STM32F446xC/E ARM(R) Cortex(R)-M4 32b MCU+FPU, 225DMIPS, up to 512kB Flash/128+4KB RAM, USB OTG HS/FS, 17 TIMs, 3 ADCs, 20 comm. interfaces Datasheet - production data Features &"'! * Core: ARM(R) 32-bit Cortex(R)-M4 CPU with FPU, Adaptive real-time accelerator (ART AcceleratorTM) allowing 0-wait state execution from Fl ash memory, frequency up to 180 MHz, MPU, 225 DMIPS/1.25 DMIPS/MHz (Dhrystone 2.1), and DSP instructions * Memories - 512 kB of Flash memory - 128 KB of SRAM - Flexible external memory controller with up to 16-bit data bus: SRAM,PSRAM,SDRAM/LPSDR SDRAM, Flash NOR/NAND memories - Dual mode Quad SPI interface * LCD parallel interface, 8080/6800 modes * Clock, reset and supply management - 1.7 V to 3.6 V application supply and I/Os - POR, PDR, PVD and BOR - 4-to-26 MHz crystal oscillator - Internal 16 MHz factory-trimmed RC (1% accuracy) - 32 kHz oscillator for RTC with calibration - Internal 32 kHz RC with calibration * Low power - Sleep, Stop and Standby modes - VBAT supply for RTC, 20x32 bit backup registers + optional 4 KB backup SRAM * 3x12-bit, 2.4 MSPS ADC: up to 24 channels and 7.2 MSPS in triple interleaved mode * 2x12-bit D/A converters * General-purpose DMA: 16-stream DMA controller with FIFOs and burst support * Up to 17 timers: 2x watchdog, 1x SysTick timer and up to twelve 16-bit and two 32-bit timers up to 180 MHz, each with up to 4 IC/OC/PWM or pulse counter * Debug mode - SWD & JTAG interfaces - Cortex(R)-M4 Trace MacrocellTM September 2016 This is information on a product in full production. LQFP64 (10 x 10mm) LQFP100 (14 x 14mm) UFBGA144 (7 x 7 mm) LQFP144 (20 x 20 mm) UFBGA144 (10 x 10 mm) WLCSP 81 * Up to 114 I/O ports with interrupt capability - Up to 111 fast I/Os up to 90 MHz - Up to 112 5 V-tolerant I/Os * Up to 20 communication interfaces - SPDIF-Rx - Up to 4 x I2C interfaces (SMBus/PMBus) - Up to 4 USARTs/2 UARTs (11.25 Mbit/s, ISO7816 interface, LIN, IrDA, modem control) - Up to 4 SPIs (45 Mbits/s), 3 with muxed I2S for audio class accuracy via internal audio PLL or external clock - 2 x SAI (serial audio interface) - 2 x CAN (2.0B Active) - SDIO interface - Consumer electronics control (CEC) I/F * Advanced connectivity - USB 2.0 full-speed device/host/OTG controller with on-chip PHY - USB 2.0 high-speed/full-speed device/host/OTG controller with dedicated DMA, on-chip full-speed PHY and ULPI - Dedicated USB power rail enabling on-chip PHYs operation throughout the entire MCU power supply range * 8- to 14-bit parallel camera interface up to 54 Mbytes/s * CRC calculation unit * RTC: subsecond accuracy, hardware calendar * 96-bit unique ID Table 1. Device summary Reference STM32F446xC/E DocID027107 Rev 6 Part number STM32F446MC, STM32F446ME, STM32F446RC, STM32F446RE, STM32F446VC, STM32F446VE, STM32F446ZC, STM32F446ZE. 1/202 www.st.com Contents STM32F446xC/E Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.1 3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1 ARM(R) Cortex(R)-M4 with FPU and embedded Flash and SRAM . . . . . . . 17 3.2 Adaptive real-time memory accelerator (ART AcceleratorTM) . . . . . . . . . 17 3.3 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.4 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.5 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 18 3.6 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.7 Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.8 DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.9 Flexible memory controller (FMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.10 Quad SPI memory interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.11 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 21 3.12 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.13 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.14 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.15 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.16 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.17 2/202 Compatibility with STM32F4 family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.16.1 Internal reset ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.16.2 Internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.17.1 Regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.17.2 Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.17.3 Regulator ON/OFF and internal reset ON/OFF availability . . . . . . . . . . 27 3.18 Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . . . 28 3.19 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.20 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.21 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 DocID027107 Rev 6 STM32F446xC/E Contents 3.21.1 Advanced-control timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.21.2 General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.21.3 Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.21.4 Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.21.5 Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.21.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.22 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.23 Universal synchronous/asynchronous receiver transmitters (USART) . . 34 3.24 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.25 HDMI (high-definition multimedia interface) consumer electronics control (CEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.26 Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.27 SPDIF-RX Receiver Interface (SPDIFRX) . . . . . . . . . . . . . . . . . . . . . . . . 35 3.28 Serial Audio interface (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.29 Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.30 Serial Audio Interface PLL(PLLSAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.31 Secure digital input/output interface (SDIO) . . . . . . . . . . . . . . . . . . . . . . . 36 3.32 Controller area network (bxCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.33 Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . . 37 3.34 Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . . . 37 3.35 Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.36 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.37 Analog-to-digital converters (ADCs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.38 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.39 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.40 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.41 Embedded Trace MacrocellTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4 Pinout and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 DocID027107 Rev 6 3/202 5 Contents 4/202 STM32F446xC/E 6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.3.2 VCAP_1/VCAP_2 external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.3.3 Operating conditions at power-up / power-down (regulator ON) . . . . . . 79 6.3.4 Operating conditions at power-up / power-down (regulator OFF) . . . . . 79 6.3.5 Reset and power control block characteristics . . . . . . . . . . . . . . . . . . . 80 6.3.6 Over-drive switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.3.7 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.3.8 Wakeup time from low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.3.9 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6.3.10 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.3.11 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.3.12 PLL spread spectrum clock generation (SSCG) characteristics . . . . . 110 6.3.13 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.3.14 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.3.15 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 116 6.3.16 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 6.3.17 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 6.3.18 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.3.19 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.3.20 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.3.21 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 6.3.22 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 6.3.23 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 6.3.24 Reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 6.3.25 DAC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 6.3.26 FMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 6.3.27 Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 172 6.3.28 SD/SDIO MMC card host interface (SDIO) characteristics . . . . . . . . . 173 6.3.29 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 DocID027107 Rev 6 STM32F446xC/E 7 8 Contents Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 7.1 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 7.2 LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 7.3 LQFP144 package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 7.4 UFBGA144 7 x 7 mm package information . . . . . . . . . . . . . . . . . . . . . . 186 7.5 UFBGA144 10 x 10 mm package information . . . . . . . . . . . . . . . . . . . . 189 7.6 WLCSP81 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 7.7 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 Appendix A Application block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 A.1 USB OTG full speed (FS) interface solutions . . . . . . . . . . . . . . . . . . . . . 197 A.2 USB OTG high speed (HS) interface solutions . . . . . . . . . . . . . . . . . . . . 199 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 DocID027107 Rev 6 5/202 5 List of figures STM32F446xC/E List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. 6/202 Compatible board design for LQFP100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Compatible board for LQFP64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 STM32F446xC/E block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 STM32F446xC/E and Multi-AHB matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 VDDUSB connected to an external independent power supply . . . . . . . . . . . . . . . . . . . . . 23 Power supply supervisor interconnection with internal reset OFF . . . . . . . . . . . . . . . . . . . 24 Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Startup in regulator OFF: slow VDD slope power-down reset risen after VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . . . . 27 Startup in regulator OFF mode: fast VDD slope power-down reset risen before VCAP_1/VCAP_2 stabilization. . . . . . . . . . . . . . . . . . . . . . . . 27 STM32F446xC/xE LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 STM32F446xC/xE LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 STM32F446xC LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 STM32F446xC/xE WLCSP81 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 STM32F446xC/xE UFBGA144 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Typical VBAT current consumption (RTC ON/backup RAM OFF and LSE in low power mode) . . . . . . . . . . . . . . . . . . . . . . . . 91 Typical VBAT current consumption (RTC ON/backup RAM OFF and LSE in high drive mode). . . . . . . . . . . . . . . . . . . . . . . . . 92 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 LACCHSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 ACCLSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 FT I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 FMPI2C timing diagram and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 USB OTG full speed timings: definition of data signal rise and fall time . . . . . . . . . . . . . . 138 ULPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 DocID027107 Rev 6 STM32F446xC/E Figure 45. Figure 46. Figure 47. Figure 48. Figure 49. Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. Figure 55. Figure 56. Figure 57. Figure 58. Figure 59. Figure 60. Figure 61. Figure 62. Figure 63. Figure 64. Figure 65. Figure 66. Figure 67. Figure 68. Figure 69. Figure 70. Figure 71. Figure 72. Figure 73. Figure 74. Figure 75. Figure 76. Figure 77. Figure 78. Figure 79. Figure 80. Figure 81. Figure 82. Figure 83. Figure 84. Figure 85. Figure 86. Figure 87. Figure 88. List of figures ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 146 Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 147 12-bit buffered/non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 153 Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 155 Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 156 Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 158 Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 164 Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 168 NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 168 SDRAM read access waveforms (CL = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 SDRAM write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 DCMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 LQFP64-10x10 mm 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . 176 LQFP64 Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 LQFP64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 179 LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 LQFP100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 182 LQFP144 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 LQFP144 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 UFBGA144 - 144-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 UFBGA144 - 144-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 UQFP144 7 x 7 mm marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . 188 UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball grid array package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 UQFP144 10 x 10 mm marking example (package top view). . . . . . . . . . . . . . . . . . . . . . 191 WLCSP81 - 81-pin, 3.693 x 3.815 mm, 0.4 mm pitch wafer level chip scale package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 WLCSP81- 81-pin, 4.4084 x 3.7594 mm, 0.4 mm pitch wafer level chip scale package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 WLCSP81 10 x 10 mm marking example (package top view) . . . . . . . . . . . . . . . . . . . . . 194 USB controller configured as peripheral-only and used in Full speed mode . . . . . . . . . . 197 USB controller configured as host-only and used in full speed mode. . . . . . . . . . . . . . . . 197 USB controller configured in dual mode and used in full speed mode . . . . . . . . . . . . . . . 198 USB controller configured as peripheral, host, or dual-mode and used in high speed mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 DocID027107 Rev 6 7/202 7 List of tables STM32F446xC/E List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. 8/202 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 STM32F446xC/E features and peripheral counts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Voltage regulator configuration mode versus device operating mode . . . . . . . . . . . . . . . . 25 Regulator ON/OFF and internal reset ON/OFF availability. . . . . . . . . . . . . . . . . . . . . . . . . 27 Voltage regulator modes in stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 USART feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 STM32F446xx pin and ball descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Alternate function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 STM32F446xC/E register boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . . 78 VCAP_1/VCAP_2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Operating conditions at power-up/power-down (regulator ON) . . . . . . . . . . . . . . . . . . . . . 79 Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . . 79 reset and power control block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Over-drive switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled except prefetch) or RAM . . . . . . . 83 Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator enabled with prefetch) or RAM . . . . . . . . . 84 Typical and maximum current consumption in Run mode, code with data processing running from Flash memory (ART accelerator disabled) . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Typical and maximum current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . 86 Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 89 Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 90 Typical and maximum current consumptions in VBAT mode. . . . . . . . . . . . . . . . . . . . . . . . 91 Typical current consumption in Run mode, code with data processing running from Flash memory or RAM, regulator ON (ART accelerator enabled except prefetch), VDD=1.7 V . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Typical current consumption in Run mode, code with data processing running from Flash memory, regulator OFF (ART accelerator enabled except prefetch). . . . . . . . 94 Typical current consumption in Sleep mode, regulator ON, VDD=1.7 V . . . . . . . . . . . . . . 95 Typical current consumption in Sleep mode, regulator OFF. . . . . . . . . . . . . . . . . . . . . . . . 96 Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 HSE 4-26 MHz oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 DocID027107 Rev 6 STM32F446xC/E Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. Table 80. Table 81. Table 82. Table 83. Table 84. Table 85. Table 86. Table 87. Table 88. Table 89. Table 90. Table 91. List of tables Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 PLLI2S (audio PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 PLLISAI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 SSCG parameters constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Flash memory programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Flash memory programming with VPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 FMPI2C characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 SPI dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 QSPI dynamic characteristics in SDR Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 QSPI dynamic characteristics in DDR Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 I2S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 USB OTG full speed startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 USB OTG full speed DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 USB OTG full speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 USB HS DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 USB HS clock timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 Dynamic characteristics: USB ULPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 ADC static accuracy at fADC = 18 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 ADC static accuracy at fADC = 30 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 ADC static accuracy at fADC = 36 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 ADC dynamic accuracy at fADC = 18 MHz - limited test conditions . . . . . . . . . . . . . . . . . 143 ADC dynamic accuracy at fADC = 36 MHz - limited test conditions . . . . . . . . . . . . . . . . . 143 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Asynchronous non-multiplexed SRAM/PSRAM/NOR read NWAIT timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 155 Asynchronous non-multiplexed SRAM/PSRAM/NOR write NWAIT timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 157 Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 157 DocID027107 Rev 6 9/202 10 List of tables Table 92. Table 93. Table 94. Table 95. Table 96. Table 97. Table 98. Table 99. Table 100. Table 101. Table 102. Table 103. Table 104. Table 105. Table 106. Table 107. Table 108. Table 109. Table 110. Table 111. Table 112. Table 113. Table 114. Table 115. Table 116. Table 117. Table 118. Table 119. 10/202 STM32F446xC/E Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 159 Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 159 Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 164 Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 169 SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 LPSDR SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 SDRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 LPSDR SDRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 Dynamic characteristics: SD / MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 Dynamic characteristics: eMMC characteristics VDD = 1.7 V to 1.9 V. . . . . . . . . . . . . . . 175 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 LQFP64 - 10 x 10 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . 176 LQPF100, 14 x 14 mm 100-pin low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data . . . . . . . 183 UFBGA144 - 144-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 UFBGA144 recommended PCB design rules (0.50 mm pitch BGA) . . . . . . . . . . . . . . . . 187 UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball grid array package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 UFBGA144 recommended PCB design rules (0.80 mm pitch BGA) . . . . . . . . . . . . . . . . 190 WLCSP81- 81-pin, 3.693 x 3.815 mm, 0.4 mm pitch wafer level chip scale package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 WLCSP81 recommended PCB design rules (0.4 mm pitch) . . . . . . . . . . . . . . . . . . . . . . 193 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 DocID027107 Rev 6 STM32F446xC/E 1 Introduction Introduction This document provides the description of the STM32F446xC/E products. The STM32F446xC/E document should be read in conjunction with the STM32F4xx reference manual. For information on the Cortex(R)-M4 core, please refer to the Cortex(R)-M4 programming manual (PM0214), available from the www.st.com. DocID027107 Rev 6 11/202 40 Description 2 STM32F446xC/E Description The STM32F446xC/E devices are based on the high-performance ARM(R) Cortex(R)-M4 32-bit RISC core operating at a frequency of up to 180 MHz. The Cortex-M4 core features a Floating point unit (FPU) single precision which supports all ARM(R) single-precision dataprocessing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances application security. The STM32F446xC/E devices incorporate high-speed embedded memories (Flash memory up to 512 Kbyte, up to 128 Kbyte of SRAM), up to 4 Kbytes of backup SRAM, and an extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit multi-AHB bus matrix. All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose 16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers. They also feature standard and advanced communication interfaces. * Up to four I2Cs; * Four SPIs, three I2Ss full simplex. To achieve audio class accuracy, the I2S peripherals can be clocked via a dedicated internal audio PLL or via an external clock to allow synchronization; * Four USARTs plus two UARTs; * An USB OTG full-speed and an USB OTG high-speed with full-speed capability (with the ULPI), both with dedicated power rails allowing to use them throughout the entire power range; * Two CANs; * Two SAIs serial audio interfaces. To achieve audio class accuracy, the SAIs can be clocked via a dedicated internal audio PLL; * An SDIO/MMC interface; * Camera interface; * HDMI-CEC; * SPDIF Receiver (SPDIFRx); * QuadSPI. Advanced peripherals include an SDIO, a flexible memory control (FMC) interface, a camera interface for CMOS sensors. Refer to Table 2: STM32F446xC/E features and peripheral counts for the list of peripherals available on each part number. The STM32F446xC/E devices operates in the -40 to +105 C temperature range from a 1.7 to 3.6 V power supply. The supply voltage can drop to 1.7 V with the use of an external power supply supervisor (refer to Section 3.16.2: Internal reset OFF). A comprehensive set of power-saving mode allows the design of low-power applications. The STM32F446xC/E devices offer devices in 6 packages ranging from 64 pins to 144 pins. The set of included peripherals changes with the device chosen. 12/202 DocID027107 Rev 6 STM32F446xC/E Description These features make the STM32F446xC/E microcontrollers suitable for a wide range of applications: * Motor drive and application control * Medical equipment * Industrial applications: PLC, inverters, circuit breakers * Printers, and scanners * Alarm systems, video intercom, and HVAC * Home audio appliances Table 2. STM32F446xC/E features and peripheral counts Peripherals Flash memory in Kbytes SRAM in Kbytes STM32F44 6MC STM32F44 6ME STM32F44 6RC STM32F44 6RE STM32F44 6VC STM32F44 6VE STM32F44 6ZC STM32F44 6ZE 256 512 256 512 256 512 256 512 System 128 (112+16) Backup 4 FMC memory controller Timers Yes(1) No Generalpurpose 10 Advancedcontrol 2 Basic 2 SPI / I2S 4/3 (simplex)(2) I2C 4/1 FMP + USART/UART 4/2 USB OTG FS Yes (6-Endpoints) USB OTG HS Yes (8-Endpoints) Communication CAN interfaces 2 SAI 2 SDIO Yes SPDIF-Rx 1 HDMI-CEC 1 (3) 1 Quad SPI Camera interface GPIOs 12-bit ADC Number of channels Yes 63 50 114 16 24 3 14 16 12-bit DAC Number of channels Yes 2 Maximum CPU frequency 180 MHz 1.8 to 3.6 V(4) Operating voltage Ambient temperatures: -40 to +85 C /-40 to +105 C Operating temperatures Packages 81 Junction temperature: -40 to + 125 C WLCSP81 LQFP64 DocID027107 Rev 6 LQFP100 LQFP144 UFBGA144 13/202 40 Description STM32F446xC/E 1. For the LQFP100 package, only FMC Bank1 or Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the NE1 Chip Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used since Port G is not available in this package. 2. The SPI1, SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode. 3. For the LQFP64 package, the Quad SPI is available with limited features. 4. VDD/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external power supply supervisor (refer to Section 3.16.2: Internal reset OFF). 2.1 Compatibility with STM32F4 family The STM32F446xC/xV is software and feature compatible with the STM32F4 family. The STM32F446xC/xV can be used as drop-in replacement of the other STM32F4 products but some slight changes have to be done on the PCB board. Figure 1. Compatible board design for LQFP100 package 670)[[ 3%QRWDYDLODEOHDQ\PRUH 5HSODFHGE\9 &$3 3( 3( 3( 3( 3( 3( 3% 9&$3 966 9'' 3' 3' 3' 3' 3% 3% 3% 3% 3( 3( 3( 3( 3( 3( 3% 3% 9&$3 9'' 670)670)OLQH 670)670)OLQH 670)670)OLQH 670)670)OLQH 3' 3' 3' 3' 3% 3% 3% 3% 966 9'' 966 9'' 069 14/202 DocID027107 Rev 6 STM32F446xC/E Description Figure 2. Compatible board for LQFP64 package 670)[[ 3% 9&$3 9'' 3% 3% 9'' 9&$3 3$ 3$ 3$ 3$ 3$ 3$ 3& 3& 3& 3& 3% 3% 3% 3% 9'' 966 3%QRWDYDLODEOHDQ\PRUH 5HSODFHGE\9&$3 9'' 966 3$ 3$ 3$ 3$ 3$ 3$ 3& 3& 3& 3& 3% 3% 3% 3% 9'' 966 3% 3% 9&$3 966 9'' 3& 3& 3& 3$ 3$ 3& 3& 3& 3$ 3$ 670)670)OLQH 9LQFUHDVHGWRI &$3 (65RUEHORZ 966 9'' 966 9'' 069 Figure 3 shows the STM32F446xx block diagram. DocID027107 Rev 6 15/202 40 Description STM32F446xC/E Figure 3. STM32F446xC/E block diagram '0$ ),)2 ,'9%86 6WUHDPV *3'0$ ),)2 &/.&6D&6E'>@ )/$6+N% 65$0.% 65$0.% $+% 0+] 6WUHDPV 325 $+%0+] ),)2 86% 27*)6 6833/< 683(59,6,21 3253'5 %25 5HVHW ,QW #9''$ *3,23257' 86$570%SV 3( *3,23257( 86$570%SV 3) *3,23257) 86$570%SV 3* *3,23257* 86$570%SV 5(6(7 &/2&. 0$1$*7 &75/ 3+ *3,23257+ 86$570%SV /6 86$570%SV 7,0(53:0 &+DV$) E E :LQ:$7&+'2* VPFDUG 86$57 86$570%SV LU'$ 026,0,62 6&.166DV$) 63,,6 86$570%SV 026,0,62 6&.166DV$) 86$570%SV 63, 6'6&.)6 0&/.DV$) 86$570%SV 6$, ),)2 VPFDUG 86$570%SV 86$57 LU'$ 6$, 86$570%SV 6'6&.)6 0&/.DV$) 9''5()B$'& $,1FRPPRQ WRWKH$'&V $,1FRPPRQ WRWKH$'& $,1WR$'& 7,0(5 7,0(5 E E $'& $'& $'& &+ D V$) 7,0(5 E &+DV$) E &+DV$) 86$57 86$57 VPFDUG LU'$ '$& '$&DV$) 5;7;6&. &76576DV$) 5;7;6&. &76576DV$) 8$57 5;7;DV$) 8$57 5;7;DV$) 63',) 63',)B5;>@DV$) +'0,&(& +'0,B&(&D V$) 63,,6 026,0,626&. 166:60&.DV$) 63,,6 026,0,626&. 166:60&.DV$) 6&/6'$60%$/DV$) ,&60%86 ,&60%86 '$& &+DV$) VPFDUG LU'$ )03,& 6&/6'$60%$/DV$) 6&/6'$60%$/DV$) 6&/6'$60%$/DV$) ,7) E[&$1 E[&$1 16/202 &+(75DV$) 7,0(5 E ,&60%86 #9''$ ,) $/$50B287 67$03 67$03 &+(75DV$) #9''$ 86$570%SV 7(036(1625 WR9 26&B,1 26&B287 &+(75DV$) E ),)2 5;7;6&. &76576DV$) 26&,1 26&287 7,0(5 E 7,0(5 E 7,0(5 86$570%SV 9 '' WR9 966 9&$3 7,0(5 E 7,0(5 7,0(5 86$570%SV &+DV$) 5;7;6&. &76576DV$) .%%.35$0 E 7,0(5 86$570%SV &+DV$) $:8 %.35(* 7,0(5 E $ 3% 0+] 3:03:0 (75%.,1DV$) ;7$/N+] 57& $+%$3% $+%$3% E 7,0(53:0 86$570%SV 9''$ 966$ 9%$7 #9%$7 $3%0+] 3:03:0 (75%.,1DV$) 6',200& 9''86% 729 '' ,'9%86 :'*. *3'0$ $3% 0+] ' &0'&.DV$) *3'0$ (;7,7:.83 86$570%SV #9'' 6WDQGE\LQWHUIDFH &5& ),)2 $) 92/75(* 9729 ;7$/26& 0+] /6 *3,23257& 86$570%SV 3' #9''$ 32:(501*7 3//3//3// *3,23257% 86$570%SV 3& 5&+6 5&/6 3:5&7/ 3% *3,23257$ 86$570%SV )&/. + &/. $3%3 &/. $3%3 &/. $+%3&/. $+ %3&/. 3$ +6<1&96<1& 3,;&.' 15(6(7 39' 'LJ)LOWHU *3'0$ &$0(5$ ,7) 3+< 86% 27*+6 4XDG63, '$&DV$) DocID027107 Rev 6 ),)2 9''86% 729 '' 8/3,&/.' ',56731;7 3+< 6%86 &/.1(>@$>@'>@ 12(11:(11%/>@ 6'&/.(>@6'1(>@ 15$61&$61$'9 1:$,7,171 ),)2 ,%86 '%86 (;70(0&7/)0& 65$0365$0125)/$6+ 1$1')/$6+6'5$0 ),)2 $50 &257(;0 0+] $+%B(0, 038 )38 19,& )/$6+ ,) 75$&(&. 75$&(' -7$* 6: (70 $+%%860$75,;60 -7567-7', -7&.6:&/. -7'26:'-7'2 7;5; 7;5; 069 STM32F446xC/E Functional overview 3 Functional overview 3.1 ARM(R) Cortex(R)-M4 with FPU and embedded Flash and SRAM The ARM(R) Cortex(R)-M4 with FPU processor is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts. The ARM(R) Cortex(R)-M4 with FPU core is a 32-bit RISC processor that features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices. The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution. Its single precision FPU (floating point unit) speeds up software development by using metalanguage development tools, while avoiding saturation. The STM32F446xC/E family is compatible with all ARM tools and software. Figure 3 shows the general block diagram of the STM32F446xC/E family. Note: Cortex-M4 with FPU core is binary compatible with the Cortex-M3 core. 3.2 Adaptive real-time memory accelerator (ART AcceleratorTM) The ART AcceleratorTM is a memory accelerator which is optimized for STM32 industrystandard ARM(R) Cortex(R)-M4 with FPU processors. It balances the inherent performance advantage of the ARM(R) Cortex(R)-M4 with FPU over Flash memory technologies, which normally requires the processor to wait for the Flash memory at higher frequencies. To release the processor full 225 DMIPS performance at this frequency, the accelerator implements an instruction prefetch queue and branch cache, which increases program execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the performance achieved thanks to the ART Accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 180 MHz. 3.3 Memory protection unit The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory. The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed. The MPU is optional and can be bypassed for applications that do not need it. DocID027107 Rev 6 17/202 40 Functional overview 3.4 STM32F446xC/E Embedded Flash memory The devices embed a Flash memory of 512KB available for storing programs and data. 3.5 CRC (cyclic redundancy check) calculation unit The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a software signature during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location. 3.6 Embedded SRAM All devices embed: * Up to 128Kbytes of system SRAM. RAM memory is accessed (read/write) at CPU clock speed with 0 wait states. * 4 Kbytes of backup SRAM This area is accessible only from the CPU. Its content is protected against possible unwanted write accesses, and is retained in Standby or VBAT mode. 3.7 Multi-AHB bus matrix The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, USB HS) and the slaves Flash memory, RAM, QuadSPI, FMC, AHB and APB peripherals and ensures a seamless and efficient operation even when several high-speed peripherals work simultaneously. 18/202 DocID027107 Rev 6 STM32F446xC/E Functional overview Figure 4. STM32F446xC/E and Multi-AHB matrix 6 6 6 6 86%B+6B0 86%27* +6 '0$B3 *3 '0$ '0$B0(0 '0$B0(0 '0$B3, 6EXV 6 *3 '0$ 6 ,&2'( '&2'( $&&(/ 6 'EXV ,EXV $50 &RUWH[0 )ODVK PHPRU\ 65$0 .E\WH 65$0 .E\WH $+% SHULSKHUDOV $3% $+% SHULSKHUDOV $3% )0&H[WHUQDO 0HP&WO4XDG63, %XVPDWUL[6 -36 3.8 DMA controller (DMA) The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8 streams each. They are able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals, support burst transfer and are designed to provide the maximum peripheral bandwidth (AHB/APB). The two DMA controllers support circular buffer management, so that no specific code is needed when the controller reaches the end of the buffer. The two DMA controllers also have a double buffering feature, which automates the use and switching of two memory buffers without requiring any special code. Each stream is connected to dedicated hardware DMA requests, with support for software trigger on each stream. Configuration is made by software and transfer sizes between source and destination are independent. DocID027107 Rev 6 19/202 40 Functional overview STM32F446xC/E The DMA can be used with the main peripherals: 3.9 * SPI and I2S * I2C * USART * General-purpose, basic and advanced-control timers TIMx * DAC * SDIO * Camera interface (DCMI) * ADC * SAI1/SAI2 * SPDIF Receiver (SPDIFRx) * QuadSPI Flexible memory controller (FMC) All devices embed an FMC. It has seven Chip Select outputs supporting the following modes: SDRAM/LPSDR SDRAM, SRAM, PSRAM, NOR Flash and NAND Flash. With the possibility to remap FMC bank 1 (NOR/PSRAM 1 and 2) and FMC SDRAM bank 1/2 in the Cortex-M4 code area. Functionality overview: * 8-,16-bit data bus width * Read FIFO for SDRAM controller * Write FIFO * Maximum FMC_CLK/FMC_SDCLK frequency for synchronous accesses is 90 MHz. LCD parallel interface The FMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build costeffective graphic applications using LCD modules with embedded controllers or high performance solutions using external controllers with dedicated acceleration. 3.10 Quad SPI memory interface (QUADSPI) All devices embed a Quad SPI memory interface, which is a specialized communication interface targeting Single, Dual or Quad SPI flash memories. It can work in direct mode through registers, external flash status register polling mode and memory mapped mode. Up to 256 Mbytes external flash are memory mapped, supporting 8, 16 and 32-bit access. Code execution is supported. The opcode and the frame format are fully programmable. Communication can be either in Single Data Rate or Dual Data Rate. 20/202 DocID027107 Rev 6 STM32F446xC/E 3.11 Functional overview Nested vectored interrupt controller (NVIC) The devices embed a nested vectored interrupt controller able to manage 16 priority levels, and handle up to 91 maskable interrupt channels plus the 16 interrupt lines of the Cortex(R)M4 with FPU core. * Closely coupled NVIC gives low-latency interrupt processing * Interrupt entry vector table address passed directly to the core * Allows early processing of interrupts * Processing of late arriving, higher-priority interrupts * Support tail chaining * Processor state automatically saved * Interrupt entry restored on interrupt exit with no instruction overhead This hardware block provides flexible interrupt management features with minimum interrupt latency. 3.12 External interrupt/event controller (EXTI) The external interrupt/event controller consists of 23 edge-detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 114 GPIOs can be connected to the 16 external interrupt lines. 3.13 Clocks and startup On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The 16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy at 25 C. The application can then select as system clock either the RC oscillator or an external 4-26 MHz clock source. This clock can be monitored for failure. If a failure is detected, the system automatically switches back to the internal RC oscillator and a software interrupt is generated (if enabled). This clock source is input to a PLL thus allowing to increase the frequency up to 180 MHz. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example if an indirectly used external oscillator fails). Several prescalers allow the configuration of the two AHB buses, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the two AHB buses is 180 MHz while the maximum frequency of the high-speed APB domains is 90 MHz. The maximum allowed frequency of the low-speed APB domain is 45 MHz. The devices embed a dedicated PLL (PLLI2S) and PLLSAI which allows to achieve audio class performance. In this case, the I2S master clock can generate all standard sampling frequencies from 8 kHz to 192 kHz. DocID027107 Rev 6 21/202 40 Functional overview 3.14 STM32F446xC/E Boot modes At startup, boot pins are used to select one out of three boot options: * Boot from user Flash * Boot from system memory * Boot from embedded SRAM The boot loader is located in system memory. It is used to reprogram the Flash memory through a serial (UART, I2C, CAN, SPI and USB) communication interface. Refer to application note AN2606 for details. 3.15 Note: Power supply schemes * VDD = 1.7 to 3.6 V: external power supply for I/Os and the internal regulator (when enabled), provided externally through VDD pins. * VSSA, VDDA = 1.7 to 3.6 V: external analog power supplies for ADC, DAC, Reset blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively. VDD/VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.16.2: Internal reset OFF). Refer to Table 3: Voltage regulator configuration mode versus device operating mode to identify the packages supporting this option. * VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when VDD is not present. * VDDUSB can be connected either to VDD or an external independent power supply (3.0 to 3.6V) for USB transceivers. For example, when device is powered at 1.8V, an independent power supply 3.3V can be connected to VDDUSB. When the VDDUSB is connected to a separated power supply, it is independent from VDD or VDDA but it must be the last supply to be provided and the first to disappear. The following conditions VDDUSB must be respected: - During power-on phase (VDD < VDD_MIN), VDDUSB should be always lower than VDD - During power-down phase (VDD < VDD_MIN), VDDUSB should be always lower than VDD - VDDUSB rising and falling time rate specifications must be respected. - In operating mode phase, VDDUSB could be lower or higher than VDD: - If USB (USB OTG_HS/OTG_FS) is used, the associated GPIOs powered by VDDUSB are operating between VDDUSB_MIN and VDDUSB_MAX.The VDDUSB supply both USB transceiver (USB OTG_HS and USB OTG_FS). - If only one USB transceiver is used in the application, the GPIOs associated to the other USB transceiver are still supplied by VDDUSB. - If USB (USB OTG_HS/OTG_FS) is not used, the associated GPIOs powered by VDDUSB are operating between VDD_MIN and VDD_MAX. 22/202 DocID027107 Rev 6 STM32F446xC/E Functional overview Figure 5. VDDUSB connected to an external independent power supply 9''86%B0$; 86% IXQFWLRQDODUHD 9''86% 9''86%B0,1 86%QRQ IXQFWLRQDO DUHD 9'' 9''$ 86%QRQ IXQFWLRQDO DUHD 2SHUDWLQJPRGH 3RZHUGRZQ 9''B0,1 3RZHURQ WLPH 069 3.16 Power supply supervisor 3.16.1 Internal reset ON On packages embedding the PDR_ON pin, the power supply supervisor is enabled by holding PDR_ON high. On the other package, the power supply supervisor is always enabled. The device has an integrated power-on reset (POR)/ power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry. At power-on, POR/PDR is always active and ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is reached, the option byte loading process starts, either to confirm or modify default BOR thresholds, or to disable BOR permanently. Three BOR thresholds are available through option bytes. The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR or VBOR, without the need for an external reset circuit. The device also features an embedded programmable voltage detector (PVD) that monitors the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. 3.16.2 Internal reset OFF This feature is available only on packages featuring the PDR_ON pin. The internal power-on reset (POR) / power-down reset (PDR) circuitry is disabled through the PDR_ON pin. An external power supply supervisor should monitor VDD and should maintain the device in reset mode as long as VDD is below a specified threshold. PDR_ON should be connected to VSS, to allows device to operate down to 1.7v. Refer to Figure 6: Power supply supervisor interconnection with internal reset OFF. DocID027107 Rev 6 23/202 40 Functional overview STM32F446xC/E Figure 6. Power supply supervisor interconnection with internal reset OFF s ^dD& Z ZZ sd WZKE s^^ WZZs D^s The VDD specified threshold, below which the device must be maintained under reset, is 1.7 V. A comprehensive set of power-saving mode allows to design low-power applications. When the internal reset is OFF, the following integrated features are no more supported: * The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled * The brownout reset (BOR) circuitry must be disabled * The embedded programmable voltage detector (PVD) is disabled * VBAT functionality is no more available and VBAT pin should be connected to VDD. All packages, except for the LQFP100/LQFP64, allow to disable the internal reset through the PDR_ON signal. 3.17 Voltage regulator The regulator has four operating modes: * * 3.17.1 Regulator ON - Main regulator mode (MR) - Low power regulator (LPR) - Power-down Regulator OFF Regulator ON On packages embedding the BYPASS_REG pin, the regulator is enabled by holding BYPASS_REG low. On all other packages, the regulator is always enabled. 24/202 DocID027107 Rev 6 STM32F446xC/E Functional overview There are three power modes configured by software when the regulator is ON: * MR mode used in Run/sleep modes or in Stop modes - In Run/Sleep mode The MR mode is used either in the normal mode (default mode) or the over-drive mode (enabled by software). Different voltages scaling are provided to reach the best compromise between maximum frequency and dynamic power consumption. The over-drive mode allows operating at a higher frequency than the normal mode for a given voltage scaling. - In Stop modes The MR can be configured in two ways during stop mode: MR operates in normal mode (default mode of MR in stop mode) MR operates in under-drive mode (reduced leakage mode). * LPR is used in the Stop modes: The LP regulator mode is configured by software when entering Stop mode. Like the MR mode, the LPR can be configured in two ways during stop mode: * - LPR operates in normal mode (default mode when LPR is ON) - LPR operates in under-drive mode (reduced leakage mode). Power-down is used in Standby mode. The Power-down mode is activated only when entering in Standby mode. The regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption. The contents of the registers and SRAM are lost. Refer to Table 3 for a summary of voltage regulator modes versus device operating modes. Two external ceramic capacitors should be connected on VCAP_1 and VCAP_2 pin. All packages have the regulator ON feature. Table 3. Voltage regulator configuration mode versus device operating mode(1) Voltage regulator configuration Run mode Sleep mode Stop mode Standby mode Normal mode MR MR MR or LPR - Over-drive mode(2) MR MR - - Under-drive mode - - MR or LPR - Power-down mode - - - Yes 1. `-' means that the corresponding configuration is not available. 2. The over-drive mode is not available when VDD = 1.7 to 2.1 V. 3.17.2 Regulator OFF This feature is available only on packages featuring the BYPASS_REG pin. The regulator is disabled by holding BYPASS_REG high. The regulator OFF mode allows to supply externally a V12 voltage source through VCAP_1 and VCAP_2 pins. DocID027107 Rev 6 25/202 40 Functional overview STM32F446xC/E Since the internal voltage scaling is not managed internally, the external voltage value must be aligned with the targeted maximum frequency. The two 2.2 F ceramic capacitors should be replaced by two 100 nF decoupling capacitors. When the regulator is OFF, there is no more internal monitoring on V12. An external power supply supervisor should be used to monitor the V12 of the logic power domain. PA0 pin should be used for this purpose, and act as power-on reset on V12 power domain. In regulator OFF mode, the following features are no more supported: * PA0 cannot be used as a GPIO pin since it allows to reset a part of the V12 logic power domain which is not reset by the NRST pin. * As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As a consequence, PA0 and NRST pins must be managed separately if the debug connection under reset or pre-reset is required. * The over-drive and under-drive modes are not available. Figure 7. Regulator OFF 9 ([WHUQDO9&$3BSRZHU $SSOLFDWLRQUHVHW VXSSO\VXSHUYLVRU ([WUHVHWFRQWUROOHUDFWLYH VLJQDO RSWLRQDO ZKHQ9&$3B0LQ9 9'' 3$ 9'' 1567 %<3$66B5(* 9 9&$3B 9&$3B DL9 The following conditions must be respected: Note: 26/202 * VDD should always be higher than VCAP_1 and VCAP_2 to avoid current injection between power domains. * If the time for VCAP_1 and VCAP_2 to reach V12 minimum value is faster than the time for VDD to reach 1.7 V, then PA0 should be kept low to cover both conditions: until VCAP_1 and VCAP_2 reach V12 minimum value and until VDD reaches 1.7 V (see Figure 8). * Otherwise, if the time for VCAP_1 and VCAP_2 to reach V12 minimum value is slower than the time for VDD to reach 1.7 V, then PA0 could be asserted low externally (see Figure 9). * If VCAP_1 and VCAP_2 go below V12 minimum value and VDD is higher than 1.7 V, then a reset must be asserted on PA0 pin. The minimum value of V12 depends on the maximum frequency targeted in the application. DocID027107 Rev 6 STM32F446xC/E Functional overview Figure 8. Startup in regulator OFF: slow VDD slope power-down reset risen after VCAP_1/VCAP_2 stabilization 9'' 3'5 9RU9 9 0LQ9 9&$3B9&$3B WLPH 1567 WLPH DLI 1. This figure is valid whatever the internal reset mode (ON or OFF). Figure 9. Startup in regulator OFF mode: fast VDD slope power-down reset risen before VCAP_1/VCAP_2 stabilization 9'' 3'5 9RU9 9&$3B9&$3B 9 0LQ9 1567 WLPH 3$DVVHUWHGH[WHUQDOO\ WLPH DLH 1. This figure is valid whatever the internal reset mode (ON or OFF). 3.17.3 Regulator ON/OFF and internal reset ON/OFF availability Table 4. Regulator ON/OFF and internal reset ON/OFF availability Package LQFP64 LQFP100 Regulator ON Regulator OFF Yes No DocID027107 Rev 6 Internal reset ON Internal reset OFF Yes No 27/202 40 Functional overview STM32F446xC/E Table 4. Regulator ON/OFF and internal reset ON/OFF availability Package Regulator ON Regulator OFF Yes No LQFP144 UFBGA144 WLCSP81 3.18 Yes BYPASS_REG set to Vss Yes BYPASS_REG set to VDD Internal reset ON Internal reset OFF Yes PDR_ON set to VDD Yes PDR_ON set to VSS Real-time clock (RTC), backup SRAM and backup registers The backup domain includes: * The real-time clock (RTC) * 4 Kbytes of backup SRAM * 20 backup registers The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binarycoded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are performed automatically. The RTC provides a programmable alarm and programmable periodic interrupts with wakeup from Stop and Standby modes. The sub-seconds value is also available in binary format. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural quartz deviation. Two alarm registers are used to generate an alarm at a specific time and calendar fields can be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit programmable binary auto-reload downcounter with programmable resolution is available and allows automatic wakeup and periodic alarms from every 120 s to every 36 hours. A 20-bit prescaler is used for the time base clock. It is by default configured to generate a time base of 1 second from a clock at 32.768 kHz. The 4-Kbyte backup SRAM is an EEPROM-like memory area. It can be used to store data which need to be retained in VBAT and standby mode. This memory area is disabled by default to minimize power consumption (see Section 3.19: Low-power modes). It can be enabled by software. The backup registers are 32-bit registers used to store 80 bytes of user application data when VDD power is not present. Backup registers are not reset by a system, a power reset, or when the device wakes up from the Standby mode (see Section 3.19: Low-power modes). Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes, hours, day, and date. Like backup SRAM, the RTC and backup registers are supplied through a switch that is powered either from the VDD supply when present or from the VBAT pin. 28/202 DocID027107 Rev 6 STM32F446xC/E 3.19 Functional overview Low-power modes The devices support three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources: * Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. * Stop mode The Stop mode achieves the lowest power consumption while retaining the contents of SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can be put either in main regulator mode (MR) or in low-power mode (LPR). Both modes can be configured as follows (see Table 5: Voltage regulator modes in stop mode): - Normal mode (default mode when MR or LPR is enabled) - Under-drive mode. The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup / tamper / time stamp events, the USB OTG FS/HS wakeup). Table 5. Voltage regulator modes in stop mode * Voltage regulator configuration Main regulator (MR) Low-power regulator (LPR) Normal mode MR ON LPR ON Under-drive mode MR in under-drive mode LPR in under-drive mode Standby mode The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.2 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, the SRAM and register contents are lost except for registers in the backup domain and the backup SRAM when selected. The device exits the Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm / wakeup / tamper /time stamp event occurs. The standby mode is not supported when the embedded voltage regulator is bypassed and the 1.2 V domain is controlled by an external power. 3.20 VBAT operation The VBAT pin allows to power the device VBAT domain from an external battery, an external supercapacitor, or from VDD when no external battery and an external supercapacitor are present. VBAT operation is activated when VDD is not present. The VBAT pin supplies the RTC, the backup registers and the backup SRAM. DocID027107 Rev 6 29/202 40 Functional overview Note: STM32F446xC/E When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events do not exit it from VBAT operation. When PDR_ON pin is not connected to VDD (Internal Reset OFF), the VBAT functionality is no more available and VBAT pin should be connected to VDD. 30/202 DocID027107 Rev 6 STM32F446xC/E 3.21 Functional overview Timers and watchdogs The devices include two advanced-control timers, eight general-purpose timers, two basic timers and two watchdog timers. All timer counters can be frozen in debug mode. Table 6 compares the features of the advanced-control, general-purpose and basic timers. Table 6. Timer feature comparison Timer type Advancedcontrol General purpose Basic Timer Counter resolution Counter type Prescaler factor DMA request generation Capture/ compare channels Complementary output Max interface clock (MHz) Max timer clock (MHz)(1) TIM1, TIM8 16-bit Up, Down, Up/down Any integer between 1 and 65536 Yes 4 Yes 90 180 TIM2, TIM5 32-bit Up, Down, Up/down Any integer between 1 and 65536 Yes 4 No 45 90/180 TIM3, TIM4 16-bit Up, Down, Up/down Any integer between 1 and 65536 Yes 4 No 45 90/180 TIM9 16-bit Up Any integer between 1 and 65536 No 2 No 90 180 TIM10, TIM11 16-bit Up Any integer between 1 and 65536 No 1 No 90 180 TIM12 16-bit Up Any integer between 1 and 65536 No 2 No 45 90/180 TIM13, TIM14 16-bit Up Any integer between 1 and 65536 No 1 No 45 90/180 TIM6, TIM7 16-bit Up Any integer between 1 and 65536 Yes 0 No 45 90/180 1. The maximum timer clock is either 90 or 180 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR register. DocID027107 Rev 6 31/202 40 Functional overview 3.21.1 STM32F446xC/E Advanced-control timers (TIM1, TIM8) The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators multiplexed on 6 channels. They have complementary PWM outputs with programmable inserted dead times. They can also be considered as complete general-purpose timers. Their 4 independent channels can be used for: * Input capture * Output compare * PWM generation (edge- or center-aligned modes) * One-pulse mode output If configured as standard 16-bit timers, they have the same features as the general-purpose TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0100%). The advanced-control timer can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining. TIM1 and TIM8 support independent DMA request generation. 3.21.2 General-purpose timers (TIMx) There are ten synchronized general-purpose timers embedded in the STM32F446xC/E devices (see Table 6 for differences). * TIM2, TIM3, TIM4, TIM5 The STM32F446xC/E include 4 full-featured general-purpose timers: TIM2, TIM5, TIM3, and TIM4.The TIM2 and TIM5 timers are based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4 independent channels for input capture/output compare, PWM or one-pulse mode output. This gives up to 16 input capture/output compare/PWMs on the largest packages. The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the Timer Link feature for synchronization or event chaining. Any of these general-purpose timers can be used to generate PWM outputs. TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 4 hall-effect sensors. * TIM9, TIM10, TIM11, TIM12, TIM13, and TIM14 These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM10, TIM11, TIM13, and TIM14 feature one independent channel, whereas TIM9 and TIM12 have two independent channels for input capture/output compare, PWM or one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured general-purpose timers. They can also be used as simple time bases. 3.21.3 Basic timers TIM6 and TIM7 These timers are mainly used for DAC trigger and waveform generation. They can also be used as a generic 16-bit time base. TIM6 and TIM7 support independent DMA request generation. 32/202 DocID027107 Rev 6 STM32F446xC/E 3.21.4 Functional overview Independent watchdog The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes. 3.21.5 Window watchdog The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode. 3.21.6 SysTick timer This timer is dedicated to real-time operating systems, but could also be used as a standard downcounter. It features: 3.22 * A 24-bit downcounter * Autoreload capability * Maskable system interrupt generation when the counter reaches 0 * Programmable clock source. Inter-integrated circuit interface (I2C) Four IC bus interfaces can operate in multimaster and slave modes. Three IC can support the standard (up to 100 KHz) and fast (up to 400 KHz) modes. One IC can support the standard (up to 100 KHz), fast (up to 400 KHz) and fast mode plus (up to 1MHz) modes. They (all IC) support the 7/10-bit addressing mode and the 7-bit dual addressing mode (as slave). A hardware CRC generation/verification is embedded. They can be served by DMA and they support SMBus 2.0/PMBus. The devices also include programmable analog and digital noise filters (see Table 7). Table 7. Comparison of I2C analog and digital filters Pulse width of suppressed spikes Analog filter 50 ns DocID027107 Rev 6 Digital filter Programmable length from 1 to 15 I2C peripheral clocks 33/202 40 Functional overview 3.23 STM32F446xC/E Universal synchronous/asynchronous receiver transmitters (USART) The devices embed four universal synchronous/asynchronous receiver transmitters (USART1, USART2, USART3 and USART6) and four universal asynchronous receiver transmitters (UART4, and UART5). These six interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to communicate at speeds of up to 11.25 Mbit/s. The other available interfaces communicate at up to 5.62 bit/s. USART1, USART2, USART3 and USART6 also provide hardware management of the CTS and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller. Table 8. USART feature comparison(1) USART name SPI Standard Modem LIN maste features (RTS/CTS) r irD A Smartcard (ISO 7816) Max. baud rate in Mbit/s (oversamplin g by 16) Max. baud rate in Mbit/s (oversamplin g by 8) APB mapping USART1 X X X X X X 5.62 11.25 APB2 (max. 90 MHz) USART2 X X X X X X 2.81 5.62 APB1 (max. 45 MHz) USART3 X X X X X X 2.81 5.62 APB1 (max. 45 MHz) UART4 X X X - X - 2.81 5.62 APB1 (max. 45 MHz) UART5 X X X - X - 2.81 5.62 APB1 (max. 45 MHz) USART6 X X X X X X 5.62 11.25 APB2 (max. 90 MHz) 1. X = feature supported. 3.24 Serial peripheral interface (SPI) The devices feature up to four SPIs in slave and master modes in full-duplex and simplex communication modes. SPI1, and SPI4 can communicate at up to 45 Mbits/s, SPI2 and SPI3 can communicate at up to 22.5 Mbit/s. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the DMA controller. 34/202 DocID027107 Rev 6 STM32F446xC/E Functional overview The SPI interface can be configured to operate in TI mode for communications in master mode and slave mode. 3.25 HDMI (high-definition multimedia interface) consumer electronics control (CEC) The devices embeds a HDMI-CEC controller that provides hardware support of consumer electronics control (CEC) (Appendix supplement 1 to the HDMI standard). This protocol provides high-level control functions between all audiovisual products in an environment. It is specified to operate at low speeds with minimum processing and memory overhead. 3.26 Inter-integrated sound (I2S) Three standard I2S interfaces (multiplexed with SPI1, SPI2 and SPI3) are available. They can be operated in master or slave mode, in simplex communication modes, and can be configured to operate with a 16-/32-bit resolution as an input or output channel. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I2S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency. All I2Sx can be served by the DMA controller. 3.27 SPDIF-RX Receiver Interface (SPDIFRX) The SPDIF-RX peripheral, is designed to receive an S/PDIF flow compliant with IEC-60958 and IEC-61937. These standards support simple stereo streams up to high sample rate, and compressed multi-channel surround sound, such as those defined by Dolby or DTS (up to 5.1). The main features of the SPDIF-RX are the following: * Up to 4 inputs available * Automatic symbol rate detection * Maximum symbol rate: 12.288 MHz * Stereo stream from 32 to 192 kHz supported * Supports Audio IEC-60958 and IEC-61937, consumer applications * Parity bit management * Communication using DMA for audio samples * Communication using DMA for control and user channel information * Interrupt capabilities The SPDIF-RX receiver provides all the necessary features to detect the symbol rate, and decode the incoming data stream. The user can select the wanted SPDIF input, and when a valid signal will be available, the SPDIF-RX will re-sample the incoming signal, decode the Manchester stream, recognize frames, sub-frames and blocks elements. It delivers to the CPU decoded data, and associated status flags. DocID027107 Rev 6 35/202 40 Functional overview STM32F446xC/E The SPDIF-RX also offers a signal named spdifrx_frame_sync, which toggles at the S/PDIF sub-frame rate that will be used to compute the exact sample rate for clock drift algorithms. 3.28 Serial Audio interface (SAI) The devices feature two serial audio interfaces (SAI1 and SAI2). Each serial audio interfaces based on two independent audio sub blocks which can operate as transmitter or receiver with their FIFO. Many audio protocols are supported by each block: I2S standards, LSB or MSB-justified, PCM/DSP, TDM, AC'97 and SPDIF output, supporting audio sampling frequencies from 8 kHz up to 192 kHz. Both sub blocks can be configured in master or in slave mode. The SAIs use a PLL to achieve audio class accuracy. In master mode, the master clock can be output to the external DAC/CODEC at 256 times of the sampling frequency. The two sub blocks can be configured in synchronous mode when full-duplex mode is required. SAI1 and SA2 can be served by the DMA controller. 3.29 Audio PLL (PLLI2S) The devices feature an additional dedicated PLL for audio I2S and SAI applications. It allows to achieve error-free I2S sampling clock accuracy without compromising on the CPU performance, while using USB peripherals. The PLLI2S configuration can be modified to manage an I2S/SAI sample rate change without disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces. The audio PLL can be programmed with very low error to obtain sampling rates ranging from 8 KHz to 192 KHz. In addition to the audio PLL, a master clock input pin can be used to synchronize the I2S/SAI flow with an external PLL (or Codec output). 3.30 Serial Audio Interface PLL(PLLSAI) An additional PLL dedicated to audio and USB is used for SAI1 and SAI2 peripheral in case the PLLI2S is programmed to achieve another audio sampling frequency (49.152 MHz or 11.2896 MHz) and the audio application requires both sampling frequencies simultaneously. The PLLSAI is also used to generate the 48MHz clock for USB FS and SDIO in case the system PLL is programmed with factors not multiple of 48MHz. 3.31 Secure digital input/output interface (SDIO) An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit. The interface allows data transfer at up to 48 MHz, and is compliant with the SD Memory Card Specification Version 2.0. 36/202 DocID027107 Rev 6 STM32F446xC/E Functional overview The SDIO Card Specification Version 2.0 is also supported with two different databus modes: 1-bit (default) and 4-bit. The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack of MMC4.1 or previous. 3.32 Controller area network (bxCAN) The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1 Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one CAN is used). 256 bytes of SRAM are allocated for each CAN. 3.33 Universal serial bus on-the-go full-speed (OTG_FS) The devices embed an USB OTG full-speed device/host/OTG peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator. The USB has dedicated power rails allowing its use throughout the entire power range. The major features are: 3.34 * Combined Rx and Tx FIFO size of 320 x 35 bits with dynamic FIFO sizing * Supports the session request protocol (SRP) and host negotiation protocol (HNP) * 6 bidirectional endpoints * 12 host channels with periodic OUT support * HNP/SNP/IP inside (no need for any external resistor) * For OTG/Host modes, a power switch is needed in case bus-powered devices are connected Universal serial bus on-the-go high-speed (OTG_HS) The devices embed a USB OTG high-speed (up to 480 Mb/s) device/host/OTG peripheral. The USB OTG HS supports both full-speed and high-speed operations. It integrates the transceivers for full-speed operation (12 MB/s) and features a UTMI low-pin interface (ULPI) for high-speed operation (480 MB/s). When using the USB OTG HS in HS mode, an external PHY device connected to the ULPI is required. The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG 1.0 specification. It has software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock that is generated by a PLL connected to the HSE oscillator. The USB has dedicated power rails allowing its use throughout the entire power range. DocID027107 Rev 6 37/202 40 Functional overview STM32F446xC/E The major features are: 3.35 * Combined Rx and Tx FIFO size of 1 Kbit x 35 with dynamic FIFO sizing * Supports the session request protocol (SRP) and host negotiation protocol (HNP) * 8 bidirectional endpoints * 16 host channels with periodic OUT support * Internal FS OTG PHY support * External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is connected to the microcontroller ULPI port through 12 signals. It can be clocked using the 60 MHz output. * Internal USB DMA * HNP/SNP/IP inside (no need for any external resistor) * for OTG/Host modes, a power switch is needed in case bus-powered devices are connected Digital camera interface (DCMI) The devices embed a camera interface that can connect with camera modules and CMOS sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera interface can sustain a data transfer rate up to 94.5 Mbyte/s (in 14-bit mode) at 54 MHz. Its features: 3.36 * Programmable polarity for the input pixel clock and synchronization signals * Parallel data communication can be 8-, 10-, 12- or 14-bit * Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2 progressive video, RGB 565 progressive video or compressed data (like JPEG) * Supports continuous mode or snapshot (a single frame) mode * Capability to automatically crop the image black & white. General-purpose input/outputs (GPIOs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain, with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current-capable and have speed selection to better manage internal noise, power consumption and electromagnetic emission. The I/O configuration can be locked if needed by following a specific sequence in order to avoid spurious writing to the I/Os registers. Fast I/O handling allowing maximum I/O toggling up to 90 MHz. 3.37 Analog-to-digital converters (ADCs) Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16 external channels, performing conversions in the single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs. 38/202 DocID027107 Rev 6 STM32F446xC/E Functional overview Additional logic functions embedded in the ADC interface allow: * Simultaneous sample and hold * Interleaved sample and hold The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1, TIM2, TIM3, TIM4, TIM5, or TIM8 timer. 3.38 Temperature sensor The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally connected to the same input channel as VBAT, ADC1_IN18, which is used to convert the sensor output voltage into a digital value. When the temperature sensor and VBAT conversion are enabled at the same time, only VBAT conversion is performed. As the offset of the temperature sensor varies from chip to chip due to process variation, the internal temperature sensor is mainly suitable for applications that detect temperature changes instead of absolute temperatures. If an accurate temperature reading is needed, then an external temperature sensor part should be used. 3.39 Digital-to-analog converter (DAC) The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. This dual digital Interface supports the following features: * two DAC converters: one for each output channel * 8-bit or 10-bit monotonic output * left or right data alignment in 12-bit mode * synchronized update capability * noise-wave generation * triangular-wave generation * dual DAC channel independent or simultaneous conversions * DMA capability for each channel * external triggers for conversion * input voltage reference VREF+ Eight DAC trigger inputs are used in the device. The DAC channels are triggered through the timer update outputs that are also connected to different DMA streams. 3.40 Serial wire JTAG debug port (SWJ-DP) The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. DocID027107 Rev 6 39/202 40 Functional overview STM32F446xC/E Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP. 3.41 Embedded Trace MacrocellTM The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F446xx through a small number of ETM pins to an external hardware trace port analyser (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or any other high-speed channel. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors. The Embedded Trace Macrocell operates with third party debugger software tools. 40/202 DocID027107 Rev 6 STM32F446xC/E Pinout and pin description 9%$7 3& 3&26&B,1 3&26&B287 3+26&B,1 3+26&B287 1567 3& 3& 3& 3& 966$95() 9''$95() 3$ 3$ 3$ 3% 3% %227 3% 3% 3% 3% 3% 3' 3& 3& 3& 3$ 3$ 966 9'' Figure 10. STM32F446xC/xE LQFP64 pinout /4)3 9'' 966 3$ 3$ 3$ 3$ 3$ 3$ 3& 3& 3& 3& 3% 3% 3% 3% 3$ 966 9'' 3$ 3$ 3$ 3$ 3& 3& 3% 3% 3% 3% 9&$3B 966 9'' 4 Pinout and pin description 069 1. The above figure shows the package top view. DocID027107 Rev 6 41/202 66 Pinout and pin description STM32F446xC/E 6$$ 633 0% 0% 0" 0" "//4 0" 0" 0" 0" 0" 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0# 0# 0# 0! 0! Figure 11. STM32F446xC/xE LQFP100 pinout ,1&0 6$$ 633 6#!0? 0! 0! 0! 0! 0! 0! 0# 0# 0# 0# 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0" 0" 0" 0" 0! 633 6$$ 0! 0! 0! 0! 0# 0# 0" 0" 0" 0% 0% 0% 0% 0% 0% 0% 0% 0% 0" 6#!0? 633 6$$ 0% 0% 0% 0% 0% 6"!4 0# 0# /3#?). 0# /3#?/54 633 6$$ 0( /3#?). 0( /3#?/54 .234 0# 0# 0# 0# 6$$ 633!62%& 62%& 6$$! 0! 0! 0! -36 1. The above figure shows the package top view. 42/202 DocID027107 Rev 6 STM32F446xC/E Pinout and pin description /4)3 9 '' 9 66 9 &$3B 3$ 3$ 3$ 3$ 3$ 3$ 3& 3& 3& 3& 9 ''86% 9 66 3* 3* 3* 3* 3* 3* 3* 3' 3' 9 '' 9 66 3' 3' 3' 3' 3' 3' 3% 3% 3% 3% 9 &$3B 9 '' 9 5() 9 ''$ 3$ 3$ 3$ 3$ 9 66 9 '' 3$ 3$ 3$ 3$ 3& 3& 3% 3% 3% 3) 3) 9 66 9 '' 3) 3) 3) 3* 3* 3( 3( 3( 9 66 9 '' 3( 3( 3( 3( 3( 3( 3% 3% 3( 3( 3( 3( 3( 9%$7 3& 3& 3& 3) 3) 3) 3) 3) 3) 9 66 9 '' 3) 3) 3) 3) 3) 3+ 3+ 15 67 3& 3& 3& 3& 9 '' 9 66$ 9 '' 3'5B21 3( 3( 3% 3% %22 7 3% 3% 3% 3% 3% 3* 9 '' 9 66 3* 3* 3* 3* 3* 3* 3' 3' 9 '' 9 66 3' 3' 3' 3' 3' 3' 3& 3& 3& 3$ 3$ Figure 12. STM32F446xC LQFP144 pinout DLF 1. The above figure shows the package top view. DocID027107 Rev 6 43/202 66 Pinout and pin description STM32F446xC/E Figure 13. STM32F446xC/xE WLCSP81 ballout $ 9'' 3& 3' 3' 3% 3% %227 9'' 3( % 966 3$ 3' 3' 3% 3% 966 3'5B 21 9%$7 & 3$ 9&$3B 3$ 3' 3% 3% 3% 3& 3& ' 3& 3$ 3& 3& 3' 3( 3( 15(6(7 3& ( 9'' 86% 3$ 3$ 3$ 3$ 3$ 3$ 3& 3+ ) 3& 3& 3& 3$ 3% 3$ 966$ 3& 3+ * 3' 3' 3% 3% 3( 3$ 3$ 966 3& + 3' 3% 966 3% 3( 3% 3$ 9''$ 9'' - 3% 9'' 9&$3B 3( 3( 3% 3& %<3$66B 5(* 3$ 06Y9 1. The above figure shows the package top view. 44/202 DocID027107 Rev 6 STM32F446xC/E Pinout and pin description Figure 14. STM32F446xC/xE UFBGA144 ballout $ 3& 3( 3( 3( 3( 3% 3% 3' 3' 3$ 3$ 3$ % 3& 3( 3( 3( 3% 3% 3* 3* 3' 3& 3& 3$, & 3& 9%$7 3) 3) 3% 3% 3* 3* 3' 3& 9'' 86% 3$ ' 3+ 966 9'' 3) %227 3% 3* 3* 3' 3' 3$ 3$ ( 3+ 3) 3) 3) 3'5B 21 966 966 3* 3' 3' 3& 3$ ) 1567 3) 3) 9'' 9'' 9'' 9'' 9'' 9'' 9'' 3& 3& * 3) 3) 3) 966 9'' 9'' 9'' 966 9&$3B 966 3* 3& + 3& 3& 3& 3& %<3$66 B5(* 966 9&$3B 3( 3' 3* 3* 3* - 966$ 3$ 3$ 3& 3% 3* 3( 3( 3' 3* 3* 3* . 95() 3$ 3$ 3& 3) 3* 3( 3( 3' 3' 3' 3' / 95() 3$ 3$ 3% 3) 3) 3( 3( 3' 3' 3% 3% 0 9''$ 3$ 3$ 3% 3) 3) 3( 3( 3% 3% 3% 3% 06Y9 1. The above picture shows the package top view. DocID027107 Rev 6 45/202 66 Pinout and pin description STM32F446xC/E Table 9. Legend/abbreviations used in the pinout table Name Abbreviation Pin name Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name S Supply pin I Input only pin I/O Input / output pin FT 5 V tolerant I/O FTf 5V tolerant IO, I2C FM+ option TTa 3.3 V tolerant I/O directly connected to ADC B Dedicated BOOT0 pin RST Bidirectional reset pin with weak pull-up resistor Pin type I/O structure Notes Definition Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset Alternate functions Functions selected through GPIOx_AFR registers Additional functions Functions directly selected/enabled through peripheral registers Table 10. STM32F446xx pin and ball descriptions D7 A3 1 PE2 I/O FT - - 2 D6 A2 2 PE3 I/O FT - TRACED0, SAI1_SD_B, FMC_A19, EVENTOUT - - 3 A9 B2 3 PE4 I/O FT - TRACED1, SPI4_NSS, SAI1_FS_A, FMC_A20, DCMI_D4, EVENTOUT - - TRACED2, TIM9_CH1, SPI4_MISO, SAI1_SCK_A, FMC_A21, DCMI_D6, EVENTOUT - - 46/202 4 - B3 LQFP144 1 WLCSP 81 - TRACECLK, SPI4_SCK, SAI1_MCLK_A, QUADSPI_BK1_IO2, FMC_A23, EVENTOUT LQFP100 Alternate functions LQFP64 Notes I/O structure Pin type UFBGA144 Pin Number 4 Pin name (function after reset) PE5 I/O FT DocID027107 Rev 6 Additional functions - STM32F446xC/E Pinout and pin description Table 10. STM32F446xx pin and ball descriptions (continued) I/O FT Notes I/O structure Pin name (function after reset) Pin type LQFP144 UFBGA144 WLCSP 81 LQFP100 LQFP64 Pin Number Alternate functions Additional functions - TRACED3, TIM9_CH2, SPI4_MOSI, SAI1_SD_A, FMC_A22, DCMI_D7, EVENTOUT - - - - - 5 - B4 5 PE6 1 6 B9 C2 6 VBAT 2 7 C8 A1 7 PC13 I/O FT - EVENTOUT TAMP_1/WKUP1 3 8 C9 B1 8 PC14OSC32_IN(PC14) I/O FT - EVENTOUT OSC32_IN 4 9 D9 C1 9 PC15OSC32_OUT(PC15) I/O FT - EVENTOUT OSC32_OUT - - - C3 10 PF0 I/O FT - I2C2_SDA, FMC_A0, EVENTOUT - - - - C4 11 PF1 I/O FT - I2C2_SCL, FMC_A1, EVENTOUT - - - - D4 12 PF2 I/O FT - I2C2_SMBA, FMC_A2, EVENTOUT - - - - E2 13 PF3 I/O FT - FMC_A3, EVENTOUT ADC3_IN9 - - - E3 14 PF4 I/O FT - FMC_A4, EVENTOUT ADC3_IN14 - - - E4 15 PF5 I/O FT - FMC_A5, EVENTOUT ADC3_IN15 - 10 - D2 16 VSS S - - - - - 11 - D3 17 VDD S - - - - - - - F3 18 PF6 - TIM10_CH1, SAI1_SD_B, QUADSPI_BK1_IO3, EVENTOUT ADC3_IN4 ADC3_IN5 S - I/O FT - - - F2 19 PF7 I/O FT - TIM11_CH1, SAI1_MCLK_B, QUADSPI_BK1_IO2, EVENTOUT - - - G3 20 PF8 I/O FT - SAI1_SCK_B, TIM13_CH1, QUADSPI_BK1_IO0, EVENTOUT ADC3_IN6 - - - G2 21 PF9 I/O FT - SAI1_FS_B, TIM14_CH1, QUADSPI_BK1_IO1, EVENTOUT ADC3_IN7 - - - G1 22 PF10 I/O FT - DCMI_D11, EVENTOUT ADC3_IN8 5 12 E9 D1 23 PH0-OSC_IN(PH0) I/O FT - EVENTOUT OSC_IN DocID027107 Rev 6 47/202 66 Pinout and pin description STM32F446xC/E Table 10. STM32F446xx pin and ball descriptions (continued) UFBGA144 LQFP144 F9 E1 24 PH1OSC_OUT(PH1) 7 14 D8 F1 25 NRST 8 15 G9 H1 26 Notes WLCSP 81 13 Alternate functions I/O FT - EVENTOUT OSC_OUT RS T - - - - SAI1_MCLK_B, OTG_HS_ULPI_STP, FMC_SDNWE, EVENTOUT ADC123_IN10 ADC123_IN11 I/O PC0 I/O structure LQFP100 6 Pin name (function after reset) Pin type LQFP64 Pin Number I/O FT Additional functions 9 16 - H2 27 PC1 I/O FT - SPI3_MOSI/I2S3_SD, SAI1_SD_A, SPI2_MOSI/I2S2_SD, EVENTOUT 10 17 E8 H3 28 PC2 I/O FT - SPI2_MISO, OTG_HS_ULPI_DIR, FMC_SDNE0, EVENTOUT ADC123_IN12 - SPI2_MOSI/I2S2_SD, OTG_HS_ULPI_NXT, FMC_SDCKE0, EVENTOUT ADC123_IN13 11 18 F8 H4 29 PC3 - 19 H9 - 30 VDD S - - - - - - G8 - - VSS S - - - - 12 20 F7 J1 31 VSSA S - - - - - - - K1 - VREF- S - - - - - 21 - L1 32 VREF+ S - - - - 13 22 H8 M1 33 VDDA S - - - - - TIM2_CH1/TIM2_ETR, TIM5_CH1, TIM8_ETR, USART2_CTS, UART4_TX, EVENTOUT ADC123_IN0, WKUP0/TAMP_2 ADC123_IN1 ADC123_IN2 14 23 J9 J2 34 I/O FT PA0-WKUP(PA0) I/O FT 15 24 G7 K2 35 PA1 I/O FT - TIM2_CH2, TIM5_CH2, USART2_RTS, UART4_RX, QUADSPI_BK1_IO3, SAI2_MCLK_B, EVENTOUT 16 25 E7 L2 36 PA2 I/O FT - TIM2_CH3, TIM5_CH3, TIM9_CH1, USART2_TX, SAI2_SCK_B, EVENTOUT 48/202 DocID027107 Rev 6 STM32F446xC/E Pinout and pin description Table 10. STM32F446xx pin and ball descriptions (continued) Alternate functions Additional functions - TIM2_CH4, TIM5_CH4, TIM9_CH2, SAI1_FS_A, USART2_RX, OTG_HS_ULPI_D0, EVENTOUT ADC123_IN3 17 26 E6 M2 37 PA3 18 27 - G4 38 VSS S - - - - - - J8 H5 - BYPASS_REG I FT - - - 19 28 - F4 39 VDD S - - - - - SPI1_NSS/I2S1_WS, SPI3_NSS/I2S3_WS, USART2_CK, OTG_HS_SOF, DCMI_HSYNC, EVENTOUT ADC12_IN4, DAC_OUT1 - TIM2_CH1/TIM2_ETR, TIM8_CH1N, SPI1_SCK/I2S1_CK, OTG_HS_ULPI_CK, EVENTOUT ADC12_IN5, DAC_OUT2 - TIM1_BKIN, TIM3_CH1, TIM8_BKIN, SPI1_MISO, I2S2_MCK, TIM13_CH1, DCMI_PIXCLK, EVENTOUT ADC12_IN6 ADC12_IN7 20 21 22 29 30 31 H7 F6 G6 J3 K3 L3 40 41 42 PA4 PA5 PA6 I/O FT Notes I/O structure Pin name (function after reset) Pin type LQFP144 UFBGA144 WLCSP 81 LQFP100 LQFP64 Pin Number I/O TC I/O TC I/O FT 23 32 E5 M3 43 PA7 I/O FT - TIM1_CH1N, TIM3_CH2, TIM8_CH1N, SPI1_MOSI/I2S1_SD, TIM14_CH1, FMC_SDNWE, EVENTOUT 24 33 J7 J4 44 PC4 I/O FT - I2S1_MCK, SPDIFRX_IN2, FMC_SDNE0, EVENTOUT ADC12_IN14 - USART3_RX, SPDIFRX_IN3, FMC_SDCKE0, EVENTOUT ADC12_IN15 25 34 - K4 45 PC5 I/O FT DocID027107 Rev 6 49/202 66 Pinout and pin description STM32F446xC/E Table 10. STM32F446xx pin and ball descriptions (continued) 27 35 36 H6 L4 M4 46 47 PB0 PB1 I/O structure Pin type LQFP144 UFBGA144 WLCSP 81 F5 Pin name (function after reset) I/O FT I/O FT Notes 26 LQFP100 LQFP64 Pin Number Alternate functions Additional functions - TIM1_CH2N, TIM3_CH3, TIM8_CH2N, SPI3_MOSI/I2S3_SD, UART4_CTS, OTG_HS_ULPI_D1, SDIO_D1, EVENTOUT ADC12_IN8 - TIM1_CH3N, TIM3_CH4, TIM8_CH3N, OTG_HS_ULPI_D2, SDIO_D2, EVENTOUT ADC12_IN9 - 28 37 J6 J5 48 PB2-BOOT1 (PB2) I/O FT - TIM2_CH4, SAI1_SD_A, SPI3_MOSI/I2S3_SD, QUADSPI_CLK, OTG_HS_ULPI_D4, SDIO_CK, EVENTOUT - - - M5 49 PF11 I/O FT - SAI2_SD_B, FMC_SDNRAS, DCMI_D12, EVENTOUT - - - - L5 50 PF12 I/O FT - FMC_A6, EVENTOUT - - - - - 51 VSS S - - - - - - - G5 52 VDD S - - - - - - - K5 53 PF13 I/O FT - FMPI2C1_SMBA, FMC_A7, EVENTOUT - - - - M6 54 PF14 I/O FTf - FMPI2C1_SCL, FMC_A8, EVENTOUT - - - - L6 55 PF15 I/O FTf - FMPI2C1_SDA, FMC_A9, EVENTOUT - - - - K6 56 PG0 I/O FT - FMC_A10, EVENTOUT - - - - J6 57 PG1 I/O FT - FMC_A11, EVENTOUT - - 38 J5 M7 58 PE7 I/O FT - TIM1_ETR, UART5_RX, QUADSPI_BK2_IO0, FMC_D4, EVENTOUT - - 39 H5 L7 59 PE8 I/O FT - TIM1_CH1N, UART5_TX, QUADSPI_BK2_IO1, FMC_D5, EVENTOUT - - 40 G5 K7 60 PE9 I/O FT - TIM1_CH1, QUADSPI_BK2_IO2, FMC_D6, EVENTOUT - 50/202 DocID027107 Rev 6 STM32F446xC/E Pinout and pin description Table 10. STM32F446xx pin and ball descriptions (continued) LQFP64 LQFP100 WLCSP 81 UFBGA144 LQFP144 Pin name (function after reset) Pin type I/O structure Notes Pin Number Alternate functions - - - H6 61 VSS S - - - - - - - G6 62 VDD S - - - - - 41 J4 J7 63 PE10 I/O FT - TIM1_CH2N, QUADSPI_BK2_IO3, FMC_D7, EVENTOUT - - 42 - H8 64 PE11 I/O FT - TIM1_CH2, SPI4_NSS, SAI2_SD_B, FMC_D8, EVENTOUT - - 43 - J8 65 PE12 I/O FT - TIM1_CH3N, SPI4_SCK, SAI2_SCK_B, FMC_D9, EVENTOUT - - 44 - K8 66 PE13 I/O FT - TIM1_CH3, SPI4_MISO, SAI2_FS_B, FMC_D10, EVENTOUT - - 45 - L8 67 PE14 I/O FT - TIM1_CH4, SPI4_MOSI, SAI2_MCLK_B, FMC_D11, EVENTOUT - - 46 - M8 68 PE15 I/O FT - TIM1_BKIN, FMC_D12, EVENTOUT - - Additional functions 29 47 H4 M9 69 PB10 I/O FT - TIM2_CH3, I2C2_SCL, SPI2_SCK/I2S2_CK, SAI1_SCK_A, USART3_TX, OTG_HS_ULPI_D3, EVENTOUT - - - M10 70 PB11 I/O FT - TIM2_CH4, I2C2_SDA, USART3_RX, SAI2_SD_A, EVENTOUT - 30 48 J3 H7 71 VCAP_1 S - - - - 31 49 H3 - - VSS S - - - - 32 50 J2 G7 72 VDD S - - - - - TIM1_BKIN, I2C2_SMBA, SPI2_NSS/I2S2_WS, SAI1_SCK_B, USART3_CK, CAN2_RX, OTG_HS_ULPI_D5, OTG_HS_ID, EVENTOUT - 33 51 G4 M11 73 PB12 I/O FT DocID027107 Rev 6 51/202 66 Pinout and pin description STM32F446xC/E Table 10. STM32F446xx pin and ball descriptions (continued) 35 52 53 J1 M12 L11 74 75 PB13 PB14(1) I/O structure Pin type LQFP144 UFBGA144 WLCSP 81 H2 Pin name (function after reset) I/O FT I/O FT Notes 34 LQFP100 LQFP64 Pin Number Alternate functions Additional functions - TIM1_CH1N, SPI2_SCK/I2S2_CK, USART3_CTS, CAN2_TX, OTG_HS_ULPI_D6, EVENTOUT OTG_HS_VBUS - TIM1_CH2N, TIM8_CH2N, SPI2_MISO, USART3_RTS, TIM12_CH1, OTG_HS_DM, EVENTOUT - - 36 54 G3 L12 76 PB15(1) I/O FT - RTC_REFIN, TIM1_CH3N, TIM8_CH3N, SPI2_MOSI/I2S2_SD, TIM12_CH2, OTG_HS_DP, EVENTOUT - 55 - L9 77 PD8 I/O FT - USART3_TX, SPDIFRX_IN1, FMC_D13, EVENTOUT - - 56 - K9 78 PD9 I/O FT - USART3_RX, FMC_D14, EVENTOUT - - 57 - J9 79 PD10 I/O FT - USART3_CK, FMC_D15, EVENTOUT - - FMPI2C1_SMBA, USART3_CTS, QUADSPI_BK1_IO0, SAI2_SD_A, FMC_A16, EVENTOUT - - TIM4_CH1, FMPI2C1_SCL, USART3_RTS, QUADSPI_BK1_IO1, SAI2_FS_A, FMC_A17, EVENTOUT - - TIM4_CH2, FMPI2C1_SDA, QUADSPI_BK1_IO3, SAI2_SCK_A, FMC_A18, EVENTOUT - - - 58 59 H1 G2 H9 L10 80 81 PD11 PD12 I/O FT I/O FTf - 60 G1 K10 82 PD13 - - - G8 83 VSS S - - - - - - - F8 84 VDD S - - - - 52/202 I/O FTf DocID027107 Rev 6 STM32F446xC/E Pinout and pin description Table 10. STM32F446xx pin and ball descriptions (continued) - K11 85 PD14 I/O FTf - - 62 - K12 86 PD15 I/O FTf - TIM4_CH4, FMPI2C1_SDA, FMC_D1, EVENTOUT - - - - J12 87 PG2 I/O FT - FMC_A12, EVENTOUT - - - - J11 88 PG3 I/O FT - FMC_A13, EVENTOUT - - - - J10 89 PG4 I/O FT - FMC_A14/FMC_BA0, EVENTOUT - - - - H12 90 PG5 I/O FT - FMC_A15/FMC_BA1, EVENTOUT - - - - H11 91 PG6 I/O FT - QUADSPI_BK1_NCS, DCMI_D12, EVENTOUT - - - - H10 92 PG7 I/O FT - USART6_CK, FMC_INT, DCMI_D13, EVENTOUT - - - - G11 93 PG8 I/O FT - SPDIFRX_IN2, USART6_RTS, FMC_SDCLK, EVENTOUT - - - - - 94 VSS S - - - - - - - F10 - VDD S - - - - - - E1 C11 95 VDDUSB S - - - - - TIM3_CH1, TIM8_CH1, FMPI2C1_SCL, I2S2_MCK, USART6_TX, SDIO_D6, DCMI_D0, EVENTOUT - - TIM3_CH2, TIM8_CH2, FMPI2C1_SDA, SPI2_SCK/I2S2_CK, I2S3_MCK, SPDIFRX_IN1, USART6_RX, SDIO_D7, DCMI_D1, EVENTOUT - - TRACED0, TIM3_CH3, TIM8_CH3, UART5_RTS, USART6_CK, SDIO_D0, DCMI_D2, EVENTOUT - 37 38 39 63 64 65 F1 F2 F3 G12 F12 F11 LQFP144 61 WLCSP 81 - TIM4_CH3, FMPI2C1_SCL, SAI2_SCK_A, FMC_D0, EVENTOUT LQFP100 Alternate functions LQFP64 Notes I/O structure Pin type UFBGA144 Pin Number 96 97 98 Pin name (function after reset) PC6 PC7 PC8 I/O FTf I/O FTf I/O FT DocID027107 Rev 6 Additional functions - 53/202 66 Pinout and pin description STM32F446xC/E Table 10. STM32F446xx pin and ball descriptions (continued) 41 66 67 E2 E11 E12 99 100 PC9 PA8 I/O structure Pin type LQFP144 UFBGA144 WLCSP 81 D1 Pin name (function after reset) I/O FT I/O FT Notes 40 LQFP100 LQFP64 Pin Number Alternate functions Additional functions - MCO2, TIM3_CH4, TIM8_CH4, I2C3_SDA, I2S_CKIN, UART5_CTS, QUADSPI_BK1_IO0, SDIO_D1, DCMI_D3, EVENTOUT - - MCO1, TIM1_CH1, I2C3_SCL, USART1_CK, OTG_FS_SOF, EVENTOUT - OTG_FS_VBUS 42 68 F4 D12 101 PA9 I/O FT - TIM1_CH2, I2C3_SMBA, SPI2_SCK/I2S2_CK, SAI1_SD_B, USART1_TX, DCMI_D0, EVENTOUT 43 69 E3 D11 102 PA10 I/O FT - TIM1_CH3, USART1_RX, OTG_FS_ID, DCMI_D1, EVENTOUT - 44 70 C1 C12 103 PA11(1) I/O FT - TIM1_CH4, USART1_CTS, CAN1_RX, OTG_FS_DM, EVENTOUT - 45 71 E4 B12 104 PA12(1) I/O FT - TIM1_ETR, USART1_RTS, SAI2_FS_B, CAN1_TX, OTG_FS_DP, EVENTOUT - 46 72 D2 A12 105 PA13(JTMS-SWDIO) I/O FT - JTMS-SWDIO, EVENTOUT - - 73 C2 G9 106 47 74 B1 G10 107 48 75 A1 F9 108 49 76 C3 A11 109 PA14(JTCK-SWCLK) I/O FT 50 77 54/202 B2 A10 110 VCAP_2 S - - - - VSS S - - - - VDD S - - - - - JTCK-SWCLK, EVENTOUT - - JTDI, TIM2_CH1/TIM2_ETR, HDMI_CEC, SPI1_NSS/I2S1_WS, SPI3_NSS/I2S3_WS, UART4_RTS, EVENTOUT - PA15(JTDI) I/O FT DocID027107 Rev 6 STM32F446xC/E Pinout and pin description Table 10. STM32F446xx pin and ball descriptions (continued) 52 53 78 79 80 D4 A2 B11 B10 C10 111 112 113 PC10 PC11 PC12 I/O structure Pin type LQFP144 UFBGA144 WLCSP 81 D3 Pin name (function after reset) I/O FT I/O FT I/O FT Notes 51 LQFP100 LQFP64 Pin Number Alternate functions Additional functions - SPI3_SCK/I2S3_CK, USART3_TX, UART4_TX, QUADSPI_BK1_IO1, SDIO_D2, DCMI_D8, EVENTOUT - - SPI3_MISO, USART3_RX, UART4_RX, QUADSPI_BK2_NCS, SDIO_D3, DCMI_D4, EVENTOUT - - I2C2_SDA, SPI3_MOSI/I2S3_SD, USART3_CK, UART5_TX, SDIO_CK, DCMI_D9, EVENTOUT - - - 81 B3 E10 114 PD0 I/O FT - SPI4_MISO, SPI3_MOSI/I2S3_SD, CAN1_RX, FMC_D2, EVENTOUT - 82 C4 D10 115 PD1 I/O FT - SPI2_NSS/I2S2_WS, CAN1_TX, FMC_D3, EVENTOUT - 54 83 D5 E9 116 PD2 I/O FT - TIM3_ETR, UART5_RX, SDIO_CMD, DCMI_D11, EVENTOUT - - - 84 - D9 117 PD3 I/O FT - TRACED1, SPI2_SCK/I2S2_CK, USART2_CTS, QUADSPI_CLK, FMC_CLK, DCMI_D5, EVENTOUT - 85 A3 C9 118 PD4 I/O FT - USART2_RTS, FMC_NOE, EVENTOUT - - 86 - B9 119 PD5 I/O FT - USART2_TX, FMC_NWE, EVENTOUT - - - - E7 120 VSS S - - - - - - - F7 121 VDD S - - - - DocID027107 Rev 6 55/202 66 Pinout and pin description STM32F446xC/E Table 10. STM32F446xx pin and ball descriptions (continued) B4 A8 122 PD6 I/O FT - - 88 A4 A9 123 PD7 I/O FT - USART2_CK, SPDIFRX_IN0, FMC_NE1, EVENTOUT - - LQFP144 87 WLCSP 81 - SPI3_MOSI/I2S3_SD, SAI1_SD_A, USART2_RX, FMC_NWAIT, DCMI_D10, EVENTOUT LQFP100 Alternate functions LQFP64 Notes I/O structure Pin type UFBGA144 Pin Number Pin name (function after reset) Additional functions - - - - E8 124 PG9 I/O FT - SPDIFRX_IN3, USART6_RX, QUADSPI_BK2_IO2, SAI2_FS_B, FMC_NE2/FMC_NCE3, DCMI_VSYNC, EVENTOUT - - - D8 125 PG10 I/O FT - SAI2_SD_B, FMC_NE3, DCMI_D2, EVENTOUT - - - - C8 126 PG11 I/O FT - SPI4_SCK, SPDIFRX_IN0, DCMI_D3, EVENTOUT - - - - - B8 127 PG12 I/O FT - SPI4_MISO, SPDIFRX_IN1, USART6_RTS, FMC_NE4, EVENTOUT - - - D7 128 PG13 I/O FT - TRACED2, SPI4_MOSI, USART6_CTS, FMC_A24, EVENTOUT - - TRACED3, SPI4_NSS, USART6_TX, QUADSPI_BK2_IO3, FMC_A25, EVENTOUT - - - - C7 129 PG14 - - - - 130 VSS S - - - - - - - F6 131 VDD S - - - - - - - B7 132 PG15 - USART6_CTS, FMC_SDNCAS, DCMI_D13, EVENTOUT - - JTDO/TRACESWO, TIM2_CH2, I2C2_SDA, SPI1_SCK/I2S1_CK, SPI3_SCK/I2S3_CK, EVENTOUT - 55 89 56/202 A5 A7 133 I/O FT I/O FT PB3(JTDO/TRACES WO) I/O FT DocID027107 Rev 6 STM32F446xC/E Pinout and pin description Table 10. STM32F446xx pin and ball descriptions (continued) 57 58 90 91 92 A6 C5 A6 B6 C6 134 135 136 PB4(NJTRST) PB5 PB6 59 93 B6 D6 137 PB7 60 94 A7 D5 138 BOOT0 61 62 95 96 C6 C7 C5 B5 139 140 PB8 PB9 I/O structure Pin type LQFP144 UFBGA144 WLCSP 81 B5 Pin name (function after reset) I/O FT I/O FT I/O FT I/O FT I B I/O FT I/O FT Notes 56 LQFP100 LQFP64 Pin Number Alternate functions Additional functions - NJTRST, TIM3_CH1, I2C3_SDA, SPI1_MISO, SPI3_MISO, SPI2_NSS/I2S2_WS, EVENTOUT - - TIM3_CH2, I2C1_SMBA, SPI1_MOSI/I2S1_SD, SPI3_MOSI/I2S3_SD, CAN2_RX, OTG_HS_ULPI_D7, FMC_SDCKE1, DCMI_D10, EVENTOUT - - TIM4_CH1, HDMI_CEC, I2C1_SCL, USART1_TX, CAN2_TX, QUADSPI_BK1_NCS, FMC_SDNE1, DCMI_D5, EVENTOUT - - TIM4_CH2, I2C1_SDA, USART1_RX, SPDIFRX_IN0, FMC_NL, DCMI_VSYNC, EVENTOUT - - - VPP - TIM2_CH1/TIM2_ETR, TIM4_CH3, TIM10_CH1, I2C1_SCL, CAN1_RX, SDIO_D4, DCMI_D6, EVENTOUT - - TIM2_CH2, TIM4_CH4, TIM11_CH1, I2C1_SDA, SPI2_NSS/I2S2_WS, SAI1_FS_B, CAN1_TX, SDIO_D5, DCMI_D7, EVENTOUT - - - - 97 - A5 141 PE0 I/O FT - TIM4_ETR, SAI2_MCLK_A, FMC_NBL0, DCMI_D2, EVENTOUT - 98 - A4 142 PE1 I/O FT - FMC_NBL1, DCMI_D3, EVENTOUT DocID027107 Rev 6 57/202 66 Pinout and pin description STM32F446xC/E Table 10. STM32F446xx pin and ball descriptions (continued) LQFP64 LQFP100 WLCSP 81 UFBGA144 LQFP144 Pin name (function after reset) Pin type I/O structure Notes Pin Number Alternate functions 63 99 B7 E6 - VSS S - - - - - - B8 E5 143 PDR_ON S - - - - 64 100 A8 F5 144 VDD S - - - - 1. PA11, PA12, PB14 and PB15 I/Os are supplied by VDDUSB 58/202 DocID027107 Rev 6 Additional functions AF0 AF1 AF2 AF3 AF4 AF5 I2C1/2/3 /4/CEC SPI1/2/3/ 4 Port AF6 AF7 AF8 AF9 SPI2/3/ SAI/ CAN1/2 USART1/ SPI2/3/4/ USART6/ TIM12/13/ 2/3/UART SAI1 UART4/5/ 14/ 5/SPDIFR SPDIFRX QUADSPI X AF10 AF11 AF12 AF13 AF14 AF15 SAI2/ QUADSPI/ OTG2_HS/ OTG1_FS OTG1_FS FMC/ SDIO/ OTG2_FS DCMI - SYS DocID027107 Rev 6 TIM1/2 TIM3/4/5 PA0 - TIM2_CH1/ TIM2_ETR TIM5_CH1 TIM8_ETR - - - USART2_ CTS UART4_ TX - - - - - - EVENT OUT PA1 - TIM2_CH2 TIM5_CH2 - - - - USART2_ RTS UART4_ RX QUADSPI_ BK1_IO3 SAI2_ MCLK_B - - - - EVENT OUT PA2 - TIM2_CH3 TIM5_CH3 TIM9_CH1 - - - USART2_ TX SAI2_ SCK_B - - - - - - EVENT OUT PA3 - TIM2_CH4 TIM5_CH4 TIM9_CH2 - - SAI1_ FS_A USART2_ RX - - OTG_HS_ ULPI_D0 - - - - EVENT OUT PA4 - - - - - SPI1_NSS/I 2S1_WS SPI3_NSS / I2S3_WS USART2_ CK - - - - OTG_HS_ SOF DCMI_ HSYNC - EVENT OUT PA5 - TIM2_CH1/ TIM2_ETR - TIM8_ CH1N - SPI1_SCK/I 2S1_CK - - - - OTG_HS_ ULPI_CK - - - - EVENT OUT PA6 - TIM1_ BKIN TIM3_CH1 TIM8_ BKIN - SPI1_MISO I2S2_ MCK - - TIM13_CH1 - - - DCMI_ PIXCLK - EVENT OUT PA7 - TIM1_ CH1N TIM3_CH2 TIM8_ CH1N - SPI1_MOSI / I2S1_SD - - - TIM14_CH1 - - FMC_ SDNWE - - EVENT OUT PA8 MCO1 TIM1_CH1 - - I2C3_ SCL - - USART1_ CK - - OTG_FS_ SOF - - - - EVENT OUT PA9 - TIM1_CH2 - - I2C3_ SMBA SPI2_SCK /I2S2_CK SAI1_ SD_B USART1_ TX - - - - - DCMI_D0 - EVENT OUT PA10 - TIM1_CH3 - - - - - USART1_ RX - - OTG_FS_ ID - - DCMI_D1 - EVENT OUT PA11 - TIM1_CH4 - - - - - USART1_ CTS - CAN1_RX OTG_FS_ DM - - - - EVENT OUT PA12 - TIM1_ETR - - - - - USART1_ RTS SAI2_ FS_B CAN1_TX OTG_FS_ DP - - - - EVENT OUT PA13 JTMSSWDIO - - - - - - - - - - - - - - EVENT OUT PA14 JTCKSWCLK - - - - - - - - - - - - - - EVENT OUT PA15 JTDI TIM2_CH1/ TIM2_ETR - - HDMI_ CEC SPI1_NSS/ I2S1_WS SPI3_ NSS/ I2S3_WS - UART4_RT S - - - - - - EVENT OUT Port A Pinout and pin description 59/202 SYS TIM8/9/ 10/11/ CEC STM32F446xC/E Table 11. Alternate function AF0 AF1 AF2 AF3 AF4 AF5 I2C1/2/3 /4/CEC SPI1/2/3/ 4 Port DocID027107 Rev 6 Port B AF6 AF7 AF8 AF9 SPI2/3/ SAI/ CAN1/2 USART1/ SPI2/3/4/ USART6/ TIM12/13/ 2/3/UART SAI1 UART4/5/ 14/ 5/SPDIFR SPDIFRX QUADSPI X AF10 AF11 AF12 AF13 AF14 AF15 SAI2/ QUADSPI/ OTG2_HS/ OTG1_FS OTG1_FS FMC/ SDIO/ OTG2_FS DCMI - SYS TIM1/2 TIM3/4/5 PB0 - TIM1_CH2N TIM3_CH3 TIM8_ CH2N - - - SPI3_MOS I/ I2S3_SD UART4_ CTS - OTG_HS_ ULPI_D1 - SDIO_D1 - - EVENT OUT PB1 - TIM1_CH3N TIM3_CH4 TIM8_ CH3N - - - - - - OTG_HS_ ULPI_D2 - SDIO_D2 - - EVENT OUT PB2 - TIM2_CH4 - - - - SAI1_ SD_A SPI3_MOS I/ I2S3_SD - QUADSPI_ CLK OTG_HS_ ULPI_D4 - SDIO_CK - - EVENT OUT PB3 JTDO/ TRACES WO TIM2_CH2 - - I2C2_ SDA SPI1_SCK /I2S1_CK SPI3_SCK / I2S3_CK - - - - - - - - EVENT OUT PB4 NJTRST - TIM3_CH1 - I2C3_ SDA SPI1_MISO SPI3_ MISO SPI2_NSS/ I2S2_WS - - - - - - - EVENT OUT PB5 - - TIM3_CH2 - I2C1_ SMBA SPI1_MOSI /I2S1_SD SPI3_ MOSI/ I2S3_SD - - CAN2_RX OTG_HS_ ULPI_D7 - FMC_ SDCKE1 DCMI_ D10 - EVENT OUT PB6 - - TIM4_CH1 HDMI_ CEC I2C1_ SCL - - USART1_ TX - CAN2_TX QUADSPI_ BK1_NCS - FMC_ SDNE1 DCMI_D5 - EVENT OUT PB7 - - TIM4_CH2 - I2C1_ SDA - - USART1_ RX SPDIF_ RX0 - - - FMC_NL DCMI_ VSYNC - EVENT OUT PB8 - TIM2_CH1/ TIM2_ETR TIM4_CH3 TIM10_ CH1 I2C1_ SCL - - - - CAN1_RX - - SDIO_D4 DCMI_D6 - EVENT OUT PB9 - TIM2_ CH2 TIM4_CH4 TIM11_ CH1 I2C1_ SDA SPI2_NSS/ I2S2_WS SAI1_ FS_B - - CAN1_TX - - SDIO_D5 DCMI_D7 - EVENT OUT PB10 - TIM2_CH3 - - I2C2_ SCL SPI2_SCK/ I2S2_CK SAI1_ SCK_A USART3_ TX - - OTG_HS_ ULPI_D3 - - - - EVENT OUT PB11 - TIM2_CH4 - - I2C2_ SDA - - USART3_ RX SAI2_ SD_A - - - - - - EVENT OUT PB12 - TIM1_BKIN - - I2C2_ SMBA SPI2_NSS/ I2S2_WS SAI1_ SCK_B USART3_ CK - CAN2_RX OTG_HS_ ULPI_D5 - OTG_ HS_ID - - EVENT OUT PB13 - TIM1_CH1N - - - SPI2_SCK/ I2S2_CK - USART3_ CTS - CAN2_TX OTG_HS_ ULPI_D6 - - - - EVENT OUT PB14 - TIM1_CH2N - TIM8_ CH2N - SPI2_MISO - USART3_ RTS - TIM12_CH1 - - OTG_ HS_DM - - EVENT OUT PB15 RTC_ REFIN TIM1_CH3N - TIM8_ CH3N - SPI2_MOSI /I2S2_SD - - - TIM12_CH2 - - OTG_ HS_DP - - EVENT OUT STM32F446xC/E SYS TIM8/9/ 10/11/ CEC Pinout and pin description 60/202 Table 11. Alternate function (continued) AF0 AF1 AF2 AF3 AF4 AF5 I2C1/2/3 /4/CEC SPI1/2/3/ 4 Port AF6 AF7 AF8 AF9 SPI2/3/ SAI/ CAN1/2 USART1/ SPI2/3/4/ USART6/ TIM12/13/ 2/3/UART SAI1 UART4/5/ 14/ 5/SPDIFR SPDIFRX QUADSPI X AF10 AF11 AF12 AF13 AF14 AF15 SAI2/ QUADSPI/ OTG2_HS/ OTG1_FS OTG1_FS FMC/ SDIO/ OTG2_FS DCMI - SYS DocID027107 Rev 6 TIM1/2 TIM3/4/5 PC0 - - - - - - SAI1_ MCLK_B - - - OTG_HS_ ULPI_STP - FMC_ SDNWE - - EVENT OUT PC1 - - - - - SPI3_MOSI /I2S3_SD SAI1_ SD_A SPI2_MOS I /I2S2_SD - - - - - - - EVENT OUT PC2 - - - - - SPI2_MISO - - - - OTG_HS_ ULPI_DIR - FMC_ SDNE0 - - EVENT OUT PC3 - - - - - SPI2_MOSI / I2S2_SD - - - - OTG_HS_ ULPI_NXT - FMC_ SDCKE0 - - EVENT OUT PC4 - - - - - I2S1_MCK - - SPDIF_ RX2 - - - FMC_ SDNE0 - - EVENT OUT PC5 - - - - - - - USART3_ RX SPDIF_ RX3 - - - FMC_ SDCKE0 - - EVENT OUT PC6 - - TIM3_CH1 TIM8_CH1 FMPI2C1 _SCL I2S2_MCK - - USART6_T X - - - SDIO_D6 DCMI_D0 - EVENT OUT PC7 - - TIM3_CH2 TIM8_CH2 FMPI2C1 _SDA SPI2_SCK/ I2S2_CK I2S3_MCK SPDIF_ RX1 USART6_R X - - - SDIO_D7 DCMI_D1 - EVENT OUT PC8 TRACE D0 - TIM3_CH3 TIM8_CH3 - - - UART5_ RTS USART6_C K - - - SDIO_D0 DCMI_D2 - EVENT OUT PC9 MCO2 - TIM3_CH4 TIM8_CH4 I2C3_ SDA I2S_CKIN - UART5_ CTS - QUADSPI_ BK1_IO0 - - SDIO_D1 DCMI_D3 - EVENT OUT PC10 - - - - - - SPI3_SCK / I2S3_CK USART3_ TX UART4_TX QUADSPI_ BK1_IO1 - - SDIO_D2 DCMI_D8 - EVENT OUT PC11 - - - - - - SPI3_ MISO USART3_ RX UART4_RX QUADSPI_ BK2_NCS - - SDIO_D3 DCMI_D4 - EVENT OUT PC12 - - - - I2C2_ SDA - SPI3_ MOSI/ I2S3_SD USART3_ CK UART5_TX - - - SDIO_CK DCMI_D9 - EVENT OUT PC13 - - - - - - - - - - - - - - - EVENT OUT PC14 - - - - - - - - - - - - - - - EVENT OUT PC15 - - - - - - - - - - - - - - - EVENT OUT Port C Pinout and pin description 61/202 SYS TIM8/9/ 10/11/ CEC STM32F446xC/E Table 11. Alternate function (continued) AF0 AF1 AF2 AF3 AF4 AF5 I2C1/2/3 /4/CEC SPI1/2/3/ 4 Port DocID027107 Rev 6 Port D AF6 AF7 AF8 AF9 SPI2/3/ SAI/ CAN1/2 USART1/ SPI2/3/4/ USART6/ TIM12/13/ 2/3/UART SAI1 UART4/5/ 14/ 5/SPDIFR SPDIFRX QUADSPI X AF10 AF11 AF12 AF13 AF14 AF15 SAI2/ QUADSPI/ OTG2_HS/ OTG1_FS OTG1_FS FMC/ SDIO/ OTG2_FS DCMI - SYS TIM1/2 TIM3/4/5 PD0 - - - - - SPI4_MISO SPI3_ MOSI/ I2S3_SD - - CAN1_RX - - FMC_D2 - - EVENT OUT PD1 - - - - - - - SPI2_NSS/ I2S2_WS - CAN1_TX - - FMC_D3 - - EVENT OUT PD2 - - TIM3_ETR - - - - - UART5_RX - - - SDIO_CMD DCMI_ D11 - EVENT OUT PD3 TRACE D1 - - - - SPI2_SCK/ I2S2_CK - USART2_ CTS - QUADSPI_ CLK - - FMC_CLK DCMI_ D5 - EVENT OUT PD4 - - - - - - - USART2_ RTS - - - - FMC_NOE - - EVENT OUT PD5 - - - - - - - USART2_ TX - - - - FMC_NWE - - EVENT OUT PD6 - - - - - SPI3_ MOSI/ I2S3_SD SAI1_ SD_A USART2_ RX - - - - FMC_ NWAIT DCMI_ D10 - EVENT OUT PD7 - - - - - - - USART2_ CK SPDIF_ RX0 - - - FMC_NE1 - - EVENT OUT PD8 - - - - - - - USART3_ TX SPDIF_ RX1 - - - FMC_D13 - - EVENT OUT PD9 - - - - - - - USART3_ RX - - - - FMC_D14 - - EVENT OUT PD10 - - - - - - - USART3_ CK - - - - FMC_D15 - - EVENT OUT PD11 - - - - FMPI2C1 _SMBA - - USART3_ CTS - QUADSPI_ BK1_IO0 SAI2_SD_A - FMC_A16 - - EVENT OUT PD12 - - TIM4_CH1 - FMPI2C1 _SCL - - USART3_ RTS - QUADSPI_ BK1_IO1 SAI2_FS_A - FMC_A17 - - EVENT OUT PD13 - - TIM4_CH2 - FMPI2C1 _SDA - - - - QUADSPI_ BK1_IO3 SAI2_SCK_A - FMC_A18 - - EVENT OUT PD14 - - TIM4_CH3 - FMPI2C1 _SCL - - - SAI2_ SCK_A - - - FMC_D0 - - EVENT OUT PD15 - - TIM4_CH4 - FMPI2C1 _SDA - - - - - - - FMC_D1 - - EVENT OUT STM32F446xC/E SYS TIM8/9/ 10/11/ CEC Pinout and pin description 62/202 Table 11. Alternate function (continued) AF0 AF1 AF2 AF3 AF4 AF5 I2C1/2/3 /4/CEC SPI1/2/3/ 4 Port AF6 AF7 AF8 AF9 SPI2/3/ SAI/ CAN1/2 USART1/ SPI2/3/4/ USART6/ TIM12/13/ 2/3/UART SAI1 UART4/5/ 14/ 5/SPDIFR SPDIFRX QUADSPI X AF10 AF11 AF12 AF13 AF14 AF15 SAI2/ QUADSPI/ OTG2_HS/ OTG1_FS OTG1_FS FMC/ SDIO/ OTG2_FS DCMI - SYS DocID027107 Rev 6 TIM1/2 TIM3/4/5 PE0 - - TIM4_ETR - - - - - - - SAI2_ MCLK_A - FMC_ NBL0 DCMI_D2 - EVENT OUT PE1 - - - - - - - - - - - - FMC_ NBL1 DCMI_D3 - EVENT OUT PE2 TRACE CLK - - - - SPI4_SCK SAI1_ MCLK_A - - QUADSPI_ BK1_IO2 - - FMC_A23 - - EVENT OUT PE3 TRACE D0 - - - - - SAI1_ SD_B - - - - - FMC_A19 - - EVENT OUT PE4 TRACE D1 - - - - SPI4_NSS SAI1_ FS_A - - - - - FMC_A20 DCMI_D4 - EVENT OUT PE5 TRACE D2 - - TIM9_CH1 - SPI4_MISO SAI1_ SCK_A - - - - - FMC_A21 DCMI_D6 - EVENT OUT PE6 TRACE D3 - - TIM9_CH2 - SPI4_MOSI SAI1_ SD_A - - - - - FMC_A22 DCMI_D7 - EVENT OUT PE7 - TIM1_ETR - - - - - - UART5_RX - QUADSPI_ BK2_IO0 - FMC_D4 - - EVENT OUT PE8 - TIM1_CH1N - - - - - - UART5_TX - QUADSPI_ BK2_IO1 - FMC_D5 - - EVENT OUT PE9 - TIM1_CH1 - - - - - - - - QUADSPI_ BK2_IO2 - FMC_D6 - - EVENT OUT PE10 - TIM1_CH2N - - - - - - - - QUADSPI_ BK2_IO3 - FMC_D7 - - EVENT OUT PE11 - TIM1_CH2 - - - SPI4_NSS - - - - - FMC_D8 - - EVENT OUT PE12 - TIM1_CH3N - - - SPI4_SCK - - - - SAI2_ SCK_B - FMC_D9 - - EVENT OUT PE13 - TIM1_CH3 - - - SPI4_MISO - - - - SAI2_ FS_B - FMC_D10 - - EVENT OUT PE14 - TIM1_CH4 - - - SPI4_MOSI - - - - SAI2_ MCLK_B - FMC_D11 - - EVENT OUT PE15 - TIM1_BKIN - - - - - - - - - - FMC_D12 - - EVENT OUT Port E SAI2_ SD_B 63/202 Pinout and pin description SYS TIM8/9/ 10/11/ CEC STM32F446xC/E Table 11. Alternate function (continued) AF0 AF1 AF2 AF3 AF4 AF5 I2C1/2/3 /4/CEC SPI1/2/3/ 4 Port AF6 AF7 AF8 AF9 SPI2/3/ SAI/ CAN1/2 USART1/ SPI2/3/4/ USART6/ TIM12/13/ 2/3/UART SAI1 UART4/5/ 14/ 5/SPDIFR SPDIFRX QUADSPI X AF10 AF11 AF12 AF13 AF14 AF15 SAI2/ QUADSPI/ OTG2_HS/ OTG1_FS OTG1_FS FMC/ SDIO/ OTG2_FS DCMI - SYS DocID027107 Rev 6 SYS TIM1/2 TIM3/4/5 TIM8/9/ 10/11/ CEC PF0 - - - - I2C2_ SDA - - - - - - - FMC_A0 - - EVENT OUT PF1 - - - - I2C2_ SCL - - - - - - - FMC_A1 - - EVENT OUT PF2 - - - - I2C2_ SMBA - - - - - - - FMC_A2 - - EVENT OUT PF3 - - - - - - - - - - - - FMC_A3 - - EVENT OUT PF4 - - - - - - - - - - - - FMC_A4 - - EVENT OUT PF5 - - - - - - - - - - - - FMC_A5 - - EVENT OUT PF6 - - - TIM10_ CH1 - - SAI1_ SD_B - - QUADSPI_ BK1_IO3 - - - - - EVENT OUT PF7 - - - TIM11_ CH1 - - SAI1_ MCLK_B - - QUADSPI_ BK1_IO2 - - - - - EVENT OUT PF8 - - - - - - SAI1_ SCK_B - - TIM13_CH1 QUADSPI_ BK1_IO0 - - - - EVENT OUT PF9 - - - - - - SAI1_ FS_B - - TIM14_CH1 QUADSPI_ BK1_IO1 - - - - EVENT OUT PF10 - - - - - - - - - - - - - DCMI_ D11 - EVENT OUT PF11 - - - - - - - - - - SAI2_SD_B - FMC_ SDNRAS DCMI_ D12 - EVENT OUT PF12 - - - - - - - - - - - - FMC_A6 - - EVENT OUT PF13 - - - - FMPI2C1 _SMBA - - - - - - - FMC_A7 - - EVENT OUT PF14 - - - - FMPI2C1 _SCL - - - - - - - FMC_A8 - - EVENT OUT PF15 - - - - FMPI2C1 _SDA - - - - - - - FMC_A9 - - EVENT OUT Pinout and pin description 64/202 Table 11. Alternate function (continued) Port F STM32F446xC/E AF0 AF1 AF2 AF3 AF4 AF5 I2C1/2/3 /4/CEC SPI1/2/3/ 4 Port DocID027107 Rev 6 Port G AF6 AF7 AF8 AF9 SPI2/3/ SAI/ CAN1/2 USART1/ SPI2/3/4/ USART6/ TIM12/13/ 2/3/UART SAI1 UART4/5/ 14/ 5/SPDIFR SPDIFRX QUADSPI X AF10 AF11 AF12 AF13 AF14 AF15 SAI2/ QUADSPI/ OTG2_HS/ OTG1_FS OTG1_FS FMC/ SDIO/ OTG2_FS DCMI - SYS TIM1/2 TIM3/4/5 PG0 - - - - - - - - - - - - FMC_A10 - - EVENT OUT PG1 - - - - - - - - - - - - FMC_A11 - - EVENT OUT PG2 - - - - - - - - - - - - FMC_A12 - - EVENT OUT PG3 - - - - - - - - - - - - FMC_A13 - - EVENT OUT PG4 - - - - - - - - - - - - FMC_A14/ FMC_BA0 - - EVENT OUT PG5 - - - - - - - - - - - - FMC_A15/ FMC_BA1 - - EVENT OUT PG6 - - - - - - - - - - QUADSPI_ BK1_NCS - - DCMI_ D12 - EVENT OUT PG7 - - - - - - - - USART6_C K - - - FMC_INT DCMI_ D13 - EVENT OUT PG8 - - - - - - - SPDIFRX_ IN2 USART6_R TS - - - FMC_ SDCLK - - EVENT OUT PG9 - - - - - - - SPDIFRX_ IN3 USART6_R X QUADSPI_ BK2_IO2 SAI2_FS_B - FMC_NE2/ FMC_NCE3 DCMI_ VSYNC(1) - EVENT OUT PG10 - - - - - - - - - - SAI2_SD_B - FMC_NE3 DCMI_D2 - EVENT OUT PG11 - - - - - - SPI4_ SCK SPDIFRX_ IN0 - - - - - DCMI_D3 - EVENT OUT PG12 - - - - - - SPI4_ MISO SPDIFRX_ IN1 USART6_R TS - - - FMC_NE4 - - EVENT OUT PG13 TRACE D2 - - - - - SPI4_ MOSI - USART6_C TS - - - FMC_A24 - - EVENT OUT PG14 TRACE D3 - - - - - SPI4_ NSS - USART6_T X QUADSPI_ BK2_IO3 - - FMC_A25 - - EVENT OUT PG15 - - - - - - - - USART6_C TS - - - FMC_ SDNCAS DCMI_ D13 - EVENT OUT 65/202 Pinout and pin description SYS TIM8/9/ 10/11/ CEC STM32F446xC/E Table 11. Alternate function (continued) AF0 AF1 AF2 AF3 AF4 AF5 I2C1/2/3 /4/CEC SPI1/2/3/ 4 Port AF6 AF7 AF8 AF9 SPI2/3/ SAI/ CAN1/2 USART1/ SPI2/3/4/ USART6/ TIM12/13/ 2/3/UART SAI1 UART4/5/ 14/ 5/SPDIFR SPDIFRX QUADSPI X AF10 AF11 AF12 AF13 AF14 AF15 SAI2/ QUADSPI/ OTG2_HS/ OTG1_FS OTG1_FS FMC/ SDIO/ OTG2_FS DCMI - SYS SYS TIM1/2 TIM3/4/5 TIM8/9/ 10/11/ CEC PH0 - - - - - - - - - - - - - - - EVENT OUT PH1 - - - - - - - - - - - - - - - EVENT OUT Port H 1. Pinout and pin description 66/202 Table 11. Alternate function (continued) The DCMI_VSYNC alternate function on PG9 is only available on silicon revision 3. DocID027107 Rev 6 STM32F446xC/E STM32F446xC/E 5 Memory mapping Memory mapping The memory map is shown in Figure 15 Figure 15. Memory map [)))))))) 5HVHUYHG [([)))))))) &RUWH[0LQWHUQDO SHULSKHUDOV [([())))) $+% [['))))))) 5HVHUYHG [&[))))))) [%)) $+% 0E\WH %ORFN &RUWH[0 ,QWHUQDO SHULSKHUDOV 5HVHUYHG [ [[))))))) [)))) [( ['))))))) 0E\WH %ORFN )0& [' [&))))))) $+% 0E\WH %ORFN )0&4XDG63, [$ [))))))) [ [))))))) 0E\WH %ORFN )0&EDQN DQG4XDG63, [ 5HVHUYHG [&[)))) [%)) 0E\WH %ORFN )0&EDQN [ [))))))) $3% 0E\WH %ORFN 3HULSKHUDOV [ [))))))) 0E\WH %ORFN 65$0 [ [))))))) 0E\WH %ORFN 65$0 [ 5HVHUYHG [[))))))) 5HVHUYHG [[)))) 65$0 .%DOLDVHG %\ELWEDQGLQJ 65$0 .%DOLDVHG %\ELWEDQGLQJ [&[)))) 5HVHUYHG [)))&[))))))) 2SWLRQ%\WHV [)))&[)))&) 5HVHUYHG 6\VWHPPHPRU\ 5HVHUYHG 2SWLRQE\WHV [)))$[)))))) [)))[)))$) [))(&[))()))) [))(&[))(&) [ [[)))) [))) [[%))) 5HVHUYHG [[))(%))) 5HVHUYHG [[)))) 5HVHUYHG [[))))))) )ODVKPHPRU\ [[))))) 5HVHUYHG $OLDVHGWR)ODVKV\VWHP PHPRU\RU65$0GHSHQGLQJ RQWKH%227SLQV 5HVHUYHG $3% [[)))))) [ [[))))) DocID027107 Rev 6 069 67/202 71 Memory mapping STM32F446xC/E Table 12. STM32F446xC/E register boundary addresses(1) Bus Boundary address - 0xE00F FFFF - 0xFFFF FFFF Reserved Cortex-M4 0xE000 0000 - 0xE00F FFFF Cortex-M4 internal peripherals 0xD000 0000 - 0xDFFF FFFF FMC bank 6 0xC000 0000 - 0xCFFF FFFF FMC bank 5 AHB3 0xA000 2000 - 0x0xBFFF FFFF Reserved 0xA000 1000 - 0x0xA000 1FFF QuadSPI control register 0xA000 0000 - 0xA000 0FFF FMC control register 0x9000 0000 - 0x9FFF FFFF QuadSPI 0x8000 0000 - 0x8FFF FFFF FMC bank 3 0x7000 0000 - 0x0x7FFF FFFF - AHB2 68/202 Peripheral Reserved 0x6000 0000 - 0x6FFF FFFF FMC bank 1 0x5006 0C00- 0x5FFF FFFF Reserved 0x5006 0800- 0x500F 07FF Reserved 0x5005 0400 - 0x5006 07FF Reserved 0x5005 0000 - 0x5005 03FF DCMI 0x5004 0000- 0x5004 FFFF Reserved 0x5000 0000 - 0X5003 FFFF USB OTG FS DocID027107 Rev 6 STM32F446xC/E Memory mapping Table 12. STM32F446xC/E register boundary addresses(1) (continued) Bus Boundary address Peripheral - 0x4008 0000- 0x4FFF FFFF Reserved 0x4004 0000 - 0x4007 FFFF USB OTG HS 0x4002 BC00- 0x4003 FFFF 0x4002 B000 - 0x4002 BBFF 0x4002 9400 - 0x4002 AFFF 0x4002 9000 - 0x4002 93FF 0x4002 8C00 - 0x4002 8FFF Reserved 0x4002 8800 - 0x4002 8BFF 0x4002 8400 - 0x4002 87FF 0x4002 8000 - 0x4002 83FF 0x4002 6800 - 0x4002 7FFF AHB1 0x4002 6400 - 0x4002 67FF DMA2 0x4002 6000 - 0x4002 63FF DMA1 0X4002 5000 - 0X4002 5FFF Reserved 0x4002 4000 - 0x4002 4FFF BKPSRAM 0x4002 3C00 - 0x4002 3FFF Flash interface register 0x4002 3800 - 0x4002 3BFF RCC 0X4002 3400 - 0X4002 37FF Reserved 0x4002 3000 - 0x4002 33FF CRC 0x4002 2C00 - 0x4002 2FFF 0x4002 2800 - 0x4002 2BFF 0x4002 2400 - 0x4002 27FF Reserved 0x4002 2000 - 0x4002 23FF 0x4002 1C00 - 0x4002 1FFF GPIOH 0x4002 1800 - 0x4002 1BFF GPIOG 0x4002 1400 - 0x4002 17FF GPIOF 0x4002 1000 - 0x4002 13FF GPIOE 0X4002 0C00 - 0x4002 0FFF GPIOD 0x4002 0800 - 0x4002 0BFF GPIOC 0x4002 0400 - 0x4002 07FF GPIOB 0x4002 0000 - 0x4002 03FF GPIOA DocID027107 Rev 6 69/202 71 Memory mapping STM32F446xC/E Table 12. STM32F446xC/E register boundary addresses(1) (continued) Bus Boundary address - 0x4001 6C00- 0x4001 FFFF 0x4001 6800 - 0x4001 6BFF Peripheral Reserved 0x4001 5C00 - 0x4001 5FFF SAI2 0x4001 6000 - 0x4001 67FF Reserved 0x4001 5800 - 0x4001 5BFF SAI1 0x4001 5400 - 0x4001 57FF 0x4001 5000 - 0x4001 53FF Reserved 0x4001 4C00 - 0x4001 4FFF APB2 70/202 0x4001 4800 - 0x4001 4BFF TIM11 0x4001 4400 - 0x4001 47FF TIM10 0x4001 4000 - 0x4001 43FF TIM9 0x4001 3C00 - 0x4001 3FFF EXTI 0x4001 3800 - 0x4001 3BFF SYSCFG 0x4001 3400 - 0x4001 37FF SPI4 0x4001 3000 - 0x4001 33FF SPI1 0x4001 2C00 - 0x4001 2FFF SDIO 0x4001 2400 - 0x4001 2BFF Reserved 0x4001 2000 - 0x4001 23FF ADC1 - ADC2 - ADC3 0x4001 1800 - 0x4001 1FFF Reserved 0x4001 1400 - 0x4001 17FF USART6 0x4001 1000 - 0x4001 13FF USART1 0x4001 0800 - 0x4001 0FFF Reserved 0x4001 0400 - 0x4001 07FF TIM8 0x4001 0000 - 0x4001 03FF TIM1 DocID027107 Rev 6 STM32F446xC/E Memory mapping Table 12. STM32F446xC/E register boundary addresses(1) (continued) Bus Boundary address - 0x4000 8000- 0x4000 FFFF 0x4000 7C00 - 0x4000 7FFF Peripheral Reserved 0x4000 7800 - 0x4000 7BFF APB1 0x4000 7400 - 0x4000 77FF DAC 0x4000 7000 - 0x4000 73FF PWR 0x4000 6C00 - 0x4000 6FFF HDMI-CEC 0x4000 6800 - 0x4000 6BFF CAN2 0x4000 6400 - 0x4000 67FF CAN1 0x4000 6000 - 0x4000 63FF FMPI2C1 0x4000 5C00 - 0x4000 5FFF I2C3 0x4000 5800 - 0x4000 5BFF I2C2 0x4000 5400 - 0x4000 57FF I2C1 0x4000 5000 - 0x4000 53FF UART5 0x4000 4C00 - 0x4000 4FFF UART4 0x4000 4800 - 0x4000 4BFF USART3 0x4000 4400 - 0x4000 47FF USART2 0x4000 4000 - 0x4000 43FF SPDIFRX 0x4000 3C00 - 0x4000 3FFF SPI3 / I2S3 0x4000 3800 - 0x4000 3BFF SPI2 / I2S2 0x4000 3400 - 0x4000 37FF Reserved 0x4000 3000 - 0x4000 33FF IWDG 0x4000 2C00 - 0x4000 2FFF WWDG 0x4000 2800 - 0x4000 2BFF RTC & BKP Registers 0x4000 2400 - 0x4000 27FF Reserved 0x4000 2000 - 0x4000 23FF TIM14 0x4000 1C00 - 0x4000 1FFF TIM13 0x4000 1800 - 0x4000 1BFF TIM12 0x4000 1400 - 0x4000 17FF TIM7 0x4000 1000 - 0x4000 13FF TIM6 0x4000 0C00 - 0x4000 0FFF TIM5 0x4000 0800 - 0x4000 0BFF TIM4 0x4000 0400 - 0x4000 07FF TIM3 0x4000 0000 - 0x4000 03FF TIM2 1. The grey color is used for reserved boundary addresses. DocID027107 Rev 6 71/202 71 Electrical characteristics STM32F446xC/E 6 Electrical characteristics 6.1 Parameter conditions Unless otherwise specified, all voltages are referenced to VSS. 6.1.1 Minimum and maximum values Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean3). 6.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 C, VDD = 3.3 V (for the 1.7 V VDD 3.6 V voltage range). They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean2). 6.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 6.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 16. 6.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 17. Figure 16. Pin loading conditions Figure 17. Pin input voltage -#5 PIN -#5 PIN # P& 6). -36 72/202 DocID027107 Rev 6 -36 STM32F446xC/E 6.1.6 Electrical characteristics Power supply scheme Figure 18. Power supply scheme 9%$7 9%$7 WR9 *3,2V ,1 i) 9'' iQ) i) 9''86% 9&$3B 9&$3B 966 ,2 /RJLF .HUQHOORJLF &38GLJLWDO 5$0 9ROWDJH UHJXODWRU %<3$66B5(* 5HVHW FRQWUROOHU 3'5B21 9'' )ODVKPHPRU\ 27* )6 3+< 9''86% Q) ) 9''$ 95() Q) ) /HYHOVKLIWHU 287 9'' %DFNXSFLUFXLWU\ 26&.57& :DNHXSORJLF %DFNXSUHJLVWHUV EDFNXS5$0 3RZHU VZLWFK Q) ) 95() $'& 95() $QDORJ 5&V 3// 966$ 06Y9 1. VDDA and VSSA must be connected to VDDand VSS, respectively. 2. VDDUSB is a dedicated independent USB power supply for the on-chip full-speed OTG PHY module and associated DP/DM GPIOs. Its value is independent from the VDD and VDDA values, but must be the last supply to be provided and the first to disappear. If VDD is different from VDDUSB and only one on-chip OTG PHY is used, the second OTG PHY GPIOs (DP/DM) are still supplied at VDDUSB (3.3V). 3. VDDUSB is available only on WLCSP81, UFBGA144 and LQFP144 packages. For packages where VDDUSB pin is not available, it is internally connected to VDD. 4. VCAP_2 pad is not available on LQFP64. Caution: Each power supply pair (VDD/VSS, VDDA/VSSA...) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure good operation of the device. It is not recommended to remove filtering capacitors to reduce PCB size or cost. This might cause incorrect operation of the device. DocID027107 Rev 6 73/202 175 Electrical characteristics 6.1.7 STM32F446xC/E Current consumption measurement Figure 19. Current consumption measurement scheme ,''B9%$7 9%$7 ,'' 9'' 9''$ 9''86% 06Y9 6.2 Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 13: Voltage characteristics, Table 14: Current characteristics, and Table 15: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 13. Voltage characteristics Symbol VDD-VSS VIN Ratings Min Max -0.3 4.0 Input voltage on FT & FTf pins(2) VSS-0.3 VDD+4.0 Input voltage on TTa pins VSS-0.3 4.0 Input voltage on any other pin VSS-0.3 4.0 VSS 9.0 Variations between different VDD power pins - 50 Variations between all the different ground pins - 50 External main supply voltage (including VDDA, VDD, VDDUSB and VBAT)(1) Input voltage on BOOT0 pin |VDDx| |VSSX -VSS| VESD(HBM) Electrostatic discharge voltage (human body model) Unit V mV see Section 6.3.15: Absolute maximum ratings (electrical sensitivity) 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. VIN maximum value must always be respected. Refer to Table 14 for the values of the maximum allowed injected current. 74/202 DocID027107 Rev 6 - STM32F446xC/E Electrical characteristics Table 14. Current characteristics Symbol Ratings Max. IVDD Total current into sum of all VDD power lines (source)(1) IVSS (1) IVDDUSB 25 Maximum current into each VDD power pin (source)(1) IVSS (1) IIO IINJ(PIN) 100 - 100 Output current sunk by any I/O and control pin 25 Output current sourced by any I/Os and control pin - 25 Total output current sunk by sum of all I/Os and control pins (2) 120 Total output current sunk by sum of all USB I/Os 25 Total output current sourced by sum of all I/Os and control IINJ(PIN) - 240 Total current into VDDUSB power line (source) IVDD IIO 240 Total current out of sum of all VSS ground lines (sink) Maximum current out of each VSS ground pin (sink) Unit pins(2) Injected current on FT, FTf, RST and B pins mA -120 -5/+0(3) Injected current on TTa pins 5(4) Total injected current (sum of all I/O and control pins)(5) 25 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages. 3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value. 4. A positive injection is induced by VIN>VDDA while a negative injection is induced by VIN5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of - 5 A/+0 A range), or other functional failure (for example reset, oscillator frequency deviation). Negative induced leakage current is caused by negative injection and positive induced leakage current by positive injection. The test results are given in Table 55. Table 55. I/O current injection susceptibility(1) Functional susceptibility Symbol IINJ Description Negative injection Positive injection Injected current on BOOT0 pin -0 NA Injected current on NRST pin -0 NA Injected current on PE2, PE3,PE4, PE5, PE6, PC13, PC14, PF10, PH0, PH1, NRST, PC0, PC1, PC2, PC3, PG15, PB3, PB4, PB5, PB6, PB7, PB8, PB9, PE0, PE1 -0 NA Injected current on any other FT and FTf pins -5 NA Injected current on any other pins -5 +5 Unit mA 1. NA = not applicable. Note: It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. DocID027107 Rev 6 117/202 175 Electrical characteristics 6.3.17 STM32F446xC/E I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in Table 56: I/O static characteristics are derived from tests performed under the conditions summarized in Table 16. All I/Os are CMOS and TTL compliant. Table 56. I/O static characteristics Symbol VIL Parameter - BOOT0 I/O input low level voltage 1.75 V VDD 3.6 V, - 40 C TA 105 C - - 1.7 V VDD 3.6 V, 0 C TA 105 C - BOOT0 I/O input high level voltage BOOT0 I/O input hysteresis I/O input leakage current (3) I/O FT input leakage current (4) Max Unit (1) - VHYS 118/202 Typ 1.7 VVDD3.6 V FT, FTf, TTa and NRST I/O input hysteresis Ilkg Min FT, FTf, TTa and NRST I/O input low level voltage FT, FTf, TTa and NRST I/O input high level voltage(4) VIH Conditions 1.7 VVDD3.6 V 1.75 VVDD 3.6 V, - 40 CTA 105 C 0.35VDD-0.04 0.3VDD(2) V 0.1VDD+0.1(1) 0.45VDD+0.3(1) 0.7VDD(2) - V 0.17VDD+0.7(1) - - 1.7 VVDD3.6 V - 10%VDD - 1.75 VVDD 3.6 V, -40 CTA 105 C - 1.7 VVDD 3.6 V, 0 CTA 105 C - VSS VIN VDD - - 1 VIN = 5 V - - 3 1.7 VVDD 3.6 V, 0 CTA 105 C DocID027107 Rev 6 - V 100m - A STM32F446xC/E Electrical characteristics Table 56. I/O static characteristics (continued) Symbol Parameter RPU All pins except for PA10/PB12 Weak pull-up (OTG_FS_ID, equivalent OTG_HS_ID) resistor(5) PA10/PB12 (OTG_FS_ID, OTG_HS_ID) RPD CIO(7) Weak pulldown equivalent resistor(6) All pins except for PA10/PB12 (OTG_FS_ID, OTG_HS_ID) Conditions Typ Max 30 40 50 7 10 14 Unit VIN = VSS k 30 40 50 7 10 14 - 5 - VIN = VDD PA10/PB12 (OTG_FS_ID, OTG_HS_ID) I/O pin capacitance Min - pF 1. Guaranteed by design. 2. Tested in production. 3. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins, Refer to Table 55: I/O current injection susceptibility 4. To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins.Refer to Table 55: I/O current injection susceptibility 5. Pull-up resistors are designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimum (~10% order). 6. Pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the series resistance is minimum (~10% order). 7. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed based on test during characterization. All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements for FT I/Os is shown in Figure 31. DocID027107 Rev 6 119/202 175 Electrical characteristics STM32F446xC/E Figure 31. FT I/O input characteristics 9,/9,+ 9 ' 9' L P ,+ Q 9 QW H P LUH 77/UHTXLUHPHQW U 9,+PLQ 9 26 0 & ' 9' Q R WL XF LQ RG +P , SU 9 LQ QV WLR HG VW XOD P L 7H V LJQ HV $UHDQRW Q' R G VH GHWHUPLQHG '' D % 9 D[ ,/P QV9 ODWLR X LP V VLJQ Q'H HGR 77/UHTXLUHPHQW9,/PD[ %DV 9 7HVWHGLQSURGXFWLRQ&026UHTXLUHPHQW9,/PD[ 9'' X HT 9'' 9 069 Output driving current The GPIOs (general purpose input/outputs) can sink or source up to 8 mA, and sink or source up to 20 mA (with a relaxed VOL/VOH) except PC13, PC14 and PC15 which can sink or source up to 3mA. When using the PC13 to PC15 GPIOs in output mode, the speed should not exceed 2 MHz with a maximum load of 30 pF. In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2. In particular: * The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating IVDD (see Table 14). * The sum of the currents sunk by all the I/Os on VSS plus the maximum Run consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating IVSS (see Table 14). Output voltage levels Unless otherwise specified, the parameters given in Table 57 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 16. All I/Os are CMOS and TTL compliant. 120/202 DocID027107 Rev 6 STM32F446xC/E Electrical characteristics Table 57. Output voltage characteristics Symbol Parameter VOL(1) Output low level voltage for an I/O pin VOH(3) Output high level voltage for an I/O pin VOL (1) Output low level voltage for an I/O pin VOH (3) Output high level voltage for an I/O pin VOL(1) Output low level voltage for an I/O pin VOH(3) Output high level voltage for an I/O pin VOL(1) Output low level voltage for an I/O pin VOH(3) Output high level voltage for an I/O pin VOL(1) Output low level voltage for an I/O pin VOH(3) Output high level voltage for an I/O pin Conditions Min Max CMOS port(2) IIO = +8 mA 2.7 V VDD 3.6 V - 0.4 VDD-0.4 - - 0.4 2.4 - - 1.3(4) VDD-1.3(4) - - 0.4(4) VDD-0.4(4) - - 0.4(5) VDD-0.4(5) - TTL port(2) IIO =+ 8mA 2.7 V VDD 3.6 V IIO = +20 mA 2.7 V VDD 3.6 V IIO = +6 mA 1.8 V VDD 3.6 V IIO = +4 mA 1.7 V VDD 3.6V Unit V V V V V 1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 14. and the sum of IIO (I/O ports and control pins) must not exceed IVSS. 2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52. 3. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 14 and the sum of IIO (I/O ports and control pins) must not exceed IVDD. 4. Based on characterization data. 5. Guaranteed by design. Input/output AC characteristics The definition and values of input/output AC characteristics are given in Figure 32 and Table 58, respectively. Unless otherwise specified, the parameters given in Table 58 are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 16. Table 58. I/O AC characteristics(1)(2) OSPEEDR y[1:0] bit value(1) Symbol fmax(IO)out Parameter Maximum frequency(3) 00 tf(IO)out/ tr(IO)out Output high to low level fall time and output low to high level rise time Conditions Min Typ Max CL = 50 pF, VDD 2.7 V - - 4 CL = 50 pF, VDD 1.7 V - - 2 CL = 10 pF, VDD 2.7 V - - 8 CL = 10 pF, VDD 1.8 V - - 4 CL = 10 pF, VDD 1.7 V - - 3 CL = 50 pF, VDD = 1.7 V to 3.6 V - - 100 DocID027107 Rev 6 Unit MHz ns 121/202 175 Electrical characteristics STM32F446xC/E Table 58. I/O AC characteristics(1)(2) (continued) OSPEEDR y[1:0] bit value(1) Symbol fmax(IO)out Parameter Maximum frequency(3) 01 tf(IO)out/ tr(IO)out fmax(IO)out Output high to low level fall time and output low to high level rise time Maximum frequency(3) 10 tf(IO)out/ tr(IO)out fmax(IO)out Output high to low level fall time and output low to high level rise time Maximum frequency(3) 11 tf(IO)out/ tr(IO)out - 122/202 tEXTIpw Output high to low level fall time and output low to high level rise time Conditions Min Typ Max CL = 50 pF, VDD 2.7 V - - 25 CL = 50 pF, VDD 1.8 V - - 12.5 CL = 50 pF, VDD 1.7 V - - 10 CL = 10 pF, VDD 2.7 V - - 50 CL = 10 pF, VDD 1.8 V - - 20 CL = 10 pF, VDD 1.7 V - - 12.5 CL = 50 pF, VDD 2.7 V - - 10 CL = 10 pF, VDD 2.7 V - - 6 CL = 50 pF, VDD 1.7 V - - 20 CL = 10 pF, VDD 1.7 V - - 10 CL = 40 pF, VDD 2.7 V - - 50(4) CL = 10 pF, VDD 2.7 V - - 100(4) CL = 40 pF, VDD 1.7 V - - 25 CL = 10 pF, VDD 1.8 V - - 50 CL = 10 pF, VDD 1.7 V - - 42.5 CL = 40 pF, VDD 2.7 V - - 6 CL = 10 pF, VDD 2.7 V - - 4 CL = 40 pF, VDD 1.7 V - - 10 CL = 10 pF, VDD 1.7 V - - 6 CL = 30 pF, VDD 2.7 V - - 100(4) CL = 30 pF, VDD 1.8 V - - 50 CL = 30 pF, VDD 1.7 V - - 42.5 CL = 10 pF, VDD 2.7 V - - 180(4) CL = 10 pF, VDD 1.8 V - - 100 CL = 10 pF, VDD 1.7 V - - 72.5 CL = 30 pF, VDD 2.7 V - - 4 CL = 30 pF, VDD 1.8 V - - 6 CL = 30 pF, VDD 1.7 V - - 7 CL = 10 pF, VDD 2.7 V - - 2.5 CL = 10 pF, VDD 1.8 V - - 3.5 CL = 10 pF, VDD 1.7 V - - 4 10 - - Pulse width of external signals detected by the EXTI controller DocID027107 Rev 6 - Unit MHz ns MHz ns MHz ns ns STM32F446xC/E Electrical characteristics 1. Guaranteed by design. 2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F4xx reference manual for a description of the GPIOx_SPEEDR GPIO port output speed register. 3. The maximum frequency is defined in Figure 32. 4. For maximum frequencies above 50 MHz and VDD > 2.4 V, the compensation cell should be used. Figure 32. I/O AC characteristics definition (;7(51$/ 287387 21&/ WU ,2 RXW WI ,2 RXW 7 0D[LPXPIUHTXHQF\LVDFKLHYHGLI WUWI 7DQGLIWKHGXW\F\FOHLV ZKHQORDGHGE\&/VSHFLILHGLQWKHWDEOH,2$&FKDUDFWHULVWLFV 6.3.18 DLG NRST pin characteristics The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPU (see Table 56: I/O static characteristics). Unless otherwise specified, the parameters given in Table 59 are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 16. Table 59. NRST pin characteristics Symbol Parameter Conditions Min Typ Max Unit RPU Weak pull-up equivalent resistor(1) VIN = VSS 30 40 50 k - - - 100 ns VDD > 2.7 V 300 - - ns Internal Reset source 20 - - s VF(NRST)(2) NRST Input filtered pulse VNF(NRST)(2) NRST Input not filtered pulse TNRST_OUT Generated reset pulse duration 1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order). 2. Guaranteed by design. DocID027107 Rev 6 123/202 175 Electrical characteristics STM32F446xC/E Figure 33. Recommended NRST pin protection 9'' ([WHUQDO UHVHWFLUFXLW 538 1567 ,QWHUQDO5HVHW )LOWHU ) 670) DLF 1. The reset network protects the device against parasitic resets. 2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 59. Otherwise the reset is not taken into account by the device. 3. The external capacitor on NRST must be placed as close as possible to the device. 6.3.19 TIM timer characteristics The parameters given in Table 60 are guaranteed by design. Refer to Section 6.3.17: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). Table 60. TIMx characteristics(1)(2) Symbol Conditions(3) Min Max Unit AHB/APBx prescaler=1 or 2 or 4, fTIMxCLK = 180 MHz 1 - tTIMxCLK AHB/APBx prescaler>4, fTIMxCLK = 90 MHz 1 - tTIMxCLK 0 fTIMxCLK/2 MHz - 16/32 bit - 65536 x 65536 tTIMxCLK Parameter tres(TIM) Timer resolution time Timer external clock frequency on CH1 to CH4 fEXT fTIMxCLK = 180 MHz Timer resolution ResTIM tMAX_COUNT Maximum possible count with 32-bit counter - 1. TIMx is used as a general term to refer to the TIM1 to TIM12 timers. 2. Guaranteed by design. 3. The maximum timer frequency on APB1 or APB2 is up to 180 MHz, by setting the TIMPRE bit in the RCC_DCKCFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = HCKL, otherwise TIMxCLK = 4x PCLKx. 6.3.20 Communications interfaces I2C interface characteristics The I2C interface meets the requirements of the standard I2C communication protocol with the following restrictions: the I/O pins SDA and SCL too are mapped as not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is disabled, but is still present. 124/202 DocID027107 Rev 6 STM32F446xC/E Electrical characteristics The I2C characteristics are described in Table 61. Refer also to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL). Table 61. I2C characteristics Symbol Parameter Standard mode I2C(1)(2) Fast mode I2C(1)(2) Unit Min Max Min Max tw(SCLL) SCL clock low time 4.7 - 1.3 - tw(SCLH) SCL clock high time 4.0 - 0.6 - tsu(SDA) SDA setup time 250 - 100 - - 3450(3) - 900(4) - 3.45 - 0.9 th(SDA) SDA data hold time tv(SDA, ACK) Data, ACK valid time s ns tr(SDA) tr(SCL) SDA and SCL rise time - 1000 - 300 tf(SDA) tf(SCL) SDA and SCL fall time - 300 - 300 th(STA) Start condition hold time 4.0 - 0.6 - tsu(STA) Repeated Start condition setup time 4.7 - 0.6 - tsu(STO) Stop condition setup time 4.0 - 0.6 - s tw(STO:STA) Stop to Start condition time (bus free) 4.7 - 1.3 - s tSP Pulse width of the spikes that are suppressed by the analog filter for standard and fast mode - - 0.05 0.09(5) s Cb Capacitive load for each bus line - 400 - 400 pF s 1. Guaranteed based on test during characterization. 2. fPCLK1 must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to achieve fast mode I2C frequencies, and a multiple of 10 MHz to reach the 400 kHz maximum I2C fast mode clock. 3. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL. 4. The maximum data hold time has only to be met if the interface does not stretch the low period of SCL signal. 5. The minimum width of the spikes filtered by the analog filter is above tSP(max). DocID027107 Rev 6 125/202 175 Electrical characteristics STM32F446xC/E Figure 34. I2C bus AC waveforms and measurement circuit s ''B,& s ''B,& 53 53 670)[[ 56 6'$ ,&EXV 56 6&/ 67$575(3($7(' 67$57 67$57 WVX 67$ 6'$ WI 6'$ WU 6'$ WK 67$ WVX 6'$ WZ 6&/+ WZ 67267$ 6723 WK 6'$ 6&/ WZ 6&// WU 6&/ WI 6&/ WVX 672 DLF 1. RS = series protection resistor. 2. RP = external pull-up resistor. 3. VDD_I2C is the I2C bus power supply. 126/202 DocID027107 Rev 6 STM32F446xC/E Electrical characteristics FMPI2C characteristics The FMPI2C characteristics are described in Table 62. Refer also to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL). Table 62. FMPI2C characteristics(1) Standard mode - fFMPI2CC Fast mode Fast+ mode Parameter Unit Min Max Min Max Min Max 2 - 8 - 17 16(2) - FMPI2CCLK frequency tw(SCLL) SCL clock low time 4.7 - 1.3 - 0.5 - tw(SCLH) SCL clock high time 4.0 - 0.6 - 0.26 - tsu(SDA) SDA setup time 0.25 - 0.10 - 0.05 - tH(SDA) SDA data hold time 0 - 0 - 0 - - 3.45 - 0.9 - 0.45 tv(SDA,ACK) Data, ACK valid time tr(SDA) tr(SCL) SDA and SCL rise time - 0.100 - 0.30 - 0.12 tf(SDA) tf(SCL) SDA and SCL fall time - 0.30 - 0.30 - 0.12 th(STA) Start condition hold time 4 - 0.6 - 0.26 - tsu(STA) Repeated Start condition setup time 4.7 - 0.6 - 0.26 - tsu(STO) Stop condition setup time 4 - 0.6 - 0.26 - 4.7 - 1.3 - 0.5 - tSP Pulse width of the spikes that are suppressed by the analog filter for standard and fast mode - - 0.05 0.09 0.05 0.09 Cb Capacitive load for each bus Line - 400 - 400 - 550(3) tw(STO:STA) Stop to Start condition time (bus free) us pF 1. Guaranteed based on test during characterization. 2. When tr(SDA,SCL)<=110ns. 3. Can be limited. Maximum supported value can be retrieved by referring to the following formulas: tr(SDA/SCL) = 0.8473 x Rp x Cload Rp(min) = (VDD -VOL(max)) / IOL(max) DocID027107 Rev 6 127/202 175 Electrical characteristics STM32F446xC/E Figure 35. FMPI2C timing diagram and measurement circuit s ''B,& s ''B,& 53 53 670)[[ 56 6'$ ,&EXV 56 6&/ 67$575(3($7(' 67$57 67$57 WVX 67$ 6'$ WI 6'$ WU 6'$ WK 67$ WVX 6'$ WZ 6&/+ WZ 67267$ 6723 WK 6'$ 6&/ WZ 6&// WU 6&/ WI 6&/ WVX 672 DLF 128/202 DocID027107 Rev 6 STM32F446xC/E Electrical characteristics SPI interface characteristics Unless otherwise specified, the parameters given in Table 63 for SPI are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 16, with the following configuration: * Output speed is set to OSPEEDRy[1:0] = 10 * Capacitive load C=30pF * Measurement points are done at CMOS levels: 0.5VDD Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI). Table 63. SPI dynamic characteristics(1) Symbol fSCK 1/tc(SCK) Parameter SPI clock frequency Conditions Min Typ Master full duplex/receiver mode, 2.7 VVDD3.6 V SPI1/4 45 Master transmitter 1.71V @ 2OW N #OL #OL #OLI #OLN TH3$#,+,?!DD# TH3$#,+,?3.$% TD3$#,+,?3.$% &-#?3$.%;= TD3$#,+,?.2!3 TH3$#,+,?.2!3 &-#?3$.2!3 TH3$#,+,?.#!3 TD3$#,+,?.#!3 &-#?3$.#!3 &-#?3$.7% TSU3$#,+(?$ATA &-#?$;= TH3$#,+(?$ATA $ATA $ATA $ATAI $ATAN -36 DocID027107 Rev 6 169/202 175 Electrical characteristics STM32F446xC/E Table 100. SDRAM read timings(1)(2) Symbol Parameter Min Max tw(SDCLK) FMC_SDCLK period 2THCLK-0.5 2THCLK+0.5 tsu(SDCLKH _Data) Data input setup time 1 - th(SDCLKH_Data) Data input hold time 4 - td(SDCLKL_Add) Address valid time - 3 td(SDCLKL_ SDNE) Chip select valid time - 1.5 th(SDCLKL_SDNE) Chip select hold time 0 - td(SDCLKL_SDNRAS) SDNRAS valid time - 1.5 th(SDCLKL_SDNRAS) SDNRAS hold time 0 - td(SDCLKL_SDNCAS) SDNCAS valid time - 0.5 th(SDCLKL_SDNCAS) SDNCAS hold time 0 - Unit ns 1. CL = 30 pF on data and address lines. CL=15pF on FMC_SDCLK. 2. Guaranteed based on test during characterization. Table 101. LPSDR SDRAM read timings(1)(2) Symbol Parameter Min Max tw(SDCLK) FMC_SDCLK period 2THCLK - 0.5 2THCLK + 0.5 tsu(SDCLKH _Data) Data input setup time 1 - th(SDCLKH_Data) Data input hold time 5 - td(SDCLKL_Add) Address valid time - 3 td(SDCLKL_ SDNE) Chip select valid time - 3 th(SDCLKL_SDNE) Chip select hold time 0 - td(SDCLKL_SDNRAS) SDNRAS valid time - 2 th(SDCLKL_SDNRAS) SDNRAS hold time 0 - td(SDCLKL_SDNCAS) SDNCAS valid time - 2 th(SDCLKL_SDNCAS) SDNCAS hold time 0 - 1. CL = 10 pF. 2. Guaranteed based on test during characterization. 170/202 DocID027107 Rev 6 Unit ns STM32F446xC/E Electrical characteristics Figure 63. SDRAM write access waveforms &-#?3$#,+ TD3$#,+,?!DD# TH3$#,+,?!DD2 TD3$#,+,?!DD2 2OW N &-#?!>@ #OL #OL #OLI #OLN TH3$#,+,?!DD# TH3$#,+,?3.$% TD3$#,+,?3.$% &-#?3$.%;= TH3$#,+,?.2!3 TD3$#,+,?.2!3 &-#?3$.2!3 TD3$#,+,?.#!3 TH3$#,+,?.#!3 TD3$#,+,?.7% TH3$#,+,?.7% &-#?3$.#!3 &-#?3$.7% TD3$#,+,?$ATA $ATA &-#?$;= $ATA $ATAI $ATAN TH3$#,+,?$ATA TD3$#,+,?.", &-#?.",;= -36 Table 102. SDRAM write timings(1)(2) Symbol Parameter Min Max Unit MHz F(SDCLK) Frequency of operation - 90 tw(SDCLK) FMC_SDCLK period 2THCLK - 0.5 2THCLK + 0.5 td(SDCLKL _Data) Data output valid time - 2 th(SDCLKL _Data) Data output hold time 0.5 - td(SDCLK _Add) Address valid time - 3 td(SDCLKL _SDNWE)) SDNWE valid time - 1.5 th(SDCLKL_SDNWE)) SDNWE hold time 0 - td(SDCLKL_SDNE)) Chip select valid time - 1.5 th(SDCLKL_SDNE) Chip select hold time 0 - td(SDCLKL_SDNRAS) SDNRAS valie time - 1 th(SDCLKL_SDNRAS) SDNRAS hold time 0 - td(SDCLKL_SDNCAS) SDNCAS valid time - 1 th(SDCLKL_SDNCAS) SDNCAS hold time 0 - ns 1. CL = 10 pF on data and address line. CL=15 pF on FMC_SDCLK. 2. Guaranteed based on test during characterization. DocID027107 Rev 6 171/202 175 Electrical characteristics STM32F446xC/E Table 103. LPSDR SDRAM write timings(1)(2) Symbol Parameter Min Max Unit MHz F(SDCLK) Frequency of operation - 84 tw(SDCLK) FMC_SDCLK period 2THCLK - 0.5 2THCLK + 0.5 td(SDCLKL _Data) Data output valid time - 5 th(SDCLKL _Data) Data output hold time 0.5 - td(SDCLK _Add) Address valid time - 3 td(SDCLKL _SDNWE)) SDNWE valid time - 3 th(SDCLKL_SDNWE)) SDNWE hold time 0 - td(SDCLKL_SDNE)) Chip select valid time - 2.5 th(SDCLKL_ SDNE) Chip select hold time 0 - td(SDCLKL_SDNRAS) SDNRAS valid time - 2 th(SDCLKL_SDNRAS) SDNRAS hold time 0 - td(SDCLKL_SDNCAS) SDNCAS valid time - 2 td(SDCLKL_SDNCAS) SDNCAS hold time 0 - ns 1. CL = 10 pF. 2. Guaranteed based on test during characterization. 6.3.27 Camera interface (DCMI) timing specifications Unless otherwise specified, the parameters given in Table 104 for DCMI are derived from tests performed under the ambient temperature, fHCLK frequency and VDD supply voltage summarized in Table 16, with the following configuration: * DCMI_PIXCLK polarity: falling * DCMI_VSYNC and DCMI_HSYNC polarity: high * Data formats: 14 bits Table 104. DCMI characteristics Symbol - Parameter Frequency ratio DCMI_PIXCLK/fHCLK DCMI_PIXCLK Pixel clock input DPixel 172/202 Pixel clock input duty cycle Min Max - 0.4 - - 54 MHz 30 70 % tsu(DATA) Data input setup time 1 - th(DATA) Data input hold time 3.5 - tsu(HSYNC) tsu(VSYNC) DCMI_HSYNC/DCMI_VSYNC input setup time 2 - th(HSYNC) th(VSYNC) DCMI_HSYNC/DCMI_VSYNC input hold time 0 - DocID027107 Rev 6 Unit ns STM32F446xC/E Electrical characteristics Figure 64. DCMI timing diagram '&0,B3,;&/. '&0,B3,;&/. WK +6<1& WVX +6<1& '&0,B+6<1& WK +6<1& WVX 96<1& '&0,B96<1& WVX '$7$ WK '$7$ '$7$>@ 069 6.3.28 SD/SDIO MMC card host interface (SDIO) characteristics Unless otherwise specified, the parameters given in Table 105 for the SDIO are derived from tests performed under the ambient temperature, fPCLK2 frequency and VDD supply voltage conditions summarized in Table 16, with the following configuration: * Output speed is set to OSPEEDRy[1:0] = 10 * Capacitive load C = 30 pF * Measurement points are done at CMOS levels: 0.5VDD Refer to Section 6.3.17: I/O port characteristics for more details on the input/output characteristics. Figure 65. SDIO high-speed mode TF TR T# T7#+( T7#+, #+ T/6 T/( $ #-$ OUTPUT T)35 T)( $ #-$ INPUT AI DocID027107 Rev 6 173/202 175 Electrical characteristics STM32F446xC/E Figure 66. SD default mode #+ T/6$ T/($ $ #-$ OUTPUT AI Table 105. Dynamic characteristics: SD / MMC characteristics(1)(2) Symbol Parameter Conditions Min Typ Max Unit fPP Clock frequency in data transfer mode - 0 - 50 MHz - SDIO_CK/fPCLK2 frequency ratio - - - 8/3 - tW(CKL) Clock low time fpp =50MHz 9.5 10.5 - tW(CKH) Clock high time fpp =50MHz 8.5 9.5 - ns CMD, D inputs (referenced to CK) in MMC and SD HS mode tISU Input setup time HS fpp =50MHz 1 - - tIH Input hold time HS fpp =50MHz 4.5 - - ns CMD, D outputs (referenced to CK) in MMC and SD HS mode tOV Output valid time HS fpp =50MHz - 12.5 13 tOH Output hold time HS fpp =50MHz 11 - - ns CMD, D inputs (referenced to CK) in SD default mode tISUD Input setup time SD fpp =25MHz 2.5 - - tIHD Input hold time SD fpp =25MHz 5.5 - - ns CMD, D outputs (referenced to CK) in SD default mode tOVD Output valid default time SD fpp =24MHz - 3.5 4 tOHD Output hold default time SD fpp =24MHz 2 - - 1. Guaranteed based on test during characterization. 2. VDD = 2.7 to 3.6 V. 174/202 DocID027107 Rev 6 ns STM32F446xC/E Electrical characteristics Table 106. Dynamic characteristics: eMMC characteristics VDD = 1.7 V to 1.9 V(1)(2) Symbol Parameter Conditions Min Typ Max Unit fPP Clock frequency in data transfer mode - 0 - 50 MHz SDIO_CK/fPCLK2 frequency ratio - - - 8/3 - tW(CKL) Clock low time fpp =50MHz 9.5 10.5 - tW(CKH) Clock high time fpp =50MHz 8.5 9.5 - ns CMD, D inputs (referenced to CK) in eMMC mode tISU Input setup time HS fpp =50MHz 0.5 - - tIH Input hold time HS fpp =50MHz 7.5 - - ns CMD, D outputs (referenced to CK) in eMMC mode tOV Output valid time HS fpp =50MHz - 13.5 14.5 tOH Output hold time HS fpp =50MHz 12 - - ns 1. Guaranteed based on test during characterization. 2. VDD = 2.7 to 3.6 V. 6.3.29 RTC characteristics Table 107. RTC characteristics Symbol Parameter - fPCLK1/RTCCLK frequency ratio Conditions Any read/write operation from/to an RTC register DocID027107 Rev 6 Min Max 4 - 175/202 175 Package information 7 STM32F446xC/E Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK(R) packages, depending on their level of environmental compliance. ECOPACK(R) specifications, grade definitions and product status are available at: www.st.com. ECOPACK(R) is an ST trademark. 7.1 LQFP64 package information Figure 67. LQFP64-10x10 mm 64 pin low-profile quad flat package outline PP *$8*(3/$1( F $ $ $ 6($7,1*3/$1( & $ FFF & ' ' ' . / / ( ( ( E 3,1 ,'(17,),&$7,21 H :B0(B9 1. Drawing is not to scale Table 108. LQFP64 - 10 x 10 mm low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 176/202 DocID027107 Rev 6 STM32F446xC/E Package information Table 108. LQFP64 - 10 x 10 mm low-profile quad flat package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max D 11.800 12.000 12.200 0.4646 0.4724 0.4803 D1 9.800 10.000 10.200 0.3858 0.3937 0.4016 D3 - 7.500 - - 0.2953 - E 11.800 12.000 12.200 0.4646 0.4724 0.4803 E1 9.800 10.000 10.200 0.3858 0.3937 0.4016 E3 - 7.500 - - 0.2953 - e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - K 0 3.5 7 0 3.5 7 ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 68. LQFP64 Recommended footprint AIC 1. Drawing is not to scale. 2. Dimensions are in millimeters. DocID027107 Rev 6 177/202 199 Package information STM32F446xC/E Device marking for LQFP64 The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 69. LQFP64 marking example (package top view) 5HYLVLRQFRGH 3URGXFWLGHQWLILFDWLRQ $ 670) 5(7 < :: 3LQLGHQWLILHU 'DWHFRGH 06Y9 1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. 178/202 DocID027107 Rev 6 STM32F446xC/E 7.2 Package information LQFP100 package information Figure 70. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline MM C ! ! ! 3%!4).' 0,!.% # '!5'% 0,!.% $ , $ ! + CCC # , $ 0). )$%.4)&)#!4)/. % % % B E ,?-%?6 1. Drawing is not to scale. Table 109. LQPF100, 14 x 14 mm 100-pin low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 15.800 16.000 16.200 0.6220 0.6299 0.6378 D1 13.800 14.000 14.200 0.5433 0.5512 0.5591 D3 - 12.000 - - 0.4724 - E 15.800 16.000 16.200 0.6220 0.6299 0.6378 DocID027107 Rev 6 179/202 199 Package information STM32F446xC/E Table 109. LQPF100, 14 x 14 mm 100-pin low-profile quad flat package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max E1 13.800 14.000 14.200 0.5433 0.5512 0.5591 E3 - 12.000 - - 0.4724 - e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0 3.5 7 0 3.5 7 ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 71. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat recommended footprint AIC 1. Dimensions are expressed in millimeters. 180/202 DocID027107 Rev 6 STM32F446xC/E Package information Device marking for LQFP100 package The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 72. LQFP100 marking example (package top view) 3URGXFWLGHQWLILFDWLRQ 670) 5HYLVLRQFRGH 9&7 $ 'DWHFRGH < :: 3LQLGHQWLILHU 06Y9 1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. DocID027107 Rev 6 181/202 199 Package information 7.3 STM32F446xC/E LQFP144 package information. Figure 73. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline PP *$8*(3/$1( C ! F $ ! $ ! $ 3%!4).' 0,!.% # FFF & MM CCC # ' $ ' $ ' $ / + , / , . ! $ '!5'% 0,!.% ( ( % ( % % E B 0). )$%.4)&)#!4)/. E 3,1 !?-%?6 ,'(17,),&$7,21 H $B0(B9 1. Drawing is not to scale. 182/202 DocID027107 Rev 6 STM32F446xC/E Package information Table 110. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 21.800 22.000 22.200 0.8583 0.8661 0.874 D1 19.800 20.000 20.200 0.7795 0.7874 0.7953 D3 - 17.500 - - 0.689 - E 21.800 22.000 22.200 0.8583 0.8661 0.8740 E1 19.800 20.000 20.200 0.7795 0.7874 0.7953 E3 - 17.500 - - 0.6890 - e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0 3.5 7 0 3.5 7 ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. DocID027107 Rev 6 183/202 199 Package information STM32F446xC/E Figure 74. LQFP144 recommended footprint DLH 1. Dimensions are expressed in millimeters. 184/202 DocID027107 Rev 6 STM32F446xC/E Package information Device marking for LQFP144 package The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 75. LQFP144 marking example (package top view) 2SWLRQDOJDWHPDUN 5HYLVLRQFRGH 3URGXFWLGHQWLILFDWLRQ $ 670)=(7 'DWHFRGH < :: 3LQLGHQWLILHU 06Y9 1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. DocID027107 Rev 6 185/202 199 Package information 7.4 STM32F446xC/E UFBGA144 7 x 7 mm package information Figure 76. UFBGA144 - 144-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package outline = 6HDWLQJSODQH GGG = $ $ $ $ $ ( H $EDOO $EDOO LGHQWLILHU LQGH[DUHD ) ; ( $ ) ' ' H < 0 %277209,(: E EDOOV HHH 0 = < ; III 0 = 7239,(: $$6B0(B9 1. Drawing is not in scale. Table 111. UFBGA144 - 144-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package mechanical data inches(1) millimeters Symbol 186/202 Min. Typ. Max. Min. Typ. Max. A 0.460 0.530 0.600 0.0181 0.0209 0.0236 A1 0.050 0.080 0.110 0.0020 0.0031 0.0043 A2 0.400 0.450 0.500 0.0157 0.0177 0.0197 A3 - 0.130 - - 0.0051 - A4 0.270 0.320 0.370 0.0106 0.0126 0.0146 b 0.230 0.280 0.320 0.0091 0.0110 0.0126 D 6.950 7.000 7.050 0.2736 0.2756 0.2776 D1 5.450 5.500 5.550 0.2146 0.2165 0.2185 E 6.950 7.000 7.050 0.2736 0.2756 0.2776 E1 5.450 5.500 5.550 0.2146 0.2165 0.2185 e - 0.500 - - 0.0197 - F 0.700 0.750 0.800 0.0276 0.0295 0.0315 DocID027107 Rev 6 STM32F446xC/E Package information Table 111. UFBGA144 - 144-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package mechanical data (continued) inches(1) millimeters Symbol Min. Typ. Max. Min. Typ. Max. ddd - - 0.100 - - 0.0039 eee - - 0.150 - - 0.0059 fff - - 0.050 - - 0.0020 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 77. UFBGA144 - 144-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package recommended footprint 'SDG 'VP ^&Ws Table 112. UFBGA144 recommended PCB design rules (0.50 mm pitch BGA) Dimension Recommended values Pitch 0.50 mm Dpad 0.280 mm Dsm 0.370 mm typ. (depends on the soldermask registration tolerance) Stencil opening 0.280 mm Stencil thickness Between 0.100 mm and 0.125 mm Pad trace width 0.120 mm DocID027107 Rev 6 187/202 199 Package information STM32F446xC/E Device marking for UFBGA144 7 x 7 mm package The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 78. UQFP144 7 x 7 mm marking example (package top view) 3URGXFW LGHQWLILFDWLRQ 670) =(+ 'DWHFRGH < :: %DOO$ LQGHQWLILHU $ $GGLWLRQDO LQIRUPDWLRQ 06Y9 1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity. 188/202 DocID027107 Rev 6 STM32F446xC/E 7.5 Package information UFBGA144 10 x 10 mm package information Figure 79. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball grid array package outline & 6HDWLQJSODQH GGG = $ $ $ $ $ ( H $EDOO $EDOO LGHQWLILHU LQGH[DUHD ) $ ( $ ) ' ' H % 0 %277209,(: E EDOOV HHH 0 & $ % III 0 & 7239,(: $