SiI9334 HDMI Deep Color Transmitter with
Ethernet and Audio Return Channel Support
Data Sheet
SiI-DS-1064-B
May 2017
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
2 SiI-DS-1064-B
Contents
1. General Description ...................................................................................................................................................... 6
1.1. Features ................................................................................................................................................................ 6
1.2. Video Input ........................................................................................................................................................... 6
1.3. Audio Input ........................................................................................................................................................... 6
1.4. HDMI Output ........................................................................................................................................................ 6
1.5. Control Capability ................................................................................................................................................. 6
1.6. Packaging .............................................................................................................................................................. 6
2. Product Family .............................................................................................................................................................. 7
3. Functional Description .................................................................................................................................................. 8
3.1. Video Data Input and Conversion ......................................................................................................................... 8
3.1.1. Input Clock Multiplier/Divider ...................................................................................................................... 9
3.1.2. Video Data Capture ....................................................................................................................................... 9
3.1.3. Embedded Sync Decoder .............................................................................................................................. 9
3.1.4. Data Enable Generator ................................................................................................................................. 9
3.1.5. Combiner ...................................................................................................................................................... 9
3.1.6. 4:2:2 to 4:4:4 Upsampler .............................................................................................................................. 9
3.1.7. RGB Range Expansion ................................................................................................................................... 9
3.1.8. Color Space Converter ................................................................................................................................ 10
3.1.9. RGB/YCbCr Range Compression ................................................................................................................. 10
3.1.10. 4:4:4 to 4:2:2 Downsampler ....................................................................................................................... 10
3.1.11. Clipping ....................................................................................................................................................... 10
3.1.12. 18-to-8/10/12/16-Dither ............................................................................................................................ 10
3.2. Audio Data Capture............................................................................................................................................. 10
3.3. Framer ................................................................................................................................................................. 10
3.4. HDCP Encryption Engine/XOR Mask ................................................................................................................... 10
3.5. HDCP Key ROM ................................................................................................................................................... 11
3.6. TMDS Transmitter ............................................................................................................................................... 11
3.7. HDMI Ethernet and Audio-return Channel (HEAC) ............................................................................................. 11
3.8. GPIO .................................................................................................................................................................... 11
3.9. Hot Plug Detector ............................................................................................................................................... 11
3.10. CEC Interface ................................................................................................................................................... 11
3.11. DDC Master I2C Interface ................................................................................................................................ 11
3.12. Receiver Sense and Interrupt Logic ................................................................................................................ 12
3.13. Configuration Logic and Registers .................................................................................................................. 12
3.14. I2C Slave Interface ........................................................................................................................................... 12
4. Electrical Specifications .............................................................................................................................................. 13
4.1. Absolute Maximum Conditions .......................................................................................................................... 13
4.2. Normal Operating Conditions ............................................................................................................................. 13
4.2.1. I/O Specifications ........................................................................................................................................ 14
4.2.2. DC Power Supply Specifications .................................................................................................................. 15
4.3. AC Specifications ................................................................................................................................................. 16
4.3.1. Video/HDMI Timing Specifications ............................................................................................................. 16
4.3.2. Audio AC Timing Specifications ................................................................................................................... 16
4.3.3. Video AC Timing Specifications ................................................................................................................... 17
4.3.4. Control Signal Timing Specifications ........................................................................................................... 18
4.3.5. CEC Timing Specifications ........................................................................................................................... 18
4.4. Timing Diagrams ................................................................................................................................................. 19
4.4.1. Input Timing Diagrams ................................................................................................................................ 19
4.4.2. Reset Timing Diagrams ............................................................................................................................... 20
4.4.3. TMDS Timing Diagram ................................................................................................................................ 20
4.4.4. Audio Timing Diagrams ............................................................................................................................... 21
4.4.5. I2C timing Diagrams ..................................................................................................................................... 21
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1064-B 3
5. Pin Diagram and Descriptions ..................................................................................................................................... 22
5.1. Pin Descriptions .................................................................................................................................................. 23
5.1.1. Video Data Input ......................................................................................................................................... 23
5.1.2. HEAC, S/PDIF Output, and Ethernet ........................................................................................................... 24
5.1.3. TMDS Output .............................................................................................................................................. 24
5.1.4. Audio Input ................................................................................................................................................. 24
5.1.5. DDC, CEC, Configuration, and Control ........................................................................................................ 25
5.1.6. Power and Ground ...................................................................................................................................... 25
5.1.7. Not Connected and Reserved ..................................................................................................................... 25
6. Feature Information ................................................................................................................................................... 26
6.1. RGB to YCbCr Color Space Converter.................................................................................................................. 26
6.2. YCbCr to RGB Color Space Converter.................................................................................................................. 26
6.3. Deep Color Support ............................................................................................................................................ 27
6.4. I2C Register Information ..................................................................................................................................... 27
6.5. I2S Audio Input .................................................................................................................................................... 27
6.6. Direct Stream Digital Input ................................................................................................................................. 27
6.7. S/PDIF Input ........................................................................................................................................................ 27
6.8. I2S and S/PDIF Supported MCLK Frequencies ..................................................................................................... 28
6.9. Audio Downsampler Limitations ......................................................................................................................... 28
6.10. High-Bit Rate Audio on HDMI ......................................................................................................................... 29
6.11. Power Domains ............................................................................................................................................... 30
6.12. Internal DDC Master ....................................................................................................................................... 30
6.13. 3D Video Formats ........................................................................................................................................... 31
6.14. Source Termination ........................................................................................................................................ 31
6.15. HDMI Ethernet Channel .................................................................................................................................. 31
6.16. Audio Return Channel ..................................................................................................................................... 32
6.17. Control Signal Connections ............................................................................................................................. 33
6.18. Input Data Bus Mapping ................................................................................................................................. 34
6.18.1. Common Video Input Formats .................................................................................................................... 34
6.18.2. RGB, YCbCr 4:4:4, and xvYCC with Separate Sync ....................................................................................... 35
6.18.3. YC 4:2:2 Separate Sync Formats ................................................................................................................. 37
6.18.4. YC 4:2:2 Embedded Syncs Formats ............................................................................................................. 39
6.18.5. YC Mux 4:2:2 Separate Sync Formats ......................................................................................................... 41
6.18.6. YC Mux 4:2:2 Embedded Sync Formats ...................................................................................................... 43
6.18.7. RGB and YCbCr 4:4:4 Dual Edge Mode Formats ......................................................................................... 45
7. Design Recommendations .......................................................................................................................................... 48
7.1. Power Supply Decoupling ................................................................................................................................... 48
7.2. Power Supply Sequencing ................................................................................................................................... 48
7.3. ESD Recommendations ....................................................................................................................................... 48
7.4. High-Speed TMDS Signals ................................................................................................................................... 49
7.4.1. Layout Guidelines ....................................................................................................................................... 49
7.4.2. TMDS Output Recommendation ................................................................................................................ 49
7.4.3. EMI Considerations ..................................................................................................................................... 49
8. Packaging .................................................................................................................................................................... 50
8.1. ePad Requirements............................................................................................................................................. 50
8.2. PCB Layout Guidelines ........................................................................................................................................ 50
8.3. Package Dimensions ........................................................................................................................................... 51
8.4. Marking Specification ......................................................................................................................................... 52
8.5. Ordering Information .......................................................................................................................................... 52
References .......................................................................................................................................................................... 53
Standards Documents..................................................................................................................................................... 53
Lattice Semiconductor Documents ................................................................................................................................. 53
Technical Support ........................................................................................................................................................... 53
Revision History .................................................................................................................................................................. 54
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
4 SiI-DS-1064-B
Figures
Figure 1.1. Example of System Architecture ......................................................................................................................... 6
Figure 3.1. Functional Block Diagram ................................................................................................................................... 8
Figure 3.2. Transmitter Video Data Processing Path ............................................................................................................ 8
Figure 4.1. Test Point VCCTP for VCC Noise Tolerance Spec .............................................................................................. 13
Figure 4.2. IDCK Clock Duty Cycle ....................................................................................................................................... 19
Figure 4.3. Control and Data Single-Edge Setup and Hold TimesEDGE = 1 ..................................................................... 19
Figure 4.4. Control and Data Single-Edge Setup and Hold TimesEDGE = 0 ..................................................................... 19
Figure 4.5. Control and Data Dual-Edge Setup and Hold Times ......................................................................................... 19
Figure 4.6. VSYNC and HSYNC Delay Times Based On DE ................................................................................................... 20
Figure 4.7. DE HIGH and LOW Times .................................................................................................................................. 20
Figure 4.8. Conditions for Use of RESET# ............................................................................................................................ 20
Figure 4.9. RESET# Minimum Timings................................................................................................................................. 20
Figure 4.10. Differential Transition Times .......................................................................................................................... 20
Figure 4.11. I2S Input Timings ............................................................................................................................................. 21
Figure 4.12. S/PDIF Input Timings ....................................................................................................................................... 21
Figure 4.13. MCLK Timings .................................................................................................................................................. 21
Figure 4.14. DSD Input Timings ........................................................................................................................................... 21
Figure 4.15. I2C Data Valid Delay (Driving Read Cycle Data ................................................................................................ 21
Figure 5.1. Pin Diagram (Top View) .................................................................................................................................... 22
Figure 6.1. High Speed Data Transmission .......................................................................................................................... 29
Figure 6.2. High Bitrate Stream Before and after Reassembly and Splitting ...................................................................... 29
Figure 6.3. High Bit Rate Stream After Splitting .................................................................................................................. 29
Figure 6.4. Simplified Host I2C Interface Using Master DDC Port ....................................................................................... 30
Figure 6.5. Master I2C Supported Transactions .................................................................................................................. 30
Figure 6.6. HEAC Interface .................................................................................................................................................. 32
Figure 6.7. HDMI with HEAC Example Application ............................................................................................................. 33
Figure 6.8. Controller Connections Schematic .................................................................................................................... 33
Figure 6.9. 8-Bit Color Depth RGB/YCbCr/xvYCC 4:4:4 Timing ........................................................................................... 36
Figure 6.10. 10-Bit Color Depth RGB/YCbCr/xvYCC 4:4:4 Timing ....................................................................................... 36
Figure 6.11. 12-Bit Color Depth RGB/YCbCr/xvYCC 4:4:4 Timing ....................................................................................... 36
Figure 6.12. 8-Bit Color Depth YC 4:2:2 Timing .................................................................................................................. 38
Figure 6.13. 10-Bit Color Depth YC 4:2:2 Timing................................................................................................................. 38
Figure 6.14. 12-Bit Color Depth YC 4:2:2 Timing................................................................................................................. 38
Figure 6.15. 8-Bit Color Depth YC 4:2:2 Embedded Sync Timing ........................................................................................ 40
Figure 6.16. 10-Bit Color Depth YC 4:2:2 Embedded Sync Timing ...................................................................................... 40
Figure 6.17. 12-Bit Color Depth YC 4:2:2 Embedded Sync Timing ...................................................................................... 40
Figure 6.18. 8-Bit Color Depth YC Mux 4:2:2 Timing .......................................................................................................... 41
Figure 6.19. 10-Bit Color Depth YC Mux 4:2:2 Timing ........................................................................................................ 42
Figure 6.20. 12-Bit Color Depth YC Mux 4:2:2 Timing ........................................................................................................ 42
Figure 6.21. 8-Bit Color Depth YC Mux 4:2:2 Embedded Sync Timing ................................................................................ 43
Figure 6.22. 10-Bit Color Depth YC Mux 4:2:2 Embedded Sync Timing .............................................................................. 44
Figure 6.23. 12-Bit Color Depth YC Mux 4:2:2 Embedded Sync Timing .............................................................................. 44
Figure 6.24. 8-Bit Color Depth 4:4:4 Dual Edge Timing ...................................................................................................... 46
Figure 6.25. 10-Bit Color Depth 4:4:4 Dual Edge Timing .................................................................................................... 46
Figure 6.26. 12-Bit Color Depth 4:4:4 Dual Edge Timing .................................................................................................... 46
Figure 6.27. 16-Bit Color Depth 4:4:4 Dual Edge Timing .................................................................................................... 47
Figure 7.1. Decoupling and Bypass Schematic .................................................................................................................... 48
Figure 7.2. Decoupling and Bypass Capacitor Placement ................................................................................................... 48
Figure 8.1. 100-Pin TQFP Package Diagram ........................................................................................................................ 51
Figure 8.2. Marking Diagram .............................................................................................................................................. 52
Figure 8.3. Alternate Topside Marking ............................................................................................................................... 52
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1064-B 5
Tables
Table 2.1. Summary of New Features ................................................................................................................................... 7
Table 4.1. Absolute Maximum Conditions .......................................................................................................................... 13
Table 4.2. Normal Operating Conditions ............................................................................................................................ 13
Table 4.3. DC Digital I/O Specifications............................................................................................................................... 14
Table 4.4. TMDS I/O Specifications ..................................................................................................................................... 14
Table 4.5. DC Specifications, Power On Current (D0) ......................................................................................................... 15
Table 4.6. DC Specifications, Standby Current (D2) ............................................................................................................ 15
Table 4.7. DC Specifications, Power Off Current (D3) ......................................................................................................... 15
Table 4.8. Video Input AC Specifications ............................................................................................................................ 16
Table 4.9. TMDS AC Output Specifications ......................................................................................................................... 16
Table 4.10. S/PDIF Input Port Timings ................................................................................................................................ 16
Table 4.11. I2S Input Port Timings ....................................................................................................................................... 16
Table 4.12. DSD Input Port Timings .................................................................................................................................... 17
Table 4.13. Video AC Timing Specifications ........................................................................................................................ 17
Table 4.14. Control Signal Timing Specifications ................................................................................................................ 18
Table 6.1. RGB to YCbCr Conversion Formulas ................................................................................................................... 26
Table 6.2. YCbCr-to-RGB Conversion Formula .................................................................................................................... 26
Table 6.3. Control of the Default I2C Addresses with the CI2CA Pin ................................................................................... 27
Table 6.4. Supported MCLK Frequencies ............................................................................................................................ 28
Table 6.5. Channel Status Bits Used for Word Length ........................................................................................................ 28
Table 6.6. Supported 3D Video Formats ............................................................................................................................. 31
Table 6.7. Video Input Formats .......................................................................................................................................... 34
Table 6.8. RGB/YCbCr 4:4:4/xvYCC Separate Sync Data Mapping ...................................................................................... 35
Table 6.9. YC 4:2:2 Separate Sync Data Mapping ............................................................................................................... 37
Table 6.10. YC 4:2:2 Embedded Sync Data Mapping .......................................................................................................... 39
Table 6.11. YC Mux 4:2:2 Separate Sync Data Mapping ..................................................................................................... 41
Table 6.12. YC Mux 4:2:2 Embedded Sync Data Mapping .................................................................................................. 43
Table 6.13. RGB/YCbCr 4:4:4 Separate Sync Dual-Edge Data Mapping .............................................................................. 45
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
6 SiI-DS-1064-B
1. General Description
The Lattice Semiconductor SiI9334 transmitter is an
HDMI® Deep Color transmitter with HDMI Ethernet
and Audio-return Channel (HEAC) and 3D support for
consumer electronics products such as set-top boxes,
Blu-ray players and recorders, A/V Receivers, DVD
players and recorders, personal video recorders, home
theater-in-a-box systems, and home theater PCs.
The SiI9334 transmitter, with the latest generation
225 MHz TMDS™ core, enables home theater devices
to deliver up to 16-bit Deep Color at 1080p/30
resolutions and up to 12-bit Deep Color at 1080p/60
resolutions. On the audio side, High-Bit-Rate (HBR)
audio formats (such as Dolby® TrueHD and DTS-HD)
are supported for an enhanced digital audio
experience.
1.1. Features
Supports enhanced features added in the HDMI
1.4 Specification
HDMI Ethernet Channel (HEC) allows transmission
of 100 Mbps Ethernet signals over an HDMI with
Ethernet cable that allows home theater devices
to be connected to the home network for sharing
and accessing content
Audio Return Channel (ARC) provides an S/PDIF
uplink from an HDMI sink device to an HDMI
source device (for example, from a DTV to an AVR)
in the direction opposite that of TMDS data flow
over an HDMI cable
1.2. Video Input
Support of most common standard and non-
standard video input formats
Support of most common 3D formats
Supports video resolutions up to 12-bit 1080p
(60 Hz), 12-bit 720p/1080i (120 Hz), and 16-bit
1080p (30 Hz)
1.3. Audio Input
S/PDIF input supports PCM and compressed audio
formats (Dolby Digital, DTS, AC-3)
DSD input supports Super Audio CD applications
I²S input supports PCM, DVD-Audio input (up to 8-
channel 192 kHz)
High Bit Rate audio support (for example, DTS HD
and Dolby True HD)
1.4. HDMI Output
DVI 1.0, HDCP 1.4, and HDMI transmitter with
xvYCC extended color gamut, Deep Color up to 16-
bit color, 3D, and HBR audio support
225 MHz HDMI transmitter
Supports all mandatory and some optional 3D
modes
Pre-programmed HDCP key set simplifies the
manufacturing process, lowers cost, and provides
the highest level of HDCP key security.
Dynamic cable equalization automatically
equalizes the TMDS output signal
1.5. Control Capability
Consumer Electronics Control (CEC) interface that
incorporates an HDMI-compliant CEC I/O and the
Lattice Semiconductor CEC Programming Interface
(CPI) reduces the need for system-level control by
the system microcontroller and simplifies
firmware overhead.
Four General Purpose I/O (GPIO) pins
Three power modes defined by the Advanced
Configuration and Power Interface specification
allows the power consumption of the device with
respect to system needs to be dynamically
adjusted.
1.6. Packaging
100-pin, 14 mm x 14 mm, 0.5 mm pitch TQFP
package with enhanced ePad
Figure 1.1. Example of System Architecture
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1064-B 7
2. Product Family
Table 2.1 summarizes the differences among the SiI9134, SiI9136, and SiI9334 HDMI transmitters.
Table 2.1. Summary of New Features
Transmitter
SiI9134
SiI9136
SiI9334
Video Input
Digital Video Input Ports
1
1
1
I/O Voltage
3.3 V
3.3 V
3.3 V
Core Voltage
1.8 V
1.2 V
1.2 V
Input Pixel Clock Multiply/Divide
0.5x, 2x, 4x
0.5x, 2x, 4x
0.5x, 2x, 4x
Maximum Pixel Input Clock Rate
165 MHz
165 MHz
165 MHz
Maximum TMDS Output Clock
225 MHz
225 MHz
225 MHz
BTA-T1004 Format Support
Yes
Yes
Yes
Video Format Conversion
36-bit and 30-bit Deep Color
Yes
Yes
Yes
48-bit Deep Color
No
Yes
Yes
RGB xvYCC CSC
No
Yes
Yes
YCbCr RGB CSC
Yes
Yes
Yes
RGB YCbCr CSC
Yes
Yes
Yes
4:2:2 4:4:4 Upsampling
Yes
Yes
Yes
4:4:4 4:2:2 Decimation
Yes
Yes
Yes
16-235 0-255 Expansion
Yes
Yes
Yes
0-255 16-235 Compression
Yes
Yes
Yes
16-235/240 Clipping
Yes
Yes
Yes
Audio Input
S/PDIF Input Ports
1
1
1
I2S Input Bits
4 (8-channel)
4 (8-channel)
4 (8-channel)
Internal MCLK Generator
No
Yes2
Yes2
High Bit Rate Audio Support
Compressed DTS-HD and Dolby True-HD
Yes
Yes
Yes
One-bit Audio (DSD/SACD)
Yes
Yes1
Yes1
2-Channel Maximum Sample Rate
192 kHz on I2S
192 kHz on S/PDIF
192 kHz on I2S
192 kHz on S/PDIF
192 kHz on I2S
192 kHz on S/PDIF
8-Channel Maximum Sample Rate
192 kHz
192 kHz
192 kHz
Down Sampling
96 kHz to 48 kHz
192 kHz to 48 kHz
96 kHz to 48 kHz
192 kHz to 48 kHz
96 kHz to 48 kHz
192 kHz to 48 kHz
I2C Address Bus
Device Address Select
CI2CA Pin
CI2CA Pin
CI2CA Pin
Master DDC Bus
Yes
Yes
Yes
Other
CEC Interface
No
Yes
Yes
xvYCC Gamut Data
Yes
Yes
Yes
3D Support
Yes
Yes
Yes
Programming Interface
No
Yes
Yes
HDCP Reset
Software Register
Software Register
Software Register
Audio Return Channel
No
No
Yes
HDMI Ethernet Channel
No
No
Yes
Package
100-pin TQFP
100-pin TQFP
100-pin TQFP
Notes:
1. Shared with I2S Input Interface.
2. Internal MCLK generation is ON by default
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
8 SiI-DS-1064-B
3. Functional Description
Figure 3.1 shows the functional diagram of the SiI9334 transmitter. A description of each of the blocks shown in the
diagram follows the figure. The power domains are described in the Power Domains section on page 30.
Video Data Input
and Conversion
TMDS
Transmitter
Audio Data
Capture
HDCP
Encryption
Engine/
XOR Mask
Framer
TXC±
Configuration Logic
and Registers
Receiver Sense
and Interrupt Logic
I2C Slave
Interface
CSDA
CSCL
CI2CA
RESET#
DDC Master
I2C Interface DSDA
DSCL
Hot Plug
Detect INT
CEC
Interface CEC
Hot-Plug
Detector HPD
EXT_SWING
HSYNC
VSYNC
DE
IDCK
D[35:0]
SCK
WS
SD[3:0]
SPDIF_IN
MCLK
DL[3],DR[3]
GPIO GPIO[3:0]
HEAC
ETHRX±
SPDIF_OUT
HEAC±
ETHTX±
TX0±
TX1±
TX2±
HDCP Key
ROM
Figure 3.1. Functional Block Diagram
3.1. Video Data Input and Conversion
Figure 3.2 shows the video data processing stages through the transmitter. Each of the processing blocks can be
bypassed by setting the appropriate register bits. The HSYNC and VSYNC input signals are required, except in
embedded sync modes. The DE input signal is optional, because it can be created with the DE generator using the
HSYNC and VSYNC signals.
Figure 3.2. Transmitter Video Data Processing Path
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1064-B 9
3.1.1. Input Clock Multiplier/Divider
The input pixel clock can be multiplied by 0.5, 2 or 4. Video input formats which use a 2x clock (such as YC Mux mode)
can then be transmitted across the HDMI link with a 1x clock. Similarly, 1x-to-2x, 1x to-4x, and 2x-to-4x conversions are
possible.
3.1.2. Video Data Capture
The bus configurations support most standardized video input formats as well as other widely used non-standard
formats. Each configuration has four key attributes: data width, input mode, clock mode, and synchronization
attributes.
The video input port is a 36-bit wide bus that can be configured to any of the following data widths:
8-, 10- or 12-bit input in double-speed clock mode
12-, 15-, 18- or 24-bit input in dual-edge clock mode
16-, 20-, 24-, 30-, or 36-input in single-speed clock mode
The input mode includes color format (RGB, YCbCr, or xvYCC) and color sampling (4:4:4 or 4:2:2).
Clock mode refers to the input clock rate relative to the pixel clock rate. This device supports 1x mode, 2x mode, or
dual-edge mode. 1x mode and 2x mode means the input clock operates at one or two times the pixel clock rate. Dual-
edge mode means that the input clock rate equals the pixel clock rate, but a sample is captured on both the rising edge
and the falling edge of the input clock. Thus, with the Video Input configured for 24 bits with a dual-edge-clock, 48 bits
of video data are received per clock cycle. The 24 MSBs of the video data are latched on the first clock edge, and the 24
LSBs are latched on the next clock edge. The first clock edge is programmable and can be either the rising or the falling
edge.
Synchronization attributes refer to how the horizontal and vertical sync signals are configured. Separate
synchronization involves placing the horizontal sync, vertical sync, and data enable signals on separate input pins.
Embedded synchronization combines these signals with one or more of the data inputs.
3.1.3. Embedded Sync Decoder
The transmitter can create DE, HSYNC, and VSYNC signals using the start of active video (SAV) and end of active video
(EAV) codes within the ITU-R BT.656-format video stream.
3.1.4. Data Enable Generator
The transmitter includes logic to construct a Data Enable (DE) signal from the incoming HSYNC, VSYNC, and IDCK. This
signal is used to correct timing from sync extraction to conform to CEA-861D timing specifications. By programming
registers, the DE signal can define the size of the active display region. This feature is particularly useful when the
transmitter connects to MPEG decoders that do not provide a specific DE output signal.
3.1.5. Combiner
The clock, data, and sync information is combined into a complete set of signals required for TMDS encoding. From
here, the signals are manipulated by the register-selected video processing blocks.
3.1.6. 4:2:2 to 4:4:4 Upsampler
Chrominance upsampling and downsampling increase or decrease the number of chrominance samples in each line of
video. Upsampling doubles the number of chrominance samples in each line, converting 4:2:2 sampled video to 4:4:4
sampled video.
3.1.7. RGB Range Expansion
The SiI9334 transmitter can scale the input color range from limited-range into full-range using the range expansion
block. When enabled by itself, the range expansion block expands 16235 (64943 to 2563775, 4096-60415 for
30/36/48-bit color depth) limited-range data into 0255 (01023, 04095 to 0-65535 for 30/36/48-bit color depth) full-
range data for each video channel. When range expansion and the YCbCr to RGB color space converter are both
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
10 SiI-DS-1064-B
enabled, the input conversion range for the Cb and Cr channels is 16240 (64963, 2563855 to 4096-61695 for
30/36/48-bit color depth).
3.1.8. Color Space Converter
Two color space converters (CSCs) (YCbCr to RGB and RGB to YCbCr) are available to interface to the many video
formats supplied by AV processors and to provide full DVI 1.0 backward compatibility. The CSC can be adjusted to
perform standard-definition conversions (ITU.601) or high-definition conversions (ITU.709) by setting the appropriate
registers.
3.1.9. RGB/YCbCr Range Compression
When enabled by itself, the range compression block compresses 0255/01023/04095/065535 full-range data into
16235/64943/2563775/409660415 limited-range data for each video channel. When enabled with the RGB to
YCbCr converter, this block compresses to 16240/64963/2563855/409661695 for the Cb and Cr channels. The
color range scaling is linear.
3.1.10. 4:4:4 to 4:2:2 Downsampler
Downsampling reduces the number of chrominance samples in each line by half, converting 4:4:4 sampled video to
4:2:2 video.
3.1.11. Clipping
The clipping block, when enabled, clips the values of the output video to 16235 for RGB video or the Y channel, and to
16240 for the Cb and Cr channels.
3.1.12. 18-to-8/10/12/16-Dither
The 18-to-8/10/12/16-dither block dithers internally processed, 18-bit data to 8, 10, 12, or 16 bits for output on the
HDMI link. It can be bypassed to output 10/12-bit modes when supplied by the AV processor or converted in the
decimator and CSC.
3.2. Audio Data Capture
The audio capture block supports I2S, Direct Stream Digital, and S/PDIF audio input formats. The appropriate registers
must be configured to describe the audio format provided to the SiI9334 transmitter. This information is passed over
the HDMI link in the CEA-861D Audio Info (AI) packets.
3.3. Framer
The framer block handles the packetizing and framing of the data stream sent across the HDMI link. Audio and video
data packets are inserted into the respective HDMI Video Data and Data Island periods. This block handles the correct
insertion of all HDMI packet types.
3.4. HDCP Encryption Engine/XOR Mask
The HDCP encryption engine contains the logic necessary to encrypt the incoming audio and video data and includes
support for HDCP authentication and repeater checks. The system microcontroller or microprocessor controls the
encryption process by using a set sequence of register reads and writes. An algorithm uses HDCP keys and a Key
Selection Vector (KSV) stored in the HDCP key ROM to calculate a number that is then applied to an XOR mask. This
process encrypts the audio and video data on a pixel-by-pixel basis during each clock cycle.
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1064-B 11
3.5. HDCP Key ROM
The SiI9334 transmitter comes pre-programmed with a set of production HDCP keys stored in an internal ROM. System
manufacturers do not need to purchase key sets from the Digital-Content Protection LLC. Lattice Semiconductor
handles all purchasing, programming, and security for the HDCP keys. The pre-programmed HDCP keys provide the
highest level of security because there is no way to read the keys once the device is programmed. Customers must sign
the HDCP license agreement (www.digital-cp.com) or be under a specific NDA with Lattice Semiconductor before
receiving SiI9334 samples.
3.6. TMDS Transmitter
The TMDS digital core performs 8-to-10-bit TMDS encoding on the data received from the HDCP XOR mask, and is then
sent over three TMDS data and a TMDS clock differential lines. A resistor connected to the EXT_SWING pin controls the
swing amplitude of the TMDS signal.
3.7. HDMI Ethernet and Audio-return Channel (HEAC)
The HDMI Ethernet and Audio-return Channel (HEAC) block provides support for the HDMI Ethernet Channel (HEC) and
Audio Return Channel (ARC) features described in the HDMI 1.4 Specification. HEC provides a bidirectional full duplex
100 Mbps Ethernet connection between an HDMI sink and source using an HDMI with Ethernet cable. New Category 1
and Category 2 HDMI cables are defined in the HDMI 1.4 Specification to carry these high-speed data signals. ARC
provides S/PDIF audio data streaming from an HDMI sink to an HDMI source or repeater device, in the direction
opposite to the TMDS data flow. Refer to the HDMI Ethernet Channel on page 31 for more information about these
features.
3.8. GPIO
The SiI9334 transmitter has four General Purpose I/O pins. Each GPIO pin supports the following functions:
Input mode: The value can be read through local I2C bus access; an interrupt can be generated on either the falling
or the rising edge of the input signal.
Output mode: The value can be set through the local I2C bus access.
3.9. Hot Plug Detector
When HIGH, the Hot Plug Detection signal indicates to the transmitter that the EDID of the connected receiver is
readable. A HIGH voltage is at least 2.0 V, and a LOW voltage is less than 0.8 V.
3.10. CEC Interface
The Consumer Electronics Control (CEC) Interface block provides CEC-compliant signals between CEC devices and a CEC
master. A CEC controller compatible with the Lattice Semiconductor CEC API is included on-chip. The controller has a
high-level register interface accessible through the I2C interface, and can be used to send and receive CEC commands.
This controller makes CEC control easy and straightforward by removing the burden of programming the host
processor to perform these low-level transactions on the CEC bus. See the CEC Programming Interface (CPI)
Programmer's Reference for details on the API. The Programmer’s Reference requires an NDA with Lattice
Semiconductor.
3.11. DDC Master I2C Interface
The host uses the DDC master logic to read the EDID by programming the target address, offset, and number of bytes.
Upon completion, or when the DDC master FIFO becomes full, an interrupt signal is sent to the host so that the host
can read data out of the FIFO.
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
12 SiI-DS-1064-B
The TPI hardware uses the DDC master logic to carry out HDCP authentication tasks. The arbitration logic arbitrates the
access from host and the internal TPI hardware. Refer to the Internal DDC Master section on page 30 for more
information.
3.12. Receiver Sense and Interrupt Logic
The Interrupt logic of this block buffers interrupt events from different sources. Receiver Sense and Hot Plug Interrupts
are also available in power down mode. The logic for handling these interrupts when all clocks are disabled is also part
of this block. The INT pin provides an interrupt signal to the system microcontroller when any of the following occur:
Monitor Detect (either from the HPD input level or from the Receiver Sense feature) changes
VSYNC (useful for synchronizing a microcontroller to the vertical timing interval)
Error in the audio format
DDC FIFO status change
HDCP authentication error.
3.13. Configuration Logic and Registers
This block contains the configuration registers that control the operation of the transmitter. The registers are accessed
via the I2C interface. This block also contains logic for simplifying the configuration of the transmitter by automatically
programming different parameters.
3.14. I2C Slave Interface
The controller I2C interface on the transmitter (signals CSCL and CSDA) is a slave interface with an operating frequency
from 3 kHz to 400 kHz and with an input tolerance of up to 4.0 V when all chip operating voltages are present. The host
uses this interface to configure the transmitter by reading from and writing to appropriate registers.
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1064-B 13
4. Electrical Specifications
4.1. Absolute Maximum Conditions
Table 4.1. Absolute Maximum Conditions
Symbol
Parameter
Min
Typ
Max
Units
Note
IOVCC33
I/O Pin Supply Voltage
0.3
4.0
V
2
CVCC12
Digital Core Supply Voltage
0.5
1.5
V
2
CAVCC33
Analog Supply Voltage 3.3 V
0.3
4.0
V
2
AVCC
Analog Supply Voltage 1.2 V
0.5
1.5
V
2
VI
Input Voltage
0.3
IOVCC + 0.3
V
VO
Output Voltage
0.3
IOVCC + 0.3
V
TJ
Junction Temperature
125
C
TSTG
Storage Temperature
65
150
C
Notes:
1. Permanent device damage can occur if absolute maximum conditions are exceeded.
2. Functional operation should be restricted to the conditions described under Normal Operating Conditions.
4.2. Normal Operating Conditions
Table 4.2. Normal Operating Conditions
Symbol
Parameter
Min
Typ
Max
Units
Note
IOVCC33
I/O Pin Supply Voltage
3.0
3.3
3.6
V
CVCC12
Digital Core Supply Voltage
1.14
1.2
1.26
V
CAVCC33
Analog Supply Voltage, 3.3 V
3.135
3.3
3.465
V
AVCC
Analog Supply Voltage, 1.2 V
1.14
1.2
1.26
V
VCCN
Supply Voltage Noise Tolerance
100
mVP-P
*
TA
Ambient Temperature (with power applied)
0
25
70
C
ja
Thermal Resistance (Theta JA)
29.3
C/W
jc
Junction to case resistance (Theta JC)
12.8
C/W
*Note: The supply voltage noise is measured at test point VCCTP. See Figure 6. The ferrite bead provides filtering of power supply
noise. The figure is representative and applies to the IOVCC33, CVCC12, CAVCC33 and AVCC pins.
VCC
GND
1 nF
0.1 F
Ferrite
SiI9334
VCCTP
0.1 F
10 F
Figure 4.1. Test Point VCCTP for VCC Noise Tolerance Spec
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
14 SiI-DS-1064-B
4.2.1. I/O Specifications
Under normal operating conditions unless otherwise specified.
Table 4.3. DC Digital I/O Specifications
Symbol
Parameter
Signal Type
Conditions
Min
Typ
Max
Units
Notes
VIH
HIGH-level Input Voltage
LVTTL
2.0
5.5
V
*
VIL
LOW-level Input Voltage
0.3
0.8
V
*
VTH+
LOW to HIGH Threshold
Schmitt
RESET#, CSCL, CSDA
1.9
V
VTH-
HIGH to LOW Threshold
0.7
V
VTH+
LOW to HIGH Threshold
Schmitt
DSCL, DSDA
3.0
V
VTH-
HIGH to LOW Threshold
1.5
V
VTH+
LOW to HIGH Threshold
Schmitt
CEC_A
2.0
V
VTH-
HIGH to LOW Threshold
0.8
V
VOH
HIGH-level Output Voltage
LVTTL
2.4
V
VOL
LOW-level Output Voltage
0.4
V
IOZ
High impedance Output
Leakage Current
@ VO = 3.3 V or 0 V
10
10
A
IOH
HIGH level output current
@ VOH {Min}
8
mA
IOL
LOW level output current
@ VOL {Max}
8
mA
*Note: All unused input signals should be tied LOW.
Table 4.4. TMDS I/O Specifications
Symbol
Parameter
Signal
Type
Conditions
Min
Typ
Max
Units
Notes
VOD
Differential outputs:
single-ended swing
amplitude
TMDS
RLOAD = 50 Ω
REXT_SWING as defined
in the Pin
Descriptions section
400
500
600
mV
*
VODD
Differential outputs:
differential swing
amplitude
TMDS
800
1000
1200
mV
VDOH
Differential HIGH
level output voltage
TMDS
≤ 165 MHz TMDS
clock
AVCC 10 mV
AVCC + 10 mV
V
> 165 MHz TMDS
clock
AVCC 200 mV
AVCC + 10 mV
V
VDOL
Differential LOW
level output voltage
TMDS
≤ 165 MHz TMDS
clock n
AVCC 600 mV
AVCC 400 mV
V
> 165 MHz TMDS
clock
AVCC 700 mV
AVCC 400 mV
V
IDOS
Differential output
short circuit current
TMDS
VOUT = 0 V
5
μA
*Note: Single-ended swing amplitude limits are defined by the HDMI Specification.
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1064-B 15
4.2.2. DC Power Supply Specifications
The tables in this section show the power consumption in the three power modes for various combinations of TMDS
frequency and HEC + ARC features that are turned on.
Table 4.5. DC Specifications, Power On Current (D0)
Symbol
Parameter
Frequency3
IOVCC33
AVCC
CVCC12
CAVCC33
Units
Typ
Max
Typ
Max
Typ
Max
Typ
Max
IPON
Video, Audio, HEC, ARC1
74.25 MHz
2.5
2.6
10.1
10.6
36.4
37.8
168.0
173.4
mA
148.5 MHz
4.5
4.7
18.0
18.3
68.7
71.5
168.1
173.3
mA
225 MHz
4.5
4.7
24.4
25.6
78.7
82.0
168.1
173.3
mA
Video, Audio, HEC
74.25 MHz
2.5
2.7
10.1
10.6
36.4
37.8
158.8
163.7
mA
148.5 MHz
4.5
4.7
17.2
18.0
68.7
71.5
158.8
163.7
mA
225 MHz
4.5
4.7
24.4
25.6
78.7
82.0
158.9
163.7
mA
Video, Audio, ARC1
74.25 MHz
2.4
2.6
10.0
10.5
36.3
37.6
67.2
70.8
mA
148.5 MHz
4.4
4.6
17.2
18.0
68.4
71.3
67.3
69.7
mA
225 MHz
4.4
4.6
24.4
25.6
78.5
81.3
67.2
69.7
mA
Video, Audio, ARC2
74.25 MHz
2.4
2.6
10.0
10.5
36.3
37.6
67.6
70.1
mA
148.5 MHz
4.4
4.6
17.2
18.0
68.4
71.3
67.5
70.1
mA
225 MHz
4.4
4.6
24.4
25.5
78.5
81.8
67.5
69.7
mA
Video, Audio
74.25 MHz
2.4
2.6
10.0
10.5
36.2
37.5
2.3
2.6
mA
148.5 MHz
4.3
4.6
17.1
18.0
68.3
71.2
2.3
2.7
mA
225 MHz
4.4
4.6
24.3
25.5
78.3
81.7
2.3
2.6
mA
Notes:
1. Common-mode ARC
2. Single-mode ARC
3. TMDS Clock frequency
Table 4.6. DC Specifications, Standby Current (D2)
Symbol
Parameter
IOVCC33
AVCC
CVCC12
CAVCC33
Units
IPSTBY
Video, Audio, HEC, ARC1
4.70
0.60
7.60
168.20
mA
Video, Audio, HEC
4.60
0.50
7.60
158.90
mA
Video, Audio, ARC1
4.50
0.50
7.50
67.30
mA
Video, Audio, ARC2
4.60
0.50
7.50
67.60
mA
Video, Audio
4.50
0.50
7.40
2.30
mA
Notes:
1. Common-mode ARC
2. Single-mode ARC
3. TMDS Clock frequency doesn’t matter in standby mode.
Table 4.7. DC Specifications, Power Off Current (D3)
Symbol
Parameter
IOVCC33
AVCC
CVCC12
CAVCC33
Units
IPOFF
Video, Audio, HEC, ARC1
4.60
0.60
3.6
168.30
mA
Video, Audio, HEC
4.60
0.50
3.5
158.90
mA
Video, Audio, ARC1
4.50
0.50
3.4
67.30
mA
Video, Audio, ARC2
4.50
0.50
3.4
67.6
mA
Video, Audio
4.50
0.50
3.3
2.30
mA
Notes:
1. Common-mode ARC
2. Single-mode ARC
3. TMDS Clock frequency doesn’t matter in power off mode.
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
16 SiI-DS-1064-B
4.3. AC Specifications
4.3.1. Video/HDMI Timing Specifications
Under normal operating conditions unless otherwise specified.
Table 4.8. Video Input AC Specifications
Symbol
Parameter
Conditions
Min
Typ
Max
Units
Figure
TDDF
VSYNC and HSYNC Delay from DE falling
edge
1
TCIP
Figure 4.6
TDDR
VSYNC and HSYNC Delay to DE rising
edge
1
TCIP
Figure 4.6
THDE
DE HIGH Time
8191
TCIP
Figure 4.7
TLDE
DE LOW Time
138*
TCIP
Figure 4.7
*Note: TLDE minimum is defined for HDMI mode carrying 480p video with 192 kHz audio, which requires at least 138 pixel clock
cycles of blanking to carry the audio packets. If only HDCP is running, the minimum DE LOW time is 58 clock cycles, according to the
HDCP Specification. If neither HDCP nor audio are running, the minimum DE LOW time is 12 clock cycles for TMDS. The minimum
vertical blanking time is 3 horizontal line times.
Table 4.9. TMDS AC Output Specifications
Symbol
Parameter
Conditions
Min
Typ
Max
Units
Figure
Notes
SLHT
Differential Swing LOW-to-HIGH
Transition Time
REXT_SWING = 3.83 kΩ
Internal Source
Termination On
95.5
181.81
ps
Figure 4.10
1, 2
SHLT
Differential Swing HIGH-to-LOW
Transition Time
REXT_SWING = 3.83 kΩ
Internal Source
Termination On
86.5
172.3
ps
Figure 4.10
1, 2
Notes:
1. These limits are defined by the HDMI 1.4 Specification.
2. Refer to the Source Termination section on page 31 for information about internal source termination.
4.3.2. Audio AC Timing Specifications
Table 4.10. S/PDIF Input Port Timings
Symbol
Parameter
Conditions
Min
Typ
Max
Units
Figure
Notes
FS_SPDIF
Sample Rate
2 Channel
32
192
kHz
TSPCYC
S/PDIF Cycle Time
CL = 10 pF
1.0
UI
Figure 4.12
1
TSPDUTY
S/PDIF Duty Cycle
CL = 10 pF
90%
110%
UI
Figure 4.12
1
TMCLKCYC
MCLK Cycle Time
CL = 10 pF
13.3
ns
Figure 4.13
3
FMCLK
MCLK Frequency
CL = 10 pF
75
MHz
3
TMCLKDUTY
MCLK Duty Cycle
CL = 10 pF
40%
60%
TMCLKCYC
Figure 4.13
3
TAUDDLY
Audio Pipeline Delay
30
70
s
4
Note: Refer to the notes for Table 4.12.
Table 4.11. I2S Input Port Timings
Symbol
Parameter
Conditions
Min
Typ
Max
Units
Figure
Notes
FS_I2S
Sample Rate
32
192
kHz
TSCKCYC
I2S Cycle Time
CL = 10 pF
1.0
UI
Figure 4.11
1
TSCKDUTY
I2S Duty Cycle
CL = 10 pF
90%
110%
UI
Figure 4.11
TI2SSU
I2S Setup Time
CL = 10 pF
15
ns
Figure 4.11
2
TI2SHD
I2S Hold Time
CL = 10 pF
0
ns
Figure 4.11
2
Note: Refer to the notes for Table 4.12.
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1064-B 17
Table 4.12. DSD Input Port Timings
Symbol
Parameter
Conditions
Min
Typ
Max
Units
Figure
Notes
FS_DSD
Sample Rate
44.1
88.2
kHz
TDCKCYC
DSD Cycle Time
CL = 10 pF
2.0
UI
Figure 4.14
1
TDCKDUTY
DSD Duty Cycle
CL = 10 pF
90%
110%
UI
Figure 4.14
1
TDSDSU
DSD Setup Time
CL = 10 pF
20
ns
Figure 4.14
TDSDHD
DSD Hold Time
CL = 10 pF
20
ns
Figure 4.14
Notes:
1. Proportional to unit time (UI) according to sample rate. Refer to the I2S, S/PDIF, or DSD Specifications.
2. Setup and hold minimum times are based on 13.388 MHz sampling, which is adapted from Figure 3 of the Philips I2S
Specification.
3. If a separate master clock input (MCLK) is used for time-stamping purposes, it has to be coherent with the audio input.
Coherent means that the MCLK and audio input have been created from the same clock source. This requirement usually uses
the original MCLK to strobe the audio out from the sourcing chip.
4. Audio pipeline delay is measured from the transmitter input pins to the TMDS output.
4.3.3. Video AC Timing Specifications
Under normal operating conditions unless otherwise specified.
Table 4.13. Video AC Timing Specifications
Symbol
Parameter
Conditions
Min
Typ
Max
Units
Figure
Notes
TCIP
IDCK period, one pixel per clock
6.1
40
ns
Figure 4.2
1
FCIP
IDCK frequency, one pixel per clock
25
165
MHz
1
TCIP12
IDCK period, dual-edge clock
12.3
40
ns
Figure 4.2
2
FCIP12
IDCK frequency, dual-edge clock
25
82.5
MHz
2
TDUTY
IDCK duty cycle
40%
60%
TCIP
Figure 4.2
TIJIT
Worst case IDCK clock jitter
1.0
ns
3, 4
TSIDF
Setup time to IDCK falling edge
EDGE = 0
1.75
ns
Figure 4.4
5
THIDF
Hold time to IDCK falling edge
1.25
ns
TSIDR
Setup time to IDCK rising edge
EDGE = 1
2.00
ns
Figure 4.3
5
THIDR
Hold time to IDCK rising edge
1.50
ns
TSIDD
Setup time to IDCK rising or falling edge
Dual-edge
clocking
2.00
ns
Figure 4.5
6
THIDD
Hold time to IDCK rising or falling edge
1.50
ns
Notes:
1. TCIP and FCIP apply in single-edge clocking modes. TCIP is the inverse of FCIP and is not a controlling specification.
2. TCIP12 and FCIP12 apply in dual-edge mode. TCIP12 is the inverse of FCIP12 and is not a controlling specification.
3. Input clock jitter is estimated by triggering a digital scope at the rising edge of the input clock, and measuring peak-to-peak time
spread of the rising edge of the input clock 1 microsecond after the triggering.
4. Actual jitter tolerance can be higher depending on the frequency of the jitter.
5. Setup and hold time specifications apply to Data, DE, VSYNC, and HSYNC input pins, relative to IDCK input clock.
6. Setup and hold limits are not affected by the setting of the EDGE bit for 12/15/18/24-bit dual-edge clocking mode.
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
18 SiI-DS-1064-B
4.3.4. Control Signal Timing Specifications
Under normal operating conditions unless otherwise specified.
Table 4.14. Control Signal Timing Specifications
Symbol
Parameter
Conditions
Min
Typ
Max
Units
Figure
Note
TRESET
RESET# signal LOW time required for reset
50
µs
Figure 4.8
Figure 4.9
1, 5
TI2CDVD
SDA Data Valid Delay from SCL falling edge
on READ command
CL = 400 pF
700
ns
Figure 4.15
2, 6
THDDAT
I2C data hold time
0400 kHz
2.0
ns
3, 6
TINT
Response time for INT output pin from
change in input condition (HPD, Receiver
Sense, VSYNC change, etc.).
RESET# =
HIGH
100
µs
FSCL
Frequency on master DDC SCL signal
40
70
100
kHz
4
FCSCL
Frequency on master CSCL signal
40
400
kHz
Notes:
1. Reset on RESET# signal can be LOW as the supply becomes stable (shown in Figure 4.8), or pulled LOW for at least TRESET (shown
in Figure 4.9).
2. All standard-mode (100 kHz) I2C timing requirements are guaranteed by design. These timings apply to the slave I2C port (pins
CSDA and CSCL) and to the master I2C port (pins DSDA and DSCL).
3. This minimum hold time is required by CSCL and CSDA signals as an I2C slave. The device does not include the 300-ns internal
delay required by the I2C Specification (Version 2.1, Table 5, note 2).
4. The master DDC block provides an SCL signal for the E-DDC bus. The HDMI Specification limits this to I2C Standard Mode or 100
kHz. Use of the Master DDC block does not require an active IDCK.
5. Not a Schmitt trigger.
6. Operation of I2C pins above 100 kHz is defined by LVTTL levels VIH, VIL, VOH, and VOL (see Table 4.3 on page 14). For these levels,
I2C speeds up to 400 kHz are supported.
4.3.5. CEC Timing Specifications
See the HDMI 1.4 Specification Supplement 1 Consumer Electronics Control (CEC).
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1064-B 19
4.4. Timing Diagrams
4.4.1. Input Timing Diagrams
TCIP/TCIP12
50% 50% 50%
TDUTY
Figure 4.2. IDCK Clock Duty Cycle
D[23:0], DE,
HSYNC,VSYNC 50 % 50 %
IDCK
TSIDR THIDR
50 % 50 %
Signals may change only in the unshaded portion of the waveform, to meet both the
minimum setup and minimum hold time specifications.
no change allowed
TCIP
Figure 4.3. Control and Data Single-Edge Setup and Hold TimesEDGE = 1
D[23:0], DE,
HSYNC,VSYNC 50 % 50 %
IDCK
TSIDF THIDF
50 % 50 %
Signals may change only in the unshaded portion of the waveform, to meet both the
minimum setup and minimum hold time specifications.
no change allowed
Figure 4.4. Control and Data Single-Edge Setup and Hold TimesEDGE = 0
D[11:0], DE,
HSYNC,VSYNC 50 % 50 %
IDCK
TSIDD THIDD
50 % 50 %
TSIDD THIDD
50 %
no change
allowed no change
allowed
Signals may change only in the unshaded portion of the waveform, to meet both the
minimum setup and minimum hold time specifications.
TCIP12
Figure 4.5. Control and Data Dual-Edge Setup and Hold Times
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
20 SiI-DS-1064-B
DE
VSYNC, HSYNC
50%
50%
TDDF TDDR
50%
50%
Figure 4.6. VSYNC and HSYNC Delay Times Based On DE
DE
TLDE
THDE
0.8 V
2.0 V
0.8 V
2.0 V
Figure 4.7. DE HIGH and LOW Times
4.4.2. Reset Timing Diagrams
VCC must be stable between its limits for Normal Operating Conditions for TRESET before RESET# goes HIGH, as shown in
Figure 4.8. Before accessing registers, RESET# must be pulled LOW for TRESET. This can be done by holding RESET# LOW
until TRESET after stable power, as described above, or by pulling RESET# LOW from a HIGH state for at least TRESET, as
shown in Figure 4.9.
RESET#
VCCmin
VCCmax
TRESET
VCC
Figure 4.8. Conditions for Use of RESET#
RESET#
TRESET
Figure 4.9. RESET# Minimum Timings
4.4.3. TMDS Timing Diagram
SLHT
20% VOD
80% VOD
SHLT
Figure 4.10. Differential Transition Times
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1064-B 21
4.4.4. Audio Timing Diagrams
SD[0:3], WS 50 % 50 %
SCK
TI2SSU TI2SHD
50 % 50 %
no change allowed
TSCKDUTY
TSCKCYC
Figure 4.11. I2S Input Timings
SPDIF
TSPDUTY
50%
TSPCYC
Figure 4.12. S/PDIF Input Timings
MCLK
TMCLKCYC
TMCLKDUTY
50%50%
Figure 4.13. MCLK Timings
DL[3:0], DR[3:0] 50 % 50 %
DCLK
TDSDSU TDSDHD
50 % 50 %
no change allowed
TDCKDUTY
TDCKCYC
Figure 4.14. DSD Input Timings
4.4.5. I2C timing Diagrams
CSCL, DSCL
TI2CDVD
CSDA, DSDA
Figure 4.15. I2C Data Valid Delay (Driving Read Cycle Data
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
22 SiI-DS-1064-B
5. Pin Diagram and Descriptions
Figure 5.1 shows the pin diagram for the SiI9334 transmitter. A description of the pin functions begins on page 23.
SiI9334
(Top View)
76
1
26
51
HPD
IOVCC33
GPIO0
NC
77
2
27
52
GPIO1
D15
DL3
GND
78
3
28
53
D35
D14
DR3
EXT_SWING
79
4
29
54
D34
D13
SPDIF_IN_DL2
TXC-
80
5
30
55
D33
CVCC12
SD3_DR2
TXC+
81
6
31
56
D32
D12
SD2_DL1
AVCC
82
7
32
57
D31
D11
SD1_DR1
TX0-
83
8
33
58
D30
D10
SD0_DL0
TX0+
84
9
34
59
D29
D9
WS_DR0
TX1-
85
10
35
60
D28
D8
SCK
TX1+
86
11
36
61
D27
D7
MCLK
AVCC
87
12
37
62
D26
IOVCC33
IOVCC33
TX2-
88
13
38
63
CVCC12
D6
CVCC12
TX2+
89
14
39
64
D25
D5
GPIO2
NC
90
15
40
65
D24
D4
CEC_A
SPDIF_OUT
91
16
41
66
IOVCC33
CVCC12
DSDA
ETHRX+
92
17
42
67
D23
D3
DSCL
ETHRX-
93
18
43
68
D22
D2
CI2CA
HEAC+
94
19
44
69
D21
D1
CSDA
HEAC-
95
20
45
70
D20
D0
CSCL
ETHTX+
96
21
46
71
D19
CVCC12
INT
ETHTX-
97
22
47
72
D18
IDCK
RESET#
CAVCC33
98
23
48
73
D17
VSYNC
GND
NC
99
24
49
74
D16
HSYNC
GPIO3
NC
100
25
50
75
GND
DE
NC
NC
Figure 5.1. Pin Diagram (Top View)
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1064-B 23
5.1. Pin Descriptions
5.1.1. Video Data Input
Name
Pin
Type
Dir
Description
D0
20
LVTTL
5 V tolerant
Input
Video Data Inputs.
The video data inputs can be configured to support a wide variety of input
formats, including multiple RGB and YCbCr bus formats, using the
VID_CONFIG registers.
See the Common Video Input Formats section on page 34 for details.
D1
19
D2
18
D3
17
D4
15
D5
14
D6
13
D7
11
D8
10
D9
9
D10
8
D11
7
D12
6
D13
4
D14
3
D15
2
D16
99
D17
98
D18
97
D19
96
D20
95
D21
94
D22
93
D23
92
D24
90
D25
89
D26
87
D27
86
D28
85
D29
84
D30
83
D31
82
D32
81
D33
80
D34
79
D35
78
IDCK
22
LVTTL
5 V tolerant
Input
Input Data Clock.
Input configurable using the VID_CONFIG registers.
DE
25
LVTTL
5 V tolerant
Input
Data Enable.
This signal is HIGH when the transmitter input pixel data is valid and LOW
otherwise. DE is optional for some input formats, such as ITU-R BT.656.
HSYNC
24
LVTTL
5 V tolerant
Input
Horizontal Sync input control signal.
HSYNC is optional for some input formats, such as ITU-R BT.656.
VSYNC
23
LVTTL
5 V tolerant
Input
Vertical Sync input control signal.
VSYNC is optional for some input formats, such as ITU-R BT.656.
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
24 SiI-DS-1064-B
5.1.2. HEAC, S/PDIF Output, and Ethernet
Name
Pin
Type
Dir
Description
HEAC+
68
Analog
Input
Output
HDMI Ethernet Channel/Audio Return Channel.
HEAC-
69
SPDIF_OUT
65
LVTTL
Output
S/PDIF Output Extracted from ARC.
ETHTX+
70
Analog
Input
Ethernet Receive.
ETHTX-
71
ETHRX+
66
Analog
Output
Ethernet Transmit.
ETHRX-
67
5.1.3. TMDS Output
Name
Pin
Type
Dir
Description
TX0+
58
TMDS
Output
HDMI Transmitter Output Port Data.
TMDS LOW voltage differential signal output data pairs.
TX0-
57
TX1+
60
TX1-
59
TX2+
63
TX2-
62
TXC+
55
TMDS
Output
HDMI Transmitter Output Port Clock.
TMDS LOW voltage differential signal output clock pair.
TXC-
54
EXT_SWING
52
Analog
Input
Output
External Swing Voltage Control.
Recommended values (actual value depends on board design):
5.6 k resistor to ground without using internal termination.
4.7 k resistor to ground using internal termination.
5.1.4. Audio Input
Name
Pin
Type
Dir
Description
I2S Mode; S/PDIF Mode
DSD Mode
MCLK
36
LVTTL
5 V tolerant
Input
Audio Input Master Clock.
SCK
35
LVTTL
5 V tolerant
Input
I2S Serial Clock.
DSD Clock.
WS_DR0
34
LVTTL
5 V tolerant
Input
I2S Word Select.
DSD Data Right Bit 0.
SD0_DL0
33
LVTTL
5 V tolerant
Input
I2S Data 0.
DSD Data Left Bit 0.
SD1_DR1
32
LVTTL
5 V tolerant
Input
I2S Data 1.
DSD Data Right Bit 1.
SD2_DL1
31
LVTTL
5 V tolerant
Input
I2S Data 2.
DSD Data Left Bit 1.
SD3_DR2
30
LVTTL
5 V tolerant
Input
I2S Data 3.
DSD Data Right Bit 2.
SPDIF_IN_DL2
29
LVTTL
5 V tolerant
Input
S/PDIF Input.
DSD Data Left Bit 2.
DR3
28
LVTTL
5 V tolerant
Input
DSD Data Right Bit 3.
DL3
27
LVTTL
5 V tolerant
Input
DSD Data Left Bit 3.
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1064-B 25
5.1.5. DDC, CEC, Configuration, and Control
Name
Pin
Type
Dir
Description
INT
46
LVTTL
Output
Interrupt Output.
RESET#
47
Schmitt
Input
Reset signal.
Active LOW asynchronous reset input for entire chip.
HPD
76
LVTTL
Input
Hot Plug Detect.
GPIO0
26
LVTTL
Input
Output
General Purpose I/O Data 0.
GPIO1
77
LVTTL
Input
Output
General Purpose I/O Data 1.
GPIO2
39
LVTTL
Input
Output
General Purpose I/O Data 2.
GPIO3
49
LVTTL
Input
Output
General Purpose I/O Data 3.
DSCL
42
LVTTL
Schmitt
Open drain
5 V tolerant
Input
Output
DDC I2C Clock.
HDCP KSV, An, and Ri values are exchanged over this I2C port during
authentication. True open drain, so does not pull to ground if power not
applied.
DSDA
41
LVTTL
Schmitt
Open drain
5 V tolerant
Input
Output
DDC I2C Data.
HDCP KSV, An, and Ri values are exchanged over this I2C port during
authentication. True open drain, so does not pull to ground if power not
applied.
CI2CA
43
LVTTL
5 V tolerant
Input
Selects base address group for CSCL/CSDA interface. See Table 6.3.
CSCL
45
LVTTL
Schmitt
Open drain
5 V tolerant
Input
Local Configuration/Status I2C Clock.
Chip configuration/status registers are accessed through this I2C port.
CSDA
44
LVTTL
Schmitt
Open drain
5 V tolerant
Input
Output
Local Configuration/Status I2C Data.
Chip configuration/status registers are accessed through this I2C port.
CEC_A
40
CEC Compliant
5 V tolerant
Input
Output
HDMI compliant CEC I/O.
As an input, this pin acts as a LVTTL Schmitt-triggered input and is 5
V tolerant.
As an output, the pin acts as an NMOS driver with resistive pull-up. This pin
has an internal pull-up resistor.
5.1.6. Power and Ground
Name
Pin
Type
Description
Supply
CVCC12
5, 16, 21, 38, 88
Power
Digital Core VCC
1.2 V
IOVCC33
1, 12, 37, 91
Power
I/O VCC
3.3 V
CAVCC33
72
Power
Analog VCC
3.3 V
AVCC
56, 61
Power
Analog VCC
1.2 V
GND
48, 53,100
Ground
These pins must be connected to ground
Ground
5.1.7. Not Connected and Reserved
Name
Pin
Type
Description
Supply
NC
50, 51, 64, 73, 74, 75
Not connected
These pins should be left unconnected
none
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
26 SiI-DS-1064-B
6. Feature Information
6.1. RGB to YCbCr Color Space Converter
The RGBYCbCr color space converter can convert from video data RGB to standard definition or to high definition
YCbCr formats. Table 6.1 shows the conversion formulas that are used. The HDMI AVI packet defines the color space of
the incoming video.
Table 6.1. RGB to YCbCr Conversion Formulas
Video Format
Conversion
Formulas
CE Mode 16-235 RGB
640 x 480
ITU-R BT.601
Y = 0.299R′ + 0.587G′ + 0.114B′
Cb = –0.172R′ – 0.339G′ + 0.511B′ + 128
Cr = 0.511R′ – 0.428G′ – 0.083B′ + 128
480i
ITU-R BT.601
576i
ITU-R BT.601
480p
ITU-R BT.601
576p
ITU-R BT.601
240p
ITU-R BT.601
288p
ITU-R BT.601
720p
ITU-R BT.709
Y = 0.213R′ + 0.715G′ + 0.072B′
Cb = –0.117R′ – 0.394G′ + 0.511B′ + 128
Cr = 0.511R′ – 0.464G′ – 0.047B′ + 128
1080i
ITU-R BT.709
1080p
ITU-R BT.709
6.2. YCbCr to RGB Color Space Converter
The YCbCrRGB color space converter allows MPEG decoders to interface with RGB-only inputs. The CSC can convert
from YCbCr in standard-definition (ITU.601) or high-definition (ITU.709) to RGB. Refer to the detailed formulas in Table
6.2. Note the difference between RGB range for CE modes and PC modes.
Table 6.2. YCbCr-to-RGB Conversion Formula
Format change
Conversion
YCbCr Input Color Range2, 3
YCbCr 16-235 Input2, 3, 4
to
RGB 16-235 Output2, 3, 4
6011
R′ = Y + 1.371(Cr – 128)
G′ = Y – 0.698(Cr 128) 0.336(Cb 128)
B′ = Y + 1.732(Cb – 128)
7091
R′ = Y + 1.540(Cr – 128)
G′ = Y – 0.459(Cr 128) 0.183(Cb 128)
B′ = Y + 1.816(Cb – 128)
YCbCr 16-235 Input2, 3, 4
to
RGB 0-255 Output2, 3, 4
601
R′ = 1.164((Y-16) + 1.371(Cr 128))
G′ = 1.164((Y-16) 0.698(Cr 128) 0.336(Cb 128))
B′ = 1.164((Y-16) + 1.732(Cb 128))
709
R′ = 1.164((Y-16) + 1.540(Cr 128))
G′ = 1.164((Y-16) 0.459(Cr 128) 0.183(Cb 128))
B′ = 1.164((Y-16) + 1.816(Cb 128))
Notes:
1. No clipping can be done.
2. For 10-bit deep color, multiply all occurrences of the values 16, 128, 235, and 255 by 4.
3. For 12-bit deep color, multiply all occurrences of the values 16, 128, 235, and 255 by 16.
4. For 16-bit deep color, multiply all occurrences of the values 16, 128, 235, and 255 256.
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1064-B 27
6.3. Deep Color Support
The SiI9334 transmitter provides support for Deep Color video data up to the maximum specified link speed of
2.25 Gbps (225 MHz internal clock rate for the Deep Color packetized data). It supports 30-bit, 36-bit, and 48-bit video
input formats, and converts the data to 8-bit packets for encryption and encoding for transferring across the TMDS link.
When the input data width is wider than desired, the device can be programmed to dither or truncate the video data to
the desired size. For instance, if the input data width is 12 bits per pixel component, but the sink device only supports
10 bits, the transmitter can be programmed either to dither or to truncate the 12-bit input data to the desired 10-bit
output data. Dither processing is the final block in the video processing path and occurs after all other video processing
has been performed; refer to the Video Data Input and Conversion section on page 8.
6.4. I2C Register Information
I2C registers monitor and control all functions of the transmitter. The four local I2C slave addresses can be altered by
setting the CI2CA signal LOW or HIGH as shown in Table 6.3. An external pull-up or pull-down resistor (depending on
the desired set of I2C addresses) is used to set the level on the CI2CA pin. Refer to the Programmer’s Reference for
complete information. The Programmer’s Reference requires an NDA with Lattice Semiconductor.
Table 6.3. Control of the Default I2C Addresses with the CI2CA Pin
Block
CI2CA = 0
CI2CA = 1
Configuration Registers
0x7A
0x7E
TPI
0x72
0x76
CPI
0xC0
0xC4
HEAC
0x90
0x94
6.5. I2S Audio Input
The I2S input has four I2S data signals to support up to 8 channels of linear pulse code modulation (LPCM) audio. The I2S
interface also supports high bit-rate audio formats like Dolby® TrueHD and DTS HD Master Audio. Two-channel PCM
audio can be downsampled by a factor of 2 or 4 to support 32, 44.1, or 48 kHz basic sample rates as required by the
HDMI standard.
6.6. Direct Stream Digital Input
Nine pins are used for the Direct Stream Digital interface that provides 8-channel one-bit audio data (DSD). This
interface is for SACD applications. Seven of the nine pins of this interface (4 data left, 4 data right, and 1 clock) share
the I2S and S/PDIF pins.
The one-bit audio inputs are sampled on the positive edge of the DSD clock, assembled into 56-bit packets, and
mapped to the appropriate FIFO. The Audio InfoFrame, instead of the Channel Status bits, carries the sampling
information for one-bit audio. The one-bit audio interface supports an input clock frequency of 2.882 MHz (64 • 44.1
kHz).
6.7. S/PDIF Input
The Sony/Philips Digital Interface Format (S/PDIF) interface is usually associated with compressed audio formats such
as Dolby® Digital (AC-3), DTS, and the more advanced varian5 Vts of these formats.
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
28 SiI-DS-1064-B
6.8. I2S and S/PDIF Supported MCLK Frequencies
The transmitter includes an integrated MCLK generator for operation without an external clock PLL, although an
external MCLK can be used. The I2S and S/PDIF interfaces support sampling frequencies of 32, 44.1, 48, 64, 88.2, 96,
128, 176.4, and 192 kHz. (The 64 and 128 kHz sampling rates are not part of the HDMI standard; they need to be down-
sampled to 32 kHz before transmitting across the HDMI link.) Table 6.4 lists the supported MCLK frequencies.
Table 6.4. Supported MCLK Frequencies
Multiple of
Fs
Audio Sample Rate, Fs
I2S and S/PDIF Supported Rates
32 kHz
44.1 kHz
48 kHz
88.2 kHz
96 kHz
176.4 kHz
192 kHz
128
4.096 MHz
5.645 MHz
6.144 MHz
11.290 MHz
12.288 MHz
22.579 MHz
24.576 MHz
192
6.144 MHz
8.467 MHz
9.216 MHz
16.934 MHz
18.432 MHz
33.868 MHz
36.864 MHz
256
8.192 MHz
11.290 MHz
12.288 MHz
22.579 MHz
24.576 MHz
45.158 MHz
49.152 MHz
384
12.288 MHz
16.934 MHz
18.432 MHz
33.864 MHz
36.864 MHz
67.737 MHz
73.728 MHz
512
16.384 MHz
22.579 MHz
24.576 MHz
45.158 MHz
49.152 MHz
768
24.576 MHz
33.869 MHz
36.864 MHz
67.738 MHz
73.728 MHz
1024
32.768 MHz
45.158 MHz
49.152 MHz
1152
36.864 MHz
50.803 MHz
55.296 MHz
6.9. Audio Downsampler Limitations
The SiI9334 transmitter has an audio downsampler function that downsamples the incoming two-channel audio data
and sends the result over the HDMI link. The audio data can be downsampled by one-half or one-fourth with register
control. Conversions from 192 to 48 kHz, 176.4 to 44.1 kHz, 96 to 48 kHz, and 88.2 to 44.1 kHz are supported. Some
limitations in the audio sample word length when using this feature may need special consideration in a real
application.
When enabling the audio downsampler, the Channel Status registers for the audio sample word lengths sent over the
HDMI link always indicate the maximum possible length. For example, if the input S/PDIF stream was in 20-bit mode
with 16 bits valid, after enabling the downsampler the Channel Status indicates 20-bit mode with 20 bits valid.
Audio sample word length is carried in bits 33 through 35 of the Channel Status register over the HDMI link, as shown
in Table 6.5. These bits are always set to 0b101 when enabling the down-sampler feature. Audio data is not affected
because 0s are placed into the LSBs of the data, and the wider word length is sent across the HDMI link.
Table 6.5. Channel Status Bits Used for Word Length
Bit
Sample Word Length
(bits)
Notes
Audio Sample Word Length
Maximum Word Length1
35
34
33
32
0
0
0
0
Not indicated
0
0
1
0
16
2
0
1
0
0
18
2
1
0
0
0
19
2
1
0
1
0
20
2, 4
1
1
0
0
17
2
0
0
0
1
Not indicated
3
0
0
1
1
20
3
0
1
0
1
22
3
1
0
0
1
23
3
1
0
1
1
24
3, 4
1
1
0
1
21
3
Notes:
1. Maximum audio sample word length (MAXLEN) is 20 bits if MAXLEN = 0 and 24 bits if MAXLEN = 1.
2. Maximum audio sample word length is 20.
3. Maximum audio sample word length is 24.
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1064-B 29
4. Bits [35:33] are always 0b101 when the down-sampler is enabled
6.10. High-Bit Rate Audio on HDMI
The high-bit-rate compression standards, such as Dolby TrueHD and DTS-HD, transmit data at bit rates as high as 18 or
24 Mbps. Because these bit rates are so high, DVD decoders and HDMI transmitters (as source devices), and DSP and
HDMI receivers (as sink devices) must carry the data using four I2S lines rather than using a single very-high-speed
S/PDIF interface or I2S bus (see Figure 6.1).
MPEG Transmitter Receiver DSP
Figure 6.1. High Speed Data Transmission
The high-bit-rate audio stream is originally encoded as a single stream. To send the stream over four I2S lines, the DVD
decoder splits it into four streams. Figure 6.2 shows the high-bit-rate stream before it has been split into four I2S lines,
and Figure 6.3 shows the same audio stream after being split. Each sample requires 16 cycles of the I2S clock (SCK).
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16-Bits
Sample 0 Sample 3Sample 2Sample 1 Sample 4 Sample 5 Sample N-1 Sample N. . .
Figure 6.2. High Bitrate Stream Before and after Reassembly and Splitting
Left Right Left Right
Sample 0 Sample 1 Sample 8 Sample 9
Sample 3 Sample 11
Sample 4 Sample 5 Sample 12 Sample 13
Sample 6 Sample 7 Sample 14 Sample 15
WS
SD0
SD1
SD2
SD3
Sample 10Sample 2
Figure 6.3. High Bit Rate Stream After Splitting
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
30 SiI-DS-1064-B
6.11. Power Domains
To reduce standby power, the SiI9334 transmitter supports three power modes. Each mode complies with the
Advanced Configuration and Power Interface (ACPI) specification.
1. Power-On mode (D0): The System is powered up and running completely. All functions are available. HEC and ARC
functions are independently configured.
2. Power-Standby mode (D2): Some sub-systems are enabled, but the audio and video processing pipelines are
disabled. The configuration interface, CEC, GPIO, and DDC master are active. The TMDS core, HEC, and ARC are
configured independently. The Host is able to perform the following functions during this mode:
a. CEC: send and receive messages
b. DDC: read EDID from HDMI receiver
c. optional: TMDS core enabled for generating receiver-sense interrupt requests
d. optional: HEC and ARC operation.
3. Power-Off mode (D3): The chip is in its lowest power-state. All clocks are disabled. No register access is possible.
HEC and ARC can be configured independently. The only other active function is the interrupt request generation
for Hot-plug events, if that function has been configured before entering this mode. An IRQ will be asserted in this
mode, but cannot be deasserted, as register access is not possible. The host must assert RESET# to the chip to
properly leave Power-Off mode.
6.12. Internal DDC Master
The transmitter contains a master I2C port for direct connection to the HDMI cable (refer to Figure 6.4). A pass-through
mechanism is used, which allows direct control of the DDC lines by the host I2C controller.
MPEG Chip
SiI9334 Transmitter
HDMI Connnector
Video
Audio
I2C
HDMI
DDC
CEC Programming
Interface registers
Transmitter
Programming
Interface registers
DDC Master access
Figure 6.4. Simplified Host I2C Interface Using Master DDC Port
The DDC Master Interface supports the I2C transactions specified by the VESA Enhanced Display Data Channel
Standard. The DDC master block complies with the 100 kHz Standard Mode timing of the I2C specification and supports
slave clock stretching, as required by E-DDC. Figure 6.5 shows the supported transactions and timing sequences.
Sr
S slv addr + W device offset slv addr + R data 0 data n PAsAsAsAmAm
S = start
Sr = restart
As = slave acknowledge
Am = master acknowledge
Current Read
S slv addr + R data 0 data n PAsAmdata 1 AmAmN/As
Sequential Read N/As
Sr
S slv addr + W device offset slv addr + R data 0 data n PAsAsAsAmAm
Enhanced DDC Read N/As
Sr
0x60 segment
N/AsN/As*
S slv addr + W device offset data nAsdata 0 PAsAsAsN/As
Sequential Write
N = no ack
P = stop
* Don't care for segment 0, ACK for segment 1 and above
Figure 6.5. Master I2C Supported Transactions
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1064-B 31
6.13. 3D Video Formats
The SiI9334 transmitter has support for the 3D video modes described in the HDMI 1.4 Specification. All modes support
RGB 4:4:4, YCbCr 4:2:2, and YCbCr 4:4:4 color formats and 8-, 10-, and 12-bit data width per color component. External
separate HSYNC, VSYNC, and DE signals can be supplied, or these signals can be supplied as embedded EAV/SAV
sequences in the video stream. Table 6.6 shows only the maximum possible resolution with a given frame rate; for
example, Side-by-Side mode is defined for 1080p60, which implies that 720p60 and 480p60 are also supported.
Furthermore, a frame rate of 24 Hz also means that a frame rate of 23.98 Hz is supported and a frame rate of 60 Hz
also means a frame rate of 59.94 Hz is supported. Input pixel clock changes accordingly.
When using Side-by-Side format, 4:4:4 to 4:2:2 down-sampling and 4:2:2 dithering and upsampling to 4:4:4 should be
avoided because these combinations may result in visible artifacts. Dithering should also be avoided when using frame
packing formats.
Video processing should be bypassed in the case of L + depth format. Transmission of the Vendor Specific InfoFrame
(VSIF), which carries 3D information to the receiver, is supported by the SiI9334 device.
Table 6.6. Supported 3D Video Formats
3D Format
Extended Definition
Resolution
Frame Rate (Hz)
Input Pixel Clock (MHz)
Frame Packing
1080p
24
148.5
720p
50 / 60
interlaced
1080i
50 / 60
L + depth
1080p
24
720p
50 / 60
Side-by-Side
full
1080p
24
720p
50 / 60
half
1080p
50 / 60
1080i
50 / 60
74.25
6.14. Source Termination
TMDS transmitters use a current source to develop the low-voltage differential signal at the receiver end of the DC-
coupled TMDS transmission line, which constitutes open termination for reflected waveforms. Thus, signal reflections
created by traces, packaging, connectors, and the cable can arrive at the transmitter with increased amplitude.
To reduce these reflections, the transmitter chip has an internal termination option of 150 Ω for single-ended
termination and 300 Ω for differential termination. This termination reduces the amplitude of the reflected signal, but
it also lowers the common-mode input voltage at the sink. As a result, Lattice Semiconductor recommends turning
internal source termination off when the transmitter operates less than or equal to 165 MHz and turning it on for
frequencies above 165 MHz. Using internal source termination at the higher frequencies, while still maintaining
conformance to the HDMI Specification, is possible because the sink input voltage range tolerance is wider above 165
MHz.
6.15. HDMI Ethernet Channel
A shielded twisted pair in the Category 1/2 HDMI with Ethernet cable described in the HDMI 1.4 Specification carries
the HEAC+ and HEAC signals used for both HDMI Ethernet Channel and Audio Return Channel. HEAC+ shares the same
pin as the Utility pin of the HDMI Type A, C, or D connector, and HEAC shares the same pin as the Hot Plug Detect pin
of the connector. The use of the HPD pin for HEAC does not affect the previously defined hot-plug detect function.
Utility is a new name for the Reserved pin described in earlier versions of the HDMI Specification.
The HEAC± differential pair is used for both differential-mode HEC and common-mode ARC transmission, which can
occur simultaneously. ARC can be transmitted by itself in single mode (see the Audio Return Channel section below); in
this case only the HEAC+ line is used and HEC transmission is not available.
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
32 SiI-DS-1064-B
HEAC transceivers in both the HDMI source and sink devices perform full-duplex bi-directional communication. High-
impedance current drivers in the source and sink devices supply current over the HEAC± pair in proportion to the
Ethernet and S/PDIF signals. The receiving end employs high-impedance differential sensors that detect the voltage
across the termination resistance. Figure 6.6 shows the HEAC interface when both HEC differential mode and ARC
common mode are employed.
HEAC-
Redt/2
HEAC+
Redt/2
Rect - Redt/4
+
+
-
-
++
S/PDIF
Receive
-+
HEAC-
Redt/2
HEAC+
Redt/2
Rect - Redt/4
+
+-
-
+
100BASE-T
-
++ S/PDIF
Transmit
Transmit
Receive
100BASE-T
Transmit
Receive
HDMI Source Device HDMI Sink Device
Figure 6.6. HEAC Interface
The SiI9334 transmitter is capable of transmitting and receiving full duplex Fast Ethernet data using an HDMI with
Ethernet cable. Ethernet data transfer is accomplished by sending and receiving AC-coupled differential signals over the
HEAC± twisted pair in the HDMI with Ethernet cable. The voltage developed across the termination resistance of a
device is the sum of the Ethernet signal that device is transmitting and the Ethernet signal being received from the
other device. By subtracting its own transmitted differential signal from the sum, the differential signal being
transmitted by the other device is detected. The level of the signal that is received is then shifted to the standard
100Base-TX level. The Ethernet pins of the HEAC-equipped HDMI transmitters and receivers can be connected directly
to a 100Base-TX Ethernet device.
6.16. Audio Return Channel
The HEAC+/HEAC differential pair is also used for common-mode ARC transmission, which can occur simultaneously
with HEC. An S/PDIF-formatted signal is transmitted in the direction opposite to the TMDS video data by embedding it
as a common-mode signal transmitted over the HEAC+/HEAC twisted pair of a Category 1/2 HDMI with Ethernet
cable. When the HDMI sink is sending ARC in common mode, the transmitter sums the HEAC+ and HEAC signals to
extract the S/PDIF signal. When using common mode ARC, an HDMI with Ethernet cable is recommended, but not
required, by the HDMI Specification. Figure 6.7 on the next page shows the HEAC interface with HEC differential mode
and ARC common mode.
ARC can also be transmitted in single mode by using only the HEAC+ (Utility) line. When using ARC single-mode
transmission, an HDMI with Ethernet cable is not required (a standard HDMI cable is sufficient).
Depending on the application, the S/PDIF backchannel is used in different ways. For example, in a DTV application, an S/PDIF
audio signal from the TV can be sent to an HDMI source device such as an A/V receiver over the audio return channel.
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1064-B 33
S/PDIF
HDMI OUT
( with HEC)
Blu-Ray
Player
HDMI with
HEAC cable
100Base-T
HDMI with HEAC
A/V Receiver
RJ45 100Base-TX
HDMI
OUT
To Internet
Service Provider
DTV
HDMI IN
( with HEC and ARC)
Active Loudspeaker
with S/PDIF input
S/PDIF
Out
(ARC)
HEC
TMDS
HDMI
IN
TMDS
HEC
HDMI with
HEAC cable
ARC
HEC
TMDS
Figure 6.7. HDMI with HEAC Example Application
6.17. Control Signal Connections
The general bus interconnection between the host processor and the transmitter is shown in Figure 6.8. The INT output
can be connected as an interrupt to the processor, or the processor can poll a register to determine if any of the
enabled interrupts have occurred.
INT
RESET#
CSDA
CSCL
C_SCL
CI2C
A
Stuff only one of two 4.7 k
resistors to set chip I2C address.
CEC_A
Host processor
IOVCC IOVCC
4.7 k4.7 k
4.7 k
4.7 k
C_SDA
GPIO
C_CEC
GPIO
SiI9136 Transmitter
Figure 6.8. Controller Connections Schematic
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
34 SiI-DS-1064-B
6.18. Input Data Bus Mapping
6.18.1. Common Video Input Formats
The video data capture block receives uncompressed 8- to 16-bit color depth (bits per color component) digital video
from the digital video input interface and provides a data path width of from 8 to 36 bits. The data path is divided
internally into three 16-bit data channels, which are configured for one of the video formats listed in Table 6.7.
Table 6.7. Video Input Formats
Color
Space
Video
Format
Clock
Edge
Mode
Bus
Width/
Color
Depth
SYNC6
Input Pixel Clock (MHz)
Notes
Page
480i2, 3
VGA/
480p2
XGA
720p
1080i
SXGA
1080p
UXGA
RGB
4:4:4
Single
36/12
Sep
27
25/27
65
74.25
74.25
108
148.5
1
35
Single
30/10
Sep
27
25/27
65
74.25
74.25
108
148.5
162
1
35
Single
24/8
Sep
27
25/27
65
74.25
74.25
108
148.5
162
1
35
Dual
12/8
Sep
27
25/27
65
74.25
74.25
4
45
Dual
15/10
Sep
27
25/27
65
74.25
74.25
4
45
Dual
18/12
Sep
27
25/27
65
74.25
74.25
4
45
Dual
24/16
Sep
27
25/27
65
74.25
74.25
4
45
YCbCr
xvYCC
4:4:4
Single
36/12
Sep
27
25/27
65
74.25
74.25
108
148.5
1
35
Single
30/10
Sep
27
25/27
65
74.25
74.25
108
148.5
162
1
35
Single
24/8
Sep
27
25/27
65
74.25
74.25
108
148.5
162
1
35
Dual
12/8
Sep
27
25/27
65
74.25
74.25
4
45
Dual
15/10
Sep
27
25/27
65
74.25
74.25
4
45
Dual
18/12
Sep
27
25/27
65
74.25
74.25
4
45
Dual
24/16
Sep
27
25/27
65
74.25
74.25
4
45
4:2:2
Single
16/8
20/10
24/12
Sep
27
25/27
65
74.25
74.25
108
148.5
162
1
37
Emb
27
25/27
65
74.25
74.25
108
148.5
162
1, 4
39
Single/
YC Mux
8/8
10/10
12/12
Sep
50/54
130
148.5
148.5
1
41
Emb
50/54
130
148.5
148.5
1, 4
43
T1004
50/54
130
1, 4, 5
Notes:
1. Latching edge is programmable.
2. 480i/p support also encompasses 576i/p support.
3. 480i must be provided at 27 MHz, using pixel replication, to be transmitted across the HDMI link.
4. If embedded syncs are provided, DE is generated internally from SAV/EAV sequences. Embedded syncs use ITU-R BT.656
SAV/EAV sequences of FF, 00, 00, XY.
5. BTA-T1004 format is defined for a single-channel (8/10/12-bit) bus.
6. Sep = separate sync; Emb = embedded sync; T1004 = BTA-T1004 encoded sync.
The system configures registers that set the bus width, video format, and rising or falling edge latching, according to
the format of the video data received by the transmitter. The logic also supports dual-edge clocking.
Relevant format information must also be programmed into registers to be formed into AVI InfoFrame packets for
passing over the HDMI link.
In the tables which follow, shaded cells labeled LOW should be held LOW when not used for a selected video format. If
they will never be used in a given application, they should be tied to ground.
In the timing diagrams which follow, data bits labeled val do not convey pixel information and will contain values
defined by the relevant specification. In the diagrams showing embedded sync, the SAV and EAV sequence FF, 00, 00,
XY is specified by ITU-R BT.656.
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1064-B 35
6.18.2. RGB, YCbCr 4:4:4, and xvYCC with Separate Sync
The pixel clock runs at the pixel rate and a complete definition of each pixel is received on each clock cycle. Each
column in Table 6.8 shows the first pixel of n + 1 pixels in the line of video. The figures below the table show RGB and
YCbCr data; the YCbCr 4:4:4 data is given in braces {}.
Table 6.8. RGB/YCbCr 4:4:4/xvYCC Separate Sync Data Mapping
Pin
Name
24-bit Data Bus
8-bit Color Depth
30-bit Data Bus
10-bit Color Depth
36-bit Data Bus
12-bit Color Depth
RGB
YCbCr
xvYCC
RGB
YCbCr
xvYCC
RGB
YCbCr
xvYCC
D0
LOW
LOW
LOW
LOW
B0[0]
Cb0[0]
D1
LOW
LOW
LOW
LOW
B0[1]
Cb0[1]
D2
LOW
LOW
B0[0]
Cb0[0]
B0[2]
Cb0[2]
D3
LOW
LOW
B0[1]
Cb0[1]
B0[3]
Cb0[3]
D4
B0[0]
Cb0[0]
B0[2]
Cb0[2]
B0[4]
Cb0[4]
D5
B0[1]
Cb0[1]
B0[3]
Cb0[3]
B0[5]
Cb0[5]
D6
B0[2]
Cb0[2]
B0[4]
Cb0[4]
B0[6]
Cb0[6]
D7
B0[3]
Cb0[3]
B0[5]
Cb0[5]
B0[7]
Cb0[7]
D8
B0[4]
Cb0[4]
B0[6]
Cb0[6]
B0[8]
Cb0[8]
D9
B0[5]
Cb0[5]
B0[7]
Cb0[7]
B0[9]
Cb0[9]
D10
B0[6]
Cb0[6]
B0[8]
Cb0[8]
B0[10]
Cb0[10]
D11
B0[7]
Cb0[7]
B0[9]
Cb0[9]
B0[11]
Cb0[11]
D12
LOW
LOW
LOW
LOW
G0[0]
Y0[0]
D13
LOW
LOW
LOW
LOW
G0[1]
Y0[1]
D14
LOW
LOW
G0[0]
Y0[0]
G0[2]
Y0[2]
D15
LOW
LOW
G0[1]
Y0[1]
G0[3]
Y0[3]
D16
G0[0]
Y0[0]
G0[2]
Y0[2]
G0[4]
Y0[4]
D17
G0[1]
Y0[1]
G0[3]
Y0[3]
G0[5]
Y0[5]
D18
G0[2]
Y0[2]
G0[4]
Y0[4]
G0[6]
Y0[6]
D19
G0[3]
Y0[3]
G0[5]
Y0[5]
G0[7]
Y0[7]
D20
G0[4]
Y0[4]
G0[6]
Y0[6]
G0[8]
Y0[8]
D21
G0[5]
Y0[5]
G0[7]
Y0[7]
G0[9]
Y0[9]
D22
G0[6]
Y0[6]
G0[8]
Y0[8]
G0[10]
Y0[10]
D23
G0[7]
Y0[7]
G0[9]
Y0[9]
G0[11]
Y0[11]
D24
LOW
LOW
LOW
LOW
R0[0]
Cr0[0]
D25
LOW
LOW
LOW
LOW
R0[1]
Cr0[1]
D26
LOW
LOW
R0[0]
Cr0[0]
R0[2]
Cr0[2]
D27
LOW
LOW
R0[1]
Cr0[1]
R0[3]
Cr0[3]
D28
R0[0]
Cr0[0]
R0[2]
Cr0[2]
R0[4]
Cr0[4]
D29
R0[1]
Cr0[1]
R0[3]
Cr0[3]
R0[5]
Cr0[5]
D30
R0[2]
Cr0[2]
R0[4]
Cr0[4]
R0[6]
Cr0[6]
D31
R0[3]
Cr0[3]
R0[5]
Cr0[5]
R0[7]
Cr0[7]
D32
R0[4]
Cr0[4]
R0[6]
Cr0[6]
R0[8]
Cr0[8]
D33
R0[5]
Cr0[5]
R0[7]
Cr0[7]
R0[9]
Cr0[9]
D34
R0[6]
Cr0[6]
R0[8]
Cr0[8]
R0[10]
Cr0[10]
D35
R0[7]
Cr0[7]
R0[9]
Cr0[9]
R0[11]
Cr0[11]
HSYNC
HSYNC
HSYNC
HSYNC
HSYNC
HSYNC
HSYNC
VSYNC
VSYNC
VSYNC
VSYNC
VSYNC
VSYNC
VSYNC
DE
DE
DE
DE
DE
DE
DE
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
36 SiI-DS-1064-B
D[35:28]
blank Pixel 0 Pixel 1 Pixel 2 Pixel 3
val R0[7:0]
{Cr0[7:0]} R1[7:0]
{Cr1[7:0]} R2[7:0]
{Cr2[7:0]} R3[7:0]
{Cr3[7:0]}
D[23:16] val G0[7:0]
{Y0[7:0]} G1[7:0]
{Y1[7:0]} G2[7:0]
{Y2[7:0]} G3[7:0]
{Y3[7:0]}
D[11:4] val B0[7:0]
{Cb0[7:0]} B1[7:0]
{Cb1[7:0]} B2[7:0]
{Cb2[7:0]} B3[7:0]
{Cb3[7:0]}
IDCK
DE
HSYNC,
VSYNC
Pixeln - 1 blank blank blankPixel n
Rn-1[7:0]
{Crn-1[7:0]} val val val
Rn[7:0]
{Crn[7:0]}
Gn-1[7:0]
{Yn-1[7:0]} val val val
Gn[7:0]
{Yn[7:0]}
Bn-1[7:0]
{Cbn-1[7:0]} val val val
Bn[7:0]
{Cbn[7:0]}
Figure 6.9. 8-Bit Color Depth RGB/YCbCr/xvYCC 4:4:4 Timing
D[35:26]
blank Pixel 0 Pixel 1 Pixel 2 Pixel 3
val R0[9:0]
{Cr0[9:0]} R1[9:0]
{Cr1[9:0]} R2[9:0]
{Cr2[9:0]} R3[9:0]
{Cr3[9:0]}
D[23:14] val G0[9:0]
{Y0[9:0]} G1[9:0]
{Y1[9:0]} G2[9:0]
{Y2[9:0]} G3[9:0]
{Y3[9:0]}
D[11:2] val B0[9:0]
{Cb0[9:0]} B1[9:0]
{Cb1[9:0]} B2[9:0]
{Cb2[9:0]} B3[9:0]
{Cb3[9:0]}
IDCK
DE
HSYNC,
VSYNC
Pixel n - 1 blank blank blankPixel n
Rn-1[9:0]
{Crn-1[9:0]} val val val
Rn[9:0]
{Crn[9:0]}
Gn-1[9:0]
{Yn-1[9:0]} val val val
Gn[9:0]
{Yn[9:0]}
Bn-1[9:0]
{Cbn-1[9:0]} val val val
Bn[9:0]
{Cbn[9:0]}
Figure 6.10. 10-Bit Color Depth RGB/YCbCr/xvYCC 4:4:4 Timing
D[35:24]
IDCK
DE
HSYNC,
VSYNC
blank Pixel 0 Pixel 1 Pixel 2 Pixel 3 Pixel n - 1 blank blank blankPixel n
val R0[11:0]
{Cr0[11:0]} R1[11:0]
{Cr1[11:0]} R2[11:0]
{Cr2[11:0]} R3[11:0]
{Cr3[11:0]} Rn-1[11:0]
{Crn-1[11:0]} val val val
Rn[11:0]
{Crn[11:0]}
D[23:12] val G0[11:0]
{Y0[11:0]} G1[11:0]
{Y1[11:0]} G2[11:0]
{Y2[11:0]} G3[11:0]
{Y3[11:0]} Gn-1[11:0]
{Yn-1[11:0]} val val val
Gn[11:0]
{Yn[11:0]}
D[11:0] val B0[11:0]
{Cb0[11:0]} B1[11:0]
{Cb1[11:0]} B2[11:0]
{Cb2[11:0]} B3[11:0]
{Cb3[11:0]} Bn-1[11:0]
{Cbn-1[11:0]} val val val
Bn[11:0]
{Cbn[11:0]}
Figure 6.11. 12-Bit Color Depth RGB/YCbCr/xvYCC 4:4:4 Timing
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1064-B 37
6.18.3. YC 4:2:2 Separate Sync Formats
The YC 4:2:2 formats receive one pixel for every pixel clock period. A luma (Y) value is carried for every pixel, but the
chroma values (Cb and Cr) change only every second pixel. The data bus can be 16, 20, or 24 bits. HSYNC and VSYNC are
driven explicitly on their own signals. Each pair of columns in Table 6.9 shows the first and second pixel of n + 1 pixels
in the line of video. The DE HIGH time must contain an even number of pixel clocks.
Table 6.9. YC 4:2:2 Separate Sync Data Mapping
Pin
Name
16-bit Data Bus
8-bit Color Depth
20-bit Data Bus
10-bit Color Depth
24-bit Data Bus
12-bit Color Depth
Pixel #0
Pixel #1
Pixel #0
Pixel #1
Pixel #0
Pixel #1
D[3:0]
LOW
LOW
LOW
LOW
LOW
LOW
D4
LOW
LOW
LOW
LOW
Y0[0]
Y1[0]
D5
LOW
LOW
LOW
LOW
Y0[1]
Y1[1]
D6
LOW
LOW
Y0[0]
Y1[0]
Y0[2]
Y1[2]
D7
LOW
LOW
Y0[1]
Y1[1]
Y0[3]
Y1[3]
D8
LOW
LOW
LOW
LOW
Cb0[0]
Cr0[0]
D9
LOW
LOW
LOW
LOW
Cb0[1]
Cr0[1]
D10
LOW
LOW
Cb0[0]
Cr0[0]
Cb0[2]
Cr0[2]
D11
LOW
LOW
Cb0[1]
Cr0[1]
Cb0[3]
Cr0[3]
D[15:12]
LOW
LOW
LOW
LOW
LOW
LOW
D16
Y0[0]
Y1[0]
Y0[2]
Y1[2]
Y0[4]
Y1[4]
D17
Y0[1]
Y1[1]
Y0[3]
Y1[3]
Y0[5]
Y1[5]
D18
Y0[2]
Y1[2]
Y0[4]
Y1[4]
Y0[6]
Y1[6]
D19
Y0[3]
Y1[3]
Y0[5]
Y1[5]
Y0[7]
Y1[7]
D20
Y0[4]
Y1[4]
Y0[6]
Y1[6]
Y0[8]
Y1[8]
D21
Y0[5]
Y1[5]
Y0[7]
Y1[7]
Y0[9]
Y1[9]
D22
Y0[6]
Y1[6]
Y0[8]
Y1[8]
Y0[10]
Y1[10]
D23
Y0[7]
Y1[7]
Y0[9]
Y1[9]
Y0[11]
Y1[11]
D[27:24]
LOW
LOW
LOW
LOW
LOW
LOW
D28
Cb0[0]
Cr0[0]
Cb0[2]
Cr0[2]
Cb0[4]
Cr0[4]
D29
Cb0[1]
Cr0[1]
Cb0[3]
Cr0[3]
Cb0[5]
Cr0[5]
D30
Cb0[2]
Cr0[2]
Cb0[4]
Cr0[4]
Cb0[6]
Cr0[6]
D31
Cb0[3]
Cr0[3]
Cb0[5]
Cr0[5]
Cb0[7]
Cr0[7]
D32
Cb0[4]
Cr0[4]
Cb0[6]
Cr0[6]
Cb0[8]
Cr0[8]
D33
Cb0[5]
Cr0[5]
Cb0[7]
Cr0[7]
Cb0[9]
Cr0[9]
D34
Cb0[6]
Cr0[6]
Cb0[8]
Cr0[8]
Cb0[10]
Cr0[10]
D35
Cb0[7]
Cr0[7]
Cb0[9]
Cr0[9]
Cb0[11]
Cr0[11]
HSYNC
HSYNC
HSYNC
HSYNC
HSYNC
HSYNC
HSYNC
VSYNC
VSYNC
VSYNC
VSYNC
VSYNC
VSYNC
VSYNC
DE
DE
DE
DE
DE
DE
DE
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
38 SiI-DS-1064-B
D[35:28]
blank Pixel 0 Pixel 1 Pixel 2 Pixel 3
val Cb0[7:0] Cr0[7:0] Cb2[7:0] Cr2[7:0]
D[23:16] val Y0[7:0] Y1[7:0] Y2[7:0] Y3[7:0]
IDCK
DE
HSYNC,
VSYNC
Pixeln - 1 blank blank blankPixel n
val val val
Yn-1[7:0] val val val
Yn[7:0]
Crn-1[7:0] Cbn-1[7:0]
Figure 6.12. 8-Bit Color Depth YC 4:2:2 Timing
D[35:28]
blank Pixel 0 Pixel 1 Pixel 2 Pixel 3
val Cb0[9:2] Cr0[9:2] Cb2[9:2] Cr2[9:2]
D[23:16] val Y0[9:2] Y1[9:2] Y2[9:2] Y3[9:2]
IDCK
DE
HSYNC,
VSYNC
Pixeln - 1 blank blank blankPixel n
val val val
Yn-1[9:2] val val val
Yn[9:2]
Crn-1[1:0] Cbn-1[1:0]
D[11:10] val Cb0[1:0] Cr0[1:0] Cb2[1:0] Cr2[1:0] val val val
D[7:6] val Y0[1:0] Y1[1:0] Y2[1:0] Y3[1:0] Yn-1[1:0] val val val
Yn[1:0]
Crn-1[9:2] Cbn-1[9:2]
Figure 6.13. 10-Bit Color Depth YC 4:2:2 Timing
D[35:28]
blank Pixel 0 Pixel 1 Pixel 2 Pixel 3
val Cb0[11:4] Cr0[11:4] Cb2[11:4] Cr2[11:4]
D[23:16] val Y0[11:4] Y1[11:4] Y2[11:4] Y3[11:4]
IDCK
DE
HSYNC,
VSYNC
Pixeln - 1 blank blank blankPixel n
val val val
val val val
Crn-1[3:0] Cbn-1[3:0]
D[11:8] val Cb0[3:0] Cr0[3:0] Cb2[3:0] Cr2[3:0] val val val
Crn-1[11:4] Cbn-1[11:4]
Yn-1[11:4] Yn[11:4]
Yn-1[3:0] Yn[3:0]
D[7:4] val Y0[3:0] Y1[3:0] Y2[3:0] Y3[3:0] val val val
Figure 6.14. 12-Bit Color Depth YC 4:2:2 Timing
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1064-B 39
6.18.4. YC 4:2:2 Embedded Syncs Formats
The Embedded Sync format is identical to the YC 4:2:2 Formats with Separate Syncs format, except that the syncs are
embedded and not explicit. The data bus can be 16, 20, or 24 bits. Each pair of columns in Table 6.10 shows the first
and second pixel of n + 1 pixels in the line of video.
Table 6.10. YC 4:2:2 Embedded Sync Data Mapping
Pin
Name
16-bit Data Bus
8-bit Color Depth
20-bit Data Bus
10-bit Color Depth
24-bit Data Bus
12-bit Color Depth
Pixel #0
Pixel #1
Pixel #0
Pixel #1
Pixel #0
Pixel #1
D[3:0]
LOW
LOW
LOW
LOW
LOW
LOW
D4
LOW
LOW
LOW
LOW
Y0[0]
Y1[0]
D5
LOW
LOW
LOW
LOW
Y0[1]
Y1[1]
D6
LOW
LOW
Y0[0]
Y1[0]
Y0[2]
Y1[2]
D7
LOW
LOW
Y0[1]
Y1[1]
Y0[3]
Y1[3]
D8
LOW
LOW
LOW
LOW
Cb0[0]
Cr0[0]
D9
LOW
LOW
LOW
LOW
Cb0[1]
Cr0[1]
D10
LOW
LOW
Cb0[0]
Cr0[0]
Cb0[2]
Cr0[2]
D11
LOW
LOW
Cb0[1]
Cr0[1]
Cb0[3]
Cr0[3]
D[15:12]
LOW
LOW
LOW
LOW
LOW
LOW
D16
Y0[0]
Y1[0]
Y0[2]
Y1[2]
Y0[4]
Y1[4]
D17
Y0[1]
Y1[1]
Y0[3]
Y1[3]
Y0[5]
Y1[5]
D18
Y0[2]
Y1[2]
Y0[4]
Y1[4]
Y0[6]
Y1[6]
D19
Y0[3]
Y1[3]
Y0[5]
Y1[5]
Y0[7]
Y1[7]
D20
Y0[4]
Y1[4]
Y0[6]
Y1[6]
Y0[8]
Y1[8]
D21
Y0[5]
Y1[5]
Y0[7]
Y1[7]
Y0[9]
Y1[9]
D22
Y0[6]
Y1[6]
Y0[8]
Y1[8]
Y0[10]
Y1[10]
D23
Y0[7]
Y1[7]
Y0[9]
Y1[9]
Y0[11]
Y1[11]
D[27:24]
LOW
LOW
LOW
LOW
LOW
LOW
D28
Cb0[0]
Cr0[0]
Cb0[2]
Cr0[2]
Cb0[4]
Cr0[4]
D29
Cb0[1]
Cr0[1]
Cb0[3]
Cr0[3]
Cb0[5]
Cr0[5]
D30
Cb0[2]
Cr0[2]
Cb0[4]
Cr0[4]
Cb0[6]
Cr0[6]
D31
Cb0[3]
Cr0[3]
Cb0[5]
Cr0[5]
Cb0[7]
Cr0[7]
D32
Cb0[4]
Cr0[4]
Cb0[6]
Cr0[6]
Cb0[8]
Cr0[8]
D33
Cb0[5]
Cr0[5]
Cb0[7]
Cr0[7]
Cb0[9]
Cr0[9]
D34
Cb0[6]
Cr0[6]
Cb0[8]
Cr0[8]
Cb0[10]
Cr0[10]
D35
Cb0[7]
Cr0[7]
Cb0[9]
Cr0[9]
Cb0[11]
Cr0[11]
HSYNC
LOW
LOW
LOW
LOW
LOW
LOW
VSYNC
LOW
LOW
LOW
LOW
LOW
LOW
DE
LOW
LOW
LOW
LOW
LOW
LOW
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
40 SiI-DS-1064-B
D[35:28]
SAV Pixel 0 Pixel 1 Pixel 2 Pixel 3
Cb0[7:0] Cr0[7:0] Cb2[7:0] Cr2[7:0]
D[23:16] XY Y0[7:0] Y1[7:0] Y2[7:0] Y3[7:0]
IDCK
Active
video
EAV
Crn-1[7:0] Cbn-1[7:0]
Yn-1[7:0] Yn[7:0]
00
00FF XY
00
00FF
XY
00
00FF XY
00
00FF
Pixel n - 1 Pixel n
Figure 6.15. 8-Bit Color Depth YC 4:2:2 Embedded Sync Timing
D[35:28]
SAV Pixel 0 Pixel 1 Pixel 2 Pixel 3
Cb0[9:2] Cr0[9:2] Cb2[9:2] Cr2[9:2]
D[23:16] XY Y0[9:2] Y1[9:2] Y2[9:2] Y3[9:2]
IDCK
Active
video
EAV
Crn-1[1:0] Cbn-1[1:0]
D[11:10] Cb0[1:0] Cr0[1:0] Cb2[1:0] Cr2[1:0]
Crn-1[9:2] Cbn-1[9:2]
Yn-1[9:2] Yn[9:2]
Yn-1[1:0] Yn[1:0]
D[7:6] Y0[1:0] Y1[1:0] Y2[1:0] Y3[1:0]
00
00FF
Pixel n - 1 Pixel n
XY
00
00FF
XY
00
00FF
XY
00
00FF
XY0000FF
XY0000FF
XY0000FF
XY0000FF
Figure 6.16. 10-Bit Color Depth YC 4:2:2 Embedded Sync Timing
D[35:28]
SAV Pixel 0 Pixel 1 Pixel 2 Pixel 3
Cb0[11:4] Cr0[11:4] Cb2[11:4] Cr2[11:4]
D[23:16] Y0[11:4] Y1[11:4] Y2[11:4] Y3[11:4]
IDCK
Active
video
EAV
Crn-1[3:0] Cbn-1[3:0]
D[11:8] Cb0[3:0] Cr0[3:0] Cb2[3:0] Cr2[3:0]
Crn-1[11:4] Cbn-1[11:4]
Yn-1[11:4] Yn[11:4]
Yn-1[3:0] Yn[3:0]
D[7:4] Y0[3:0] Y1[3:0] Y2[3:0] Y3[3:0]
Pixel n - 1 Pixel n
XY
00
00FF
XY
00
00FF
XY
00
00FF
XY
00
00FF
XY
00
00FF
XY
00
00FF
XY
00
00FF
XY
00
00FF
Figure 6.17. 12-Bit Color Depth YC 4:2:2 Embedded Sync Timing
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1064-B 41
6.18.5. YC Mux 4:2:2 Separate Sync Formats
The video data is multiplexed onto fewer pins than the mapping described in the YC 4:2:2 Separate Sync Formats on
page 37. The clock rate is doubled so a chroma value is sent for each pixel, followed by a corresponding luma value for
the same pixel. Thus, a luma (Y) value is provided for each pixel, while the Cb and Cr values alternate on successive
pixels. Each group of four columns in Table 6.11 shows the four clock cycles for the first two pixels of the line. Pixel
values for Cr0 and Y0 values are sent with the first pixel (first two clock cycles). Then the Cb0 and Y1 values are sent
with the second pixel (next two clock cycles). The figures below the table show how this pattern is extended for the
rest of the pixels in a video line of n + 1 pixels.
Table 6.11. YC Mux 4:2:2 Separate Sync Data Mapping
Pin
Name
8-bit Data Bus
8-bit Color Depth
10-bit Data Bus
10-bit Color Depth
12-bit Data Bus
12-bit Color Depth
Clock cycle
Clock cycle
Clock cycle
First
Second
Third
Fourth
First
Second
Third
Fourth
First
Second
Third
Fourth
D[3:0]
LOW
LOW
LOW
D4
LOW
LOW
Cr0[0]
Y0[0]
Cb0[0]
Y1[0]
D5
LOW
LOW
Cr0[1]
Y0[1]
Cb0[1]
Y1[1]
D6
LOW
Cr0[0]
Y0[0]
Cb0[0]
Y1[0]
Cr0[2]
Y0[2]
Cb0[2]
Y1[2]
D7
LOW
Cr0[1]
Y0[1]
Cb0[1]
Y1[1]
Cr0[3]
Y0[3]
Cb0[3]
Y1[3]
D[15:8]
LOW
LOW
LOW
D16
Cr0[0]
Y0[0]
Cb0[0]
Y1[0]
Cr0[2]
Y0[2]
Cb0[2]
Y1[2]
Cr0[4]
Y0[4]
Cb0[4]
Y1[4]
D17
Cr0[1]
Y0[1]
Cb0[1]
Y1[1]
Cr0[3]
Y0[3]
Cb0[3]
Y1[3]
Cr0[5]
Y0[5]
Cb0[5]
Y1[5]
D18
Cr0[2]
Y0[2]
Cb0[2]
Y1[2]
Cr0[4]
Y0[4]
Cb0[4]
Y1[4]
Cr0[6]
Y0[6]
Cb0[6]
Y1[6]
D19
Cr0[3]
Y0[3]
Cb0[3]
Y1[3]
Cr0[5]
Y0[5]
Cb0[5]
Y1[5]
Cr0[7]
Y0[7]
Cb0[7]
Y1[7]
D20
Cr0[4]
Y0[4]
Cb0[4]
Y1[4]
Cr0[6]
Y0[6]
Cb0[6]
Y1[6]
Cr0[8]
Y0[8]
Cb0[8]
Y1[8]
D21
Cr0[5]
Y0[5]
Cb0[5]
Y1[5]
Cr0[7]
Y0[7]
Cb0[7]
Y1[7]
Cr0[9]
Y0[9]
Cb0[9]
Y1[9]
D22
Cr0[6]
Y0[6]
Cb0[6]
Y1[6]
Cr0[8]
Y0[8]
Cb0[8]
Y1[8]
Cr0[10]
Y0[10]
Cb0[10]
Y1[10]
D23
Cr0[7]
Y0[7]
Cb0[7]
Y1[7]
Cr0[9]
Y0[9]
Cb0[9]
Y1[9]
Cr0[11]
Y0[11]
Cb0[11]
Y1[11]
D[35:24]
LOW
LOW
LOW
HSYNC
HSYNC
HSYNC
HSYNC
HSYNC
HSYNC
HSYNC
VSYNC
VSYNC
VSYNC
VSYNC
VSYNC
VSYNC
VSYNC
DE
DE
DE
DE
DE
DE
DE
D[23:16] Y1[7:0] Cb2[7:0] Y2[7:0] Cr2[7:0]
IDCK
Yn-1[7:0] Yn[7:0]
DE
HSYNC
VSYNC
Cb0[7:0] Y0[7:0] Cr0[7:0] Y3[7:0] Cbn-1[7:0] Crn-1[7:0]
Pixel 0 Pixel 1 Pixel 2 Pixel 3 Pixel n - 1 Pixel n
val val
Figure 6.18. 8-Bit Color Depth YC Mux 4:2:2 Timing
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
42 SiI-DS-1064-B
D[23:16] Y1[9:2] Cb2[9:2] Y2[9:2] Cr2[9:2]
IDCK
Yn-1[9:2] Yn[9:2]
DE
HSYNC
VSYNC
Cb0[9:2] Y0[9:2] Cr0[9:2] Y3[9:2] Cbn-1[9:2] Crn-1[9:2]
Pixel 0 Pixel 1 Pixel 2 Pixel 3 Pixel n - 1 Pixel n
val val
D[7:6] Y1[1:0] Cb2[1:0] Y2[1:0] Cr2[1:0] Yn-1[1:0] Yn[1:0]
Cb0[1:0] Y0[1:0] Cr0[1:0] Y3[1:0] Cbn-1[1:0] Crn-1[1:0]
val val
Figure 6.19. 10-Bit Color Depth YC Mux 4:2:2 Timing
D[23:16] Y1[11:4] Cb2[11:4] Y2[11:4] Cr2[11:4]
IDCK
Yn-1[11:4] Yn[11:4]
DE
HSYNC
VSYNC
Cb0[11:4] Y0[11:4] Cr0[11:4] Y3[11:4] Cbn-1[11:4] Crn-1[11:4]
Pixel 0 Pixel 1 Pixel 2 Pixel 3 Pixel n - 1 Pixel n
val val
D[7:4] Y1[3:0] Cb2[3:0] Y2[3:0] Cr2[3:0] Yn-1[3:0] Yn[3:0]
Cb0[3:0] Y0[3:0] Cr0[3:0] Y3[3:0] Cbn-1[3:0] Crn-1[3:0]
val val
Figure 6.20. 12-Bit Color Depth YC Mux 4:2:2 Timing
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1064-B 43
6.18.6. YC Mux 4:2:2 Embedded Sync Formats
This format is similar to the one described in the YC Mux 4:2:2 Separate Sync Formats section on page 41, except the
syncs are embedded. A luma (Y) value is provided for each pixel, while the Cb and Cr values alternate on successive
pixels. Each group of four columns in Table 6.12 shows the four clock cycles for the first two pixels of the line. Pixel
values for Cr0 and Y0 values are sent with the first pixel (first two clock cycles). Then the Cb0 and Y1 values are sent
with the second pixel (next two clock cycles). The figures following this table show only the first two pixels and last
pixel of the line to make room to show the SAV and EAV sequences, but the remaining pixels are similar to those shown
in the figures of the previous section.
Table 6.12. YC Mux 4:2:2 Embedded Sync Data Mapping
Pin
Name
8-bit Data Bus
8-bit Color Depth
10-bit Data Bus
10-bit Color Depth
12-bit Data Bus
12-bit Color Depth
Clock cycle
Clock cycle
Clock cycle
First
Second
Third
Fourth
First
Second
Third
Fourth
First
Second
Third
Fourth
D[3:0]
LOW
LOW
LOW
D4
LOW
LOW
Cr0[0]
Y0[0]
Cb0[0]
Y1[0]
D5
LOW
LOW
Cr0[1]
Y0[1]
Cb0[1]
Y1[1]
D6
LOW
Cr0[0]
Y0[0]
Cb0[0]
Y1[0]
Cr0[2]
Y0[2]
Cb0[2]
Y1[2]
D7
LOW
Cr0[1]
Y0[1]
Cb0[1]
Y1[1]
Cr0[3]
Y0[3]
Cb0[3]
Y1[3]
D[15:8]
LOW
LOW
LOW
D16
Cr0[0]
Y0[0]
Cb0[0]
Y1[0]
Cr0[2]
Y0[2]
Cb0[2]
Y1[2]
Cr0[4]
Y0[4]
Cb0[4]
Y1[4]
D17
Cr0[1]
Y0[1]
Cb0[1]
Y1[1]
Cr0[3]
Y0[3]
Cb0[3]
Y1[3]
Cr0[5]
Y0[5]
Cb0[5]
Y1[5]
D18
Cr0[2]
Y0[2]
Cb0[2]
Y1[2]
Cr0[4]
Y0[4]
Cb0[4]
Y1[4]
Cr0[6]
Y0[6]
Cb0[6]
Y1[6]
D19
Cr0[3]
Y0[3]
Cb0[3]
Y1[3]
Cr0[5]
Y0[5]
Cb0[5]
Y1[5]
Cr0[7]
Y0[7]
Cb0[7]
Y1[7]
D20
Cr0[4]
Y0[4]
Cb0[4]
Y1[4]
Cr0[6]
Y0[6]
Cb0[6]
Y1[6]
Cr0[8]
Y0[8]
Cb0[8]
Y1[8]
D21
Cr0[5]
Y0[5]
Cb0[5]
Y1[5]
Cr0[7]
Y0[7]
Cb0[7]
Y1[7]
Cr0[9]
Y0[9]
Cb0[9]
Y1[9]
D22
Cr0[6]
Y0[6]
Cb0[6]
Y1[6]
Cr0[8]
Y0[8]
Cb0[8]
Y1[8]
Cr0[10]
Y0[10]
Cb0[10]
Y1[10]
D23
Cr0[7]
Y0[7]
Cb0[7]
Y1[7]
Cr0[9]
Y0[9]
Cb0[9]
Y1[9]
Cr0[11]
Y0[11]
Cb0[11]
Y1[11]
D[35:24]
LOW
LOW
LOW
HSYNC
LOW
LOW
LOW
VSYNC
LOW
LOW
LOW
DE
LOW
LOW
LOW
SAV Pixel 0 Pixel 1
D[23:16] XY Cb0[7:0]
IDCK
Active
video
EAV
Pixel n
00
00FF Y0[7:0] Cr0[7:0] Y1[7:0] Crn-1[7:0] Yn[7:0] XY
00
00FF
Figure 6.21. 8-Bit Color Depth YC Mux 4:2:2 Embedded Sync Timing
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
44 SiI-DS-1064-B
SAV Pixel 0 Pixel 1
D[23:16] Cb0[9:2]
IDCK
Active
video
EAV
Pixel n
D[7:6]
Y0[9:2] Cr0[9:2] Y1[9:2] Crn-1[9:2] Yn[9:2]
Crn-1[1:0] Yn[1:0]
Cb0[1:0] Y0[1:0] Cr0[1:0] Y1[1:0]
XY
00
00FF XY
00
00FF
XY
00
00FF XY
00
00FF
Figure 6.22. 10-Bit Color Depth YC Mux 4:2:2 Embedded Sync Timing
SAV Pixel 0 Pixel 1
D[23:16] Cb0[11:4]
IDCK
Active
video
EAV
Pixel n
D[7:4]
Y0[11:4] Cr0[11:4] Y1[11:4] Crn-1[11:4] Yn[11:4]
Crn-1[3:0] Yn[3:0]
Cb0[3:0] Y0[3:0] Cr0[3:0] Y1[3:0]
XY
00
00FF XY
00
00FF
XY
00
00FF XY
00
00FF
Figure 6.23. 12-Bit Color Depth YC Mux 4:2:2 Embedded Sync Timing
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1064-B 45
6.18.7. RGB and YCbCr 4:4:4 Dual Edge Mode Formats
The pixel clock runs at the pixel rate and a complete definition of each pixel is received on each clock cycle. One clock
edge latches in half the pixel data. The opposite clock edge latches in the remaining half of the pixel data on the same
pins. The same timing format is used for RGB and YCbCr 4:4:4. Each pair of columns in Table 6.13 shows the first pixel
of n + 1 pixels in the line of video. The figures below the table show RGB and YCbCr data; the YCbCr 4:4:4 data is given
in braces {}. Data and control signals (Dx, DE, HSYNC, and VSYNC) must change state to meet the setup and hold times
specified for the dual edge mode, with respect to the first edge of IDCK as defined by the setting of the Edge Select bit
(see the Programmer’s Reference). The figures show IDCK latching input data when the Edge Select bit is set to 1 (first
edge is the rising edge). Refer to Table 4.13 on page 17 for the required timing relationships.
Table 6.13. RGB/YCbCr 4:4:4 Separate Sync Dual-Edge Data Mapping
Pin
Name
12-bit Data Bus
8-bit Color Depth
15-bit Data Bus
10-bit Color Depth
18-bit Data Bus
12-bit Color Depth
24-bit Data Bus
16-bit Color Depth
RGB
YCbCr
RGB
YCbCr
RGB
YCbCr
RGB
YCbCr
First
Edge
Second
Edge
First
Edge
Second
Edge
First
Edge
Second
Edge
First
Edge
Second
Edge
First
Edge
Second
Edge
First
Edge
Second
Edge
First
Edge
Second
Edge
First
Edge
Second
Edge
D0
LOW
LOW
LOW
LOW
LOW
LOW
LOW
LOW
B0[0]
G0[6]
Cb0[0]
Y0[6]
B0[0]
G0[8]
Cb0[0]
Y08]
D1
LOW
LOW
LOW
LOW
LOW
LOW
LOW
LOW
B0[1]
G0[7]
Cb0[1]
Y0[7]
B0[1]
G0[9]
Cb0[1]
Y09]
D2
LOW
LOW
LOW
LOW
B0[0]
G0[5]
Cb0[0]
Y0[5]
B0[2]
G0[8]
Cb0[2]
Y0[8]
B0[2]
G0[10]
Cb0[2]
Y010]
D3
LOW
LOW
LOW
LOW
B0[1]
G0[6]
Cb0[1]
Y0[6]
B0[3]
G0[9]
Cb0[3]
Y0[9]
B0[3]
G0[11]
Cb0[3]
Y011]
D4
B0[0]
G0[4]
Cb0[0]
Y0[4]
B0[2]
G0[7]
Cb0[2]
Y0[7]
B0[4]
G0[10]
Cb0[4]
Y0[10]
B0[4]
G0[12]
Cb0[4]
Y012]
D5
B0[1]
G0[5]
Cb0[1]
Y0[5]
B0[3]
G0[8]
Cb0[3]
Y0[8]
B0[5]
G0[11]
Cb0[5]
Y0[11]
B0[5]
G0[13]
Cb0[5]
Y013]
D6
B0[2]
G0[6]
Cb0[2]
Y0[6]
B0[4]
G0[9]
Cb0[4]
Y0[9]
B0[6]
R0[0]
Cb0[6]
Cr0[0]
B0[6]
G0[14]
Cb0[6]
Y014]
D7
B0[3]
G0[7]
Cb0[3]
Y0[7]
B0[5]
R0[0]
Cb0[5]
Cr0[0]
B0[7]
R0[1]
Cb0[7]
Cr0[1]
B0[7]
G0[15]
Cb0[7]
Y015]
D8
B0[4]
R0[0]
Cb0[4]
Cr0[0]
B0[6]
R0[1]
Cb0[6]
Cr0[1]
B0[8]
R0[2]
Cb0[8]
Cr0[2]
B0[8]
R0[0]
Cb0[8]
Cr00]
D9
B0[5]
R0[1]
Cb0[5]
Cr0[1]
B0[7]
R0[2]
Cb0[7]
Cr0[2]
B0[9]
R0[3]
Cb0[9]
Cr0[3]
B0[9]
R0[1]
Cb0[9]
Cr01]
D10
B0[6]
R0[2]
Cb0[6]
Cr0[2]
B0[8]
R0[3]
Cb0[8]
Cr0[3]
B0[10]
R0[4]
Cb0[10]
Cr0[4]
B0[10]
R0[2]
Cb0[10]
Cr02]
D11
B0[7]
R0[3]
Cb0[7]
Cr0[3]
B0[9]
R0[4]
Cb0[9]
Cr0[4]
B0[11]
R0[5]
Cb0[11]
Cr0[5]
B0[11]
R0[3]
Cb0[11]
Cr03]
D12
LOW
LOW
LOW
LOW
LOW
LOW
LOW
LOW
G0[0]
R0[6]
Y0[0]
Cr0[6]
B0[12]
R0[4]
Cb0[12]
Cr04]
D13
LOW
LOW
LOW
LOW
LOW
LOW
LOW
LOW
G0[1]
R0[7]
Y0[1]
Cr0[7]
B0[13]
R0[5]
Cb0[13]
Cr05]
D14
LOW
LOW
LOW
LOW
G0[0]
R0[5]
Y0[0]
Cr0[5]
G0[2]
R0[8]
Y0[2]
Cr0[8]
B0[14]
R0[6]
Cb0[14]
Cr06]
D15
LOW
LOW
LOW
LOW
G0[1]
R0[6]
Y0[1]
Cr0[6]
G0[3]
R0[9]
Y0[3]
Cr0[9]
B0[15]
R0[7]
Cb0[15]
Cr07]
D16
G0[0]
R0[4]
Y0[0]
Cr0[4]
G0[2]
R0[7]
Y0[2]
Cr0[7]
G0[4]
R0[10]
Y0[4]
Cr0[10]
G0[0]
R0[8]
Y0[0]
Cr08]
D17
G0[1]
R0[5]
Y0[1]
Cr0[5]
G0[3]
R0[8]
Y0[3]
Cr0[8]
G0[5]
R0[11]
Y0[5]
Cr0[11]
G0[1]
R0[9]
Y0[1]
Cr09]
D18
G0[2]
R0[6]
Y0[2]
Cr0[6]
G0[4]
R0[9]
Y0[4]
Cr0[9]
LOW
LOW
LOW
LOW
G0[2]
R0[10]
Y0[2]
Cr010]
D19
G0[3]
R0[7]
Y0[3]
Cr0[7]
LOW
LOW
LOW
LOW
LOW
LOW
LOW
LOW
G0[3]
R0[11]
Y0[3]
Cr011]
D20
LOW
LOW
LOW
LOW
LOW
LOW
LOW
LOW
LOW
LOW
LOW
LOW
G0[4]
R0[12]
Y0[4]
Cr012]
D21
LOW
LOW
LOW
LOW
LOW
LOW
LOW
LOW
LOW
LOW
LOW
LOW
G0[5]
R0[13]
Y0[5]
Cr013]
D22
LOW
LOW
LOW
LOW
LOW
LOW
LOW
LOW
LOW
LOW
LOW
LOW
G0[6]
R0[14]
Y0[6]
Cr014]
D23
LOW
LOW
LOW
LOW
LOW
LOW
LOW
LOW
LOW
LOW
LOW
LOW
G0[7]
R0[15]
Y0[7]
Cr015]
HS
HS
HS
HS
HS
HS
HS
HS
HS
HS
HS
HS
HS
HS
HS
HS
HS
VS
VS
VS
VS
VS
VS
VS
VS
VS
VS
VS
VS
VS
VS
VS
VS
VS
DE
DE
DE
DE
DE
DE
DE
DE
DE
DE
DE
DE
DE
DE
DE
DE
DE
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
46 SiI-DS-1064-B
Pixel n - 1
blank Pixel 0 Pixel 1 Pixel 2
val
val
D[11:8]
D[7:4]
IDCK
DE
HSYNC,
VSYNC
val
val
val
D[19:16] val
val
val
val
val
val
val
val
val
val
blank blank
Pixel n
B0[7:4]
{Cb0[7:4]}
G0[3:0]
{Y0[3:0]}
B0[3:0]
{Cb0[3:0]}
R0[3:0]
{Cr0[3:0]}
R0[7:4]
{Cr0[7:4]}
G0[7:4]
{Y0[7:4]}
Bn-1[7:4]
{Cbn-1[7:4]}
Gn-1[3:0]
{Yn-1[3:0]}
Bn-1[3:0]
{Cbn-1[3:0]}
Rn-1[3:0]
{Crn-1[3:0]}
Rn-1[7:4]
{Crn-1[7:4]}
Gn-1[7:4]
{Yn-1[7:4]}
Bn[7:4]
{Cbn[7:4]}
Gn[3:0]
{Yn[3:0]}
Bn[3:0]
{Cbn[3:0}
Rn[3:0]
{Crn[3:0]}
Rn[7:4]
{Crn[7:4]}
Gn[7:4]
{Yn[7:4]}
B1[7:4]
{Cb1[7:4]}
G1[3:0]
{Y1[3:0]}
B1[3:0]
{Cb1[3:0]}
R1[3:0]
{Cr1[3:0]}
R1[7:4]
{Cr1[7:4]}
G1[7:4]
{Y1[7:4]}
B2[7:4]
{Cb2[7:4]}
G2[3:0]
{Y2[3:0]}
B2[3:0]
{Cb2[3:0]}
R0[3:0]
{Cr2[3:0]}
R2[7:4]
{Cr2[7:4]}
G0[7:4]
{Y2[7:4]}
Figure 6.24. 8-Bit Color Depth 4:4:4 Dual Edge Timing
Pixel n - 1
blank Pixel 0 Pixel 1 Pixel 2
val
val
D[11:7]
D[6:2]
IDCK
DE
HSYNC,
VSYNC
val
val
val
D[18:14] val
val
val
val
val
val
val
val
val
val
blank blank
Pixel n
B0[9:5]
{Cb0[9:5]}
G0[4:0]
{Y0[4:0]}
B0[4:0]
{Cb0[4:0]}
R0[4:0]
{Cr0[4:0]}
R0[9:5]
{Cr0[9:5]}
G0[9:5]
{Y0[9:5]}
Bn-1[9:5]
{Cbn-1[9:5]}
Gn-1[4:0]
{Yn-1[4:0]}
Bn-1[4:0]
{Cbn-1[4:0]}
Rn-1[4:0]
{Crn-1[4:0]}
Rn-1[9:5]
{Crn-1[9:5]}
Gn-1[9:5]
{Yn-1[9:5}
Bn[9:5]
{Cbn[9:5]}
Gn[4:0]
{Yn[4:0]}
Bn[4:0]
{Cbn[4:0}
Rn[4:0]
{Crn[4:0]}
Rn[9:5]
{Crn[9:5]}
Gn[9:5]
{Yn[9:5]}
B1[9:5]
{Cb1[9:5]}
G1[4:0]
{Y1[4:0]}
B1[4:0]
{Cb1[4:0]}
R1[4:0]
{Cr1[4:0]}
R1[9:5]
{Cr1[9:5]}
G1[9:5]
{Y1[9:5]}
B2[9:5]
{Cb2[9:5]}
G2[4:0]
{Y2[4:0]}
B2[4:0]
{Cb2[4:0]}
R0[4:0]
{Cr2[4:0]}
R2[9:5]
{Cr2[9:5]}
G0[9:5]
{Y2[9:5]}
Figure 6.25. 10-Bit Color Depth 4:4:4 Dual Edge Timing
Pixel n - 1
blank Pixel 0 Pixel 1 Pixel 2
val
val
D[11:6]
D[5:0]
IDCK
DE
HSYNC,
VSYNC
val
val
val
D[17:12] val
val
val
val
val
val
val
val
val
val
blank blank
Pixel n
B0[11:6]
{Cb0[11:6]}
G0[5:0]
{Y0[5:0]}
B0[5:0]
{Cb0[5:0]}
R0[5:0]
{Cr0[5:0]}
R0[11:6]
{Cr0[11:6]}
G0[11:6]
{Y0[11:6]}
B1[11:6]
{Cb1[11:6]}
G1[5:0]
{Y1[5:0]}
B1[5:0]
{Cb1[5:0]}
R1[5:0]
{Cr1[5:0]}
R1[11:6]
{Cr1[11:6]}
G1[11:6]
{Y1[11:6]}
B2[11:6]
{Cb2[11:6]}
G2[5:0]
{Y2[5:0]}
B2[5:0]
{Cb2[5:0]}
R2[5:0]
{Cr2[5:0]}
R2[11:6]
{Cr2[11:6]}
G2[11:6]
{Y2[11:6]}
Bn-1[11:6]
{Cbn-1[11:6]}
Gn-1[5:0]
{Yn-1[5:0]}
Bn-1[5:0]
{Cbn-1[5:0]}
Rn-1[5:0]
{Crn-1[5:0]}
Rn-1[11:6]
{Crn-1[11:6]}
Gn-1[11:6]
{Yn-1[11:6]}
Bn[11:6]
{Cbn[11:6]}
Gn[5:0]
{Yn[5:0]}
Bn[5:0]
{Cbn[5:0]}
Rn[5:0]
{Crn[5:0]}
Rn[11:6]
{Crn[11:6]}
Gn[11:6]
{Yn[11:6]}
Figure 6.26. 12-Bit Color Depth 4:4:4 Dual Edge Timing
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1064-B 47
Pixel n - 1
blank Pixel 0 Pixel 1 Pixel 2
val
val
D[15:8]
D[7:0]
IDCK
DE
HSYNC,
VSYNC
val
val
val
D[23:16] val
val
val
val
val
val
val
val
val
val
blank blank
Pixel n
B0[15:8]
{Cb0[15:8]}
G0[7:0]
{Y0[7:0]}
B0[7:0]
{Cb0[7:0]}
R0[7:0]
{Cr0[7:0]}
R0[15:8]
{Cr0[15:8]}
G0[15:8]
{Y0[15:8]}
Bn-1[15:8]
{Cbn-1[15:8]}
Gn-1[7:0]
{Yn-1[7:0]}
Bn-1[7:0]
{Cbn-1[7:0]}
Rn-1[7:0]
{Crn-1[7:0]}
Rn-1[15:8]
{Crn-1[15:8]}
Gn-1[15:8]
{Yn-1[15:8}
Bn[15:8]
{Cbn[15:8]}
Gn[7:0]
{Yn[7:0]}
Bn[7:0]
{Cbn[7:0}
Rn[7:0]
{Crn[7:0]}
Rn[15:8]
{Crn[15:8]}
Gn[15:8]
{Yn[15:8]}
B1[15:8]
{Cb1[15:8]}
G1[7:0]
{Y1[7:0]}
B1[7:0]
{Cb1[7:0]}
R1[7:0]
{Cr1[7:0]}
R1[15:8]
{Cr1[15:8]}
G1[15:8]
{Y1[15:8]}
B2[15:8]
{Cb2[15:8]}
G2[7:0]
{Y2[7:0]}
B2[7:0]
{Cb2[7:0]}
R0[7:0]
{Cr2[7:0]}
R2[15:8]
{Cr2[15:8]}
G0[15:8]
{Y2[15:8]}
Figure 6.27. 16-Bit Color Depth 4:4:4 Dual Edge Timing
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
48 SiI-DS-1064-B
7. Design Recommendations
7.1. Power Supply Decoupling
Designers should include decoupling and bypass capacitors at each power pin in the layout. Figure 7.1 shows this
schematically. Figure 7.2 shows a representative layout of the various types of power connections on the transmitter.
Connections in any one group (such as all the CVCC12 pins) can share C2, C3, and the ferrite. Locate a separate C1 as
close as possible to the VCC pin. The recommended impedance of the ferrite is 10 or more in the frequency range of
12 MHz.
C2C1
L1
VCC Pin
GND
3.3 V
C3
Figure 7.1. Decoupling and Bypass Schematic
C1
VCC
Ferrite
Via to GND
VCC
GND
C2
C3
L1
Figure 7.2. Decoupling and Bypass Capacitor Placement
7.2. Power Supply Sequencing
All power supplies in the SiI9334 transmitter are independent. However; identical supplies must be provided at the
same time. Independent supplies don’t have any sequencing requirements.
7.3. ESD Recommendations
The SiI9334 transmitter can withstand electrostatic discharges due to handling during manufacture up to 4 kV HBM. In
applications where higher protection levels are required, ESD-limiting components can be placed on the pins of the
chip. These components typically have a capacitive effect that reduces the signal quality on the differential lines at
higher clock frequencies, so use the lowest capacitance devices possible on these lines. In no case should the
capacitance value exceed 1 pF.
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1064-B 49
7.4. High-Speed TMDS Signals
7.4.1. Layout Guidelines
The layout guidelines below help to ensure signal integrity. Lattice Semiconductor encourages the board designer to
follow them as closely as possible.
Locate the output connector that carries the TMDS signals as close as possible to the chip.
Route the differential lines as directly as possible from the connector to the device pins.
Route the two traces of each differential pair together.
Minimize the number of vias through which the signal lines pass.
Lay out the two traces of each differential pair with a controlled differential impedance of 100 Ω.
Because Lattice Semiconductor devices are tolerant of skews between differential pairs, spiral skew compensation for
path length differences is not required.
7.4.2. TMDS Output Recommendation
The SiI9334 transmitter is capable of sending frequencies of up to 225 MHz over the TMDS clock line.
If the output of the transmitter is connected to an HDMI connector, the output port must be HDMI-compliant. The
TMDS output is designed to give the maximum horizontal eye opening by speeding up the rise and fall time to the
minimum value of 75 ps allowed by the HDMI specification. Depending on the design layout and with light loading, it is
possible to see rise times slightly faster than 75 ps. Adding components such as common mode filters and ESD
suppression devices slows down the rise and fall time to well within the specification. If these components are not in
the design, adding a discrete capacitor of approximately 1 pF from each of the differential signal traces to ground can
solve this compliance issue.
The following external components have been tested for output compliance. Components with similar capacitance can
also be used:
Common mode filter: TDK ACM2012H
ESD suppression diode: Semtech RClamp0524P. Semtech also makes a pin-compatible device (Semtech SRV05)
that Lattice Semiconductor has not tested but for which similar compliance performance is expected.
7.4.3. EMI Considerations
Electromagnetic interference is a function of board layout, shielding, operating voltage and frequency, and so on.
When attempting to control emissions, do not place any passive components on the differential signal lines (except for
the ESD protection described earlier). The differential signals used in HDMI are inherently low in EMI if the routing
recommendations noted in the Layout Guidelines section are followed.
The PCB ground plane should extend unbroken under as much of the transmitter chip and associated circuitry as
possible, with all ground signals of the chip using a common ground.
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
50 SiI-DS-1064-B
8. Packaging
8.1. ePad Requirements
The SiI9136 HDMI Deep Color Transmitter chip is packaged in a 100-pin, 14 mm x 14mm TQFP package with an exposed
pad (ePad) that is used for the electrical ground of the device and for improved thermal transfer characteristics. The
ePad dimensions are 5 mm x 5 mm ±0.20 mm. Soldering the ePad to the ground plane of the PCB is required to meet
package power dissipation requirements at full speed operation, and to correctly connect the chip circuitry to electrical
ground. A clearance of at least 0.25 mm should be designed on the PCB between the edge of the ePad and the inner
edges of the lead pads to avoid the possibility of electrical shorts.
The thermal land area on the PCB may use thermal vias to improve heat removal from the package. These thermal vias
also double as the ground connections of the chip and must attach internally in the PCB to the ground plane. An array
of vias should be designed into the PCB beneath the package. For optimum thermal performance, the via diameter
should be 12 mils to 13 mils (0.30 mm to 0.33 mm) and the via barrel should be plated with 1-ounce copper to plug the
via. This design helps to avoid any solder wicking inside the via during the soldering process, which may result in voids
in solder between the pad and the thermal land. If the copper plating does not plug the vias, the thermal vias can be
tented with solder mask on the top surface of the PCB to avoid solder wicking inside the via during assembly. The
solder mask diameter should be at least 4 mils (0.1 mm) larger than the via diameter.
Package stand-off when mounting the device also needs to be considered. For a nominal stand-off of approximately 0.1
mm the stencil thickness of 5 mils to 8 mils should provide a good solder joint between the ePad and the thermal land.
8.2. PCB Layout Guidelines
PCB layout designers should refer to Lattice Semiconductor application note PCB Layout Guidelines: Designing with
Exposed Pads (SiI-AN-0129) for basic design guidelines when designing with thermally enhanced packages using an
Exposed Pad.
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1064-B 51
8.3. Package Dimensions
These drawings are not to scale.
E1E
D1
D
5.00 ± 0.20
5.00 ± 0.20
100 76
75
51
25
26 50
b
e
A1
AA2
See Detail A
R1
S
R2
L1
L
.25
Detail A
GAGE PLANE
PIN 1
IDENTIFIER
C
C
ccc
Figure 8.1. 100-Pin TQFP Package Diagram
JEDEC Package Code MS-026
Item
Description
Min
Typ
Max
Item
Description
Min
Typ
Max
A
Thickness
1.20
C
Lead thickness
0.09
0.20
A1
Stand-off
0.05
0.15
e
Lead pitch
0.50 BSC
A2
Body thickness
0.95
1.00
1.05
L
Lead foot length
0.45
0.60
0.75
D
Footprint
16.00 BSC
L1
Total lead length
1.00 REF
E
Footprint
16.00 BSC
R1
Lead radius, inside
0.08
D1
Body size
14.00 BSC
R2
Lead radius, outside
0.08
0.20
E1
Body size
14.00 BSC
S
Lead horizontal run
0.20
b
Lead width
0.17
0.22
0.27
ccc
Lead coplanarity
0.08
Dimensions given in mm.
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
52 SiI-DS-1064-B
8.4. Marking Specification
These drawings are not to scale.
Logo
Silicon Image Part Number
Lot # (= Job#)
Date code
Trace code
Pin 1 location
Product
Designation
SiIxxxxrpppp-sXXXX
Package Type
Revision
Special
Designation
Speed
SiI9334CTU
LLLLLL.LL-L
YYWW
XXXXXXX
Figure 8.2. Marking Diagram
Pin 1 Indicator
DATECODE
SiI9334CTU
@
Region/Country
of Origin
Figure 8.3. Alternate Topside Marking
8.5. Ordering Information
Production Part Numbers:
Device
Part Number
Standard
SiI9334CTU
The universal package can be used in lead-free and ordinary process lines.
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
SiI-DS-1064-B 53
References
Standards Documents
This is a list of standards abbreviations appearing in this document, and references to their respective specifications
documents.
Abbreviation
Standards publication, organization, and date
HDMI
High Definition Multimedia Interface, Revision 1.4, HDMI Consortium, June, 2009
HCTS
HDMI Compliance Test Specification, Revision 1.4, HDMI Consortium, November, 2009
HDCP
High-bandwidth Digital Content Protection, Revision 1.4, Digital-Content Protection, LLC; July, 2009
E-EDID
Enhanced Extended Display Identification Data Standard, Release A Revision 1, VESA; Feb. 2000
E-DID IG
VESA EDID Implementation Guide, VESA, June 2001
CEA-861-D
A DTV Profile for Uncompressed High Speed Digital Interfaces, EIA/CEA; July 2006
EDDC
Enhanced Display Data Channel Standard, Version 1.1, VESA; March 2004
ITU-R BT.601
Studio encoding parameters of digital television for standard 4:3 and wide screen 16:9 aspect ratios,
International Telecommunications Union, January 2007
ITU-R BT.656
Interface for digital component video signals in 525-line and 625-line television systems operating at the
4:2:2 level of Recommendation ITU-R BT.601, International Telecommunications Union, December 2007
ITU-R BT.709
Parameter values for the HDTV standards for production and international programme exchange,
International Telecommunications Union, April 2002
IEC 61966-2-4
Multimedia systems and equipment - Colour measurement and management - Part 2-4: Colour
management - Extended-gamut YCC colour space for video applications xvYCC, International
Electrotechnical Commission, January 2006
ACPI
Advanced Configuration and Power Interface, Revision 4.0, Hewlett-Packard/Intel/Microsoft/Phoenix/
Toshiba, June, 2009
BTA T-1004
Video Signal Interfaces for EDTV-II Studio Equipment, Version 1.0, ARIB; June 1995
For information on specifications that apply to this document, contact the standards groups appearing on this list.
Standards Group
Web URL
ANSI/EIA/CEA
http://global.ihs.com
VESA
http://www.vesa.org
HDCP
http://www.digital-cp.com
DVI
http://www.ddwg.org
HDMI
http://www.hdmi.org
ITU
http://www.itu.int
IEC
http://www.iec.org
ARIB
http://www.arib.or.jp
Lattice Semiconductor Documents
This is a list of the related documents that are available from your Lattice Semiconductor sales representative. The
Programmer’s Reference requires an NDA with Lattice Semiconductor.
Document
Title
SiI-PR-1032
Transmitter Programming Interface (TPI) Programmer’s Reference
SiI-PR-0041
CEC Programming Interface (CPI) Programmer's Reference
SiI-AN-1029
PCB Layout Guidelines: Designing with Exposed Pads
Technical Support
For assistance, submit a technical support case at www.latticesemi.com/techsupport.
SiI9334 HDMI Deep Color Transmitter with Ethernet and Audio Return Channel Support
Data Sheet
© 2009-2017 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand or product names are
trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.
54 SiI-DS-1064-B
Revision History
Revision B, May 2017
Figure 8.3. Alternate Topside Marking added per PCN13A16.
Revision A02, March 2016
Formatted to latest template.
Revision A02, August 2010
Removed patent information from DB, rolled revision for DS accordingly.
Revision A01, August 2010
Inserted Export Control Paragraph, Corrected HDCP Organization name.
Revision A, February 2010
First Production release.
7th Floor, 111 SW 5th Avenue
Portland, OR 97204, USA
T 503.268.8000
www.latticesemi.com