- 7 -
datasheet DDR4 SDRAM
Rev. 1.4
K4A4G165WE
4. Input/Output Functional Description
[ Table 3 ] Input/Output function description
Symbol Type Function
CK_t, CK_c Input Clock: CK_t and CK_c are differential clock inputs. All address and control input signals are sampled on
the crossing of the positive edge of CK_t and negative edge of CK_c.
CKE, (CKE1) Input
Clock Enable: CKE HIGH activates, and CKE Low deactivates, internal clock signals and device input
buffers and output drivers. Taking CKE Low provides Precharge Power-Down and Self-Refresh operation
(all banks idle), or Active Power-Down (row Active in any bank). CKE is synchronous for Self-Refresh exit.
After VREFCA and Internal DQ Vref have become stable during the power on and initialization sequence,
they must be maintained during all operations (including Self-Refresh). CKE must be maintained high
throughout read and write accesses. Input buffers, excluding CK_t,CK_cSGODT and CKE are disabled
during power-down. Input buffers, excluding CKE, are disabled during Self-Refresh.
CS_n, (CS1_n) Input Chip Select: All commands are masked when CS_n is registered HIGH. CS_n provides for external Rank
selection on systems with multiple Ranks. CS_n is considered part of the command code.
C0,C1,C2 Input Chip ID : Chip ID is only used for 3DS for 2,4,8high stack via TSV to select each slice of stacked
component. Chip ID is considered part of the command code
ODT, (ODT1) Input
On Die Termination: ODT (registered HIGH) enables RTT_NOM termination resistance internal to the
DDR4 SDRAM. When enabled, ODT is only applied to each DQ, DQS_t, DQS_c and DM_n/DBI_n/
TDQS_t, NU/TDQS_c (When TDQS is enabled via Mode Register A11=1 in MR1) signal for x8
conurations. For x16 conuration ODT is applied to each DQ, DQSU_t, DQSU_c, DQSL_t, DQSL_c,
DMU_n, and DML_n signal. The ODT pin will be ignored if MR1 is programmed to disable RTT_NOM.
ACT_n Input Activation Command Input : ACT_n defines the Activation command being entered along with CS_n. The
input into RAS_n/A16, CAS_n/A15 and WE_n/A14 will be considered as Row Address A16, A15 and A14
RAS_n/A16. CAS_n/
A15. WE_n/A14 Input
Command Inputs: RAS_n/A16, CAS_n/A15 and WE_n/A14 (along with CS_n) define the command being
entered. Those pins have multi function. ForG example, for activation with ACT_n Low, those are
Addressing like A16,A15 and A14 but for non-activation command with ACT_n High, those are Command
pins for Read, Write and other command defined in command truth table
DM_n/DBI_n/TDQS_t,
(DMU_n/DBIU_n),
(DML_n/DBIL_n)
Input/Output
Input Data Mask and Data Bus Inversion: DM_n is an input mask signal for write data. Input data is
masked when DM_n is sampled LOW coincident with that input data during a Write access. DM_n is
sampled on both edges of DQS. DM is muxed with DBI function by Mode Register A10,A11,A12 setting in
MR5. For x8 device, the function of DM or TDQS is enabled by Mode Register A11 setting in MR1. DBI_n
is an input/output identifing whether to store/output the true or inverted data. If DBI_n is LOW, the data will
be stored/output after inversion inside the DDR4 SDRAM and not inverted if DBI_n is HIGH. TDQS is only
supported in X8
BG0 - BG1 Input
Bank Group Inputs : BG0 - BG1 define to which bank group an Active, Read, Write or Precharge command
is being applied. BG0 also determines which mode register is to be accessed during a MRS cycle. X4/8
have BG0 and BG1 but X16 has only BG0
BA0 - BA1 Input Bank Address Inputs: BA0 - BA1 define to which bank an Active, Read, Write or Precharge command is
being applied. Bank address also determines which mode register is to be accessed during a MRS cycle.
A0 - A17 Input
Address Inputs: Provide the row address for ACTIVATE Commands and the column address for Read/
Write commands to select one location out of the memory array in the respective bank. (A10/AP, A12/
BC_n, RAS_n/A16, CAS_n/A15 and WE_n/A14 have additional functions, see other rows.The address
inputs also provide the op-code during Mode Register Set commands.A17 is only defined for the x4
conuration.
A10 / AP Input
Auto-precharge: A10 is sampled during Read/Write commands to determine whether Autoprecharge
should be performed to the accessed bank after the Read/Write operation. (HIGH: Autoprecharge; LOW:
no Autoprecharge).A10 is sampled during a Precharge command to determine whether the Precharge
applies to one bank (A10 LOW) or all banks (A10 HIGH). If only one bank is to be precharged, the bank is
selected by bank addresses.
A12 / BC_n Input Burst Chop: A12 / BC_n is sampled during Read and Write commands to determine if burst chop (on-the-
fly) will be performed. (HIGH, no burst chop; LOW: burst chopped). See command truth table for details.
RESET_n Input
Active Low Asynchronous Reset: Reset is active when RESET_n is LOW, and inactive when RESET_n is
HIGH. RESET_n must be HIGH during normal operation. RESET_n is a CMOS rail to rail signal with DC
high and low at 80% and 20% of VDD,
DQ Input / Output
Data Input/ Output: Bi-directional data bus. If CRC is enabled via Mode register then CRC code is added at
the end of Data Burst. Any DQ from DQ0~DQ3 may indicate the internal Vref level during test via Mode
Register Setting MR4 A4=High. During this mode, RTT value should be set to Hi-Z. Refer to vendor
specific datasheets to determine which DQ is used.
DQS_t, DQS_c,
DQSU_t, DQSU_c,
DQSL_t, DQSL_c
Input / Output
Data Strobe: output with read data, input with write data. Edge-aligned with read data, centered in write
data. For the x16, DQSL corresponds to the data on DQL0-DQL7; DQSU corresponds to the data on
DQU0-DQU7. The data strobe DQS_t, DQSL_t and DQSU_t are paired with differential signals DQS_c,
DQSL_c, and DQSU_c, respectively, to provide differential pair signaling to the system during reads and
writes. DDR4 SDRAM supports differential data strobe only and does not support single-ended.