1:0] (Table 450) bits to the appropri-
ate value. The transmit HDLC channel count register indicates how many additional bytes can be added to the Tx
HDLC FIFO. The transmitter empty (Tx HDLC FRM_HTTHRSH (Table 448 on page 311)) interrupt bit is set in the
HDLC interrupt status register when the TFIFO is below the number of bytes specified in the threshold registers.
A Tx HDLC FRM_HTDONE interrupt occurs for each HDLC frame completed.
In HDLC mode, a Tx HDLC FRM_HTUND (Table 448 on page 311) interrupt is generated if the transmitter under-
runs. There is no interrupt indicated for a transmitter overrun that is writing more data than empty spaces exist.
Overrunning transmitter data is ignored, which results in missing data in the frame.
Octet Number PRM B7 PRM B6 PRM B5 PRM B4 PRM B3 PRM B2 PRM B1 PRM B0
1FLAG
2SAPIC/REA
3 TEI EA
4 Control
5 G3LVG4U1U2G5SLG6
6 FE SE LB G1 R G2 Nm NI
7 G3LVG4U1U2G5SLG6
8 FE SE LB G1 R G2 Nm NI
9 G3LVG4U1U2G5SLG6
10 FE SE LB G1 R G2 Nm NI
11 G3 LV G4 U1 U2 G5 SL G6
12 FE SE LB G1 R G2 Nm NI
13—14 FCS
15 FLAG
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
529Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.25 Framer Phas e-Lo ck Lo op (PLL)
The Supermapper incorporates an internal PLL to generate transmit path line clocks for the framers at DS1 and E1
from an external system clock (device pin CLKIN_PLL (AD24)).
The external system clock is multiplied by an analog phase-locked loop (PLL) and fractionally divided down to
obtain the required line clock frequencies.
5-9075(F)
Figure 67. Framer PLL
The PLL may be programmed for eight different external system clocks with the device pins: MODE2_PLL (AB21)
(MSB), MODE1_PLL (AE24), and MODE0_PLL (AF24) (LSB), as shown in Table 609.
Table 609. Clock Mode Programming for PLL Mode Device Pins
The PLL is used when framer bit PLL_BYPAS = 0 (Table 313 on page 246). When PLL_BYPAS = 1, the PLL is
bypassed and an external clock at the system interface is used as the line clock. An example would be when the
framers are programmed for a CHI interface at 2.048 MHz and the frames are programmed for E1, the PLL may be
bypassed and the CHI system clock may be used as the line clock.
The PLL may be powered down when not in use with microprocessor register bit SMPR_MPU_CG_PWRDN set to
1 (Table 80 on page 72).
Clock Select MODE2_PLL, MODE1_PLL, MODE0_PLL System Clock Frequency (MHz) CLKIN_PLL
000 Reserved (do not use)
001 51.84
010 26.624
011 19.44
100 16.384
101 8.192
110 4.096
111 2.048
CLKIN_PLL
MODE2_PLL
MODE1_PLL
MODE0_PLL
ANALOG PLL
AND
FRACTIONAL DIVIDER
MPU REGISTER BIT
MPU_CG_PWRDN
CLOCKS TO
FRAMER BLOCK
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
530 Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.25.1 Framer Timing Selection
The following diagram shows the framer timing selection.
5-9076(F)r.1
Figure 68. Framer Block Transmit Path Timing Selection
Legend for Figure 68:
Device pins:
CLKIN_PLL (A D24 )—sy s tem cl ock into PLL.
MODE2_PLL (AB21)—PLL input clock frequency select pins.
MODE1_PLL (AE24).
MODE0_PLL (AF24).
Framer register bits:
FRM_MODE[3:0] (Table 434)—framing mode select (per link).
FRM_P LL_ BY PAS (Table 313)—transmit path clock select from PLL or external system interface (global).
FRM_SW_TRN (Table 313)—switching or transport mode select (global).
Framer internal signals:
tp_rclk—transmit path receive clock.
tp_tclk—transmit path transmit clock.
rs_gtclk—receive system global transmit clock (LINERXDATA[29] device pin D13).
rp_rclk—receive path receive clock.
21.26 System Interface
21.26.1 System Interface Introduction
The system interface of Supermapper can be programmed for several modes of operation:
Concentration Highway (CHI) Mode. This is the system interface on Agere’s current framers. It can be pro-
grammed to operate at 2.048 MHz, 4.096 MHz, 8.192 MHz, or 16.384 MHz clock rates (data rates up to
8.192 Mbits/s only). In this mode, a pair of global system clock and system frame sync (one for the transmit and
one for the receive direction) are required. This interface can be used, for example, to interface with the TSI device.
DS1
E1
PLL
CLKIN_PLL
MODE2_PLL
MODE1_PLL
MODE0_PLL
BUFFER x28
28
rs_gtclk
28
tp_rclk[1—28]
tp_tclk[1—128]
FRM_MODE[1—28][3:0]
FRM_PLL_BYPAS
FRAME
FORMATTER
BUFFER x28
128
TRANSMIT PATH
FRM_SW_TRN[1—28]
1
3rp_rclk_[1:28]
28
FRM_LOOP
TIMING
1
0
1
0
0
1
0
1
0
1
FRM_TXLBMD[1:0]
FRM_AUTOPLB
FRM_AUTOLLB
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
531Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
Parallel Bus System Interface Mode. This interface consists of a 17-bit wide parallel bus operating at
19.44 Mbits/s, 9 bits of which form a byte of data and a data parity bit while the other 8 bits contain the signaling
and control information. A clock and frame sync are expected in both the receive and transmit directions. For a
28-link device, only 1/3 of the bytes are populated. In the transmit direction, the unpopulated bytes are 3-stated,
while in the receive direction they are ignored. Three 28-link devices (Supermappers) can be connected in parallel
to the telecom bus for implementing an STS-3 (STM-1) rate interface.
Note: The Tx system is defined as the interface that sends data out of the chip and toward the system (non-
SONET) interface. The Rx system receives data from the system. These designations are opposite of the
path definitions for the Supermapper.
21.26.2 System Interface References/Standards
ITU G.783 characteristics of synchronous digital hierarchy (SDH) equipment functional blocks.
ITU Q.511 exchange interfaces towards other exchanges.
21.26.3 Transmit/Receive System Interface Features
The features supported in the system interface are summarized below:
Data rates of 2.048 Mbits/s, 4.096 Mbits/s, 8.192 Mbits/s, and 19.44 Mbyte/s.
Clock rates of 2.048 MHz, 4.096 MHz, 8.192 MHz, 16.384 MHz, and 19.44 MHz.
A global input clock and frame sync (CHI and parallel bus system interface modes).
Byte offset: 2.048 Mbits/s, 0—31 bytes.
Byte offset: 4.096 Mbits/s, 0—63 bytes.
Byte offset: 8.192 Mbits/s, 0—127 bytes.
Bit offset (CHI mode).
1/2-bit offset (CHI mode).
1/4-bit offset (CHI CMS mode).
Clock mode select (CMS) (CHI mode).
Associated signaling mode (ASM) (CHI mode).
Double time-slot mode, CHIDTS (CHI mode).
Double NOTFAS system time slot, FRM_DNOTFAS (Table 359 on page 261) (CHI and parallel bus system
interface modes).
Sampled clock edge for transmit system frame sync (CHI mode).
Global programmable stuffed time-slot position in DS1 mode (CHI mode).
Global programmable stuffed byte in DS1 mode (CHI and parallel bus system interface modes).
Global single time-slot loopback address for system or line.
Programmable automatic system AIS (loss of frame alignment).
Programmable automatic system AIS (CEPT CRC-4 multiframe alignment timer expiration).
On-demand transmission of system AIS.
Programmable even/odd parity generation (parallel bus system interface mode).
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
532 Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.26.4 Double NOTFAS System Time Slot (FRM_DNOTFAS) Mode
This mode is applicable to the CHI and parallel bus system interface modes (please reference Table 3 59 on
page 261.) In the default case (FRM_DNOTFAS = 0), both the FAS and NOTFAS time slots are transmitted by the
transmit system interface and expected by the receive system interface.
Setting FRM_DNOTFAS to 1 enables the NOTFAS time slot to be transmitted twice on the transmit system inter-
face in the NOTFAS and F AS time-slot (TS0) positions. Similarly, the receive system interface assumes time slot 0
will carry NOTFAS data that is repeated twice.
21.26.5 Transparent Mode
This mode is only used in the CHI mode. In the transparent DS1 mode, the transmit system interface inserts the
193rd bit of the DS1 frame in bit 7 (LSB) of the first stuffed time slot. The receive system interface takes bit 7 of the
first stuffed time slot and inserts it into the framing bit position (193rd bit on the TDM data bus).
In the transparent E1 mode, the transmit system maps 32 received time slots into the CHI time slots. Similarly, the
receive system maps the CHI time slots into the TDM bus time slots. The transmit frame formatter inserts TS0 of
the CHI (FAS/NOTFAS) into the TS0 of the frame based on the biframe alignment.
21.26.6 Loopbacks
Two forms of loopbacks are supported: single time-slot system loopback (STSSLB) and single time-slot line loop-
back (STSLLB), as shown in Figure 69 below. When FRM_STSSLB = 1 (Table 362), a single time slot from the
receive system interface selected using the configuration parameter FRM_TSLBA[4:0] (Table 362), is looped back
to the system. The idle code, programmable using the configuration registers (FRM_IDLE[7:0] (Table 361)), is
transmitted to the line in place of the looped back time slot.
When FRM_STSLLB = 1 (Table 362), a single time slot from the transmit system interface selected using the con-
figuration parameter FRM_TSLBA[4:0], is looped back to the line. The programmable idle code is transmitted to
the system in place of the looped back time slot.
5-9030(F)r.1
Figure 69. System Loopbacks
21.26.7 System AIS
The transmit system interface transmits AIS automatically to the system on the following conditions:
Loss of frame alignment in the frame aligner or the mapper block (provisionable using a configuration register
bit).
CEPT CRC-4 multiframe alignment timer expiration (provisionable using a configuration register bit).
On-demand AIS can also be sent to the system by setting the configuration register bit for the particular link
(FRM_MANAIS (Table 431)).
SYSTEM
LINE
ES
SINGLE TIME SLOT SYSTEM LOOPBACK
SYSTEM
LINE
ES
SINGLE TIME SLOT LINE LOOPBACK ES = ELASTIC STORE
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
533Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.26.8 Slip Detection
Controlled slips are performed on frame boundaries. Elastic store slip overflow and underflow is monitored with
status bits FRM_SLIPO and FRM_SLIPU (Table 405 on page 290). In the case of an underflow, an entire frame is
repeated. In the case of an overflow, an entire frame in skipped.
21.26.9 The Concentra tion Highway (CHI) Mode
This is the system interface on Agere’s framers. It can be programmed to operate at 2.048 MHz, 4.096 MHz,
8.192 MHz, or 16.384 MHz clock rates (data rates up to 8.192 Mbits/s only). In this mode, a pair of global system
clock and system frame sync (one for the transmit and one for the receive direction) is required. The offset between
the frame sync and bit 0 of time slot 0 is programmable in this mode. Figure 70 shows the transmit system interface
operating in the CHI mode. The data path (shown in bold arrows) passes through the slip buffer . Slips in the form of
buffer overflows or underflows are detected and reported in this mode. This interface can be used, for example, to
interface with the time-slot interchange (TSI) device.
5-9032(F)
Figure 70. CHI Mode of the Transmit System Interface
21.26.10 Nominal CHI Timing
Figure 71 illustrates nominal CHI frame timing. Double time-slot mode (CHIDTS) and associated signaling mode
(ASM) are disabled. The frames are 125 µs long and consist of 32 contiguous time slots when the 2.048 MHz data
rate mode is selected.
In DS1 frame modes, the CHI frame consists of 24 payload time-slots and eight stuffed (unused) time slots.
In CEPT frame modes, the CHI frame consists of 32 payload time slots:
TCHIDATA—output data to system.
RCHIDATA—input data to system.
TCHIFS—transmit CHI frame sync.
RCHIFS—receive CHI frame sync.
TS_D[28:1]
FRAME SLIP TS_GFS
TS_GCLK
RS_GCLK
RS_GTCLK
TCLK
RS_D[28:1]
RS_G
TDM
PLL
FANOUT 1
28
28
FRAME RATE
TFS
28
TDM
T R ANSMIT PATH
RECEIVE PATH TRANSMIT SYSTEM
RECEIVE SYST EM
FORMATTER ADAPTATION
BUFFER
ALIGNER BUFFER
TO
CROSSCONNECT
BLOCK (XC)
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
534 Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
5-8978(F)
* The position of the stuffed time is controlled by register bit FRM_STUFFL (Table 359 on page 261). FRM_ST UF F = 1 is shown.
Figure 71. Nominal Concentration Highway Interface Timing
TCHIFS/
125 µs
TCHIDATA FRAME 1
FRAME 1
FRAME 2
RCHIDATA FRAME 2
8.192 Mbits/s CHI:
FRAME 1
FRAME 2
RCHIDATA
4.096 Mbits/s CHI:
2.048 Mbits/s CHI:
TCHIDATA
FRAME 1
FRAME 2
HIGH IMPEDANCE
HIGH IMPEDANCE
24 VALID TIME SLOTS F RAME 2TCHIDATA
FRAME 2
RCHIDATA
DS1 FORMAT
FRAM E 1 FR AME 2
2.048 Mbits/s CHI:
RCHIDATA
TCHIDATA
or
CEPT FORMAT
32 VALID TIME SLOTS
24 VALID TIME SLOTS
7 STUFFED
SLOTS*
FRAME 1
RCHIFS
1 STUFFED SLOT
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
535Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.26.11 CHI Timing with CHI Double Time-Slot T iming (CHIDTS) Mode Enabled
Figure 72 illustrates the CHI frame timing when CHIDTS is enabled (bit FRM_CHIDTS (Table 359 on page 261))
and ASM is disabled (bit FRM_ASM (Table 359)). In the CHIDTS mode, valid CHI payload time slots are alternated
with high-impedance intervals of one time-slot duration. This mode is valid only for 4.096 Mbits/s and 8.192 Mbits/
s CHI rat e s.
5-8979(F)
Figure 72. CHIDTS Mode Concentration Highway Interface Timing
21.26.12 CHI Timing with Associated Signaling Mode Enabled
Figure 73 illustrates the CHI frame timing when the associated signaling mode is enabled (bit FRM_ASM
(Table 359 on page 261)) and the CHIDTS mode is disabled (bit FRM_C HIDTS (Table 359)). The frames are 125
µs long and consist of 32 contiguous 16-bit time slots when the 4.096 MHz CHI data rate mode is selected.
In DS1 frame formats, each frame consists of 24 time slots and 8 stuffed time slots. Each time slot consists of two
octets.
In CEPT modes, each frame consists of 32 time slots. Each time slot consists of two octets.
TCHIFS/
125 µs
TCHIDATA TS0
RCHIDATA
8.192 Mbits/s CHI
RCHIDATA
4.096 Mbits/s CHI
TCHIDATA HIGH IMPEDANCE
TS1 TS2 TS3
TS0 TS1 TS2 TS3
TS31 TS0
TS31 TS0
FRAME 1
TIME
SLOT
8 bits
TIME
SLOT
FRAME 2
TS0 TS1 TS31
TS31
TS0
TS0TS1TS0
TS4 TS30
TS4 T30
TS2 TS30
TS2 TS30
RCHIFS
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
536 Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
5-8980(F)
Figure 73. Associated Signaling Mode Concentration Highway Interface Timing
21.26.13 ASM 2-Byte Time-Slot Format
Table 610 illustrates the ASM time-slot format for valid channels.
Table 610. Associated Signaling Mode CHI 2-Byte Time-Slot Format for DS1 Frames
* X indicates bits that are undefined by the framer.
The identical sense of the received system P bit in the transmitted signaling data is echoed back to the system in the received signaling infor-
mation.
The DS1 framing formats require rate adoption from the line-interface 1.544 Mbits/s bitstream to the system-inter-
face 4.096 Mbits/s bitstream. The rate adoption results in the need for stuffed time slots on the system interface.
Table 611 illustrates the ASM format for T1 stuffed channels. The stuffed data and signaling bytes contain the pro-
grammable idle code in register FRM_STUFF[] (default = 7F (hex)).
DS1: ASM CHI Time Slot
Payload Data Signaling Information*
12345678ABCDXFG
P
TCHIFS/
125 µs
FRAME 1 FRAME 2
8.192 Mbits/s CHI:
RCHIDATA
4.096 Mbits/s CHI:
TCHIDATA FRAME 1
FRAME 1
FRAM E 2
FRAM E 2
HIGH IMPEDANCE
RCHIDATA
TCHIDATA
or
FRAME = 64 bytes: 32 DATA + 32 SI G NALI NG
DATA AND SIG NALING BYT E S ARE INTER LEAVED
SIGNALING 0DATA 0 SIGNALING 31 DATA 0DATA 31
FRAME
RCHIFS
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
537Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
Table 611. Associated Signaling Mode CHI 2-Byte Time-Slot Format for Stuffed Channels
* The default stuff byt e is shown.
21.26.14 CEPT: Time Slot 16 Signaling ASM 2-Byte Time-Slot Format
Table 612 illustrates the ASM time-slot format for valid CEPT E1 time slots.
Table 612. Associated Signaling Mode CHI 2-Byte Time-Slot Format for CEPT
* In the CEPT f ormats, these bits are undefined.
The P bit is t he parity-sense bit calculated over the 8 data bits, the ABCD bits, and the P bit. The identical parity-sense of the received system
P bit in the transmitted signaling data is echoed back to the system in the received signaling information.
21.26.15 CHI Offset Programming
To facilitate bit offset programming, two parameters are introduced: CEX is defined as the clock edge with which
the first bit of time slot 0 is transmitted; CER is defined as the clock edge on which bit 0 of time slot 0 is latched.
CEX and CER are counted relative to the edge on which the CHIFS signal is sampled. Values of CEX and CER
depend upon the values of the parameters described below.
The following three tables give decimal values of CEX and CER for various values of FRM_CMS (Table 359 on
page 261), FRM_TFSCKE (Table 359), FRM_RFSCKE (Table 367 on page 265), FRM_TOFF[2 :0] (Table 430 on
page 299), and FRM_ROFF[2:0] (Table 430). The byte (time slot) offsets are assumed to be zero in the following
examples.
Table 613. Programming Values for FRM_TOFF[2:0] and FRM_ROFF[2:0] when FRM_CMS = 0
Table 614. Programming Values for FRM_TOFF[2:0] when FRM_CMS = 1
Table 615. Programming Values for FRM_ROFF[2:0] when FRM_CMS = 1
ASM CHI Time Slot
Payload Data* Signaling Information*
0111111101111111
CEPT ASM CHI Time Slot
Payload Data Signaling Information
12345678ABCDX*X*X*
P
FRM_TFSCKE/
FRM_RFSCKE FRM_ROFF[2:0] or FRM_TOFF[2:0]
000 001 010 011 100 101 110 111 CER or
CEX
(decimal)
0 0 2 4 6 8 10 12 14
1 0 2 4 6 8 10 12 14
FRM_TFSCKE FRM_TOFF[2:0]
000 001 010 011 100 101 110 111 CEX
(decimal)
0 0 4 8 12 16 20 24 28
1 0 4 8 12 16 20 24 28
FRM_RFSCKE FRM_ROFF[2:0]
000 001 010 011 100 101 110 111 CER
(decimal)
0 0 4 8 12 16 20 24 28
1 0 4 8 12 16 20 24 28
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
538 Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
The offset is further determined by the use of four bits: FRM_THALFOFF, FRM_RHALFOFF, FRM_TQUAROFF,
and FRM_RQUAROFF (Table 430 on page 299). When the CHI clock and data rate are the same (FRM_CMS =
0), setting FRM_THALFOFF and FRM_RHALFOFF bits will increase the clock edge offset, CEX and CER, by one.
When the CHI clock is twice the data rate (FRM_CMS = 1), setting the FRM_THALFOFF and FRM_RHALFOFF
bits will increase the clock edge offset by two, and setting the FRM_TQUAROFF and FRM_RQUAROFF bits will
increase the clock offset by one.
The byte offsets FRM_TBYOFF[6:0] and FRM_RBYOFF[6:0] (Table 430) increment the offset one byte at a time.
When FRM_CMS = 0, the offset will increment by 16 clock edges; when FRM_CMS = 1, the offset will increment
by 32 clock edge s.
Figure 74 shows an example of the relative timing of CHI 2.048 Mbits/s data with the following parameters:
FRM_CMS = 0, FRM_TFSCKE, FRM_RFSCKE = 0, FRM_TQUAROFF = 0, FRM_RQUAROFF = 0.
FRM_THALFOFF = 1, FRM_TOFF[2:0] = 001, FRM_TBYOFF[6:0] = 0000000.
FRM_RHALFOFF = 0, FRM_ROFF[2:0] = 010, FRM_RBYOFF[6:0] = 0000000.
5-8983(F)
Note: CEX = 3 and CER = 4, Respectively
Figure 74. TCHIDATA and RCHIDATA to CHICK Relationship with FRM_CMS = 0
Figure 75 shows an example of the relative timing of CHI 2.048 Mbits/s data with the following parameters:
FRM_CMS = 1, FRM_TFSCKE = 0, FRM_RFSCKE = 0.
FRM_THALFOFF = 1, FRM_TQUAROFF = 1, FRM_TOFF[2:0] = 000, FRM_TBYOFF[6:0] = 0000000.
FRM_RHALFOFF = 1, FRM_RQUAROFF = 0, FRM_ROFF[2:0] = 001, FRM_RBYOFF[6:0] = 0000000.
CHI FRAME SYNC IS SAMPLED ON THE FALLING EDGE
12345678
BIT 0, TS 0 BIT 1, TS 0 BIT 2, TS 0
CEX = 3
CER = 4
BIT 0, TS 0 BIT 1, TS 0 BIT 2, TS 0
HIGH IMPEDANCE
RCHIDATA
TCHIDATA
TCHIFS/
TCHICK/
RCHICK
RCHIFS
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
539Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
5-8984(F)
Note: CEX = 3 and CER = 6, Respectively
Figure 75. CHI TCHIDATA and RCHIDATA to CHICK Relationship with FRM_CMS = 1
The timing figures shown are functional timing diagrams. See Section 5.5, Concentration Highway (CHI) Timing,
on page 48 in the Timing Characteristics Section of this data sheet for CHI interface and clock timing parameter
specifications.
21.26.16 The Parallel Bus System Interface Mode
This interface consists of a 16-bit wide parallel bus operating at 19.44 Mbyte/s, 9 bits of which form a byte of data
and a data parity bit while the other eight bits contain the signaling and control information (A, B, C, and D signaling
bits, F and G signaling state bits, P parity bit, and a don’t care bit). A clock and frame sync are expected in both the
receive and transmit directions. Figure 76, shows the transmit system interface in the parallel bus system interface
mode. The timing specifications for this interface are in Section 5.5, Concentration Highway (CHI) Timing, on page
48 of this data sheet. The offset between the frame sync and data is fixed in this mode.
5-9037(F)
Figure 76. Parallel Bus System Interface Mode of the Transmit System Interface
CHI FRAM E SYNC IS SAMPLED ON THE F ALLI NG ED G E
12345678
BIT 0, TS 0 BIT 1, TS 0
CEX = 3
CER = 6
BIT 0, TS 0
HIGH IMPEDANCE
RCHIDATA
TCHIDATA
TCHIFS/
TCHICK/
BIT 1, TS 0
RCHICK
RCHIFS
TS_D[16:1]
FRAME SLIP
TS_GFS
TS_GCLK
28
RS_GCLK
RS_GTCLK
TCLK
RS_D
[16:1]
RS_GFS
TDM
PLL
FANOUT 12828
FRAME RATE
TFS
28
TDM
TRANSMIT SYSTEM
RECEIVE SYSTEM
FORMATTER ADAPTATION
BUFFER
ALIGNER BUFFER
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
540 Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
At 19.44 MHz, the parallel bus system interface has 2430 clocks per 8 ms frame. To transfer 84 DS1s or 63 E1s
requires only 2016 clocks. The difference is made up by inserting stuffs onto the bus every so often. Since multiple
devices (three) will drive the bus, the stuff positions are also used to greatly simplify the timing when switching from
one device to another. Both DS1 and E1 use the same general method to drive the bus, which is as follows:
Send some stuffs, then device 0 sends TS0 for link 1 – n, then
Send some stuffs, then device 1 sends TS0 for link 1 – n, then
Send some stuffs, then device 2 sends TS0 for link 1 – n, then
Send some stuffs, then device 0 sends TS1 for link 1 – n, then
Etc.
21.26.17 Distributed Stuffing: DS1
For DS1, the parallel bus system interface time-slot arrangement is as follows:
Six stuff TSs | device 0, link 0—27 | six stuff TSs | device 1, link 0—27 | five* stuff TSs | device 2, link 0—2 |, etc.
Where * means in TSs 1, 5, 9, 13, 17, 21 six stuff time slots are inserted instead of five.
Hence, total time slots = (6 + 28 + 6 + 28 + 5 + 28) * 24 TSs + 6 extra stuff TSs = 2430 TSs.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
541Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
Table 616 shows the distribution of the time slots and stuffing in the STM-1 frame for the DS1 mode.
Table 616. Parallel System Bus Interface Time-Slot Arrangement for DS1
Link Number (R = Stuffed Time Slot)
TS1 DEV0 R R R R R R 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
DEV1 R R R R R R 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
DEV2 R R R R R R 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
TS2 DEV0 R R R R R R 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
DEV1 R R R R R R 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
DEV2 R R R R R 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
TS3 DEV0 R R R R R R 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
DEV1 R R R R R R 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
DEV2 R R R R R 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
TS4 DEV0 R R R R R R 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
DEV1 R R R R R R 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
DEV2 R R R R R 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
TS5 DEV0 R R R R R R 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
DEV1 R R R R R R 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
DEV2 R R R R R R 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
TS6 DEV0 R R R R R R 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
DEV1 R R R R R R 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
DEV2 R R R R R 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
TS7 DEV0 R R R R R R 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
DEV1 R R R R R R 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
DEV2 R R R R R 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
TS8 DEV0 R R R R R R 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
DEV1 R R R R R R 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
DEV2 R R R R R 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
. . .
Repeat TS5-TS 8 Format For TS9—TS12, TS13—TS16, TS17—TS20
. . .
TS21 DEV0 R R R R R R 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
DEV1 R R R R R R 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
DEV2 R R R R R R 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
TS22 DEV0 R R R R R R 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
DEV1 R R R R R R 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
DEV2 R R R R R 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
TS23 DEV0 R R R R R R 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
DEV1 R R R R R R 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
DEV2 R R R R R 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
TS24 DEV0 R R R R R R 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
DEV1 R R R R R R 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
DEV2 R R R R R 1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
542 Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.26.18 Distributed Stuffing: E1
For E1, the parallel bus system interface time-slot arrangement is as follows:
Five* stuff TSs | device 0, link 0—20 | four stuff TSs | device 1, link 0—20 | four stuff TSs | device 2,
link 0—20 |, etc.
Where * means in TS 0 three stuff time-slots are inserted instead of five.
Hence, total time slots = (5 + 21 + 4 + 21 + 4 +21) * 32 TSs – 2 TSs skipped in TS 0 = 2430 TSs.
Table 617 shows the distribution of the time slots and stuffing in the STM-1 frame for the E1 mode.
Table 617. Parallel System Bus Interface Time-Slot Arrangement for E1
Table 618. PSB System I/O Definition
Link Number (R = Stuffed Time Slot)
TS0 DEV0 RRR1234 5 6 7 8 9 101112131415161718192021
DEV1 RRRR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
DEV2 RRRR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
TS1 DEV0 R RRRR1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
DEV1 RRRR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
DEV2 RRRR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
TS2 DEV0 R RRRR1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
DEV1 RRRR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
DEV2 RRRR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
TS3 DEV0 R RRRR1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
DEV1 RRRR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
DEV2 RRRR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
TS4 DEV0 R RRRR1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
DEV1 RRRR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
DEV2 RRRR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
. . .
Repeat TS4 Format For TS5TS30
. . .
TS31 DEV0 R RRRR1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
DEV1 RRRR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
DEV2 RRRR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
Name Definition
TS_D[ ], RS_D[] [16:9] Time-Slot Data [msb:lsb].
TS_D[ ], RS_D[] [8] Data Parity.
TS_D[ ], RS_D[] [7] Signaling A-bit.
TS_D[ ], RS_D[] [6] Signaling B-bit.
TS_D[ ], RS_D[] [5] Signaling C bit.
TS_D[ ], RS_D[] [4] Signaling D-bit.
TS_D[ ], RS_D[] [3] Signaling F-bit.
TS_D[ ], RS_D[] [2] Signaling G-bit.
TS_D[ ], RS_D[] [1] Signaling Parity.
TS_GCLK, RS_GCLK System Global Clock [19.44 MHz].
TS_GFS, RS_GFS System Frame Sync.
RS_GTCLK External Global Transmit Line Clock (CEPT-2.048 MHz, T1-1.544 MHz). Only required if
internal framer PLL is not used.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
543Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.26.19 Drive to 3-State and 3-State to Drive Timing
The minimum number of stuff time-slots is 3 (in the E1 mode). This allows enough time to switch the bus between
devices. The device on the bus can drive the bus high for one extra clock cycle to ensure a fast rise time. The
device then 3-states while the bus is pulled high, using a pull-up resistor. Optionally, the next device starts driving
early for one clock cycle to ensure that there is minimal delay between the clock and data outputs (the turn-on
delay of the buffer is eliminated by turning on the buffer one clock cycle early). The timing for the case of three stuff
time-slots is shown in the Figure 77. (In the receive direction from the switch, it is assumed the stuff time-slots are
driven to 1.)
5-8992(F)
Figure 77. Parallel Bus System Interface Turnaround Timing
See Section 5.6, Parallel System Bus Timing, on page 49 for PSB receive and transmit interface and clock timing
parameter specifications.
21.27 Serial Multiplex Interface
The network serial multiplexed interface (NSMI) provides a no-slip capability for transfer of multiple framed DS1s
and/or E1s from one device to another using a very narrow interface. A no-slip interface is widely used in datacom
and IMA applications. There are two NSMI interface modes of operation requiring either six or eight signals to be
used.
Mode 1 uses six primary signals. The six primary signals are composed of three transmit and three receive signals.
The transmit signals are LINETXCLK29 (R24), LINETXDATA29 (T23), and LINETXSYNC29 (R26). The receive
signals are LINERXCLK29 (B13), LINERXDATA29 (D13), and LINERXSYNC29 (A13). Each group of three signals
provide clock, data, and control information.
The data and link number specified by the LINETXDAT A29 and LINETXSYNC29 will be received in the same order
by the receive side of the Supermapper after traversing the switch side of the system.
DEV 1 MAY DRIVE
DEV 0, LINK 0-N
PUL L E D HIGH
USING A PULL-U P
DEV 0 DRIVES
HIGH FOR ONE
EXTRA CLOCK
DEV 1, LINK 0-N
HIGH ONE CLOCK
CYCLE EARLY
RR
R
MINIMUM OF 3 STUFF TIMESLOTS
CYCLE
SYS DATA[I]
SYS CLK
DEV 0 ENA DRIVE HIGH-IMPEDANCE
DEV 1 ENA HIGH-IMPEDANCE DRIVE
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
544 Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.27.1 Signals (6-Pin Mode)
5-9100(F)r.2
Figure 78. Signals (6-Pin Mode)
LINERXCLK29 (B13)—Output of the switch, which is the LINETXCLK29, delayed.
LINERXDATA29 (D13)—Serial data sent out of the switch. The MSB is sent out first and, at the same time, the
first bit (start bit) of the LINERXSYNC29 is sent out.
LINERXSYNC29 (A13)—The control data, otherwise known as the serial ID (SID), is generated by the switch.
LINETXCLK29 (R24)—Clock signal is generated by the Supermapper.
LINETXDATA29 (T23)—Serial data is sent out of the Supermapper. The MSB is sent out first, and at the same
time, the first bit (start bit) of the LINETXSYNC29 is sent out.
LINETXSYNC29 (R26)—The control data, otherwise known as the serial ID (SID), is generated by the Super-
mapper.
Mode 2 uses the same six primary signals as mode 1, along with two additional transmit signals. Signal RXDA-
TAEN (AB19) is a clock signal generated by the Supermapper. Signal TXDATAEN (W22) contains control data in
the same format as the LINETXSYNC29 (R26) and LINERXSYNC29 (A13) signals. These two extra transmit sig-
nals from the Supermapper specify data links and data requested on the Supermapper NSMI receive ports. This
allows the Supermapper to receive links and data independent from those transmitted by the Supermapper.
21.27.2 Signals (8-Pin Mode)
5-9101(F)r.2
Figure 79. Signals (8-Pin Mode)
SUPERMAPPER
RECEIVE
SMI
TRANSMIT
INTERFACE
SWITCH
TRANSMIT
RECEIVE
LINERXCLK29
LINERXDATA29
LINERXSYNC29
LINETXCLK29
LINETXDATA29
LINETXSYNC29
RECEIVE
SMI
TRANSMIT
INTERFACE
SWITCH
TRANSMIT
RECEIVE
LINERXCLK29
LINERXDATA29
LINERXSYNC29
LINETXCLK29
LINETXDATA29
LINETXSYNC29
EXTRA
RECEIVE
EXTRA
TRANSMIT
RXDATAEN
TXDATAEN
SUPERMAPPER
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
545Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
LINERXCLK29 (B13)—Output of the switch, which is the LINETXCLK29, delayed.
LINERXDATA29 (D13)—Serial data sent out of the switch. The MSB is sent out first and, at the same time, the
first bit (start bit) of the LINE_RXSYNC29 is sent out.
LINERXSYNC29 (A13)—The control data, otherwise known as the serial ID (SID), is generated by the switch.
LINETXCLK29 (R24)—Clock signal is generated by the Supermapper.
LINETXDATA29 (T23)—Serial data is sent out of the Supermapper. The MSB is sent out first and, at the same
time, the first bit (start bit) of the LINETXSYNC29 is sent out.
LINETXSYNC29 (R26)—The control data, otherwise known as the serial ID (SID), is generated by the Super-
mapper.
RXDATAEN (AB19)—Clock signal is generated by the Supermapper.
TXDATAEN (W22)—The control data, otherwise known as the serial ID (SID), is generated by the Supermapper.
21.27.3 Timing Diagrams
Single Octet:
— Data is sent out on the LINETXDATA29 (T23) line serially with the MSB of the data first. The MSB is driven at
the same time the START bit of the LINETXSYNC29 (R26) signal is driven.
— Following the START bit, the FSYNC bit of the SID is driven. After the FSYNC bit, the LSB of the LINKNUMBER
is sent. Once the MSB of the LINKNUMBER is driven, the final bit of the SID is sent. This final bit is a reserved
bit and must be 0.
5-8990(F)r.2
Figure 80. Network Serial Multiplexed Interface (Single Octet)
Tab le 619. Ser ial ID
Multiple Octets:
— Single octets of data can be sent out consecutively. Any number of clocks can separate octets. During the time
when octets are separated, the LINETXSYNC29 line must be driven with a 1.
Name Bit Description
START 0 Start Bit.
0 = Start an octet. Bits 1 to 7 follow.
1 = Do not start an octet. Next bit is another bit 0.
FSYNC 1 Frame Sync Bit. Indicates whether the current byte corresponds to the first
byte in the frame or not.
0 = Not the fir st byte.
1 = Fir st byte.
LINKNUMBER[4:0] 6:2 Link Number. These bits indicate the link number of received/transmitted
data.
—7
Reserved. Must write to 0.
START fSYNC
LINKNUMBER[4:0]
SERIAL DATA
MSB LSB
LSB MSB
LINETXCLK29
LINETXDATA29
LINETXSYNC29
RESERVED
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
546 Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
5-9102(F)r.1
Figure 81. Network Serial Multiplexed Interface (Multiple Octets)
21.27.4 Time-Slot Sequencing
Link numbers—28 link numbers, numbered 1 to 28 in T1 mode, and 1 to 21 for E1 mode.
Note:Link numbers can start at 0 by setting FRM_LNKSTART (Table 359 on page 261) bit 8 at address 0x80050
to 0. This will cause the link numbers for T1 to be numbered 0—27 and for E1, 0—20.
In T1 mode, each of the 28 links has 24 time slots and should be numbered 1 to 24.
In E1 mode, each of the 21 links has 32 time slots and should be numbered 0 to 31.
The FSYNC (Table 619 on page 545) bit indicates that the data for the link is in the first time slot for that frame
(time slot 1 in T1 and time slot 0 in E1 mode).
Link data is sent out in any order. It is totally unpredictable. Time slots are sent in order and it is the job of the
switch to keep track of which time slot it receives.
Note: The order of the links sent out is in relation to the order in which the Supermapper framer receives the links.
Thus it is possible, for example, to receive all the time slots for link 5 and then start the next frame of data for
link 5 before link 10 completes its frame.
The minimum and maximum time between successive time slots on a link is calculated below for both DS1
and E1, using an NSMI bus clock of 51.84 MHz (19.3 ns clock period).
DS1:
Max time = (1 link time-slot interval) + (27 links * 8 bits * NSMI clk period) + (1 link bit time).
Max time = 5.2 µs + (27 * 8 * 19.3 ns) + (648 ns) = 10 µs.
Min time = (1 link time-slot interval) – (27 links * 8 bits * NSMI clk period).
Min time = 5.2 µs – (27 * 8 * 19.3 ns) = 1.0 µs.
E1:
Max time = (1 link time-slot interval) + (20 links * 8 bits * NSMI clk period).
Max time = 3.9 µs + (20 * 8 * 19.3 ns) = 7.0 µs.
Min time = (1 link time-slot interval) – (20 links * 8 bits * NSMI clk period).
Min time = 3.9 µs – (20 * 8 * 19.3 ns) = 0.8 µs.
21.27.5 Timing Between Transmit and Receive
6-Pin Mode. The Supermapper sends out the data and link information through the transmit signals. While it sends
data, it also expects data to be sent back for the same link number and time slot. The only requirement the Super-
mapper has is that it receives data at a constant time interval every time. For example, at clock 1, data and link
information was sent to the switch. Then at clock 16, data was sent back to the Supermapper. Thus, the time
taken to send data back was 15 clocks. During this time, the next link and data were sent to the switch at clock 9,
and the Supermapper must receive the second data requested at clock 24. The time interval must be constant. It
doesn’t matter how long, but it must be constant.
START
SERIAL DATAMSB LSB SERIAL DATA SERIAL DATA
START START
LINETXCLK29
LINETXDATA29
LINETXSYNC29
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
547Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
8-Pin Mode. As in the 6-pin mode, the Supermapper sends data and link information through the transmit signals.
However, in the 8-pin mode, it requests data through the extra transmit signals. The data is then expected to be
sent back for the same link number and time slot on the Supermapper’s receive signals. As in the 6-pin mode, the
only requirement is that it receives data at a constant time interval.
21.28 Superframer Host Interface
21.28.1 Superframer Register Addressing
Table 620 summarizes the current number of global and per-link/channel registers for each block.
Table 620. Current Number of Global and Per-Link/Channel Registers for Each Block
All of the block global registers will be combined with the top global register . Each block will receive a global select
and a per-link/per-channel select.
The block addressing is summarized below. An extra bit is used for future growth of global and link/channel regis-
ters.
Table 621 on page 548 describes the addressing scheme. Bit 14 is used to indicate whether a link or HDLC chan-
nel is selected (0 selects link and global registers; 1 selects HDLC registers). When an HDLC channel is to be
addressed, bits B13B8 indicate the HDLC channel numbers 063 (000000111111), bit B7 indicates the trans-
mit or receive paths, and bits B3—B0 indicate the register number. When a link is selected, bits B13—B9 indicate
the link numbers 1—28 (00001—11100), and bit B8 indicates the transmit and receive paths for the link.
Bits B7—B0 indicate the block and register number, as shown in the framer addressing map for the global and per-
link/channel registers of the Superframer, Table 621. Global registers are selected by setting B14—B9 = 000000,
selecting a block using bits B7—B4, and selecting a register using bits B3—B0.
Block Global Per-Link/Per-Channel
TOP 1 0/0
AR 0 2/0
RXP FF 0 2/0
TXP FF 0 2/0
RXP PM 15 19/0
TXP PM 15 19/0
RXP SYS 5 3/0
TXP SYS 1 2/0
RXP HDLC 6 0/8
TXP HDLC 6 0/8
RXP DL 0 9/0
TXP DL 0 9/0
RXP SIG 1 41/0
TXP SIG 1 36/0
RXP LC 0 1/ 0
TXP LC 0 1/0
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
548 Agere Systems Inc.
21 28-Channel Framer Block Functional Description (continued)
21.29 Superframe r Register Addressing
Table 621 summarizes the address map for the global and per-link/channel registers of the superframer:
Table 621. Framer Addressing Map for the Global and Per-Link/Channel Registers of the Superframer
21.29.1 Per Link Register Sections in the Above Table
SIG = Signaling (see Section 12.9.1, Signaling Per Link Registers, on page 272).
PM = Performance Monitor (see Section 12.3, Performance Monitor Global Registers, on page 250).
RDL = Receive (Facility) Data Link (see Section 12.11, Receive Facility Data Link Configuration and Status Regi sters, on
page 293).
TDL = Transmit (Facility) Data Link (see Section 12.12, Transmit Facility Data Link Configuration and Status Registers,
on page 295).
SYS = System Interface (see Section 12.13, System Interface, Arbiter, and Frame Formatter Mapping, on page 298).
AR = Arbiter (Framer) (see Section 12.2, Arbiter (Framer) Global Registers, on page 248).
FF = Frame Formatter (Transmit Framer) (see Section 12.16, Frame Formatter Per Link Registers, on page 305).
LC = Line Encoder/Decoders (see Section 12.18, Line Encoder/Decoder Per Link Registers, on page 308); RXP = 0 for
the line encoder and TXP = 1 for the line decoder.
HDLC = High-Level Data Link Control (see Section 12.19, HDLC Per Channel Configuration and Status Registers, on
page 309); RXP = 0 for the receive HDLC and TXP = 1 for the transmit HDLC.
RXP = High-Level Data Link Control (see Table 444 on page 309) RXP = 0 for the receive HDLC and TXP = 1 for the
transmit HLDLC.
Address Pins (ADDR15—ADDR0)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0Framer Global Registers
00000 0RXP = 0/
TXP = 1 0 0 0 0 Superframer Global
0 0 0 1 AR (Framer)
0 0 1 0 Per for mance Monitor
0 0 1 1 Per for mance Monitor
0100 HDLC
0 1 0 1 System Interfac e
0 1 1 0 Signaling
0 1 1 1 Frame Formatter
(Transmit Framer)
1000 Reserved
1 0 0 1 Receive Data Link
1 0 1 0 Transmit Data Link
1 Others Reserved
0Links 1—28 (00001—11100) Framer Functiona l Register Addresses
LNK4 LNK3 LNK2 LNK1 LNK0 0 SIG6 SIG5 SIG4 SIG3 SIG2 SIG1 SIG0
1 0 PM5 PM4 PM3 PM2 PM1 PM0
1 1 0 0 RDL3 RDL2 RDL1 RDL0
1 1 0 1 TDL3 TDL2 TDL1 TDL0
1 1 1 0 0 SYS2 SYS1 SYS0
111100AR1AR0
1 1 1 1 0 1 FF1 FF0
1 1 1 1 1 0 Res. Res.
111111LC1LC0
1HDLC Channels 1—64 (000000—111111) RXP = 0/
TXP = 1 000 Per-Channel Registe r
HDL9 HDL8 HDL7 HDL6 HDL5 HDL4 HDL3 HDL2 HDL1 HDL0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
549Agere Systems Inc.
22 Cross Connect (XC) Block Functional Description
Table of Con t en ts
Contents Page
22 Cross Connect (XC) Block Functional Description ..........................................................................................549
22.1 Cross Connect Introduction......................................................................................................................551
22.2 Cross Connect Features ..........................................................................................................................551
22.3 Cross Connect Block Diagram .................................................................................................................552
22.3.1 Framer to Cross Connect Overv iew ......... ....... ...... ...... .................... ...... ....... ...... ....... ...... .............. 553
22.3.2 External I/O to Cross Connect Overview ...................................................................................... 554
22.4 Cross Connect Connectivity Overview.....................................................................................................555
22.5 DS1/E1 Cross Connect............................................................................................................................556
22.5.1 DS1/E1 Connectivity Matrix .......................................................................................................... 557
22.5.2 DS1/E1 Register Definition ........................................................................................................... 557
22.6 Notes on the DS1 Cross Connect............................................................................................................559
22.6.1 D S1/E1 TPG ..... ....... ...... ....... ...... ....... ................... ...... ....... ...... ....... ................... ........................... 559
22.6.2 M13 DS1 /E1 Interf ace ........... ...... .................... ...... ...... ....... ................... ....... ...... ....... .................... 559
22.6.3 VT Mapper DS1 /E1 Interfac e ............. ...... ....... ................... ...... ....... ...... .................... ...... .............. 560
22.6.4 Digital Jitter Attenuator (DJA) Interface ........................................................................................ 560
22.6.5 Framer Interfac e ............ ....... ...... ....... ...... ....... ...... ...... ....... ................... ....... ...... ........................... 561
22.6.6 Framer System Interface .............................................................................................................. 562
22.6.7 Framer System Interface—PSB .................................................................................................... 562
22.6.8 Framer System Interface—CHI ..................................................................................................... 562
22.6.9 Framer System Interface—NSMI .................................................................................................. 564
22.7 DS2 Connectivity......................................................................................................................................564
22.7.1 M13 DS2 Interface (DS2 Cross Connect) ..................................................................................... 565
22.7.2 M12 MUX (Transmit Path) ....................... ....... ...... ...... ....... ...... ....... ...... ....... ...... ........................... 565
22.7.3 M12 DeMUX (Receive Path) ....... .................... ...... ...... ....... ...... .................... ...... ....... ...... .............. 567
22.7.4 M23 DeMUX (Receive Path) ....... .................... ...... ...... ....... ...... .................... ...... ....... ...... .............. 568
22.7.5 M23 MUX (Transmit Path) ....................... ....... ...... ...... ....... ...... ....... ...... ....... ...... ........................... 569
22.8 DS3 Connectivity......................................................................................................................................571
22.8.1 D S3 TPG/TPM Cross Connect ....................... ...... ...... ....... ................... ....... ...... ....... ...... ....... ....... 572
22.8.2 D S3 Basi c Cro ss Connect .......... .................... ...... ...... ....... ................... ....... ...... ....... .................... 573
22.8.3 NSMI Cross Connect .................................................................................................................... 574
22.9 Transmit and Receive Path Overhead Access Channel I/O Configuration..............................................575
Figures Page
Figure 82. Cross Connect Block Diagram.............................................................................................................552
Figure 83. Framer and Cross Connect..................................................................................................................553
Figure 84. DS1 Cross Connect Interface...............................................................................................................556
Figure 85. DS1E1 External I/O to M13..................................................................................................................560
Figure 86. Framer Line Interface Cross Connect..................................................................................................561
Figure 87. Framer System Interface—Parallel System Bus (PSB) .......................................................................562
Figure 88. Framer System Interface—Concentration Highway Interface (CHI) ....................................................563
Figure 89. DS2 Cross Connect Interface...............................................................................................................564
Figure 90. M12 MUX DS2 Output Cross Connect.................................................................................................566
Figure 91. M12 DeMUX Input DS2 Cross Connect...............................................................................................568
Figure 92. M23 DeMUX DS2 Output Cross Connect ............................................................................................569
Figure 93. M23 MUX DS2 Input Cross Connect....................................................................................................570
Figure 94. DS3 Cross Connect..............................................................................................................................571
Figure 95. DS3 Test-Pattern Cross Connect.........................................................................................................572
Figure 96. DS3 Basic Cross Connect....................................................................................................................573
Figure 97. NSMI Interface Cross Connect.............................................................................................................575
Figure 98. TPOAC and RPOAC Cross Connect ...................................................................................................576
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
550 Agere Systems Inc.
22 Cross Connect (XC) Block Functional Description (continued)
Tables Page
Table 622. Multifunction System Interface Programmable I/O ..............................................................................554
Table 623. DS3 Interface Programmable I/O.........................................................................................................555
Table 624. Transmit and Receive POAC Programmable I/O.................................................................................555
Table 625. Connectivity Within the Cross Connect Block......................................................................................555
Table 626. DS1/E1 Signal Connectivity Matrix......................................................................................................557
Table 627. Special XC_PDATA Source IDs for Source Block = 0 .........................................................................558
Table 628. Special XC_SYNC Source IDs for Source Block = 0...........................................................................558
Table 629. Special XC_ALCO Source IDs for Source Block = 0...........................................................................559
Table 630. Configuration of the Control Group......................................................................................................563
Table 631. XC_PDATA Source IDs for LINETXDATA Routing with Source Block = 111 .......................................566
Table 632. XC_PDATA Source IDs for LINETXCLK Routing with Source Block = 111 .........................................566
Table 633. DS3 Connectivity .................................................................................................................................571
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
551Agere Systems Inc.
22 Cross Connect (XC) Block Functional Description (continued)
22.1 Cross Connect Introduction
The cross connect block is a highly configurable crosspoint switch for internal DS1/E1/DS2/DS3 signal connections
in the Supermapper. The cross connect allows flexible configuration of the Supermapper’s internal blocks to sup-
port a variety of applications. The internal 28-channel framer, VT mapper, SPE mapper, M13, digital jitter attenua-
tor, and test-pattern generator/monitor blocks or external device I/O pins can be interconnected with the
independent, nonblocking signal routing of the cross connect block.
22.2 Cross Connect Features
Configurable crosspoint interconnect for up to 28 DS1 signals or 21 E1 signals to/from the framer (or external
pins), and the same number of signal channels to/from the M13 and VT mapper. Also supports up to seven DS2
signals to/from the external pins or M12 MUXes, connecting to the M13 MUX M23 block. Also connects one DS3
signal to/from the external NSMI interface to the SPE, M13, or TPG blocks. Any mix of DS1, E1, DS2, or DS3
signals may be interconnected.
Any transmitter (signal source) may be connected to any receiver (signal destination) in the DS1/E1 cross con-
nect. Multicast or broadcast operation (one port to many) is supported.
Jitter attenuation may also be inserted in-line on any DS1/E1 channel.
Note: Cascading of jitter attenuators is not allowed.
Standard network loopback or straightaway facility testing is supported for DS1/E1 and DS3. Any source or
transmitter may be replaced by a test-pattern generator capable of injecting idle, standards-based pseudoran-
dom bit sequence test patterns, or AIS (blue) alarm. Any sink or receiver may be replaced by a test-pattern mon-
itor, which can detect/count bit errors in a pseudorandom test sequence, loss of frame, or loss of sync.
Loopbacks may be configured to sectionalize a circuit for identifying faults or misconfiguration during out of ser-
vice maintenance.
Fast alarm channels are supported for VT mapper or M13 to framer interconnects for alarm indication signal (AIS
or blue alarm), and VT mapper only for remote alarm indicator (RAI or yellow alarm). This feature reduces the
propagation delay of the alarms by eliminating multiple integration of alarm conditions.
Supports M12, M23, or C-bit parity, M13, or VT group modes of operation.
Supports framer-only, transport (framer LIU, M13, and VT mapper), and switching (CHI and PSB) modes of oper-
ation.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
552 Agere Systems Inc.
22 Cross Connect (XC) Block Functional Description (continued)
22.3 Cross Connect Block Diagram
The following diagram illustrates the high-level interface between the XC block and other functional blocks.
5-9180(F)r.5
Figure 82. Cross Connect Block Diagram
CROSS
CONNECT
CONTROL INTERFACE
M12_DS2_DATA/CLK
DS3_DATA/CLK
DS1_DATA/CLK/STFREQ
M23_DS2_DATA/CLK/STFREQ
DS1_DATA/CLK/FSYNC
AUTO AIS
RAI
M13
VT
MAPPER
DS1_DATA/CLK/FSYNC
RAI 28-
DS1_DATA/CLK/FSYNC
TEST
GEN/MON
TPM
TPG
EXT.
I/O
DS1_STFREQ
AUTO AIS
DS1_DATA/CLK
ATTENUATOR
DIGITAL
PTRADJ
PTRADJ
AUTO AIS
T/R_POAC
DS3_DATA/CLK
DS1_E 1 D S2_AISCLK
DS1_AISCLK
E1_AISCLK
JITTER
PIN
(XC)
DS2_DATA/CLK
AUTO AIS
SPE
MAPPER DS3_DATA/CLK
CHANNEL
FRAMER
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
553Agere Systems Inc.
22 Cross Connect (XC) Block Functional Description (continued)
The cross connect can functionally be divided into three major sections: XC1 for DS1(E1), XC2 for DS2, and XC3
for DS3. Each section can be configured to establish interconnects between major functional blocks or connect
blocks to external I/O to establish an application. The DS1 and DS2 cross connects can establish the order of the
circuits to be multiplexed and demultiplexed in the transmission hierarchy. In addition, a programmable MUX is pro-
vided for selecting the path overhead access channel connection.
Literally hundreds of signals are interconnected. The cross connect is designed to simplify the configuration by
defining a set of sources and destinations. Signals such as data, clock, alarm, and control associated with an iden-
tified source and destination are bundled to simplify the cross connect configuration. Establishing a connection in
the configuration registers will interconnect the source group of signals to the destination group of signals.
It is important to note that the configuration information is not shared between major blocks. For example, a virtual
tributary is interconnected between the VT mapper and the framer. The cross connect can establish the intercon-
nect for data and clock and intelligently establish the proper interconnects for alarms and control. The framer block
and VT mapper are required to be properly configured for operation as a DS1 or E1 and selection of clock edge to
properly sample the data.
A brief overview of the framer block and the device external I/O pins is useful prior to a detailed description of the
cross connect block.
22.3.1 Framer to Cross Connect Overview
The framer block interface to the cross connect is subdivided into six defined interfaces for each of the 28 framers,
as shown in Figure 83. A brief explanation follows for establishing path and interconnect definition.
5-9181(F)
Figure 83. Framer and Cross Connect
FRM_TP_T, FRM_TP_R—transmit and receive interfaces for the framer transmit path (TP).
FRM_RP_T, FRM_RP_R—transmit and receive interfaces for the framer receive path (RP).
FRM_RS—Framer receive system inte rface (RS).
FRM_TS—Framer transmit system interface (TS).
Note: The receive system interface is associated with the transmit path and the transmit system interface is asso-
ciated with the receive path. The system interface definitions have been assigned based on historical con-
vention.
RP FRAME
ALIGNER RP FRAME
FORMATTER
TP FRAME
ALIGNER
TP FRAME
FORMATTER
RECEIVE
SYSTEM
TRANSMIT
SYSTEM
FRM_RS
FRM_TP_R
FRM_TP_T
FRM_RP_R FRM_RP_T
FRM_TS
TRANSMIT PATH
RECEIVE PATH
CROSS
CONNECT
CROSS
CONNECT
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
554 Agere Systems Inc.
22 Cross Connect (XC) Block Functional Description (continued)
The path designations assigned to the framer are consistent with established network definitions. Signals multi-
plexed up into the digital hierarchy form the transmit path. Signals demultiplexed from the digital hierarchy com-
prise the receive path.
In switching applications, concentration highway interface (CHI) or parallel system bus (PSB) signals will enter
through the external I/O and are cross connected to the receive system interface (top right side of Figure 83). The
signals will traverse the framer through the transmit path frame formatter and are cross connected to the internal
multiplexers/mappers (top left side of Figure 83). Signals demultiplexed from DS3 or demapped from SONET are
cross connected to the receive path frame aligner (bottom left side of Figure 83) traverse the framer , and are cross
connected from the transmit system interface to the external I/O pins (bottom right side of Figure 83).
In transport mode, line interface (LIU) signals will enter through the external I/O and are cross connected to the
transmit path frame aligner interface (top right side of Figure 83). The signals will traverse the framer through the
transmit path frame formatter and are cross connected to the internal multiplexers/mappers (top left side of
Figure 83). Signals demultiplexed from DS3 or demapped from SONET are cross connected to the receive path
frame aligner (bottom left side of Figure 83), traverse the framer, and are cross connected from the receive path
frame formatter to the external I/O pins (bottom right side of Figure 83) on to the LIUs.
Most applications will cross connect the framer interfaces FRM_TP_T and FRM_RP_R to the M13 MUX or VT
mapper. The framer interfaces FRM_RP_T and FRM_TP_R or the system interfaces FRM_TS and FRM_RS will
be cross connected to the external I/O of the multifunction system interface.
22.3.2 External I/O to Cross Connect Overview
The cross connect defines the connectivity of device pins associated with the DS3 (6 pins), STS-1 POAC (6 pins),
and the multifunction system interface (174 pins). Therefore, the cross connect plays a very large role in configur-
ing the functionality of the Supermapper from the applications viewpoint.
The multifunction system interface device pin’s connectivity may be configured to support DS1/E1 (LIU and serial
data/clock/sync), DS2 interfaces, channelized (DS0), and multiplexed system interfaces (CHI, PSB, or NSMI).
Table 622. Multifunction System Interface Programmable I/O
Pin Symbol Input/Output (I/O) Pin
LINERXDATA[1—28] I C13, A12, B11, B10, B9, D8, C8, A7, B6, D5, A4, A3, H5, F5, C2,
D2, E2, F4, G2, H1, J3, J4, K4, L4, M2, N1, P4, P3
LINERXDATA[29] I/O D13
LINERXCLK[1—29] I/O D12, C12, C11, C10, A9, B8, D7, C7, C6, C5, C4, C3, J5, B2, D3,
E3, F3, G3, G4, H2, J1, K3, L3, M3, M4, N2, P2, R4
LINERXSYNC[1—28] I B12, D1 1, D10, D9, C9, A8, B7, D6, B5, B4, B3, E6, K5, C1, D1, E4,
F2, G1, H3, H4, J2, K2, L2, M1, N3, N4, P1, R2
LINERXSYNC29 I/O A13
LINETXDATA[1—29] O R25, P26, N23, N24, M26, L25, K25, J25, H23, H24, G26, F25,
E23, D26, C26, E21, B24, B23, B22, D21, B20, A19, C18, D18,
D17, D16, B15, A14, T23
LINETXCLK[1—28] I/O R23, P25, N25, M23, M24, L24, K24, J26, H25, G23, G24, F24,
E24, D24, C24, B25, C23, C22, C21, C20, D20, B19, A18, C17,
C16, C15, D15, B14
LINETXCLK[29] I/O R24
LINETXSYNC[1—29] I/O P24, P23, N26, M25, L23, K23, J23, J24, H26, G25, F23, E25, D25,
C25, F22, A24, A23, D22, B21, A20, C19, D19, B18, B17, B16, A15,
C14, D14, R26
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
555Agere Systems Inc.
22 Cross Connect (XC) Block Functional Description (continued)
The DS3 external device pins may be configured to provide DS3 access to the M13, test-pattern generator , or SPE
mapper.
Table 623. DS3 Interface Programmable I/O
The SONET path overhead access channel (POAC) is configurable for access to the SPE mapper or TMUX.
Table 624. Transmit and Receive POAC Programmable I/O
22.4 Cross Connect Connectivity Overview
Table 625 describes the connectivity within the cross connect block.
Table 625. Connectivity Within the Cross Connect Block
1. Framer, M13, and VT mapper have limited self-loopback capability (no reordering).
2. RAI paths and frame sync paths supported.
3. Framer also has limited test-pattern capability.
4. AUTO AIS paths (fast AIS) supported. PTRADJ paths supported.
5. PTRADJ paths supported.
6. Jitter attenuator reordering or cascading (chaining) not expected.
7. Reference clock sources from DJA used by TPG.
8. Prohibited for DS3.
Pin Symbol Input/Output Pin
DS3POSDATAIN I M22
DS3NEGDATAIN I K22
DS3DATAINCLK I J22
DS3POSDATAOUT O R22
DS3NEGDATAOUT O P22
DS3DATAOUTCLK I N22
Pin Symbol Input/Output Pin
RPOACCLK O AE3
RPOACDATA O AD4
RPOACSYNC O AF4
TPOACCLK O AE4
TPOACDATA I AD5
TPOACSYNC O AC5
Destination
Source External
I/O Framer
RP_R Framer
TP_R Framer
RS M13
Mapper VT
Mapper Jitter
Attenuation TPM SPE
External I/O & % % % % % % T NSMI
Framer TP_T % T& X X % %2%T3X
Framer RP_T % X T& X X % % T X
Framer TS % X X T& X X X X X
M13 MUX % %4XX
X1 &%%4TDS3
VT Mapper % %2, 4 %X%
X1 &%
4, 5 TX
Jitter Attenuation J J J X J J X6J T7X
TPG T T T X T T T SELF8X
SPE NSMI/DS3 X X X DS3 X X T X
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
556 Agere Systems Inc.
22 Cross Connect (XC) Block Functional Description (continued)
The symbols in Table 625 and Table 626 are as follows:
Symbols:
% = Primary (expected) modes of operation.
X = Unsupported mode.
T = Test mode.
SELF = TPG->TPM self-test mode.
J = Jitter-attenuated signal mode.
& = Represents loopback path.
NSMI = NSMI mode only.
22.5 DS1/E1 Cross Connect
5-9182(F)r.5
Figure 84. DS1 Cross Connect Interface
CROSS
CONNECT
CONTROL INTERFACE
VT
MAPPER VTMPR (SOURCE_ID = 100)
(XC1)
TPG (SOURCE_ID = 000)
TPG
DJA_DS1/E1/DS2_AISCLK
REF CLKS
DJA
FRM_RP (SO URCE_ID = 110)
FRM_RP_T
FRM_TP (SOURCE_ID = 010)
FRM_TP_T
M13 (SOURCE_ID = 011)
EXT (SOURCE_ID = 001)
EXT I/O
VT
MAPPER
TPM
DJA
FRM_TP_R
FRM_RP_R
M13
XC_VDATA[1—28][7:0]
TPM[DS1 DATA,
XC_T_DS1/E1CLK
2
XC_JDATA[1—28][7:0]
XC_TP_RDATA[1—28][7:0]
XC_RP_RDATA[1—28][7:0]
XC_MDS1DATA[1—28][7:0]
XC_SYNC[1—29][7:0]
FRM_TS (SOURCE_ID = 111)
FRM_TS FRM_RS
XC_RS_D[1—28][7:0]
M13
PIN
EXT I/O
PIN
SOURCE DESTINATION
XC_PDATA[1—29][7:0]
LINERXCLK[1—29]
LINETXDATA[1—29]
LINETXSYNC[1—29]
XC_ALCO[1—29][7:0]
LINETXCLK[1—29]
DS 1 IDLE, E1 D A T A]
DJA (SOURCE_ID = 101)
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
557Agere Systems Inc.
22 Cross Connect (XC) Block Functional Description (continued)
22.5.1 DS1/ E1 Con necti vity Mat ri x
DS1/E1 signal connectivity matrix Table 626 below is a subset of Table 625 excluding the last row and column.
Table 626. DS1/E1 Signal Connectivity Matrix
Note:See Table 625 for symbol and footnote descriptions.
1. Framer, M13, and VT mapper have limited self-loopback capability (no reordering).
2. RAI paths and frame sync paths supported.
3. Framer also has limited test-pattern capability.
4. AUTO AIS paths (fast AIS) supported. PTRADJ paths supported.
5. PTRADJ paths supported.
6. Jitter attenuator reordering or cascading (chaining) not expected.
7. Reference clock sources from DJA used by TPG.
Each box represents a set of 28 or more output bundles from the cross connect (XC) block. A bundle consists of
three standard data path signals [normally DATA, CLK, and FS or STFREQ], plus, in many cases, AUTO AIS, and,
in some cases, RAI or PTRADJ signals.
22.5.2 DS1/E1 Register Definition
For every valid output signal (bundle) from the cross connect, one input signal (bundle) to the cross connect is
steered to the destination, first via a block select (one of 8) and then via a channel select (one of 28, except exter-
nal I/O, which is one of 29). Therefore, each box in Table 626 also represents thirty-two 8-bit source identifiers in
the register map.
Note: By specifying on a per-output basis, collisions are avoided and broadcast/multicast options are preserved
(i.e., multiple outputs may share the same source identifier). For E1 signals, only 3 out of 4 channels are
used (channel numbers that are even multiples of four are typically disallowed).
The crosspoint’s connectivity is determined by a set of source identifiers (SOURCE_IDs), one for each channel
leaving the crosspoint switch. A DS1/E1 (XC1) SOURCE_ID is therefore defined as follows:
Destination
Source External
I/O Framer
RP_R Framer
TP_R Framer
RS M13
Mapper VT
Mapper Jitter
Attenuation TPM
External I/O &%%%%% % T
Framer TP_T %T & X X % %2%T3
Framer RP_T %XT &X X % % T
Framer TS %X XT &X X X X
M13 MUX %%4XX
X1 & %%4T
VT Mapper %%2, 4 %X%
X1 &%
4, 5 T
Jitter Attenuation JJJXJ J X6J T7
TPG TTTXT T TSELF
Bit 76543210
SOURCE_ID SOURCE_BLOCK[2:0] CHANNEL_ID[4:0]
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
558 Agere Systems Inc.
22 Cross Connect (XC) Block Functional Description (continued)
The SOURCE_BLOCK[2:0] is defined as:
The CHANNEL_ID typically ranges from 1 to 28 (29 for EXT). Values 0, 30, and 31 (and usually 29 as well) are
unused.
The 000 index (TPG/special) has a separate, independent mapping to allow for DS2, DS3, or special connections
to the external pins as defined in the following tables. The above definitions cover registers:
XC_PIND_S RC[1— 15] (Table 463 on page 328), XC_FRP_SRC[1—14] (Table 464 on page 328),
XC_M13_S RC[1— 14] (Table 465 on page 328), XC_VT_SRC[1—14] (Table 466 on page 329),
XC_DJA_SRC[1—14] (Table 467 on page 329), XC_FTP_SRC[1—14] (Table 468 on page 329),
XC_FRS_SRC[1—14] (Table 469 on page 329), XC_PINS_SRC[1—15] (Table 477 on page 332),
XC_ALCO_SRC[1—15] (Table 478 on page 332), and XC_ TPM_ SRC [1—4 ] (Table 470 on page 330).
Table 627. Special XC_PDATA Source IDs for Source Block = 0
* For the 29th pin only.
Table 628. Special XC_SYNC Source IDs for Source Block = 0
* For the 29th pin only.
Index Block Identifier Index Block Identifier
000 TPG (Test-Pattern Generator)/Special 100 VTMPR (VT Mapper)
001 EXT (External I/O) 101 DJA (Jitter Attenuator)
010 FRM TP (Superframer) 110 FRM RP (Framer Line Interface)
011 M13 (M13 MUX) 111 FRM TS (Framer System Interface)
Blk Ch. Description Blk Ch. Description Blk Ch. Description Blk Ch. Description
0 0 TEST: DS1 0 8 Reserved 0 16 DS2 AIS 0 24 M13 NSMI*
1 TEST: DS1 Idle 9 Reserved 17 M23_DMX_DS2_1 25 SPE NSMI*
2 TEST: E1 10 Reser ve d 18 M23_DMX_ D S2 _2 26 FRM NSMI*
3 Reserved 11 Reserved 19 M23_DMX_DS2_3 27 Reserved
4 TEST: DS2 12 Reserved 20 M23_DMX_DS2_4 28 Reserved
5 Reserved 13 Reserved 21 M23_DMX_DS2_5 29 Reserved
6 Reserved 14 Reserved 22 M23_DMX_DS2_6 30 Reserved
7 Reserved 15 Reserved 23 M23_DMX_DS2_7 31 Reserved
Blk Ch. Description Blk Ch. Description Blk Ch. Description Blk Ch. Description
0 0 TEST: DS1 0 8 Reserved 0 16 DS2 AIS 0 24 M13 NSMI*
1 TEST: DS1 Idle 9 M12_DS2_OUT_1 17 M23_DMX_DS2_1 25 SPE NSMI*
2 TEST: E1 10 M12_DS2_OUT_2 18 M23_DMX_DS2_2 26 FRM NSMI*
3 Reserved 11 M12_DS2_OUT_3 19 M23_DMX_DS2_3 27 Reserved
4 TEST: DS2 12 M12_DS2_OUT_4 20 M23_DMX_DS2_4 28 Reserved
5 Reserved 13 M12_DS2_OUT_5 21 M23_DMX_DS2_5 29 Reserved
6 Reserved 14 M12_DS2_OUT_6 22 M23_DMX_DS2_6 30 Reserved
7 Reserved 15 M12_DS2_OUT_7 23 M23_DMX_DS2_7 31 Reserved
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
559Agere Systems Inc.
22 Cross Connect (XC) Block Functional Description (continued)
Table 629. Special XC_ALCO Source IDs for Source Block = 0
Since register information is generally not shared between other blocks and the XC block, the user is responsible
for correct programming of the crosspoint. That is, the user must ensure the consistency of the designation of DS1
(or J1) vs. E1 channels. Also, in the configuration of the M13 MUX, the user must ensure the correct allocation of
DS1/E1 vs. DS2 channels, as well as coordinating the designation or ordering of DS2 channels within the DS3 (in
the independent M12 MUX mode).
22.6 Notes on the DS1 Cross Conne ct
22.6.1 DS1/E1 TPG
DS1 test signals are available at any XC1 output channel by specifying value 000 in the SOURCE_ID field. The
CHANNEL_ID field is set to zero for standard DS1 test-data patterns and one for DS1 (framed) idle data.
E1 test signals are available at any XC1 output channel by specifying value 0 in the SOURCE_ID field. The
CHANNEL_ID field is set to two for standard E1 test-data patterns.
22.6.2 M13 DS1/E1 Interface
The user configures the M13 DS1(E1) connections from the crosspoint by loading the appropriate SOURCE_IDs
into the M13 crosspoint configuration registers.
The user may connect any valid DS1 or E1 (XC1 input) signal bundle from the framer, VT mapper, external I/O,
TPG, or DJA to any M13 input configured as a DS1 or E1 input. Each of the 28 possible M13 (DS1) or 21 possible
E1(J1) inputs may be assigned an XC1 source ID for the corresponding XC_MDS1DATA[1—28][7:0] (Table 465
on page 32 8 ) byte in the XC_M13_SRC[1—14] configuration registers. Since register information is not shared
between the M13 block and the XC1 block, the user is responsible for correct programming of the crosspoint by
ensuring the consistency of the designation of M13 vs. M12/M23 channels, as well as coordinating the designation
of DS1 vs. E1(J1) channels.
The cross connect block automatically supports independent signal paths for alarm indicator signal (AIS) on chan-
nels between the M13 and the framer.
The XC1 supports a mode where the M13 block provides the DS1/E1 clock out for data to be multiplexed in from
the external I/O device pins, as depicted in Figure 85. DS1/E1 low clock-out mode is enabled with register bit
XC_DS1ALCOEN = 1 (Table 474 on page 331). In this mode, the appropriate DS1 or E1 level clock is routed to the
LINERXCLK[1—29] device pin by programming the corresponding XC_ALCO[1—29][7:0] byte in registers
XC_ALCO_SRC[1—15] with the M13 SOURCE_ID = 011 and the channel ID of the selected M13 channel. The
LINERXCLK[1—29] clock output is used to clock in data from the associated LINERXDATA[1—29] device pin and
a stuff request input from the LINERXSYNC[1—29] device pin. In this mode, the M12 stuff time is determined
externally.
Blk Ch. Description Blk Ch. Description Blk Ch. Description Blk Ch. Description
0 0 Reserved 0 8 Reserved 0 16 Reserved 0 24 Reserved
1 Reserved 9 Reserved 17 M23_DS2CLKO_1 25 Reserved
2 Reserved 10 Reserved 18 M23_DS2CLKO_2 26 Reserved
3 Reserved 11 Reserved 19 M23_DS2CLKO_3 27 Reserved
4 Reserved 12 Reserved 20 M23_DS2CLKO_4 28 Reserved
5 Reserved 13 Reserved 21 M23_DS2CLKO_5 29 Reserved
6 Reserved 14 Reserved 22 M23_DS2CLKO_6 30 Reserved
7 Reserved 15 Reserved 23 M23_DS2CLKO_7 31 Reserved
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
560 Agere Systems Inc.
22 Cross Connect (XC) Block Functional Description (continued)
5-9183(F)r.2
Figure 85. DS1E1 External I/O to M13
22.6.3 VT Mapper DS1/E1 Interface
The user configures the VT mapper DS1/E1 connections from the crosspoint by loading the appropriate
SOURCE_IDs into the VT mapper crosspoint configuration registers.
The user may connect any valid DS1 or E1 signal bundle from the M13 MUX, framer, external I/O, TPG, or DJA
blocks to any VT mapper input. Each of the 28 possible DS1 or 21 possible E1 inputs may be assigned an XC1
source ID for the corresponding XC_VDATA[1—28][7:0] (Table 466 on page 329) byte in the XC_VT_SRC[1—14]
configuration registers. The user must ensure the consistency of the designation of DS1(J1) vs. E1 channels and
block interface parameters.
The cross connect block automatically supports independent signal paths for remote alarm indication (RAI), alarm
indicator signal (AIS), frame sync (byte-synchronous mode only), and signaling (out-of-band signaling) on chan-
nels between the VT mapper and the framer.
22.6.4 Digital Jitter Attenuator (DJA) Interface
The DJA block consists of up to 28 DS1 jitter attenuator channels or up to 21 E1 jitter attenuation channels. The
DS1 or E1 channels are cross connected from the VT mapper, M13 MUX, framer, external I/O interface, or test
interface, and the DJA outputs are returned to the crosspoint switch for cross connect to the destination. Test sig-
nals from the TPG will not require jitter attenuation, although this capability exits. The crosspoint cannot chain jitter
attenuators together serially (that is, DJA to DJA paths are not supported).
The user configures the DJA DS1(E1) outputs from the crosspoint by loading the appropriate SOURCE_IDs into
the DJA crosspoint configuration registers.
The user may connect any valid DS1 or E1 signal bundle from the external I/O pin, M13, VT mapper, framer, or
TPG blocks to any DJA input. Each of the 28 possible DS1 (J1) or 21 possible E1 inputs may be assigned an XC1
source ID for the corresponding XC_JDA TA[1—28][7:0] (Table 467 on page 329) byte in the XC_DJA_SRC[1—14]
configuration registers. The user must ensure the consistency of the designation of DS1(J1) vs. E1 channels.
The cross connect is provided with DS1 and E1 reference clocks from the DJA block. These 1X clocks are derived
from external AIS clock inputs, and are made available to the test-pattern generator block for use as the test-pat-
tern source clocks. The DJA block is responsible for the correct assignment of reference clocks to jitter attenuation
channels.
When a channel from the VT mapper is cross connected to a DJA channel, the bundled signals include receive
pointer adjustment information. For all other sources, the pointer adjustment signal is not required and is disabled.
M13
XC
EXTERNAL I/O
M13_DS1_DATA
M13_DS1_CLOCK
M13_DS1_CLOCK
M13_DS1_STUFF
LINERXDATA
LINERXCLK
LINERXSYNC
XC_MDS1DATA[1—28][7:0]
XC_ALCO[1—29][7:0]
REQUEST
BUNDLED SIGNALS
EXT I/O—SOURCE_ID = 001
XC1 SOURCE_ID = 011
REGISTER BIT XC_DS1ALCOEN
0 = DS1 EXTERNAL CLOCK IN
1 = DS1 M13 DEMUX CLOCK OUT
CHANNEL_ID = 1 TO 29
(DEM UX FROM M13)
—P IN SE L EC T
CHANNEL_ID FROM 1 TO 29
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
561Agere Systems Inc.
22 Cross Connect (XC) Block Functional Description (continued)
22.6.5 Framer Interface
The framer block can pass through a total bandwidth of one DS3. This may be formed from 28 DS1s or 21 E1s, or
any mix where a group of four adjacent DS1 channels may be substituted by three E1s. The DS1 or E1 channels
can be cross connected to the M13 MUX, VT mapper, external I/O interface, or test interface. The framer block pro-
vides extensive per-link loopback capability based on DS1/E1 standards.
As previously stated, special channels for AIS, RAI, frame sync, and signaling are enabled when the framer is
cross connected to the VT mapper.
The framer presents six interfaces to the cross connect as shown in Figure 83 on page 553. Although somewhat
flexible, most applications will cross connect the framer interfaces FRM_TP_T (XC1—source ID = 010) and
FRM_RP_R (XC1—destination = XC_RP_RDATA[1—28][7:0] (Table 464 on page 328)) to the M13 MUX or VT
mapper. If desired, the digital jitter attenuators may be inserted in this connection.
An example of an exception to this rule is the framer-only application where the Supermapper is used as a block of
28 framers with a CHI system interface. The 28 framers would interface line interface units with FRM_TP_T and
FRM_RP_R and the system with FRM_TS and FRM_RS entirely through the multifunction system interface device
pins.
Either end of the framer block may be configured to interface to line interface units as shown in Figure 86. In a
framer-only application, the FRM_TP_T and FRM_RP_R framer block interfaces with the LIUs. The FRM_RP_T
and FRM_TP_R framer block interfaces the LIUs in a transport application. If a dual-rail or bipolar LIU interface is
desired, the sync line is used as the negative-rail data.
The user configures the framer block connectivity by simply loading the appropriate source IDs into the
XC_TP_RDATA[1—28][7:0] (Table 468 on page 329), XC_RP_RDATA[1—28][7:0], and XC_RS_D[1—28][7:0]
(Table 469 on page 329) bytes of the framer crosspoint configuration registers: XC_FTP_SRC[1—28][7:0],
XC_FRP_SRC[1—28][7:0], and XC_FRS_SRC[1—28][7:0], respectively.
5-9184(F)r.1
Figure 86. Framer Line Interface Cross Connect
FRM
XC
EXTERNAL I/O
LINERXDATA
LINERXCLK
LINERXSYNC
LINETXDATA
LINETXCLK
LINETXSYNC
FRM_TP_TCLK
FRM_TP_TDATA
FRM_TP_TFS
XC_TP_RDATA
XC_TP_RCLK
XC_TP_RFS
XC_TP_RDATA[1—28][7:0]
3x29
3x28
3x29
3x28
3x28
3x28
XC_RP_RDATA[1—28][7:0]
XC_PDATA[1—29][7:0]
XC_SYNC[1—29][7:0]
FRM_TP_R
FRM_RP_R
FRM_TP_T
FRM_RP_T
XC1
XC_RP_RDATA
XC_RP_RCLK
XC_RP_RFS
FRM_RP_TCLK
FRM_RP_TDATA
FRM_RP_TFS
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
562 Agere Systems Inc.
22 Cross Connect (XC) Block Functional Description (continued)
22.6.6 Framer System Interface
The framer system interface FRM_TS/FRM_RS consists of bundles of data, clock, and/or sync/miscellany, that
may only be connected to the device external I/O pins. The system interface operates as the parallel system bus
(PSB), concentration highway (CHI), or network serial multiplexed interface (NSMI). Note that not all pins are used
in these configurations. The user should exercise caution in mixing the usage of the external pins between system
interface TS/RS usage and any other use.
Two register bits, XC_SI_CHI and XC_SYNC_FOR_DATA (Table 461 on page 327), and a group of seven 2-bit
parameters XC_CHI_MODE[1—7][1:0] (Table 462 on page 327) are used to assist with the configuration of the
system interface.
22.6.7 Framer System InterfacePSB
The framer system interface is configured for the parallel system bus as depicted in Figure 87. Program bit
XC_SI_CHI = 1 to select the PSB mode, and bit XC_SYNC_FOR_DA TA = 1 to allow the connecting of transmit sys-
tem data outputs to the LINETXSYNC[1—29] pins. The programming of the XC_CHI_MODE[1—7][1:0] bits is not
required.
The PSB configuration is completed by programming appropriate source IDs into the XC_RS_D[1—28][7:0]
(Table 469 on page 329) and XC_SYNC[1—29] (Table 477 on page 332) bytes of the XC_FRS_SRC[1— 14]
(Table 469) and XC_ PINS_S RC[1 —14 ] (Table 477 on page 332) XC1 crosspoint configuration registers.
5-9185(F)r.2
Figure 87. Framer System Interface—Parallel System Bus (PSB)
22.6.8 Framer System InterfaceCHI
The framer system interface is configured for CHI operation as shown in Figure 88. Program bit XC_SI_CHI = 0
(Table 461 on page 327) to select the CHI mode, and bit XC_SYNC_FOR_DATA = 1 (Table 461) to allow the con-
necting of transmit system data outputs to the LINETXSYNC[1—29] pins.
EXTERNAL I/O XC FRM_TS/FRM_RS
LINETXSYNC[4—1]
LINETXSYNC29
LINERXSYNC[16—1]
LINERXSYNC29
LINERXDATA29
LINERXCLK29
LINETXCLK29
TS_D[16—1]
RS_D[16—1]
TS_GCLK
TS_GFS
RS_GCLK
RS_GFS
RS_GTCLK
LINETXSYNC[16—13]
XC_RS_D[1—28][7:0]
XC_SI_CHI = 1
XC_CHI_MODE[1—7][1:0] = 00
XC_SYNC_FOR_DATA = 1
XC_SYNC[1—29][7:0]
XC1
FRAMER SYSTEM INTERFACE
AS PSB
Σ
Σ
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
563Agere Systems Inc.
22 Cross Connect (XC) Block Functional Description (continued)
The concentration highway interface can operate at data rates of 2.048 Mbits/s, 4.096 Mbits/s, and 8.192 Mbits/s.
The CHI interface allows a single system interface to support combining two or four DS1/E1s at 4.096 Mbits/s and
8.192 Mbits/s, respectively. Therefore, the 28-channel framer block may result in as many as 28 CHIs or as few as
seven combined CHIs, or a mix as determined by the specific needs of the application.
In addition to configuring the framers for the CHI mode, seven CHI mode parameters in the cross connect block
require configuration. The parameters are designated XC_CHI_MODE[1—7][1:0] (Table 462 on page 327). The
parameters divide the 28-framer CHI system interfaces, LINETXSYNC[1—29], into seven groups of four, LINETX-
SYNC[1—4], . . . , LINETXSYNC[25—28]. Each XC_CHI_MODE[1—7][1:0] parameter consists of 2 bits for config-
uration of the control group see Table 630.
Table 630. Configuration of the Control Group
For example, XC_CHI_MODE[4][1:0] = 01 configures LINETXSYNC[13] and LINETXSYNC[14] as individual
2.048 Mbits/s CHIs and combines LINETXSYNC[16] and LINETXSYNC[15] into a 4.096 Mbits/s output on
LINETXSYNC[16]. The LINETXSYNC[15] output can be used for T1/E1 line sync output.
5-9186(F)r.3
* See Table 462 on page 327.
Figure 88. Framer System Interface—Concentration Highway Interface (CHI)
XC_CHI_MODE[17][1:0] Description
00 All four links within the group are normal outputs at 2 Mbits/s or 4 Mbits/s.
01 Links 4i – 3 and 4i – 2 are normal outputs; links 4i – 1 and 4i are combined into a
single output on 4i; output 4i – 1 is used as T1/E1 line output, where i = 1 to 7.
10 Links 4i – 1 and 4i are combined into a single output on 4i; links 4i – 3 and 4i – 2 are
combined into a single output on 4i – 2; outputs 4i – 1 and 4i – 3 are used as T1/E1
line outputs.
11 All four links are combined into a single output on 4i; the other three outputs are
used as T1/E1 line outputs.
(;7(51$/,2
;&
)50B76)50B56
/,1(7;6<1&>²@
/,1(7;6<1&
/,1(5;6<1&>²@
/,1(5;6<1&
/,1(5;'$7$
/,1(5;&/.
/,1(7;&/.
76B'>²@
56B'>²@
76B*&/.
76B*)6
56B*&/.
56B*)6
56B*7&/.
/,1(7;6<1&>²@
;&B56B'>²@>@
;&B6,B&+, 
;&B&+,B02'(>²@>@ 
;&B6<1&B)25B'$7$ 
;&B6<1&>²@>@
;&
$6&+,
Σ
Σ
)5$0(56<67(0,17(5)$&(
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
564 Agere Systems Inc.
22 Cross Connect (XC) Block Functional Description (continued)
22.6.9 Framer System InterfaceNSMI
The network serial multiplexed interface (NSMI) connectivity is described in the DS3 cross connect connectivity
section and is shown in Figure 97 on page 575.
22.7 DS2 Connectivity
5-9187(F)r.2
Figure 89. DS2 Cross Connect Interface
The DS2 cross connect is used when the application requires the M13 and needs external I/O or maintenance for
DS2 signals. The DS2 cross connect provides full-split access at the DS2 level. Otherwise, the registers may be
program me d to the default valu es.
CROSS
CONNECT
CONTROL INTERFACE
TPG_DS2
MAPPER
M13
XC2_M21_[1—7][7:0]
M13:M12MUX
XC2
TPG
DS2
M12_DS2_IN
M23
TPM
TPM_DS2
M13:M23DEMUX XC2_MDS2M23DATA[1—7][7:0]
XC2_DS2M12CLK[1—7][7:0]
EXT I/O
PIN
MAPPER
M13
M12_DS2_OUT
M23
M12_DS2_OUT
EXT I/O
LINETXSYNC[1—29]
LINERXDATA[1—29]
LINERXCLK[1—29]
LINERXSYNC[1—29]
XC1
CROSS
CONNECT
DS1 XC1
CROSS
CONNECT
DS1
EXT I/O
PIN
LINETXSYNC[1—29]
LINETXDATA[1—29]
LINETXCLK[[1—29]
LINERXCLK[1—29]
XC_PDATA[1—29][7:0]
XC_ALCO[1—29][7:0]
(SOURCE_ID = 000)
(SOURCE_ID = 000)
ALL ACCESS TO EXTERNAL I/O PINS IS
THROUGH THE DS1/E1 CROSS CONNECT
USING A SOURCE_ID = 000
SOURCE DESTINATION
(SOURCE_ID = 00)
(SOURCE_ID = 01)
(SOURCE_ID = 10)
(SOURCE_ID = 11)
XC_SYNC[1—29][7:0]
(SOURCE_ID = 000)
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
565Agere Systems Inc.
22 Cross Connect (XC) Block Functional Description (continued)
The cross connect block supports DS2 mapping to/from the M13 MUX, TPG/TPM, and external pin I/O. Here, the
available sources are the M12 MUX or the M23 deMUX, a set of external I/O pins, or the test-pattern generator.
The DS2 crosspoint’s connectivity is determined by a smaller set of source 2 identifiers (SOURCE2_IDs), as
defined in the following table (covering registers XC2_M23_SRC[1—7] (Table 472 on page 330) and
XC2_TPM_SRC (Table 473 on page 331)):
The SOURCE2_BLOCK is defined as follows:
The CHANNEL2_ID typically ranges from 1 to 7. For test data from the TPG, the SOURCE2_BLOCK is set to 0
and the CHANNEL2_ID value four represents the DS2 test pattern. For DS2 signals routed from external pins to
the input of M23 MUX or TPM, the CHANNEL2_ID can range from 1 to 29. The above DS2 source ID definition
covers registers beginning with XC2.
Note: For certain DS2 signals routed to external pins, the XC1 cross connect is used and a special SOURCE_ID
(block 0) is programmed:
The SOURCE2_ID is defined as in Table 627 on page 558 to Table 629 on page 559. The user must ensure con-
sistency between the use of M13 vs. M12/M23 channels and external I/O channels.
22.7.1 M13 DS2 Interface (DS2 Cross Connect)
The DS2 full split access results in four sets of DS2 signals that can be routed through cross connect, essentially
providing access to the path between the seven M12 MUX/deMUXs and the M23 MUX/deMUX.
22.7.2 M12 MUX (Transmit Path)
The M12 MUX assembles three E1s or four DS1s into a DS2. The DS2 output data is clocked out by an external
DS2 rate clock as shown in Figure 90.
The DS2 rate clock is routed from an external pin, LINETXSYNC[14—8], through the cross connect to the M12, by
programming the XC2_DS2M12CLK[1—7][7:0] (Table 471 on page 330) bytes in the DS2 cross connect registers
XC2_M12_SRC[1—7] (Table 471) with a source2 ID = 11 (external I/O) and a channel select of 1 to 7. The channel
select value of 1 to 7 selects the clock from pins LINETXSYNC[8] to LINETXSYNC[14], respectively.
The DS2 data is routed through the DS1 cross connect to the external pins, LINETXSYNC[7—1], by programming
the XC_SYNC[1—29] (Table 477 on page 332) bytes in the XC_PINS_SRC[1—14] DS1 cross connect registers
with a source ID = 000 and a channel select as defined in Table 628 on page 558. A channel select value of 9 to 15
selects the external pin LINETXSYNC[1] to LINETXSYNC[7], respectively.
Bit 7 6 5 43210
SOURCE2_ID 0 SOURCE2_BLOCK[1:0] CHANNEL2_ID[4:0]
Index Block2 Identifier
00 TPG (DS2 Test-Pattern Genera tor)
01 M13:M12 MUX
10 M13:M23 DeMUX
11 External I/O
Bit 76543210
SOURCE2_ID 0 0 0 CHANNEL2_ID[4:0]
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
566 Agere Systems Inc.
22 Cross Connect (XC) Block Functional Description (continued)
5-9188(F)r.3
Figure 90. M12 MUX DS2 Output Cross Connect
There is another way to route DS2 signals for M12 MUXes through LINETXDATA and LINETXCLK pins, if avail-
able, by setting the block ID of XC_PDATA_Source_ID to 111 (refer to the Table on page 557). This configuration
is capable of supporting DS2 demand clocking operation. In DS2 demand clocking mode, the LINETXCLK pins act
as outputs; otherwise, they are input pins carrying incoming DS2 clocks. Depending on the clocking scheme, the
channel ID can be set up based on the following tables.
Table 631. XC_PDATA Source IDs for LINETXDATA Routing with Source Block = 111
Table 632. XC_PDATA Source IDs for LINETXCLK Routing with Source Block = 111
I/O Ch. Description I/O Ch. Description I/O Ch. Description I/O Ch. Description
O 0 Reserved O 8 Reserved O 16 Reserved O 24 Reserved
O 1 M12_DS2DAT_ O 9 M12_DS2DAT_1 O 17 M12_DS2DAT_1 O 25 Reserved
O 2 M12_DS2DAT_ O 10 M12_DS2DAT_2 O 18 M12_DS2DAT_2 O 26 Reserved
O 3 M12_DS2DAT_ O 11 M12_DS2DAT_3 O 19 M12_DS2DAT_3 O 27 Reserved
O 4 M12_DS2DAT_ O 12 M12_DS2DAT_4 O 20 M12_DS2DAT_4 O 28 Reserved
O 5 M12_DS2DAT_ O 13 M12_DS2DAT_5 O 21 M12_DS2DAT_5 O 29 Reserved
O 6 M12_DS2DAT_ O 14 M12_DS2DAT_6 O 22 M12_DS2DAT_6 O 30 Reserved
O 7 M12_DS2DAT_ O 15 M12_DS2DAT_7 O 23 M12_DS2DAT_7 O 31 Reserved
I/O Ch. Description I/O Ch. Description I/O Ch. Description I/O Ch. Description
O 0 Reserved O 8 Reserved O 16 Reserved O 24 Reserved
O 1 DS2_AISCLK O 9 DM12_DS2CLK_1 I 17 M12_DS2CLK[7:1]
input through
LINETXCLK pins,
the actual routings
are determined by
XC2_DS2M12CLK
SOURCE ID
O 25 Reserved
O 2 DS2_AISCLK O 10 DM12_DS2CLK_2 I 18 O 26 Reserved
O 3 DS2_AISCLK O 11 DM12_DS2CLK_3 I 19 O 27 Reserved
O 4 DS2_AISCLK O 12 DM12_DS2CLK_4 I 20 O 28 Reserved
O 5 DS2_AISCLK O 13 DM12_DS2CLK_5 I 21 O 29 Reserved
O 6 DS2_AISCLK O 14 DM12_DS2CLK_6 I 22 O 30 Reserved
O 7 DS2_AISCLK O 15 DM12_DS2CLK_7 I 23 O 31 Reserved
M13
XC
EXTERNAL I/O
M12_DS2_DATA_OUT
XC2_DS2M12CLK
LINETXSYNC[7—1]
LINETXSYNC[14—8]
XC2_DS2M12CLK[1—7][7:0]
XC_SYNC[1—29][7:0]
SOURCE_ID = 000
XC1
XC2
CHANNEL_ID 9 TO 15
LINETXDATA[29—1]
LINERXCLK[29—1]
DS2_AISCLK
XC_DATA[1—29][7:0]
SOURCE_ID = 111
CHANNEL_ID 1TO 7
LINETXCLK[29—1]
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
567Agere Systems Inc.
22 Cross Connect (XC) Block Functional Description (continued)
The register XC2_DS2M12CLK SOURCE ID is defined as:
The register can be programmed to route DS2 clocks from various sources based on the following table:
22.7.3 M12 DeMUX (Receive Path)
The M12 deMUX disassembles a DS2 into three E1s or four DS1s. The routing of DS2 data and clocks to M12
DeMUX is controlled by the registers XC2_M21_SRC[1:7], which are defined as:
The routings are based on the following table:
When bits 7—5 of XC2_M21_SRC set to 100, the user also needs to set bits 7—5 of the related register
XC_ALCO_SOURCE_ID(I) to 001, as well as the appropriate channel value to ensure the demand clocking opera-
tion.
The DS2 input has six connection options, as shown in Figure 91 on page 568.
The external I/O inputs for DS2 clock and data are cross connected by programming bytes, XC2_M21[1—7][7:0]
(Table 471 on page 330) in configuration registers XC2_M12_SRC[1—7], with a source2 ID = 11, and a channel
select of 1 to 7. The channel select value of 1 to 7 selects DS2 data from device pins LINETXSYNC[15] to LINETX-
SYNC[21] and selects DS2 clock from LINETXSYNC[22] to LINETXSYNC[28], respectively.
A DS2 signal loopback may be performed for the M12 MUX/deMUX by programming the XC2_M21[1—7][7:0]
(Table 471) byte in the XC2_M12_SRC[1—7] registers with a source2 ID = 01 and a channel select of 1 to 7. Cross
connecting among the seven channels is supported. For example, the output of M12 MUX 1 may be connected to
the input of M12 deMUX 5.
The TPG may be cross connected to the M12 deMUX DS2 inputs by programming the XC2_M21[1—7][7:0] byte in
the XC2_M12_SRC[1—7] registers with a source2 ID = 00 and a channel ID = 4. The connection is not useful
because the DS2 pattern generator is limited to sending unframed pseudorandom data patterns that cannot be
demultiplexed into DS1s or E1s.
Bit 7 6 5 43210
SOURCE2_ID 0 SRC2_BLK[2:0] CHANNEL2_ID[4:0]
SRC2_BLK CHANNEL2_ID Function
00 1 to 7 DS2 Clocks Sourced from LINETXSYNC[8:14]
01 1 to 29 DS2 Clocks Sourced from LINETXCLK[1:29]
10 1 to 29 DS2 Clocks Sourced from LINERXCLK[1:29]
11 Don’t Care DS2 Clocks Sourced from PIN_DS2_AISCLK
Bit 7 6 5 43210
SOURCE2_ID SRC2_BLK[2:0] CHANNEL2_ID[4:0]
SRC2_BLK CHANNEL2_ID Function
000 4 DS2DATA/CLK from TPG
001 1 to 7 DS2DATA/CLK from M12 MUX
010 1 to 7 DS2DATA/CLK from M23 DEMUX
011 1 to 7 DS2DATA/CLK from Pin LINETXSYNC[21:15]/LINETXSYNC[28:22]
100 1 to 29 DS2DATA/CLK from Pin LINERXDATA[29:1]/PIN_DS2_AISCLK
101 1 to 29 DS2DATA/CLK from Pin LINERXDATA/CLK[29:1]
Others Don’t Care Not Valid
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
568 Agere Systems Inc.
22 Cross Connect (XC) Block Functional Description (continued)
5-9189(F)r.3
Figure 91. M12 DeMUX Input DS2 Cross Connect
22.7.4 M23 DeMUX (Receive Path)
The M23 deMUX disassembles a DS3 into 7 DS2 signals. The M23 deMUX can cross connect DS2 data and clock
out to external pins and/or the test-pattern monitor, as shown in Figure 92 on page 569.
The M23 DS2 data and clock are connected to external I/O by programming the XC_PDATA[1—29] (Tabl e 46 3 on
page 328) bytes in the DS1 cross connect registers XC_PIND_SRC[1—15] with a source ID = 000 and a channel
select value from Table 627 on page 558. The channel select value of 17 to 23 (decimal) routes DS2 data out from
DS2 deMUX 1 to 7 to the external I/O pins LINETXDATA[1—29] and LINETXCLK[1—29], as selected by program-
ming one of the 29 XC_PDATA[1—29] bytes.
For example, to connect the DS2 data and clock outputs from M23 deMUX 4 to the LINETXDATA[19] and
LINETXCLK[19] device pins, program the XC_PDATA19 byte in register XC_PIND_SRC10 (Table 463 on
page 328) for a source ID = 000 (binary) and a channel ID = 20 (decimal) XC_PDATA19 = 00010100 (binary).
The demultiplexed DS2 may be connected to the test-pattern monitor (TPM) by programming the
XC2_TSOURCE_ID (Table 473 on page 331) byte in register XC2_TPM_SRC with a source ID of 10 and a chan-
nel select value of 1 to 7, corresponding to the deMUXed output to monitor. The TPM is limited to receiving
unframed pseudorandom data patterns.
M13XC
EXTERNAL I/O
DM12_DS2_DATA
DM12_DS2_CLOCK
LINETXSYNC[21—15]
LINETXSYNC[28—22]
TPG
TPG_DATA[4]
TPG_CLK[4]
XC_DS2M12CLK[1—7][7:0]
M12_DS2_DATA
XC2_M21_[1—7][7:0]
BUNDLED SIGNALS
TPG—SOURCE_ID = 000
CHANNEL_ ID = 4—DS2 DATA
M13:M12 MUX (DS2 FROM M12)—SOURCE_ID = 001
CHANNEL_ID = 1 TO 7
CHANNEL_ID = 1 TO 29
LINERXDATA/DS2_AISCLK—SOURCE_ID = 100
DM23_DS2_DATA
DM23_DS2_CLK
LINERXDATA[29—1]
LINERXCLK[29—1]
DS2_AISCLK
M13:M23 DEMUX —SOURCE_ID = 010
CHANNEL_ID = 1 TO 7
CHANNEL_ID = 1 TO 7
LINETXSYNC —SOURCE_ID = 011
CHANNEL_ID = 1 TO 29
LINERXDATA/CLK—SOURCE_ID = 101
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
569Agere Systems Inc.
22 Cross Connect (XC) Block Functional Description (continued)
5-9190(F)r.3
* = Channel ID from Ta ble 627 on page 558.
Figure 92. M23 DeMUX DS2 Output Cross Connect
22.7.5 M23 MUX (Transmit Path)
The M23 MUX assembles seven DS2s into a DS3 signal. The routing of the DS2 data and clock inputs to the M23
MUX is shown in Figure 93 on page 570. Two modes of operation are available and selected with bit
XC_DS2ALCOEN (Table 474 on page 331). The first mode routes DS2 data and clock from device inputs to the
M23 (XC_DS2ALCOEN = 0). The second mode cross connects a DS2 clock out to an external I/O pin that is used
by the external application to provide DS2 data and a stuff request to the Supermapper input pins for the M23
(XC_DS2ALCOEN = 1). The first mode determines the appropriate standards-based stuff times internally, ignoring
the external stuff request, and the second mode determines the stuff times from the external application.
The DS2 data, clock, and stuff request inputs to the M23 are cross connected by programming
XC2_MD S2M 23D ATA[1 —7] ( Table 472 on page 330) bytes in XC2_M23_SRC[1—7] registers with the source ID
= 11 and a channel select value of 1 to 29. The channel select value of 1 to 29 selects the data, clock, and stuff
request signals from the external I/O device pins LINERXDATA[1—29], LINERXCLK[1—29], and LINERX-
SYNC[1—29], respectively.
For example, to cross connect DS2 data from LINERXDATA[6], DS2 clock from LINERXCLK[6], and stuff request
from LINERXSYNC[6] to the inputs of M23 number 3, program the XC2_MDS2M23DATA3 byte in register
XC2_M23_SRC3, with a source ID = 11 and a channel select = 6. XC2_MDS2M23DATA3 = 01100110 (binary).
If XC_DS2ALCOEN = 1, the cross connect for the DS2 clock output must be programmed into the
XC_ALCO[1—29] byte in the XC_ALCO_SRC[1—15] registers. The source ID = 000 and the channel ID select
have a value between 17 and 23 (decimal) to select DS2 DeMUX 1 to 7, respectively.
M13
XC
EXTERNAL I/O M23_DS2_DATA
M23_DS2_CLOCK
M23_DS2_CLOCK_OUT
M23_DS2_STUFF
LINERXDATA
LINERXCLK
LINERXSYNC
XC2 MDS2M23DATA[1—7][7:0]
XC_ALCO[1—29][7:0]
TPG
TPG_DATA[4]
TPG_CLK[4]
REQUEST
BUNDLED SIGNALS
TPG—SOURCE_ID = 00
CHANNEL_ID = 4—DS2 DATA
CHANNEL_ID = 5—DS2 IDLE
EXT I/O—SOURCE_ID = 11
XC2
XC1
SOURCE_ID = 000
REGISTER BIT X C_DS2ALCOEN
0 = DS2 EXTERNAL CLOCK IN
1 = DS2 M23 DEMUX CLOCK OUT
CHANNEL_ID = 1 TO 29—
(DEMUX FROM DS3)
CHANNEL_ID =*
PIN SELECT
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
570 Agere Systems Inc.
22 Cross Connect (XC) Block Functional Description (continued)
For the previous example, the XC_ALCO6 byte in register XC_ALCO_SRC3 (Table 478 on page 332) would be
programmed with a source ID = 000 and a channel select = 19. This will output a DS2 clock from M23 deMUX 3 to
LINERXCLK [6]. XC_ ALC O6 = 00010011 (binary ).
5-9191(F)r.2
* Channel ID from Table 629 on page 559.
Figure 93. M23 MUX DS2 Input Cross Connect
M13
XC
EXTERNAL I/O M23_DS2_DATA
M23_DS2_CLOCK
M23_DS2_CLOCK_OUT
M23_DS2_STUFF
LINERXDATA
LINERXCLK
LINERXSYNC
XC2 MDS2M23DATA[ ]
XC_ALCO[ ]
TPG
TPG_DATA[4]
TPG_CLK[4]
REQUEST
BUNDLED SIGNALS
TPG—SOURCE_ID = 00
CHANNEL_ID = 4—DS2 DATA
CHANNEL_ID = 5—DS2 IDLE
EXT I/O—SOURCE_ID = 11
XC2
XC1
SOURCE_ID = 000
REGISTER BIT X C_DS2ALCOEN
0 = DS2 EXTERNAL CLOCK IN
1 = DS2 M23 DEMUX CLOCK OUT
CHANNEL_ID = 1 TO 29—
(DERIVED FROM DS3)
CHANNEL_ID =*
PIN SELECT
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
571Agere Systems Inc.
22 Cross Connect (XC) Block Functional Description (continued)
22.8 DS3 Connectivity
5-9192(F)r.1
Figure 94. DS3 Cross Connect
The cross connect block also supports DS3 mapping to/from the SPE mapper and the M13 MUX to dedicated
external pins (PIN). There is also an external NSMI I/O channel, which transfers DS3 data as well. In both cases
(standard and NSMI), the available sources are the M13 DeMUX or the SPE mapper, a set of external I/O pins, or
the test-pattern generator . The DS3 crosspoint’s connectivity is determined by an even smaller set of source3 iden-
tifiers.
Table 633. DS3 Connectivity
Note: DS3 external I/O is supported by dedicated pins. NSMI uses the m ultifunction system interface.
The symbols in Table 633 are defined below:
% = primary (expected) modes of operation.
X = unsupported mode.
& = represents loopback path.
NSMI = NSMI mode only.
T = test mode.
Destination/Source External I/O M13 MUX TPM SPE
External I/O & % T NSMI/DS3
M13 MUX % X T DS3
TPG T T X X
SPE NSMI/DS3 DS3 T X
CROSS
CONNECT
TEST
GEN
EXT.
I/O
XC3
TPG
DS3
PIN
TEST
MON
TPM
SPE
MAPPER
SPE
MAPPER
M13
MAPPER
M13
MAPPER
PIN_DS3POSDATAIN
PIN_DS3NEGDATAIN
PIN_DS3DATAINCLK
TXRX
PIN_DS3POSDATAOUT
PIN_DS3NEGDATAOUT
PIN_DS3DATAOUTCLK
PD+ PD–
(CLEAR
CHANNEL)
MUX DEMUX
PIN_RLSC52 PIN_TLSC52
SPE_DS3_AIS
PIN_DS3POSDATAIN
PIN_DS3NEGDATAIN
PIN_DS3DATAINCLK
SPE HAS DIRECT
(FROM HS TELECOM BUS) (F ROM H S TELE COM B US)
(TO M13)
INPUTS FROM PINS
EXT.
I/O
PIN
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
572 Agere Systems Inc.
22 Cross Connect (XC) Block Functional Description (continued)
The DS3/NSMI connectivity is established through a combination of DS3 specific MUXes controlled by registers
XC3_TPM_SRC (Table 475 on page 331) and XC3_MDS3_SRC (Table 476 on page 332), and special cases of
the DS1 cros s connects controlled by XC_PDATA[1—29] (Table 463 on page 328) and XC_SYNC[1—29]
(Table 477 on page 332) bytes in the XC_PIND_SRC[1—15] (Table 463) and XC_PINS_SRC[1—14] (Table 477)
registers to accommodate the NSMI connectivity from the multifunction system interface to the SPE mapper or
M13.
Description of the DS3 connectivity will be presented in three sections: the test-pattern generator/monitor
(TPG/TPM), the DS3 basic connect, and the NSMI.
22.8.1 DS3 TPG/TPM Cross Connect
The DS3 test signals are routed through the XC3 crosspoint by programming register XC3_TPM_SRC, as shown
in Figure 95. For DS3 test signals, the TPG does not supply the source clock. Instead, a source clock and a clock
enable are provided from another block via the XC3 crosspoint. The TPG/TPM provide unframed test data that
may be connected to the SPE block for clear channel testing. For framed DS3 test data, the TPG/TPM are con-
nected to the NSMI interface in the M13 block and the M13 block DS3 interface provides the framed DS3 signal for
test purposes.
The DS3 TPG/TPM crosspoint’s connectivity is determined by a set of source3 identifiers (source3_IDs) for bits 5
and 6 of XC3_TSOURCE_ID in register XC3_TPM_SRC, as defined as follows:
where XC3_TSOURCE_ID is defined as follows:
* DS3 unframed single-rail (unipolar) non-return-to-zero (NRZ) data.
5-9193(F)
Figure 95. DS3 Test-Pattern Cross Connect
Bit 76 543210
XC3_TSOURCE_ID 0 XC3_TSOURCE_ID 0 0 0 0 0
Index (Bits [6:5]) Block3 Identifier
00 TPM receives DS3 from external pin*.
01 TPG and TPM are connected to M13 through NSMI interface.
10 TPM receives DS3 from SPE.
11 Reserved.
TPG/TPM XC M13
SPE
EXTERNAL I/O
XC_TDATA
XC3_TPMCLK
XC3_TPMCLKEN
XC3_TPGCLK
XC3_TPGCLKEN
TPG_DATA
M13_NSMI_CLK
M13_NSMI_EN
XC3_NSMI_DATA
M13_DNSMI_CLK
M13_DNSMI_EN
M13_DNSMI_DATA
DS3POS_DATA_RX
DS3DATAOUTCLK
DS3POSDATAIN
DS3DATAINCLK
LINERXDATA[29]
1
1
XC3_TSOURCE_ID
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
573Agere Systems Inc.
22 Cross Connect (XC) Block Functional Description (continued)
22.8.2 DS3 Basic Cross Connect
The DS3 basic cross connect interconnects DS3 signals between the DS3 dedicated external I/O pins, the SPE
mapper, and the M13 by programming bits XC3_SOURCE_ID in register XC3_MDS3_SRC (Table 476 on
page 332), as shown in Figure 96. The DS3 dedicated external I/O pins DS3DATAINCLK (J22), DS3POSDATAIN
(M22), and DS3NEGDATAIN (K22) are directly connected to the SPE mapper; cross connect is not required (see
SPE mapper bits SPE_TDS3SRCTYP[1:0] and SPE_RDS3OUTTYP[1:0] (Table 162 on page 143)). The DS3
basic crosspoint’s connectivity is determined by a set of source3 identifiers (source3_IDs) for bits 1 and 0 of
XC3_SOURCE_ID in register XC3_MDS3_SRC, as defined in the following tables:
The XC3_SOURCE_ID is defined as follows:
5-9194(F)r.1
Figure 96. DS3 Basic Cross Connect
Bit 76543210
XC3_SOURCE_ID000000XC3_SOURCE_ID
Index (Bits [1:0]) Block3 Identifier
00 M13 inputs/outputs DS3 through external I/O pins.
01 M13 and SPE are interconnected.
10 SPE inputs/outputs DS3 through external pins and M13 is used as a monitor for the trans-
mit path DS3.
11 SPE inputs/outputs DS3 through external pins and M13 is used as a monitor for the
receive path DS3.
M13_DS3NEG
M13DS3POS_DATA
SMPR_TDS3CLK
SMPR_TDS3CLKEN
SMPR_RDS3CLK
SMPR_RDS3CLKEN
SMPR_RDS3POS_DATA
SMPR_RDS3NEG_BPV
DS3POSDATAOUT
DS3NEGDATAOUT
DS3DATAOUTCLK
DS3POSDATAIN
DS3NEGDATAIN
DS3DATAINCLK
SPEMPR_CE_M13_RX
SPEMPR_M13DATA
SPEMPR_CE_M13_TX
DS3NEG_DATA_RX
DS3POS_DATA_RX
TLSC52
RLSC52
1
1
SPE
M13
EXTERNAL I/O
XC
XC3_SOURCE_ID
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
574 Agere Systems Inc.
22 Cross Connect (XC) Block Functional Description (continued)
22.8.3 NSMI Cross Connect
The Supermapper cross connect supports interconnection of the network serial multiplexed interface (NSMI) to the
SPE mapper, M13 MUX/deMUX, or the NSMI system interface of the framer block, as shown in Figure 97 on
page 575. The cross connects are controlled by programming the XC_PDATA[29] (Table 463 on page 328) and
XC_S YNC [29 ] (Table 477 on page 332) bytes in registers XC_PIND_SRC15 and XC_PINS_SRC15. As previously
discussed, the TPG/TPM can send/receive data using the NSMI interface of the M13. Only the framer block can
disassemble the NSMI payload into DS0 channels and signaling. Connectivity to the M13 and SPE mapper is for
transport in a proprietary format only.
The NSMI crosspoint’s connectivity to the multifunction interface external I/O is determined by a set of XC1 source
identifiers (SOURCE_IDs). The NSMI connectivity is defined with the source ID = 000 for XC_PDATA[29] and
XC_SYNC[29] bytes in registers XC_PIND_SRC15 and XC_PINS_SRC15, with a CHANNEL_ID restricted to 5,
24, 25, or 26 (see Table 627 on page 558 and Table 628 on page 558):
The channel ID is defined as:
Bit 76543210
SOURCE_ID 0 0 0 CHANNEL_ID[4:0]
CHANNEL_ID Binary (Decimal) Connectivity
00101 (5) DS3 Test Pattern
11000 (24) M13—NSMI
11001 (25) SPE—NSMI
11010 (26) Framers—NSMI
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
575Agere Systems Inc.
22 Cross Connect (XC) Block Functional Description (continued)
5-9195(F)r.1
Figure 97. NSMI Interface Cross Connect
22.9 Transmit and Receive Path Overhead Acc ess Ch ann el I/O Configur atio n
The cross connect allows selection of transmit and receive POAC channels from either the TMUX block or SPE
mapper to the external I/O pins, as shown in Figure 98 on page 576.
An output enable and a select register bit are provided for transmit and receive POAC. The transmit POAC clock
and sync output signals are enabled with bit XC_TPOAC_EN (Table 474 on page 331) and the source, SPE map-
per or TM UX b loc k, i s se lec ted wi th r egis ter bit XC_ TST S1_T UG 3 (Table 474). The receive POAC clock, data, and
sync output signals are enabled with bit XC_RPOAC_EN (Table 474) and the source, SPE mapper or TMUX block,
is selected with bit XC_RSTS1_TUG3 (Table 474).
M13
SPE
FRM
XC
EXTERNAL I/O
M13_NSMI_CLK
M13_NSMI_EN
M13_NSMI_SYNC
XC3_NSMI_DATA
M13_DNSMI_CLK
M13_DNSMI_EN
M13_DNSMI_SYNC
M13_DNSMI_DATA
TPG
TPG_DATA
LINETXSYNC[29]
LINETXDATA[29]
LINETXCLK[29]
TXDATAEN
LINERXDATA[29]
LINERXCLK[29]
LINERXSYNC[29]
RXDATAEN SPE_DNSMI_DATA
SPE_DNSMI_CLKEN
SPE_DNSMI_SYNC
XCP_NSMI_DATA
SPE_NSMI_CLKEN
SPE_NSMI_SYNC
TSMI_D
TSMI_CTL
TSMI_CLK
RSMI_D
RSMI_CTLI
RSMI_CLKI
RSMI_CLKO
RSMI_CTLO
RLSC52
TLSC52
XC3_TSOURCE_ID[1:0] XC_SYNC[1—29][7:0]XC_PDATA[1—29][7:0]
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
576 Agere Systems Inc.
22 Cross Connect (XC) Block Functional Description (continued)
5-9196(F)
Figure 98. TPOAC and RPOAC Cross Connect
SPE MAPPER
TMUX
RPOACCLK
RPOACSYNC
RPOACDATA TPOACCLK
TPOACSYNC
TPOACDATA
RSTS1_TUG3 TSTS1_TUG3
TPOAC_ENRPOAC_EN
EXT I/OEXT I/O
1
0
1
0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
577Agere Systems Inc.
23 Digital Jitter Attenuation Control ler Functional Description
Table of Con t en ts
Contents Page
23 Digital Jitter Attenuation Controller Functional Description .............................................................................577
23.1 Introduction...............................................................................................................................................578
23.2 Features ...................................................................................................................................................578
23.3 Functional Block Diagram of the DJA Block.............................................................................................579
23.4 Digital Jitter Attenuation Controller Operation..........................................................................................579
23.4.1 PLL Bandwidth and Damping Factor Control ................................................................................ 580
23.4.2 PLL Order Control ......................................................................................................................... 580
23.4.3 DS1/E1 Clock Edge Control .......................................................................................................... 580
Figures Page
Figure 99. DJA Block with I/O Connections to Other Blocks in the Device ...........................................................578
Figure 100. Basic Functional Flow of the DJA Block.............................................................................................579
Tables Page
Table 634. PLL Bandwidth Control Parameters.....................................................................................................580
Table 635. First-Order Mode Duration Control ......................................................................................................580
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
578 Agere Systems Inc.
23 Digital Jitter Attenuation Controller Functional Descri ption (continued)
23.1 Introducti on
This section describes the functions of the digital jitter attenuator (DJA) controller used in the Supermapper device.
The DJA controller contains 28 DJA blocks. Each DJA block can operate in two different modes, as a DS1 or an E1
jitter attenuator. In both modes, the DJA blocks can be provisioned to operate as a second-order PLL always, or it
can switch to act as a first-order PLL during VT pointer adjustments to help meet MTIE requirements. The block will
also insert the proper AIS signal if the primary block AIS control input is active. The PLL bandwidth can be set over
a wide range to accommodate a number of different system constraints.
23.2 Features
The DJA block is provisionable to automatically select the correct AIS clock when receiving an AIS signal. The
AIS indication will be passed back to the cross channel.
AIS in will cause the correct AIS clock to be inserted, and the AIS indication will be passed back to the cross con-
nect.
The DJA blocks operate in the second-order PLL mode under normal conditions. The DJA blocks can be provi-
sioned to enter the first-order PLL mode following VT level pointer adjustments. The period of time in the first-
order mode is provisionable via registers.
The PLL bandwidth is provisionable between 0.1 Hz and 0.5 Hz. The damping factor for these bandwidths varies
between 2 and 0.5.
Figure 99 shows the DJA block with I/O connections to other blocks within the Supermapper device.
5-8955(F)r.3
Figure 99. DJA Block with I/O Connections to Other Blocks in the Device
CROSS
MICRO INTERFACE
DIGITAL
XC_JDATA[28:1]
XC_JCLK[28:1]
XC_JPTRADJ[28:1]
DJA_DATA[28:1]
DS1_AISCLK
XC_JAIS[28:1]
DJA_CLK[28:1]
E1_XCLK
DS1_XCLK
E1_AISCLK
JITTER
ATTENUATOR
CONNECT
CONTROL
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
579Agere Systems Inc.
23 Digital Jitter Attenuation Controller Functional Descri ption (continued)
23.3 Functional Block Diagram of the DJA Block
The functional view of the DJA block, along with interconnections to the other blocks within the Supermapper
device, is shown in Figure 100.
The DJA block interfaces only to the cross connect and microprocessor interface blocks within the Supermapper
device. The input interface between the DJA block and the cross connect block consists of clock, serial data, VT
pointer adjustment indication, and AIS insert indication. The output interface consists of clock, serial data, and AIS
insert indication, as well as the DS1 and E1 AIS clocks for use by other blocks within the device.
5-8956(F)r.1
Figure 100. Basic Functional Flow of the DJA Block
23.4 Digital Jitter Attenuation Controller Operation
The digital jitter attenuation (DJA) controller is comprised of 28 DJA blocks. The DJA_SEL line rate control register
(Table 490) is used to determine if the block is operating in the DS1 or E1 mode (1 = DS1, 0 = E1).
The DJA controller requires a reference clock running at 16 or 32 times the line rate of the signal requiring jitter
attenuation. This reference clock should be driven on one of the external input signals DS1XCLK or E1XCLK (see
Table 3, High-Speed I/O Pin Descriptions, on page 17, under the M13 MUX/DEMUX block receive path section).
Each jitter attenuator block receives a clock, data, pointer adjust control, and an AIS control signal input. If the AIS
control signal is active (high) on any time slot, and the AIS control (DJA_DS1SCALE bit 1; see Table 487 on
page 338) is enabled, then the AIS clock generation block (see Figure 100) of the DJA simply divides the correct
XCLK by 16 or 32 (either DS1_XCLK or E1_XCLK), via the DJA_BLUECLKD register shown in Table 491, inde-
pendent of being in DS1 or E1 mode, sends this divided clock (DS1_AISCLK or E1_AISCLK) to the cross connect,
and transmits the data signal (DJA_DATA) as a continuous logic 1.
Note: Enabling the automatic AIS clock selection will result in FRAMER lockup under extreme conditions (refer to
Errata issue 510).
Even with the digital PLL portion of the DJA turned off (via the P_DJA_CLK_EN register; see Table 81 on
page 73), the AIS clock generation block will still generate the correct DS1_AISCLK or E1_AISCLK signals.
Each DJA block has a 64-bit elastic store. These elastic stores are monitored for both underflow and overflow con-
ditions. Both of these conditions contribute to the DJA_ESOVFL parameter, which can be unmasked to contribute
to an interrupt DJA_ESOVFL[28:1] (Table 481 on page 337). In the event of an elastic store overflow, the elastic
store will re-center itsel f.
The block monitors DS1XCLK (DJA_DS1LOC and DJA_G_DS1LOC) and E1XCLK (DJA_E1LOC and
DJA_G_E1LOC) for loss of clock (LOC indication, Table 483 on page 338) and change of loss of clock state (LOC
delta, Table 481). The DJA_DS1LOC and DJA_E1LOC parameters are controlled by LOC events detected at the
AIS clock generation block, while the DJA_G_DS1LOC and DJA_G_E1LOC parameters are controlled by LOC
events detected at the DPLL. All loss of clock indications can contribute to a DJA interrupt. These interrupts can be
unmasked by writing zeros to the registers in Table 482 on page 337.
XC_JAISx
JITTER
XC_JCLKx
XC_JDATAx
XC_JPTRADJx
E1_XCLK
DJA_CLKx
DJA_DATAx
BLOCK REPEATED 28 TIMES
DS1_XCLK
AIS CLOCK DS1_AISCLK
E1_AISCLK
ATTENUATION
BLOCK
GENERATION
DJA_AUTOAISx
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
580 Agere Systems Inc.
23 Digital Jitter Attenuation Controller Functional Descri ption (continued)
23.4.1 PLL Bandwidth and Damping Factor Control
Two programmable terms are used to set the second-order loop damping factor and natural frequency. These
terms are the gain threshold, set by registers DJA_E1GAIN[26:0] (Table 484) and DJA_DS1GAIN[26:0]
(Table 485), also scale value, set by registers DJA_E1SCALE[15:0] (Table 486), DJA_DS1SCAL E[1 5:2 ] and
DJA_DS1SCALE[0] (Table 487). Some values of damping factor (d) and natural frequency (ωn) are listed below.
The GAIN and SCALE values (in decimal and hexadecimal terms) to achieve these parameter values are listed in
Table 634.
Note: DS1_SCALE values listed in Table 634, exclude DS1_SCALE, bit 1.
Table 634. PLL Bandwidth Control Parameters
23.4.2 PLL Order Control
Under normal conditions the DJA blocks operate in the second-order PLL mode. This operation attempts to keep
the elastic store at the center of its range. However, following a VT pointer adjustment, it may be desirable to have
the DJA blocks operate in the first-order mode. This is because the maximum timing interval error (MTIE)
specification (GR-253, Requirement R5-132) doesn’t allow for any peaking. The second-order loop has a certain
amount of peaking in its transient response that the first-order loop eliminates. The amount of time that the block
operates in the first-order mode is programmable between 0 ms and 1 s.
This operation is accomplished by loading a count value into registers DJA_E1PTRADJCNT[20:0] or
DJA_DS1PTRADJCNT[20:0] (Table 488, Table 489). The value in this register is loaded into a counter whenever a
VT pointer adjustment takes place. The counter decrements every XCLK/16 or XCLK/32 clock period until it
reaches 0. While the count is nonzero, the block operates in the first-order mode. By default, the
DJA_E1PTRADJCNT or DJA_DS1PTRADJCNT value is 0, so the block never switches into the first-order mode
until programmed to do so. Some example time period durations and the corresponding decimal and hexadecimal
DJA_E1PTRADJCNT and DJA_DS1PTRADJCNT values are listed in Table 635.
Table 635. First-Order Mode Duration Control
23.4.3 DS1/ E1 Clock Ed ge Cont rol
The active edges on both the input and the output DS1/E1 signals are selectable via registers in Table 491 on
page 339. DJA_TXEDGE[28:1] (Table 491) controls the edge on which the data transitions when leaving the DJA
(1 = rising edge). DJA_RXEDGE[28:1] controls the edge on which the data transitions when retimed into the DJA
(1 = rising edge).
dω
ωω
ωnE1_SCALE E1_GAIN DS1_SCALE DS1_GAIN
decimal hex decimal hex decimal hex decimal hex
0.5 0.45 2,829 0xB0D 8,005,638 0x7A2806 2,133 0x855 4,549,825 0x456CC1
0.75 0.325 5,876 0x16F4 15,348,087 0xEA3177 4,430 0x114E 8,722,740 0x851934
1.0 0.25 10,186 0x27CA 25,938,267 0x18BC95B 7,679 0x1DFF 14,741,431 0xE0EFB7
1.5 0.175 21,827 0x5543 52,935,238 0x327BA46 16,455 0x4047 30,084,553 0x1CB0DC9
2.0 0.125 40,743 0x9F27 104,000,000 0x632EA00 30,716 0x77FC 58,965,723 0x383BEDB
Duration E1 Mode DS1 Mode
decimal hex decimal hex
250 ms 512,000 0xC800 386, 000 0x96C8
500 ms 1,024 ,000 0 xFA00 0 77,2 00 0x12D9 0
750 ms 1,536 ,000 0x177000 1,158,0 00 0x11AB70
1 s 2,048,000 0x1F4000 1,544,000 0x178F40
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
581Agere Systems Inc.
24 Test- Pattern Generation/Detection Functional Description
Table of Con t en ts
Contents Page
24 Test-Pattern Generation/Detection Functional Description .............................................................................581
24.1 Test-Pattern Generator Introduction.........................................................................................................582
24.2 Features ...................................................................................................................................................582
24.3 Applications..............................................................................................................................................582
24.4 Block Diagram..........................................................................................................................................583
24.5 Functional Descriptions............................................................................................................................583
24.5.1 Test-P atte rn Genera tio n ............. ....... ...... ....... ...... ...... ....... ...... ....... ...... ....... ...... ....... .................... 583
24.5.2 TPG Clock Source ........................................................................................................................ 584
24.5.3 TPG Transmit Edge Select ........................................................................................................... 584
24.5.4 TPG Test-Pattern Framing ............................................................................................................ 584
24.5.5 D S1 TPG Framing ......... ....... ...... ....... ...... ....... ...... ...... ....... ...... ....... ...... ....... ...... ....... .................... 584
24.5.6 E1 TPG Framing ............ ....... ...... ....... ...... ....... ...... ...... ....... ...... ....... ...... .................... .................... 584
24.5.7 D S2 TPG Framing ......... ....... ...... ....... ...... ....... ...... ...... ....... ...... ....... ...... ....... ...... ....... .................... 585
24.5.8 D S3 TPG Framing ......... ....... ...... ....... ...... ....... ...... ...... ....... ...... ....... ...... ....... ...... ....... .................... 585
24.5.9 Lin e Encodi ng/D ecodi ng ....... ...... ....... ...... ....... ...... ...... ....... ...... ....... ................... ....... .................... 585
24.5.10 TPG Test-Pattern Sequences ..................................................................................................... 585
24.5.11 TPG Idle Generator ..................................................................................................................... 586
24.5.12 TPG Error Insertion ..................................................................................................................... 586
24.5.13 TPG Interrupts ............................................................................................................................ 586
24.5.14 Test-Pattern Monitor (TPM) ........................................................................................................ 586
24.5.15 TPM Channel Selection .............................................................................................................. 586
24.5.16 TPM Clock Edge and Data Polarity Selection ............................................................................. 586
24.6 TPM Framing Acquisition and Synchronization........................................................................................586
24.6.1 D S1/E1 .............. ....... ...... .................... ...... ....... ...... ...... .................... ...... ....... ...... ........................... 586
24.6.2 TPM Error Detection and Counting ............................................................................................... 587
24.6.3 TPM Interrupt s .. ....... ...... ....... ...... ....... ...... ....... ...... ...... .................... ...... ....... ...... ........................... 588
24.7 Microprocessor Interface..........................................................................................................................588
24.7.1 Microprocessor Interface Register Map ........................................................................................ 588
Figures Page
Figure 101. TPG Block Interface Block Diagram...................................................................................................583
Tables Page
Table 636. TPG Framing Controls (TPG_FRAMEx = 1)........................................................................................584
Table 637. TPG Test-Pattern Sequences ..............................................................................................................585
Table 638. TPM Interrupts .....................................................................................................................................588
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
582 Agere Systems Inc.
24 Test-Pattern Generation/Detection Functional Description (continued)
24.1 Test-Pattern Generator Introduction
The TPG block is a configurable set of test-pattern generators and monitors for the Supermapper . For maintenance
and troubleshooting operations, TPG feeds one or more T1/E1/DS2 test signals (via data, clock, and FS signal
paths) to the crosspoint switch (XC block). The XC block can redistribute or broadcast these signals to any valid
channel in the framer, external I/O, M13 mapper, DJA, or VT mapper blocks. Similarly, any channel arriving at the
XC may be routed to the test monitor. The TPG can also generate DS3 test signals for use via the M13 and SPE
blocks. Single bit-errors can be detected and counted at each monitor.
The test-pattern generator and associated monitors receive configuration and setup information from the micropro-
cessor control interface. Once the rate and data format are chosen, the test generator outputs are fed to the cross-
point (XC). The crosspoint can map the test signals to any valid DS1/E1/DS2 channel in the device, or to a special
set of test monitor channels in the TPG block (for loopback testing of the test generator/monitor pair). The monitor
waits for the expected test pattern and (after a brief synchronization operation) continually checks the data stream
for bit errors. Optionally, a single data-bit or framing-bit error may be generated via a global SMPR_BER_INSRT
(Table 75 on page 68) control signal, in order to confirm the correct detectability of such an error as it traverses the
crosspoi nt and othe r sy st em ele men ts.
Simultaneous testing of DS1, E1, DS2, and DS3 signals is supported (one test channel at each rate plus one idle
channel at DS1). The DL (DS1-ESF data link) and E1 Sa (spare) bit fields are read/writable under software control,
allowing for additional system testing control.
Test monitors can automatically detect/count data-bit errors and detect framing-bit or CRC errors in a pseudoran-
dom test sequence, or loss of frame or loss of sync. The TPG can provide an interrupt to the control system, or it
can be operated in a polled mode.
24.2 Features
Configurable test-pattern generator: DS1, E1, DS2, and DS3 formats.
Pseudorandom bit sequence (PRBS, also known as pseudonoise or PN sequences) based on maximal-length
feedback shift register sequences; PN codes selectable from the following options: QRSS, PRBS15, PRBS20,
PRBS23, ALT_01, ALL_ONES, USER pattern (16 bits, repeating).
The DS1 and E1 test patterns can be transmitted either unframed or as the payload of a framed signal as
defined in ITU-T Recommendation O.150 (see TPG_FRAMEx signals (Table 519 on page 351 and Table 520)).
Single bit-errors or framing errors may be injected into any test pattern, under register control.
Any sink or receiving channel may be replaced by a test-pattern monitor, which can detect and count bit errors or
misconfigurations, and/or detect idle conditions or AIS.
Data link (DS1-ESF DL) and SSM (E1 multiframe Sa) fields readable/writable.
Supports all Supermapper modes of operation.
Complies with T1.107, T1.231, T1.403, G.703, G.704, O.150.
24.3 Applications
Supermapper self-test, crosspoint verification.
Built-in link and system testing support.
Flexible multicast/broadcast capabilities.
Programmable error insertion.
Idle or test-pattern (DS1 only) generation for each channel.
Idle or test-pattern (DS1 only) bit error or activity monitoring for each channel.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
583Agere Systems Inc.
24 Test-Pattern Generation/Detection Functional Description (continued)
24.4 Block Diagram
The following diagram illustrates the high-level interface between the TPG block and other functional blocks.
5-9178(F)r.3
Figure 101. TPG Block Interface Block Diagram
24.5 Functional Descriptions
24.5.1 Test-Pattern Generation
The test-pattern generator has five groups of output signals. These outputs consist of two signal groups for DS1
and one signal group each for E1, DS2, and DS3 clock rates. Each of these groups can be provisioned, indepen-
dently, in various ways. Each DS1/E1 signal group consists of a clock, the data stream, and a frame-sync signal (if
needed in a byte-synchronous environment). The DS2 signal group consists of clock and data. The DS3 signal
group consists of data, clock, and clock enable. Each rate supports full-payload test patterns data signals and DS1
also supports continuous idle data signals.
TPG
TEST
GEN/MON
XC
CROSS
CONNECT
DS1/E1/DS2/DS3 SOURCE CLOCKS
(DS1) DATA/CLK/SYNC
(DS1) IDLE/CLK/SYNC
(E1) DATA/CLK/SYNC
(DS2) DATA/CLK
[DS3} D ATA/C LK/CLKEN
(TPG_DS1) DATA/CLK/SYNC
(TPG_DS1) I DLE/ CLK/ SY NC
(TPG_E1) DATA/CLK/SYNC
(TPG_DS2) DA TA/CLK
(TPG_DS3 ) DATA/ CLK/CLKEN
CONTROL INTERFACE
4
3
3
3
2
3
3
3
3
3
3
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
584 Agere Systems Inc.
24 Test-Pattern Generation/Detection Functional Description (continued)
24.5.2 TPG Clock Source
The Supermapper TPG uses four source clocks provided by the cross connect as input at the appropriate rate to
generate the test patterns. These are shown in Figure 101 as being supplied by the XC block, except the DS3
clock (which is provided via the XC3 crosspoint by the M13 or SPE block).
24.5.3 TPG Transmit Edge Select
The edge of the clock TPG_CLKx that is used to source the data is provisionable to either the rising edge
TPG_EDGE x = 1 (Table 519 on page 351, Table 520, Table 521, and Table 522) or the falling edge
TPG_EDGEx = 0 for each of the five test-pattern sources.
24.5.4 TPG Test-Pattern Framing
The test pattern can be transmitted either unframed or as the payload of a framed signal as defined in ITU-T Rec-
ommendation O.150. The DS1 continuous-idle signal is always framed. The test-pattern framing is determined by
the TPG_FRAMEx register values (Table 519 and Table 520); 0 represents an unframed signal, while 1 represents
a test-pattern embedded in a framed signal. Additionally, a TPG_ESF bit (Table 519) determines if extended
superframe operation is enabled (DS1 only).
Table 636. TPG Framing Controls (TPG_FRAMEx = 1 )
The DS1 idle data signal is always superframe (SF) framed. The associated SYNC signal is generated but may
safely be ignored if not used.
24.5.5 DS1 TPG Framing
For DS1 signals, the frame bit in the twelfth frame of each superframe is inverted if TPG_FINV0 = 1 (Table 519 and
Table 520).
For ESF modes, the transmitted data-link pattern is a continuous repeat of the contents of the TPG_ESFDL[15:0]
(Table 516 on page 350). Each ESF superframe is also checked for CRC-6 errors per ANSI T1.403. These CRC
errors may be injected via TPG_CRC6EINSx register bits (Table 515 on page 349). A single CRC-6 error event is
generated each time that the TPG_CRC6EINSx bit transitions from 0 to 1.
24.5.6 E1 TPG Framing
For E1 signals, the frame alignment signal (normally 0011011) is transmitted with the last bit inverted (0011010) if
TPG_FINV = 1 (Table 519 and Table 520).
Each transmitted E1 multiframe contains a CRC-4 cyclic redundancy check mechanism per Recommendation
G.704 Section 2.3. CRC-4 errors may be injected via TPG_CRC4EINSx register bits (Table 515 on page 349). A
single CRC-4 error event is generated each time that the TPG_CRC4EINSx bit transitions from 0 to 1.
Index Data Rate Framing
(x) SF (TPG_ESF = 0) ESF (TPG_ESF = 1)
0 DS1 Transparent mode (test sequence bits
in signaling bit positions) User-settable data-link pattern CRC-6
generate/check
1 Continuous idle NA
2 E1 E1 with common channel signaling, CRC-4
4 DS2 Unframed PRBS sequence
5 DS3 DS3—gated PRBS sequence (framing via M13)
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
585Agere Systems Inc.
24 Test-Pattern Generation/Detection Functional Description (continued)
The transmitted Sa bits (designated as spares in G.704) are a continuous repeat of the contents of the
TPG_E1SAx[4:8] registers (Table 517 on page 350 and Table 518). These bits are synchronized to the CRC-4
frame. Referring to Table 5B in G.704, the E1SA1[4:8] bits are the SA bits in SMF 1 and 9, the E1SA2[4:8] bits are
the Sa bits in SMF 3 and 11, etc.
24.5.7 DS2 TPG Framing
The DS2 generator provides an unframed DS2 rate test sequence.
24.5.8 DS3 TPG Framing
For DS3 test signals, the TPG provides a raw PN sequence on TPG_DATA[5] using the enabled clock.
24.5.9 Line Encoding/Decoding
For DS1 and E1 test signals, the TPG may be provisioned to transmit and receive AMI coded signals
TPG_TPM_CODEx (Table 519 on page 351 and Table 520). The signals can be uncoded, B8ZS coded, HDB3
coded, or AMI coded. If coding is selected, it is active for both transmit and receive paths. For coded signals, the
DATA inputs/outputs become the positive rails and the sync inputs/outputs become the negative rails.
24.5.10 TPG Test-Pattern Sequences
The test-pattern bit sequence generated on the nonidle TPG_DATAx lines is determined by the TPG_SEQm[2:0]
(Table 519, Table 520, Table 521, and Table 522) register values, where m is the rate index (0 = DS1, 2 = E1,
4 = DS2, and 5 = DS3). One of seven sequences may presently be selected for transmission within the framed or
unframed test pattern on the corresponding even TPG_DATAx lines (the odd lines are connected to idle genera-
tors). Each datastream also has an associated clock TPG_CLKx and frame-sync signal TPG_FSx (x even, except
DS2). TPG_SEQm[2:0] values are described in Table 637.
The polarity of the output data stream may also be provisioned to normal TPG_TPINVx = 0 (Table 519, 520, 521,
and 522) or inverted TPG_TPINVx = 1.
Table 637. TPG Test-Pattern Sequences
TPG_SEQm Test Pattern
000 PRBS15. 215 – 1 PN sequence specified in O.150. This sequence is generated by a 15-stage shift
register whose fourteenth and fifteenth stages are added and fed back to the first stage. The out-
put of the last stage is inverted (which yields a sequence with up to 15 consecutive zeros) to pro-
duce the transmitted sequence.
001 PRBS20. 220 – 1 PN sequence. This sequence is generated by a 20-stage shift register whose
seventeenth and twentieth stages are added and fed back to the first stage. The transmitted test
sequence is normally the noninverted output of the last (twentieth) stage.
010 QRSS. 220 – 1 PN sequence with zero-suppression as specified in O.150. This sequence is gener-
ated by a 20-stage shift register whose seventeenth and twentieth stages are added and fed back
to the first stage. The transmitted test sequence is normally the noninverted output of the last
(twentieth) stage, but the test sequence is forced high if the outputs of stages 6 through 19 are low .
011 PRBS23. 223 – 1 PN sequence.
100 ALT_01. Alternating sequence of ones and zeros.
101 ALL_ONES. All-ones sequence.
Note: If unframed, an AIS signal is gener ate d.
110 Reserved.
111 User-Defined. Continuously repeating 16-bit pattern from TPG_USER[15:0] (Table 523 on
page 354).
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
586 Agere Systems Inc.
24 Test-Pattern Generation/Detection Functional Description (continued)
24.5.11 TPG Idle Generator
The TPG has one output dedicated to providing a valid, SF-framed DS1 idle data pattern. This data stream also
has an associated clock TPG_CLKx and frame-sync signal TPG_SYNCx (x odd). This pattern is specified in detail
in T1.403 for DS1.
24.5.12 TPG Error Insertion
A single bit error is injected into the test sequence each time that the global control signal SMPR_BER_INSRT
(Table 75 on page 68) transitions from 0 to 1 while the associated enable bit TPG_BERINSx (Table 513 on
page 349) is set to 1.
Similarly, for framed signals, a single framing bit error may be injected into the test sequence each time that the
TPG_FERINSx (Table 514 on page 349) bit transitions from 0 to 1.
For certain types of framed signals (that is, DS1 ESF and E1 multiframe), cyclic-redundancy check (CRC) errors
may be injected into the test sequence. A single error insertion event is triggered each time that the
TPG_CRCEINSx (Table 512 on page 349) (for DS1-ESF) or TPG_CRC4EINSx (Table 515 on page 349) (for E1)
register bit toggles from 0 to 1.
24.5.13 TPG Interrupts
There are no interrupts from the TPG at the current time.
24.5.14 Test-Pattern Monitor (TPM)
The test-pattern monitor TPM subblock contains four self-synchronizing detectors that are provisioned to search
for a particular test pattern (one each for signal at DS1, E1, DS2, and DS3). Each of the four monitor blocks
searches for the framed or unframed sequence at that rate, as determined by the values of TPM_FRAMEx
(Table 519 and Table 520) and TPM_SEQm[2:0] (Table 519, 520, 521, and 522) register bits (defined similarly to
the corresponding TPG register bits).
24.5.15 TPM Channel Selection
In normal operation, the user connects one of the available DS1, E1, DS2, or DS3 signals to the corresponding
TPM input by configuring the cross connect (XC).
24.5.16 TPM Clock Edge and Data Polarity Selection
The edge of the clocks XC_TCLKx that is used to acquire the test data is provisionable to either the rising edge
TPM_EDGEx = 1 (Table 519, 520, 521, and 522) or the falling edge TPM_EDGEx = 0 for each of the four test-pat-
tern monitors. The polarity of the input data stream may also be provisioned to normal TPM_TPINVx = 0
(Table 519, 520, 521, and 522) or inverted TPM_TPINVx = 1.
24.6 TPM Framing Acquisition and Sync hronization
24.6.1 DS1/E1
For framed data streams TPM_FRAMEx = 1 (Table 519 and Table 520), the monitor searches for the appropriate
frame sequence in the selected signal. If no frame is found, TPM_OOFx (Table 508 on page 347) is set. The
TPM_OOFx condition (status) signals default to 1, indicating an out of frame condition.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
587Agere Systems Inc.
24 Test-Pattern Generation/Detection Functional Description (continued)
A TPM_OOFxD (Table 494 on page 343) signal detects and latches delta events (changes or transitions) in the
TPM_OOFx signal. The TPM_OOFxD signal is reset to 0 based on the SMPR_COR_COW (Table 77 on page 70)
global control signal; if SMPR_COR_COW is set, event or delta signals are cleared on any microprocessor read of
the event or delta register. If SMPR_COR_COW is 0, each event or delta signal must be written with a 1 to clear it.
The TPM_OOFxD signal, if asserted, will generate an interrupt unless the corresponding mask bit TPM_OOFxDM
(Table 501 on page 345) is set.
Also, synchronization is checked for the designated test patterns. If the TPM monitor detects 32 consecutive
matches in its input sequence, the corresponding TPM_OOSx (Table 509 on page 348) is cleared. Similarly, if the
TPM detects four or more consecutive mismatches in the input sequence, the corresponding TPM_OOSx is set.
The TPM_OOSx condition (status) signals default to 1, indicating an out-of-sync condition.
A TPM_OOSxD (Table 495 on page 343) signal detects and latches delta events (changes or transitions) in the
TPM_OOSx signal. The TPM_OOSxD signal is reset to 0 based on the SMPR_COR_COW global control signal; if
SMPR_COR_COW is set, delta signals are cleared on any microprocessor read of the delta register. If
SMPR_COR_COW is 0, each delta signal must be written with a 1 to clear it. The TPM_OOSxD signal, if asserted,
will generate an interrupt unless the corresponding mask bit TPM_OOSxDM (Table 502 on page 345) is set.
DS2 (x = 4). The DS2 monitor checks for synchronization of the unframed PRBS signals, and for bit errors as
above.
DS3 (x = 5). The DS3 monitor checks for synchronization of the unframed PRBS signals, and for bit errors as
above.
24.6.2 TPM Error Detection and Counting
TPM Bit Error s. While in sync, each data monitor detects and counts the number of times that the input sequence
differs from the expected sequence in a 16-bit counter (one per rate). Detection of a bit error causes the TPM to
latch a 1 into the TPM_BEREx (Table 502 on page 345) event register bit. Clearing of this latched event is deter-
mined by the SMPR_COR_COW global control signal (if set, the event is automatically cleared on read; otherwise,
a 1 must be written to the TPM_BEREx register bit to clear it). If the interrupt is enabled (not masked) via
TPM_BERMx (Table 503 on page 346) mask bits, then this event will trigger an interrupt.
The error counters accumulate TPM_BEREx events in a set of active counters. The active counter values are
transferred to registers upon assertion of global control signal SMPR_PMRESET (Table 75 on page 68). The
counter values may be read via the microprocessor control interface via registers called TPM_CNTx[15:0] (Tables
525, 526, 527, and 528). The active counters will roll over or saturate at the terminal count, depending on global
control signal SMPR_SAT_ROLLOVER (Table 77 on page 70). The counters will clear on read if the global control
signal SMPR_COR_COW is set; otherwise, the counter values are not affected by reads and instead must be
cleared by explicit writes. The global control signals SMPR_PMRESET, SMPR_SAT_ROLLOVER, and
SMPR_COR_COW operate on all six test channels; there are no separate controls per rate or mode.
TPM Framing Errors. Framing-bit errors TPM_FEREx (Table 497 on page 344) events are detected when
TPM_FRAMEx is 1 but not counted. The event is latched and may be used to trigger a (maskable) interrupt, or may
be polled (the error assertion will last between 1 and 24 frame intervals). The interrupt mask bit is called
TPM_FERExM (Table 504 on page 346). The global control signal SMPR_COR_COW determines if the
TPM_FEREx event is cleared on read or write.
TPM CRC Errors. Cyclic redundancy check (CRC) errors TPM_CRCEx (Table 500 on page 345) are detected
when TPM_FRAMEx (Table 519 and Table 520) is 1 but not counted. CRC-6 errors are valid only for DS1
extended superframe (ESF) test patterns. CRC-4 errors are valid only for E1 multiframe test patterns. Each CRC
error event is latched and may be used to trigger a (maskable) interrupt, or may be polled (the error assertion will
last between 1 and 24 frame intervals).
CRC-6 errors (DS1-ESF only) are detected via TPM_CRCE0. Interrupts are managed via TPM_CRCE0M
(Table 507 on page 347) bit. The global control signal SMPR_COR_COW (Table 77 on page 70) determines if the
TPM_CRCE0 event is cleared on read or write.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
588 Agere Systems Inc.
24 Test-Pattern Generation/Detection Functional Description (continued)
CRC-4 errors (E1 multiframe only) are detected via TPM_CRCE2. Interrupts are managed via TPM_CRCE2M
(Table 507 on page 347) bits. The global control signal SMPR_COR_COW determines if the TPM_CRCE2 event
is cleared on read or write.
TPM Data AIS Detection. If an active data monitor detects AIS (i.e., detects all ones in the data signal), the corre-
sponding register bit TPM_AISx (Table 510 on page 348) is asserted (default = 0, no AIS). A TPM_AISxD
(Table 499 on page 345) signal detects and latches delta events (changes or transitions) in the TPM_AISx signal.
The TPM_AISxD signal is reset to 0 based on the SMPR_COR_COW global control signal; if SMPR_COR_COW
is set, event or delta signals are cleared on any microprocessor read of the event or delta register. If
SMPR_COR_COW is 0, each event or delta signal must be written with a 1 to clear it. The TPM_AISxD signal, if
asserted, will trigger an interrupt unless the corresponding interrupt mask bit TPM_AISxDM (Table 506 on
page 347) is set.
TPM DS1-ESF Data Link. For DS1 extended superframe (ESF) test patterns, the received data link field contents
are presented to software via registers entitled TPM_ESFDL[15:0] (Table 516 on page 350).
TPM E1 Sa-Bits Field. For E1 framed test patterns, the received Sa bits are presented to software via registers
entitled TPM_E1SAx[4:8] (Table 530 on page 355 and Table 531).
24.6.3 TPM Interrupts
The TPM block is capable of generating the following (maskable) interrupts:
Tab le 638. TPM In terru pt s
The microprocessor interface may also read the current condition (status) of TPM framing, synchronization, or AIS
detection via the TPM_OOFx (Table 508 on page 347), TPM_OOSx (Table 509 on page 348), and TPM_AISx
(Table 510 on page 348) indicators directly.
24.7 Microprocessor Interface
24.7.1 Microprocessor Interface Register Map
The register map of the microprocessor interface is shown in Table 86 on page 75. All addresses referred to in this
section are given in hexadecimal notations in the first column of the table.
Event Int_Name Int_Mask_Name Description
OOFx Change TPM_OOFxD
(Table 494 on page 343)TPM_OOFxDM
(Table 501 on page 345)TPM Out of Frame Delta
OOSx Change TPM_OOSxD
(Table 495 on page 343)TPM_OOSxDM
(Table 502 on page 345)TPM Out -of-Sync Delta
BER TPM_BEREx
(Table 496 on page 344)TPM_BERExM
(Table 503 on page 346)TPM Single Bit Error
FER TPM_FEREx
(Table 497 on page 344)TPM_FERExM
(Table 504 on page 346)TPM Framing Error
CRC Error TPM_CRCEx
(Table 500 on page 345)TPM_CRCExM
(Table 507 on page 347)TPM CRC Error (DS1, ESF, or E1 only)
AISx Change TPM_AISxD
(Table 499 on page 345)TPM_AISxDM
(Table 506 on page 347)TPM AIS Delta
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
589Agere Systems Inc.
25 Philosophies
Table of Con t en ts
Contents Page
25 Philosophies ....................................................................................................................................................589
25.1 Clocking and Power Management Philosophy.........................................................................................590
25.2 Maintenance Philosophy..........................................................................................................................590
Figures Page
Figure 102. Clock and Power Shutdown Diagram.................................................................................................590
Tables Page
Table 639. Maintenance Tasks Supported by the SMPR ......................................................................................591
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
590 Agere Systems Inc.
25 Philosophies (continued)
25.1 Clocking and Power Management Philosophy
5-8977(F)
Figure 102. Clock and Power Shutdown Diagram
25.2 Maintenance Philosophy
The Supermapper maintenance philosophy follows the SONET NE maintenance criteria specified by GR-253-
CORE.
The various functions that are used to perform the following maintenance tasks are addressed:
Trouble detection
Trouble or repair verification
Trouble sectionalization
Trouble isolation
Restoration
TMUX
M13
TEST
DJA
FRAMER
T1/E1
CROSS
MPU INTERFACE
155 MHz Tx
155 MHz Rx
51.84 MHz TXCK
RXCK
TXCK
RXCK
44.736 MHz
44.736 MHz
6.48 MHZ
TXCK
RXCK
DS1XCLKE1XCLK
MPU_CLK
MPCLK
DS1_AISCLK
E1_AISCLK
DPLL
AIS CL OCK
LINERXCLK
LINETXCLK
VT/VC
MPMODE
19.44 MHz
19.44 MHz
19.44 MHZ
51.84 MHZ
51.84 MHZ
19.44 MHZ
(TO ALL BLOCKS) PATTERN
GEN/MON
AND CONTROL
MUX
DS2
DS3
CONNECT
MAPPER
(x28)
GENERATION
16 MHz—60 MHz
[29:1]
[29:1]
BANK
6.48 MHz
SPE/AU-3
MAPPER
51.84 MHz
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
591Agere Systems Inc.
25 Philosophies (continued)
The following tables show how the Supermapper handles its maintenance tasks.
Table 639. Maintenance Tasks Supported by the SMPR
Maintenance Tasks Support by
SMPR Generation
(Blocks Responsible) Detection
(Blocks Responsible)
Alarm Surveillance
Directly Detected Defects and Failure
Loss of Signal (LOS) Supported TMUX TMUX, M13
Loss of Frame (LOF) Supported TMUX TMUX, M13
Loss of Pointer (LOP) Supported TMUX TMUX, SPEMPR,
VTMPR
Equipment Failures NA
Loss of Synchronization Supported TMUX, VTMPR
APS Troubles:
Protection Switching Byte Failure
Channel Mismatch Failure
APS Mode Mismatch Failure
Far-end Protection-line Failure
Supported TMUX TMUX
DCC Failure TMUX TMUX (partial support)
Signal Label Mismatch:
STS Payload Label Mismatch
STS Path Unequipped
VT Payload Label Mismatch
VT Path Unequipped
Supported
Supported
Supported
Supported
TMUX, SP EM PR
TMUX, SP EM PR
VTMPR
TMUX, SPEMPR
TMUX, SPEMPR
VTMPR
VTMPR
Alarm Indication Signal (AIS)
Line AIS (AIS-L) Supported TMUX TMUX
STS Path AIS (AIS-P) Supported TMUX, SPEMPR TMUX, SPEMPR
VT Path AIS (AIS-V) Supported VTMPR VTMPR
DSn AIS Supported TPG, M13, FRAMER,
VTMPR TPG, M13, FRAMER,
VTMPR
Remote Defect Indication (RDI) and Remote Failure Indication (RFI)
Line Remote Defect Indication (RDI-L) and
Remote Failure Indication (RFI-L) Supported TMUX TMUX
STS Path Remote Defect Indication (RDI-P)
and Remote Failure Indication (RDI-P) Suppor ted TMUX, SPEM PR TMUX, SPE MP R
VT Path Remote Defect Indication (RDI-V)
and Remote Failure Indication (RFI-V) Supported VTMPR VTMPR
DSn RDI and RAI Signals Supported M13, FRAMER M13, FRAMER
Payload Defect Indication (PDI)
STS Payload Defect Indication (PDI-P) Supported TMUX, SPEMPR TMUX, SPEMPR
VT Payload Defect Indication (PDI-V) NA
Maintenance Signals for Other Mappings NA
Trunking NA
Alarm-related Events Supported All blocks to meet the signal-
ing and timing requirements
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
592 Agere Systems Inc.
25 Philosophies (continued)
Table 639. Maintenance Tasks Supported by the SMPR (continued)
Maintenance Tasks Support by
SMPR Generation
(Blocks Responsible) Detection
(Blocks Responsible)
Control of Alarm Processing
Alarm Level Designations NA
Signal Failure/Single Message NA
Independent Failures NA
Retrieval of NE Condition NA
Provisioning of Alarm Levels NA
Clear Messages NA
Nonintrusive Detection of Defects and Dec-
laration of Failures NA
Performance Monit oring
General Accumulation and Thresholding Criteria
Phys ical Layer PM
Physical Layer Parameters Supported TMUX, SPEMPR, M13
Physical Layer PM Criteria Supported SPEMPR, M13
Section Layer PM
Section Layer Parameters Supported TMUX TMUX
Section Layer PM Criteria Supported TMUX TMUX
Line Layer PM
Near-end Line Layer Parameters Supported TMUX TMUX
Far-end Line Layer Parameters Supported TMUX TMUX
Line Layer PM Criteria Supported TMUX TMUX
STS Path Layer PM
Near-end STS Path Layer Parameters Supported TMUX, SPEMPR TMUX, SPEMPR
Far-end STS Path Layer Parameters Supported TMUX, SPEMPR TMUX, SPEMPR
STS Path Layer PM Criteria Supported TMUX, SPEMPR TMUX, SPEMPR
VT Path Layer PM
Near-end VT Path Layer Parameters Supported VTMPR VTMPR
Far-end VT Path Layer Parameters Supported VTMPR VTMPR
VT Path Layer PM Criteria Supported VTMPR VTMPR
Monitoring at DSn Interfaces Supported TPG, M13, FRAMER TPG, M13, FRAMER
PM During Troubles NA
Intermediate-path PM NA
Testing Process
Test Access
Fiber Access N A
SONET Signal Test Access NA
Digital Te st Ac ce ss Supporte d TPG TPG
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
593Agere Systems Inc.
25 Philosophies (continued)
Table 639. Maintenance Tasks Supported by the SMPR (continued)
Maintenance Tasks Support by SMPR Generation
(Blocks Responsible) Detection
(Blocks Responsible)
Diagnostics
Physical Layer
Section Layer Supported TMUX TMUX
Signal Identification:
STS Path Trace
STS and VT Path Signal Label
Supported TMUX
TMUX, SPEMPR, VTMPR TMUX
TMUX, SPEMPR, VTMPR
Error Monitoring Supported ALL BLOCKS ALL BLOCKS
Loopbacks
SONET Terminal Loopbacks Supported TMUX
SONET Facility Loopbacks Supported VTMPR, TMUX, SPEMPR
DSn Loopbacks Supported M13, FRAMER
594 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
Applications
26 Applications
Table of Con t ents
Contents Page
26 Applications .................................................................................................................................................... 594
26.1 Application Diagrams ...............................................................................................................................596
26.2 High-Speed Line Interfaces and Clock and Data Recovery.....................................................................597
26.2.1 R eceiv e Directio n ............................... ...... ....... ...... ................... ....... ...... ....... ...... ....... .................... 597
26.2.2 Transm it Directi on .......... ....... ...... ....... ...... ....... ...... ....... ...... ...... ....... ...... ....... ................................. 597
26.3 Multiplex Section Protection (MSP 1 + 1).................................................................................................598
26.3.1 Poi nter Interpre ter .... ...... ....... ...... ....... ...... ....... ...... ....... ................... ...... ....... ...... ........................... 598
26.4 Path Termination Function .......................................................................................................................598
26.5 STS-3/STM-1 MUX-DeMUX.....................................................................................................................599
26.6 Telecom Bus Interface—Interfacing to Mate Devices..............................................................................599
26.7 SPE/AU-3 Mapper (DS3 Mapper)............................................................................................................599
26.8 VT/VC Mapper..........................................................................................................................................600
26.8.1 R eceiv e Directio n ............................... ...... ....... ...... ................... ....... ...... ....... ...... ....... .................... 600
26.8.2 Transm it Directi on .......... ....... ...... ....... ...... ....... ...... ....... ...... ...... ....... ...... ....... ................................. 601
26.9 M13/M23 Multiplexer................................................................................................................................601
26.9.1 R eceiv e Directio n ............................... ...... ....... ...... ................... ....... ...... ....... ...... ....... .................... 601
26.9.2 Transm it Directi on .......... ....... ...... ....... ...... ....... ...... ....... ...... ...... ....... ...... ....... ................................. 602
26.10 Cross Connect Block..............................................................................................................................602
26.11 Digital Jitter Attenuator...........................................................................................................................603
26.12 Test Pattern Generator...........................................................................................................................603
26.13 28-Channel Framer................................................................................................................................604
26.14 Line Decoder/Encoder............................................................................................................................609
26.15 Receive Frame Aligner/Transmit Frame Formatter................................................................................609
26.16 Receive Performance Monitor................................................................................................................609
26.17 Signaling Processor ...............................................................................................................................610
26.18 Facility Data Lin k (FDL) Processo r...... ....... ...... ....... ...... ....... ................... ...... ....... ...... ....... .....................610
26.19 HDLC Unit..............................................................................................................................................611
26.20 System Interface ....................................................................................................................................611
26.21 Internal Loopback Signal Paths..............................................................................................................612
26.22 Clock Edges...........................................................................................................................................614
26.22.1 Configurable Clock Edges .......................................................................................................... 617
26.22.2 Fixed Clock Edges to Transfer Data from/to Primary I/O ............................................................ 617
26.22.3 Fixed Clock Edges Used Internally ............................................................................................. 618
26.22.4 Frequently Asked Questions ....................................................................................................... 618
Figures Page
Figure 103. Switching Application of the Supermapper.........................................................................................596
Figure 104. Transport Application of the Supermapper.........................................................................................596
Figure 105. Supermapper Switching Mode for Framer in Concentration Highway Interface (CHI) Configuration 604
Figure 106. Supermapper Switching Mode for Framer in Parallel System Bus Configuration..............................605
Figure 107. Supermapper Switching Mode CHI Configuration with Byte-Synchronous VT Mapping Enabled .....606
Figure 108. Supermapper Byte-Synchronous Transport Mode: Passive Performance Monitoring.......................607
Figure 109. Supermapper Byte-Synchronous Transport Mode: Intrusive Performance Monitoring......................608
Figure 110. TMUX Receive High-Speed to Transmit High-Speed Loopback Control...........................................613
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 595
26 Applications (continued)
Figures (continued) Page
Figure 111. TMUX Transmit High-Speed to Receive High-Speed Loopback Control...........................................613
Figure 112. SPEMPR DS3 Line Receive Data to Line Transmit Loopback ..........................................................613
Figure 113. VTMPR Transmit Tributary Loopback Selection ................................................................................613
Figure 114. M13 Loopback Received DS3 Input to Transmit DS3 Output............................................................614
Figure 115. Loopback the DeMUXed DS1 or E1 Signals......................................................................................614
Figure 116. Loopback the Transmit M23 MUX Output Back to the M23 DeMUX Receive Input ..........................614
Figure 117. Loopback System Source DS1 from Framer TP_T to Framer RP_R Through the Cross Connect ...614
Figure 118. Loopback Line Source DS1 from Framer RP_T to Framer TP_R Through the Cross Connect.........615
Figure 119. Internal Framer System Side TX Æ RX DS1 Loopback Without Cross Connect...............................615
Figure 120. Internal Framer Line Side RX Æ TX DS1 Loopback Without Cross Connect....................................615
Figure 121. Clock Edges in Supermapper.............................................................................................................616
Tables Page
Table 640. Diagnostic Loopback Signals...............................................................................................................612
Table 641. Configurable Clock Edges ...................................................................................................................617
596 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
26 Applications (continued)
26.1 Application Diagrams
5-8924(F)r.1
Figure 103. Switching Application of the Supermapper
5-8925(F)r.1
Figure 104. Transport Application of the Supe rmapper
FRAMER MAPPER
PM
FRAMER MAPPER
PM
FRAMER MAPPER
PM
FRAMERMAPPER
PM
FRAMERMAPPER
PM
FRAMERMAPPER
PM
SUPERMAPPER #1 SUPERMAPPER #1
SUPERMAPPER #2 SUPERMAPPER #2
SUPERMAPPER #3SUPERMAPPER #3
MAPPER
TELECOM
BUS
STS-3
SYSTEM
INTERFACE SYSTEM
INTERFACE
DS0/E0
SWITCH DS0/E0
SWITCH
FRAMER MAPPER
PM
FRAMER MAPPER
PM
FRAMER MAPPER
PM
FRAMERMAPPER
PM
FRAMERMAPPER
PM
FRAMERMAPPER
PM
SUPERMAPPER #1 SUPERMAPPER #1
SUPERMAPPER #2 SUPERMAPPER #2
SUPERMAPPE R #3SUPERMAPPER #3
MAPPER
TELECOM
BUS
STS-3
LINE
INTERFACE LINE
INTERFACE
PM PM
PM PM
PMPM
T1/E1
LINE INTERFACE
UNIT
(T7690 OR T7698)
T1/E1
LINE INTERFACE
UNIT
(T7690 OR T7698)
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 597
26 Applications (continued)
26.2 High-Speed Line Interfaces and Clock and Data Reco very
In the receive direction, the Supermapper accepts either a differential serial data signal at 155.52 Mbits/s
(STS-3/STM-1 mode) or a serial STS-1 clock and data at 51.84 MHz (STS-1 mode). For the STS-1 case, the input
is retimed with the input clock. A clock and data recovery circuit is used for the 155 Mbits/s case with the high-
speed transmit input clock as the clock reference. In the event that external clock and data recovery is provided,
this feature can be bypassed. The clock and date circuit can be used for recovering clock at 51 MHz, but a
155 MHz clock reference must still be supplied.
On the transmit side, in STS-3/STM-1 mode, the Supermapper receives a differential 155.52 MHz transmit clock
and transmit frame sync signal and outputs a differential serial data signal. In STS-1 mode, it receives a
51.84 MHz transmit clock and frame sync signal and outputs serial data.
Loss of input clock or recovered clock is detected, as well as a loss-of-signal condition, by monitoring an external
signal pin or internally an all-zeros/ones pattern.
Built-in loopbacks at both high-speed interfaces provide maximum flexibility for maintenance testing.
26.2.1 Receive Direction
Terminating the transport overhead (TOH), the Supermapper performs frame alignment (STS-3/STM-1 or STS-1),
B1 BIP-8 check, J0 monitoring, descrambling, F1 monitoring, B2 BIP-8 check, APS and K2 monitoring, AIS-L and
RDI-L detection, M1 REI-L detection, S1 sync status monitoring, and transport overhead access channel (RTOAC)
drop.
The states of the framer as well as all state changes are reported, and, if not masked, cause an interrupt.
The B1 and B2 parity check supports bit and block mode. The counters count up to one second worth of BIP
errors. They stay at their maximum value in case of overflow or rollover and should be read (and cleared) at least
once per second .
The J0 monitor supports nonframed, SONET-framed, and SDH-framed 16-byte sequences, as well as single
J0 byte monitoring modes.
APS monitoring is performed on K1[7:0] and K2[7:3]. The value is stored and changes are reported. Bits [2:0] of
the K2 byte are monitored independently.
Line AIS (AIS-L/MS-AIS) and remote defect indication (RDI-L/MS-RDI) are monitored separately and changes are
reported. This information is also sent to the protection device for ADM applications.
The M1 monitor operates either in bit or block mode and allows accessing of the remote error indication
(REI-L/MS-REI) errored bit count.
The S1 byte can be monitored in two modes: as an entire 8-bit word or as one 4-bit nibble (bits 7 to 4).
Continuous N-times detection counters are implemented for these monitoring functions. All automatic receive mon-
itoring functions can be configured to provide an interrupt to the control system, or the device can be operated in a
polled mode.
The receive transport overhead access channel (RTOAC) provides access to all of the line section overhead bytes.
Even or odd parity is calculated over all bytes. It has a data rate of 5.184 Mbits/s and consists of a clock, data, and
an 8 kHz sync pulse. Alternatively, only the data communication channels D1—D3 or D4—D12 may transmit a
serial 192 kbits/s or a 576 kbits/s data stream.
26.2.2 Transmit Direction
In the transmit direction, the Supermapper performs transmit transport overhead access channel (TTOAC) inser-
tion, sync status byte (S1) insertion, M0/M1—REI-L insertion, K1 and K2 insertion, AIS-L insertion, B2 calculation
and insertion, F1 byte insertion, B1 generation and error insertion, scrambler, J0 insert control, and A2 error inser-
tion.
598 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
26 Applications (continued)
All insert control functions that are inhibited will optionally insert either all zeros or all ones. The TTOAC allows the
user to insert the following overhead bytes: E1, F1, D1—D3, D4—D12, S1, and E2. Even or odd parity is checked
over all bytes. Bytes which are not enabled for insertion are set to an all-ones or all-zeros stuff value. The Super-
mapper sources a clock and an 8 kHz sync pulse and receives the data at a data rate of 5.184 Mbits/s. Alterna-
tively, only the data communication channels D1—D3 or D4—D12 may receive a serial 192 kbits/s or a 576 kbits/s
data stream.
The insertion (overwrite of TTOAC) of programmed S1, F1, J0, Z0-2, and Z0-3 bytes can be enabled.
Automatic insertion of M0/M1 may be inhibited. A protection switch selects the REI-L value for insertion to be taken
from the protection board rather than from the receive side.
The entire APS value or K2[2:0] can be inserted via microprocessor control. Automatic RDI insertion is supported
with individual inhibit for each contributor . A protection switch selects the RDI-L value for insertion to be taken from
the protection board rather than from the receive side.
B1 and B2 BIP-8 values are calculated and inserted; both values can be inverted.
26.3 Multiplex Section Protection (MSP 1 + 1)
The TMUX block supports a payload 1 + 1 protection switch. In the receive direction, this occurs prior to pointer
interpretation. If the protection switch is activated, then the data is selected from the receive protection interface
rather than from the high-speed input path.
In the transmit direction, the signal is broadcast to the high-speed output path and the protection interface.
The interface consists of a 155.52 MHz or 51.84 MHz clock, data, and sync pulse in each direction.
26.3.1 Pointer Interpreter
This state machine implements the pointer interpretation algorithm described in ETS 300 417-1-1: January 1996—
Annex B.
The pointer interpreter evaluates the current pointer state for the normal state, path AIS state, or LOP (loss-of-
pointer) conditions, as well as pointer increments and decrements. The current pointer state and any changes in
pointer condition are reported to the control system. The number of consecutive frames for invalid pointer and
invalid concatenation indication is fixed at 9.
26.4 Path Termination Function
The path termination function is performed on either all three STS-1s or on the VC-4 POH only.
It includes on the receive side: J1 monitoring, B3 BIP-8 checking, C2 signal label monitoring, REI-P and RDI-P
detection, H4 multiframe monitoring; F2, F3, and K3 automatic protection switch monitoring, N1 tandem connection
monitoring, signal degrade BER and signal fail BER detection; path overhead access channel (RPOAC) drop,
AIS-P/HO-AIS insertion, and automatic AIS generation (with individual inhibit).
The J1 monitor provides five modes of operation on a programmable length (1 byte—64 bytes) of the trace identi-
fier: cyclic checking against the last received sequence, comparing against a programmed sequence, SONET
framing mode, SDH framing mode, and consecutive consistent occurrences of a new pattern.
B3 is monitored either in bit or block mode. Provisionable N-times detection counters are implemented for C2, F2,
F3, N1, and K3 bytes. The K3 APS byte and N1 TCM byte can be monitored as an entire 8-bit word or two 4-bit nib-
bles.
The receive path overhead access channel (RPOAC) provides access to all the path overhead bytes. Even or odd
parity is calculated over all bytes. It has a data rate of 8 bytes per 8 kHz frame and consists of clock, data, and an
8 kHz sync pulse.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 599
26 Applications (continued)
In the transmit direction, J1 path trace insertion, B3 calculation and insertion, C2 signal label insertion, REI-P and
RDI-P insertion; F2 insertion, H4 multiframe insertion, F3 path user byte insertion, K3 insertion, N1 byte insertion,
and AIS-P insertion via POAC or software control is supported.
The transmit path overhead access channel (TPOAC) allows the insertion of all overhead bytes besides B3, which
is automatically calculated. Even or odd parity is checked over all bytes. Bytes which are not enabled for insertion
are set to an all-ones or all-zeros stuff value. The Supermapper sources a clock and an 8 kHz sync pulse and
receives the data at a rate of 8 bytes per 8 kHz frame.
26.5 STS-3/STM-1 MUX-DeMUX
The STS-3/STM-1 (AU-4) multiplexer provides three modes of operation: STS-3, AU-4, and STS-1.
In STS-3 mode, the block multiplexes and demultiplexes up to three STS-1 signals to/from a SONET STS-3 signal.
In AU-4 mode, it provides the functionality to MUX/deMUX up to three AU-3 signals to/from a STM-1 (AU-4) signal.
In STS-1 mode, it provides the functions to generate and terminate a single STS-1 signal.
The STS-3/STM-1 MUX function takes the bytes in the order they are present on the telecom bus and multiplexes
them into the high-speed signal. Grooming of the VTs/VCs is performed in the SPE mapper of each of the three
devices.
26.6 Telecom Bus InterfaceInterfacing to Mate Devices
The Supermapper can communicate with up to three mate devices via a telecom bus interface. The bus operates
at 19.44 MHz for STS-3/STM-1 modes and at 6.48 MHz for STS-1 mode.
In the receive direction, the Supermapper outputs one parallel clock at 19.44 MHz, three sync signals (SPE,
J0J1V1, and V1), an 8-bit data bus, and an odd/even parity bit. The data bus carries either three STS-1/TUG-3 sig-
nals, each in their own time slot, or it carries one STS-1 signal. It also outputs a 51.84 MHz low-speed clock and
sync.
The transmit side of Supermapper drives a clock and three sync signals (SPE, J0J1V1, and V1) onto the telecom
bus. These signals control when the internal SPE mapper or one of the mate devices drives the data bus. The
Supermapper receives an 8-bit data bus and an odd/even parity bit from the telecom bus. The data consists of the
SPE for up to three STS-1s. Also, a 51.84 MHz low-speed clock and sync are output.
26.7 SPE/AU-3 Mapper (DS3 Mappe r)
The SPE mapper block is a highly configurable mapper. It operates either as an AU-3/STS-1 mapper or as a
TUG-3 mapper . In both modes, it maps/demaps data from/to either the VT mapper , the M13 MUX/deMUX, the DS3
clear channel, or the DS3 loopback channel. The SPE mapper supports numerous automatic monitoring functions
and provides interrupts to the control system, or it can be operated in a polled mode.
In TU mapping mode, the SPE mapper provides flexibility down to TUG-2 level for choosing which TUG-2s
(out of 7) are mapped/dropped into/from which TUG-3s (between 1 and 3) for generating STM-1 signals. This
allows grooming of the VTs/TUs on the STM-1 level (over all three devices). In a full STM-1 application, with two
other devices sitting on the telecom bus, care has to be taken for the provisioning of the time slots when each block
drives the telecom bus.
In DS3 mapping mode, the SPE mapper block accepts/delivers structured DS3 data from/to the M13 block or a
clear DS3 signal at 44.736 Mbits/s rate and maps/demaps it asynchronously into/from the STS-1 SPE or a TU-3.
The DS3 mapper generates a fixed pointer value of 522.
600 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
26 Applications (continued)
On the receive side, pointer interpretation is performed detecting LOP, AIS, NDF, NORM, INC, and DEC. A DS3
loopback mode allows demapping and remapping of a DS3 signal. It is particularly useful in cases where a DS3
signal mapped as an AU-3/STS-1 signal is needed to be remapped as a TU-3 signal or vice versa. B3ZS encoding/
decoding is included.
The same path overhead monitoring functions as described above are implemented in this block.
This block also connects to the path overhead access channel (POAC) to insert/drop the path overhead bytes J1,
C2, F2, H4, F3, K3, and N1 into the STS-1 SPE or VC-3.
The SPE mapper supports unidirectional path switch ring (UPSR) applications as well as N1 tandem connection
function.
The SPE mapper complies with GR-253-CORE, T1.105, ITU-T G.707, ITU-T G.831, G.783, and ETS 300 417-1-1.
26.8 VT/VC Mapper
The VT/VC mapper maps any valid combination of DS1 and E1 signals into a stream at a rate of 51.84 Mbits/s
(STS-1 or AU-3). The mapping methods (VT1.5, VT2, and VT group in ANSI nomenclature; TU-11, TU-12, and
TUG-2 in ITU nomenclature) are analogous. The VT/VC mapper supports the following mappings:
28 asynchronous, byte- or bit-synchronous DS1 signals are mapped into seven VT groups or TUG-2s.
28 asynchronous, byte- or bit-synchronous J1 signals are mapped into seven VT groups or TUG-2s.
21 asynchronous, byte- or bit-synchronous E1 signals are mapped into seven VT groups or TUG-2s.
Maps T1 into VT1.5/TU-11/TU-12, J1 into VT1.5/TU-11/TU-12, and E1 into VT2/TU-12.
ADM and unidirectional path switch ring (UPSR) applications are supported via tributary loopback, tributary pointer
processing, and low-order path overhead access channel.
The VT/VC mapper supports automatic generation or microprocessor overwrite 1-bit RDI, enhanced RDI, 1-bit RFI,
automatic downstream AIS generation, and five J2 trace identifier modes.
The VT/VC mapper complies with GR-253-CORE, G.707, T1.105, G.704, G.783, JT-G707, GR-499, and ETS 300
417-1-1.
26.8.1 Receive Direction
In the receive direction, the VT mapper terminates the data stream it receives from the SPE mapper. It demulti-
plexes the AU-3/TUG-3 into the VTs/TUs and checks the H4 multiframe alignment. Pointer interpreters for up to
28 VTs/TUs detect LOP, AIS, NDF, NORM, INC, and DEC on each channel.
The low-order path termination includes V5 byte termination, J2 path trace, Z6/N2 tandem connection, Z7/K4
enhanced RDI and low-order APS monitor , and the payload termination for asynchronous, byte- or bit-synchronous
signals. The V5 byte termination performs BIP-2 check (bit- or block-mode), REI count, RFI and RDI detection, sig-
nal label monitor, and automatic AIS insertion (which can be inhibited). The J2 monitor supports four different
modes as follows:
Cyclic check
SONET framing mode
SDH framing mode
Single byte check
In byte-synchronous modes, the receive demapper generates a frame sync to indicate the DS1 frame bit or the
MSB of the E1 time slot 0. Additionally , it provides the framer access to the received signaling bits. Output of the VT
mapper is a DS1/J1/E1 signal with a gapped clock. It can be overwritten with AIS automatically or upon micropro-
cessor request.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 601
26 Applications (continued)
26.8.2 Transmit Direction
In the transmit direction, the VT mapper gets a clock, data, and frame sync from the cross connect. The input is
retimed and checked for a digital loss of clock (LOC), an AIS condition, and low zeros-density . In byte-synchronous
mode, the input signal is additionally checked for loss of frame sync (LOFS).
A transmit elastic store synchronizes the incoming DS1/J1/E1 signals to the local STS-1 clock. In asynchronous
and bit-synchronous mode, it works as a bit-oriented (64-bit) FIFO, and in byte-synchronous mode, as a byte-wide
(8-byte) buffer using a V5 byte marker bit (8-bit). Overflow or underflow conditions are monitored and reported.
In asynchronous and bit-synchronous mode, a fixed VT pointer of 78 (VT1.5/TU-11) and 105 (VT2/TU-12) is gener-
ated and the payload is mapped into the container using positive/null/negative bit stuffing mechanism (C and
S bits). In bit-synchronous mode, the bit stuffing mechanism is disabled. In byte-synchronous mode, a dynamic VT
pointer value is generated using the V5 marker implementing NORM, NDF, INC, and DEC pointers.
The VT POH generation comprises V5 byte with BIP2-generation, AIS-, signal label-, UNEQ-insertion, automatic
REI-, RFI-, RDI-, and enhanced RDI-generation (Bellcore, ITU-T), J2 path trace insertion via microprocessor,
Z6/N2 byte insertion, and Z7/K4 byte insertion via microprocessor or low-order path overhead (LOPOH) access
channel.
The data stream is synchronized to the received 2 kHz sync pulse and multiplexed to form the STS-1/AU-3 signal,
which is then output to the SPE mapper.
When operating in byte-synchronous mode, the phase and signaling bits from the framer are stored and inserted
into the mapped frame.
26.9 M13/M23 Multiplexer
The M13 is a highly configurable multiplexer/demultiplexer. It can operate as an M13 in either the C-bit parity or
M23 mode, a mixed M13/M23, or an M23. In the C-bit parity mode, the M13 provides a far-end alarm and control
(FEAC) code generator and receiver , an HDLC transmitter and receiver , and automatic far-end block error (FEBE)
generation.
Each internal M12 MUX/deMUX and the M23 MUX/deMUX may be configured to operate as independent
MUXs/deMUXs. 28 DS1 inputs in groups of four or 21 E1 input signals in groups of three can feed into individual
M12 MUXs, while the M23 MUX can take DS2 signals from outputs of M12 MUXs, or direct DS2 inputs, or loop-
back deMUXed DS2s.
The M13 supports numerous automatic monitoring functions. It can provide an interrupt to the control system, or it
can be operated in a polled mode.
The M13 complies with T1.102, T1.107, T1.231, T1.403, T1.404, GR-499, G.747, and G.775.
26.9.1 Receive Direction
The receive DS3 is monitored for loss of clock and checked for loss of signal (LOS) according to T1.231. The B3ZS
decoder accepts either unipolar clock and data or unipolar clock, positive and negative data. It also checks for
bipolar coding violations. The transmit DS3 can be looped back into the receive side after B3ZS decoding.
The M23 demultiplexer checks for valid DS3 framing by finding the frame alignment pattern (F bits), and then locat-
ing the multiframe alignment signal (M bits). Each M frame, the data stream is checked for the presence of the AIS
(1010) or idle (1100) pattern .
C bits 13, 14, and 15 can be used as a 28.2 kbits/s data link and are available directly at device output via an inter-
nal HDLC receiver . It is composed of a 128-byte FIFO, a CRC-16 frame check sequence (FCS) error detector , and
control circuits.
602 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
26 Applications (continued)
Within the M23 demultiplexer , there are four performance monitoring counters for F- or M-bit, P-bit, E-bit parity, and
FEBE errors. Each M12 demultiplexer contains two performance monitoring counters.
26.9.2 Transmit Direction
The incoming DS1/E1 clocks are first checked for activity or loss of clock (LOC). The data signals are retimed and
checked for AIS and activity. DS1/E1 loopback selectors allow DS1 or E1 received within the DS2 or DS3 inputs
from the deMUX path to be looped back. This loopback can be performed automatically or the user can force a
DS1 or E1 loopback.
The four DS1 or three E1 signals for each M12 MUX are fed into single bit 16-word-deep FIFOs to synchronize the
signals to the DS2 frame generation clock. The fill level of each FIFO determines the need for bit stuffing its
DS1/E1 input. The M13 can handle DS1/E1 signals with nominal frequency offsets of ±130 ppm and up to five unit
intervals peak jitter. The DS2/DS3 transmit clock is used to derive the clock source for DS2 frame generation.
The M23 multiplexer generates a transmit DS3 frame, and fills the information bits in the frame with data from the
seven DS2 select blocks. The M23 MUX can be provisioned to operate in either the M23 mode or the C-bit parity
mode. It contains seven DS2 FIFOs each with a depth of 8. The fill level of each FIFO determines the need for bit
stuffing its DS2 input.
The transmit DS3 output can either be in the form of unipolar clock and data or unipolar clock, positive and nega-
tive data. The DS3 data is B3ZS encoded and can be looped back from the receive DS3 input.
26.10 Cross Connec t Block
The cross connect (XC) is a highly configurable nonblocking crosspoint switch for DS1/E1/DS2 signals, configura-
tion of DS3 signal paths, and configuration of the path overhead access I/O. The cross connect plays a major role
in configuring the interconnection of major function blocks to satisfy an application’s implementation.
The cross connect provides the flexibly to tie DS1/E1/DS2 channels from the framer or external pins to the M13
mapper or to the VT mapper. It is also capable of multicast or broadcast operation (one port to many), handling
injected test patterns, idles, or alarm conditions to any channel, and can provide system loopback testing support.
Jitter attenuation may also be inserted in-line on any DS1/E1 channel.
The cross connect can interconnect up to 28 individual DS1/E1 channels between the framer, M13 multiplexer, VT
mapper, jitter attenuator, or external I/O. The external I/O pins support an application dependent mix of up to
29 T1/E1 interfaces (one dedicated protection channel), seven DS2 interfaces, or one of four available framer sys-
tem interfaces.
The cross connect supports an independent signal path for remote alarm indication (RAI), alarm indication signal
(AIS), and byte-synchronous frame sync signals on channels between the VT mapper or M13 and the framer.
Receive pointer adjustment information is routed to the jitter attenuator block for each channel originating in the VT
mapper.
The cross connect has independent DS2 interfaces for the M12 and M23 blocks of the M13 MUX. Full split access
to the external I/O device pins provides the capability to add, drop, or rearrange the DS2 signals within the M13.
For DS3 signals, the cross connect supports configuration of interconnects between the M13 and the SPE, or
external I/O interconnection to the M13 or SPE, or insertion/monitoring of DS3 test patterns from the test-pattern
generator block.
The test-pattern generator block (TPG) provides test signals and it monitors inputs (TPM) for signals to and from
the cross connect. The TPG can generate a set of test signals or idles at DS1, E1, DS2, or DS3 rates. There is only
one test pattern generator and monitor per signal rate.
Device pins for the path overhead access channel may be configured to connect to the SPE mapper or TMUX
blocks.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 603
26 Applications (continued)
26.11 Digital Jitter Attenuator
The digital jitter attenuator (DJA) contains 28 copies of the digital jitter attenuator block. These digital jitter attenua-
tor blocks can operate in two different modes, as a DS1 or as an E1 jitter attenuator.
In both modes, the digital jitter attenuator can be provisioned to always operate as a second-order PLL, or it can
switch to act as a first-order PLL during VT pointer adjustments to help meet MTIE requirements. The period of
time in the first-order mode is provisionable. The PLL bandwidth is provisionable between 0.1 Hz and 0.5 Hz, and
the damping factor for these bandwidths varies between 2 and 0.5 to accommodate a number of different system
constraints.
The block will also insert the proper AIS signal if the primary block AIS control input is active.
26.12 Test Pattern Generator
The test pattern generator and monitor (TPG and TPM) is a set of configurable test pattern generators and moni-
tors for local self-test, maintenance, and troubleshooting operations.
The TPG feeds one or more T1/E1/DS2 test signals (via data, clock, and FS or AIS signal paths) to the crosspoint
switch which can redistribute or broadcast these signals to any valid channel in the framer, external I/O, M13 map-
per, or VT mapper blocks. The TPG can also generate DS3 test signals.
Any channel arriving at the cross connect may be routed to the test monitor. The test monitors can automatically
detect/count bit errors in a pseudorandom test sequence, loss of frame, or loss of sync. The TPM can provide an
interrupt to the control system, or it can be operated in a polled mode.
Simultaneous testing of DS1, E1, DS2, and DS3 signals is supported (one channel each).
Supported test patterns are pseudorandom bit sequence (PRBS15, PRBS20), alternating zeros/ones, and an all-
ones pattern .
The test pattern can be transmitted either unframed or as the payload of a framed signal, as defined in ITU-T Rec-
ommendati on O.1 50.
Single bit errors may be injected into any test pattern, under register control.
604 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
26 Applications (continued)
26.13 28-Channel Framer
The block diagrams of the 28 T1/21E1-channel framer in the switching application in the CHI, parallel system bus,
and CHI with byte-synchronous VT mapping, are shown in Figure 105, Figure 106, and Figure 107 (onl y th e m a jor
functional blocks are shown). The block diagrams of the 28 T1/21E1-channel framers in the transport application
are shown in Figure 108 and Figure 109 (only the major functional blocks are shown).
5-8926(F)
Figure 105. Supermapper Switching Mode for Framer in Concentration Highway Interface (CHI)
Configuration
SIGNALING
PROCESSOR
(EXTRACTION)
RECEIVE
FACILITY DATA
LINK
RECEIVE
HDLC
TRANSMIT
SYSTEM
INTERFACE
RECEIVE
FRAME
ALIGNER
TRANSMIT
FRAME
FORMATTER
TRANSMIT
FACILITY DATA
LINK
SIGNAL
PROCESSOR
(INSERTION)
RECEIVE
SYSTEM
INTERFACE
MAPPER
TO
FRAMER
DS1
CROSS
CONNECT
ESF PRM PATH
SUPERMAPPER: FRAMER
SUPERMAPPER
M12 MULTIPLEXER
INTERFACE
SUPERMAPPER
VT MAPPER
INTERFACE
TFS1, TCLK1, TDATA28DS0 INTERFACERFS1, RCLK1, RDATA28
PERFORMANCE
MONITOR
TRANSMIT
HDLC
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 605
26 Applications (continued)
5-8927(F)
Figure 106. Supermapper Switching Mode for Framer in Parallel System Bus Configuration
SIGNALING
PROCESSOR
(EXTRACTION)
RECEIVE
FACILITY DATA
LINK
RECEIVE
HDLC
TRANSMIT
SYSTEM
INTERFACE
RECEIVE
FRAME
ALIGNER
TRANSMIT
FRAME
FORMATTER
TRANSMIT
FACILITY DATA
LINK
SIGNAL
PROCESSOR
(INSERTION)
RECEIVE
SYSTEM
INTERFACE
MAPPER
TO
FRAMER
DS1
CROSS
CONNECT
ESF PRM PATH
SUPERMAPPER: FRAM ER
SUPERMAPPER
M12 MULTIPLEXER
INTERFACE
SUPERMAPPER
VT MAPPER
INTERFACE
DS0
PERFORMANCE
MONITOR
TRANSMIT
HDLC
INTERFACE
TFS1, TCL K1, TDATA8,
TDATA_PARITYA1, TSIGNALING8,
TSIGNALING_PARITYA1
RFS1, RCLK1, RDATA8,
RDATA_PARITYA1, RSIGNALING8,
RSIGNALING_PARITYA1
606 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
26 Applications (continued)
In the byte-sync mode, the frame sync and signaling (VT SPE) information are also passed to the mapper. In the
receive direction, the mapper block provides the line data, line clock, frame sync (byte-sync mode), and signaling
information (byte-sync mode) to the superframer. Performance reports, in the form of HDLC packets (PRMs), are
sent from the receive performance monitor block to the transmit HDLC block.
5-8928(F)
Figure 107. Supermapper Switching Mode CHI Configuration with Byte-Synchronous VT Mapping Enabled
SIGNALING
PROCESSOR
(EXTRACTION)
RECEIVE
FACILITY DATA
LINK
RECEIVE
HDLC
TRANSMIT
SYSTEM
INTERFACE
RECEIVE
FRAME
ALIGNER
TRANSMIT
FRAME
FORMATTER
TRANSMIT
FACILITY DATA
LINK
SIGNAL
PROCESSOR
(INSERTION)
RECEIVE
SYSTEM
INTERFACE
MAPPER
TO
FRAMER
DS1
CROSS
CONNECT
ESF PRM PATH
SUPERMAPPER: FRAMER
SUPERMAPPER
M12 MULTIPLEXER
INTERFACE
SUPERMAPPER
VT MAPPER
INTERFACE
DS0
PERFORMANCE
MONITOR
TRANSMIT
HDLC
INTERFACE TFS1, TCLK1, TDATA28 RFS1, RCLK1, RDATA28
VT MAPPER:
BYTE-SYNCHRONOUS
ROBBED-BIT SIGNALING
RECEIVE DATA
RECEIVE SIGNALING DATA
(TO SIGNALING REGISTERS)
SIGNALING STOMP
DATA
VT MAPPER:
BYTE-SYNCHRONOUS
ROBBED-BIT SIGNALING
TRANSMIT DATA
TRANSMIT SIGNALING DATA
(EXTRACTED FROM SYSTEM
OF SIGNALING REGISTERS)
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 607
26 Applications (continued)
5-8929(F)
Figure 108. Supermapper Byte-Synchronous Transport Mode: Passive Performance Monitoring
SIGNALING
PROCESSOR
(TRANSMIT)
RECEIVE
FACILITY DATA
LINK
RECEIVE
HDLC
TRANSMIT
FRAME
FORMATTER RECEIVE
FRAME
ALIGNER
TRANSMIT
FRAME
FORMATTER
TRANSMIT
FACILITY DATA
LINK
SIGNALING
PROCESSOR
(RECEIVE)
MAPPER
TO
FRAMER
DS1
CROSS
CONNECT
SUPERMAPPER: PERFORMANCE MONITORING FRAMER
SUPERMAPPER
M12 MULTIPLEXER
INTERFACE
SUPERMAPPER
VT MAPPER
INTERFACE
DS1
PERFORMANCE
MONITOR
INTERFACE RCLK28, RPD28, RND28 TCLK28, TPD28, TND28
VT MAPPER:
BYTE-SYNCHRONOUS
ROBBED-BIT S IGNALING
RECEIVE DATA
SIGNALING STOMP
DATA
VT MAPPER:
BYTE-SYNCHRONOUS
ROBBED-BIT SIGNALING
TRANSMIT DATA
PERFORMANCE
MONITOR
LINE
ENCODER
LINE
DECODER
(LINE
INTERFACE)
RECEIVE
FRAME
ALIGNER
(LINE
INTERFACE)
608 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
26 Applications (continued)
5-8930(F)r.3
Figure 109. Supermapper Byte-Synchronous Transport Mode: Intrusive Performance Monitoring
SIGNALING
PROCESSOR
(TRANSMIT)
RECEIVE
FACILITY DATA
LINK
RECEIVE
HDLC
RECEIVE
FRAME
ALIGNER
TRANSMIT
FRAME
FORMATTER
TRANSMIT
FACILITY DATA
LINK
SIGNALING
PROCESSOR
(RECEIVE)
MAPPER
TO
FRAMER
DS1
CROSS
CONNECT
SUPERMAPPER: PERFORMANCE MONITORING FRAMER
SUPERMAPPER
M12 MULTIPLEXER
INTERFACE
SUPERMAPPER
VT MAPPER
INTERFACE
VT MAPPER:
BYTE-SYNCHRONOUS
ROBBED-BIT SI GNALING
RECEIVE DATA
SIGNALING STOMP
DATA
VT MAPPER:
BYTE-SYNCHRONOUS
ROBBED-BIT SIGNALING
TRANSMIT DATA
TRANSMIT
HDLC
TRANSMIT
HDLC
PERFORMANCE
MONITOR
PERFORMANCE
MONITOR
INTRUSIVE
PERFORMANCE
MONITOR
DS1
INTERFACE RCLK28, RPD28, RND28 TCLK28, TPD28, TND28
TRANSMIT
FRAME
FORMATTER
LINELINE
(LINE
INTERFACE)
RECEIVE
FRAME
ALIGNER
(LINE
INTERFACE)
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 609
26 Applications (continued)
26.14 Line Decoder/Encoder
The line decoder/encoder supports either single-rail or dual-rail transmission. In dual-rail mode, the line codes sup-
ported are as follows:
Alternate mark inversion (AMI).
DS1 binary 8 zero code suppression (B8ZS).
ITU-CEPT high-density bipolar of order 3 (HDB3).
In the single-rail mode, a line interface unit (LIU) decodes/encodes the data.
In the dual-rail mode, loss of signal in monitored.
In the case of coded mark inversion (CMI) coding (Japanese TTC standard JJ-20.11), the LIU decodes the data,
indicating both the CMI coding rule violations (CRVs) and line coding violations as bipolar violations. (In the CMI
mode, the framer is in the single-rail mode.)
26.15 Receive Frame Aligner/Transmit Frame Formatter
The receive frame aligner and transmit frame formatter support the following frame formats:
D4 superframe.
SF D4 superframe: FT framing only.
J-D4 superframe with Japanese remote alarm.
DDS.
SLC-96.
ESF.
J-ESF (J1 standard with different CRC-6 algorithm).
Nonalign DS1 (193 bits—clear channel).
CEPT basic frame (ITU G.706).
CEPT CRC-4 multiframe with 100 ms timer (ITU G.706).
CEPT CRC-4 multiframe with 400 ms timer (automatic CRC-4/nonCRC-4 equipment interworking) (ITU G.706
Annex B).
Nonalign E1 (256 bits—clear channel).
2.048 coded mark inversion (CMI) coded interface (TTC standards JJ-20.11).
26.16 Receive Performance Monitor
The receive framer monitors the following alarms: loss of receive clock, loss of signal, loss of frame, alarm indica-
tion signal (AIS), remote frame alarms, and remote multiframe alarms. These alarms are detected as defined by
the appropriate ANSI, AT&T, ITU, and ETSI standards.
Performance monitoring as specified by AT&T, ANSI, and ITU is provided through counters monitoring bipolar vio-
lation, frame bit errors, CRC errors, errored events, errored seconds, bursty errored seconds, and severely errored
seconds.
In-band loopback activation and deactivation codes can be transmitted to the line via the payload or the facility data
link. In-band loopback activation and deactivation codes in the payload or the facility data link are detected.
610 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
26 Applications (continued)
26.17 Signaling Processor
The signaling processor supports the following modes:
Superframe (D4, SLC-96): 2-state, 4-state, and 16-state.
VT 1.5 SPE: 2-state, 4-state, and 16-state.
Extended superframe: 2-state, 4-state, and 16-state.
CEPT: common channel signaling (CCS) (TS-16).
Transparent (pass through) signaling.
J-ESF handling groups.
Signaling features supported per channel are as follows:
Signaling debounce.
Signaling freeze.
Signaling interrupt upon change of state.
Associated signaling mode (ASM).
Signaling inhibit.
Signaling stomp.
In the DS1 robbed-bit signaling modes, voice and data channels are programmable. The entire payload can be
forced into a data-only (no signaling channels) mode, i.e., transparent mode by programming one control bit.
Signaling access can be through the on-chip signaling registers or the system interface. Data and its associated
signaling information can be accessed through the system in either DS1 or CEPT-E1 modes.
26.18 Facility Data Link (FDL) Processor
The bit-oriented ESF data-link messages defined in ANSI T1. 403 are monitored by the receive facility data link
unit. The transmit facility data link unit overrides the FDL-FIFO for the transmission of the bit-oriented ESF data-link
messages defined in ANSI T1.403-1995.
The FDL processor extracts and stores data link bits from three different frame types as follows:
D bits and delineator bits from the SLC-96 multi-superf ra me.
Data link bits from DDS frames (bit 6 of time slot 24).
Two multiframes of Sa[4:8] bits from time slot 0 in CEPT basic and CRC-4 multiframes.
The respective bits will always be extracted from frame-aligned frames and stored in a stack. The processor will
have control of being alerted to stack updates through the interrupt mask registers.
The transmit FDL block performs the transmission of D bits into SLC-96 superframes, Sa-bits in CEPT frames, and
D bits in DDS frames.
In SLC-96 frames, the D bits and delineator bits are always sourced from this block when the block is enabled for
insertion.
In DDS frames, the data link bits are always sourced from this block when this block is enabled for insertion. This
block also provides the capability to transmit BOMs in the data link channel of ESF links.
In CEPT frames, the Sa bits are sourced from either the Sa stack within this block or from the system interface.
The data link block only responds with valid data when selected by the Sa source control bits.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 611
26 Applications (continued)
26.19 HDLC Unit
The HDLC processor formats the HDLC packets for insertion into the programmable channels. A channel can be
any number of bits (1 to 8) from a time slot.
The maximum number of channels is 64. The maximum channel bit rate is 64 kbits/s. The minimum channel bit
rate is 4 kbits/s. Each channels is allocated 128 bytes of storage.
HDLC processing of data on the facility data link (PRMs, Sa bits, or otherwise) is implemented by assigning the
FDL bit position to a logic HDLC channel.
26.20 System Interface
The system interface block provides a programmable interface. It can be configured to work in four different
modes.
Concentration highway interface (serial time division multiplex interface):
— Global frame sync.
— Global clock: 2.048 MHz, 4.096 MHz, 8.192 MHz, or 16.384 MHz.
— 28 transmit and receive data ports; data rates: 2.048 Mbits/s, 4.096 Mbits/s, or 8.192 Mbits/s.
Parallel system bus (parallel time-division multiplex interface/transmit and receive):
— Global frame sync.
— Global clock: 19 MHz.
— Data rate: 19 MHz.
— 8 bits of data + associated parity bit.
— 4 bits of signaling + 2 bits of signaling control + 1 bit of parity.
Time-division multiplex data rate serial interface:
— 28 receive frame sync (per port).
— 28 receive clock: 1.544 Mbits/s or 2.048 Mbits/s (per port).
— 28 receive ports.
— One transmit frame sync.
— One transmit clock: 1.544 Mbits/s or 2.048 Mbits/s.
— 28 transmit ports.
Network serial multiplexed bus:
— 6- or 8-pin serial interface.
— Transmit and receive clock and data at 51.84 MHz.
— Accommodates 1 DS3 of throughput.
— Provides a minimal pin count interface for data and inverse multiplexing for ATM (IMA) applications without slip
buffers.
— Three modes of operation: framer—NSMI payload assembled/disassembled into DS1/E1s; M13—proprietary
transport format with DS3 framing; SPE—proprietary transport format mapped into an STS-1/AU-3.
612 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
26 Applications (continued)
26.21 Internal Loopback Signal Paths
This section describes the diagnostic loopback signal paths. Register data values reflect only those bits associated
with loopback control; therefore, other bits which may be set are not shown.
Table 640. Diagnostic Loopback Signals
TMUX
Signal Path Description Registers
Line RX TMUX Line TX Figure 110: Receive high-speed to transmit
high-speed loopback control (pre-CDR). 0x00010 = 0x0008
Line RX TMUX Line TX Figure 110: Receive high-speed to transmit
high-speed loopback control. 0x40034 = 0x0002
System TX TMUX System RX Figure 111: Transmit high-speed to receive
high-speed loopback control. 0x40019 = 0x0002
SPEMPR
Line RX SPE Line TX Figure 112: DS3 line receive data to line
transmit loopback. 0x30018 = 0x0020
VTMPR
Line RX VTMPR Line TX Figure 113: Transmit tributary loopback to
high-speed side.0x200DC—F7 = 0x0010
M13
Line RX DS3 M13 Line TX DS3
(requires DS3 TX Clk) Figure 114: Loopback the received DS3
input to the transmit DS3 output. 0x1005C = 0x0010
Line RX DS3 M13 DS1 M13
Line TX DS3 Figure 115: Loopback the deMUXed DS1
or E1 signals. Bits [7:4] of each register
controls four DS1s.
0x10061 = 0x00F0
0X10063 = 0X00F0
0X10065 = 0X00F0
0X10067 = 0X00F0
0X10068 = 0X00F0
0X1006B = 0X00F0
0X1006D = 0X00F0
Line RX DS3 M13 DS1 XC
DJA XC DS1 M13 Line TX
DS3
M13 deMUXes a DS3 to a DS1 which is
passed through the XC and DJA, then
MUXed back into a DS3.
0x50050 = 0x0061
0x50030 = 0x00A1
System TX DS2 M23 System RX
DS2 Figure 116: Loopback the transmit M23
MUX output back to the M23 deMUX
Receive input.
0x1005C = 0x0020
Framer
System TX FRM_TP_T XC
FRM_RP_R System RX Figure 117: Loopback system source DS1
from framer TP_T to framer RP_R through
the XC.
0x50020—2D = 4x4x
( x = selected channel)
Line RX FRM_RP_R XC
FRM_TP_T Line TX Figure 118: Loopback line source DS1 from
framer RP_T to framer TP_R through the
cross connect.
0x50060 —6D = CxCx
( x = selected channel)
System TX Framer System RX Figure 119: TX DS1 is sent back to the sys-
tem side. 0x80LPF5 = 0x4000
(0X802F5 = RX link1)
Line RX Framer Line TX Figure 120: RX DS1 is sent back to the line
side. 0x80LPF5 = 0x4000
(0x803F5 = TX link1)
System CHI Framer System CHI Selected RX CHI time slot is looped back to
the system. 0x80053 = 0x8000
Line CHI Framer Line CHI Selected TX CHI time slot is looped back to
the line. 0x80053 = 0x4000
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 613
26 Applications (continued)
2809 (F)
Figure 110. TMUX Receive High-Speed to Transmit High-Spee d Loopback Control
2810 (F)
Figure 111. TMUX Transmit High-Speed to Receive High-Speed Loopback Control
2811 (F)
Figure 112. SPEMPR DS3 Line Receive Data to Line Transmit Loopback
2812 (F)
Figure 113. VTMPR Transmit Tributary Loopback Selection
STS-1
T7295
1417
OC-3
TMUX SPE
MAPPER M13
MUX FRAMER
VT/TU
MAPPER CROSS
CONNECT
TMXF28155
SUPERMAPPER
STS-1
T7295
1417
OC-3
TMUX SPE
MAPPER M13
MUX FRAMER
VT/TU
MAPPER CROSS
CONNECT
TMXF28155
SUPERMAPPER
T7698
DS1/E1
STS-1
T7295
1417
OC-3
TMUX SPE
MAPPER M13
MUX FRAMER
VT/TU
MAPPER CROSS
CONNECT
TMXF28155
SUPERMAPPER
STS-1
T7295
1417
OC-3
TMUX SPE
MAPPER M13
MUX FRAMER
VT/TU
MAPPER CROSS
CONNECT
TMXF28155
SUPERMAPPER
614 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
26 Applications (continued)
2813 (F)
Figure 114. M13 Loopback Received DS3 Input to Transmit DS3 Output
Note: Bits [7:4] of each register control four DS1s. 2814 (F)
Figure 115. Loopback the DeMUXed DS1 or E1 Signals
2815 (F)
Figure 116. Loopback the Transmit M23 MUX Output Back to the M23 DeMUX Receive Input
2816 (F)
Figure 117. Loopback System Source DS1 from Framer TP_T to Framer RP_R Through the Cross Connect
TMUX SPE
MAPPER M13
MUX FRAMER
VT/TU
MAPPER CROSS
CONNECT
TMXF28155
SUPERMAPPER
TMUX SPE
MAPPER M13
MUX FRAMER
VT/TU
MAPPER CROSS
CONNECT
TMXF28155
SUPERMAPPER
STS-1
T7295
1417
OC-3
TMUX SPE
MAPPER M13
MUX FRAMER
VT/TU
MAPPER CROSS
CONNECT
TMXF28155
SUPERMAPPER
T7698
DS1/E1
TMUX SPE
MAPPER M13
MUX FRAMER
VT/TU
MAPPER CROSS
CONNECT
TMXF28155
SUPERMAPPER
T7698
DS1/E1
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 615
26 Applications (continued)
2817 (F)
Figure 118. Loopback Line Source DS1 from Framer RP_T to Framer TP_R Through the Cross Connect
2818 (F)
Figure 119. Internal Framer System Side TX RX DS1 Loopback Without Cross Connect
2819 (F)
Figure 1 20. Internal Framer Line Side RX TX DS1 Loopback Without Cross Connect
STS-1
T7295
1417
OC-3
TMUX SPE
MAPPER M13
MUX FRAMER
VT/TU
MAPPER CROSS
CONNECT
TMXF28155
SUPERMAPPER
TMUX SPE
MAPPER M13
MUX FRAMER
VT/TU
MAPPER CROSS
CONNECT
TMXF28155
SUPERMAPPER
T7698
DS1/E1
TMUX SPE
MAPPER
M13
MUX FRAMER
VT/TU
MAPPER CROSS
CONNECT
TMXF28155
SUPERMAPPER
STS-1
T7295
1417
OC-3
616 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
26 Applications (continued)
26.22 Clock Edges
Figure 121. Clock Edges in Supermapper
TMUX VTSPE FRM
M13
DJA
DS3
DS1/E1[1:28]
CONFIGURABLE CLOCK EDGE (PART 1)
STS1
STM1
Rx PATH
Tx PATH
FIXED CLOCK EDGE: PRIMARY I/O USE (PART 2)
FIXED CLOCK EDGE: INTERNAL USE (PART 3)
TELECOM BUS
XC
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 617
26 Applications (continued)
26.22.1 Confi gur able Clock Ed ges
5 ULVLQJ) IDOOLQJ
26.22.2 Fixed Clock Edges to Transfer Data from/to Primary I/O
TMUX
Receive data from telecom bus: rising edge.
Transmit data to telecom bus: rising edge.
Transmit data to high-speed SONET side: rising edge.
SPE
Receive data from telecom bus: negative edge.
Transmit data to telecom bus: positive edge.
Table 641. Configurable Clock Edges
Block Address Bit Name Function Default*
Top 0x00010 2 SMPR_RETIME_CLK_EDGE Receive data from high-speed SONET
side. R
1 SMPR_TELECOMBUS_EDGE Telecom bus edge.
1 = clock telecom bus signals out on
the rising edge.
F
SPE 0x30019 5 SPE_TDS3CLK_EDGE Receive DS3 data from external input. F
VT
Mapper 0x200DC—
0x200F7 5 VT_TX_CLKEDGE[1:28] Receive DS1/E1 data from PDH side. F
0x10061
0x10063
0x10065
0x10067
0x10069
0x1006B
0x1006D
3:0 M13_RDS1_EDGE[28:1] Receive DS1/E1 data from PDH side. F
0x1007B
0x1007D
0x1007F
0x10081
0x10083
0x10085
0x10087
3:0 M13_TDS1_EDGE[28:1] Transmit DS1/E1 data to PDH side. R
0x100A1 0 M13_RDS3_EDGE Receive DS3 data from either external
input or SPE. F
Framer 0x8LPF0 9 FRM_ICKEDGE Receive PDH data from external input. R
0x8LPF4 6 FRM_OCKEDGE Transmit PDH data to external output. R
DJA 0x70017
0x70018 11:0
15:0 DJA_TXEDGE[28:17]
DJA_TXEDGE[16:1] Transmit data out of DJA. R
0x70019
0x7001A 11:0
15:0 DJA_RXEDGE[28:17]
DJA_RXEDGE[16:1] Receive data into DJA. R
618 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
26 Applications (continued)
VT Mapper
Receive data from SPEM PR: fal ling edge.
Transmit data to SPEMPR: rising edge.
M13/M23
When cross-connected to the DS3 device pins, DS3POSDATAOUT (Pin R22) and DS3NEGDATAOUT
(Pin P22) are clocked out on the falling edge of DS3DATAOUTCLK (Pin N22). If the M13 DS3 interface is
optioned for loop timing (M13_LOOP_TIME = 1), the DS3 data is clocked out on the rising edge of
DS3DATAINCLK (Pin J22).
26.22.3 Fixed Clock Edges Used Internally
SPE
Receive data from VT mapper: positive edge.
Transmit data to VT mapper: positive edge.
VT Mapper
Transmit data to PDH side: rising edge.
M13/M23
Transmit data to SPE: rising edge.
26.22.4 Frequently Asked Questions
Question 1
The active clock edges at most interfaces between different blocks could be configured through registers. Are there
any requirements or guidelines to configure these active clock edges? For example, should the active clock edges
be configured to be the same at the two sides at an interface between two blocks? Should the active edges be set
opposite or would both ways work?
Answer
Generally speaking, it is highly recommended to use the opposite clock edges in order to clock-in data in the center
of the bit.
Question 2
For the configurable clock edges, related to transfers from/to primary I/O, how does one determine which clock
edge is to be used?
Answer
This depends on the external delay to/from the external source. It is better to use the clock edge opposite to that of
the source signal to avoid possible delay of the data; or the default settings could be used and the clock edge could
be adjusted.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 619
26 Applications (continued)
Question 3
Since the data sent out from SPEMPR to telecom bus uses a fixed rising edge, what is the function of
SPEMPR_TELECOMBUS_EDGE at the top level?
Answer
The telecom bus transmit data (TLSDATA) is 3-stated during 1/2 of the TLSCLK cycle to eliminate bus contention
issues. Bit SPEMPR_TELECOMBUS_EDGE selects which 1/2 of the TLSCLK cycle LSDATA is 3-stated. In other
words, TLSDATA can transition from 3-state to valid on the rising or falling edge of TLSCLK, based on
SPEMPR_TELECOMBUS_EDGE.
Note: For most applications, the default settings of the configurable clock edges will work. However, it might be a
critical issue for some applications, depending on the specific system design. It may be necessary to exper-
iment with the configurable clock edges under those circumstances.
620 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
Application Scripts
27 Application Scripts
Table of Con t ents
Contents Page
27 Application Scripts .......................................................................................................................................... 620
27.1 DS1 Mode ................................................................................................................................................622
27.1.1 D S1_AL LCH_ FR AM ER_ EXT ............ ...... ....... ...... ....... ...... ...... .................... ...... ....... ...... ....... ....... 622
27.1.2 DS1_ INTE NCDEC _28 LINK _FRAME R_TRA NSP ORT_TRAN SPARE NT_TX _RX _STSLP B K .... 631
27.1.3 D S1_LINK 1L OOP LINK2_FRAMER_EX T ............. ....... ...... ...... ....... ...... ....... ...... ....... ...... .............. 643
27.1.4 D S1_SIG NA LNG_ 16S TATE _LIN K1_ FRAM ER_ EXT ........................... ....... ...... ....... ................... . 649
27.1.5 D S1_SIG NA LIN G_16S TATE _LI NK1 _FRAM ER _TRAN SP OR T_EXT ........ ...... ....... ...... ....... ...... . 654
27.1.6 D S1_SIG NA LIN G_16S TATE _LI NK1 _FRAM ER _TRAN SP OR T_Tx-Rx ......................... ....... ...... . 660
27.1.7 D S1_TPG _L INK1 _FRAME R_E XT ................. ...... ....... ...... ...... ....... ...... ....... ................... ....... ...... . 665
27.1.8 D S1_TPG _L INK1 _FRAME R_Tx -Rx .. ...... ....... ...... ....... ................... ...... ....... ...... ....... ...... .............. 671
27.1.9 D S1_TPG _L OOPLINK 1THRU 28_ FR AME R_EX T ............ ...... ....... ...... ....... ...... ....... ...... ....... ...... . 676
27.2 E1 Mode...................................................................................................................................................684
27.2.1 C EPT_21 LINK _B ROADCA ST ........... ...... ....... ...... ....... ...... ...... ....... ...... ....... ...... ....... .................... 684
27.2.2 C EPT_LINK1_FRAM ER_ TRANS PORT ......... ...... ....... ...... ...... ....... ................... ....... ...... ....... ...... . 685
27.2.3 C EPT_LINK1_FRAM ER_ BASIC _TRA NSPO RT ......... ...... ...... .................... ...... ....... ...... ....... ...... . 690
27.2.4 C EPT_LINK1_FRAM ER_ CRC4_ 100 MS _TRAN SPOR T_EX T ............. ....... ...... .................... ...... . 695
27.2.5 CEPT_LINK1_FRAMER_CRC4_400MS_TRANSPORT_TX-Rx .................................................. 699
27.2.6 C EPT_SIGNALING _LINK 1_ FRAM ER_ EXT ................ ...... ...... ....... ...... ....... ...... ....... ...... ....... ...... . 704
27.2.7 C EPT_SIGNALI NG_LINK 1L OOP LINK2_ FR AM ER_CRC4_ 100M S_ EX T ............... ...... .............. 709
27.3 OC3 Mode................................................................................................................................................714
27.3.1 OC3 CDRLO OP BA CK ................. ....... ...... ....... ...... ................... ....... ...... ....... ...... ........................... 714
27.3.2 OC3 M_S PE_M 13_ DS1 LIUL OOP BA CK1 ............. ....... ...... ...... ....... ...... ....... ...... .................... ...... . 716
27.4 STM Mode................................................................................................................................................720
27.4.1 SMP R2_ STM 1_A U3_D S3_ PI C .. ....... ...... ....... ................... ...... ....... ...... .................... ...... ....... ....... 720
27.4.2 SMP R2_ STM 1_A U4_TU G3_TU3_ DS3 ................ ....... ...... ...... ....... ................... ....... ...... ....... ...... . 722
27.4.3 STM1 _AU3_TUG2_ ATU1 1_DS1 ............. ....... ...... ................... ....... ...... ....... ...... .................... ....... 724
27.4.4 STM1 _AU3_TUG2_ ATU1 2_E1 .. ....... ...... ....... ...... ....... ...... ...... ....... ...... ....... ...... .................... ....... 730
27.4.5 STM1 _AU4_TUG3_ TUG2_A TU11_ DS1 ........................... ...... ....... ...... ....... ...... .................... ...... . 735
27.5 STS Mode ................................................................................................................................................741
27.5.1 ST S1_A VT15 _DS 1 .. ...... .................... ...... ....... ...... ....... ................... ...... ....... ...... ....... ...... .............. 741
27.5.2 ST S1 _SPE _M1 3DS 1LOO P BACK ........... ....... ...... ....... ...... ...... .................... ...... ....... ...... .............. 745
27.6 D4 Mode...................................................................................................................................................748
27.6.1 D 4_IN TENCDEC_L INK 1_FRA ME R_TRANSP O RT_Tx-Rx .... ....... ...... ....... ...... ....... ...... ....... ...... . 748
27.6.2 D 4_LINK1 _FRA ME R_E XT ......... ....... ...... ....... ...... ....... ...... ...... ....... ...... ....... ...... ....... .................... 753
27.6.3 D 4_SIG NAL ING_16 STA TE_ LINK 1_FRA ME R_EXT ......... ...... ....... ...... ....... ...... ....... ...... ....... ...... . 758
27.6.4 D 4_SIG NAL ING_NO S TATE_LINK 1_ FRAM ER_ EX T .............. ....... ...... ....... ...... ....... ...... ....... ....... 764
27.6.5 D 4_SIG NAL ING_16 STA TE_ LINK 1_FRA MER_TRA NS PORT_E XT ........... ...... ....... ................... . 770
27.6.6 D 4_SIG NAL ING_NO S TATE_LINK 1_ FRAM ER_ TR ANSPO RT_ Tx-Rx ............. ....... ...... ....... ...... . 775
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 621
27 Application Scripts (continued)
Table of Conten ts (continued)
Figures (continued) Page
Figure 122. DS1_ALLCH_FRAMER_EXT.............................................................................................................622
Figure 123. DS1_INTENCDEC_28LINK_FRAMER_TRANSPORT_TRANSPARENT_TX-RX_STSLPBK ..........631
Figure 124. DS1_LINK1LOOPLINK2_FRAMER_EXT ..........................................................................................643
Figure 125. DS1_SIGNALING_16STATE_LINK1_FRAMER_EXT.......................................................................649
Figure 126. DS1_SIGNALING_16STATE_LINK1_FRAMER_TRANSPORT_EXT...............................................654
Figure 127. DS1_SIGNALING_16STATE_LINK1_FRAMER_TRANSPORT_Tx-Rx ............................................660
Figure 128. DS1_TPG_LINK1_FRAMER_EXT.....................................................................................................665
Figure 129. DS1_TPG_LINK1_FRAMER_Tx-Rx ..................................................................................................671
Figure 130. DS1_TPG_LOOPLINK1THRU28_FRAMER_EXT.............................................................................676
Figure 131. CEPT_21LINK_BROADCAST ...........................................................................................................684
Figure 132. CEPT_LINK1_FRAMER_TRANSPORT ............................................................................................685
Figure 133. CEPT_LINK1_FRAMER_BASIC_TRANSPORT................................................................................690
Figure 134. CEPT_LINK1_FRAMER_CRC4_100MS_TRANSPORT_EXT ..........................................................695
Figure 135. CEPT_LINK1_FRAMER_CRC4_400MS_TRANSPORT_TX-Rx.......................................................699
Figure 136. CEPT_SIGNALING_LINK1_FRAMER_EXT......................................................................................704
Figure 137. CEPT_SIGNALING_LINK1LOOPLINK2_FRAMER_CRC4_100MS_EXT.........................................709
Figure 138. OC3CDRLOOPBACK ........................................................................................................................712
Figure 139. OC3M_SPE_M13_DS1LIULOOPBACK1 ..........................................................................................714
Figure 140. SMPR2_STM1_AU3_DS3_PIC .........................................................................................................718
Figure 141. SMPR2_STM1_AU4_TUG3_TU3_DS3.............................................................................................722
Figure 142. STM1_AU3_TUG2_ATU11_DS1.......................................................................................................724
Figure 143. STM1_AU3_TUG2_ATU12_E1..........................................................................................................730
Figure 144. STM1_AU4_TUG3_TUG2_ATU11_DS1 ...........................................................................................735
Figure 145. STS1_AVT15_DS1 ............................................................................................................................741
Figure 146. STS1_SPE_M13DS1LOOPBACK .....................................................................................................745
Figure 147. D4_INTENCDEC_LINK1_FRAMER_TRANSPORT_Tx-Rx...............................................................748
Figure 148. D4_LINK1_FRAMER_EXT.................................................................................................................753
Figure 149. D4_SIGNALING_16STATE_LINK1_FRAMER_EXT .........................................................................758
Figure 150. D4_SIGNALING_NOSTATE_LINK1_FRAMER_EXT........................................................................764
Figure 151. D4_SIGNALING_16STATE_LINK1_FRAMER_TRANSPORT_EXT .................................................770
Figure 152. D4_SIGNALING_NOSTATE_LINK1_FRAMER_TRANSPORT_Tx-Rx .............................................775
622 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
27.1 DS1 Mode
This section contains various scenarios with which the Supermapper can be used in the DS1 mode. The diagram
proceeding each script shows the data path and the different blocks that are used in this path. Please note that this
is to be used only as a guideline for the design.
27.1.1 DS1_ALLCH_FRAMER_EXT
Note: The framer shown above is one section of the f ramer block that has the same aligner, formatter, TS, and RS blocks for each channel.
Figure 122. DS1_ALLCH_FRAMER_EXT
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>> Setup Supermapper Evaluation Board <<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- MultiLABS - Agere Automated Bench System
-- Date: 04/10/2000
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
--
-- Set the global base address back to 0
a 0
-- Set global address width to 16
z 16
TEST
EQUIP
XC
53
)5$0(
$/,*1(5
75$160,7
6<67(0
73
)5$0(
)250$77(5
5(&(,9(
6<67(0
)50B73B7 )50B56
)50B76
)50B53B5
)5$0(5
75$160,7
5(&(,9(
'6

'6

'6%52$'&$677+528*+&+$11(/
&+
&+
&+
.
.
.
&+
)3*$
/,1(7;6<1&
/,1(5;6<1&
;&
FRAMER:
SWITCHING MODE:
DS1 MODE (ESF).
INTERNAL PLL IS USED.
SYSTEM AI S ON LOF A LIGNEMENT.
TX/RX DATA IS ENABLED.
TX/RX FRMSYNC IS ACTIVE-HIGH.
CHI:
8.192 MBITS/S CHI.
CHI CARRIES SIGNALING AND
PAYLOAD INFORMATIO N.
EXTERNAL I/O PINS LINETXSYNC[1—29]
SET TO OUTPUT TRANSMIT SYSTEM DATA.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 623
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>> Setup FPGA Addressing <<<<<<<<<<<<<<<<<< <<<<<<<<
-- ---------------------------------------------------------------------------
-- Write FPGA1
w 50A00000 F8DF
-- 8 MHz CHI
w 50A00004 FFFE
-- Write FPGA2
w 50E00002 EE28
w 50E00004 8081
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- Set global address width to 8
z 8
-- Write CPU FPGA with DS1 clock selects
w 61000007 00
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>> Setup LIU Addre s sing <<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set the global base address for "LIU #1"
a 60000000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Set the global base address for "LIU #2"
a 60200000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
624 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
w C 0
w D 0
w E 0
w F 0
-- Set the global base address for "LIU #3"
a 60400000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Setup "LIU #4"
a 60600000
w 2 0
w 3 0
w 4 0
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- ---------------------------------------------------------------------------
-- Set data width to 16 bits
z 16
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>> Setup Supermapper Addressing <<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 1 offset
a 40000000
-- Shift address left 1
%MODADD SL 1
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 625
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- Framer clock select DS1XClk
w 00012 0002
-- Cor/cow, saturate or rollover
w 0000F 0003
-- Turn on Pll
w 00013 0000
-- Framer block software reset
w 0000E 0020
w 0000E 0000
-- Enable LineTxData/Clk/Sync for output
-- (16 down to 1)
w 00018 FFFF
-- (28 down to 17)
w 00019 0FFF
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> XC <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- XC rec LIU1 to ch 1 to ch 28
w 50020 2121
w 50021 2121
w 50022 2121
w 50023 2121
w 50024 2121
w 50025 2121
w 50026 2121
w 50027 2121
w 50028 2121
w 50029 2121
w 5002A 2121
w 5002B 2121
w 5002C 2121
w 5002D 2121
-- Set sync for data
w 5000E 0002
626 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- XC_SYNC1 from Frm_TS(R) to the pins
w 500E0 60E1
-- XC_RS_D (from external pin to transmit (RS)) on link 1
w 50070 C021
-- XC transmit to LIU 1 (Ch 1) from Frm_TP_T Link 1 (XC_PDATA)
w 50010 1E41
--------------------------------
-- XC rec LIU 1 to Ch 1 to ch 28
-- w 50020 FF21
-- XC_RS_D (from receive (TS) to transmit (RS)) on link 1
-- w 50070 C0E1
-- XC transmit to LIU 1 (Ch 1) from Frm_TP_T Link 1 (XC_PDATA)
-- w 50010 1E41
-- w 500E0 FF41
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> FRAMER <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Framer
-- Switching mode, super framer for DS1 mode,
-- internal PLL is used.
w 80000 8800
-- Turn on power down
w 80001 FFFF
-- 8.192 MHz CHI, CHI carry payload and signaling information,
-- AIS, double NOTFAS, TX/RX sync active-high.
w 80050 29A8
-- Transmit and receive data is enabled (FRM_HWYENA).
w 80051 8000
-- FRM_ARLR2: FRM_AUTO_AIS(6), FRM_MODE[3:0]
-- Rx auto AIS is enabled, framer mode = ESF
-- Set Rx link 1 auto AIS
w 802F1 004B
w 804F1 004B
w 806F1 004B
w 808F1 004B
w 80AF1 004B
w 80CF1 004B
w 80EF1 004B
w 810F1 004B
w 812F1 004B
w 814F1 004B
w 816F1 004B
w 818F1 004B
w 81AF1 004B
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 627
27 Application Scripts (continued)
w 81CF1 004B
w 81EF1 004B
w 820F1 004B
w 822F1 004B
w 824F1 004B
w 826F1 004B
w 828F1 004B
w 82AF1 004B
w 82CF1 004B
w 82EF1 004B
w 830F1 004B
w 832F1 004B
w 834F1 004B
w 836F1 004B
w 838F1 004B
-- FRM_ARLR1: FRM_LNK_ENA(15), FRM_LNK_RESTARTN(13)
-- Link Rx is enabled, normal operation mode for the link
-- Start Rx arbiter link 1 operation
w 802F0 A000
w 804F0 A000
w 806F0 A000
w 808F0 A000
w 80AF0 A000
w 80CF0 A000
w 80EF0 A000
w 810F0 A000
w 812F0 A000
w 814F0 A000
w 816F0 A000
w 818F0 A000
w 81AF0 A000
w 81CF0 A000
w 81EF0 A000
w 820F0 A000
w 822F0 A000
w 824F0 A000
w 826F0 A000
w 828F0 A000
w 82AF0 A000
w 82CF0 A000
w 82EF0 A000
w 830F0 A000
w 832F0 A000
w 834F0 A000
w 836F0 A000
w 838F0 A000
628 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- FRM_ARLR2: FRM_AUTO_AIS(6), FRM_MODE[3:0]
-- Tx auto AIS is enabled, framer mode = ESF
-- Set Tx link 1 Auto AIS
w 803F1 004B
w 805F1 004B
w 807F1 004B
w 809F1 004B
w 80BF1 004B
w 80DF1 004B
w 80FF1 004B
w 811F1 004B
w 813F1 004B
w 815F1 004B
w 817F1 004B
w 819F1 004B
w 81BF1 004B
w 81DF1 004B
w 81FF1 004B
W 821F1 004B
w 823F1 004B
w 825F1 004B
w 827F1 004B
w 829F1 004B
w 82BF1 004B
w 82DF1 004B
w 82FF1 004B
w 831F1 004B
w 833F1 004B
w 835F1 004B
w 837F1 004B
w 839F1 004B
-- FRM_ARLR1: FRM_LNK_ENA(15), FRM_LNK_RESTARTN(13)
-- Link Tx is enabled, normal operation mode for the link
-- Start Tx arbiter link 1
w 803F0 A000
w 805F0 A000
w 807F0 A000
w 809F0 A000
w 80BF0 A000
w 80DF0 A000
w 80FF0 A000
w 811F0 A000
w 813F0 A000
w 815F0 A000
w 817F0 A000
w 819F0 A000
w 81BF0 A000
w 81DF0 A000
w 81FF0 A000
W 821F0 A000
w 823F0 A000
w 825F0 A000
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 629
27 Application Scripts (continued)
w 827F0 A000
w 829F0 A000
w 82BF0 A000
w 82DF0 A000
w 82FF0 A000
w 831F0 A000
w 833F0 A000
w 835F0 A000
w 837F0 A000
w 839F0 A000
-- Framer half bit CHI offset
w 803E0 0002
w 805E0 0002
w 807E0 0002
w 809E0 0002
w 80BE0 0002
w 80DE0 0002
w 80FE0 0002
w 811E0 0002
w 813E0 0002
w 815E0 0002
w 817E0 0002
w 819E0 0002
w 81BE0 0002
w 81DE0 0002
w 81FE0 0002
w 821E0 0002
w 823E0 0002
w 825E0 0002
w 827E0 0002
w 829E0 0002
w 82BE0 0002
w 82DE0 0002
w 82FE0 0002
w 831E0 0002
w 833E0 0002
w 835E0 0002
w 837E0 0002
w 839E0 0002
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>> Setup Supermapper 2 Addressing <<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 2 offset
a 40200000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
630 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>> Setu p Supermapper 3 Addressing <<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 3 offset
a 40400000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>> Exit Supermapper Addressing <<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
%MODADD END
-- Set the global base address back to 0
a 0
-- Set the global address width to default
z 0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 631
27 Application Scripts (continued)
27.1.2 DS1_INTENCDEC_28LINK_FRAMER_TRANSPORT_TRANSPARENT_TX_RX_STSLPBK
Figure 123. DS1_INTENCDEC_2 8LINK_FR AME R_TRANSPO RT_ TRANSPARENT_TX-RX_S TSLPBK
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>> Setup Supermapper Evaluation Board <<<< <<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- MultiLABS - Agere Automated Bench System
-- Date : 04/26/2001 - (RL)
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
a 0
z 16
----------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>> Setup FPGA Addressing <<<<<<<<<<<<<<<<<< <<<<<<<<
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Write FPGA1 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Write FPGA2 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set DS1 aisclock to 16x DS1 clock to DJA
w 50E00000 3658
DS1
1
2
3
4
28
XC
1
2
3
4
28
SPE
XC
FRAMER
x28
XC
VTMPR
x28
TMUX
#1
#1
(DS1 BRO ADCAST)
TRANSMIT
RECEIVE
TMUX:
STS-1 MODE.
INTERNAL
TX TO RX
LOOPBACK
(EXTERNAL I/O)
CROSS CO NNECT (XC) BLOCK APPEARS
MORE THAN ONCE IN DIAGRAM
(DEMONSTRATION PURPOSES),
HOWEVER, ONL Y ONE CROSS CO NNECT
IS AC TUALLY USED .
VTMPR:
ASYNCHRO NOUS VT 1.5s.
INPUT CHANNELS FROM
FRAME R S ( FRM_TP_T).
x28
SPE:
VTs ON
TIME SLO T #1
FRAMER:
TRANSPORT, TRANSPARENT MODE,
DS1 MO DE: ESF
TX-RX LINE ENCODER/DECODER FOR B8ZS.
INTERNAL PLL IS NOT USED.
D
J
A
DIGITAL JITTER A TTENUATOR:
DS1 MO DE SELEC T.
DJA INPUT F ROM VTM PR, RX DIRECTION
ONLY.
632 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- Enable DS1/E1 I/O buffers, enable dual rail and first four links.
w 50E00004 0000
-- Enable DS3/STS1 LIU decode/encode
w 50E00006 FFE0
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- Set global address width to 8
z 8
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>> Write CPU FPGA <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Select DS1 XCLK for LIU's
w 61000007 0000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>> Setup LIU Addressing <<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Setup LIU #1
a 60000000
z 0
w 2 0
w 3 0
w 4 0
-- Set dual mode to on, should bypass encoder/decoder
w 5 75
w 6 0
w 7 0
w 8 0
w 9 0
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Setup LIU #2
a 60200000
z 0
w 2 0
w 3 0
w 4 0
w 5 75
w 6 0
w 7 0
w 8 0
w 9 0
w A 0
w B 0
w C 0
w D 0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 633
27 Application Scripts (continued)
w E 0
w F 0
-- Setup LIU #3
a 60400000
z 0
w 2 0
w 3 0
w 4 0
w 5 75
w 6 0
w 7 0
w 8 0
w 9 0
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Setup LIU #4
a 60600000
z 0
w 2 0
w 3 0
w 4 0
w 5 75
w 6 0
w 7 0
w 8 0
w 9 0
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-----------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>> Setup Supermapper 1 Addressing <<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 1 offset
a 40000000
-- Set data width to 16 bits
z 16
-- Shift address left 1
%MODADD SL 1
634 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- Setup TMUX as master
w 00010 0001
-- Framer clock select
w 00012 0001
-- Set delta and event to clear on read (COR)
w 0000F 0003
-- Turn on clocks for DJA, TMUX, SPEMPR, VTMPR
w 00014 007F
-- Framer block software reset
w 0000E 0020
w 0000E 0000
-- Enable LineTxData/Clk/Sync for output (v2)
-- (16 down to 1)
w 00018 FFFF
-- (28 down to 17)
w 00019 0FFF
-- -------------
-- TMUX
-- -------------
-- Set TMUX to STS-1 mode
w 40003 0001
-- Set descramble
w 40019 000B
-- Set expected C2 signal label
w 40022 0002
-- Set scramble
w 40034 0001
-- Set micro insertion of C2 signal label
w 40036 0002
-- Set C2 signal label insert value
w 4003F 0002
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 635
27 Application Scripts (continued)
-- -------------
-- SPEMPR
-- -------------
-- Setup for AU3, VTs on timeslot 01
w 30018 8D8D
-- -------------
-- VTMPR
-- -------------
-- Setup for asynchronous VT1.5s
w 200CA 7F7F
-- Setup TX_MAPTYPE
w 200DC 0000
w 200DD 0000
w 200DE 0000
w 200DF 0000
w 200E0 0000
w 200E1 0000
w 200E2 0000
w 200E3 0000
w 200E4 0000
w 200E5 0000
w 200E6 0000
w 200E7 0000
w 200E8 0000
w 200E9 0000
w 200EA 0000
w 200EB 0000
w 200EC 0000
w 200ED 0000
w 200EE 0000
w 200EF 0000
w 200F0 0000
w 200F1 0000
w 200F2 0000
w 200F3 0000
w 200F4 0000
w 200F5 0000
w 200F6 0000
w 200F7 0000
-- Setup RX_MAPTYPE
w 20328 0000
w 20329 0000
w 2032A 0000
w 2032B 0000
w 2032C 0000
w 2032D 0000
w 2032E 0000
w 2032F 0000
w 20330 0000
w 20331 0000
636 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
w 20332 0000
w 20333 0000
w 20334 0000
w 20335 0000
w 20336 0000
w 20337 0000
w 20338 0000
w 20339 0000
w 2033A 0000
w 2033B 0000
w 2033C 0000
w 2033D 0000
w 2033E 0000
w 2033F 0000
w 20340 0000
w 20341 0000
w 20342 0000
w 20343 0000
-- -------------
-- DJA
-- -------------
-- Set DJA mode select
w 70015 0FFF
w 70016 FFFF
-- Setup AIS clock divide ratio to 16
w 70017 1FFF
-- Setup ref clock rate
w 70018 FFFF
-- Transmit edge select
w 70019 0FFF
-- Receive edge sele ct
w 7001A FFFF
-- DS1 accumulator - DS1 gain
w 7000D 00E0
w 7000E EFB7
-- DS1 scale factor
w 70010 1DFF
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> XC <<<< <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Cross connect transmit path external I/O to the framer transmit path aligner (link 1).
-- DS1 signal broadcast to framer block.
w 50060 2121
w 50061 2121
w 50062 2121
w 50063 2121
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 637
27 Application Scripts (continued)
w 50064 2121
w 50065 2121
w 50066 2121
w 50067 2121
w 50068 2121
w 50069 2121
w 5006A 2121
w 5006B 2121
w 5006C 2121
w 5006D 2121
-- Set VTMPR input channel from Frm_Tp_T
w 50040 4241
w 50041 4443
w 50042 4645
w 50043 4847
w 50044 4A49
w 50045 4C4B
w 50046 4E4D
w 50047 504F
w 50048 5251
w 50049 5453
w 5004A 5655
w 5004B 5857
w 5004C 5A59
w 5004D 5C5B
-- Set DJA input from VTMPR (receive direction only)
w 50050 8281
w 50051 8483
w 50052 8685
w 50053 8887
w 50054 8a89
w 50055 8C8B
w 50056 8E8D
w 50057 908F
w 50058 9291
w 50059 9493
w 5005A 9695
w 5005B 9897
w 5005C 9A99
w 5005D 9C9B
-- Cross connect DJA to RP frame aligner
w 50020 A2A1
w 50021 A4A3
w 50022 A6A5
w 50023 A8A7
w 50024 AAA9
w 50025 ACAB
w 50026 AEAD
w 50027 B0AF
w 50028 B2B1
638 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
w 50029 B4B3
w 5002A B6B5
w 5002B B8B7
w 5002C BAB9
w 5002D BCBB
-- Cross connect receive path frame formatter to external (XC_PDATA & XC_SYNC)
-- data and clock outputs (link 1).
w 50010 1EC1
w 500E0 FFC1
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> FRAMER <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Transport mode, super framer for DS1 mode,
-- internal PLL is not used. Decoder is used in Tx path and encoder is used in Rx path.
w 80000 4C00
-- Turn on framer sub-blocks (default)
w 80001 FFFF
-- Set send RAI upon detection of LOS
w 8013B 0004
-- Set Rx link 1 auto AIS, ESF (default)
w 802F1 000B
w 804F1 000B
w 806F1 000B
w 808F1 000B
w 80aF1 000B
w 80cF1 000B
w 80EF1 000B
w 810F1 000B
w 812F1 000B
w 814F1 000B
w 816F1 000B
w 818F1 000B
w 81AF1 000B
w 81CF1 000B
w 81EF1 000B
w 820F1 000B
w 822F1 000B
w 824F1 000B
w 826F1 000B
w 828F1 000B
w 82AF1 000B
w 82CF1 000B
w 82EF1 000B
w 830F1 000B
w 832F1 000B
w 834F1 000B
w 836F1 000B
w 838F1 000B
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 639
27 Application Scripts (continued)
-- Rx path Line Encoder set for B8ZS
w 802FC 0002
w 804FC 0002
w 806FC 0002
w 808FC 0002
w 80AFC 0002
w 80CFC 0002
w 80EFC 0002
w 810FC 0002
w 812FC 0002
w 814FC 0002
w 816FC 0002
w 818FC 0002
w 81AFC 0002
w 81CFC 0002
w 81EFC 0002
w 820FC 0002
w 822FC 0002
w 824FC 0002
w 826FC 0002
w 828FC 0002
w 82AFC 0002
w 82CFC 0002
w 82EFC 0002
w 830FC 0002
w 832FC 0002
w 834FC 0002
w 836FC 0002
w 838FC 0002
-- Set FRM_AUTORAI
w 802F4 0001
-- Start Rx arbiter link 1 operation
w 802F0 E000
w 804F0 E000
w 806F0 E000
w 808F0 E000
w 80AF0 E000
w 80CF0 E000
w 80EF0 E000
w 810F0 E000
w 812F0 E000
w 814F0 E000
w 816F0 E000
w 818F0 E000
w 81AF0 E000
w 81CF0 E000
w 81EF0 E000
w 820F0 E000
w 822F0 E000
w 824F0 E000
w 826F0 E000
640 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
w 828F0 E000
w 82AF0 E000
w 82CF0 E000
w 82EF0 E000
w 830F0 E000
w 832F0 E000
w 834F0 E000
w 836F0 E000
w 838F0 E000
-- Set Tx link 1 - 28 ESF framing mode, third rail.
w 803F1 001B
w 805F1 001B
w 807F1 001B
w 809F1 001B
w 80BF1 001B
w 80DF1 001B
w 80FF1 001B
w 811F1 001B
w 813F1 001B
w 815F1 001B
w 817F1 001B
w 819F1 001B
w 81BF1 001B
w 81DF1 001B
w 81FF1 001B
w 821F1 001B
w 823F1 001B
w 825F1 001B
w 827F1 001B
w 829F1 001B
w 82BF1 001B
w 82DF1 001B
w 82FF1 001B
w 831F1 001B
w 833F1 001B
w 835F1 001B
w 837F1 001B
w 839F1 001B
-- Tx path line decoder set for B8ZS.
w 803FC 0012
w 805FC 0012
w 807FC 0012
w 809FC 0012
w 80BFC 0012
w 80DFC 0012
w 80FFC 0012
w 811FC 0012
w 813FC 0012
w 815FC 0012
w 817FC 0012
w 819FC 0012
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 641
27 Application Scripts (continued)
w 81BFC 0012
w 81DFC 0012
w 81FFC 0012
w 821FC 0012
w 823FC 0012
w 825FC 0012
w 827FC 0012
w 829FC 0012
w 82BFC 0012
w 82DFC 0012
w 82FFC 0012
w 831FC 0012
w 833FC 0012
w 835FC 0012
w 837FC 0012
w 839FC 0012
-- Start Tx arbiter link 1
w 803F0 E000
w 805F0 E000
w 807F0 E000
w 809F0 E000
w 80BF0 E000
w 80DF0 E000
w 80FF0 E000
w 811F0 E000
w 813F0 E000
w 815F0 E000
w 817F0 E000
w 819F0 E000
w 81BF0 E000
w 81DF0 E000
w 81FF0 E000
w 821F0 E000
w 823F0 E000
w 825F0 E000
w 827F0 E000
w 829F0 E000
w 82BF0 E000
w 82DF0 E000
w 82FF0 E000
w 831F0 E000
w 833F0 E000
w 835F0 E000
w 837F0 E000
w 839F0 E000
642 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>> Setu p Supermapper 2 Addressing <<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 2 offset
a 40200000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>> Setu p Supermapper 3 Addressing <<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 3 offset
a 40400000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>> Exit Supermapper Addressing <<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
%MODADD END
-- Set the global base address back to 0.
a 0
-- Set the global address width to default.
z 0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 643
27 Application Scripts (continued)
27.1.3 DS1_LINK1LOOPLINK2_FRAMER_EXT
Note: Output from channel 2 TP frame formatter (framer #2) is cross-connected to channel 1 of external I/O.
Figure 124. DS1_LINK1LOOPLINK2_FRAMER_EXT
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>> Setup Supermapper Evaluation Board <<<< <<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- MultiLABS - Agere Automated Bench System
-- Date : 09/21/2000 - RL
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
--
-- Set the global base address back to 0
a 0
-- Set global address width to 16
z 16
R
p
TEST
EQUIP
XC
;& )3*$
)50B73B7
)50B56
)50B76
)50B53B5
FRAMER #1
75$160,7
RECEIVE
DS1
#1
&+
/,1(5;6<1&
/,1(5;6<1&
DS1
#1
&+
&+
&+ /,1(7;6<1&
/,1(7;6<1&
)50B76
)50B56
)50B53B5
)50B73B7
FRAMER #2
TP
FRAME
FORMATTER
5(&(,9(
6<67(0
RP
FRAME
ALIGNER
TRANSMIT
SYSTEM
TP
FRAME
FORMATTER
5(&(,9(
6<67(0
RP
FRAME
ALIGNER
TRANSMIT
SYSTEM
FRAMER:
SWITCHING MODE: DS1 MODE.
INTERNAL PLL IS USED.
SYSTEM AIS, DOUBLE NOTFAS.
TX/RX DATA IS ENABLED.
TX/RX FRMSYNC IS ACTIVE-HIGH.
TX/TX LINK 1 AUTOAIS.
CHI:
8.192 MBITS/S CHI.
CHI C AR R IES SIGNALI NG AND
PAYLOAD IN FO R M ATION.
OFFSET OF 1/2 BIT ADDED TO
OFFSET.
EXTERNAL I/O PINS LINETXSYNC[1 —29] SET
TO OUTPUT TRANSMIT SYSTEM DATA.
644 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>> Setup FPGA Addressing <<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Write FPGA1
w 50A00000 F8DF
-- 8 MHz CHI
w 50A00004 FFFE
-- Write FPGA2
-- w 50E00000 FC84
w 50E00002 EE28
w 50E00004 8081
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- Set global address width to 8
z 8
-- Write cpu fpga wit h ds1 clock selects
w 61000007 00
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>> Setup LIU Addressing <<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set the global base address for "LIU #1"
a 60000000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Set the global base address for "LIU #2"
a 60200000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 61
w 6 00
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 645
27 Application Scripts (continued)
w 7 00
w 8 00
w 9 00
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Set the global base address for "LIU #3"
a 60400000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Setup "LIU #4"
a 60600000
w 2 0
w 3 0
w 4 0
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- ---------------------------------------------------------------------------
-- Set data width to 16 bits
z 16
646 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>> Setup Supermapper Addressing <<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 1 offset
a 40000000
-- Shift address left 1
%MODADD SL 1
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- Framer clock select DS1XClk
w 00012 0002
-- Cor/cow, saturate or rollover
w 0000F 0003
-- Turn on Pll
w 00013 0000
-- Framer block software reset
w 0000E 0020
w 0000E 0000
-- Enable LineTxData/Clk/Sync for output
-- (16 down to 1)
w 00018 FFFF
-- (28 down to 17)
w 00019 0FFF
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> XC <<<<<<<<<<<<<<< <<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- XC receive link 1 from LIU 1 (Ch 1) into Frm_Rp_R (XC_RP_RDATA)
w 50020 4121
-- XC transmit link 1 to LIU 2 (Ch 5) from Frm_Rp_T (XC_PDATA)
-- w 50012 1EC1
-- Set sync for data
w 5000E 0002
-- XC_SYNC 1 & 2 from Frm_TS(R) to the pins
w 500E0 E2E1
-- XC_RS_D (external pin to transmit (RS)) on link 1 and 2
w 50070 2221
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 647
27 Application Scripts (continued)
-- Receive (TS) to transmit (RS)
-- w 50070 E2E1
-- XC transmit to LIU 1 (Ch 1) from Frm_TP_T Link 2 (XC_PDATA)
w 50010 1E42
-- w 500E0 FF42
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> FRAMER <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Framer
-- Switching mode, super framer for DS1 mode,
-- internal PLL is used
w 80000 8800
-- Turn on power down
w 80001 FFFF
-- 8.192 MHz CHI, CHI carry payload and signaling information,
-- AIS, double NOTFAS, TX/RX sync active-high
w 80050 2988
-- Transmit and receive data is enabled (FRM_HWYENA)
w 80051 8000
-- Set Rx link 1 auto AIS
w 802F1 004B
-- Start Rx arbiter link 1 operation
w 802F0 A000
-- Set Rx link 2 auto AIS
w 804F1 004B
-- Start Rx arbiter link 4 operation
w 804F0 A000
-- Set Tx link 1 auto AIS
w 803F1 004B
-- Start Tx arbiter link 1
w 803F0 A000
-- Set Tx link 2 auto AIS
w 805F1 004B
-- Start Tx arbiter link 2
w 805F0 A000
-- Framer half bit CHI offset
w 803E0 0002
w 805E0 0002
648 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>> Setu p Supermapper 2 Addressing <<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 2 offset
a 40200000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>> Setu p Supermapper 3 Addressing <<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 3 offset
a 40400000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>> Exit Supermapper Addressing <<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
%MODADD END
-- Set the global base address back to 0
a 0
-- Set the global address width to default
z 0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 649
27 Application Scripts (continued)
27.1.4 DS1_SIGNALNG_16STATE_LINK1_FRAMER_EXT
Note: Signaling Rx link register is set for signal extraction from the Rx line. Signaling Tx link register is set for insertion of signaling data int o the
Tx line, and also Tx signal is received from the system interface. Signaling all 16 states (A, B, C, and D).
Figure 125. DS1_SIGNALING_16STATE_LINK1_FRAMER_EXT
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>> Setup Supermapper Evaluation Board <<<< <<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- MultiLABS - Agere Automated Bench System
-- Date : 01/11/2001 - RL
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
--
-- Set the global base address back to 0
a 0
-- Set global address width to 16
z 16
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>> Setup FPGA Addressing <<<<<<<<<<<<<<<<<< <<<<<<<<
-- ---------------------------------------------------------------------------
-- Write FPGA1
w 50A00000 F8DF
-- 8 MHz CHI
w 50A00004 FFFE
7(67
(48,3
;&
53
)5$0(
$/,*1(5
75$160,7
6<67(0
73
)5$0(
)250$77(5
5(&(,9(
6<67(0
)50B73B7 )50B56
)50B76
)50B53B5
)5$0(5
75$160,7
5(&(,9(
'6

'6

)3*$
/,1(5;6<1&
/,1(7;6<1&
;&
FRAMER:
SWITCHING MODE: DS1 MODE.
INTERNAL PLL IS USED.
SYSTEM AIS, DOUBLE NOTFAS.
TX/RX DATA IS ENABLED.
TX/RX FRMSYNC IS ACTIVE-HIGH.
TX/RX LINK 1 AUTOAIS.
CHI:
8.192 MBITS/S CHI.
CHI CARRIES SIGNALING AND PAYLOAD
INFORMATION. OFFSET OF 1/2 BIT ADDED
TO OFFSET.
EXTERNAL I/O PINS LINETXSYNC[1—29]
SET TO OUTPUT TRANSMIT SYSTEM DATA.
&+
650 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- Write FPGA2
w 50E00002 EE28
w 50E00004 8081
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- Set global address width to 8
z 8
-- Write CPU FPGA with DS1 clock selects
w 61000007 00
-- ---------------------------------------------------------------------------
-- ---------------------------------------------------------------------------
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>> Setup LIU Addressing <<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set the global base address for "LIU #1"
a 60000000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Set the global base address for "LIU #2"
a 60200000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 651
27 Application Scripts (continued)
-- Set the global base address for "LIU #3"
a 60400000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Setup "LIU #4"
a 60600000
w 2 0
w 3 0
w 4 0
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- ---------------------------------------------------------------------------
-- Set data width to 16 bits
z 16
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>> Setup Supermapper Addressing <<<<<<<<<< <<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 1 offset
a 40000000
-- Shift address left 1
%MODADD SL 1
652 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- Framer clock select DS1XClk
w 00012 0002
-- Cor/cow, saturate or rollover
w 0000F 0003
-- Turn on Pll
w 00013 0000
-- Framer block software reset
w 0000E 0020
w 0000E 0000
-- Enable LineTxData/Clk/Sync for output
-- (16 down to 1)
w 00018 FFFF
-- (28 down to 17)
w 00019 0FFF
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> XC <<<<<<<<<<<<<<< <<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- XC receive link 1 from LIU 1 (Ch 1) into Frm_Rp_R (XC_RP_RDATA)
w 50020 FF21
-- Set sync for data
w 5000E 0002
-- XC_SYNC1 from Frm_TS(R) to the pins
w 500E0 60E1
-- XC_RS_D (external pin to transmit (RS)) on link 1
w 50070 C021
-- XC_RS_D (receive (TS) to transmit (RS)) on link 1
-- w 50070 C0E1
-- XC transmit to LIU 1 (Ch 1) from Frm_TP_T Link 1 (XC_PDATA)
w 50010 1E41
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 653
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> FRAMER <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Framer
-- Switching mode, super framer for DS1 mode,
-- internal PLL is used
w 80000 8800
-- Turn on power down
w 80001 FFFF
-- 8.192 MHz CHI, CHI carry payload and signaling information,
-- AIS, double NOTFAS, TX/RX sync active-high
w 80050 29A8
-- Transmit and receive data is enabled (FRM_HWYENA)
w 80051 8000
-- Turn off Rx arbiter link 1
w 802F0 0000
-- Set Rx link 1 auto AIS
w 802F1 004B
-- Start Rx arbiter link 1 operation
w 802F0 A000
-- Turn off Tx arbiter link 1
w 803F0 0000
-- Set Tx link 1 auto AIS
w 803F1 004B
-- Start Tx arbiter link 1
w 803F0 A000
-- Framer half bit CHI offset
w 803E0 0002
-- Signaling Rx link register
w 80221 0001
-- Signaling Tx link register
w 80321 0102
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>> Setup Supermapper 2 Addressing <<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 2 offset
a 40200000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
654 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>> Setu p Supermapper 3 Addressing <<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 3 offset
a 40400000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>> Exit Supermapper Addressing <<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
%MODADD END
-- Set the global base address back to 0
a 0
-- Set the global address width to default
z 0
27.1.5 DS1_SIGNALING_16STATE_LINK1_FRAMER_TRANSPORT_EXT
Note: Signaling Rx link register set for signal e xtraction from the Rx line. Signaling Tx link register set for insertion of signaling data into the Tx
line, and also Tx signal received from system interface. Signaling all 16 states (A, B, C, and D).
Figure 126. DS1_S IGNAL ING_16STATE_ LINK1_ F RAME R_TRANSPOR T _EX T
7(67
(48,3
;&
53
)5$0(
$/,*1(5
73
)5$0(
)250$77(5
)50B73B7 )50B73B5
)50B53B7
)50B53B5
)5$0(5
75$160,7
5(&(,9(
'6

'6

)3*$
;&
CHI:
8.192 MBITS/S CHI.
CHI CARRIES SIGNALING AND PAYLOAD
INFORMATION.
&+
&+
53
)5$0(
)250$77(5
73
)5$0(
$/,*1(5
&+
&+
7(67
EQUIPMENT
LIU #2
&+
FRAMER:
TRANSPORT MODE: DS1 MODE.
INTERNAL PLL IS USED. SYSTEM AIS, DOUBLE NOTFAS.
TX/RX DATA IS ENABLED.
TX/RX FRMSYNC IS ACTIVE-HIGH.
TX/RX LINK 1 AUTOAIS.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 655
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>> Setup Supermapper Evaluation Board <<<< <<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- MultiLABS - Agere Automated Bench System
-- Date : 10/19/2000 - RL
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
--
-- Set the global base address back to 0
a 0
-- Set global address width to 16
z 16
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>> Setup FPGA Addressing <<<<<<<<<<<<<<<<<< <<<<<<<<
-- ---------------------------------------------------------------------------
-- Write FPGA1
w 50A00000 F8DF
-- 8 MHz CHI
-- Write FPGA2
-- w 50E00000 FC84
w 50E00002 EE28
w 50E00004 8081
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- Set global address width to 8
z 8
-- Write CPU FPGA with DS1 clock selects
w 61000007 00
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>> Setup LIU Addre s sing <<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set the global base address for "LIU #1"
a 60000000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
w C 0
656 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
w D 0
w E 0
w F 0
-- Set the global base address for "LIU #2"
a 60200000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Set the global base address for "LIU #3"
a 60400000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Setup "LIU #4"
a 60600000
w 2 0
w 3 0
w 4 0
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 657
27 Application Scripts (continued)
w C 0
w D 0
w E 0
w F 0
-- ---------------------------------------------------------------------------
-- Set data width to 16 bits
z 16
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>> Setup Supermapper Addressing <<<<<<<<<< <<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 1 offset
a 40000000
-- Shift address left 1
%MODADD SL 1
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- Framer clock select DS1XClk
w 00012 0002
-- Cor/cow, saturate or rollover
w 0000F 0003
-- Turn on Pll
w 00013 0000
-- Enable LineTxData/Clk/Sync for output
-- (16 down to 1)
w 00018 FFFF
-- (28 down to 17)
w 00019 0FFF
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> XC <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- XC receive link 1 from LIU 1 (Ch 1) into Frm_Rp_R (XC_RP_RDATA)
w 50020 ff21
-- XC transmit link 1 to LIU 2 (Ch 5) from Frm_Rp_T (XC_PDATA)
w 50012 1EC1
-- XC_FTP_SRC[]: framer transmit path data source configuration
-- FRM_TP_R from pin
w 50060 FF21
658 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- FRM_RP_T to FRM_TP_R
-- w 50060 FFC1
-- XC_PIND_SRC[]: XC_PDATA(1)
-- XC transmit to LIU 1 (Ch 1) from Frm_TP_T Link 1 (XC_PDATA)
w 50010 1E41
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> FRAMER <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- FRM_SFGR1: FRM_SW_TRN-(15) = transport, FRM_DS1_CEPTN-(11) = DS1 mode
-- FRM_PLL_BYPAS-(10) = internal PLL is used
w 80000 0800
-- Turn on power down
w 80001 FFFF
-- Set Rx arbiter link 1 off
w 802F0 0000
-- Set Rx link 1 auto AIS
w 802F1 004B
-- Start Rx arbiter link 1 operation
w 802F0 A000
-- Set Tx arbiter link 1 off
w 803F0 0000
-- Set Tx link 1 auto AIS
w 803F1 004B
-- Start Tx arbiter link 1
w 803F0 A000
-- FRM_RSLR33, receive signaling link register
-- (8)-FRM_R_SIGI - signaling insertion-enable the insertion of
-- signaling data into the Tx line,
-- (1:0)-FRM_R_SIGSRC[1:0] - Signaling data source,
-- signaling extracted from the Rx Line
w 80221 0101
-- FRM_TSLR32, transmit signaling link register
-- (8)-FRM_ T _SI GI - signa li ng ins ertion
-- (1:0)-FRM_T_SIGSRC[1:0] - signaling data source,
-- signaling extracted from the Rx line
w 80321 0001
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>> Setu p Supermapper 2 Addressing <<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 2 offset
a 40200000
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 659
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>> Setup Supermapper 3 Addressing <<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 3 offset
a 40400000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>> Exit Supermapper Addressing <<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
%MODADD END
-- Set the global base address back to 0
a 0
-- Set the global address width to default
z 0
660 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
27.1.6 DS1_SIGNALING_16STATE_LINK1_FRAMER_TRANSPORT_Tx-Rx
Note: Signaling Tx/Rx link register set for signal extraction from the Rx line. Enables insertion of signaling data into Tx line. Signaling all 16
states (A, B, C, and D).
Figure 127. DS1_SIGNALING_16STATE_LINK1_FRAMER_TRANSPORT_Tx-Rx
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>> Setup Supermapper Evaluation Board <<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- MultiLABS - Agere Automated Bench System
-- Date : 01/11/2001 - RL
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
--
-- Set the global base address back to 0
a 0
-- Set global address width to 16
z 16
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>> Setup FPGA Addressing <<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Write FPGA1
w 50A00000 F8DF
-- 8 MHz CHI
w 50A00004 FFFE
-- Write FPGA2
w 50E00002 EE28
w 50E00004 8081
;&
'6
)5$0(5
75$160,7
5(&(,9(


FRAMER:
TRANSP O RT MODE: DS1 MODE :
INTERNAL PLL USED.
TURN ON ALL BLOCKS.
INTERNAL LOOPBACK.
LINK 1 IS ENABLED,
NONTRANSPA RENT MODE,
NORMAL OPERATIONS.
LINK 1 IS E NABLED,
NONTRANSPA RENT MODE,
NORMAL OPERATIONS.
DATA FLOW:
I/O PORT (DS1-CHANNEL 1)=>XC=>FRMR=> (INTERNAL LOOPBACK IN FRAMER)=>XC=>I/O PORT (DS1-CHA NNEL 1)
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 661
27 Application Scripts (continued)
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- Set global address width to 8
z 8
-- Write CPU FPGA with DS1 clock selects
w 61000007 00
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>> Setup LIU Addre s sing <<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set the global base address for "LIU #1"
a 60000000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Set the global base address for "LIU #2"
a 60200000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Set the global base address for "LIU #3"
a 60400000
662 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Setup "LIU #4"
a 60600000
-- z 0
w 2 0
w 3 0
w 4 0
--w 5 69
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- ---------------------------------------------------------------------------
-- Set data width to 16 bits
z 16
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>> Setup Supermapper Addressing <<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 1 offset
a 40000000
-- Shift address left 1
%MODADD SL 1
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 663
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- Framer clock select DS1XClk
w 00012 0002
-- Cor/cow, saturate or rollover
w 0000F 0003
-- Turn on Pll
w 00013 0000
-- Framer block software reset
w 0000E 0020
w 0000E 0000
-- Enable LineTxData/Clk/Sync for output
-- (16 down to 1)
w 00018 FFFF
-- (28 down to 17)
w 00019 0FFF
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> XC <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- XC receive link 1 from LIU 1 (Ch 1) into Frm_Tp_R (XC_TP_RDATA)
w 50060 FF21
-- XC_RP_RDATA
w 50020 FF41
-- XC transmit to LIU 1 (Ch 1) from Frm_RP_T Link 1 (XC_PDATA)
w 50010 1EC1
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> FRAMER <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Framer
-- Transport mode, super framer for DS1 mode,
-- internal PLL is used
w 80000 0800
-- Turn on power down
w 80001 FFFF
-- Set Rx arbiter link 1 off
w 802F0 0000
-- Set Rx link 1 auto AIS
w 802F1 004B
664 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- Start Rx arbiter link 1 operation
w 802F0 A000
-- Set Tx arbiter link 1 off
w 803F0 0000
-- Set Tx link 1 auto AIS
w 803F1 004B
-- Start Tx arbiter link 1
w 803F0 A000
-- FRM_RSLR33, receive signaling link register
-- (8)-FRM_R_SIGI - signaling insertion-enable the insertion of
-- signaling data into the Tx line,
-- (1:0)-FRM_R_SIGSRC[1:0] - signaling data source,
-- signaling extracted from the Rx line
w 80221 0101
-- FRM_TSLR32, transmit signaling link register
-- (8)-FRM_ T _SI GI - signa li ng ins ertion
-- (1:0)-FRM_T_SIGSRC[1:0] - signaling data source,
-- signaling extracted from the Rx line
w 80321 0001
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>> Setu p Supermapper 2 Addressing <<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 2 offset
a 40200000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>> Setu p Supermapper 3 Addressing <<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 3 offset
a 40400000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 665
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>> Exit Supermapper Addressing <<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
%MODADD END
-- Set the global base address back to 0
a 0
-- Set the global address width to default
z 0
27.1.7 DS1_TPG_LINK1_FRAMER_EXT
Figure 128. DS1_TPG_LINK1_FRAMER_EXT
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>> Setup Supermapper Evaluation Board <<<< <<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- MultiLABS - Agere Automated Bench System
-- Date : 12/06/2000 - RL
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
--
-- Set the global base address back to 0
a 0
-- Set global address width to 16
z 16
73*
730
;&
53
)5$0(
$/,*1(5
75$160,7
6<67(0
73
)5$0(
)250$77(5
5(&(,9(
6<67(0
)50B73B7 )50B56
)50B76
)50B53B5
)5$0(5
75$160,7
5(&(,9(
/,1.
)3*$
/,1(7;6<1&
/,1(5;6<1&
;&
FRAMER:
SWITCHING MODE: DS1 MODE.
INTERNAL PLL IS USED.
SYSTEM AIS, DOUBLE NOTFAS OFF.
TX/RX DATA IS ENABLED.
TX/RX FRMSYNC IS ACTIVE-HIGH.
TX/RX LINK 1 AUTOAIS.
CHI:
8.192 MBITS/S CHI.
CHI CARRIES SIGNALING AND PAYLOAD
INFORMATION. OFFSET OF 1/2 BIT ADDED
TO OFFSET.
EXTERNAL I/O PINS LINETXSYNC[1—2 9]
SET TO OUTPUT TRANSMIT SYSTEM DATA.
/,1.
35%6
'6'$7$
3$77(51
'6,'/(
3$77(51
7(67
SYSTEM
/,8
/,1.
/,1.
/,1.
/,1.
TEST PAT TERN GE NERAT OR/M ONITOR:
PRBS15 TEST PATTERN GENERATED AND
TRANSMITTED BY THE TPG ON THE
DS1 TEST OUTPUT . DS 1 FR AMED
TEST PATTERN IS SELECTED.
666 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>> Setup FPGA Addressing <<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Write FPGA1
w 50A00000 F8DF
-- 8 MHz CHI
w 50A00004 FFFE
-- Write FPGA2
w 50E00000 3CF4
w 50E00004 8081
w 50E00006 FFE7
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- Set global address width to 8
z 8
-- Write CPU FPGA with DS1 clock selects
w 61000007 00
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>> Setup LIU Addressing <<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set the global base address for "LIU #1"
a 60000000
-- AMI no code
w 2 0
w 3 0
w 4 E1
w 5 65
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Set the global base address for "LIU #2"
a 60200000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 667
27 Application Scripts (continued)
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Set the global base address for "LIU #3"
a 60400000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Setup "LIU #4"
a 60600000
w 2 0
w 3 0
w 4 0
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- ---------------------------------------------------------------------------
-- Set data width to 16 bits
z 16
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>> Setup Supermapper Addressing <<<<<<<<<< <<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 1 offset
a 40000000
-- Shift address left 1
%MODADD SL 1
668 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- Framer clock select DS1XClk
w 00012 0002
-- Cor/cow, saturate or rollover
w 0000F 0003
-- Turn on Pll
w 00013 0000
-- Framer block software reset
w 0000E 0020
w 0000E 0000
-- Enable LineTxData/Clk/Sync for output
-- (16 down to 1)
w 00018 FFFF
-- (28 down to 17)
w 00019 0FFF
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> XC <<<<<<<<<<<<<<< <<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- XC receive link 1 from TPG (Ch 1) into Frm_Rp_R (XC_RP_RDATA)
w 50020 FF00
-- Set sync for data
w 5000E 0002
-- XC_SYNC1 from Frm_TS(R) to the pins
w 500E0 60E1
-- XC_RS_D (external pin to transmit (RS)) on link 1
w 50070 C021
-- XC transmit to LIU 1 (Ch 1) from Frm_TP_T Link 1 (XC_PDATA) - observation
w 50010 1E41
-- XC transmit to TPM from Frm_TP_T link 1 TPM (DS1Data)
w 50080 0041
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 669
27 Application Scripts (continued)
-- XC_TPM_SRC[2], test-pattern monitor source configuration
-- XC_TPM_DS1_IDLE[7:0], source identifier for TPM DS1 idle pattern
w 50081 0041
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> DJA <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reference clock rate = 32x
w 70017 3FFF
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> TPG <<<<<<<<<<<<<<<<<<<<<<<<<<<< <<<<<<<<<<
-- ---------------------------------------------------------------------------
-- TPM_SEQ0 = PRBS15, use B8ZS coding/decoding
-- TPM_SEQ0 = PRBS15, select a DS1 framed test pattern
w 60030 0728
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> FRAMER <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Framer
-- Switching mode, super framer for DS1 mode,
-- internal PLL is used.
w 80000 8800
-- Turn on power down.
w 80001 FFFF
-- 8.192 MHz CHI, CHI carry payload and signaling information,
-- AIS, double NOTFAS off, TX/RX sync active-high.
w 80050 2988
-- Transmit and receive data is enabled (FRM_HWYENA)
w 80051 8000
-- Set Rx link 1 auto AIS
w 802F1 004B
-- Start Rx arbiter link 1 operation
w 802F0 A000
-- Set Tx link 1 auto AIS
w 803F1 004B
-- Start Tx arbiter link 1
w 803F0 A000
-- Framer half bit CHI offset
w 803E0 0002
670 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>> Setu p Supermapper 2 Addressing <<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 2 offset
a 40200000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>> Setu p Supermapper 3 Addressing <<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 3 offset
a 40400000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>> Exit Supermapper Addressing <<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
%MODADD END
-- Set the global base address back to 0
a 0
-- Set the global address width to default
z 0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 671
27 Application Scripts (continued)
27.1.8 DS1_TPG_LINK1_FRAMER_Tx-Rx
Figure 129. DS1_TPG_LINK1_FRAMER_Tx-Rx
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>> Setup Supermapper Evaluation Board <<<< <<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- MultiLABS - Agere Automated Bench System
-- Date : 12/06/2000 - RL
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
--
-- Set the global base address back to 0
a 0
-- Set global address width to 16
z 16
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>> Setup FPGA Addressing <<<<<<<<<<<<<<<<<< <<<<<<<<
-- ---------------------------------------------------------------------------
-- Write FPGA1
w 50A00000 F8DF
-- 8 MHz CHI
w 50A00004 FFFE
-- Write FPGA2
w 50E00000 3CF4
w 50E00004 8081
w 50E00006 FFE7
73*730 ;&
)50B53B7 )50B53B5
)50B73B7
)50B73B5
)5$0(5
75$160,7
5(&(,9(
/,1.
;&
35%6
7(67
SYSTEM
/,8
/,1.
/,1.
/,1.
/,1.
35%6
73
)5$0(
$/,*1(5
53
)5$0(
)250$77(5
73
)5$0(
)250$77(5
53
)5$0(
$/,*1(5
FRAMER:
TRANSPORT MODE: DS1 MODE.
INTERNAL PLL IS USED.
TX/RX LINK 1 AUTOAIS.
TEST PATTERN GENERATOR/MONITOR:
PRBS15 TEST PATTERN GENERATED AND
TRANSMITTED BY THE TPG ON THE DS1
TEST OUTPUT DS1 FRAMED TEST
PATTERN SELECTED.
672 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- Set global address width to 8
z 8
-- Write CPU FPGA with DS1 clock selects
w 61000007 00
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>> Setup LIU Addressing <<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set the global base address for "LIU #1"
a 60000000
-- AMI no code
w 2 0
w 3 0
w 4 E1
w 5 65
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Set the global base address for "LIU #2"
a 60200000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Set the global base address for "LIU #3"
a 60400000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 673
27 Application Scripts (continued)
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Setup "LIU #4"
a 60600000
w 2 0
w 3 0
w 4 0
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- ---------------------------------------------------------------------------
-- Set data width to 16 bits
z 16
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>> Setup Supermapper Addressing <<<<<<<<<< <<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 1 offset
a 40000000
-- Shift address left 1
%MODADD SL 1
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- Framer clock select DS1XClk
w 00012 0002
-- Cor/cow, saturate or rollover
w 0000F 0003
-- Turn on Pll
w 00013 0000
-- Framer block software reset
w 0000E 0020
w 0000E 0000
674 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- Enable LineTxData/Clk/Sync for output
-- (16 down to 1)
w 00018 FFFF
-- (28 down to 17)
w 00019 0FFF
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> XC <<<<<<<<<<<<<<< <<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- XC receive link 1 from TPG (Ch 1) into Frm_Tp_R (XC_RP_RDATA)
w 50060 FF00
-- XC transmit to LIU 1 (Ch 1) from Frm_RP_T Link 1 (XC_PDATA) - observation
w 50010 1EC1
-- -- XC receive link 1 from Frm_TP_T (Ch 1) into Frm_Rp_R (XC_RP_RDATA)
w 50020 FF41
-- XC transmit to TPM from Frm_RP_T link 1 TPM (DS1Data)
w 50080 00C1
-- XC_TPM_SRC[2], test-pattern monitor source configuration
-- XC_TPM_DS1_IDLE[7:0], source identifier for TPM DS1 idle pattern
w 50081 00C1
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> DJA <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reference clock rate = 32x
w 70017 3FFF
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> TPG <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- T P M_SEQ0 = PRBS15, use B8ZS coding/decoding
-- TPM_SEQ0 = PRBS15, select a DS1 framed test pattern
w 60030 0328
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> FRAMER <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Framer
-- Transport mode, super framer for DS1 mode,
-- internal PLL is used
w 80000 0800
-- Turn on power down
w 80001 FFFF
-- Set Rx link 1 auto AIS
w 802F1 004B
-- Start Rx arbiter link 1 operation
w 802F0 A000
-- Set Tx link 1 auto AIS
w 803F1 004B
-- Start Tx arbiter link 1
w 803F0 A000
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 675
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>> Setup Supermapper 2 Addressing <<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 2 offset
a 40200000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>> Setup Supermapper 3 Addressing <<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 3 offset
a 40400000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>> Exit Supermapper Addressing <<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
%MODADD END
-- Set the global base address back to 0
a 0
-- Set the global address width to default
z 0
676 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
27.1.9 DS1_TPG_LOOPLINK1THRU28_FRAMER_EXT
Figure 130. DS1_TPG_LOOPLINK1THRU28_FRAMER_EXT
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>> Setup Supermapper Evaluation Board <<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- MultiLABS - Agere Automated Bench System
-- Date : 12/06/2000 - RL
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
--
-- Set the global base address back to 0
a 0
-- Set global address width to 16
z 16
73*
;&
53
)5$0(
$/,*1(5
;&
)3*$
75$160,7
6<67(0
73
)5$0(
)250$77(5
5(&(,9(
6<67(0
)50B73B7
)50B56
)50B76
)50B53B5
FRAMER #1
75$160,7
RECEIVE
PRBS15
Link 1
&+ /,1(5;6<1&
/,1(5;6<1&
PRBS15
Link 1
&+
&+ /,1(7;6<1&
/,1(7;6<1&
)50B76
)50B56
)50B53B5
)50B73B7
FRAMER #28
FRAMER #2
7(67
(48,3
/,8
7(67
(48,3
/,8
&+
)50B73B7
)50B56
)50B76
)50B53B5
&+ /,1(5;6<1&
/,1(7;6<1&
)50B53B7
TO FRAMER #3 RP_R
FROM FRAMER #27 TP_T
&+ &+
53
)5$0(
)250$77(5
53
)5$0(
$/,*1(5
75$160,7
6<67(0
73
)5$0(
)250$77(5
5(&(,9(
6<67(0
53
)5$0(
$/,*1(5
75$160,7
6<67(0
73
)5$0(
)250$77(5
5(&(,9(
6<67(0
&+
TEST PATTERN GENERATOR/MO NITOR:
PRBS15 TEST PATTERN GENERATED AND
TRANSMITTED BY THE TPG ON THE DS1
TEST OUTPUT. DS1 FRAMED TEST PATTERN
IS SELECTED.
FRAMER:
SWITCHING M ODE: DS1 MO DE.
INTERNAL IS PLL USED.
SYSTEM AIS, DOUBL E NOTFAS OFF.
TX/RX DATA I S ENABLED.
TX/RX FRMSYNC IS ACTIVE-HI GH.
TX/RX LINK 1—28 AUTO AIS.
EXTERNAL I/O PINS
LINETXSYNC[1—29]
SET TO OUTPUT TRANSMIT
SYSTEM DATA.
CHI:
8.192 MBITS/S CHI.
CHI CARRIES SIGNALING
AND PAYLOAD
INFORMATION. OFFSET OF
1/2 BIT ADDED TO OFFSET.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 677
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>> Setup FPGA Addressing <<<<<<<<<<<<<<<<<< <<<<<<<<
-- ---------------------------------------------------------------------------
-- Write FPGA1
w 50A00000 F8DF
-- 8 MHz CHI
w 50A00004 FFFE
-- Write FPGA2
w 50E00002 EE28
w 50E00004 8081
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- Set global address width to 8
z 8
-- Write CPU FPGA with DS1 clock selects
w 61000007 00
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>> Setup LIU Addre s sing <<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set the global base address for "LIU #1"
a 60000000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Set the global base address for "LIU #2"
a 60200000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
w C 0
w d 0
w E 0
w F 0
-- Set the global base address for "LIU #3"
a 60400000
-- AMI no code
w 2 0
w 3 0
678 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
w 4 00
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Setup "LIU #4"
a 60600000
w 2 0
w 3 0
w 4 0
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- ---------------------------------------------------------------------------
-- set data width to 16 bits
z 16
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>> Setup Supermapper Addressing <<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 1 offset
a 40000000
-- Shift address left 1
%MODADD SL 1
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- Framer clock select DS1XClk
w 00012 0002
-- Cor/cow, saturate or rollover
w 0000F 0003
-- Turn on Pll
w 00013 0000
-- Framer block software reset
w 0000E 0020
w 0000E 0000
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 679
27 Application Scripts (continued)
-- Enable LineTxData/Clk/Sync for output
-- (16 down to 1)
w 00018 FFFF
-- (28 down to 17)
w 00019 0FFF
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> XC <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- XC receive link 1 from TPG into Frm_Rp_R (XC_RP_RDATA)
w 50020 FF00
-- XC receive link 2-28 from Frm_TP_T of the previous link
w 50020 4100
w 50021 4342
w 50022 4544
w 50023 4746
w 50024 4948
w 50025 4B4A
w 50026 4D4C
w 50027 4F4E
w 50028 5150
w 50029 5352
w 5002A 5554
w 5002B 5756
w 5002C 5958
w 5002D 5B5A
-- XC transmit link 1 to LIU 2 (Ch 5) from Frm_Rp_T (XC_PDATA)
w 50012 1EC1
-- Set sync for data
w 5000E 0002
-- XC_SYNC 1 thru 28 from Frm_TS(R) to the pins
w 500E0 E2E1
w 500E1 E4E3
w 500E2 E6E5
w 500E3 E8E7
w 500E4 EAE9
w 500E5 ECEB
w 500E6 EEED
w 500E7 F0EF
w 500E8 F2F1
w 500E9 F4F3
w 500EA F6F5
w 500EB F8F7
w 500EC FAF9
w 500ED FCFB
-- XC_RS_D (external pin to transmit (RS)) on link 1 & 2
w 50070 2221
w 50071 2423
w 50072 2625
w 50073 2827
w 50074 2A29
w 50075 2C2B
w 50076 2E2D
w 50077 302F
w 50078 3231
w 50079 3433
w 5007A 3635
w 5007B 3837
w 5007C 3A39
w 5007D 3C3B
680 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- XC transmit to LIU 1 (Ch 1) from Frm_TP_T Link 28 (XC_PDATA) - observation
w 50010 1E5C
-- XC transmit to TPM from Frm_TP_T link 28 TPM(DS1Data)
w 50080 005C
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> DJA <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- T P M_SEQ0 = PRBS15, use B8ZS coding/decoding
w 70017 3FFF
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> TPG <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- TPM_SEQ0 = PRBS15, select a DS1 framed test pattern
w 60030 0728
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> FRAMER <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Framer
-- Switching mode, super framer for DS1 mode,
-- internal PLL is used
w 80000 8800
-- Turn on power down
w 80001 FFFF
-- 8.192 MHz CHI, CHI carry payload and signaling information,
-- AIS, double NOTFAS, TX/RX sync active high
w 80050 2988
-- Transmit and receive data is enabled (FRM_HWYENA)
w 80051 8000
-- Set Rx link 1 thru 28 auto AIS
w 802F1 004B
w 804F1 004B
w 806F1 004B
w 808F1 004B
w 80AF1 004B
w 80CF1 004B
w 80EF1 004B
w 810F1 004B
w 812F1 004B
w 814F1 004B
w 816F1 004B
w 818F1 004B
w 81AF1 004B
w 81CF1 004B
w 81EF1 004B
w 820F1 004B
w 822F1 004B
w 824F1 004B
w 826F1 004B
w 828F1 004B
w 82AF1 004B
w 82CF1 004B
w 82EF1 004B
w 830F1 004B
w 832F1 004B
w 834F1 004B
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 681
27 Application Scripts (continued)
w 836F1 004B
w 838F1 004B
-- Start Rx Arbiter link 1 thru 28 operation
w 802F0 A000
w 804F0 A000
w 806F0 A000
w 808F0 A000
w 80AF0 A000
w 80CF0 A000
w 80EF0 A000
w 810F0 A000
w 812F0 A000
w 814F0 A000
w 816F0 A000
w 818F0 A000
w 81AF0 A000
w 81CF0 A000
w 81EF0 A000
w 820F0 A000
w 822F0 A000
w 824F0 A000
w 826F0 A000
w 828F0 A000
w 82AF0 A000
w 82CF0 A000
w 82EF0 A000
w 830F0 A000
w 832F0 A000
w 834F0 A000
w 836F0 A000
w 838F0 A000
-- Set Tx link 1 thru 28 Auto AIS
w 803F1 004B
w 805F1 004B
w 807F1 004B
w 809F1 004B
w 80BF1 004B
w 80DF1 004B
w 80FF1 004B
w 811F1 004B
w 813F1 004B
w 815F1 004B
w 817F1 004B
w 819F1 004B
w 81BF1 004B
w 81dF1 004B
w 81FF1 004B
w 821F1 004B
w 823F1 004B
w 825F1 004B
w 827F1 004B
w 829F1 004B
w 82BF1 004B
w 82dF1 004B
w 82FF1 004B
w 831F1 004B
w 833F1 004B
w 835F1 004B
w 837F1 004B
w 839F1 004B
682 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- Start Tx Arbiter link 1 thru 28
w 803F0 A000
w 805F0 A000
w 807F0 A000
w 809F0 A000
w 80BF0 A000
w 80DF0 A000
w 80FF0 A000
w 811F0 A000
w 813F0 A000
w 815F0 A000
w 817F0 A000
w 819F0 A000
w 81BF0 A000
w 81dF0 A000
w 81FF0 A000
w 821F0 A000
w 823F0 A000
w 825F0 A000
w 827F0 A000
w 829F0 A000
w 82BF0 A000
w 82DF0 A000
w 82FF0 A000
w 831F0 A000
w 833F0 A000
w 835F0 A000
w 837F0 A000
w 839F0 A000
-- Framer half bit CHI offset
w 803E0 0002
w 805E0 0010
w 807E0 0010
w 809E0 0010
w 80BE0 0002
w 80DE0 0010
w 80FE0 0002
w 811E0 0002
w 813E0 0002
w 815E0 0010
w 817E0 0002
w 819E0 0010
w 81BE0 0002
w 81DE0 0010
w 81FE0 0010
w 821E0 0010
w 823E0 0010
w 825E0 0002
w 827E0 0002
w 829E0 0002
w 82BE0 0002
w 82DE0 0002
w 82FE0 0002
w 831E0 0002
w 833E0 0002
w 835E0 0002
w 837E0 0002
w 839E0 0002
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 683
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>> Setup Supermapper 2 Addressing <<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 2 offset
a 40200000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>> Setup Supermapper 3 Addressing <<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 3 offset
a 40400000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>> Exit Supermapper Addressing <<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
%MODADD END
-- Set the global base address back to 0
a 0
-- Set the global address width to default
z 0
684 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
27.2 E1 Mode
This section contains various scenarios with which the Supermapper can be used in the E1 mode. The diagram
preceeeding each script shows the data path and the different blocks that are used in this path. Please note that
this is to be used only as a guideline for the design.
27.2.1 CEPT_21LINK_BROADCAST
Note: Broadcast of E1—E21 links into the framer block through the cross-connect.
Figure 131. CEPT_21LINK_BROADCAST
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>> Setup Supermapper Evaluation Board <<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- MultiLABS - Agere Automated Bench System
-- Date : 03/17/2000 - RL
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set the global base address back to 0
a 0
-- Set global address width to 16
z 16
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>> Setup Supermapper Addressing <<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 1 offset
a 40000000
)5$0(5
;&
(





75$160,7
&+
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 685
27 Application Scripts (continued)
-- Shift address left 1
%MODADD SL 1
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> XC <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- XC broadcast receive 21 link from LIU1(Ch 1) into Frm_Rp_R (XC_RP_RDATA)
w 50020 2121
w 50021 2121
w 50022 2121
w 50023 2121
w 50024 2121
w 50025 2121
w 50026 2121
w 50027 2121
w 50028 2121
w 50029 2121
w 5002A FF21
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>> Exit Supermapper Addressing <<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
%MODADD END
-- Set the global base address back to 0.
a 0
-- Set the global address width to default.
z 0
27.2.2 CEPT_LINK1_FRAMER_TRANSPORT
Note: Data flow: I/O port (E1-channel 1)=> XC=> FRMR=> (internal loopback in framer)=>XC=>I/O port (E1-channel 1).
Figure 132. CEPT_LINK1_FRAMER_TRANSPORT
;&
(
)5$0(5
75$160,7
5(&(,9(


FRAMER:
TRANSPORT MODE: E1 MODE.
INTERNAL PLL IS USED.
TX/RX LINK 1: CRC4; TURN ON POWERDOWN;
INTERNAL LOOPBACK .
RX LINK 1 E1 CRC4 AND 400 ms,
TIMER L INK 1 IS ENABLED,
NONTRANSPARENT MODE,
NORMAL OPERATIONS.
TX LINK 1 E 1 CRC4 AND 400 ms,
TIMER L INK 1 IS ENABLED,
NONTRANSPARENT MODE,
NORMAL OPERATIO NS.
686 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>> Setup Supermapper Evaluation Board <<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- MultiLABS - Agere Automated Bench System
-- Date : 09/22/2000 - RL
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
--
-- Set the global base address back to 0
a 0
-- Set global address width to 16
z 16
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>> Setup FPGA Addressing <<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Write FPGA1
w 50a00000 F87F
-- 8 MHz CHI
w 50A00004 FFFE
-- Write FPGA2
w 50E00002 EE28
w 50E00004 8081
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- Set global address width to 8
z 8
-- Write CPU FPGA with E1 clock selects
w 61000007 FF
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>> Setup LIU Addressing <<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set the global base address for "LIU #1"
a 60000000
w 2 0
w 3 0
w 4 00
w 5 69
w 6 C0
w 7 C0
w 8 C0
w 9 C0
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 687
27 Application Scripts (continued)
-- Set the global base address for "LIU #2"
a 60200000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 69
w 6 C0
w 7 C0
w 8 C0
w 9 C0
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Set the global base address for "LIU #3"
a 60400000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 61
w 6 C0
w 7 C0
w 8 C0
w 9 C0
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Setup "LIU #4"
a 60600000
w 2 0
w 3 0
w 4 0
w 5 61
w 6 C0
w 7 C0
w 8 C0
w 9 C0
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
688 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- Set data width to 16 bits
z 16
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>> Setup Supermapper Addressing <<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 1 offset
a 40000000
-- Shift address left 1
%MODADD SL 1
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- Framer clock select E1XClk
w 00012 0003
-- Cor/cow, saturate or rollover
w 0000F 0003
-- Turn on Pll
w 00013 0000
-- Framer block software reset
w 0000E 0020
w 0000E 0000
-- Enable LineTxData/Clk/Sync for output
-- (16 down to 1)
w 00018 FFFF
-- (28 down to 17)
w 00019 0FFF
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> XC <<<<<<<<<<<<<<< <<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- XC receive link 1 from LIU 1(Ch 1) into Frm_Tp_R (XC_TP_RDATA)
w 50060 FF21
-- XC_RP_RDATA
w 50020 FF41
-- XC transmit to LIU 1 (Ch 1) from Frm_RP_T Link 1 (XC_PDATA)
w 50010 1EC1
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 689
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> FRAMER <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Framer
-- Transport mode, super framer for cept mode,
-- internal PLL is used
w 80000 8000
-- Turn on all blocks
w 80001 FFFF
w 802F0 0000
-- Set Rx link 1 cept CRC 4 and 400 ms timer
w 802F1 0004
-- Start Rx arbiter link 1 operation
-- Link is enabled, non-transparent mode, normal operations
w 802F0 A000
w 803F0 0000
-- Set Tx link 1 cept CRC4 and 400 ms timer
w 803F1 0004
-- Start Tx arbiter link 1
-- Link is enabled, non-transparent mode, normal operations
w 803F0 A000
w 80000 0000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>> Setup Supermapper 2 Addressing <<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 2 offset
a 40200000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>> Setup Supermapper 3 Addressing <<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 3 offset
a 40400000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
690 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>> Exit Supermapper Addressing <<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
%MODADD END
-- Set the global base address back to 0
a 0
-- Set the global address width to default
z 0
27.2.3 CEPT_LINK1_FRAMER_BASIC_TRANSPORT
Figure 133. CEPT_LINK1_FRAMER_BASIC_TRANSPORT
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>> Setup Supermapper Evaluation Board <<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- MultiLABS - Agere Automated Bench System
-- Date : 01/26/2001 - RL
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set the global base address back to 0
a 0
-- Set global address width to 16
z 16
7(67
(48,3
;&
53
)5$0(
$/,*1(5
73
)5$0(
)250$77(5
)50B73B7 )50B73B5
)50B53B7
)50B53B5
)5$0(5
75$160,7
5(&(,9(
(

(

;&
CHI:
8.192 MBITS/S CHI.
CHI CARRIES SIGNALING AND
PAYLOAD INFORMATION.
53
)5$0(
)250$77(5
73
)5$0(
$/,*1(5
FRAMER:
TRANSPORT MODE: E1 MODE.
INTERNAL PLLIS USED.
SYSTEM AIS , DOUBLE NOTFAS OF F.
TX/RX DATA IS ENABL ED.
TX/RX FRMSYNC IS ACTIVE-HIGH.
TX/RX LINK 1 E1 BASI C FRAME MODE.
AUTOMATIC RAI INSERTION IS SET.
&+
&+
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 691
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>> Setup FPGA Addressing <<<<<<<<<<<<<<<<<< <<<<<<<<
-- ---------------------------------------------------------------------------
-- Write FPGA1
w 50A00000 F8DF
-- 8 MHz CHI
w 50A00004 FFFE
-- Write FPGA2
w 50E00002 EE28
w 50E00004 8081
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- Set global address width to 8
z 8
-- Write CPU FPGA with E1 clock selects
w 61000007 FF
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>> Setup LIU Addre s sing <<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set the global base address for "LIU #1"
a 60000000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 69
w 6 C0
w 7 C0
w 8 C0
w 9 C0
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Set the global base address for "LIU #2"
a 60200000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 69
w 6 C0
w 7 C0
w 8 C0
w 9 C0
692 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Set the global base address for "LIU #3"
a 60400000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 69
w 6 C0
w 7 C0
w 8 C0
w 9 C0
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Setup "LIU #4"
a 60600000
w 2 0
w 3 0
w 4 0
w 5 69
w 6 C0
w 7 C0
w 8 C0
w 9 C0
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- ---------------------------------------------------------------------------
-- Set data width to 16 bits
z 16
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 693
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>> Setup Supermapper Addressing <<<<<<<<<< <<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 1 offset
a 40000000
-- Shift address left 1
%MODADD SL 1
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- Framer clock select
w 00012 0003
-- Cor/cow, saturate or rollover
w 0000F 0003
-- Turn on Pll
w 00013 0000
-- SPEMPR blo ck software reset
w 0000E 0020
w 0000E 0000
-- Enable LineTxData/Clk/Sync for output
-- (16 down to 1)
w 00018 FFFF
-- (28 down to 17)
w 00019 0FFF
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> XC <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- XC receive link 1 from LlU 1 (Ch 1) into Frm_Rp_R (XC_RP_RDATA)
w 50020 FF21
-- Set link 1 input to (FRM_TP_R) from pin
-- XC_FTP_SRC[1-14], XC1 framer transmit path data source configuration
-- XC_TP_RDATA, source identifier for framer transmit path connection
w 50060 FFC1
-- XC transmit to LIU 1 (Ch 1) from Frm_TP_T Link 1 (XC_PDATA)
w 50010 1E41
694 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> FRAMER <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Framer
-- Transport mode, super framer for CEPT mode,
-- internal PLL is used
w 80000 0000
-- Turn on power down
w 80001 FFFF
-- 8.192 MHz CHI, CHI carry payload and signaling information,
-- AIS, double NOTFAS if off, TX/RX sync active-high.
w 80050 2988
-- Transmit and receive data is enabled
w 80051 8000
-- Set Rx link 1 CEPT basic frame
w 802F1 0041
-- Start Rx arbiter link 1 operation
w 802F0 A000
-- Set automatic RAI insertion - FRM_FFLR1
w 802F4 0001
-- Send RAI upon detection of AIS enable.
-- Send RAI upon detection of OOF enable - FRM_PMGR12
w 8003B C000
-- Set Tx link 1 CEPT basic frame
w 803F1 0041
-- Start Tx arbiter link 1
w 803F0 A000
-- Set automatic RAI insertion - FRM_FFLR1
w 803F4 0001
-- Send RAI upon detection of AIS enable.
-- Send RAI upon detection of OOF enable - FRM_PMGR12.
w 8013B C000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>> Exit Supermapper Addressing <<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
%MODADD END
-- Set the global base address back to 0
a 0
-- Set the global address width to default
z 0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 695
27 Application Scripts (continued)
27.2.4 CEPT_LINK1_FRAMER_CRC4_100MS_TRANSPORT_EXT
Figure 134. CEPT_LINK1_FRAMER_CRC4_100MS_TRANSPORT_EXT
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>> Setup Supermapper Evaluation Board <<<< <<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- MultiLABS - Agere Automated Bench System
-- Date: 01/31/2001 - RL
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set the global base address back to 0
a 0
-- Set global address width to 16
z 16
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>> Setup FPGA Addressing <<<<<<<<<<<<<<<<<< <<<<<<<<
-- ---------------------------------------------------------------------------
-- Write FPGA1
w 50A00000 F8DF
-- 8 MHz CHI
w 50A00004 FFFE
-- Write FPGA2
w 50E00002 EE28
w 50E00004 8080
7(67
(48,3
;&
53
)5$0(
$/,*1(5
73
)5$0(
)250$77(5
)50B73B7 )50B73B5
)50B53B7
)50B53B5
)5$0(5
75$160,7
5(&(,9(
(

(

)3*$
;&
CHI:
8.192 MBITS/S CHI.
CHI CARRIES SIGNALING AND PAYLOAD
INFORMATION.
53
)5$0(
)250$77(5
73
)5$0(
$/,*1(5


FRAMER:
TRANSPORT MODE: E1 MODE.
INTERNAL PLL IS USED.
SYSTEM AIS, DOUBLE NOTFAS IS OFF.
TX/RX DATA IS ENABLED.
TX/RX FRMSYNC IS ACTIVE-HIGH.
TX/RX LINK 1 E1 CRC4 100 ms FRAME MODE.
AUTOMATIC RAI INSERTIONIS SET.
,2
,2
696 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- Set global address width to 8
z 8
-- Write CPU FPGA with E1 clock selects
w 61000007 FF
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>> Setup LIU Addressing <<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set the global base address for "LIU #1"
a 60000000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 69
w 6 C0
w 7 C0
w 8 C0
w 9 C0
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Set the global base address for "LIU #2"
a 60200000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 69
w 6 C0
w 7 C0
w 8 C0
w 9 C0
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Set the global base address for "LIU #3"
a 60400000
-- AMI no code
w 2 0
w 3 0
w 4 00
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 697
27 Application Scripts (continued)
w 5 69
w 6 C0
W 7 C0
w 8 C0
w 9 C0
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Setup "LIU #4"
a 60600000
w 2 0
w 3 0
w 4 0
w 5 69
w 6 C0
w 7 C0
w 8 C0
w 9 C0
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- ---------------------------------------------------------------------------
-- Set data width to 16 bits
z 16
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>> Setup Supermapper Addressing <<<<<<<<<< <<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 1 offset
a 40000000
-- Shift address left 1
%MODADD SL 1
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- Framer clock select
w 00012 0003
698 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- Cor/cow, saturate or rollover
w 0000F 0003
-- Turn on Pll
w 00013 0000
-- SPEMPR block software reset
w 0000E 0020
w 0000E 0000
-- Enable LineTxData/Clk/Sync for output
-- (16 down to 1)
w 00018 FFFF
-- (28 down to 17)
w 00019 0FFF
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> XC <<<<<<<<<<<<<<< <<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- XC receive link 1 from LIU 1 (Ch 1) into Frm_Rp_R (XC_RP_RDATA)
w 50020 FF21
-- Set link 1 input to (frm_tp_r) from pin
-- XC_FTP_SRC[1-14], XC1 framer transmit path data source configuration
-- XC_TP_RDATA, source identifier for framer transmit path connection.
w 50060 FF21
-- XC transmit to LIU 1 (Ch 1) from Frm_TP_T Link 1 (XC_PDATA)
w 50010 1E41
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> FRAMER <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Framer
-- Transport mode, super framer for CEPT mode,
-- internal PLL is used
w 80000 0000
-- Turn on power down
w 80001 FFFF
-- 8.192 MHz CHI, CHI carry payload and signaling information,
-- AIS, double NOTFAS if off, TX/RX sync active-high.
w 80050 2988
-- Transmit and receive data is enabled
w 80051 8000
-- Set Rx link 1 CEPT crc4 100ms framing mode
w 802F1 0042
-- Start Rx arbiter link 1 operation
w 802F0 A000
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 699
27 Application Scripts (continued)
-- Set automatic RAI insertion - FRM_FFLR1
w 802F4 0001
-- Send RAI upon detection of AIS enable.
-- Send RAI upon detection of OOF enable - FRM_PMGR12.
w 8003B C000
-- Set Tx link 1 CEPT crc4 100ms framing mode
w 803F1 0042
-- Start Tx arbiter link 1
w 803F0 A000
-- Set automatic RAI insertion - FRM_FFLR1
w 803F4 0001
-- Send RAI upon detection of AIS enable.
-- Send RAI upon detection of OOF enable - FRM_PMGR12.
w 8013B C000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>> Exit Supermapper Addressing <<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
%MODADD END
-- Set the global base address back to 0
a 0
-- Set the global address width to default
z 0
27.2.5 CEPT_LINK1_FRAMER_CRC4_400MS_TRANSPORT_TX-Rx
Note: Data flow: I/O port (E1-channel 1)=> XC=> FRMR=> (internal loopback in framer)=>XC=>I/O port (E1- channel 1).
Figure 135. CEPT_LINK1_FRAMER_CRC4_400MS_TRANSPORT_TX-Rx
;&
(
)5$0(5
75$160,7
5(&(,9(


FRAMER:
TRANSPORT MODE: E1 MODE.
INTERNAL PLL IS USED.
TX/RX LINK 1: CRC4.
TU RN ON POWERDOWN.
INTERNAL LOOPBACK.
TX LINK 1 E1 CRC4 AND 400 ms
TIMER. LINK 1 IS ENABLED,
NONTRANSPARENT MODE,
NORMAL OPERAT IONS.
RX LINK 1 E1 CRC4 AND 400 ms
TIMER. LINK 1 IS ENABLED,
NONTRANSPARENT MODE,
NORMAL OPERAT IONS.
700 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>> Setup Supermapper Evaluation Board <<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- MultiLABS - Agere Automated Bench System
-- Date : 09/22/2000 - RL
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
--
-- Set the global base address back to 0
a 0
-- Set global address width to 16
z 16
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>> Setup FPGA Addressing <<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Write FPGA1
w 50A00000 F87F
-- 8 MHz CHI
w 50A00004 FFFE
-- Write FPGA2
-- w 50E00000 FC84
w 50E00002 EE28
w 50E00004 8081
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- Set global address width to 8
z 8
-- Write CPU FPGA with E1 clock selects
w 61000007 FF
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>> Setup LIU Addressing <<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set the global base address for "LIU #1"
a 60000000
w 2 0
w 3 0
w 4 00
w 5 69
w 6 C0
w 7 C0
w 8 C0
W 9 C0
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 701
27 Application Scripts (continued)
-- Set the global base address for "LIU #2"
a 60200000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 69
w 6 C0
w 7 C0
w 8 C0
w 9 C0
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Set the global base address for "LIU #3"
a 60400000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 61
w 6 C0
w 7 C0
w 8 C0
w 9 C0
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Setup "LIU #4"
a 60600000
w 2 0
w 3 0
w 4 0
w 5 61
w 6 C0
w 7 C0
w 8 C0
w 9 C0
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
702 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- Set data width to 16 bits
z 16
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>> Setup Supermapper Addressing <<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 1 offset
a 40000000
-- Shift address left 1
%MODADD SL 1
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- Framer clock select E1XClk
w 00012 0003
-- Cor/cow, saturate or rollover
w 0000F 0003
-- Turn on Pll
w 00013 0000
-- Framer block software reset
w 0000E 0020
w 0000E 0000
-- Enable LineTxData/Clk/Sync for output
-- (16 down to 1)
w 00018 FFFF
-- (28 down to 17)
w 00019 0FFF
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> XC <<<<<<<<<<<<<<< <<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- XC receive link 1 from LIU 1 (Ch 1) into Frm_Tp_R (XC_TP_RDATA)
w 50060 FF21
-- XC_RP_RDATA
w 50020 FF41
-- XC transmit to LIU 1 (Ch 1) from Frm_RP_T Link 1 (XC_PDATA)
w 50010 1EC1
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 703
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> FRAMER <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Framer
-- Transport mode, super framer for cept mode,
-- internal PLL is used.
w 80000 8000
-- Turn on power down
w 80001 FFFF
w 802F0 0000
-- Set Rx lin k 1 cept CRC4
w 802F1 0004
-- Start Rx arbiter link 1 operation
w 802F0 A000
w 803F0 0000
-- Set Tx link 1 cept CRC4
w 803F1 0004
-- Start Tx arbiter link 1
w 803F0 A000
w 80000 0000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>> Setup Supermapper 2 Addressing <<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 2 offset
a 40200000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>> Setup Supermapper 3 Addressing <<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 3 offset
a 40400000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
704 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>> Exit Supermapper Addressing <<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
%MODADD END
-- Set the global base address back to 0
a 0
-- Set the global address width to default
z 0
27.2.6 CEPT_SIGNALING_LINK1_FRAMER_EXT
Note: Signaling Rx link registeris set for signal extraction from the Rx line. Signaling Tx link register is set for insertion of signaling data into the
Tx line, and also Tx signal is received from the system interface.
Figure 136. CEPT _SIG NALING _LINK1_FRAM ER _EX T
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>> Setup Supermapper Evaluation Board <<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- MultiLABS - Agere Automated Bench System
-- Date : 10/13/2000 -RL
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set the global base address back to 0
a 0
-- Set global address width to 16
z 16
7(67
(48,3
;&
53
)5$0(
$/,*1(5
75$160,7
6<67(0
73
)5$0(
)250$77(5
5(&(,9(
6<67(0
)50B73B7 )50B56
)50B76
)50B53B5
)5$0(5
75$160,7
5(&(,9(

)3*$
/,1(5;6<1&
/,1(7;6<1&
;&
FRAMER:
SWITCHING MODE: E1 MODE.
INTERNAL PLL IS USED.
SYSTEM AIS, DOUBLE NOTFAS.
TX/RX DATA IS ENABLED.
TX/RX FRMSYNC IS ACTIVE-HIGH.
TX/RX LINK 1 E 1 BASIC FRAME MODE.
CHI:
8.192 MBITS/S CHI.
CHI CARRIES SIGNALING AND PAYLOAD
INFORMATION. OF FSET OF 1/2 BIT ADDED
TO OFFSET.
EXTERNAL I/O PINS LINETXSYNC[1—29]
SET TO OUTPUT TRANSMIT SYSTEM DATA.
E1
&+
/,1.

E1

E1
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 705
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>> Setup FPGA Addressing <<<<<<<<<<<<<<<<<< <<<<<<<<
-- ---------------------------------------------------------------------------
-- Write FPGA1
w 50A00000 F8DF
-- 8 MHz CHI
w 50A00004 FFFE
-- Write FPGA2
w 50E00002 EE28
w 50E00004 8081
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- Set global address width to 8
z 8
-- Write CPU FPGA with E1 clock selects
w 61000007 FF
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>> Setup LIU Addre s sing <<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set the global base address for "LIU #1"
a 60000000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 69
w 6 C0
w 7 C0
w 8 C0
w 9 C0
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Set the global base address for "LIU #2"
a 60200000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 69
w 6 C0
w 7 C0
w 8 C0
706 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
w 9 C0
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Set the global base address for "LIU #3"
a 60400000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 69
w 6 C0
w 7 C0
w 8 C0
w 9 C0
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Setup "LIU #4"
a 60600000
w 2 0
w 3 0
w 4 0
w 5 69
w 6 C0
w 7 C0
w 8 C0
w 9 C0
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- ---------------------------------------------------------------------------
-- Set data width to 16 bits
z 16
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 707
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>> Setup Supermapper Addressing <<<<<<<<<< <<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 1 offset
a 40000000
-- Shift address left 1
%MODADD SL 1
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- Framer clock select
w 00012 0003
-- Cor/cow, saturate or rollover
w 0000F 0003
-- Turn on Pll
w 00013 0000
-- SPEMPR blo ck software reset
w 0000E 0020
w 0000E 0000
-- Enable LineTxData/Clk/Sync for output
-- (16 down to 1)
w 00018 FFFF
-- (28 down to 17)
w 00019 0FFF
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> XC <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- XC receive link 1 from LIU 1 (Ch 1) into Frm_Rp_R (XC_RP_RDATA)
w 50020 FF21
-- XC transmit link 1 to LIU 2 (Ch 5) from Frm_Rp_T (XC_PDATA)
-- w 50012 1EC1
-- Set sync for data
w 5000E 0002
-- XC_SYNC1 from Frm_TS(R)
w 500E0 60E1
-- XC_RS_D (from pin to transmit (RS)) on link 1
w 50070 C021
708 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- XC transmit to LIU 3 (Ch 9) from Frm_TP_T Link 1 (XC_PDATA)
-- w 50014 1E41
-- XC transmit to LIU 1 (Ch 1) from Frm_TP_T Link 1 (XC_PDATA)
w 50010 1E41
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> FRAMER <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Framer
-- Switching mode, super framer for CEPT mode,
-- internal PLL is used.
w 80000 8000
-- Turn on power down
w 80001 FFFF
-- 8.192 MHz CHI, CHI carry payload and signaling information,
-- AIS, double NOTFAS, TX/RX sync active high.
w 80050 29A8
-- Transmit and receive data is enabled
w 80051 8000
-- Set link 1 signaling extracted from the Rx Line
w 80221 0001
-- Set Rx link 1 CEPT basic frame mode
w 802F1 0041
-- Start Rx arbiter link 1 operation
w 802F0 A000
-- Link Tx1 signaling insertion,
-- signaling received from the system interface.
w 80321 0102
-- Set Tx link 1 cept basic frame mode
w 803F1 0041
-- Start Tx arbiter link 1
w 803F0 A000
-- Framer half bit CHI offset
w 803E0 0002
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>> Exit Supermapper Addressing <<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
%MODADD END
-- Set the global base address back to 0
a 0
-- Set the global address width to default
z 0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 709
27 Application Scripts (continued)
27.2.7 CEPT_SIGNALING_LINK1LOOPLINK2_FRAMER_CRC4_100MS_EXT
Note: Signaling Rx link register is set for signal extraction from the Rx line (link 1 and link 2). Rx link 2-CRC4 100 ms/Tx link 1-CRC4 100 ms.
Signaling Tx link register is set for insertion of signaling data into the Tx line (link 1), and also Tx signal is received from the system in ter-
face.
Figure 137. CEPT_SIGNALING_LIN K1LOOPLINK2_FRAM ER_ CRC4_ 100 MS_ EXT
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>> Setup Supermapper Evaluation Board <<<< <<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- MultiLABS - Agere Automated Bench System
-- Date : 01/04/2001 - RL
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set the global base address back to 0
a 0
-- Set global address width to 16
z 16
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>> Setup FPGA Addressing <<<<<<<<<<<<<<<<<< <<<<<<<<
-- ---------------------------------------------------------------------------
-- Write FPGA1
w 50A00000 F8DF
-- 8 MHz CHI
w 50A00004 FFFE
R
p
7(67
(48,3
;&
;&
)3*$
)50B73B7
)50B56
)50B76
)50B53B5
FRAMER #1
75$160,7
RECEIVE
E1
#1 &+ /,1(5;6<1&
/,1(5;6<1&
E1
#1
&+
&+ /,1(7;6<1&
)50B53B5
FRAMER #2
TP
FRAME
FORMATTER
5(&(,9(
6<67(0
RP
FRAME
ALIGNER
TRANSMIT
SYSTEM
TP
FRAME
FORMATTER
5(&(,9(
6<67(0
RP
FRAME
ALIGNER
TRANSMIT
SYSTEM
EXTERNAL I/O PINS LINETXSYNC[1—29] SET
TO OUTPUT TRA NSMIT SYSTEM DAT A.
710 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- Write FPGA2
w 50E00002 EE28
w 50E00004 8081
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- Set global address width to 8
z 8
-- Write CPU FPGA with E1 clock selects
w 61000007 FF
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>> Setup LIU Addressing <<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set the global base address for "LIU #1"
a 60000000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 69
w 6 C0
w 7 C0
w 8 C0
w 9 C0
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Set the global base address for "LIU #2"
a 60200000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 69
w 6 C0
w 7 C0
w 8 C0
w 9 C0
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 711
27 Application Scripts (continued)
-- Set the global base address for "LIU #3"
a 60400000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 69
w 6 C0
w 7 C0
w 8 C0
w 9 C0
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Setup "LIU #4"
a 60600000
w 2 0
w 3 0
w 4 0
w 5 69
w 6 C0
w 7 C0
w 8 C0
w 9 C0
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- ---------------------------------------------------------------------------
-- Set data width to 16 bits
z 16
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>> Setup Supermapper Addressing <<<<<<<<<< <<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 1 offset
a 40000000
-- Shift address left 1
%MODADD SL 1
712 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- Framer clock select
w 00012 0003
-- Cor/cow, saturate or rollover
w 0000F 0003
-- Turn on Pll
w 00013 0000
-- SPEMPR block software reset
w 0000E 0020
w 0000E 0000
-- Enable LineTxData/Clk/Sync for output
-- (16 down to 1)
w 00018 FFFF
-- (28 down to 17)
w 00019 0FFF
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> XC <<<<<<<<<<<<<<< <<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- XC receive link 1 from LIU 1(Ch 1) into Frm_Rp_R (XC_RP_RDATA)
-- XC receive link 2 from link 1 Frm_TP_T
w 50020 4121
-- Set sync for data
w 5000E 0002
-- XC_SYNC1 from Frm_TS(R)
w 500E0 60E1
-- XC_RS_D (from pin to transmit (RS)) on link 1
w 50070 C021
-- XC transmit to LIU 1 (Ch 1) from Frm_TP_T Link 1 (XC_PDATA)
w 50010 1E41
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> FRAMER <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Framer
-- Switching mode, super framer for CEPT mode,
-- Internal PLL is used
w 80000 8000
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 713
27 Application Scripts (continued)
-- Turn on power down
w 80001 FFFF
-- 8.192 MHz CHI, CHI carry payload and signaling information,
-- AIS, double NOTFAS, TX/RX sync active-high
w 80050 29A8
-- Transmit and receive data is enabled
w 80051 8000
------------------------------------------------------------------------------
-- RX
------------------------------------------------------------------------------
-- Set link 1 and 2 signaling extracted from the Rx line
w 80221 0001
w 80421 0001
-- (6)-Frm_AUTO_AIS: auto AIS is enabled
-- Set Rx link 1 CEPT with CRC-4 and 100 ms timer
w 802F1 0042
-- Start Rx arbiter link 1 operation
w 802F0 A000
-- Set Rx link 2 CEPT with CRC-4 and 100 ms timer
w 804F1 0042
-- Start Rx arbiter link 2 operation
w 804F0 A000
------------------------------------------------------------------------------
-- TX
------------------------------------------------------------------------------
-- Link Tx1 signaling insertion,
-- signaling received from the system interface
w 80321 0102
-- Set Tx link 1 CEPT with CRC-4 and 100 ms timer
w 803F1 0042
-- Start Tx arbiter link 1
w 803F0 A000
-- Framer half bit CHI offset
w 803E0 0002
- --------------------------------------------------------------------- ------
-- >>>>>>>>>>>>>>>>>>>>> Setup Supermapper 2 Addressing <<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 2 offset
a 40200000
714 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>> Setu p Supermapper 3 Addressing <<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 1 offset
a 40400000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>> Exit Supermapper Addressing <<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
%MODADD END
-- Set the global base address back to 0
a 0
-- Set the global address width to default
z 0
27.3 OC3 Mode
This section contains various scenarios with which the Supermapper can be used in the OC3 mode. The diagram
preceeeding each script shows the data path and the different blocks that are used in this path. Please note that
this is to be used only as a guideline for the design.
27.3.1 OC3CDRLOOPBACK
Note: The transducer converts the optical signal to electrical signals and vice-ver sa.
Figure 138. OC3CDRLOOPBACK
TMUX
Transducer (Optical TX/RX)
TRANSMIT
RECEIVE
OC-3
OC-3
STS-3
STS-3
TMUX:
EXTERNAL LOSEXT POLARITY: ACTIVE-HIGH.
HIGH- SP EED SIGNAL DESCR AMBLED/SCRAMBLED.
RECEIVE HIGH-SPEED TO TRANSMIT HIGH-SPEED INTERNAL LOOPBACK.
CDR MODE:
(CLOCK AND DATA RECOVERY) 155 MHz CDR MODE.
INTERNAL PLL POWER ON.
CDR DATA CHANNEL P OWER ON.
RECEIV E CLOCK AND DATA
THROUGH CDR.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 715
27 Application Scripts (continued)
-- Test Description
-- OC3<-->CDR STM-1/STS-3 loopback
a 0
z 16
--Set Supermapper 1 offset
a 40000000
%MODADD SL 1
-- Reset Supermapper 1
w 0000D 0001
w 0000D 0000
--V2 tristate enable
w 00018 FFFF
w 00019 FFFF
-- Register at location 0x0014 enables the clocks for TMUX.
w 00014 0003
w 00010 0001 -- to TMUX to master
w 00013 0001 -- Turn on 155mb CDR
-- set TMUX
w 40019 0009
w 40034 0003
%MODADD END
a 0
z 0 --default write width
716 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
27.3.2 OC3M_SPE_M13_DS1LIULOOPBACK1
Note: The transducer converts the optical signals to electrical signals and vice-versa.
Figure 139. OC3M_SPE_M13_DS1LIULOOPBACK1
a 0
z 16
-- setup FPGA 1
-- enable DS1/E1 I/O, channels 1-4
w 50A00000 0000
-- setup FPGA2
-- disable DS1/E1 I/O buffers
w 50E00004 FFFF
-- set DS1/E1 aisclock to primary rate
w 50E00000 FC84
z 0 --default write width
-- select ds1 xclk for liu's
w8 61000007 00
OC3 STS-3
STS-1
STS-1 (TO OTHER TWO SUPERMAPPERS,
WHI C H PERF ORM SA ME PROCES S.)
TMUX SPE
RECEIVE TMUX:
STS-3 MO DE.
SET TO MAS TER.
SIGNAL SC R AMBLED/
DESCRAMBLED.
SPE:
STS-3 MO DE.
DS3 DATA FROM M13.
AU3/STS-1 MAPPING/DEMAPPING
STS-1/AU3 ON TIME SLOT #1 .
INHIBIT AUTOAIS FOR VT SYNC DETECTION.
DS3 BIPOLAR.
M13 AN D SP E PA SS DS 3 D AT A TO EACH OTH ER
M13 XC
TRANSMIT
EXTERNAL LOOP BACK
OF ALL 28 CHANNELS
DS3
DS3
CH1
CH1
CH2
CH3
CH28
CH2
CH3
CH28
DS1
DS1
TRANSDUCER
(OPTICAL TX/RX)
STS-1
STS-1
STS-3OC3
STS-1
STS-1
FROM OTHER TWO
SUPERMAPPERS
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 717
27 Application Scripts (continued)
---liu1
a 60000000
w 2 FF
w 3 FF
w 4 1
w 5 6D
w 6 18
w 7 18
w 8 18
w 9 18
---liu2
a 60200000
w 2 FF
w 3 FF
w 4 1
w 5 6D
w 6 18
w 7 18
w 8 18
w 9 18
---liu3
a 60400000
w 2 FF
w 3 FF
w 4 1
w 5 6D
w 6 18
w 7 18
w 8 18
w 9 18
---liu4
a 60600000
w 2 FF
w 3 FF
w 4 1
w 5 6D
w 6 18
w 7 18
w 8 18
w 9 18
--Set Supermapper 1 offset
a 40000000
-- set width to 16 bits
z 16
-- shift address left 1
%MODADD SL 1
-- top
718 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
--V2 tristate enable
w 00018 FFFF
w 00019 FFFF
-- Set TMUX to master
w 00010 0001
-- Turn on clocks for SPE and TMUX and M13.
w 00014 018f
-- tmux
-- set descramble
w 40019 0009
-- set expected C2 signal label
w 40022 0004
w 40023 0404
-- set scramble
w 40034 0001
-- set micro insertion of C2 signal label
w 40036 0002
w 40037 0002
w 40038 0002
-- set C2 signal label insert value
w 4003F 0004
w 40042 0004
w 40045 0004
-- spe
-- Setup AU3 on timeslot #1, DS3's from External I/O
w 30018 1515
-- Inhibit auto ais generation for VT sync detection
w 3000D 0020
-- Turn on Bipolar for DS3's and Invert Phase Detection
w 30019 0023
-- bipolar coding and m23 mode
w 1005D 0002
-- tpg
-- Setup TPM for DS1 (2^15 - 1 w/ SF frame)
w 60030 1E28
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 719
27 Application Scripts (continued)
-- xc
-- Set up DS3's from SPEMPR
w 500D4 0001
-- setup input to TPM from M13
w 50080 1E61
-- set external output 1-28 from M13 chan 1-28
w 50010 6261
w 50011 6463
w 50012 6665
w 50013 6867
w 50014 6A69
w 50015 6C6B
w 50016 6E6D
w 50017 706F
w 50018 7271
w 50019 7473
w 5001a 7675
w 5001B 7877
w 5001c 7A79
w 5001d 7C7B
-- set external input chan 1-28 to m13 chan1-28
w 50030 2221
w 50031 2423
w 50032 2625
w 50033 2827
w 50034 2A29
w 50035 2C2B
w 50036 2E2D
w 50037 302F
w 50038 3231
w 50039 3433
w 5003A 3635
w 5003B 3837
w 5003C 3A39
w 5003D 3C3B -- input chan 28 on M13 chan 28
%MODADD END
a 0
z 0
720 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
27.4 STM Mode
This section contains various scenarios with which the Supermapper can be used in the STM mode. The diagram
preceeeding each script shows the data path and the different blocks that are used in this path. Please note that
this is to be used only as a guideline for the design.
27.4.1 SMPR2_STM1_AU3_DS3_PIC
Figure 140. SMPR2_STM1_AU3_DS3_PIC
-- -------------
-- Setup Supermapper Evaluation Board
-- -------------
a 0
z 16
-- disable LIU decode/encode
w 50E00006 FFE7
-- -------------
-- Setup Supermapper Addressing
-- -------------
--Set Supermapper 1 offset
a 40200000
-- set width to 16 bits
z 16
-- shift address left 1
%MODADD SL 1
-- -------------
-- SMPR TOP
-- -------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
XC
TMUX AU-3/SPE
SPE:
SETUP FOR AU-3 ON TIME SL OT #1.
DS3s FROM EXTERNAL I/ Os.
AU-3 MAPPING/DEMAPPING SELECTED.
DEMAPPING OF AU-3 TO DS3.
BIP O LAR DS3s AND INVERT PHASE DETECTION.
AUTO AIS GENERATION INHIBIT FOR VT SYNC DETECTION.
STM-1
TMUX:
STM-1 MODE.
SIGNALS SCRAMBLED/DESCRAMBLED.
STM-1 TO 3 AU-3s.
RECEIVE
LIN E RXCH 1
AU-3
(TO OTHER SUPERMAP PERS)
DS3
AU-3
AU-3
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 721
27 Application Scripts (continued)
--V2 tristate enable
w 00018 FFFF
w 00019 FFFF
-- Set TMUX to master
w 00010 0001
-- Turn on clocks for SPE and TMUX.
w 00014 000f
-- -------------
-- TMUX
-- -------------
-- set descramble
w 40019 0009
-- enable ss bits to contribute to LOP
-- set receive ss bits to 10
w 4001A 0140
-- set expected C2 signal label
w 40022 0004
w 40023 0404
-- set transmit ss bits to 10
-- (known issue with ss bits not being set)
w 40035 0200
-- set scramble
w 40034 0001
-- set micro insertion of C2 signal label
w 40036 0002
w 40037 0002
w 40038 0002
-- set C2 signal label insert value
w 4003F 0004
w 40042 0004
w 40045 0004
-- -------------
-- SPEMPR
-- -------------
-- Setup AU3 on timeslot #1, DS3's from External I/O
w 30018 3535
-- Inhibit auto ais generation for VT sync detection
w 3000D 0020
-- Turn on Bipolar for DS3s and Invert Phase Detection
w 30019 0023
-- -------------
-- XC
-- -------------
-- Set up DS3s from SPEMPR
722 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
w 500D4 0003
-- -------------
-- Exit Supermap per Addres sin g
-- -------------
%MODADD END
a 0
z 0
27.4.2 SMPR2_STM1_AU4_TUG3_TU3_DS3
Figure 141. SMPR2_STM1_AU4_TUG3_TU3_DS3
-- -------------
-- Setup Supermapper Evaluation Board
-- -------------
a 0
z 16
-- disable liu decode/encode
w 50E00006 FFE7
-- -------------
-- Setup Supermapper Addressing
-- -------------
--Set Supermapper 2 offset
a 40200000
-- set width to 16 bits
z 16
-- shift address left 1
%MODADD SL 1
XC
TMUX AU-3/
SPE
SPE:
SETUP FOR TU G- 3 ON TIME SLOT #1.
DS3s FROM EXTERNAL I/Os.
TUG-3 MAPPING/DEMAPPING SELECTED.
DEMAPPING OF TUG-3 TO TU-3 TO DS 3 .
BIPOLAR DS3 s AN D INV ER T PH ASE
DETECTION A U TOA IS GENERA TI ON INHIBIT
FOR VT SYNC DETECTION.
STM-1
TMUX:
STM-1 MODE.
SIGNAL S SCRAMBLED/DESCRAMBLE D.
STM-1 TO 3 TUG-3s.
RECEIVE
LINERXCH 1
TUG-3
(TO OTHER SUPERMAPPERS)
DS3
TUG-3
TUG-3
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 723
27 Application Scripts (continued)
-- -------------
-- SMPR TOP
-- -------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
--V2 tristate enable
w 00018 FFFF
w 00019 FFFF
-- Set TMUX to master
w 00010 0001
-- Turn on clocks for SPE and TMUX.
w 00014 000F
-- -------------
-- TMUX
-- -------------
-- set descramble
w 40019 0009
-- enable ss bits to contribute to LOP
-- set receive ss bits to 10
w 4001A 0140
-- set expected C2 signal label
w 40022 0002
w 40023 0202
-- set concatenate mode and ss bits to 10
-- (known issue with ss bits not being set)
w 40035 1200
-- set scramble
w 40034 0001
-- set micro insertion of C2 signal label
w 40036 0002
w 40037 0002
w 40038 0002
-- set C2 signal label insert value
w 4003F 0002
w 40042 0002
w 40045 0002
-- -------------
-- SPEMPR
-- -------------
-- Setup TUG3 on timeslot #1, DS3s from External I/O
w 30018 3131
724 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- Setup expected C2 signal label
w 30011 0004
-- Setup transmitted C2 signal label
w 30021 0400
-- Setup micro insertion of C2 signal label
w 3001B 0002
-- Inhibit auto ais generation for VT sync detection
w 3000D 0020
-- Turn on Bipolar for DS3s and Invert Phase Detection
w 30019 0023
-- -------------
-- XC
-- -------------
-- Set up DS3s from SPEMPR
w 500D4 0003
-- -------------
-- Exit Supermap per Addres sin g
-- -------------
%MODADD END
a 0
z 0
27.4.3 STM1_AU3_TUG2_ATU11_DS1
Figure 142. STM 1_AU3 _TUG 2_ ATU11_DS1
XC
TMUX AU-3/
SPE VTMPR
SPE:
SETUP FOR AU-3 , VTs ON T IME SLOT #1.
AU- 3 MA PPIN G / D EMAPPING SELECTE D .
DEM APPING OF AU-3 TO 7 TUG-2s TO 28 TU-11s.
STM-1
STM-1
DS1
#1
DS1
#1
TMUX:
STM-1 MODE.
SIGNALS SCRAMBLED/DESCRAMBLED.
STM-1 TO 3 AU-3s.
VTMPR:
ASYNCHRONOUS VT1.5s (TU-11s)
Ch 5
Ch 9
Ch 13
LINETXCH 1
EXTER N AL LOOPBACK
FROM I/O CH1
TO VTMPR C H 1
RECEIVE
TRANSMIT
LINERXCH 1
AU-3
(OT H ER SU PER MAPPERS)
TU-11
TU-11
AU-3
AU-3
AU-3
AU-3
AU-3
FROM OTHER TWO
SUPERMAPPERS
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 725
27 Application Scripts (continued)
-- -------------
-- Setup Super Mapper Evaluation Board
-- -------------
a 0
z 16
-- enable DS1/E1 I/O buffers
w 50E00004 0000
-- set DS1/E1 aisclock to primary rate
w 50E00000 FC84
-- disable DS3/STS1 LIU decode/encode
w 50E00006 FFE7
z 0
-- select DS1 xclk for LIUs
w8 61000007 00
-- setup LIU #1
a 60000000
z 0
w 2 FF
w 3 FF
w 4 1
w 5 6D
w 6 0
w 7 0
w 8 0
w 9 0
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- setup LIU #2
a 60200000
z 0
w 2 0
w 2 FF
w 3 FF
w 4 1
w 5 6D
w 6 0
w 7 0
w 8 0
w 9 0
w A 0
w B 0
w C 0
726 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
w D 0
w E 0
w F 0
-- setup LIU #3
a 60400000
z 0
w 2 FF
w 3 FF
w 4 1
w 5 6d
w 6 0
w 7 0
w 8 0
w 9 0
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- setup LIU #4
a 60600000
z 0
w 2 FF
w 3 FF
w 4 1
w 5 6D
w 6 0
w 7 0
w 8 0
w 9 0
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- -------------
-- Setup Super Mapper Addressing
-- -------------
-- Set Super Mapper 1 offset
a 40000000
-- set data width to 16 bits
z 16
-- shift address left 1
%MODADD SL 1
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 727
27 Application Scripts (continued)
-- -------------
-- SMPR TOP
-- -------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
--V2 tristate enable
w 00018 FFFF
w 00019 FFFF
-- setup TMUX as master
w 00010 0001
-- Turn on clocks for DJA, TMUX, SPEMPR, VTMPR
w 00014 007F
-- set delta and event to Clear On Read (COR)
w 0000F 0002
-- -------------
-- TMUX
-- -------------
-- set descramble
w 40019 0009
-- enable ss bits to contribute to LOP
-- set receive ss bits to 10
w 4001A 0140
-- set expected C2 signal label
w 40022 0002
w 40023 0202
-- set concatenate mode and ss bits to 10
-- (known issue with ss bits not being set)
w 40035 1200
-- set scramble
w 40034 0001
-- set micro insertion of C2 signal label
w 40036 0002
w 40037 0002
w 40038 0002
-- set C2 signal label insert value
w 4003F 0002
w 40042 0002
w 40045 0002
728 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- -------------
-- SPEMPR
-- -------------
-- setup for TUG3, VTs on timeslot 01
w 30018 0909
-- -------------
-- VTMPR
-- -------------
-- setup for asynchronous VT1.5s
w 200CA 7F7F
-- setup TX_MAPTYPE
w 200DC 0000
w 200DD 0000
w 200DE 0000
w 200DF 0000
w 200E0 0000
w 200E1 0000
w 200E2 0000
w 200E3 0000
w 200E4 0000
w 200E5 0000
w 200E6 0000
w 200E7 0000
w 200E8 0000
w 200E9 0000
w 200EA 0000
w 200EB 0000
w 200EC 0000
w 200ED 0000
w 200EE 0000
w 200EF 0000
w 200F0 0000
-- setup RX_MAPTYPE
w 20328 0000
w 20329 0000
w 2032A 0000
w 2032B 0000
w 2032C 0000
w 2032D 0000
w 2032E 0000
w 2032F 0000
w 20330 0000
w 20331 0000
w 20332 0000
w 20333 0000
w 20334 0000
w 20335 0000
w 20336 0000
w 20337 0000
w 20338 0000
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 729
27 Application Scripts (continued)
w 20339 0000
w 2033A 0000
w 2033B 0000
w 2033C 0000
-- -------------
-- DJA
-- -------------
-- Setup AIS clock divide ratio to 1
w 70017 0FFF
-- -------------
-- TPG
-- -------------
-- Setup TPG for DS1 (Inverted 2^15 - 1 w/ SF frame)
w 60030 1E28
-- -------------
-- XC
-- -------------
-- setup input to DS1 TPM from VTMPR
w 50080 0081
-- set output to LIU chan 1, 5, 9, 13 from VTMPR chan 1
w 50010 1E81
w 50012 1E81
w 50014 1E81
w 50016 1E81
-- set VTMPR input channel 1 from External I/O
w 50040 1E21
-- -------------
-- Exit Supermap per Addre ssin g
-- -------------
%MODADD END
a 0
z 0
730 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
27.4.4 STM1_AU3_TUG2_ATU12_E1
Figure 143. STM1_AU3_TUG2_ATU12_E1
-- -------------
-- Setup Supermapper Evaluation Board
-- -------------
a 0
z 16
-- enable ds1/e1 i/o buffers
w 50E00004 0000
-- set ds1/e1 aisclock to primary rate
w 50E00000 FC84
-- disable ds3/sts1 liu decode/encode
w 50E00006 FFE7
z 0
-- select e1 xclk for liu's
w8 61000007 FF
-- setup LIU #1
a 60000000
z 0
w 2 FF
w 3 FF
XC
TMUX AU-3/
SPE VTMPR
SPE:
SETUP FOR TU G- 3, VTs ON TIME SLOT #1.
TUG-3 MAPPING/DEMAPPING SELECTED.
DEMAPPING OF TUG-3 TO 7 TUG-2s TO 28 TU-12s.
STM-1
STM-1
E1
#1
E1
#1
TMUX:
STM-1 MODE.
SIGNALS SCRAMB LED/DESCRA MB LED.
STM-1 TO AU-4 TO 3 TUG-3s.
VTMPR:
ASYNC H R O N OU S VT2 s ( TU - 1 2s )
Ch 5
Ch 9
Ch 13
LINE TX CH 1
EXTE RNAL LOO PBA CK
FRO M I/O CH 1
TO VTMPR CH1
RECEIVE
TRANSMIT
LINE RXCH 1
TUG-3
(OTHER SUPERMAPPERS)
TU-12
TU-12
TUG-3
TUG-3
TUG-3
TUG-3
TUG-3
FROM OTHER TWO
SUPERMAPPERS
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 731
27 Application Scripts (continued)
w 4 1
w 5 6D
w 6 C0
w 7 C0
w 8 C0
w 9 C0
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- setup LIU #2
a 60200000
z 0
w 2 FF
w 3 FF
w 4 1
w 5 6D
w 6 C0
w 7 C0
w 8 C0
w 9 C0
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- setup LIU #3
a 60400000
z 0
w 2 FF
w 3 FF
w 4 1
w 5 6D
w 6 C0
w 7 C0
w 8 C0
w 9 C0
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
732 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- setup LIU #4
a 60600000
z 0
w 2 FF
w 3 FF
w 4 1
w 5 6D
w 6 C0
w 7 C0
w 8 C0
w 9 C0
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- -------------
-- Setup Supermapper Addressing
-- -------------
-- Set Supermapper 1 offset
a 40000000
-- set data width to 16 bits
z 16
-- shift address left 1
%MODADD SL 1
-- -------------
-- SMPR TOP
-- -------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
--V2 tristate enable
w 00018 FFFF
w 00019 FFFF
-- setup TMUX as master
w 00010 0001
-- Turn on clocks for DJA, TMUX, SPEMPR, VTMPR
w 00014 007F
-- set delta and event to Clear On Read (COR)
w 0000F 0002
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 733
27 Application Scripts (continued)
-- -------------
-- TMUX
-- -------------
-- set descramble
w 40019 0009
-- enable ss bits to contribute to LOP
-- set receive ss bits to 10
w 4001A 0140
-- set expected C2 signal label
w 40022 0002
w 40023 0202
-- set transmit ss bits to 10
-- (known issue with ss bits not being set)
w 40035 0200
-- set scramble
w 40034 0001
-- set micro insertion of C2 signal label
w 40036 0002
w 40037 0002
w 40038 0002
-- set C2 signal label insert value
w 4003F 0002
w 40042 0002
w 40045 0002
-- -------------
-- SPEMPR
-- -------------
-- setup for AU3, VT's on timeslot 01
w 30018 0D0D
-- -------------
-- VTMPR
-- -------------
-- setup for asynchronous VT2's
w 200CA 0000
-- setup TX_MAPTYPE
w 200DC 0001
w 200DD 0001
w 200DE 0001
w 200DF 0001
w 200E0 0001
w 200E1 0001
w 200E2 0001
w 200E3 0001
w 200E4 0001
734 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
w 200E5 0001
w 200E6 0001
w 200E7 0001
w 200E8 0001
w 200E9 0001
w 200EA 0001
w 200EB 0001
w 200EC 0001
w 200ED 0001
w 200EE 0001
w 200EF 0001
w 200F0 0001
-- setup RX_MAPTYPE
w 20328 0001
w 20329 0001
w 2032A 0001
w 2032B 0001
w 2032C 0001
w 2032D 0001
w 2032E 0001
w 2032F 0001
w 20330 0001
w 20331 0001
w 20332 0001
w 20333 0001
w 20334 0001
w 20335 0001
w 20336 0001
w 20337 0001
w 20338 0001
w 20339 0001
w 2033A 0001
w 2033B 0001
w 2033C 0001
-- -------------
-- DJA
-- -------------
-- Setup AIS clock divide ratio to 1
w 70017 0FFF
-- -------------
-- TPG
-- -------------
-- Setup TPG for E1 (Inverted 2^15 - 1)
w 60032 1E28
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 735
27 Application Scripts (continued)
-- -------------
-- XC
-- -------------
-- setup input to E1 TPM from VTMPR
w 50082 0081
-- set output to liu chan 1, 5, 9, 13 from VTMPR chan 1
w 50010 1E81
w 50012 1E81
w 50014 1E81
w 50016 1E81
-- set VTMPR input channel 1 from External I/O
w 50040 1E21
-- -------------
-- Exit Supermap per Addre ssin g
-- -------------
%MODADD END
a 0
z 0
27.4.5 STM1_AU4_TUG3_TUG2_ATU11_DS1
Figure 144. STM1_AU4_TUG3_TUG2_ATU11_DS1
XC
TMUX AU-3/
SPE VTMPR
SPE:
SETUP FOR TU G- 3, VTs ON TIME SLOT #1.
TUG-3 MAPPING/DEMAPPING SELECTED.
DEMAPPING OF TUG-3 TO 7 TUG-2s TO 28 TU-12s.
STM-1
STM-1
E1
#1
E1
#1
TMUX:
STM-1 MODE.
SIGNALS SCRAMB LED/DESCRA MB LED.
STM-1 TO AU-4 TO 3 TUG-3s.
VTMPR:
ASYNC H R O N OU S VT2 s ( TU - 1 2s )
Ch 5
Ch 9
Ch 13
LINE TX CH 1
EXTERNAL LOOPB ACK
FRO M I/O CH 1
TO VTMPR CH1
RECEIVE
TRANSMIT
LINE RXCH 1
TUG-3
(OTHER SUPERMAPPERS)
TU-12
TU-12
TUG-3
TUG-3
TUG-3
TUG-3
TUG-3
FROM OTHER TWO
SUPERMAPPERS
736 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- -------------
-- Setup Supermapper Evaluation Board
-- -------------
a 0
z 16
-- enable ds1/e1 i/o buffers
w 50E00004 0000
-- set ds1/e1 aisclock to primary rate
w 50E00000 FC84
-- disable ds3/sts1 liu decode/encode
w 50E00006 FFE7
z 0
-- select ds1 xclk for liu's
w8 61000007 00
-- setup LIU #1
a 60000000
z 0
w 2 FF
w 3 FF
w 4 1
w 5 6D
w 6 0
w 7 0
w 8 0
w 9 0
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- setup LIU #2
a 60200000
z 0
w 2 0
w 2 FF
w 3 FF
w 4 1
w 5 6D
w 6 0
w 7 0
w 8 0
w 9 0
w A 0
w B 0
w C 0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 737
27 Application Scripts (continued)
w D 0
w E 0
w F 0
-- setup LIU #3
a 60400000
z 0
w 2 FF
w 3 FF
w 4 1
w 5 6D
w 6 0
w 7 0
w 8 0
w 9 0
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- setup LIU #4
a 60600000
z 0
w 2 FF
w 3 FF
w 4 1
w 5 6D
w 6 0
w 7 0
w 8 0
w 9 0
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- -------------
-- Setup Supermapper Addressing
-- -------------
-- Set Supermapper 1 offset
a 40000000
-- set data width to 16 bits
z 16
-- shift address left 1
%MODADD SL 1
738 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- -------------
-- SMPR TOP
-- -------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
--V2 tristate enable
w 00018 FFFF
w 00019 FFFF
-- setup TMUX as master
w 00010 0001
-- Turn on clocks for DJA, TMUX, SPEMPR, VTMPR
w 00014 007F
-- set delta and event to Clear On Read (COR)
w 0000F 0002
-- -------------
-- TMUX
-- -------------
-- set descramble
w 40019 0009
-- enable ss bits to contribute to LOP
-- set receive ss bits to 10
w 4001A 0140
-- set expected C2 signal label
w 40022 0002
w 40023 0202
-- set concatenate mode and ss bits to 10
-- (known issue with ss bits not being set)
w 40035 1200
-- set scramble
w 40034 0001
-- set micro insertion of C2 signal label
w 40036 0002
w 40037 0002
w 40038 0002
-- set C2 signal label insert value
w 4003F 0002
w 40042 0002
w 40045 0002
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 739
27 Application Scripts (continued)
-- -------------
-- SPEMPR
-- -------------
-- setup for TUG3, VT's on timeslot 01
w 30018 0909
-- -------------
-- VTMPR
-- -------------
-- setup for asynchronous VT1.5's
w 200CA 7F7F
-- setup TX_MAPTYPE
w 200DC 0000
w 200DD 0000
w 200DE 0000
w 200DF 0000
w 200E0 0000
w 200E1 0000
w 200E2 0000
w 200E3 0000
w 200E4 0000
w 200E5 0000
w 200E6 0000
w 200E7 0000
w 200E8 0000
w 200E9 0000
w 200EA 0000
w 200EB 0000
w 200EC 0000
w 200ED 0000
w 200EE 0000
w 200EF 0000
w 200F0 0000
-- setup RX_MAPTYPE
w 20328 0000
w 20329 0000
w 2032A 0000
w 2032B 0000
w 2032C 0000
w 2032D 0000
w 2032E 0000
w 2032F 0000
w 20330 0000
w 20331 0000
w 20332 0000
w 20333 0000
w 20334 0000
w 20335 0000
w 20336 0000
w 20337 0000
w 20338 0000
740 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
w 20339 0000
w 2033A 0000
w 2033B 0000
w 2033C 0000
-- -------------
-- DJA
-- -------------
-- Setup AIS clock divide ratio to 1
w 70017 0FFF
-- -------------
-- TPG
-- -------------
-- Setup TPG for ds1 (Inverted 2^15 - 1 w/ SF frame)
w 60030 1E28
-- -------------
-- XC
-- -------------
-- setup input to ds1 TPM from VTMPR
w 50080 0081
-- set output to liu chan 1, 5, 9, 13 from VTMPR chan 1
w 50010 1E81
w 50012 1E81
w 50014 1E81
w 50016 1E81
-- set VTMPR input channel 1 from External I/O
w 50040 1E21
-- -------------
-- Exit Supermap per Addres sin g
-- -------------
%MODADD END
a 0
z 0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 741
27 Application Scripts (continued)
27.5 STS Mode
This section contains various scenarios with which the Supermapper can be used in the STS mode. The diagram
preceeeding each script shows the data path and the different blocks that are used in this path. Please note that
this is to be used only as a guideline for the design.
27.5.1 STS1_AVT15_DS1
Figure 145. STS1_AVT15_DS1
-- -------------
-- Setup Supermapper Evaluation Board
-- -------------
a 0
z 16
-- enable ds1/e1 i/o buffers
w 50E00004 0000
-- set ds1/e1 aisclock to primary rate
-- enable STS-1 LVDS/CMOS BUFF
-- select 51.84MHz THSC
w 50E00000 F488
-- enable ds3/sts1 liu decode/encode
w 50E00006 FFE0
z 0
-- select ds1 xclk for liu's
w8 61000007 00
-- setup LIU #1
a 60000000
z 0
w 2 FF
w 3 FF
w 4 1
w 5 6D
XC
TMUX SPE VTMPR
STS-1
STS-1
DS1
#1
DS1
#1
VTMPR:
ASYNCHRONOUS VT1.5
CH 5
CH 9
CH 13
LINE TX CH 1
RECEIVE
TRANSMIT
LINE RXCH 1
SPE:
STS-1 MODE FOR TX/RX DATA .
TX/RX VT MODE
AU-3 /STS-1 MAPPING/DEMAPPING SELECTED.
TMUX:
ST M-1 MOD E 52 MH Z.
SIGNALS SCRAMB LED/DESCRAMBLED.
EXT LOSEXT POLARITY ACTIVE-HIGH.
EXTERNAL LOOPBACK
FROM I/O CH1
TO VTMPR CH1
742 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
w 6 0
w 7 0
w 8 0
w 9 0
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- setup LIU #2
a 60200000
z 0
w 2 FF
w 3 FF
w 4 1
w 5 6D
w 6 0
w 7 0
w 8 0
w 9 0
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- setup LIU #3
a 60400000
z 0
w 2 FF
w 3 FF
w 4 1
w 5 6D
w 6 0
w 7 0
w 8 0
w 9 0
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- setup LIU #4
a 60600000
z 0
w 2 FF
w 3 FF
w 4 1
w 5 6D
w 6 0
w 7 0
w 8 0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 743
27 Application Scripts (continued)
w 9 0
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- -------------
-- Setup Supermapper Addressing
-- -------------
-- Set Supermapper 1 offset
a 40000000
-- set data width to 16 bits
z 16
-- shift address left 1
%MODADD SL 1
-- -------------
-- SMPR TOP
-- -------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
--V2 tristate enable
w 00018 FFFF
w 00019 FFFF
-- setup TMUX as master
w 00010 0001
-- Turn on clocks for DJA, TMUX, SPEMPR, VTMPR
w 00014 007F
-- set delta and event to Clear On Read (COR)
w 0000F 0002
-- -------------
-- TMUX
-- -------------
-- set TMUX to STS-1 mode
w 40003 0001
-- set descramble
w 40019 0009
-- set expected C2 signal label
w 40022 0002
-- set scramble
w 40034 0001
-- set micro insertion of C2 signal label
w 40036 0002
744 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- set C2 signal label insert value
w 4003F 0002
-- -------------
-- SPEMPR
-- -------------
-- setup for VT's
w 30018 8C8C
-- -------------
-- VTMPR
-- -------------
-- setup for asynchronous VT1.5s
w 200CA 7F7F
-- setup TX_MAPTYPE
w 200DC 0000
w 200DD 0000
w 200DE 0000
w 200DF 0000
w 200E0 0000
w 200E1 0000
w 200E2 0000
w 200E3 0000
w 200E4 0000
w 200E5 0000
w 200E6 0000
w 200E7 0000
w 200E8 0000
w 200E9 0000
w 200EA 0000
w 200EB 0000
w 200EC 0000
w 200ED 0000
w 200EE 0000
w 200EF 0000
w 200F0 0000
-- setup RX_MAPTYPE
w 20328 0000
w 20329 0000
w 2032A 0000
w 2032B 0000
w 2032C 0000
w 2032D 0000
w 2032E 0000
w 2032F 0000
w 20330 0000
w 20331 0000
w 20332 0000
w 20333 0000
w 20334 0000
w 20335 0000
w 20336 0000
w 20337 0000
w 20338 0000
w 20339 0000
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 745
27 Application Scripts (continued)
w 2033A 0000
w 2033B 0000
w 2033C 0000
-- -------------
-- XC
-- -------------
-- set output to liu chan 1, 5, 9, 13 from VTMPR chan 1
w 50010 1E81
w 50012 1E81
w 50014 1E81
w 50016 1E81
-- set VTMPR input channel 1 from External I/O
w 50040 1E21
-- -------------
-- Exit Supermap per Addre ssin g
-- -------------
%MODADD END
a 0
z 0
27.5.2 STS1_SPE_M13DS1LOOPBACK
Note: Register 0x0014 enables clocks for M13, SPE, and TMUX.
Figure 146. STS1_SPE_M13DS1LOOPBACK
-- Test Description
-- STS1---SPE---M13 DS1 loopback
-- -------------
-- Setup Supermapper Evaluation Board
-- -------------
a 0
z 16
TMUX SPE
TMUX:
STS-1 MOD E
STS-1
STS-1
DS3
DS3
DS1 LOOP BACK WITHIN M13
M13:
M13 MO D E.
DEMUXED DS1/E1 SIGNALS
TO BE LOOPED BACK.
SPE:
SETUP STS-1 MODE.
SE TU P FRO M M13
STS-1
STS-1
M12M23
DS2 DS1
DS2 DS1
746 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- set ds1/e1 aisclock to primary rate
-- enable STS-1 LVDS/CMOS BUFF
-- select 51.84MHz THSC
w 50E00000 F788
-- disable liu decode/encode
w 50E00006 FFE0
z 0
-- select ds1 xclk for liu's
w8 61000007 00
z 0 --default write width
-- -------------
-- Setup Supermapper Addressing
-- -------------
--Set Supermapper 1 offset
a 40000000
-- set width to 16 bits
z 16
%MODADD SL 1 -- shift address left 1
-- -------------
-- SMPR TOP
-- -------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
--V2 tristate enable
w 00018 FFFF
w 00019 FFFF
-- Register at location 0x0014 enables the clocks for M13, and SPE, TMUX.
w 00014 018F
w 00010 0001 -- to TMUX to master
-- -------------
-- SPEMPR
-- -------------
-- set up spe from m13
-- set up sts1 mode
w 30018 9595
w 3000C 007F
w 3000D 007F
-- -------------
-- TMUX
-- -------------
-- set TMUX to STS1 mode
w 40003 0001
-- set TMUX
w 40019 0009
w 40022 0004
w 40023 0204
w 40034 0001
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 747
27 Application Scripts (continued)
w 40036 0002
w 40037 0002
w 40038 0002
w 4003F 0002
w 40042 0002
w 40045 0002
-- -------------
-- XC
-- -------------
-- Set up SPE TO M13
w 500D4 0001
-- -------------
-- M13
-- -------------
-- set M13 to M13 mode
w 1005D 0002
w 10061 0010
%MODADD END
a 0
z 0 --default write width
748 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
27.6 D4 Mode
This section contains various scenarios with which the Supermapper can be used in the D4 mode. The diagram
preceeeding each script shows the data path and the different blocks that are used in this path. Please note that
this is to be used only as a guideline for the design.
27.6.1 D4_INTENCDEC_LINK1_FRAMER_TRANSPORT_Tx-Rx
Note: Receive path frame formatter is cross-connected to the external data and clock outputs.
Figure 147. D4_INTENCDEC_LINK1_FRAMER_TRANSPORT_Tx-Rx
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>> Setup Supermapper Evaluation Board <<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- MultiLABS - Agere Automated Bench System
-- Date : 11/09/2000 - (RL)
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
a 0
z 16
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>> Setup FPGA Addressing <<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Write FPGA1 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
w 50A00000 F87F
-- 8 MHz CHI
w 50A00004 FFFE
;&
73
)5$0(
$/,*1(5
53
)5$0(
)250$77(5
)5$0(5
75$160,7
5(&(,9(
'
/,1(7;'$7$'
;&
&+
&+
73
)5$0(
)250$77(5
53
)5$0(
$/,*1(5
&+
&+
FRAMER:
TRANSPORT MODE: DS1 MODE.
INTERNAL PLL IS NOT USED.
DECODER IS IN TX PATH, ENCODER IS IN RX PATH.
TX/RX LINK 1 AUTOAIS, D4 FRAMING MODE.
ENCODER/DECODER: B8ZS.
/,1(7;6<1&
7;
'(&2'(
5;
(1&2'(
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 749
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> Write FPGA2 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set DS1/E1 aisclock to primary rate
-- w 50E00000 FC84
-- Set DS1 aisclock to 32x DS1 clock to DJA
w 50E00000 FCF4
-- Pll is 8.192 MHz clock
w 50E00002 EE28
-- Enable dS1/E1 I/O buffers, enable dual rail and first four links.
-- w 50E00004 0000
w 50E00004 FF80
-- Select DS1 and E1 ref clock = clock osc
w 50E0000A D464
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- Set global address width to 8
z 8
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>> Write CPU FPGA <<<<<<<<<<<<<<<<<<< <<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- select DS1 xclk for LIUs
w 61000007 0000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>> Setup LIU Addre s sing <<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Setup LIU #1
a 60000000
z 0
w 2 0
w 3 0
w 4 0
-- Set dual mode to on, should bypass encoder/decoder
w 5 75
w 6 0
w 7 0
w 8 0
w 9 0
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Setup LIU #2
a 60200000
z 0
w 2 0
w 3 0
750 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
w 4 0
w 5 7D
w 6 0
w 7 0
w 8 0
w 9 0
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Setup LIU #3
a 60400000
z 0
w 2 0
w 3 0
w 4 0
w 5 7D
w 6 0
w 7 0
w 8 0
w 9 0
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Setup LIU #4
a 60600000
z 0
w 2 0
w 3 0
w 4 0
w 5 7D
w 6 0
w 7 0
w 8 0
w 9 0
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 751
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>> Setup Supermapper 1 Addressing <<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 1 offset
a 40000000
-- Set data width to 16 bits
z 16
-- Shift address left 1
%MODADD SL 1
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- Set delta and event to clear on read (COR)
w 0000F 0003
-- Framer clock select DS1XClk
w 00012 0002
-- Turn on Pll
w 00013 0000
-- Turn off clocks for DJA, TMUX, SPEMPR, VTMPR
w 00014 0000
-- Framer block software reset
w 0000E 0020
w 0000E 0000
-- Enable LineTxData/Clk/Sync for output (v2)
-- (16 down to 1)
w 00018 FFFF
-- (28 down to 17)
w 00019 0FFF
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> XC <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
--Cross connect TP frame formatter to RP frame aligner (loopback)
w 50020 FF41
-- Cross connect receive path frame formatter to external (XC_PDATA & XC_SYNC) data and clock outputs
-- (link 1).
w 50010 1EC1
w 500E0 FFC1
752 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- Cross connect transmit path external I/O to the framer transmit path aligner (link 1).
w 50060 FF21
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> FRAMER <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Transport mode, super framer for DS1 mode,
-- internal PLL is not used. Decoder is used in Tx path and encoder is used in Rx path.
w 80000 4C00
-- Turn on framer sub-blocks (default)
w 80001 FFFF
-- Set Rx link 1 auto AIS, D4 framing mode
w 802F1 004C
-- Rx path line encoder set for B8ZS
w 802FC 0002
-- Start Rx arbiter link 1 operation
w 802F0 A000
-- Set Tx link 1 auto AIS, D4 framing mode
w 803F1 004C
-- Tx path line decoder set for B8ZS
w 803FC 0012
-- Start Tx arbiter link 1
w 803F0 A000
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 753
27 Application Scripts (continued)
27.6.2 D4_LINK1_FRAMER_EXT
Note: DS1 is D4 framing mode.
Figure 148. D4_LINK1_FRAMER_EXT
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>> Setup Supermapper Evaluation Board <<<< <<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- MultiLABS - Agere Automated Bench System
-- Date : 04/10/2000 - RL
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
--
-- Set the global base address back to 0
a 0
-- Set global address width to 16
z 16
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>> Setup FPGA Addressing <<<<<<<<<<<<<<<<<< <<<<<<<<
-- ---------------------------------------------------------------------------
-- Write FPGA1
w 50A00000 F8DF
-- 8 MHz CHI
w 50A00004 FFFE
-- Write FPGA2
w 50E00002 EE28
w 50E00004 8081
7(67
(48,3
;&
53
)5$0(
$/,*1(5
75$160,7
6<67(0
73
)5$0(
)250$77(5
5(&(,9(
6<67(0
)50B73B7 )50B56
)50B76
)50B53B5
)5$0(5
75$160,7
5(&(,9(
)3*$
/,1(5;6<1&
/,1(7;6<1&
;&
FRAMER:
SWITCHING MODE: DS1 MODE.
INTERNAL PLL IS USED.
SYSTEM A IS, DOUBLE NOTFAS.
TX/RX D ATA IS ENABLE D.
TX/RX F RMSYNC IS ACTIVE-HIGH.
TX/RX LI NK 1 AUTOAI S.
D4 FRAME MODE.
CHI:
8.192 MBITS/S CHI.
CHI CARRIES SI GNALING AND PAYLOAD
INFORMATION. OFFSET OF 1 /2 BIT ADDED
TO OFFSET.
EXTERNAL I/O PINS LINETXSYNC[1—29]
SET TO OUTPUT TRANS MI T SY ST EM DATA .
/,1(7;&/.
'6
/,1(7;'$7$
'6
&+
754 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- Set global address width to 8
z 8
-- Write CPU FPGA with DS1 clock selects
w 61000007 00
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>> Setup LIU Addressing <<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set the global base address for "LIU #1"
a 60000000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 65
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Set the global base address for "LIU #2"
a 60200000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Set the global base address for "LIU #3"
a 60400000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 61
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 755
27 Application Scripts (continued)
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Setup "LIU #4"
a 60600000
-- z 0
w 2 0
w 3 0
w 4 0
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- ---------------------------------------------------------------------------
-- Set data width to 16 bits
z 16
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>> Setup Supermapper Addressing <<<<<<<<<< <<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 1 offset
a 40000000
-- Shift address left 1
%MODADD SL 1
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- Framer clock select DS1XClk
w 00012 0002
756 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- COR/COW, saturate or rollover
w 0000F 0003
-- Turn on Pll
w 00013 0000
-- Framer block software reset
w 0000E 0020
w 0000E 0000
-- Enable LineTxData/Clk/Sync for output
-- (16 down to 1)
w 00018 FFFF
-- (28 down to 17)
w 00019 0FFF
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> XC <<<<<<<<<<<<<<< <<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- XC receive link 1 from LIU 1 (Ch 1) into Frm_Rp_R (XC_RP_RDATA)
w 50020 FF21
-- Set sync for data
w 5000E 0002
-- XC_SYNC1 from Frm_TS(R) to the pins
w 500E0 60E1
-- XC_RS_D (external pin to transmit (RS)) on link 1
w 50070 C021
-- XC transmit to LIU 1 (Ch 1) from Frm_TP_T Link 1 (XC_PDATA)
w 50010 1E41
-- XC to LineTxClk15
w 50017 1E41
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> FRAMER <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Framer
-- Switching mode, super framer for DS1 mode,
-- internal PLL is used
w 80000 8800
-- Turn on power down
w 80001 FFFF
-- FRM_PMGR14, perfomance monitor global register 14
-- Turn on detect pattern, framed, link 1
-- 2^15 pattern select
w 8003D 3A19
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 757
27 Application Scripts (continued)
-- 8.192 MHz CHI, CHI carry payload and signaling information,
-- AIS, Double NOTFAS, TX/R X sync active -high
w 80050 29A8
-- Transmit and receive data is enabled (FRM_HWYENA)
w 80051 8000
-- Set auto RAI
w 802F4 0001
w 803F1 0001
-- Set Rx link 1 auto AIS
w 802F1 004C
-- Start Rx arbiter link 1 operation
w 802F0 A000
-- Set Tx link 1 auto AIS
w 803F1 004C
-- Start Tx arbiter link 1
w 803F0 A000
-- Framer half bit CHI offset
w 803E0 0002
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>> Setup Supermapper 2 Addressing <<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 2 offset
a 40200000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>> Setup Supermapper 3 Addressing <<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 3 offset
a 40400000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
758 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>> Exit Supermapper Addressing <<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
%MODADD END
-- Set the global base address back to 0
a 0
-- Set the global address width to default
z 0
27.6.3 D4_SIGNALING_16STATE_LINK1_FRAMER_EXT
Note: DS1 is in D4 framing mode. Signaling Rx link register is set for signal extraction from the Rx line. Signaling Tx link register is set for inser-
tion of signaling data into the Tx line, and also Tx signal received from system interface. Signaling all 16 states (A, B, C, and D).
Figure 149. D4_SIG NALIN G_ 16S TATE _LINK 1_F RAM ER_ EXT
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>> Setup Supermapper Evaluation Board <<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- MultiLABS - Agere Automated Bench System
-- Date : 01/11/2001 - RL
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
--
-- Set the global base address back to 0
a 0
-- Set global address width to 16
z 16
-- ---------------------------------------------------------------------------
7(67
(48,3
;&
53
)5$0(
$/,*1(5
75$160,7
6<67(0
73
)5$0(
)250$77(5
5(&(,9(
6<67(0
)50B73B7 )50B56
)50B76
)50B53B5
)5$0(5
75$160,7
5(&(,9(
'6
)3*$
/,1(5;6<1&
/,1(7;6<1&
;&
FRAMER:
SWITCHING MODE: DS1 MODE.
INTERNAL PLL IS USED.
SYSTEM AI S, DOUBLE NOTFAS.
TX/RX DATA I S IS ENABLED.
TX/RX FRM SYNC IS ACTI VE- HIGH.
TX/RX LINK 1 AUTOAIS, D4 FRAME MODE.
CHI:
8.192 MBITS/S CHI.
CHI CARRIES SI GNALING AND PAYLOAD
INFO RM ATION. OFFSET OF 1/2 BI T ADDED
TO OFFSET.
EXTERNAL I/O PINS LINETXSYNC[1—29]
SET TO OUTPUT TRANSMIT SYSTEM DATA.
'6
/,1(7;'$7$
&+
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 759
27 Application Scripts (continued)
-- >>>>>>>>>>>>>>>>>>>>>>>>>> Setup FPGA Addressing <<<<<<<<<<<<<<<<<< <<<<<<<<
-- ---------------------------------------------------------------------------
-- Write FPGA1
w 50A00000 F8DF
-- 8 MHz CHI
w 50A00004 FFFE
-- Write FPGA2
w 50E00002 EE28
w 50E00004 8081
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- Set global address width to 8
z 8
-- Write CPU FPGA with DS1 clock selects
w 61000007 00
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>> Setup LIU Addre s sing <<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set the global base address for "LIU #1"
a 60000000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Set the global base address for "LIU #2"
a 60200000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
760 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
w B 0
w C 0
w D 0
w E 0
w F 0
-- Set the global base address for "LIU #3"
a 60400000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Setup "LIU #4"
a 60600000
w 2 0
w 3 0
w 4 0
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- ---------------------------------------------------------------------------
-- Set data width to 16 bits
z 16
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>> Setup Supermapper Addressing <<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 1 offset
a 40000000
-- Shift address left 1
%MODADD SL 1
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 761
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- Framer clock select DS1XClk
w 00012 0002
-- COR/COW, saturate or rollover
w 0000F 0003
-- Turn on Pll
w 00013 0000
-- Framer block software reset
w 0000E 0020
w 0000E 0000
-- Enable LineTxData/Clk/Sync for output
-- (16 down to 1)
w 00018 FFFF
-- (28 down to 17)
w 00019 0FFF
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> XC <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- XC receive link 1 from LIU 1 (Ch 1) into Frm_Rp_R (XC_RP_RDATA)
w 50020 FF21
-- Set sync for data
w 5000E 0002
-- XC_SYNC1 from Frm_TS(R) to the pins
w 500E0 60E1
--XC_RS_D (external pin to transmit (RS)) on link 1
w 50070 C021
-- XC_RS_D (receive (RS) to transmit (RS)) on link 1
-- w 50070 00E1
-- XC transmit to LIU 1 (Ch 1) from Frm_TP_T Link 1 (XC_PDATA)
w 50010 1E41
-- XC to LineTxClk15
w 50017 1E41
762 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> FRAMER <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Framer
-- Switching mode, super framer for DS1 mode,
-- internal PLL is used
w 80000 8800
-- Turn on power down
w 80001 FFFF
-- 8.192 MHz CHI, CHI carry payload and signaling information,
-- AIS, double NOTFAS, TX/RX sync active high.
w 80050 29A8
-- Transmit and receive data is enabled (FRM_HWYENA)
w 80051 8000
-- Turn off Rx arbiter link 1
w 802f0 0000
-- FRM_ARLR2, arbiter link register
-- Rx link 1 - bit(6):FRM_AUTO_AIS = enabled, bit(3:0):FRM_MODE[3:0] = D4
w 802F1 004C
-- Start Rx arbiter link 1 operation
w 802F0 A000
-- Turn off Tx arbiter link 1
w 803F0 0000
-- FRM_ARLR2, arbiter link register
-- Tx link 1 - bit(6):FRM_AUTO_AIS = Enabled, bit(3:0):FRM_MODE[3:0] = D4
w 803F1 004C
-- Start Tx arbiter link 1
w 803F0 A000
-- Framer half bit CHI offset
w 803E0 0002
-- Signaling Rx link register
w 80221 0001
-- Signaling Tx Link register
w 80321 0102
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>> Setu p Supermapper 2 Addressing <<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 2 offset
a 40200000
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 763
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>> Setup Supermapper 3 Addressing <<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 3 offset
a 40400000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>> Exit Supermapper Addressing <<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
%MODADD END
-- Set the global base address back to 0
a 0
-- Set the global address width to default
z 0
764 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
27.6.4 D4_SIGNALING_NOSTATE_LINK1_FRAMER_EXT
Note: Signaling Rx link register is set for signal extraction from the Rx line. Signaling Tx link register is set for insertion of signaling data into t he
Tx line, and also Tx signal received from system interface. ‘No State’ signaling Tx/Rx link 1 signaling registers transmit/receive signaling
data in time slots 1—24.
Figure 150. D4_SIGNALING_NOSTATE_LINK1_FRAMER_EXT
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>> Setup Supermapper Evaluation Board <<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- MultiLABS - Agere Automated Bench System
-- Date : 01/11/2001 - RL
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
--
-- Set the global base address back to 0
a 0
-- Set global address width to 16
z 16
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>> Setup FPGA Addressing <<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Write FPGA1
w 50A00000 F8DF
-- 8 MHz CHI
w 50A00004 FFFE
-- Write FPGA2
w 50E00002 EE28
w 50E00004 8081
7(67
(48,3
;&
53
)5$0(
$/,*1(5
75$160,7
6<67(0
73
)5$0(
)250$77(5
5(&(,9(
6<67(0
)50B73B7 )50B56
)50B76
)50B53B5
)5$0(5
75$160,7
5(&(,9(
'6
)3*$
/,1(5;6<1&
/,1(7;6<1&
;&
FRAMER:
SWITCHING MODE: DS1 MODE.
INTERNAL PLL IS USED.
SYSTEM AIS, DOUBLE NOTFAS.
TX/RX DATA IS ENABLED.
TX/RX FRM SYNC IS ACTIVE-HIGH.
TX/RX LINK 1 AUTOAIS, D4 FRAMING MODE.
CHI:
8.19 2 M BITS /S CHI .
CHI CARRIES SIGNALING AND PAYLOAD
INFORMATION. OFFSET OF 1/2 BIT ADDED
TO OFFSET.
EXTERNAL I/O PINS LINETXSYNC[1—29]
SET TO OUTPUT TRANSMIT SYSTEM DATA.
'6
/,1(7;'$7$
&+
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 765
27 Application Scripts (continued)
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- Set global address width to 8
z 8
-- Write CPU FPGA with DS1 clock selects
w 61000007 00
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>> Setup LIU Addre s sing <<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set the global base address for "LIU #1"
a 60000000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Set the global base address for "LIU #2"
a 60200000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Set the global base address for "LIU #3"
a 60400000
-- AMI no code
w 2 0
w 3 0
w 4 00
766 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Setup "LIU #4"
a 60600000
w 2 0
w 3 0
w 4 0
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- ---------------------------------------------------------------------------
-- Set data width to 16 bits
z 16
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>> Setup Supermapper Addressing <<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 1 offset
a 40000000
-- Shift address left 1
%MODADD SL 1
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- Framer clock select DS1XClk
w 00012 0002
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 767
27 Application Scripts (continued)
-- COR/COW, saturate or rollover
w 0000F 0003
-- Turn on Pll
w 00013 0000
-- Framer block software reset
w 0000E 0020
w 0000E 0000
-- Enable LineTxData/Clk/Sync for output
-- (16 down to 1)
w 00018 FFFF
-- (28 down to 17)
w 00019 0FFF
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> XC <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- XC receive link 1 from LIU 1 (Ch 1) into Frm_Rp_R (XC_RP_RDATA)
w 50020 FF21
-- Set sync for data
w 5000E 0002
-- XC_SYNC1 from Frm_TS(R) to the pins
w 500E0 60E1
-- XC_RS_D (external pin to transmit (RS)) on link 1
w 50070 C021
-- XC_RS_D (receive (TS) to transmit (RS)) on link 1
-- w 50070 00E1
-- XC transmit to LIU 1 (Ch 1) from Frm_TP_T Link 1 (XC_PDATA)
w 50010 1E41
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> FRAMER <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Framer
-- Switching mode, super framer for DS1 mode,
-- internal PLL is used
w 80000 8800
-- Turn on Powerdown
w 80001 FFFF
-- 8.192 MHz CHI, CHI carry payload and signaling information,
-- AIS, double NOTFAS, TX/RX sync active high
w 80050 29A8
768 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- Transmit and receive data is enabled (FRM_HWYENA)
w 80051 8000
-- Turn off Rx arbiter link 1
w 802F0 0000
-- FRM_ARLR2, arbiter link register
-- Rx link 1 - bit(6):FRM_AUTO_AIS = enabled, bit(3:0):FRM_MODE[3:0] = D4
w 802F1 004C
-- Start Rx arbiter link 1 operation
w 802F0 A000
-- Turn off Tx arbiter link 1
w 803F0 0000
-- FRM_ARLR2, arbiter link register
-- Tx link 1 - bit(6):FRM_AUTO_AIS = enabled, Bit(3:0):FRM_MODE[3:0] = D4
w 803F1 004C
-- Start Tx arbiter link 1
w 803F0 A000
-- Framer half bit CHI offset
w 803E0 0002
-- Set the state bits on the Rx signaling register
w 80201 0040
w 80202 0040
w 80203 0040
w 80204 0040
w 80205 0040
w 80206 0040
w 80207 0040
w 80208 0040
w 80209 0040
w 8020A 0040
w 8020B 0040
w 8020C 0040
w 8020D 0040
w 8020E 0040
w 8020F 0040
w 80210 0040
w 80211 0040
w 80212 0040
w 80213 0040
w 80214 0040
w 80215 0040
w 80216 0040
w 80217 0040
w 80218 0040
-- Set the state bits on the Tx signaling register
w 80301 0040
w 80302 0040
w 80303 0040
w 80304 0040
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 769
27 Application Scripts (continued)
w 80305 0040
w 80306 0040
w 80307 0040
w 80308 0040
w 80309 0040
w 8030A 0040
w 8030B 0040
w 8030C 0040
w 8030D 0040
w 8030E 0040
w 8030F 0040
w 80310 0040
w 80311 0040
w 80312 0040
w 80313 0040
w 80314 0040
w 80315 0040
w 80316 0040
w 80317 0040
w 80318 0040
-- Signaling Rx link register
w 80221 0001
-- Signaling Tx link register
w 80321 0102
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>> Setup Supermapper 2 Addressing <<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 2 offset
a 40200000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>> Setup Supermapper 3 Addressing <<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 3 offset
a 40400000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
770 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>> Exit Supermapper Addressing <<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
%MODADD END
-- Set the global base address back to 0
a 0
-- Set the global address width to default
z 0
27.6.5 D4_SIGNALING_16STATE_LINK1_FRAMER_TRANSPORT_EXT
Note: Signaling Rx link register is set for signal extraction from the Rx line. Signaling Tx link register is set for insertion of signaling data into t he
Tx line, and also Tx signal received from system interface. Signaling all 16 states (A, B, C, and D).
Figure 151. D4_SIGNALING_16STATE_LINK1_FRAMER_TRANSPORT_EXT
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>> Setup Supermapper Evaluation Board <<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- MultiLABS - Agere Automated Bench System
-- Date : 10/19/2000 - RL
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
--
-- Set the global base address back to 0
a 0
-- Set global address width to 16
z 16
7(67
(48,3
;&
53
)5$0(
$/,*1(5
73
)5$0(
)250$77(5
)50B73B7 )50B73B5
)50B53B7
)50B53B5
)5$0(5
75$160,7
5(&(,9(
'6

'6

)3*$
;&
CHI:
8.192 MBITS/S CHI.
CHI CARRIES SIGNALING AND PAYLOAD
INFORMATION.
&+
&+
53
)5$0(
)250$77(5
73
)5$0(
$/,*1(5
&+
&+
7(67
EQUIPMENT
(LIU #2)
&+
FRAMER:
TRANSPORT MODE: DS1 MODE.
INTERNAL PLL IS USED.
SYSTEM AIS, DOUBLE NOTFAS.
TX/RX DATA IS ENABLED.
TX/RX FRMSYNC IS ACTIVE-HIGH.
TX/RX LINK 1 AUTOAIS.
D4 FRAMING MODE.
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 771
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>> Setup FPGA Addressing <<<<<<<<<<<<<<<<<< <<<<<<<<
-- ---------------------------------------------------------------------------
-- Write FPGA1
w 50A00000 F8DF
-- 8 MHz CHI
-- Write FPGA2
w 50E00002 EE28
w 50E00004 8081
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- Set global address width to 8
z 8
-- Write CPU FPGA with DS1 clock selects
w 61000007 00
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>> Setup LIU Addre s sing <<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set the global base address for "LIU #1"
a 60000000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Set the global base address for "LIU #2"
a 60200000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
772 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
w B 0
w C 0
w D 0
w E 0
w F 0
-- Set the global base address for "LIU #3"
a 60400000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Setup "LIU #4"
a 60600000
w 2 0
w 3 0
w 4 0
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- ---------------------------------------------------------------------------
-- Set data width to 16 bits
z 16
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>> Setup Supermapper Addressing <<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 1 offset
a 40000000
-- Shift address left 1
%MODADD SL 1
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 773
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- Framer clock select DS1XClk
w 00012 0002
-- COR/COW, saturate or rollover
w 0000F 0003
-- Turn on Pll
w 00013 0000
-- Enable LineTxData/Clk/Sync for output
-- (16 down to 1)
w 00018 FFFF
-- (28 down to 17)
w 00019 0FFF
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> XC <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- XC receive link 1 from LIU 1 (Ch 1) into Frm_Rp_R (XC_RP_RDATA)
w 50020 FF21
-- XC transmit link 1 to LIU 2 (Ch 5) from Frm_Rp_T (XC_PDATA)
w 50012 1EC1
-- XC_FTP_SRC[]: framer transmit path data source configuration
-- FRM_TP_R from pin
w 50060 FF21
-- FRM_RP_T to FRM_TP_R
-- w 50060 FFC1
-- XC_PIND_SRC[]: XC_PDATA(1)
-- XC transmit to LIU 1 (Ch 1) from Frm_TP_T Link 1 (XC_PDATA)
w 50010 1E41
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> FRAMER <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- FRM_SFGR1: FRM_SW_TRN-(15) = transport, FRM_DS1_CEPTN-(11) = DS1 mode
-- FRM_PLL_BYPAS-(10) = internal PLL is used
w 80000 0800
-- Turn on power down
w 80001 FFFF
774 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- Set Rx arbiter link 1 off
w 802F0 0000
-- FRM_ARLR2, arbiter link register
-- Rx link 1 - bit(6):FRM_AUTO_AIS = Enabled, bit(3:0):FRM_MODE[3:0] = D4
w 802F1 004C
-- Start Rx arbiter link 1 operation
w 802F0 A000
-- Set Tx Arbiter link 1 off
w 803F0 0000
-- FRM_ARLR2, arbiter link register
-- Tx link 1 - bit(6):FRM_AUTO_AIS = Enabled, bit(3:0):FRM_MODE[3:0] = D4
w 803F1 004C
-- Start Tx arbiter link 1
w 803F0 A000
-- FRM_RSLR33, receive signaling link register
-- (8)-FRM_R_SIGI - signaling insertion-enable the insertion of
-- signaling data into the Tx line,
-- (1:0)-FRM_R_SIGSRC[1:0] - Signaling data source,
-- signaling extracted from the Rx line
w 80221 0101
-- FRM_TSLR32, transmit signaling link register
-- (8)-FRM_ T _SI GI - signa li ng ins ertion
-- (1:0)-FRM_T_SIGSRC[1:0] - signaling data source,
-- signaling extracted from the Rx line
w 80321 0001
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>> Setu p Supermapper 2 Addressing <<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 2 offset
a 40200000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>> Setu p Supermapper 3 Addressing <<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 3 offset
a 40400000
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 775
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>> Exit Supermapper Addressing <<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
%MODADD END
-- Set the global base address back to 0
a 0
-- Set the global address width to default
z 0
27.6.6 D4_SIGNALING_NOSTATE_LINK1_FRAMER_TRANSPORT_Tx-Rx
Note: Data flow: I/O port (DS1-channel 1)=> XC=> FRMR=> (internal loopback in framer)=>XC=>I/O port (DS1- channel 1). D4 framing is used.
Figure 152. D4_SIGNALING_NOSTATE_LINK1_FRAMER_TRANSPORT_Tx-Rx
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>> Setup Supermapper Evaluation Board <<<< <<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- MultiLABS - Agere Automated Bench System
-- Date : 01/11/2001 - RL
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
--
-- Set the global base address back to 0
a 0
;&
'6
)5$0(5
75$160,7
5(&(,9(


FRAMER:
TRANSPORT MODE: DS1 MODE:
INTERNAL PLL IS USE D.
TURN O N ALL BLOCKS.
INTERNAL L OOP BACK.
D4 FRAMING MODE.
LINK 1 IS ENABLED,
NONTRANSPA RE NT MODE,
NORMAL OPERATIONS.
LINK 1 IS ENABLED,
NONTRANSPA RE NT MODE,
NORMAL OPERATIONS.
776 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- Set global address width to 16
z 16
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>> Setup FPGA Addressing <<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Write FPGA1
w 50A00000 F8DF
-- 8 MHz CHI
w 50A00004 FFFE
-- Write FPGA2
w 50E00002 EE28
w 50E00004 8081
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- Set global address width to 8
z 8
-- Write CPU FPGA with DS1 clock selects
w 61000007 00
------------------------------------------------------------------------------
------------------------------------------------------------------------------
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>> Setup LIU Addressing <<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set the global base address for "LIU #1"
a 60000000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Set the global base address for "LIU #2"
a 60200000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 61
w 6 00
w 7 00
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 777
27 Application Scripts (continued)
w 8 00
w 9 00
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Set the global base address for "LIU #3"
a 60400000
-- AMI no code
w 2 0
w 3 0
w 4 00
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- Setup "LIU #4"
a 60600000
w 2 0
w 3 0
w 4 0
w 5 61
w 6 00
w 7 00
w 8 00
w 9 00
w A 0
w B 0
w C 0
w D 0
w E 0
w F 0
-- ---------------------------------------------------------------------------
-- Set data width to 16 bits
z 16
778 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>> Setup Supermapper Addressing <<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 1 offset
a 40000000
-- shift address left 1
%MODADD SL 1
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- Framer clock select DS1XClk
w 00012 0002
-- Cor/cow, saturate or rollover
w 0000F 0003
-- Turn on Pll
w 00013 0000
-- Framer block software reset
w 0000E 0020
w 0000E 0000
-- Enable LineTxData/Clk/Sync for output
-- (16 down to 1)
w 00018 FFFF
-- (28 down to 17)
w 00019 0FFF
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> XC <<<<<<<<<<<<<<< <<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- XC receive link 1 from LIU 1 (Ch 1) into Frm_Tp_R (XC_TP_RDATA)
w 50060 FF21
-- XC_RP_RDATA
w 50020 FF41
-- XC transmit to LIU 1 (Ch 1) from Frm_RP_T Link 1 (XC_PDATA)
w 50010 1EC1
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 779
27 Application Scripts (continued)
- --------------------------------------------------------------------- ------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> FRAMER <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Framer
-- Transport mode, super framer for DS1 mode,
-- internal PLL is used
w 80000 0800
-- Turn on powerdown
w 80001 FFFF
-- Set Rx arbiter link 1 off
w 802F0 0000
-- FRM_ARLR2, arbiter link register
-- Rx link 1 - bit(6):FRM_AUTO_AIS = Enabled, bit(3:0):FRM_MODE[3:0] = D4
w 802F1 004C
-- Start Rx arbiter link 1 operation
w 802F0 A000
-- Set Tx arbiter link 1 off
w 803F0 0000
-- FRM_ARLR2, arbiter link register
-- Tx link 1 - bit(6):FRM_AUTO_AIS = Enabled, bit(3:0):FRM_MODE[3:0] = D4
w 803f1 004C
-- Start Tx arbiter link 1
w 803F0 A000
-- Set the state bits on the Rx signaling register
w 80201 0040
w 80202 0040
w 80203 0040
w 80204 0040
w 80205 0040
w 80206 0040
w 80207 0040
w 80208 0040
w 80209 0040
w 8020A 0040
w 8020B 0040
w 8020C 0040
w 8020D 0040
w 8020E 0040
w 8020F 0040
w 80210 0040
w 80211 0040
w 80212 0040
w 80213 0040
w 80214 0040
w 80215 0040
w 80216 0040
w 80217 0040
w 80218 0040
780 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
27 Application Scripts (continued)
-- Set the state bits on the Tx signaling register
w 80301 0040
w 80302 0040
w 80303 0040
w 80304 0040
w 80305 0040
w 80306 0040
w 80307 0040
w 80308 0040
w 80309 0040
w 8030A 0040
w 8030B 0040
w 8030C 0040
w 8030D 0040
w 8030E 0040
w 8030F 0040
w 80310 0040
w 80311 0040
w 80312 0040
w 80313 0040
w 80314 0040
w 80315 0040
w 80316 0040
w 80317 0040
w 80318 0040
-- FRM_RSLR33, receive signaling link register
-- (8)-FRM_R_SIGI - signaling insertion-enable the insertion of
-- signaling data into the Tx line,
-- (1:0)-FRM_R_SIGSRC[1:0] - signaling data source,
-- signaling extracted from the Rx line
w 80221 0101
-- FRM_TSLR32, transmit signaling link register
-- (8)-FRM_ T _SI GI - signa li ng ins ertion
-- (1:0)-FRM_T_SIGSRC[1:0] - signaling data source,
-- signaling extracted from the Rx line
w 80321 0001
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>> Setu p Supermapper 2 Addressing <<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 2 offset
a 40200000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SDH x28/x21 DS1/E1
Agere Systems Inc. 781
27 Application Scripts (continued)
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>> Setup Supermapper 3 Addressing <<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Set Supermapper 3 offset
a 40400000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>>>>>>>>> SMPR TOP <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
-- Reset Supermapper
w 0000D 0001
w 0000D 0000
-- ---------------------------------------------------------------------------
-- >>>>>>>>>>>>>>>>>>>>>>> Exit Supermapper Addressing <<<<<<<<<<<<<<<<<<<<<<
-- ---------------------------------------------------------------------------
%MODADD END
-- Set the global base address back to 0
a 0
-- Set the global address width to default
z 0
782 Agere Systems Inc.
TMXF28155 Superma pper Data Sheet
155/51 Mbits/s SONET/SDH x28/x21 DS1/E1 June 2002
28 Superframer
The superframer (TFRA28J13) provides a versatile interface for T1/E1/J1 and T3 applications. This device can be
used in full-trail termination of up to 21 E1s, 28 T1s, or 28 J1s.
Each interface consists of a fully integrated, full-featured, primary rate framer with an HDLC formatter for facility
data link access. It also provides alarm reporting and bidirectional performance monitoring. The TFRA28J13 pro-
vides glueless interconnection to analog line interface units.
Figure 153. Superframer Block Diagram
For details on each of the functional blocks in the Superframer, please refer to the following sections:
28.1 Ordering Information
Block Functional Description Register Description
Microprocessor Interface See page 360. See page 64.
M13 MUX/DeMUX See page 46 2. See page 200.
Framer See page 482. See page 242.
Cross Connect (XC) See page 549. See page 326.
Digital Jitter Attenuator (DJA) See page 577. See page 336.
TPG/TPM See page 58 1. See page 342.
Device Code Package Temperature Comcode
TFRA28J133BAL-1 456-pin PBGA –40 °C to +85 °C 109057356
M13
MUX
FRM
x28/x21
DS1/J1/E1
XC
DS1/J1/E1
DS2
DS3
TPG/TPM
x28/x21
DS1/E1
DJA
MPU
Interface and Control
Switching Modes:
PSB - x28/x21 DS1/J1/E1
x672 DS0/E0
CHI - x672 DS0/E0
Transport Modes:
DS1/J1/E1 (X29) - x28/x21 + prot.
DS2 - x7 + pr ot.
NSMI Modes:
DS1/J1/E1 x28/x21
DS3 - x1
STS1 - x1
(x1) DS3
Multifunction System I/O
MPU IF
DS1/E1/DS2
AIS Clks
10
TCB and TDL
RCB and RDL
3
47
148
6
8PLL Interface
System
Interfaces
Data Sheet TMXF28155 Supermapper
June 2002 155/51 Mbits/s SONET/SD H x28/x21 DS1/E1
Agere Systems Inc. 783
Change History
29 Change History
This data sheet (DS02-103BBAC-1) is a revision of data sheet DS02-103BBAC. The contents of this data sheet
has undergo ne one ch ang e.
Red change bars have been installed for all content-specific changes, and the text has been highlighted in red. In
cases where text was deleted, only red change bars have been installed.
Any references to tables, figures, sections, or pages, that have been highlighted in blue, are hyperlinks.
Changes to format, grammar, punctuation, etc. have not been highlighted.
29.1 Navigating Through an Adobe Acrobat ® Document
If the reader displays this document in Acrobat Reader ,® clicking on any blue reference will bring the reader to that
reference point. Clicking on the back arrow (Go to previous View) in the toolbar of the Acrobat Reader, will bring
the reader back to the starting point.
For e xam ple, cl ic king on page 36 below will bring the reader to page 36, which is the first change in this document.
Clicking on the back arrow (in Acrobat Reader) will bring the reader back to this page (page 783).
All changes in this document are listed in the following table.
Table 642. Change History
Change
Page 36
Agere Systems Inc. reserves the right to make changes to the product( s) or information contained herein without notice. No liability is assumed as a result of their use or application.
Copyright © 2002 Agere Systems Inc.
All Rights Reserved
June 2002
DS02-103BBAC-1 (Replaces DS02-103BBAC)
For additional information, contact your Agere Systems Account Manager or the following:
INTERNET: http://www.agere.com
E-MAIL: docmaster@agere.com
N. AME RICA: Agere Systems Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18109-3286
1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 61 0-712- 4106)
ASIA: Agere Systems Hong Kong Ltd., Suites 3201 & 3210-12, 32/F, Tower 2, The Gateway, Harbour City, Kowloon
Tel. (852) 3129-2000, FAX (852) 3129-2020
CHINA: (86) 21-5047-1212 ( Sha nghai), (86) 10-652 2- 5566 (Beijing), (86) 755-25881122 (Shenzhen)
JAPAN: (81) 3-5421-1600 (To kyo), KOREA: (82) 2-767-1850 (Seoul), SINGAPORE: (65) 6778-8833, TAIWAN: (886) 2-2725-5858 (Taipei)
EUROPE: Tel. (44) 7000 624624 , FAX (44) 1344 488 045
Bellcore is now Telcordia Technologies, Inc.
Telcordia and Telcordia Technologies are trademarks of Telcordia Technologies, Inc.
ANSI is a registered trademark of American National Standards Institute, Inc.
IEEE is a registered trademark of The Institute of Electrical and Electronics Engineers, Inc.
AT&T is a registered trademark of AT&T in the USA and other countries.
SLC is a registered trademark of Lucent Technologies Inc.
Adobe Acrobat and Acrobat Reader are registered trademarks of Adobe Systems Incorporated.