This is information on a product in full production.
September 2016 DocID027107 Rev 6 1/202
STM32F446xC/E
ARM
®
Cortex
®
-M4 32b MCU+FPU, 225DMIPS, up to 512kB Flash/128+4KB RAM,
USB OTG HS/FS, 17 TIMs, 3 ADCs, 20 comm. interfaces
Datasheet - production data
Features
Core: ARM® 32-bit Cortex®-M4 CPU with FPU,
Adaptive real-time accelerator (ART
Accelerator™) allowing 0-wait state execution
from Fl ash memory, frequency up to 180 MHz,
MPU, 225 DMIPS/1.25 DMIPS/MHz
(Dhrystone 2.1), and DSP instructions
Memories
512 kB of Flash memory
128 KB of SRAM
Flexible external memory controller with up
to 16-bit data bus:
SRAM,PSRAM,SDRAM/LPSDR SDRAM,
Flash NOR/NAND memories
Dual mode Quad SPI interface
LCD parallel interface, 8080/6800 modes
Clock, reset and supply management
1.7 V to 3.6 V application supply and I/Os
POR, PDR, PVD and BOR
4-to-26 MHz crystal oscillator
Internal 16 MHz factory-trimmed RC (1%
accuracy)
32 kHz oscillator for RTC with calibration
Internal 32 kHz RC with calibration
Low power
Sleep, Stop and Standby modes
–V
BAT supply for RTC, 20×32 bit backup
registers + optional 4 KB backup SRAM
3×12-bit, 2.4 MSPS ADC: up to 24 channels
and 7.2 MSPS in triple interleaved mode
2×12-bit D/A converters
General-purpose DMA: 16-stream DMA
controller with FIFOs and burst support
Up to 17 timers: 2x watchdog, 1x SysTick timer
and up to twelve 16-bit and two 32-bit timers up
to 180 MHz, each with up to 4 IC/OC/PWM or
pulse counter
Debug mode
SWD & JTAG interfaces
–Cortex
®-M4 Trace Macrocell™
Up to 114 I/O ports with interrupt capability
Up to 111 fast I/Os up to 90 MHz
Up to 112 5 V-tolerant I/Os
Up to 20 communication interfaces
SPDIF-Rx
Up to 4 × I2C interfaces (SMBus/PMBus)
Up to 4 USARTs/2 UARTs (11.25 Mbit/s,
ISO7816 interface, LIN, IrDA, modem
control)
Up to 4 SPIs (45 Mbits/s), 3 with muxed I2S
for audio class accuracy via internal audio
PLL or external clock
2 x SAI (serial audio interface)
2 × CAN (2.0B Active)
SDIO interface
Consumer electronics control (CEC) I/F
Advanced connectivity
USB 2.0 full-speed device/host/OTG
controller with on-chip PHY
USB 2.0 high-speed/full-speed
device/host/OTG controller with dedicated
DMA, on-chip full-speed PHY and ULPI
Dedicated USB power rail enabling on-chip
PHYs operation throughout the entire MCU
power supply range
8- to 14-bit parallel camera interface up to
54 Mbytes/s
CRC calculation unit
RTC: subsecond accuracy, hardware calendar
96-bit unique ID
Table 1. Device summary
Reference Part number
STM32F446xC/E
STM32F446MC, STM32F446ME,
STM32F446RC, STM32F446RE,
STM32F446VC, STM32F446VE,
STM32F446ZC, STM32F446ZE.
LQFP64 (10 × 10mm)
LQFP100 (14 × 14mm)
LQFP144 (20 x 20 mm) UFBGA144 (7 x 7 mm)
&"'!
UFBGA144 (10 x 10 mm) WLCSP 81
www.st.com
Contents STM32F446xC/E
2/202 DocID027107 Rev 6
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1 Compatibility with STM32F4 family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 ARM® Cortex®-M4 with FPU and embedded Flash and SRAM . . . . . . . 17
3.2 Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . . 17
3.3 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 18
3.6 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.7 Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.8 DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.9 Flexible memory controller (FMC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.10 Quad SPI memory interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.11 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 21
3.12 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.13 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.14 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.15 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.16 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.16.1 Internal reset ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.16.2 Internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.17 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.17.1 Regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.17.2 Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.17.3 Regulator ON/OFF and internal reset ON/OFF availability . . . . . . . . . . 27
3.18 Real-time clock (RTC), backup SRAM and backup registers . . . . . . . . . . 28
3.19 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.20 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.21 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
DocID027107 Rev 6 3/202
STM32F446xC/E Contents
5
3.21.1 Advanced-control timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.21.2 General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.21.3 Basic timers TIM6 and TIM7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.21.4 Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.21.5 Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.21.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.22 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.23 Universal synchronous/asynchronous receiver transmitters (USART) . . 34
3.24 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.25 HDMI (high-definition multimedia interface) consumer
electronics control (CEC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.26 Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.27 SPDIF-RX Receiver Interface (SPDIFRX) . . . . . . . . . . . . . . . . . . . . . . . . 35
3.28 Serial Audio interface (SAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.29 Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.30 Serial Audio Interface PLL(PLLSAI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.31 Secure digital input/output interface (SDIO) . . . . . . . . . . . . . . . . . . . . . . . 36
3.32 Controller area network (bxCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.33 Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . . 37
3.34 Universal serial bus on-the-go high-speed (OTG_HS) . . . . . . . . . . . . . . . 37
3.35 Digital camera interface (DCMI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.36 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.37 Analog-to-digital converters (ADCs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.38 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.39 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.40 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.41 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4 Pinout and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Contents STM32F446xC/E
4/202 DocID027107 Rev 6
6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3.2 VCAP_1/VCAP_2 external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.3.3 Operating conditions at power-up / power-down (regulator ON) . . . . . . 79
6.3.4 Operating conditions at power-up / power-down (regulator OFF) . . . . . 79
6.3.5 Reset and power control block characteristics . . . . . . . . . . . . . . . . . . . 80
6.3.6 Over-drive switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3.7 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3.8 Wakeup time from low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.3.9 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.3.10 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3.11 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.3.12 PLL spread spectrum clock generation (SSCG) characteristics . . . . . 110
6.3.13 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.3.14 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.3.15 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 116
6.3.16 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.3.17 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.3.18 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.3.19 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.3.20 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.3.21 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.3.22 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.3.23 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.3.24 Reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.3.25 DAC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.3.26 FMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
6.3.27 Camera interface (DCMI) timing specifications . . . . . . . . . . . . . . . . . . 172
6.3.28 SD/SDIO MMC card host interface (SDIO) characteristics . . . . . . . . . 173
6.3.29 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
DocID027107 Rev 6 5/202
STM32F446xC/E Contents
5
7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
7.1 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
7.2 LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
7.3 LQFP144 package information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
7.4 UFBGA144 7 x 7 mm package information . . . . . . . . . . . . . . . . . . . . . . 186
7.5 UFBGA144 10 x 10 mm package information . . . . . . . . . . . . . . . . . . . . 189
7.6 WLCSP81 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
7.7 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
8 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Appendix A Application block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
A.1 USB OTG full speed (FS) interface solutions . . . . . . . . . . . . . . . . . . . . . 197
A.2 USB OTG high speed (HS) interface solutions . . . . . . . . . . . . . . . . . . . . 199
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
List of figures STM32F446xC/E
6/202 DocID027107 Rev 6
List of figures
Figure 1. Compatible board design for LQFP100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 2. Compatible board for LQFP64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 3. STM32F446xC/E block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 4. STM32F446xC/E and Multi-AHB matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 5. VDDUSB connected to an external independent power supply . . . . . . . . . . . . . . . . . . . . . 23
Figure 6. Power supply supervisor interconnection with internal reset OFF . . . . . . . . . . . . . . . . . . . 24
Figure 7. Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 8. Startup in regulator OFF: slow VDD slope
power-down reset risen after VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 9. Startup in regulator OFF mode: fast VDD slope
power-down reset risen before VCAP_1/VCAP_2 stabilization. . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 10. STM32F446xC/xE LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 11. STM32F446xC/xE LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 12. STM32F446xC LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Figure 13. STM32F446xC/xE WLCSP81 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Figure 14. STM32F446xC/xE UFBGA144 ballout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 15. Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 16. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 17. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 18. Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 19. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 20. External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 21. Typical VBAT current consumption
(RTC ON/backup RAM OFF and LSE in low power mode) . . . . . . . . . . . . . . . . . . . . . . . . 91
Figure 22. Typical VBAT current consumption
(RTC ON/backup RAM OFF and LSE in high drive mode). . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 23. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Figure 24. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Figure 25. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Figure 26. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Figure 27. LACCHSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Figure 28. ACCLSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Figure 29. PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure 30. PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure 31. FT I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Figure 32. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Figure 33. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Figure 34. I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Figure 35. FMPI2C timing diagram and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Figure 36. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Figure 37. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Figure 38. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Figure 39. I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Figure 40. I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Figure 41. SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Figure 42. SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Figure 43. USB OTG full speed timings: definition of data signal rise and fall time. . . . . . . . . . . . . . 138
Figure 44. ULPI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
DocID027107 Rev 6 7/202
STM32F446xC/E List of figures
7
Figure 45. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
Figure 46. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Figure 47. Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 146
Figure 48. Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 147
Figure 49. 12-bit buffered/non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Figure 50. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 153
Figure 51. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 155
Figure 52. Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 156
Figure 53. Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 158
Figure 54. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Figure 55. Synchronous multiplexed PSRAM write timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Figure 56. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 164
Figure 57. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Figure 58. NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Figure 59. NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Figure 60. NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 168
Figure 61. NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 168
Figure 62. SDRAM read access waveforms (CL = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Figure 63. SDRAM write access waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Figure 64. DCMI timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Figure 65. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Figure 66. SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Figure 67. LQFP64-10x10 mm 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . 176
Figure 68. LQFP64 Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Figure 69. LQFP64 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
Figure 70. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 179
Figure 71. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
Figure 72. LQFP100 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
Figure 73. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 182
Figure 74. LQFP144 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Figure 75. LQFP144 marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
Figure 76. UFBGA144 - 144-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball
grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Figure 77. UFBGA144 - 144-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball
grid array package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Figure 78. UQFP144 7 x 7 mm marking example (package top view). . . . . . . . . . . . . . . . . . . . . . . . 188
Figure 79. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball
grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Figure 80. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball
grid array package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
Figure 81. UQFP144 10 x 10 mm marking example (package top view). . . . . . . . . . . . . . . . . . . . . . 191
Figure 82. WLCSP81 - 81-pin, 3.693 x 3.815 mm, 0.4 mm pitch wafer level chip scale
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Figure 83. WLCSP81- 81-pin, 4.4084 x 3.7594 mm, 0.4 mm pitch wafer level chip scale
package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
Figure 84. WLCSP81 10 x 10 mm marking example (package top view) . . . . . . . . . . . . . . . . . . . . . 194
Figure 85. USB controller configured as peripheral-only and used in Full speed mode . . . . . . . . . . 197
Figure 86. USB controller configured as host-only and used in full speed mode. . . . . . . . . . . . . . . . 197
Figure 87. USB controller configured in dual mode and used in full speed mode . . . . . . . . . . . . . . . 198
Figure 88. USB controller configured as peripheral, host, or dual-mode
and used in high speed mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
List of tables STM32F446xC/E
8/202 DocID027107 Rev 6
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. STM32F446xC/E features and peripheral counts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 3. Voltage regulator configuration mode versus device operating mode . . . . . . . . . . . . . . . . 25
Table 4. Regulator ON/OFF and internal reset ON/OFF availability. . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 5. Voltage regulator modes in stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 6. Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 7. Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 8. USART feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 9. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 10. STM32F446xx pin and ball descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 11. Alternate function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 12. STM32F446xC/E register boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 13. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 14. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 15. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 16. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 17. Limitations depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . . 78
Table 18. VCAP_1/VCAP_2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 19. Operating conditions at power-up/power-down (regulator ON) . . . . . . . . . . . . . . . . . . . . . 79
Table 20. Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . . 79
Table 21. reset and power control block characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 22. Over-drive switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 23. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator enabled except prefetch) or RAM . . . . . . . 83
Table 24. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator enabled with prefetch) or RAM . . . . . . . . . 84
Table 25. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator disabled) . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 26. Typical and maximum current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 27. Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 28. Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 90
Table 29. Typical and maximum current consumptions in VBAT mode. . . . . . . . . . . . . . . . . . . . . . . . 91
Table 30. Typical current consumption in Run mode, code with data processing
running from Flash memory or RAM, regulator ON
(ART accelerator enabled except prefetch), VDD=1.7 V . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 31. Typical current consumption in Run mode, code with data processing running
from Flash memory, regulator OFF (ART accelerator enabled except prefetch). . . . . . . . 94
Table 32. Typical current consumption in Sleep mode, regulator ON, VDD=1.7 V . . . . . . . . . . . . . . 95
Table 33. Typical current consumption in Sleep mode, regulator OFF. . . . . . . . . . . . . . . . . . . . . . . . 96
Table 34. Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table 35. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 36. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 37. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 38. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Table 39. HSE 4-26 MHz oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Table 40. LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Table 41. HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 42. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
DocID027107 Rev 6 9/202
STM32F446xC/E List of tables
10
Table 43. Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Table 44. PLLI2S (audio PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 45. PLLISAI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table 46. SSCG parameters constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table 47. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Table 48. Flash memory programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 49. Flash memory programming with VPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 50. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 51. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 52. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Table 53. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Table 54. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Table 55. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Table 56. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 57. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Table 58. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Table 59. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Table 60. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 61. I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Table 62. FMPI2C characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 63. SPI dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Table 64. QSPI dynamic characteristics in SDR Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Table 65. QSPI dynamic characteristics in DDR Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Table 66. I2S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Table 67. SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
Table 68. USB OTG full speed startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Table 69. USB OTG full speed DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Table 70. USB OTG full speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Table 71. USB HS DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Table 72. USB HS clock timing parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Table 73. Dynamic characteristics: USB ULPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
Table 74. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Table 75. ADC static accuracy at fADC = 18 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Table 76. ADC static accuracy at fADC = 30 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Table 77. ADC static accuracy at fADC = 36 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Table 78. ADC dynamic accuracy at fADC = 18 MHz - limited test conditions . . . . . . . . . . . . . . . . . 143
Table 79. ADC dynamic accuracy at fADC = 36 MHz - limited test conditions . . . . . . . . . . . . . . . . . 143
Table 80. Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Table 81. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Table 82. VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Table 83. internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Table 84. Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Table 85. DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Table 86. Asynchronous non-multiplexed SRAM/PSRAM/NOR -
read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Table 87. Asynchronous non-multiplexed SRAM/PSRAM/NOR read -
NWAIT timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Table 88. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 155
Table 89. Asynchronous non-multiplexed SRAM/PSRAM/NOR write -
NWAIT timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Table 90. Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Table 91. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 157
List of tables STM32F446xC/E
10/202 DocID027107 Rev 6
Table 92. Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Table 93. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 159
Table 94. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Table 95. Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Table 96. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 164
Table 97. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Table 98. Switching characteristics for NAND Flash read cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Table 99. Switching characteristics for NAND Flash write cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Table 100. SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Table 101. LPSDR SDRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Table 102. SDRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Table 103. LPSDR SDRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Table 104. DCMI characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Table 105. Dynamic characteristics: SD / MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Table 106. Dynamic characteristics: eMMC characteristics VDD = 1.7 V to 1.9 V. . . . . . . . . . . . . . . 175
Table 107. RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
Table 108. LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . 176
Table 109. LQPF100, 14 x 14 mm 100-pin low-profile quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Table 110. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data . . . . . . . 183
Table 111. UFBGA144 - 144-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball
grid array package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Table 112. UFBGA144 recommended PCB design rules (0.50 mm pitch BGA) . . . . . . . . . . . . . . . . 187
Table 113. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball
grid array package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Table 114. UFBGA144 recommended PCB design rules (0.80 mm pitch BGA) . . . . . . . . . . . . . . . . 190
Table 115. WLCSP81- 81-pin, 3.693 x 3.815 mm, 0.4 mm pitch wafer level chip scale
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Table 116. WLCSP81 recommended PCB design rules (0.4 mm pitch) . . . . . . . . . . . . . . . . . . . . . . 193
Table 117. Package thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Table 118. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Table 119. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
DocID027107 Rev 6 11/202
STM32F446xC/E Introduction
40
1 Introduction
This document provides the description of the STM32F446xC/E products.
The STM32F446xC/E document should be read in conjunction with the STM32F4xx
reference manual.
For information on the Cortex®-M4 core, please refer to the Cortex®-M4 programming
manual (PM0214), available from the www.st.com.
Description STM32F446xC/E
12/202 DocID027107 Rev 6
2 Description
The STM32F446xC/E devices are based on the high-performance ARM® Cortex®-M4 32-bit
RISC core operating at a frequency of up to 180 MHz. The Cortex-M4 core features a
Floating point unit (FPU) single precision which supports all ARM® single-precision data-
processing instructions and data types. It also implements a full set of DSP instructions and
a memory protection unit (MPU) which enhances application security.
The STM32F446xC/E devices incorporate high-speed embedded memories (Flash memory
up to 512 Kbyte, up to 128 Kbyte of SRAM), up to 4 Kbytes of backup SRAM, and an
extensive range of enhanced I/Os and peripherals connected to two APB buses, two AHB
buses and a 32-bit multi-AHB bus matrix.
All devices offer three 12-bit ADCs, two DACs, a low-power RTC, twelve general-purpose
16-bit timers including two PWM timers for motor control, two general-purpose 32-bit timers.
They also feature standard and advanced communication interfaces.
Up to four I2Cs;
Four SPIs, three I2Ss full simplex. To achieve audio class accuracy, the I2S peripherals
can be clocked via a dedicated internal audio PLL or via an external clock to allow
synchronization;
Four USARTs plus two UARTs;
An USB OTG full-speed and an USB OTG high-speed with full-speed capability (with
the ULPI), both with dedicated power rails allowing to use them throughout the entire
power range;
Two CANs;
Two SAIs serial audio interfaces. To achieve audio class accuracy, the SAIs can be
clocked via a dedicated internal audio PLL;
An SDIO/MMC interface;
Camera interface;
HDMI-CEC;
SPDIF Receiver (SPDIFRx);
QuadSPI.
Advanced peripherals include an SDIO, a flexible memory control (FMC) interface, a
camera interface for CMOS sensors. Refer to Table 2: STM32F446xC/E features and
peripheral counts for the list of peripherals available on each part number.
The STM32F446xC/E devices operates in the –40 to +105 °C temperature range from a 1.7
to 3.6 V power supply.
The supply voltage can drop to 1.7 V with the use of an external power supply supervisor
(refer to Section 3.16.2: Internal reset OFF). A comprehensive set of power-saving mode
allows the design of low-power applications.
The STM32F446xC/E devices offer devices in 6 packages ranging from 64 pins to 144 pins.
The set of included peripherals changes with the device chosen.
DocID027107 Rev 6 13/202
STM32F446xC/E Description
40
These features make the STM32F446xC/E microcontrollers suitable for a wide range of
applications:
Motor drive and application control
Medical equipment
Industrial applications: PLC, inverters, circuit breakers
Printers, and scanners
Alarm systems, video intercom, and HVAC
Home audio appliances
Table 2. STM32F446xC/E features and peripheral counts
Peripherals STM32F44
6MC
STM32F44
6ME
STM32F44
6RC
STM32F44
6RE
STM32F44
6VC
STM32F44
6VE
STM32F44
6ZC
STM32F44
6ZE
Flash memory in Kbytes 256 512 256 512 256 512 256 512
SRAM in
Kbytes
System 128 (112+16)
Backup 4
FMC memory controller No Yes(1)
Timers
General-
purpose 10
Advanced-
control 2
Basic 2
Communication
interfaces
SPI / I2S 4/3 (simplex)(2)
I2C 4/1 FMP +
USART/UART 4/2
USB OTG FS Yes (6-Endpoints)
USB OTG HS Yes (8-Endpoints)
CAN 2
SAI 2
SDIO Yes
SPDIF-Rx 1
HDMI-CEC 1
Quad SPI(3) 1
Camera interface Yes
GPIOs 635081114
12-bit ADC
Number of channels
3
14 16 16 24
12-bit DAC
Number of channels
Yes
2
Maximum CPU frequency 180 MHz
Operating voltage 1.8 to 3.6 V(4)
Operating temperatures
Ambient temperatures: –40 to +85 °C /–40 to +105 °C
Junction temperature: –40 to + 125 °C
Packages WLCSP81 LQFP64 LQFP100 LQFP144
UFBGA144
Description STM32F446xC/E
14/202 DocID027107 Rev 6
2.1 Compatibility with STM32F4 family
The STM32F446xC/xV is software and feature compatible with the STM32F4 family.
The STM32F446xC/xV can be used as drop-in replacement of the other STM32F4 products
but some slight changes have to be done on the PCB board.
Figure 1. Compatible board design for LQFP100 package
1. For the LQFP100 package, only FMC Bank1 or Bank2 are available. Bank1 can only support a multiplexed NOR/PSRAM memory using the
NE1 Chip Select. Bank2 can only support a 16- or 8-bit NAND Flash memory using the NCE2 Chip Select. The interrupt line cannot be used
since Port G is not available in this package.
2. The SPI1, SPI2 and SPI3 interfaces give the flexibility to work in an exclusive way in either the SPI mode or the I2S audio mode.
3. For the LQFP64 package, the Quad SPI is available with limited features.
4. VDD/VDDA minimum value of 1.7 V is obtained when the device operates in reduced temperature range, and with the use of an external
power supply supervisor (refer to Section 3.16.2: Internal reset OFF).
069








3'
3'
3'
3'
3%
3%
3%
3%
3(
3(
3(
3(
3(
3(
3%
9&$3
966
9''







670)[[
3%QRWDYDLODEOHDQ\PRUH
5HSODFHGE\9
&$3








3'
3'
3'
3'
3%
3%
3%
3%
3(
3(
3(
3(
3(
3(
3%
9&$3
9''








670)670)OLQH
670)670)OLQH
670)670)OLQH
670)670)OLQH
9''
966
9''
966
3%





DocID027107 Rev 6 15/202
STM32F446xC/E Description
40
Figure 2. Compatible board for LQFP64 package
Figure 3 shows the STM32F446xx block diagram.
9LQFUHDVHGWRI
(65RUEHORZ
&$3
069
966
966
670)[[670)670)OLQH
9''
9''
3%QRWDYDLODEOHDQ\PRUH
5HSODFHGE\9&$3
    
















  
3&
3&
3&
3$
3$
9''
9&$3
3$
3$
3$
3$
3$
3$
3&
3&
3&
3&
3%
3%
3%
3%
3%
3%
9&$3
9''
    
















   
3&
3&
3&
3$
3$
9''
966
3$
3$
3$
3$
3$
3$
3&
3&
3&
3&
3%
3%
3%
3%
3%
3%
9&$3
9''
966
3%
9''
966
966
9''
Description STM32F446xC/E
16/202 DocID027107 Rev 6
Figure 3. STM32F446xC/E block diagram
069
86$570%SV
*3,23257$
$+%$3%
86$570%SV
(;7,7:.83
$)
3$
86$570%SV
*3,23257%
3%
86$570%SV
7,0(53:0
3:03:0
(75%.,1DV$)
86$570%SV7,0(53:0
86$570%SV
*3,23257&
3&
86$570%SV
86$57
5;7;6&.
3:03:0
(75%.,1DV$)
&76576DV$)
86$570%SV
*3,23257'
3'
86$570%SV
*3,23257(
3(
86$570%SV
*3,23257)
3)
86$570%SV
*3,23257*
3*
86$570%SV
63,,6
026,0,62
6&.166DV$)
$3% 0+ ]
$3% 0+]
$,1FRPPRQ
WRWKH$'&V
$,1FRPPRQ
WRWKH$'&
9''5()B$'&
$,1WR$'&
&+(75DV$)
7,0(5
&+(75DV$)
7,0(5
&+(75DV$)
7,0(5
&+ D V$)
7,0(5
5;7;6&.
86$57
5;7;6&.
&76576DV$)
86$57
5;7;DV$)
8$57
5;7;DV$)
8$57
026,0,626&.
63,,6 166:60&.DV$)
026,0,626&.
63,,6 166:60&.DV$)
6&/6'$60%$/DV$)
,&60%86
6&/6'$60%$/DV$)
,&60%86
7;5;
E[&$1
7;5;
E[&$1
'$&DV$)
'$&
'$&DV$)
'$&
,7)
7,0(5
7,0(5
:LQ:$7&+'2*
.%%.35$0
67$03
$/$50B287
26&B,1
26&,1
26&287
26&B287
15(6(7
9''$ 966$
9&$3
86$570%SV86$57
5;7;6&.
&76576DV$)
VPFDUG
LU'$
VPFDUG
LU'$
VPFDUG
LU'$
VPFDUG
LU'$
E
E
E
E
E
E
E
E
&76576DV$)
6',200&
'
&0'&.DV$)
9%$7 WR9
*3'0$
$+%$3%
*3'0$
6&/6'$60%$/DV$)
,&60%86
86$570%SV
*3,23257+
3+
-7$*6:
$50
&257(;0
0+] '%86
6%86
,%86
19,&(70
038 )38
-7567-7',
-7&.6:&/.
-7'26:'-7'2
75$&(&.
75$&('
86% '0$
),)2
27*+6
9''86% 729
''
8/3,&/.'
',56731;7
,'9%86
*3'0$ 6WUHDPV
),)2
*3'0$ 6WUHDPV
),)2
)/$6+N%
)/$6+
,)
65$0.%
65$0.%
(;70(0&7/
)0&
65$0365$0125)/$6+
1$1')/$6+6'5$0
&/.1(>@$>@'>@
12(11:(11%/>@
6'&/.(>@6'1(>@
15$61&$61$'9
1:$,7,171
9''86% 729
''
,'9%86
&$0(5$ +6<1&96<1&
3,;&.'
,7)
86%
3+<
27*)6
),)2
$+%0+]
3+<
),)2
86$570%SV
7(036(1625
$'&
$'&
$'&
,)
,)
#9''$
#9''$
3253'5
#9''$
6833/<
683(59,6,21
39'
5HVHW
,QW
325
;7$/26&
0+]
;7$/N+]
$+%
3&/.
+&/.
0$1$*7
$3%3 &/ .
57&
5&+6
)&/.
5&/6
6WDQGE\LQWHUIDFH
:'*.
#9%$7
#9''$
$:8
5(6(7
&/2&.
&75/
$3%3 &/ .
3//3//3//
$+%3&/.
9'' WR9
966
92/75(*
9729
32:(501*7
#9''
67$03
%.35(*
$+%%860$75,;60
$3%0+]
$+%0+]
/6
/6
&+DV$)
7,0(5
&+DV$)
7,0(5
&+DV$)
7,0(5
E
E
E
86$570%SV7,0(5
&+DV$)
86$570%SV
7,0(5
&+DV$)
E
E
86$570%SV
7,0(5
&+DV$) E
%25
),)2
63',)B5;>@DV$)
63',)
+'0,B&(&D V$)
+'0,&(&
86$570%SV63,
026,0,62
6&.166DV$)
6'6&.)6
0&/.DV$)
&5&
86$570%SV
6$,
6'6&.)6
0&/.DV$)
'LJ)LOWHU
),)2
3:5&7/
4XDG63, &/.&6D&6E'>@
86$570%SV
6$,
),)2
6&/6'$60%$/DV$)
)03,&
$+%B(0,
),)2
DocID027107 Rev 6 17/202
STM32F446xC/E Functional overview
40
3 Functional overview
3.1 ARM® Cortex®-M4 with FPU and embedded Flash and SRAM
The ARM® Cortex®-M4 with FPU processor is the latest generation of ARM processors for
embedded systems. It was developed to provide a low-cost platform that meets the needs of
MCU implementation, with a reduced pin count and low-power consumption, while
delivering outstanding computational performance and an advanced response to interrupts.
The ARM® Cortex®-M4 with FPU core is a 32-bit RISC processor that features exceptional
code-efficiency, delivering the high-performance expected from an ARM core in the memory
size usually associated with 8- and 16-bit devices.
The processor supports a set of DSP instructions which allow efficient signal processing and
complex algorithm execution.
Its single precision FPU (floating point unit) speeds up software development by using
metalanguage development tools, while avoiding saturation.
The STM32F446xC/E family is compatible with all ARM tools and software.
Figure 3 shows the general block diagram of the STM32F446xC/E family.
Note: Cortex-M4 with FPU core is binary compatible with the Cortex-M3 core.
3.2 Adaptive real-time memory accelerator (ART Accelerator™)
The ART Accelerator™ is a memory accelerator which is optimized for STM32 industry-
standard ARM® Cortex®-M4 with FPU processors. It balances the inherent performance
advantage of the ARM® Cortex®-M4 with FPU over Flash memory technologies, which
normally requires the processor to wait for the Flash memory at higher frequencies.
To release the processor full 225 DMIPS performance at this frequency, the accelerator
implements an instruction prefetch queue and branch cache, which increases program
execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the
performance achieved thanks to the ART Accelerator is equivalent to 0 wait state program
execution from Flash memory at a CPU frequency up to 180 MHz.
3.3 Memory protection unit
The memory protection unit (MPU) is used to manage the CPU accesses to memory to
prevent one task to accidentally corrupt the memory or resources used by any other active
task. This memory area is organized into up to 8 protected areas that can in turn be divided
up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4
gigabytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code has to be
protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-
time operating system). If a program accesses a memory location that is prohibited by the
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can
dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
Functional overview STM32F446xC/E
18/202 DocID027107 Rev 6
3.4 Embedded Flash memory
The devices embed a Flash memory of 512KB available for storing programs and data.
3.5 CRC (cyclic redundancy check) calculation unit
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit
data word and a fixed generator polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a software
signature during runtime, to be compared with a reference signature generated at link-time
and stored at a given memory location.
3.6 Embedded SRAM
All devices embed:
Up to 128Kbytes of system SRAM.
RAM memory is accessed (read/write) at CPU clock speed with 0 wait states.
4 Kbytes of backup SRAM
This area is accessible only from the CPU. Its content is protected against possible
unwanted write accesses, and is retained in Standby or VBAT mode.
3.7 Multi-AHB bus matrix
The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs, USB HS) and
the slaves Flash memory, RAM, QuadSPI, FMC, AHB and APB peripherals and ensures a
seamless and efficient operation even when several high-speed peripherals work
simultaneously.
DocID027107 Rev 6 19/202
STM32F446xC/E Functional overview
40
Figure 4. STM32F446xC/E and Multi-AHB matrix
3.8 DMA controller (DMA)
The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8
streams each. They are able to manage memory-to-memory, peripheral-to-memory and
memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals,
support burst transfer and are designed to provide the maximum peripheral bandwidth
(AHB/APB).
The two DMA controllers support circular buffer management, so that no specific code is
needed when the controller reaches the end of the buffer. The two DMA controllers also
have a double buffering feature, which automates the use and switching of two memory
buffers without requiring any special code.
Each stream is connected to dedicated hardware DMA requests, with support for software
trigger on each stream. Configuration is made by software and transfer sizes between
source and destination are independent.
$50
&RUWH[0
*3
'0$
%XVPDWUL[6
,&2'(
'&2'(
$&&(/
)ODVK
PHPRU\
,EXV
'EXV
6EXV
'0$B3,
'0$B0(0
'0$B0(0
'0$B3
86%B+6B0
-36
$3%
$3%
6 6 66 6 6 6
*3
'0$
86%27*
+6
$+%
SHULSKHUDOV
$+%
SHULSKHUDOV
)0&H[WHUQDO
0HP&WO4XDG63,
65$0
.E\WH
65$0
.E\WH
Functional overview STM32F446xC/E
20/202 DocID027107 Rev 6
The DMA can be used with the main peripherals:
SPI and I2S
I2C
USART
General-purpose, basic and advanced-control timers TIMx
DAC
SDIO
Camera interface (DCMI)
ADC
SAI1/SAI2
SPDIF Receiver (SPDIFRx)
QuadSPI
3.9 Flexible memory controller (FMC)
All devices embed an FMC. It has seven Chip Select outputs supporting the following
modes: SDRAM/LPSDR SDRAM, SRAM, PSRAM, NOR Flash and NAND Flash. With the
possibility to remap FMC bank 1 (NOR/PSRAM 1 and 2) and FMC SDRAM bank 1/2 in the
Cortex-M4 code area.
Functionality overview:
8-,16-bit data bus width
Read FIFO for SDRAM controller
Write FIFO
Maximum FMC_CLK/FMC_SDCLK frequency for synchronous accesses is 90 MHz.
LCD parallel interface
The FMC can be configured to interface seamlessly with most graphic LCD controllers. It
supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to
specific LCD interfaces. This LCD parallel interface capability makes it easy to build cost-
effective graphic applications using LCD modules with embedded controllers or high
performance solutions using external controllers with dedicated acceleration.
3.10 Quad SPI memory interface (QUADSPI)
All devices embed a Quad SPI memory interface, which is a specialized communication
interface targeting Single, Dual or Quad SPI flash memories. It can work in direct mode
through registers, external flash status register polling mode and memory mapped mode.
Up to 256 Mbytes external flash are memory mapped, supporting 8, 16 and 32-bit access.
Code execution is supported. The opcode and the frame format are fully programmable.
Communication can be either in Single Data Rate or Dual Data Rate.
DocID027107 Rev 6 21/202
STM32F446xC/E Functional overview
40
3.11 Nested vectored interrupt controller (NVIC)
The devices embed a nested vectored interrupt controller able to manage 16 priority levels,
and handle up to 91 maskable interrupt channels plus the 16 interrupt lines of the Cortex®-
M4 with FPU core.
Closely coupled NVIC gives low-latency interrupt processing
Interrupt entry vector table address passed directly to the core
Allows early processing of interrupts
Processing of late arriving, higher-priority interrupts
Support tail chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimum interrupt
latency.
3.12 External interrupt/event controller (EXTI)
The external interrupt/event controller consists of 23 edge-detector lines used to generate
interrupt/event requests. Each line can be independently configured to select the trigger
event (rising edge, falling edge, both) and can be masked independently. A pending register
maintains the status of the interrupt requests. The EXTI can detect an external line with a
pulse width shorter than the Internal APB2 clock period. Up to 114 GPIOs can be connected
to the 16 external interrupt lines.
3.13 Clocks and startup
On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The 16
MHz internal RC oscillator is factory-trimmed to offer 1% accuracy at 25 °C. The application
can then select as system clock either the RC oscillator or an external 4-26 MHz clock
source. This clock can be monitored for failure. If a failure is detected, the system
automatically switches back to the internal RC oscillator and a software interrupt is
generated (if enabled). This clock source is input to a PLL thus allowing to increase the
frequency up to 180 MHz. Similarly, full interrupt management of the PLL clock entry is
available when necessary (for example if an indirectly used external oscillator fails).
Several prescalers allow the configuration of the two AHB buses, the high-speed APB
(APB2) and the low-speed APB (APB1) domains. The maximum frequency of the two AHB
buses is 180 MHz while the maximum frequency of the high-speed APB domains is
90 MHz. The maximum allowed frequency of the low-speed APB domain is 45 MHz.
The devices embed a dedicated PLL (PLLI2S) and PLLSAI which allows to achieve audio
class performance. In this case, the I2S master clock can generate all standard sampling
frequencies from 8 kHz to 192 kHz.
Functional overview STM32F446xC/E
22/202 DocID027107 Rev 6
3.14 Boot modes
At startup, boot pins are used to select one out of three boot options:
Boot from user Flash
Boot from system memory
Boot from embedded SRAM
The boot loader is located in system memory. It is used to reprogram the Flash memory
through a serial (UART, I2C, CAN, SPI and USB) communication interface. Refer to
application note AN2606 for details.
3.15 Power supply schemes
VDD = 1.7 to 3.6 V: external power supply for I/Os and the internal regulator (when
enabled), provided externally through VDD pins.
VSSA, VDDA = 1.7 to 3.6 V: external analog power supplies for ADC, DAC, Reset
blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively.
Note: VDD/VDDA minimum value of 1.7 V is obtained with the use of an external power supply
supervisor (refer to Section 3.16.2: Internal reset OFF). Refer to Table 3: Voltage regulator
configuration mode versus device operating mode to identify the packages supporting this
option.
VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and
backup registers (through power switch) when VDD is not present.
VDDUSB can be connected either to VDD or an external independent power supply (3.0
to 3.6V) for USB transceivers.
For example, when device is powered at 1.8V, an independent power supply 3.3V can
be connected to VDDUSB. When the VDDUSB is connected to a separated power supply,
it is independent from VDD or VDDA but it must be the last supply to be provided and the
first to disappear. The following conditions VDDUSB must be respected:
During power-on phase (VDD < VDD_MIN), VDDUSB should be always lower than
VDD
During power-down phase (VDD < VDD_MIN), VDDUSB should be always lower
than VDD
VDDUSB rising and falling time rate specifications must be respected.
In operating mode phase, VDDUSB could be lower or higher than VDD:
If USB (USB OTG_HS/OTG_FS) is used, the associated GPIOs powered by
VDDUSB are operating between VDDUSB_MIN and VDDUSB_MAX.The VDDUSB
supply both USB transceiver (USB OTG_HS and USB OTG_FS).
If only one USB transceiver is used in the application, the GPIOs associated to
the other USB transceiver are still supplied by VDDUSB.
If USB (USB OTG_HS/OTG_FS) is not used, the associated GPIOs powered
by VDDUSB are operating between VDD_MIN and VDD_MAX.
DocID027107 Rev 6 23/202
STM32F446xC/E Functional overview
40
Figure 5. VDDUSB connected to an external independent power supply
3.16 Power supply supervisor
3.16.1 Internal reset ON
On packages embedding the PDR_ON pin, the power supply supervisor is enabled by
holding PDR_ON high. On the other package, the power supply supervisor is always
enabled.
The device has an integrated power-on reset (POR)/ power-down reset (PDR) circuitry
coupled with a Brownout reset (BOR) circuitry. At power-on, POR/PDR is always active and
ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is
reached, the option byte loading process starts, either to confirm or modify default BOR
thresholds, or to disable BOR permanently. Three BOR thresholds are available through
option bytes. The device remains in reset mode when VDD is below a specified threshold,
VPOR/PDR or VBOR, without the need for an external reset circuit.
The device also features an embedded programmable voltage detector (PVD) that monitors
the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be
generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is
higher than the VPVD threshold. The interrupt service routine can then generate a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.
3.16.2 Internal reset OFF
This feature is available only on packages featuring the PDR_ON pin. The internal power-on
reset (POR) / power-down reset (PDR) circuitry is disabled through the PDR_ON pin.
An external power supply supervisor should monitor VDD and should maintain the device in
reset mode as long as VDD is below a specified threshold. PDR_ON should be connected to
VSS, to allows device to operate down to 1.7v. Refer to Figure 6: Power supply supervisor
interconnection with internal reset OFF.
069
9
''86%B0,1
9
''B0,1
WLPH
9
''86%B0$;
86% IXQFWLRQDODUHD
9
''
9
''$
86%QRQ
IXQFWLRQDO
DUHD
9
''86%
3RZHURQ 3RZHUGRZQ
2SHUDWLQJPRGH
86%QRQ
IXQFWLRQDO
DUHD
Functional overview STM32F446xC/E
24/202 DocID027107 Rev 6
Figure 6. Power supply supervisor interconnection with internal reset OFF
The VDD specified threshold, below which the device must be maintained under reset, is
1.7 V.
A comprehensive set of power-saving mode allows to design low-power applications.
When the internal reset is OFF, the following integrated features are no more supported:
The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled
The brownout reset (BOR) circuitry must be disabled
The embedded programmable voltage detector (PVD) is disabled
VBAT functionality is no more available and VBAT pin should be connected to VDD.
All packages, except for the LQFP100/LQFP64, allow to disable the internal reset through
the PDR_ON signal.
3.17 Voltage regulator
The regulator has four operating modes:
Regulator ON
Main regulator mode (MR)
Low power regulator (LPR)
Power-down
Regulator OFF
3.17.1 Regulator ON
On packages embedding the BYPASS_REG pin, the regulator is enabled by holding
BYPASS_REG low. On all other packages, the regulator is always enabled.
WZͺKE
^dDϯϮ&ϰϰϲdž
s^^ WZŶŽƚĂĐƚŝǀĞϭϳǀфsфϯϲǀ
sd
s
ƉƉůŝĐĂƚŝŽŶƌĞƐĞƚ
ƐŝŐŶĂů;ŽƉƚŝŽŶĂůͿ
D^ϯϯϴϰϰsϭ
DocID027107 Rev 6 25/202
STM32F446xC/E Functional overview
40
There are three power modes configured by software when the regulator is ON:
MR mode used in Run/sleep modes or in Stop modes
In Run/Sleep mode
The MR mode is used either in the normal mode (default mode) or the over-drive
mode (enabled by software). Different voltages scaling are provided to reach the
best compromise between maximum frequency and dynamic power consumption.
The over-drive mode allows operating at a higher frequency than the normal mode
for a given voltage scaling.
In Stop modes
The MR can be configured in two ways during stop mode:
MR operates in normal mode (default mode of MR in stop mode)
MR operates in under-drive mode (reduced leakage mode).
LPR is used in the Stop modes:
The LP regulator mode is configured by software when entering Stop mode.
Like the MR mode, the LPR can be configured in two ways during stop mode:
LPR operates in normal mode (default mode when LPR is ON)
LPR operates in under-drive mode (reduced leakage mode).
Power-down is used in Standby mode.
The Power-down mode is activated only when entering in Standby mode. The regulator
output is in high impedance and the kernel circuitry is powered down, inducing zero
consumption. The contents of the registers and SRAM are lost.
Refer to Table 3 for a summary of voltage regulator modes versus device operating modes.
Two external ceramic capacitors should be connected on VCAP_1 and VCAP_2 pin.
All packages have the regulator ON feature.
3.17.2 Regulator OFF
This feature is available only on packages featuring the BYPASS_REG pin. The regulator is
disabled by holding BYPASS_REG high. The regulator OFF mode allows to supply
externally a V12 voltage source through VCAP_1 and VCAP_2 pins.
Table 3. Voltage regulator configuration mode versus device operating mode(1)
1. ‘-’ means that the corresponding configuration is not available.
Voltage regulator
configuration Run mode Sleep mode Stop mode Standby mode
Normal mode MR MR MR or LPR -
Over-drive
mode(2)
2. The over-drive mode is not available when VDD = 1.7 to 2.1 V.
MR MR - -
Under-drive mode - - MR or LPR -
Power-down
mode ---Yes
Functional overview STM32F446xC/E
26/202 DocID027107 Rev 6
Since the internal voltage scaling is not managed internally, the external voltage value must
be aligned with the targeted maximum frequency. The two 2.2 µF ceramic capacitors should
be replaced by two 100 nF decoupling capacitors.
When the regulator is OFF, there is no more internal monitoring on V12. An external power
supply supervisor should be used to monitor the V12 of the logic power domain. PA0 pin
should be used for this purpose, and act as power-on reset on V12 power domain.
In regulator OFF mode, the following features are no more supported:
PA0 cannot be used as a GPIO pin since it allows to reset a part of the V12 logic power
domain which is not reset by the NRST pin.
As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As
a consequence, PA0 and NRST pins must be managed separately if the debug
connection under reset or pre-reset is required.
The over-drive and under-drive modes are not available.
Figure 7. Regulator OFF
The following conditions must be respected:
VDD should always be higher than VCAP_1 and VCAP_2 to avoid current injection
between power domains.
If the time for VCAP_1 and VCAP_2 to reach V12 minimum value is faster than the time for
VDD to reach 1.7 V, then PA0 should be kept low to cover both conditions: until VCAP_1
and VCAP_2 reach V12 minimum value and until VDD reaches 1.7 V (see Figure 8).
Otherwise, if the time for VCAP_1 and VCAP_2 to reach V12 minimum value is slower
than the time for VDD to reach 1.7 V, then PA0 could be asserted low externally (see
Figure 9).
If VCAP_1 and VCAP_2 go below V12 minimum value and VDD is higher than 1.7 V, then a
reset must be asserted on PA0 pin.
Note: The minimum value of V12 depends on the maximum frequency targeted in the application.
DL9
%<3$66B5(*
9&$3B
9&$3B
3$
9
9'' 1567
9''
$SSOLFDWLRQUHVHW
VLJQDORSWLRQDO
([WHUQDO9&$3BSRZHU
VXSSO\VXSHUYLVRU
([WUHVHWFRQWUROOHUDFWLYH
ZKHQ9&$3B0LQ9
9
DocID027107 Rev 6 27/202
STM32F446xC/E Functional overview
40
Figure 8. Startup in regulator OFF: slow VDD slope
power-down reset risen after VCAP_1/VCAP_2 stabilization
1. This figure is valid whatever the internal reset mode (ON or OFF).
Figure 9. Startup in regulator OFF mode: fast VDD slope
power-down reset risen before VCAP_1/VCAP_2 stabilization
1. This figure is valid whatever the internal reset mode (ON or OFF).
3.17.3 Regulator ON/OFF and internal reset ON/OFF availability
DLI
9''
WLPH
0LQ9
3'5 9RU9 9&$3B9&$3B
9
1567
WLPH
9''
WLPH
0LQ9
9&$3B9&$3B
9
3$DVVHUWHGH[WHUQDOO\
1567
WLPH DLH
3'5 9RU9
Table 4. Regulator ON/OFF and internal reset ON/OFF availability
Package Regulator ON Regulator OFF Internal reset ON Internal reset OFF
LQFP64
LQFP100 Yes No Yes No
Functional overview STM32F446xC/E
28/202 DocID027107 Rev 6
3.18 Real-time clock (RTC), backup SRAM and backup registers
The backup domain includes:
The real-time clock (RTC)
4 Kbytes of backup SRAM
20 backup registers
The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain
the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binary-
coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are
performed automatically. The RTC provides a programmable alarm and programmable
periodic interrupts with wakeup from Stop and Standby modes. The sub-seconds value is
also available in binary format.
It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power
RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC
has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz
output to compensate for any natural quartz deviation.
Two alarm registers are used to generate an alarm at a specific time and calendar fields can
be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit
programmable binary auto-reload downcounter with programmable resolution is available
and allows automatic wakeup and periodic alarms from every 120 µs to every 36 hours.
A 20-bit prescaler is used for the time base clock. It is by default configured to generate a
time base of 1 second from a clock at 32.768 kHz.
The 4-Kbyte backup SRAM is an EEPROM-like memory area. It can be used to store data
which need to be retained in VBAT and standby mode. This memory area is disabled by
default to minimize power consumption (see Section 3.19: Low-power modes). It can be
enabled by software.
The backup registers are 32-bit registers used to store 80 bytes of user application data
when VDD power is not present. Backup registers are not reset by a system, a power reset,
or when the device wakes up from the Standby mode (see Section 3.19: Low-power
modes).
Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes,
hours, day, and date.
Like backup SRAM, the RTC and backup registers are supplied through a switch that is
powered either from the VDD supply when present or from the VBAT pin.
LQFP144 Yes No
Yes
PDR_ON
set to VDD
Yes
PDR_ON
set to VSS
UFBGA144 Yes
BYPASS_REG
set to Vss
Yes
BYPASS_REG
set to VDD
WLCSP81
Table 4. Regulator ON/OFF and internal reset ON/OFF availability
Package Regulator ON Regulator OFF Internal reset ON Internal reset OFF
DocID027107 Rev 6 29/202
STM32F446xC/E Functional overview
40
3.19 Low-power modes
The devices support three low-power modes to achieve the best compromise between low
power consumption, short startup time and available wakeup sources:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
Stop mode
The Stop mode achieves the lowest power consumption while retaining the contents of
SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC
and the HSE crystal oscillators are disabled.
The voltage regulator can be put either in main regulator mode (MR) or in low-power
mode (LPR). Both modes can be configured as follows (see Table 5: Voltage regulator
modes in stop mode):
Normal mode (default mode when MR or LPR is enabled)
Under-drive mode.
The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line
source can be one of the 16 external lines, the PVD output, the RTC alarm / wakeup /
tamper / time stamp events, the USB OTG FS/HS wakeup).
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire 1.2 V domain is powered off. The
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering
Standby mode, the SRAM and register contents are lost except for registers in the
backup domain and the backup SRAM when selected.
The device exits the Standby mode when an external reset (NRST pin), an IWDG reset,
a rising edge on the WKUP pin, or an RTC alarm / wakeup / tamper /time stamp event
occurs.
The standby mode is not supported when the embedded voltage regulator is bypassed
and the 1.2 V domain is controlled by an external power.
3.20 VBAT operation
The VBAT pin allows to power the device VBAT domain from an external battery, an external
supercapacitor, or from VDD when no external battery and an external supercapacitor are
present.
VBAT operation is activated when VDD is not present.
The VBAT pin supplies the RTC, the backup registers and the backup SRAM.
Table 5. Voltage regulator modes in stop mode
Voltage regulator
configuration Main regulator (MR) Low-power regulator (LPR)
Normal mode MR ON LPR ON
Under-drive mode MR in under-drive mode LPR in under-drive mode
Functional overview STM32F446xC/E
30/202 DocID027107 Rev 6
Note: When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events
do not exit it from VBAT operation.
When PDR_ON pin is not connected to VDD (Internal Reset OFF), the VBAT functionality is
no more available and VBAT pin should be connected to VDD.
DocID027107 Rev 6 31/202
STM32F446xC/E Functional overview
40
3.21 Timers and watchdogs
The devices include two advanced-control timers, eight general-purpose timers, two basic
timers and two watchdog timers.
All timer counters can be frozen in debug mode.
Table 6 compares the features of the advanced-control, general-purpose and basic timers.
Table 6. Timer feature comparison
Timer
type Timer Counter
resolution
Counter
type
Prescaler
factor
DMA
request
generation
Capture/
compare
channels
Complementary
output
Max
interface
clock
(MHz)
Max
timer
clock
(MHz)(1)
Advanced-
control
TIM1,
TIM8 16-bit
Up,
Down,
Up/down
Any integer
between 1
and 65536
Yes 4 Yes 90 180
General
purpose
TIM2,
TIM5 32-bit
Up,
Down,
Up/down
Any integer
between 1
and 65536
Yes 4 No 45 90/180
TIM3,
TIM4 16-bit
Up,
Down,
Up/down
Any integer
between 1
and 65536
Yes 4 No 45 90/180
TIM9 16-bit Up
Any integer
between 1
and 65536
No 2 No 90 180
TIM10,
TIM11 16-bit Up
Any integer
between 1
and 65536
No 1 No 90 180
TIM12 16-bit Up
Any integer
between 1
and 65536
No 2 No 45 90/180
TIM13,
TIM14 16-bit Up
Any integer
between 1
and 65536
No 1 No 45 90/180
Basic TIM6,
TIM7 16-bit Up
Any integer
between 1
and 65536
Yes 0 No 45 90/180
1. The maximum timer clock is either 90 or 180 MHz depending on TIMPRE bit configuration in the RCC_DCKCFGR
register.
Functional overview STM32F446xC/E
32/202 DocID027107 Rev 6
3.21.1 Advanced-control timers (TIM1, TIM8)
The advanced-control timers (TIM1, TIM8) can be seen as three-phase PWM generators
multiplexed on 6 channels. They have complementary PWM outputs with programmable
inserted dead times. They can also be considered as complete general-purpose timers.
Their 4 independent channels can be used for:
Input capture
Output compare
PWM generation (edge- or center-aligned modes)
One-pulse mode output
If configured as standard 16-bit timers, they have the same features as the general-purpose
TIMx timers. If configured as 16-bit PWM generators, they have full modulation capability (0-
100%).
The advanced-control timer can work together with the TIMx timers via the Timer Link
feature for synchronization or event chaining.
TIM1 and TIM8 support independent DMA request generation.
3.21.2 General-purpose timers (TIMx)
There are ten synchronized general-purpose timers embedded in the STM32F446xC/E
devices (see Table 6 for differences).
TIM2, TIM3, TIM4, TIM5
The STM32F446xC/E include 4 full-featured general-purpose timers: TIM2, TIM5,
TIM3, and TIM4.The TIM2 and TIM5 timers are based on a 32-bit auto-reload
up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on a 16-
bit auto-reload up/downcounter and a 16-bit prescaler. They all feature 4 independent
channels for input capture/output compare, PWM or one-pulse mode output. This gives
up to 16 input capture/output compare/PWMs on the largest packages.
The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the
other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the
Timer Link feature for synchronization or event chaining.
Any of these general-purpose timers can be used to generate PWM outputs.
TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are
capable of handling quadrature (incremental) encoder signals and the digital outputs
from 1 to 4 hall-effect sensors.
TIM9, TIM10, TIM11, TIM12, TIM13, and TIM14
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
TIM10, TIM11, TIM13, and TIM14 feature one independent channel, whereas TIM9
and TIM12 have two independent channels for input capture/output compare, PWM or
one-pulse mode output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5
full-featured general-purpose timers. They can also be used as simple time bases.
3.21.3 Basic timers TIM6 and TIM7
These timers are mainly used for DAC trigger and waveform generation. They can also be
used as a generic 16-bit time base.
TIM6 and TIM7 support independent DMA request generation.
DocID027107 Rev 6 33/202
STM32F446xC/E Functional overview
40
3.21.4 Independent watchdog
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 32 kHz internal RC and as it operates independently from the
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog
to reset the device when a problem occurs, or as a free-running timer for application timeout
management. It is hardware- or software-configurable through the option bytes.
3.21.5 Window watchdog
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
3.21.6 SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
downcounter. It features:
A 24-bit downcounter
Autoreload capability
Maskable system interrupt generation when the counter reaches 0
Programmable clock source.
3.22 Inter-integrated circuit interface (I2C)
Four I²C bus interfaces can operate in multimaster and slave modes. Three I²C can support
the standard (up to 100 KHz) and fast (up to 400 KHz) modes.
One I²C can support the standard (up to 100 KHz), fast (up to 400 KHz) and fast mode plus
(up to 1MHz) modes.
They (all I²C) support the 7/10-bit addressing mode and the 7-bit dual addressing mode (as
slave).
A hardware CRC generation/verification is embedded.
They can be served by DMA and they support SMBus 2.0/PMBus.
The devices also include programmable analog and digital noise filters (see Table 7).
Table 7. Comparison of I2C analog and digital filters
-Analog filter Digital filter
Pulse width of
suppressed spikes 50 ns Programmable length from 1 to 15
I2C peripheral clocks
Functional overview STM32F446xC/E
34/202 DocID027107 Rev 6
3.23 Universal synchronous/asynchronous receiver transmitters
(USART)
The devices embed four universal synchronous/asynchronous receiver transmitters
(USART1, USART2, USART3 and USART6) and four universal asynchronous receiver
transmitters (UART4, and UART5).
These six interfaces provide asynchronous communication, IrDA SIR ENDEC support,
multiprocessor communication mode, single-wire half-duplex communication mode and
have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to
communicate at speeds of up to 11.25 Mbit/s. The other available interfaces communicate
at up to 5.62 bit/s.
USART1, USART2, USART3 and USART6 also provide hardware management of the CTS
and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication
capability. All interfaces can be served by the DMA controller.
3.24 Serial peripheral interface (SPI)
The devices feature up to four SPIs in slave and master modes in full-duplex and simplex
communication modes. SPI1, and SPI4 can communicate at up to 45 Mbits/s, SPI2 and
SPI3 can communicate at up to 22.5 Mbit/s. The 3-bit prescaler gives 8 master mode
frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC
generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the
DMA controller.
Table 8. USART feature comparison(1)
USART
name
Standard
features
Modem
(RTS/CTS) LIN
SPI
maste
r
irD
A
Smartcard
(ISO 7816)
Max. baud
rate in Mbit/s
(oversamplin
g by 16)
Max. baud
rate in Mbit/s
(oversamplin
g by 8)
APB
mapping
USART1 X X X X X X 5.62 11.25
APB2
(max.
90 MHz)
USART2 X X X X X X 2.81 5.62
APB1
(max.
45 MHz)
USART3 X X X X X X 2.81 5.62
APB1
(max.
45 MHz)
UART4 X X X - X - 2.81 5.62
APB1
(max.
45 MHz)
UART5 X X X - X - 2.81 5.62
APB1
(max.
45 MHz)
USART6 X X X X X X 5.62 11.25
APB2
(max.
90 MHz)
1. X = feature supported.
DocID027107 Rev 6 35/202
STM32F446xC/E Functional overview
40
The SPI interface can be configured to operate in TI mode for communications in master
mode and slave mode.
3.25 HDMI (high-definition multimedia interface) consumer
electronics control (CEC)
The devices embeds a HDMI-CEC controller that provides hardware support of consumer
electronics control (CEC) (Appendix supplement 1 to the HDMI standard).
This protocol provides high-level control functions between all audiovisual products in an
environment. It is specified to operate at low speeds with minimum processing and memory
overhead.
3.26 Inter-integrated sound (I2S)
Three standard I2S interfaces (multiplexed with SPI1, SPI2 and SPI3) are available. They
can be operated in master or slave mode, in simplex communication modes, and can be
configured to operate with a 16-/32-bit resolution as an input or output channel. Audio
sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the
I2S interfaces is/are configured in master mode, the master clock can be output to the
external DAC/CODEC at 256 times the sampling frequency.
All I2Sx can be served by the DMA controller.
3.27 SPDIF-RX Receiver Interface (SPDIFRX)
The SPDIF-RX peripheral, is designed to receive an S/PDIF flow compliant with IEC-60958
and IEC-61937. These standards support simple stereo streams up to high sample rate,
and compressed multi-channel surround sound, such as those defined by Dolby or DTS (up
to 5.1).
The main features of the SPDIF-RX are the following:
Up to 4 inputs available
Automatic symbol rate detection
Maximum symbol rate: 12.288 MHz
Stereo stream from 32 to 192 kHz supported
Supports Audio IEC-60958 and IEC-61937, consumer applications
Parity bit management
Communication using DMA for audio samples
Communication using DMA for control and user channel information
Interrupt capabilities
The SPDIF-RX receiver provides all the necessary features to detect the symbol rate, and
decode the incoming data stream.
The user can select the wanted SPDIF input, and when a valid signal will be available, the
SPDIF-RX will re-sample the incoming signal, decode the Manchester stream, recognize
frames, sub-frames and blocks elements. It delivers to the CPU decoded data, and
associated status flags.
Functional overview STM32F446xC/E
36/202 DocID027107 Rev 6
The SPDIF-RX also offers a signal named spdifrx_frame_sync, which toggles at the S/PDIF
sub-frame rate that will be used to compute the exact sample rate for clock drift algorithms.
3.28 Serial Audio interface (SAI)
The devices feature two serial audio interfaces (SAI1 and SAI2). Each serial audio
interfaces based on two independent audio sub blocks which can operate as transmitter or
receiver with their FIFO. Many audio protocols are supported by each block: I2S standards,
LSB or MSB-justified, PCM/DSP, TDM, AC’97 and SPDIF output, supporting audio sampling
frequencies from 8 kHz up to 192 kHz. Both sub blocks can be configured in master or in
slave mode. The SAIs use a PLL to achieve audio class accuracy.
In master mode, the master clock can be output to the external DAC/CODEC at 256 times of
the sampling frequency.
The two sub blocks can be configured in synchronous mode when full-duplex mode is
required.
SAI1 and SA2 can be served by the DMA controller.
3.29 Audio PLL (PLLI2S)
The devices feature an additional dedicated PLL for audio I2S and SAI applications. It allows
to achieve error-free I2S sampling clock accuracy without compromising on the CPU
performance, while using USB peripherals.
The PLLI2S configuration can be modified to manage an I2S/SAI sample rate change
without disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces.
The audio PLL can be programmed with very low error to obtain sampling rates ranging
from 8 KHz to 192 KHz.
In addition to the audio PLL, a master clock input pin can be used to synchronize the
I2S/SAI flow with an external PLL (or Codec output).
3.30 Serial Audio Interface PLL(PLLSAI)
An additional PLL dedicated to audio and USB is used for SAI1 and SAI2 peripheral in case
the PLLI2S is programmed to achieve another audio sampling frequency (49.152 MHz or
11.2896 MHz) and the audio application requires both sampling frequencies simultaneously.
The PLLSAI is also used to generate the 48MHz clock for USB FS and SDIO in case the
system PLL is programmed with factors not multiple of 48MHz.
3.31 Secure digital input/output interface (SDIO)
An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System
Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.
The interface allows data transfer at up to 48 MHz, and is compliant with the SD Memory
Card Specification Version 2.0.
DocID027107 Rev 6 37/202
STM32F446xC/E Functional overview
40
The SDIO Card Specification Version 2.0 is also supported with two different databus
modes: 1-bit (default) and 4-bit.
The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack
of MMC4.1 or previous.
3.32 Controller area network (bxCAN)
The two CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1
Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as
extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive
FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one
CAN is used). 256 bytes of SRAM are allocated for each CAN.
3.33 Universal serial bus on-the-go full-speed (OTG_FS)
The devices embed an USB OTG full-speed device/host/OTG peripheral with integrated
transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and
with the OTG 1.0 specification. It has software-configurable endpoint setting and supports
suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock
that is generated by a PLL connected to the HSE oscillator. The USB has dedicated power
rails allowing its use throughout the entire power range. The major features are:
Combined Rx and Tx FIFO size of 320 × 35 bits with dynamic FIFO sizing
Supports the session request protocol (SRP) and host negotiation protocol (HNP)
6 bidirectional endpoints
12 host channels with periodic OUT support
HNP/SNP/IP inside (no need for any external resistor)
For OTG/Host modes, a power switch is needed in case bus-powered devices are
connected
3.34 Universal serial bus on-the-go high-speed (OTG_HS)
The devices embed a USB OTG high-speed (up to 480 Mb/s) device/host/OTG peripheral.
The USB OTG HS supports both full-speed and high-speed operations. It integrates the
transceivers for full-speed operation (12 MB/s) and features a UTMI low-pin interface (ULPI)
for high-speed operation (480 MB/s). When using the USB OTG HS in HS mode, an
external PHY device connected to the ULPI is required.
The USB OTG HS peripheral is compliant with the USB 2.0 specification and with the OTG
1.0 specification. It has software-configurable endpoint setting and supports
suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock
that is generated by a PLL connected to the HSE oscillator. The USB has dedicated power
rails allowing its use throughout the entire power range.
Functional overview STM32F446xC/E
38/202 DocID027107 Rev 6
The major features are:
Combined Rx and Tx FIFO size of 1 Kbit × 35 with dynamic FIFO sizing
Supports the session request protocol (SRP) and host negotiation protocol (HNP)
8 bidirectional endpoints
16 host channels with periodic OUT support
Internal FS OTG PHY support
External HS or HS OTG operation supporting ULPI in SDR mode. The OTG PHY is
connected to the microcontroller ULPI port through 12 signals. It can be clocked using
the 60 MHz output.
Internal USB DMA
HNP/SNP/IP inside (no need for any external resistor)
for OTG/Host modes, a power switch is needed in case bus-powered devices are
connected
3.35 Digital camera interface (DCMI)
The devices embed a camera interface that can connect with camera modules and CMOS
sensors through an 8-bit to 14-bit parallel interface, to receive video data. The camera
interface can sustain a data transfer rate up to 94.5 Mbyte/s (in 14-bit mode) at 54 MHz.
Its features:
Programmable polarity for the input pixel clock and synchronization signals
Parallel data communication can be 8-, 10-, 12- or 14-bit
Supports 8-bit progressive video monochrome or raw bayer format, YCbCr 4:2:2
progressive video, RGB 565 progressive video or compressed data (like JPEG)
Supports continuous mode or snapshot (a single frame) mode
Capability to automatically crop the image black & white.
3.36 General-purpose input/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain,
with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down)
or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog
alternate functions. All GPIOs are high-current-capable and have speed selection to better
manage internal noise, power consumption and electromagnetic emission.
The I/O configuration can be locked if needed by following a specific sequence in order to
avoid spurious writing to the I/Os registers.
Fast I/O handling allowing maximum I/O toggling up to 90 MHz.
3.37 Analog-to-digital converters (ADCs)
Three 12-bit analog-to-digital converters are embedded and each ADC shares up to 16
external channels, performing conversions in the single-shot or scan mode. In scan mode,
automatic conversion is performed on a selected group of analog inputs.
DocID027107 Rev 6 39/202
STM32F446xC/E Functional overview
40
Additional logic functions embedded in the ADC interface allow:
Simultaneous sample and hold
Interleaved sample and hold
The ADC can be served by the DMA controller. An analog watchdog feature allows very
precise monitoring of the converted voltage of one, some or all selected channels. An
interrupt is generated when the converted voltage is outside the programmed thresholds.
To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1,
TIM2, TIM3, TIM4, TIM5, or TIM8 timer.
3.38 Temperature sensor
The temperature sensor has to generate a voltage that varies linearly with temperature. The
conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally
connected to the same input channel as VBAT
, ADC1_IN18, which is used to convert the
sensor output voltage into a digital value. When the temperature sensor and VBAT
conversion are enabled at the same time, only VBAT conversion is performed.
As the offset of the temperature sensor varies from chip to chip due to process variation, the
internal temperature sensor is mainly suitable for applications that detect temperature
changes instead of absolute temperatures. If an accurate temperature reading is needed,
then an external temperature sensor part should be used.
3.39 Digital-to-analog converter (DAC)
The two 12-bit buffered DAC channels can be used to convert two digital signals into two
analog voltage signal outputs.
This dual digital Interface supports the following features:
two DAC converters: one for each output channel
8-bit or 10-bit monotonic output
left or right data alignment in 12-bit mode
synchronized update capability
noise-wave generation
triangular-wave generation
dual DAC channel independent or simultaneous conversions
DMA capability for each channel
external triggers for conversion
input voltage reference VREF+
Eight DAC trigger inputs are used in the device. The DAC channels are triggered through
the timer update outputs that are also connected to different DMA streams.
3.40 Serial wire JTAG debug port (SWJ-DP)
The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
Functional overview STM32F446xC/E
40/202 DocID027107 Rev 6
Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could
be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with
SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to
switch between JTAG-DP and SW-DP.
3.41 Embedded Trace Macrocell™
The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data
flow inside the CPU core by streaming compressed data at a very high rate from the
STM32F446xx through a small number of ETM pins to an external hardware trace port
analyser (TPA) device. The TPA is connected to a host computer using USB, Ethernet, or
any other high-speed channel. Real-time instruction and data flow activity can be recorded
and then formatted for display on the host computer that runs the debugger software. TPA
hardware is commercially available from common development tool vendors.
The Embedded Trace Macrocell operates with third party debugger software tools.
DocID027107 Rev 6 41/202
STM32F446xC/E Pinout and pin description
66
4 Pinout and pin description
Figure 10. STM32F446xC/xE LQFP64 pinout
1. The above figure shows the package top view.
             
















            











9%$7
3&26&B,1
3+26&B,1
1567
3&
3&
3&
3&
966$95()
9''$95()
3$
3$
3$
9''
3%
3%
%227
3%
3%
3%
3%
3%
3'
3&
3&
3&
3$
3$
9''
966
3$
3$
3$
3$
3$
3$
3&
3&
3&
3&
3%
3%
3%
3%
3$
966
3$
3$
3$
3$
3&
3&
3%
3%
3%
3%
9&$3B
/4)3
3&
069
9''
966
9''
966
3+26&B287
3&26&B287
Pinout and pin description STM32F446xC/E
42/202 DocID027107 Rev 6
Figure 11. STM32F446xC/xE LQFP100 pinout
1. The above figure shows the package top view.


































































0%
0%
0%
0%
0%
6"!4
0#/3#?).
0#/3#?/54
633
6$$
0(/3#?).
.234
0#
0#
0#
0#
6$$
633!62%&
6$$!
62%&
0!
0!
0!
6$$
633
6#!0?
0!
0!
0!
0!
0!
0!
0#
0#
0#
0#
0$
0$
0$
0$
0$
0$
0$
0$
0"
0"
0"
0"
0!
633
6$$
0!
0!
0!
0!
0#
0#
0"
0"
0"
0%
0%
0%
0%
0%
0%
0%
0%
0%
0"
6#!0?
633
6$$
6$$
633
0%
0%
0"
0"
"//4
0"
0"
0"
0"
0"
0$
0$
0$
0$
0$
0$
0$
0$
0#
0#
0#
0!
0!

























-36
,1&0
0#
0(/3#?/54
DocID027107 Rev 6 43/202
STM32F446xC/E Pinout and pin description
66
Figure 12. STM32F446xC LQFP144 pinout
1. The above figure shows the package top view.
Pinout and pin description STM32F446xC/E
44/202 DocID027107 Rev 6
Figure 13. STM32F446xC/xE WLCSP81 ballout
1. The above figure shows the package top view.
06Y9
9''
$3& 3% %227 3(3% 9''3' 3'
966
%3$ 3% 966 9%$73% 3'5B
21
3' 3'
3$
&9&$3B 3% 3% 3&3% 3&3$ 3'
3&
'3$ 3' 3( 3&3( 15(6(73& 3&
9''
86%
(3$ 3$ 3$ 3+3$ 3&3$ 3$
3&
)3& 3% 966$ 3+3$ 3&3& 3$
3'
*3' 3( 3$ 3&3$ 9663% 3%
+3% 3( 3$ 9''
3% 9''$
966 3%
3'
3% 9'' 3( 3& 3$
3% %<3$66B
5(*
9&$3B 3(
-

DocID027107 Rev 6 45/202
STM32F446xC/E Pinout and pin description
66
Figure 14. STM32F446xC/xE UFBGA144 ballout
1. The above picture shows the package top view.
06Y9
3&
$3( 3( 3% 3'3% 3' 3$3( 3( 3$ 3$
3&
%3( 3% 3* 3'3% 3* 3&3( 3( 3& 3$,
3&
&9%$7 3% 3* 3'3% 3* 3&3) 3) 9''
86% 3$
3+
'966 %227 3* 3'3% 3* 3'9'' 3) 3$ 3$
3+
(3) 3'5B
21 966 3'966 3* 3'3) 3) 3& 3$
1567
)3) 9'' 9'' 9''9'' 9'' 9''3) 9'' 3& 3&
3)
*3) 9'' 9'' 9&$3B9'' 966 9663) 966 3* 3&
+3& %<3$66
B5(* 9&$3B 3'966 3( 3*
3& 3& 3* 3*
3&
966$ 3$ 3% 3( 3'3* 3( 3*3$ 3& 3* 3*
95()
.3$ 3) 3( 3'3* 3( 3'3$ 3& 3' 3'
95()
/3$ 3) 3( 3'3) 3( 3'3$ 3% 3% 3%
9''$
03$ 3) 3( 3%3) 3( 3%3$ 3% 3% 3%
-

Pinout and pin description STM32F446xC/E
46/202 DocID027107 Rev 6
Table 9. Legend/abbreviations used in the pinout table
Name Abbreviation Definition
Pin name Unless otherwise specified in brackets below the pin name, the pin function during and after
reset is the same as the actual pin name
Pin type
S Supply pin
I Input only pin
I/O Input / output pin
I/O structure
FT 5 V tolerant I/O
FTf 5V tolerant IO, I2C FM+ option
TTa 3.3 V tolerant I/O directly connected to ADC
B Dedicated BOOT0 pin
RST Bidirectional reset pin with weak pull-up resistor
Notes Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset
Alternate
functions Functions selected through GPIOx_AFR registers
Additional
functions Functions directly selected/enabled through peripheral registers
Table 10. STM32F446xx pin and ball descriptions
Pin Number
Pin name (function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
LQFP64
LQFP100
WLCSP 81
UFBGA144
LQFP144
- 1 D7 A3 1 PE2 I/O FT -
TRACECLK, SPI4_SCK,
SAI1_MCLK_A,
QUADSPI_BK1_IO2,
FMC_A23, EVENTOUT
-
- 2 D6 A2 2 PE3 I/O FT - TRACED0, SAI1_SD_B,
FMC_A19, EVENTOUT -
- 3 A9 B2 3 PE4 I/O FT -
TRACED1, SPI4_NSS,
SAI1_FS_A, FMC_A20,
DCMI_D4, EVENTOUT
-
- 4 - B3 4 PE5 I/O FT -
TRACED2, TIM9_CH1,
SPI4_MISO, SAI1_SCK_A,
FMC_A21, DCMI_D6,
EVENTOUT
-
DocID027107 Rev 6 47/202
STM32F446xC/E Pinout and pin description
66
- 5 - B4 5 PE6 I/O FT -
TRACED3, TIM9_CH2,
SPI4_MOSI, SAI1_SD_A,
FMC_A22, DCMI_D7,
EVENTOUT
-
1 6 B9 C2 6 VBAT S - - - -
2 7 C8 A1 7 PC13 I/O FT - EVENTOUT TAMP_1/WKUP1
38C9B18 PC14-
OSC32_IN(PC14) I/O FT - EVENTOUT OSC32_IN
4 9 D9 C1 9 PC15-
OSC32_OUT(PC15) I/O FT - EVENTOUT OSC32_OUT
-- -C310 PF0 I/OFT- I2C2_SDA, FMC_A0,
EVENTOUT -
-- -C411 PF1 I/OFT- I2C2_SCL, FMC_A1,
EVENTOUT -
-- -D412 PF2 I/OFT-I2C2_SMBA, FMC_A2,
EVENTOUT -
- - - E2 13 PF3 I/O FT - FMC_A3, EVENTOUT ADC3_IN9
- - - E3 14 PF4 I/O FT - FMC_A4, EVENTOUT ADC3_IN14
- - - E4 15 PF5 I/O FT - FMC_A5, EVENTOUT ADC3_IN15
- 10 - D2 16 VSS S - - - -
-11 - D317 VDD S-- - -
-- -F318 PF6 I/OFT-
TIM10_CH1, SAI1_SD_B,
QUADSPI_BK1_IO3,
EVENTOUT
ADC3_IN4
-- -F219 PF7 I/OFT-
TIM11_CH1,
SAI1_MCLK_B,
QUADSPI_BK1_IO2,
EVENTOUT
ADC3_IN5
-- -G320 PF8 I/OFT-
SAI1_SCK_B, TIM13_CH1,
QUADSPI_BK1_IO0,
EVENTOUT
ADC3_IN6
-- -G221 PF9 I/OFT-
SAI1_FS_B, TIM14_CH1,
QUADSPI_BK1_IO1,
EVENTOUT
ADC3_IN7
- - - G1 22 PF10 I/O FT - DCMI_D11, EVENTOUT ADC3_IN8
5 12 E9 D1 23 PH0-OSC_IN(PH0) I/O FT - EVENTOUT OSC_IN
Table 10. STM32F446xx pin and ball descriptions (continued)
Pin Number
Pin name (function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
LQFP64
LQFP100
WLCSP 81
UFBGA144
LQFP144
Pinout and pin description STM32F446xC/E
48/202 DocID027107 Rev 6
613F9E124 PH1-
OSC_OUT(PH1) I/O FT - EVENTOUT OSC_OUT
7 14 D8 F1 25 NRST I/O RS
T-- -
815G9H126 PC0 I/OFT-
SAI1_MCLK_B,
OTG_HS_ULPI_STP,
FMC_SDNWE,
EVENTOUT
ADC123_IN10
916 - H227 PC1 I/OFT-
SPI3_MOSI/I2S3_SD,
SAI1_SD_A,
SPI2_MOSI/I2S2_SD,
EVENTOUT
ADC123_IN11
10 17 E8 H3 28 PC2 I/O FT -
SPI2_MISO,
OTG_HS_ULPI_DIR,
FMC_SDNE0, EVENTOUT
ADC123_IN12
11 18 F8 H4 29 PC3 I/O FT -
SPI2_MOSI/I2S2_SD,
OTG_HS_ULPI_NXT,
FMC_SDCKE0,
EVENTOUT
ADC123_IN13
-19H9 - 30 VDD S-- - -
- - G8 - - VSS S - - - -
12 20 F7 J1 31 VSSA S - - - -
- - - K1 - VREF- S - - - -
- 21 - L1 32 VREF+ S - - - -
13 22 H8 M1 33 VDDA S - - - -
14 23 J9 J2 34 PA0-WKUP(PA0) I/O FT -
TIM2_CH1/TIM2_ETR,
TIM5_CH1, TIM8_ETR,
USART2_CTS,
UART4_TX, EVENTOUT
ADC123_IN0,
WKUP0/TAMP_2
15 24 G7 K2 35 PA1 I/O FT -
TIM2_CH2, TIM5_CH2,
USART2_RTS,
UART4_RX,
QUADSPI_BK1_IO3,
SAI2_MCLK_B,
EVENTOUT
ADC123_IN1
16 25 E7 L2 36 PA2 I/O FT -
TIM2_CH3, TIM5_CH3,
TIM9_CH1, USART2_TX,
SAI2_SCK_B, EVENTOUT
ADC123_IN2
Table 10. STM32F446xx pin and ball descriptions (continued)
Pin Number
Pin name (function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
LQFP64
LQFP100
WLCSP 81
UFBGA144
LQFP144
DocID027107 Rev 6 49/202
STM32F446xC/E Pinout and pin description
66
17 26 E6 M2 37 PA3 I/O FT -
TIM2_CH4, TIM5_CH4,
TIM9_CH2, SAI1_FS_A,
USART2_RX,
OTG_HS_ULPI_D0,
EVENTOUT
ADC123_IN3
18 27 - G4 38 VSS S - - - -
- - J8 H5 - BYPASS_REG I FT - - -
19 28 - F4 39 VDD S - - - -
20 29 H7 J3 40 PA4 I/O TC -
SPI1_NSS/I2S1_WS,
SPI3_NSS/I2S3_WS,
USART2_CK,
OTG_HS_SOF,
DCMI_HSYNC,
EVENTOUT
ADC12_IN4,
DAC_OUT1
21 30 F6 K3 41 PA5 I/O TC -
TIM2_CH1/TIM2_ETR,
TIM8_CH1N,
SPI1_SCK/I2S1_CK,
OTG_HS_ULPI_CK,
EVENTOUT
ADC12_IN5,
DAC_OUT2
22 31 G6 L3 42 PA6 I/O FT -
TIM1_BKIN, TIM3_CH1,
TIM8_BKIN, SPI1_MISO,
I2S2_MCK, TIM13_CH1,
DCMI_PIXCLK,
EVENTOUT
ADC12_IN6
23 32 E5 M3 43 PA7 I/O FT -
TIM1_CH1N, TIM3_CH2,
TIM8_CH1N,
SPI1_MOSI/I2S1_SD,
TIM14_CH1,
FMC_SDNWE,
EVENTOUT
ADC12_IN7
24 33 J7 J4 44 PC4 I/O FT - I2S1_MCK, SPDIFRX_IN2,
FMC_SDNE0, EVENTOUT ADC12_IN14
25 34 - K4 45 PC5 I/O FT -
USART3_RX,
SPDIFRX_IN3,
FMC_SDCKE0,
EVENTOUT
ADC12_IN15
Table 10. STM32F446xx pin and ball descriptions (continued)
Pin Number
Pin name (function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
LQFP64
LQFP100
WLCSP 81
UFBGA144
LQFP144
Pinout and pin description STM32F446xC/E
50/202 DocID027107 Rev 6
26 35 F5 L4 46 PB0 I/O FT -
TIM1_CH2N, TIM3_CH3,
TIM8_CH2N,
SPI3_MOSI/I2S3_SD,
UART4_CTS,
OTG_HS_ULPI_D1,
SDIO_D1, EVENTOUT
ADC12_IN8
27 36 H6 M4 47 PB1 I/O FT -
TIM1_CH3N, TIM3_CH4,
TIM8_CH3N,
OTG_HS_ULPI_D2,
SDIO_D2, EVENTOUT
ADC12_IN9
28 37 J6 J5 48 PB2-BOOT1
(PB2) I/O FT -
TIM2_CH4, SAI1_SD_A,
SPI3_MOSI/I2S3_SD,
QUADSPI_CLK,
OTG_HS_ULPI_D4,
SDIO_CK, EVENTOUT
-
- - - M5 49 PF11 I/O FT -
SAI2_SD_B,
FMC_SDNRAS,
DCMI_D12, EVENTOUT
-
- - - L5 50 PF12 I/O FT - FMC_A6, EVENTOUT -
- - - - 51 VSS S - - - -
-- -G552 VDD S-- - -
-- -K553 PF13 I/OFT- FMPI2C1_SMBA,
FMC_A7, EVENTOUT -
-- -M654 PF14 I/OFTf-
FMPI2C1_SCL, FMC_A8,
EVENTOUT -
-- -L655 PF15 I/OFTf-
FMPI2C1_SDA, FMC_A9,
EVENTOUT -
- - - K6 56 PG0 I/O FT - FMC_A10, EVENTOUT -
- - - J6 57 PG1 I/O FT - FMC_A11, EVENTOUT -
- 38 J5 M7 58 PE7 I/O FT -
TIM1_ETR, UART5_RX,
QUADSPI_BK2_IO0,
FMC_D4, EVENTOUT
-
- 39 H5 L7 59 PE8 I/O FT -
TIM1_CH1N, UART5_TX,
QUADSPI_BK2_IO1,
FMC_D5, EVENTOUT
-
- 40 G5 K7 60 PE9 I/O FT -
TIM1_CH1,
QUADSPI_BK2_IO2,
FMC_D6, EVENTOUT
-
Table 10. STM32F446xx pin and ball descriptions (continued)
Pin Number
Pin name (function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
LQFP64
LQFP100
WLCSP 81
UFBGA144
LQFP144
DocID027107 Rev 6 51/202
STM32F446xC/E Pinout and pin description
66
- - - H6 61 VSS S - - - -
-- -G662 VDD S-- - -
- 41 J4 J7 63 PE10 I/O FT -
TIM1_CH2N,
QUADSPI_BK2_IO3,
FMC_D7, EVENTOUT
-
- 42 - H8 64 PE11 I/O FT -
TIM1_CH2, SPI4_NSS,
SAI2_SD_B, FMC_D8,
EVENTOUT
-
- 43 - J8 65 PE12 I/O FT -
TIM1_CH3N, SPI4_SCK,
SAI2_SCK_B, FMC_D9,
EVENTOUT
-
- 44 - K8 66 PE13 I/O FT -
TIM1_CH3, SPI4_MISO,
SAI2_FS_B, FMC_D10,
EVENTOUT
-
- 45 - L8 67 PE14 I/O FT -
TIM1_CH4, SPI4_MOSI,
SAI2_MCLK_B, FMC_D11,
EVENTOUT
-
- 46 - M8 68 PE15 I/O FT - TIM1_BKIN, FMC_D12,
EVENTOUT -
29 47 H4 M9 69 PB10 I/O FT -
TIM2_CH3, I2C2_SCL,
SPI2_SCK/I2S2_CK,
SAI1_SCK_A,
USART3_TX,
OTG_HS_ULPI_D3,
EVENTOUT
-
- - - M10 70 PB11 I/O FT -
TIM2_CH4, I2C2_SDA,
USART3_RX, SAI2_SD_A,
EVENTOUT
-
30 48 J3 H7 71 VCAP_1 S - - - -
31 49 H3 - - VSS S - - - -
32 50 J2 G7 72 VDD S - - - -
33 51 G4 M11 73 PB12 I/O FT -
TIM1_BKIN, I2C2_SMBA,
SPI2_NSS/I2S2_WS,
SAI1_SCK_B,
USART3_CK, CAN2_RX,
OTG_HS_ULPI_D5,
OTG_HS_ID, EVENTOUT
-
Table 10. STM32F446xx pin and ball descriptions (continued)
Pin Number
Pin name (function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
LQFP64
LQFP100
WLCSP 81
UFBGA144
LQFP144
Pinout and pin description STM32F446xC/E
52/202 DocID027107 Rev 6
34 52 H2 M12 74 PB13 I/O FT -
TIM1_CH1N,
SPI2_SCK/I2S2_CK,
USART3_CTS, CAN2_TX,
OTG_HS_ULPI_D6,
EVENTOUT
OTG_HS_VBUS
35 53 J1 L11 75 PB14(1) I/O FT -
TIM1_CH2N, TIM8_CH2N,
SPI2_MISO,
USART3_RTS,
TIM12_CH1,
OTG_HS_DM, EVENTOUT
-
36 54 G3 L12 76 PB15(1) I/O FT -
RTC_REFIN, TIM1_CH3N,
TIM8_CH3N,
SPI2_MOSI/I2S2_SD,
TIM12_CH2, OTG_HS_DP,
EVENTOUT
-
- 55 - L9 77 PD8 I/O FT -
USART3_TX,
SPDIFRX_IN1, FMC_D13,
EVENTOUT
-
- 56 - K9 78 PD9 I/O FT - USART3_RX, FMC_D14,
EVENTOUT -
- 57 - J9 79 PD10 I/O FT - USART3_CK, FMC_D15,
EVENTOUT -
-58H1H980 PD11 I/OFT-
FMPI2C1_SMBA,
USART3_CTS,
QUADSPI_BK1_IO0,
SAI2_SD_A, FMC_A16,
EVENTOUT
-
- 59 G2 L10 81 PD12 I/O FTf -
TIM4_CH1,
FMPI2C1_SCL,
USART3_RTS,
QUADSPI_BK1_IO1,
SAI2_FS_A, FMC_A17,
EVENTOUT
-
- 60 G1 K10 82 PD13 I/O FTf -
TIM4_CH2,
FMPI2C1_SDA,
QUADSPI_BK1_IO3,
SAI2_SCK_A, FMC_A18,
EVENTOUT
-
- - - G8 83 VSS S - - - -
-- -F884 VDD S-- - -
Table 10. STM32F446xx pin and ball descriptions (continued)
Pin Number
Pin name (function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
LQFP64
LQFP100
WLCSP 81
UFBGA144
LQFP144
DocID027107 Rev 6 53/202
STM32F446xC/E Pinout and pin description
66
-61 -K1185 PD14 I/OFTf-
TIM4_CH3,
FMPI2C1_SCL,
SAI2_SCK_A, FMC_D0,
EVENTOUT
-
-62 -K1286 PD15 I/OFTf-
TIM4_CH4,
FMPI2C1_SDA, FMC_D1,
EVENTOUT
-
- - - J12 87 PG2 I/O FT - FMC_A12, EVENTOUT -
- - - J11 88 PG3 I/O FT - FMC_A13, EVENTOUT -
-- -J1089 PG4 I/OFT- FMC_A14/FMC_BA0,
EVENTOUT -
- - - H12 90 PG5 I/O FT - FMC_A15/FMC_BA1,
EVENTOUT -
-- -H1191 PG6 I/OFT- QUADSPI_BK1_NCS,
DCMI_D12, EVENTOUT -
- - - H10 92 PG7 I/O FT - USART6_CK, FMC_INT,
DCMI_D13, EVENTOUT -
-- -G1193 PG8 I/OFT-
SPDIFRX_IN2,
USART6_RTS,
FMC_SDCLK, EVENTOUT
-
- - - - 94 VSS S - - - -
-- -F10- VDD S-- - -
- - E1 C11 95 VDDUSB S - - - -
37 63 F1 G12 96 PC6 I/O FTf -
TIM3_CH1, TIM8_CH1,
FMPI2C1_SCL,
I2S2_MCK, USART6_TX,
SDIO_D6, DCMI_D0,
EVENTOUT
-
38 64 F2 F12 97 PC7 I/O FTf -
TIM3_CH2, TIM8_CH2,
FMPI2C1_SDA,
SPI2_SCK/I2S2_CK,
I2S3_MCK, SPDIFRX_IN1,
USART6_RX, SDIO_D7,
DCMI_D1, EVENTOUT
-
39 65 F3 F11 98 PC8 I/O FT -
TRACED0, TIM3_CH3,
TIM8_CH3, UART5_RTS,
USART6_CK, SDIO_D0,
DCMI_D2, EVENTOUT
-
Table 10. STM32F446xx pin and ball descriptions (continued)
Pin Number
Pin name (function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
LQFP64
LQFP100
WLCSP 81
UFBGA144
LQFP144
Pinout and pin description STM32F446xC/E
54/202 DocID027107 Rev 6
40 66 D1 E11 99 PC9 I/O FT -
MCO2, TIM3_CH4,
TIM8_CH4, I2C3_SDA,
I2S_CKIN, UART5_CTS,
QUADSPI_BK1_IO0,
SDIO_D1, DCMI_D3,
EVENTOUT
-
41 67 E2 E12 100 PA8 I/O FT -
MCO1, TIM1_CH1,
I2C3_SCL, USART1_CK,
OTG_FS_SOF,
EVENTOUT
-
42 68 F4 D12 101 PA9 I/O FT -
TIM1_CH2, I2C3_SMBA,
SPI2_SCK/I2S2_CK,
SAI1_SD_B, USART1_TX,
DCMI_D0, EVENTOUT
OTG_FS_VBUS
43 69 E3 D11 102 PA10 I/O FT -
TIM1_CH3, USART1_RX,
OTG_FS_ID, DCMI_D1,
EVENTOUT
-
44 70 C1 C12 103 PA11(1) I/O FT -
TIM1_CH4, USART1_CTS,
CAN1_RX, OTG_FS_DM,
EVENTOUT
-
45 71 E4 B12 104 PA12(1) I/O FT -
TIM1_ETR, USART1_RTS,
SAI2_FS_B, CAN1_TX,
OTG_FS_DP, EVENTOUT
-
46 72 D2 A12 105 PA13(JTMS-SWDIO) I/O FT - JTMS-SWDIO,
EVENTOUT -
- 73 C2 G9 106 VCAP_2 S - - - -
47 74 B1 G10 107 VSS S - - - -
48 75 A1 F9 108 VDD S - - - -
49 76 C3 A11 109 PA14(JTCK-SWCLK) I/O FT - JTCK-SWCLK,
EVENTOUT -
50 77 B2 A10 110 PA15(JTDI) I/O FT -
JTDI,
TIM2_CH1/TIM2_ETR,
HDMI_CEC,
SPI1_NSS/I2S1_WS,
SPI3_NSS/I2S3_WS,
UART4_RTS, EVENTOUT
-
Table 10. STM32F446xx pin and ball descriptions (continued)
Pin Number
Pin name (function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
LQFP64
LQFP100
WLCSP 81
UFBGA144
LQFP144
DocID027107 Rev 6 55/202
STM32F446xC/E Pinout and pin description
66
51 78 D3 B11 111 PC10 I/O FT -
SPI3_SCK/I2S3_CK,
USART3_TX, UART4_TX,
QUADSPI_BK1_IO1,
SDIO_D2, DCMI_D8,
EVENTOUT
-
52 79 D4 B10 112 PC11 I/O FT -
SPI3_MISO, USART3_RX,
UART4_RX,
QUADSPI_BK2_NCS,
SDIO_D3, DCMI_D4,
EVENTOUT
-
53 80 A2 C10 113 PC12 I/O FT -
I2C2_SDA,
SPI3_MOSI/I2S3_SD,
USART3_CK, UART5_TX,
SDIO_CK, DCMI_D9,
EVENTOUT
-
-81B3E10114 PD0 I/OFT-
SPI4_MISO,
SPI3_MOSI/I2S3_SD,
CAN1_RX, FMC_D2,
EVENTOUT
-
-82C4D10115 PD1 I/OFT-
SPI2_NSS/I2S2_WS,
CAN1_TX, FMC_D3,
EVENTOUT
-
54 83 D5 E9 116 PD2 I/O FT -
TIM3_ETR, UART5_RX,
SDIO_CMD, DCMI_D11,
EVENTOUT
-
-84 - D9117 PD3 I/OFT-
TRACED1,
SPI2_SCK/I2S2_CK,
USART2_CTS,
QUADSPI_CLK,
FMC_CLK, DCMI_D5,
EVENTOUT
-
-85A3C9118 PD4 I/OFT-
USART2_RTS, FMC_NOE,
EVENTOUT -
-86 - B9119 PD5 I/OFT-
USART2_TX, FMC_NWE,
EVENTOUT -
- - - E7 120 VSS S - - - -
-- -F7121 VDD S-- - -
Table 10. STM32F446xx pin and ball descriptions (continued)
Pin Number
Pin name (function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
LQFP64
LQFP100
WLCSP 81
UFBGA144
LQFP144
Pinout and pin description STM32F446xC/E
56/202 DocID027107 Rev 6
-87B4A8122 PD6 I/OFT-
SPI3_MOSI/I2S3_SD,
SAI1_SD_A, USART2_RX,
FMC_NWAIT, DCMI_D10,
EVENTOUT
-
-88A4A9123 PD7 I/OFT-
USART2_CK,
SPDIFRX_IN0, FMC_NE1,
EVENTOUT
-
-- -E8124 PG9 I/OFT-
SPDIFRX_IN3,
USART6_RX,
QUADSPI_BK2_IO2,
SAI2_FS_B,
FMC_NE2/FMC_NCE3,
DCMI_VSYNC,
EVENTOUT
-
- - - D8 125 PG10 I/O FT - SAI2_SD_B, FMC_NE3,
DCMI_D2, EVENTOUT -
-- -C8126 PG11 I/OFT-
SPI4_SCK, SPDIFRX_IN0,
DCMI_D3, EVENTOUT -
- - - B8 127 PG12 I/O FT -
SPI4_MISO,
SPDIFRX_IN1,
USART6_RTS, FMC_NE4,
EVENTOUT
-
- - - D7 128 PG13 I/O FT -
TRACED2, SPI4_MOSI,
USART6_CTS, FMC_A24,
EVENTOUT
-
- - - C7 129 PG14 I/O FT -
TRACED3, SPI4_NSS,
USART6_TX,
QUADSPI_BK2_IO3,
FMC_A25, EVENTOUT
-
- - - - 130 VSS S - - - -
-- -F6131 VDD S-- - -
- - - B7 132 PG15 I/O FT -
USART6_CTS,
FMC_SDNCAS,
DCMI_D13, EVENTOUT
-
55 89 A5 A7 133 PB3(JTDO/TRACES
WO) I/O FT -
JTDO/TRACESWO,
TIM2_CH2, I2C2_SDA,
SPI1_SCK/I2S1_CK,
SPI3_SCK/I2S3_CK,
EVENTOUT
-
Table 10. STM32F446xx pin and ball descriptions (continued)
Pin Number
Pin name (function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
LQFP64
LQFP100
WLCSP 81
UFBGA144
LQFP144
DocID027107 Rev 6 57/202
STM32F446xC/E Pinout and pin description
66
56 90 B5 A6 134 PB4(NJTRST) I/O FT -
NJTRST, TIM3_CH1,
I2C3_SDA, SPI1_MISO,
SPI3_MISO,
SPI2_NSS/I2S2_WS,
EVENTOUT
-
57 91 A6 B6 135 PB5 I/O FT -
TIM3_CH2, I2C1_SMBA,
SPI1_MOSI/I2S1_SD,
SPI3_MOSI/I2S3_SD,
CAN2_RX,
OTG_HS_ULPI_D7,
FMC_SDCKE1,
DCMI_D10, EVENTOUT
-
58 92 C5 C6 136 PB6 I/O FT -
TIM4_CH1, HDMI_CEC,
I2C1_SCL, USART1_TX,
CAN2_TX,
QUADSPI_BK1_NCS,
FMC_SDNE1, DCMI_D5,
EVENTOUT
-
59 93 B6 D6 137 PB7 I/O FT -
TIM4_CH2, I2C1_SDA,
USART1_RX,
SPDIFRX_IN0, FMC_NL,
DCMI_VSYNC,
EVENTOUT
-
60 94 A7 D5 138 BOOT0 I B - - VPP
61 95 C6 C5 139 PB8 I/O FT -
TIM2_CH1/TIM2_ETR,
TIM4_CH3, TIM10_CH1,
I2C1_SCL, CAN1_RX,
SDIO_D4, DCMI_D6,
EVENTOUT
-
62 96 C7 B5 140 PB9 I/O FT -
TIM2_CH2, TIM4_CH4,
TIM11_CH1, I2C1_SDA,
SPI2_NSS/I2S2_WS,
SAI1_FS_B, CAN1_TX,
SDIO_D5, DCMI_D7,
EVENTOUT
-
- 97 - A5 141 PE0 I/O FT -
TIM4_ETR,
SAI2_MCLK_A,
FMC_NBL0, DCMI_D2,
EVENTOUT
-
- 98 - A4 142 PE1 I/O FT - FMC_NBL1, DCMI_D3,
EVENTOUT -
Table 10. STM32F446xx pin and ball descriptions (continued)
Pin Number
Pin name (function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
LQFP64
LQFP100
WLCSP 81
UFBGA144
LQFP144
Pinout and pin description STM32F446xC/E
58/202 DocID027107 Rev 6
63 99 B7 E6 - VSS S - - - -
- - B8 E5 143 PDR_ON S - - - -
64 100 A8 F5 144 VDD S - - - -
1. PA11, PA12, PB14 and PB15 I/Os are supplied by VDDUSB
Table 10. STM32F446xx pin and ball descriptions (continued)
Pin Number
Pin name (function
after reset)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
LQFP64
LQFP100
WLCSP 81
UFBGA144
LQFP144
STM32F446xC/E Pinout and pin description
DocID027107 Rev 6 59/202
Table 11. Alternate function
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS TIM1/2 TIM3/4/5
TIM8/9/
10/11/
CEC
I2C1/2/3
/4/CEC
SPI1/2/3/
4
SPI2/3/4/
SAI1
SPI2/3/
USART1/
2/3/UART
5/SPDIFR
X
SAI/
USART6/
UART4/5/
SPDIFRX
CAN1/2
TIM12/13/
14/
QUADSPI
SAI2/
QUADSPI/
OTG2_HS/
OTG1_FS
OTG1_FS
FMC/
SDIO/
OTG2_FS
DCMI -SYS
Port A
PA0 - TIM2_CH1/
TIM2_ETR TIM5_CH1 TIM8_ETR - - - USART2_
CTS
UART4_
TX -- ----
EVENT
OUT
PA1 - TIM2_CH2 TIM5_CH2 - - - - USART2_
RTS
UART4_
RX
QUADSPI_
BK1_IO3
SAI2_
MCLK_B ----
EVENT
OUT
PA2 - TIM2_CH3 TIM5_CH3 TIM9_CH1 - - - USART2_
TX
SAI2_
SCK_B -- - ---
EVENT
OUT
PA3 - TIM2_CH4 TIM5_CH4 TIM9_CH2 - - SAI1_
FS_A
USART2_
RX --
OTG_HS_
ULPI_D0 ----
EVENT
OUT
PA4 - - - - - SPI1_NSS/I
2S1_WS
SPI3_NSS
/
I2S3_WS
USART2_
CK -- - -
OTG_HS_
SOF
DCMI_
HSYNC -EVENT
OUT
PA5 - TIM2_CH1/
TIM2_ETR -TIM8_
CH1N -SPI1_SCK/I
2S1_CK -- - -
OTG_HS_
ULPI_CK ----
EVENT
OUT
PA6 - TIM1_
BKIN TIM3_CH1 TIM8_
BKIN -SPI1_MISO
I2S2_
MCK - - TIM13_CH1 - - - DCMI_
PIXCLK -EVENT
OUT
PA7 - TIM1_
CH1N TIM3_CH2 TIM8_
CH1N -
SPI1_MOSI
/
I2S1_SD
- - - TIM14_CH1 - - FMC_
SDNWE --
EVENT
OUT
PA8 MCO1 TIM1_CH1 - - I2C3_
SCL --
USART1_
CK --
OTG_FS_
SOF ----
EVENT
OUT
PA9 - TIM1_CH2 - - I2C3_
SMBA
SPI2_SCK
/I2S2_CK
SAI1_
SD_B
USART1_
TX - - - - - DCMI_D0 - EVENT
OUT
PA10 - TIM1_CH3 - - - - - USART1_
RX --
OTG_FS_
ID - - DCMI_D1 - EVENT
OUT
PA11 - TIM1_CH4 - - - - - USART1_
CTS -CAN1_RX
OTG_FS_
DM ----
EVENT
OUT
PA12 - TIM1_ETR - - - - - USART1_
RTS
SAI2_
FS_B CAN1_TX OTG_FS_
DP ----
EVENT
OUT
PA13 JTMS-
SWDIO --------- - - ---
EVENT
OUT
PA14 JTCK-
SWCLK --------- - - ---
EVENT
OUT
PA15 JTDI TIM2_CH1/
TIM2_ETR --
HDMI_
CEC
SPI1_NSS/
I2S1_WS
SPI3_
NSS/
I2S3_WS
-UART4_RT
S-- ----
EVENT
OUT
Pinout and pin description STM32F446xC/E
60/202 DocID027107 Rev 6
Port B
PB0 - TIM1_CH2N TIM3_CH3 TIM8_
CH2N -- -
SPI3_MOS
I/
I2S3_SD
UART4_
CTS -OTG_HS_
ULPI_D1 -SDIO_D1- -
EVENT
OUT
PB1 - TIM1_CH3N TIM3_CH4 TIM8_
CH3N -- - - - -
OTG_HS_
ULPI_D2 -SDIO_D2- -
EVENT
OUT
PB2 - TIM2_CH4 - - - - SAI1_
SD_A
SPI3_MOS
I/
I2S3_SD
-QUADSPI_
CLK
OTG_HS_
ULPI_D4 - SDIO_CK - - EVENT
OUT
PB3
JTDO/
TRACES
WO
TIM2_CH2 - - I2C2_
SDA
SPI1_SCK
/I2S1_CK
SPI3_SCK
/
I2S3_CK
--- - - ---
EVENT
OUT
PB4 NJTRST - TIM3_CH1 - I2C3_
SDA SPI1_MISO SPI3_
MISO
SPI2_NSS/
I2S2_WS -- - - ---
EVENT
OUT
PB5 - - TIM3_CH2 - I2C1_
SMBA
SPI1_MOSI
/I2S1_SD
SPI3_
MOSI/
I2S3_SD
- - CAN2_RX OTG_HS_
ULPI_D7 -FMC_
SDCKE1
DCMI_
D10 -EVENT
OUT
PB6 - - TIM4_CH1 HDMI_
CEC
I2C1_
SCL --
USART1_
TX -CAN2_TX
QUADSPI_
BK1_NCS -FMC_
SDNE1 DCMI_D5 - EVENT
OUT
PB7 - - TIM4_CH2 - I2C1_
SDA --
USART1_
RX
SPDIF_
RX0 -- -FMC_NL
DCMI_
VSYNC -EVENT
OUT
PB8 - TIM2_CH1/
TIM2_ETR TIM4_CH3 TIM10_
CH1
I2C1_
SCL - - - - CAN1_RX - - SDIO_D4 DCMI_D6 - EVENT
OUT
PB9 - TIM2_
CH2 TIM4_CH4 TIM11_
CH1
I2C1_
SDA
SPI2_NSS/
I2S2_WS
SAI1_
FS_B - - CAN1_TX - - SDIO_D5 DCMI_D7 - EVENT
OUT
PB10 - TIM2_CH3 - - I2C2_
SCL
SPI2_SCK/
I2S2_CK
SAI1_
SCK_A
USART3_
TX --
OTG_HS_
ULPI_D3 ----
EVENT
OUT
PB11 - TIM2_CH4 - - I2C2_
SDA --
USART3_
RX
SAI2_
SD_A -- ----
EVENT
OUT
PB12 - TIM1_BKIN - - I2C2_
SMBA
SPI2_NSS/
I2S2_WS
SAI1_
SCK_B
USART3_
CK -CAN2_RX
OTG_HS_
ULPI_D5 -OTG_
HS_ID --
EVENT
OUT
PB13 - TIM1_CH1N - - - SPI2_SCK/
I2S2_CK -USART3_
CTS -CAN2_TX
OTG_HS_
ULPI_D6 ----
EVENT
OUT
PB14 - TIM1_CH2N - TIM8_
CH2N -SPI2_MISO - USART3_
RTS - TIM12_CH1 - - OTG_
HS_DM --
EVENT
OUT
PB15 RTC_
REFIN TIM1_CH3N - TIM8_
CH3N -SPI2_MOSI
/I2S2_SD - - - TIM12_CH2 - - OTG_
HS_DP --
EVENT
OUT
Table 11. Alternate function (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS TIM1/2 TIM3/4/5
TIM8/9/
10/11/
CEC
I2C1/2/3
/4/CEC
SPI1/2/3/
4
SPI2/3/4/
SAI1
SPI2/3/
USART1/
2/3/UART
5/SPDIFR
X
SAI/
USART6/
UART4/5/
SPDIFRX
CAN1/2
TIM12/13/
14/
QUADSPI
SAI2/
QUADSPI/
OTG2_HS/
OTG1_FS
OTG1_FS
FMC/
SDIO/
OTG2_FS
DCMI -SYS
STM32F446xC/E Pinout and pin description
DocID027107 Rev 6 61/202
Port C
PC0 - - - - - - SAI1_
MCLK_B ---
OTG_HS_
ULPI_STP -FMC_
SDNWE --
EVENT
OUT
PC1 - - - - - SPI3_MOSI
/I2S3_SD
SAI1_
SD_A
SPI2_MOS
I
/I2S2_SD
-- - - ---
EVENT
OUT
PC2 - - - - - SPI2_MISO - - - - OTG_HS_
ULPI_DIR -FMC_
SDNE0 --
EVENT
OUT
PC3 - - - - -
SPI2_MOSI
/
I2S2_SD
-- - -
OTG_HS_
ULPI_NXT -FMC_
SDCKE0 --
EVENT
OUT
PC4 - - - - - I2S1_MCK - - SPDIF_
RX2 -- -
FMC_
SDNE0 --
EVENT
OUT
PC5 - - - - - - - USART3_
RX
SPDIF_
RX3 -- -
FMC_
SDCKE0 --
EVENT
OUT
PC6 - - TIM3_CH1 TIM8_CH1 FMPI2C1
_SCL I2S2_MCK - - USART6_T
X- - - SDIO_D6 DCMI_D0 - EVENT
OUT
PC7 - - TIM3_CH2 TIM8_CH2 FMPI2C1
_SDA
SPI2_SCK/
I2S2_CK I2S3_MCK SPDIF_
RX1
USART6_R
X- - - SDIO_D7 DCMI_D1 - EVENT
OUT
PC8 TRACE
D0 - TIM3_CH3 TIM8_CH3 - - - UART5_
RTS
USART6_C
K- - - SDIO_D0 DCMI_D2 - EVENT
OUT
PC9 MCO2 - TIM3_CH4 TIM8_CH4 I2C3_
SDA I2S_CKIN - UART5_
CTS -QUADSPI_
BK1_IO0 - - SDIO_D1 DCMI_D3 - EVENT
OUT
PC10-- - ---
SPI3_SCK
/
I2S3_CK
USART3_
TX UART4_TX QUADSPI_
BK1_IO1 - - SDIO_D2 DCMI_D8 - EVENT
OUT
PC11-- - ---
SPI3_
MISO
USART3_
RX UART4_RX QUADSPI_
BK2_NCS - - SDIO_D3 DCMI_D4 - EVENT
OUT
PC12 - - - - I2C2_
SDA -
SPI3_
MOSI/
I2S3_SD
USART3_
CK UART5_TX - - - SDIO_CK DCMI_D9 - EVENT
OUT
PC13-- - --- - - - - - - ---
EVENT
OUT
PC14-- - --- - - - - - - ---
EVENT
OUT
PC15-- - --- - - - - - - ---
EVENT
OUT
Table 11. Alternate function (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS TIM1/2 TIM3/4/5
TIM8/9/
10/11/
CEC
I2C1/2/3
/4/CEC
SPI1/2/3/
4
SPI2/3/4/
SAI1
SPI2/3/
USART1/
2/3/UART
5/SPDIFR
X
SAI/
USART6/
UART4/5/
SPDIFRX
CAN1/2
TIM12/13/
14/
QUADSPI
SAI2/
QUADSPI/
OTG2_HS/
OTG1_FS
OTG1_FS
FMC/
SDIO/
OTG2_FS
DCMI -SYS
Pinout and pin description STM32F446xC/E
62/202 DocID027107 Rev 6
Port D
PD0 - - - - - SPI4_MISO
SPI3_
MOSI/
I2S3_SD
- - CAN1_RX - - FMC_D2 - - EVENT
OUT
PD1 - - - - - - - SPI2_NSS/
I2S2_WS - CAN1_TX - - FMC_D3 - - EVENT
OUT
PD2 -- TIM3_ETR - - - - - UART5_RX - - - SDIO_CMD DCMI_
D11 -EVENT
OUT
PD3 TRACE
D1 ----
SPI2_SCK/
I2S2_CK -USART2_
CTS -QUADSPI_
CLK --FMC_CLK
DCMI_
D5 -EVENT
OUT
PD4 - - - - - - - USART2_
RTS -- - -FMC_NOE--
EVENT
OUT
PD5 - - - - - - - USART2_
TX -- - -FMC_NWE--
EVENT
OUT
PD6 - - - - -
SPI3_
MOSI/
I2S3_SD
SAI1_
SD_A
USART2_
RX -- - -
FMC_
NWAIT
DCMI_
D10 -EVENT
OUT
PD7 - - - - - - - USART2_
CK
SPDIF_
RX0 -- -FMC_NE1--
EVENT
OUT
PD8 - - - - - - - USART3_
TX
SPDIF_
RX1 - - - FMC_D13 - - EVENT
OUT
PD9 - - - - - - - USART3_
RX - - - - FMC_D14 - - EVENT
OUT
PD10-- - --- -
USART3_
CK - - - - FMC_D15 - - EVENT
OUT
PD11 ----
FMPI2C1
_SMBA --
USART3_
CTS -QUADSPI_
BK1_IO0 SAI2_SD_A - FMC_A16 - - EVENT
OUT
PD12 - - TIM4_CH1 - FMPI2C1
_SCL --
USART3_
RTS -QUADSPI_
BK1_IO1 SAI2_FS_A - FMC_A17 - - EVENT
OUT
PD13 - - TIM4_CH2 - FMPI2C1
_SDA ----
QUADSPI_
BK1_IO3 SAI2_SCK_A - FMC_A18 - - EVENT
OUT
PD14 - - TIM4_CH3 - FMPI2C1
_SCL ---
SAI2_
SCK_A -- -FMC_D0--
EVENT
OUT
PD15 - - TIM4_CH4 - FMPI2C1
_SDA ---- - - -FMC_D1--
EVENT
OUT
Table 11. Alternate function (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS TIM1/2 TIM3/4/5
TIM8/9/
10/11/
CEC
I2C1/2/3
/4/CEC
SPI1/2/3/
4
SPI2/3/4/
SAI1
SPI2/3/
USART1/
2/3/UART
5/SPDIFR
X
SAI/
USART6/
UART4/5/
SPDIFRX
CAN1/2
TIM12/13/
14/
QUADSPI
SAI2/
QUADSPI/
OTG2_HS/
OTG1_FS
OTG1_FS
FMC/
SDIO/
OTG2_FS
DCMI -SYS
STM32F446xC/E Pinout and pin description
DocID027107 Rev 6 63/202
Port E
PE0 - - TIM4_ETR - - - - - - - SAI2_
MCLK_A -FMC_
NBL0 DCMI_D2 - EVENT
OUT
PE1 - - - - - - - - - - - - FMC_
NBL1 DCMI_D3 - EVENT
OUT
PE2 TRACE
CLK ----SPI4_SCK
SAI1_
MCLK_A --
QUADSPI_
BK1_IO2 --FMC_A23--
EVENT
OUT
PE3 TRACE
D0 -----
SAI1_
SD_B - - - - - FMC_A19 - - EVENT
OUT
PE4 TRACE
D1 - - - - SPI4_NSS SAI1_
FS_A - - - - - FMC_A20 DCMI_D4 - EVENT
OUT
PE5 TRACE
D2 - - TIM9_CH1 - SPI4_MISO SAI1_
SCK_A - - - - - FMC_A21 DCMI_D6 - EVENT
OUT
PE6 TRACE
D3 - - TIM9_CH2 - SPI4_MOSI SAI1_
SD_A - - - - - FMC_A22 DCMI_D7 - EVENT
OUT
PE7 - TIM1_ETR - - - - - - UART5_RX - QUADSPI_
BK2_IO0 -FMC_D4- -
EVENT
OUT
PE8 - TIM1_CH1N - - - - - - UART5_TX - QUADSPI_
BK2_IO1 -FMC_D5- -
EVENT
OUT
PE9 - TIM1_CH1 - - - - - - - - QUADSPI_
BK2_IO2 -FMC_D6- -
EVENT
OUT
PE10 - TIM1_CH2N - - - - - - - - QUADSPI_
BK2_IO3 -FMC_D7- -
EVENT
OUT
PE11 - TIM1_CH2 - - - SPI4_NSS - - - -
SAI2_
SD_B - FMC_D8 - - EVENT
OUT
PE12 - TIM1_CH3N - - - SPI4_SCK - - - - SAI2_
SCK_B -FMC_D9- -
EVENT
OUT
PE13 - TIM1_CH3 - - - SPI4_MISO - - - - SAI2_
FS_B - FMC_D10 - - EVENT
OUT
PE14 - TIM1_CH4 - - - SPI4_MOSI - - - - SAI2_
MCLK_B -FMC_D11- -
EVENT
OUT
PE15 - TIM1_BKIN - - - -- - - - - - FMC_D12 - - EVENT
OUT
Table 11. Alternate function (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS TIM1/2 TIM3/4/5
TIM8/9/
10/11/
CEC
I2C1/2/3
/4/CEC
SPI1/2/3/
4
SPI2/3/4/
SAI1
SPI2/3/
USART1/
2/3/UART
5/SPDIFR
X
SAI/
USART6/
UART4/5/
SPDIFRX
CAN1/2
TIM12/13/
14/
QUADSPI
SAI2/
QUADSPI/
OTG2_HS/
OTG1_FS
OTG1_FS
FMC/
SDIO/
OTG2_FS
DCMI -SYS
Pinout and pin description STM32F446xC/E
64/202 DocID027107 Rev 6
Port F
PF0 - - - - I2C2_
SDA ---- - - -FMC_A0--
EVENT
OUT
PF1 - ---
I2C2_
SCL ---- - - -FMC_A1--
EVENT
OUT
PF2 - - - - I2C2_
SMBA ---- - - -FMC_A2--
EVENT
OUT
PF3 - - - - ----- - - -FMC_A3--
EVENT
OUT
PF4 - - - - ----- - - -FMC_A4--
EVENT
OUT
PF5 - - - - ----- - - -FMC_A5--
EVENT
OUT
PF6 - - - TIM10_
CH1 --
SAI1_
SD_B --
QUADSPI_
BK1_IO3 --
---
EVENT
OUT
PF7 - - - TIM11_
CH1 --
SAI1_
MCLK_B --
QUADSPI_
BK1_IO2 --
---
EVENT
OUT
PF8 - - - - - - SAI1_
SCK_B - - TIM13_CH1 QUADSPI_
BK1_IO0 ----
EVENT
OUT
PF9 - - - - - - SAI1_
FS_B - - TIM14_CH1 QUADSPI_
BK1_IO1 ----
EVENT
OUT
PF10-- - --- - - - - - - -DCMI_
D11 -EVENT
OUT
PF11 - - - - - - - - - - SAI2_SD_B - FMC_
SDNRAS
DCMI_
D12 -EVENT
OUT
PF12-- - --- - - - - - -FMC_A6--
EVENT
OUT
PF13 - - - - FMPI2C1
_SMBA ---- - - -FMC_A7--
EVENT
OUT
PF14 - - - - FMPI2C1
_SCL ---- - - -FMC_A8--
EVENT
OUT
PF15 - - - - FMPI2C1
_SDA ---- - - -FMC_A9--
EVENT
OUT
Table 11. Alternate function (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS TIM1/2 TIM3/4/5
TIM8/9/
10/11/
CEC
I2C1/2/3
/4/CEC
SPI1/2/3/
4
SPI2/3/4/
SAI1
SPI2/3/
USART1/
2/3/UART
5/SPDIFR
X
SAI/
USART6/
UART4/5/
SPDIFRX
CAN1/2
TIM12/13/
14/
QUADSPI
SAI2/
QUADSPI/
OTG2_HS/
OTG1_FS
OTG1_FS
FMC/
SDIO/
OTG2_FS
DCMI -SYS
STM32F446xC/E Pinout and pin description
DocID027107 Rev 6 65/202
Port G
PG0 - - - - - - - - - - - - FMC_A10 - - EVENT
OUT
PG1 - - - - - - - - - - - - FMC_A11 - - EVENT
OUT
PG2 - - - - - - - - - - - - FMC_A12 - - EVENT
OUT
PG3 - - - - - - - - - - - - FMC_A13 - - EVENT
OUT
PG4 - - - - - - - - - - - - FMC_A14/
FMC_BA0 --
EVENT
OUT
PG5 - - - - - - - - - - - - FMC_A15/
FMC_BA1 --
EVENT
OUT
PG6 - - - - - - - - - - QUADSPI_
BK1_NCS --
DCMI_
D12 -EVENT
OUT
PG7 - - - - - - - - USART6_C
K-- -FMC_INT
DCMI_
D13 -EVENT
OUT
PG8 - - - - - - - SPDIFRX_
IN2
USART6_R
TS -- -
FMC_
SDCLK --
EVENT
OUT
PG9 - - - - - - - SPDIFRX_
IN3
USART6_R
X
QUADSPI_
BK2_IO2 SAI2_FS_B - FMC_NE2/
FMC_NCE3
DCMI_
VSYNC(1) -EVENT
OUT
PG10 - - - - - - - - - - SAI2_SD_B - FMC_NE3 DCMI_D2 - EVENT
OUT
PG11-- - ---
SPI4_
SCK
SPDIFRX_
IN0 -- - - -DCMI_D3 - EVENT
OUT
PG12-- - ---
SPI4_
MISO
SPDIFRX_
IN1
USART6_R
TS -- -FMC_NE4--
EVENT
OUT
PG13 TRACE
D2 -----
SPI4_
MOSI -USART6_C
TS - - - FMC_A24 - - EVENT
OUT
PG14 TRACE
D3 -----
SPI4_
NSS -USART6_T
X
QUADSPI_
BK2_IO3 --FMC_A25--
EVENT
OUT
PG15-- - --- - -
USART6_C
TS -- -
FMC_
SDNCAS
DCMI_
D13 -EVENT
OUT
Table 11. Alternate function (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS TIM1/2 TIM3/4/5
TIM8/9/
10/11/
CEC
I2C1/2/3
/4/CEC
SPI1/2/3/
4
SPI2/3/4/
SAI1
SPI2/3/
USART1/
2/3/UART
5/SPDIFR
X
SAI/
USART6/
UART4/5/
SPDIFRX
CAN1/2
TIM12/13/
14/
QUADSPI
SAI2/
QUADSPI/
OTG2_HS/
OTG1_FS
OTG1_FS
FMC/
SDIO/
OTG2_FS
DCMI -SYS
Pinout and pin description STM32F446xC/E
66/202 DocID027107 Rev 6
Port H
PH0 - - - - - - - - - - - - - - - EVENT
OUT
PH1 - - - - - - - - - - - - - - - EVENT
OUT
1. The DCMI_VSYNC alternate function on PG9 is only available on silicon revision 3.
Table 11. Alternate function (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS TIM1/2 TIM3/4/5
TIM8/9/
10/11/
CEC
I2C1/2/3
/4/CEC
SPI1/2/3/
4
SPI2/3/4/
SAI1
SPI2/3/
USART1/
2/3/UART
5/SPDIFR
X
SAI/
USART6/
UART4/5/
SPDIFRX
CAN1/2
TIM12/13/
14/
QUADSPI
SAI2/
QUADSPI/
OTG2_HS/
OTG1_FS
OTG1_FS
FMC/
SDIO/
OTG2_FS
DCMI -SYS
DocID027107 Rev 6 67/202
STM32F446xC/E Memory mapping
71
5 Memory mapping
The memory map is shown in Figure 15
Figure 15. Memory map
069
0E\WH
%ORFN
&RUWH[0
,QWHUQDO
SHULSKHUDOV
0E\WH
%ORFN
)0&
0E\WH
%ORFN
)0&EDQN
DQG4XDG63,
[
[)))))))
[
[)))))))
[
[)))))))
[
[)))))))
[
[)))))))
[$
[&)))))))
['
[')))))))
[(
[))))))))
65$0.%DOLDVHG
%\ELWEDQGLQJ
5HVHUYHG
[[%)))
[&[))))
[[)))))))
[
5HVHUYHG
[)))
[[))))
[
5HVHUYHG [&[)))))))
$+% [[')))))))
$+%
65$0.%DOLDVHG
%\ELWEDQGLQJ
[%))
[
[[))))
$3%
$3%
[%))
[&[))))
5HVHUYHG
[[)))))))
[))))
$+%
5HVHUYHG
)ODVKPHPRU\
[[)))))))
[)))[)))$)
[)))&[)))&)
[[)))))
[[))))))
[[)))))
6\VWHPPHPRU\
5HVHUYHG
5HVHUYHG
$OLDVHGWR)ODVKV\VWHP
PHPRU\RU65$0GHSHQGLQJ
RQWKH%227SLQV
2SWLRQ%\WHV
5HVHUYHG [)))&[)))))))
[)))$[))))))
5HVHUYHG
[[))))
5HVHUYHG [[))(%)))
[))(&[))(&)
2SWLRQE\WHV
5HVHUYHG [))(&[))())))
[
&RUWH[0LQWHUQDO
SHULSKHUDOV [([()))))
5HVHUYHG [([))))))))
0E\WH
%ORFN
)0&4XDG63,
0E\WH
%ORFN
)0&EDQN
0E\WH
%ORFN
3HULSKHUDOV
0E\WH
%ORFN
65$0
0E\WH
%ORFN
65$0
5HVHUYHG
5HVHUYHG
Memory mapping STM32F446xC/E
68/202 DocID027107 Rev 6
Table 12. STM32F446xC/E register boundary addresses(1)
Bus Boundary address Peripheral
-0xE00F FFFF - 0xFFFF FFFF Reserved
Cortex-M4 0xE000 0000 - 0xE00F FFFF Cortex-M4 internal peripherals
AHB3
0xD000 0000 - 0xDFFF FFFF FMC bank 6
0xC000 0000 - 0xCFFF FFFF FMC bank 5
0xA000 2000 - 0x0xBFFF FFFF Reserved
0xA000 1000 - 0x0xA000 1FFF QuadSPI control register
0xA000 0000 - 0xA000 0FFF FMC control register
0x9000 0000 - 0x9FFF FFFF QuadSPI
0x8000 0000 - 0x8FFF FFFF FMC bank 3
0x7000 0000 - 0x0x7FFF FFFF Reserved
0x6000 0000 - 0x6FFF FFFF FMC bank 1
-0x5006 0C00- 0x5FFF FFFF Reserved
AHB2
0x5006 0800- 0x500F 07FF Reserved
0x5005 0400 - 0x5006 07FF Reserved
0x5005 0000 - 0x5005 03FF DCMI
0x5004 0000- 0x5004 FFFF Reserved
0x5000 0000 - 0X5003 FFFF USB OTG FS
DocID027107 Rev 6 69/202
STM32F446xC/E Memory mapping
71
-0x4008 0000- 0x4FFF FFFF Reserved
AHB1
0x4004 0000 - 0x4007 FFFF USB OTG HS
0x4002 BC00- 0x4003 FFFF
Reserved
0x4002 B000 - 0x4002 BBFF
0x4002 9400 - 0x4002 AFFF
0x4002 9000 - 0x4002 93FF
0x4002 8C00 - 0x4002 8FFF
0x4002 8800 - 0x4002 8BFF
0x4002 8400 - 0x4002 87FF
0x4002 8000 - 0x4002 83FF
0x4002 6800 - 0x4002 7FFF
0x4002 6400 - 0x4002 67FF DMA2
0x4002 6000 - 0x4002 63FF DMA1
0X4002 5000 - 0X4002 5FFF Reserved
0x4002 4000 - 0x4002 4FFF BKPSRAM
0x4002 3C00 - 0x4002 3FFF Flash interface register
0x4002 3800 - 0x4002 3BFF RCC
0X4002 3400 - 0X4002 37FF Reserved
0x4002 3000 - 0x4002 33FF CRC
0x4002 2C00 - 0x4002 2FFF
Reserved
0x4002 2800 - 0x4002 2BFF
0x4002 2400 - 0x4002 27FF
0x4002 2000 - 0x4002 23FF
0x4002 1C00 - 0x4002 1FFF GPIOH
0x4002 1800 - 0x4002 1BFF GPIOG
0x4002 1400 - 0x4002 17FF GPIOF
0x4002 1000 - 0x4002 13FF GPIOE
0X4002 0C00 - 0x4002 0FFF GPIOD
0x4002 0800 - 0x4002 0BFF GPIOC
0x4002 0400 - 0x4002 07FF GPIOB
0x4002 0000 - 0x4002 03FF GPIOA
Table 12. STM32F446xC/E register boundary addresses(1) (continued)
Bus Boundary address Peripheral
Memory mapping STM32F446xC/E
70/202 DocID027107 Rev 6
-0x4001 6C00- 0x4001 FFFF
Reserved
APB2
0x4001 6800 - 0x4001 6BFF
0x4001 5C00 - 0x4001 5FFF SAI2
0x4001 6000 - 0x4001 67FF Reserved
0x4001 5800 - 0x4001 5BFF SAI1
0x4001 5400 - 0x4001 57FF
Reserved0x4001 5000 - 0x4001 53FF
0x4001 4C00 - 0x4001 4FFF
0x4001 4800 - 0x4001 4BFF TIM11
0x4001 4400 - 0x4001 47FF TIM10
0x4001 4000 - 0x4001 43FF TIM9
0x4001 3C00 - 0x4001 3FFF EXTI
0x4001 3800 - 0x4001 3BFF SYSCFG
0x4001 3400 - 0x4001 37FF SPI4
0x4001 3000 - 0x4001 33FF SPI1
0x4001 2C00 - 0x4001 2FFF SDIO
0x4001 2400 - 0x4001 2BFF Reserved
0x4001 2000 - 0x4001 23FF ADC1 - ADC2 - ADC3
0x4001 1800 - 0x4001 1FFF Reserved
0x4001 1400 - 0x4001 17FF USART6
0x4001 1000 - 0x4001 13FF USART1
0x4001 0800 - 0x4001 0FFF Reserved
0x4001 0400 - 0x4001 07FF TIM8
0x4001 0000 - 0x4001 03FF TIM1
Table 12. STM32F446xC/E register boundary addresses(1) (continued)
Bus Boundary address Peripheral
DocID027107 Rev 6 71/202
STM32F446xC/E Memory mapping
71
-0x4000 8000- 0x4000 FFFF
Reserved
APB1
0x4000 7C00 - 0x4000 7FFF
0x4000 7800 - 0x4000 7BFF
0x4000 7400 - 0x4000 77FF DAC
0x4000 7000 - 0x4000 73FF PWR
0x4000 6C00 - 0x4000 6FFF HDMI-CEC
0x4000 6800 - 0x4000 6BFF CAN2
0x4000 6400 - 0x4000 67FF CAN1
0x4000 6000 - 0x4000 63FF FMPI2C1
0x4000 5C00 - 0x4000 5FFF I2C3
0x4000 5800 - 0x4000 5BFF I2C2
0x4000 5400 - 0x4000 57FF I2C1
0x4000 5000 - 0x4000 53FF UART5
0x4000 4C00 - 0x4000 4FFF UART4
0x4000 4800 - 0x4000 4BFF USART3
0x4000 4400 - 0x4000 47FF USART2
0x4000 4000 - 0x4000 43FF SPDIFRX
0x4000 3C00 - 0x4000 3FFF SPI3 / I2S3
0x4000 3800 - 0x4000 3BFF SPI2 / I2S2
0x4000 3400 - 0x4000 37FF Reserved
0x4000 3000 - 0x4000 33FF IWDG
0x4000 2C00 - 0x4000 2FFF WWDG
0x4000 2800 - 0x4000 2BFF RTC & BKP Registers
0x4000 2400 - 0x4000 27FF Reserved
0x4000 2000 - 0x4000 23FF TIM14
0x4000 1C00 - 0x4000 1FFF TIM13
0x4000 1800 - 0x4000 1BFF TIM12
0x4000 1400 - 0x4000 17FF TIM7
0x4000 1000 - 0x4000 13FF TIM6
0x4000 0C00 - 0x4000 0FFF TIM5
0x4000 0800 - 0x4000 0BFF TIM4
0x4000 0400 - 0x4000 07FF TIM3
0x4000 0000 - 0x4000 03FF TIM2
1. The grey color is used for reserved boundary addresses.
Table 12. STM32F446xC/E register boundary addresses(1) (continued)
Bus Boundary address Peripheral
Electrical characteristics STM32F446xC/E
72/202 DocID027107 Rev 6
6 Electrical characteristics
6.1 Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1 Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean±3σ).
6.1.2 Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the
1.7 V VDD 3.6 V voltage range). They are given only as design guidelines and are not
tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2σ).
6.1.3 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4 Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 16.
6.1.5 Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 17.
Figure 16. Pin loading conditions Figure 17. Pin input voltage
-36
#P&
-#5PIN
-36
-#5PIN
6).
DocID027107 Rev 6 73/202
STM32F446xC/E Electrical characteristics
175
6.1.6 Power supply scheme
Figure 18. Power supply scheme
1. VDDA and VSSA must be connected to VDDand VSS, respectively.
2. VDDUSB is a dedicated independent USB power supply for the on-chip full-speed OTG PHY module and
associated DP/DM GPIOs. Its value is independent from the VDD and VDDA values, but must be the last
supply to be provided and the first to disappear. If VDD is different from VDDUSB and only one on-chip OTG
PHY is used, the second OTG PHY GPIOs (DP/DM) are still supplied at VDDUSB (3.3V).
3. VDDUSB is available only on WLCSP81, UFBGA144 and LQFP144 packages. For packages where VDDUSB
pin is not available, it is internally connected to VDD.
4. VCAP_2 pad is not available on LQFP64.
Caution: Each power supply pair (VDD/VSS, VDDA/VSSA...) must be decoupled with filtering ceramic
capacitors as shown above. These capacitors must be placed as close as possible to, or
below, the appropriate pins on the underside of the PCB to ensure good operation of the
device. It is not recommended to remove filtering capacitors to reduce PCB size or cost.
This might cause incorrect operation of the device.
06Y9
%DFNXSFLUFXLWU\
26&.57&
:DNHXSORJLF
%DFNXSUHJLVWHUV
EDFNXS5$0
.HUQHOORJLF
&38GLJLWDO
5$0
$QDORJ
5&V
3//
3RZHU
VZLWFK
9%$7
*3,2V
287
,1
îQ)
î)
9%$7
WR9
9ROWDJH
UHJXODWRU
9''$
$'&
/HYHOVKLIWHU
,2
/RJLF
9''
Q)
)
)ODVKPHPRU\
9&$3B
9&$3B
î)
%<3$66B5(*
3'5B21 5HVHW
FRQWUROOHU
9''

966

9''
95()
95()
966$
95()
Q)
)
27*
)6
3+<
9''86%
Q)
)
9''86%
Electrical characteristics STM32F446xC/E
74/202 DocID027107 Rev 6
6.1.7 Current consumption measurement
Figure 19. Current consumption measurement scheme
6.2 Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 13: Voltage characteristics,
Table 14: Current characteristics, and Table 15: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
06Y9
9%$7
9''
9''$
,''B9%$7
,''
9''86%
Table 13. Voltage characteristics
Symbol Ratings Min Max Unit
VDD–VSS
External main supply voltage (including VDDA, VDD,
VDDUSB and VBAT)(1)
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
–0.3 4.0
V
VIN
Input voltage on FT & FTf pins(2)
2. VIN maximum value must always be respected. Refer to Table 14 for the values of the maximum allowed
injected current.
VSS–0.3 VDD+4.0
Input voltage on TTa pins VSS–0.3 4.0
Input voltage on any other pin VSS–0.3 4.0
Input voltage on BOOT0 pin VSS 9.0
|ΔVDDx| Variations between different VDD power pins - 50
mV
|VSSX VSS| Variations between all the different ground pins - 50
VESD(HBM) Electrostatic discharge voltage (human body model)
see Section 6.3.15:
Absolute maximum
ratings (electrical
sensitivity)
-
DocID027107 Rev 6 75/202
STM32F446xC/E Electrical characteristics
175
Table 14. Current characteristics
Symbol Ratings Max. Unit
ΣIVDD Total current into sum of all VDD power lines (source)(1) 240
mA
Σ IVSS Total current out of sum of all VSS ground lines (sink)(1) - 240
Σ IVDDUSB Total current into VDDUSB power line (source) 25
IVDD Maximum current into each VDD power pin (source)(1) 100
IVSS Maximum current out of each VSS ground pin (sink)(1) - 100
IIO
Output current sunk by any I/O and control pin 25
Output current sourced by any I/Os and control pin - 25
ΣIIO
Total output current sunk by sum of all I/Os and control pins (2) 120
Total output current sunk by sum of all USB I/Os 25
Total output current sourced by sum of all I/Os and control pins(2) -120
IINJ(PIN)
Injected current on FT, FTf, RST and B pins –5/+0(3)
Injected current on TTa pins ±5(4)
ΣIINJ(PIN) Total injected current (sum of all I/O and control pins)(5) ±25
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the
permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be
sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.
3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified
maximum value.
4. A positive injection is induced by VIN>VDDA while a negative injection is induced by VIN<VSS. IINJ(PIN) must
never be exceeded. Refer to Table 13 for the maximum allowed input voltage value.
5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and
negative injected currents (instantaneous values).
Table 15. Thermal characteristics
Symbol Ratings Value Unit
TSTG Storage temperature range –65 to +150 °C
TJMaximum junction temperature 125 °C
Electrical characteristics STM32F446xC/E
76/202 DocID027107 Rev 6
6.3 Operating conditions
6.3.1 General operating conditions
Table 16. General operating conditions
Symbol Parameter Conditions(1) Min Typ Max Unit
fHCLK Internal AHB clock frequency
Power Scale 3 (VOS[1:0] bits in
PWR_CR register = 0x01),
Regulator ON, over-drive OFF
0- 120
MHz
Power Scale 2 (VOS[1:0] bits
in PWR_CR register = 0x10),
Regulator ON
Over-
drive
OFF
0
-144
Over-
drive
ON
-168
Power Scale 1 (VOS[1:0] bits
in PWR_CR register= 0x11),
Regulator ON
Over-
drive
OFF
0
-168
Over-
drive
ON
-180
fPCLK1 Internal APB1 clock frequency
Over-drive OFF 0 - 42
Over-drive ON 0 - 45
fPCLK2 Internal APB2 clock frequency
Over-drive OFF 0 - 84
Over-drive ON 0 - 90
DocID027107 Rev 6 77/202
STM32F446xC/E Electrical characteristics
175
VDD Standard operating voltage - 1.7(2) -3.6
V
VDDA(3)(4)
Analog operating voltage
(ADC limited to 1.2 M samples)
Must be the same potential as VDD(5)
1.7(2) -2.4
Analog operating voltage
(ADC limited to 2.4 M samples) 2.4 - 3.6
VBAT Backup operating voltage - 1.65 - 3.6
VDDUSB
USB supply voltage (supply
voltage for PA11,PA12, PB14
and PB15 pins)
USB not used 1.7 - 3.6
USB used 3 - 3.6
V12
Regulator ON: 1.2 V internal
voltage on VCAP_1/VCAP_2 pins
Power Scale 3 ((VOS[1:0] bits in
PWR_CR register = 0x01), 120 MHz
HCLK max frequency
1.08 1.14 1.20
Power Scale 2 ((VOS[1:0] bits in
PWR_CR register = 0x10), 144 MHz
HCLK max frequency with over-drive
OFF or 168 MHz with over-drive ON
1.20 1.26 1.32
Power Scale 1 ((VOS[1:0] bits in
PWR_CR register = 0x11), 168 MHz
HCLK max frequency with over-drive
OFF or 180 MHz with over-drive ON
1.26 1.32 1.40
Regulator OFF: 1.2 V external
voltage must be supplied from
external regulator on
VCAP_1/VCAP_2 pins(6)
Max frequency 120 MHz 1.10 1.14 1.20
Max frequency 144 MHz 1.20 1.26 1.32
Max frequency 168 MHz 1.26 1.32 1.38
VIN
Input voltage on RST, FTf and
FT pins(7)
2 V VDD 3.6 V –0.3 - 5.5
V
1.7 V VDD 2 V –0.3 - 5.2
Input voltage on TTa pins - –0.3 - VDDA+0.3
Input voltage on BOOT0 pin - 0 - 9
PD
Power dissipation at TA = 85 °C
for suffix 6 or TA = 105 °C for
suffix 7(8)
LQFP64 - - 345
mW
WLCSP81 - - 417
LQFP100 - - 476
LQFP 144 - - 606
UFBGA144 (7x7) - - 392
UFBGA144(10x10) - - 417
TA
Ambient temperature for 6 suffix
version
Maximum power dissipation –40 - 85
°C
Low power dissipation(9) –40 - 105
Ambient temperature for 7 suffix
version
Maximum power dissipation –40 - 105
°C
Low power dissipation(9) –40 - 125
TJ Junction temperature range
6 suffix version –40 - 105
°C
7 suffix version –40 - 125
Table 16. General operating conditions (continued)
Symbol Parameter Conditions(1) Min Typ Max Unit
Electrical characteristics STM32F446xC/E
78/202 DocID027107 Rev 6
6.3.2 VCAP_1/VCAP_2 external capacitor
Stabilization for the main regulator is achieved by connecting external capacitor CEXT to the
VCAP_1 and VCAP_2 pin. For packages supporting only 1 VCAP pin, the 2 CEXT capacitors are
replaced by a single capacitor. CEXT is specified in Table 18.
1. The over-drive mode is not supported at the voltage ranges from 1.7 to 2.1 V.
2. VDD/VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.16.2:
Internal reset OFF).
3. When the ADC is used, refer to Table 74: ADC characteristics.
4. If VREF+ pin is present, it must respect the following condition: VDDA-VREF+ < 1.2 V.
5. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and
VDDA can be tolerated during power-up and power-down operation.
6. The over-drive mode is not supported when the internal regulator is OFF.
7. To sustain a voltage higher than VDD+0.3, the internal Pull-up and Pull-Down resistors must be disabled
8. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax.
9. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax.
Table 17. Limitations depending on the operating power supply range
Operating
power supply
range
ADC operation
Maximum Flash
memory access
frequency with
no wait states
(fFlashmax)
Maximum HCLK
frequency vs Flash
memory wait states
(1)(2)
I/O operation
Possible Flash
memory
operations
VDD =1.7 to
2.1 V(3)
Conversion time
up to 1.2 Msps 20 MHz(4)
168 MHz with 8 wait
states and over-drive
OFF
No I/O
compensation
8-bit erase and
program
operations only
VDD = 2.1 to
2.4 V
Conversion time
up to 1.2 Msps 22 MHz
180 MHz with 8 wait
states and over-drive
ON
No I/O
compensation
16-bit erase and
program
operations
VDD = 2.4 to
2.7 V
Conversion time
up to 2.4 Msps 24 MHz
180 MHz with 7 wait
states and over-drive
ON
I/O
compensation
works
16-bit erase and
program
operations
VDD = 2.7 to
3.6 V(5)
Conversion time
up to 2.4 Msps 30 MHz
180 MHz with 5 wait
states and over-drive
ON
I/O
compensation
works
32-bit erase and
program
operations
1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no wait state is
required.
2. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the
execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state
program execution.
3. VDD/VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.16.2:
Internal reset OFF).
4. Prefetch is not available.
5. The voltage range for USB full speed PHYs can drop down to 2.7 V. However the electrical characteristics of D- and D+
pins will be degraded between 2.7 and 3 V.
DocID027107 Rev 6 79/202
STM32F446xC/E Electrical characteristics
175
Figure 20. External capacitor CEXT
1. Legend: ESR is the equivalent series resistance.
6.3.3 Operating conditions at power-up / power-down (regulator ON)
Subject to general operating conditions for TA.
6.3.4 Operating conditions at power-up / power-down (regulator OFF)
Subject to general operating conditions for TA.
Table 18. VCAP_1/VCAP_2 operating conditions(1)
1. When bypassing the voltage regulator, the two 2.2 µF VCAP capacitors are not required and should be
replaced by two 100 nF decoupling capacitors.
Symbol Parameter Conditions
CEXT Capacitance of external capacitor 2.2 µF
ESR ESR of external capacitor < 2 Ω
CEXT
Capacitance of external capacitor with a
single VCAP pin available 4.7 µF
ESR ESR of external capacitor with a single
VCAP pin available < 1 Ω
069
(65
5
/HDN
&
Table 19. Operating conditions at power-up/power-down (regulator ON)
Symbol Parameter Min Max
tVDD
VDD rise time rate 20
VDD fall time rate 20
Table 20. Operating conditions at power-up / power-down (regulator OFF)(1)
1. To reset the internal logic at power-down, a reset must be applied on pin PA0 when VDD reach below
1.08 V.
Symbol Parameter Conditions Min Max Unit
tVDD
VDD rise time rate Power-up 20
µs/V
VDD fall time rate Power-down 20
tVCAP
VCAP_1 and VCAP_2 rise time rate Power-up 20
VCAP_1 and VCAP_2 fall time rate Power-down 20
Electrical characteristics STM32F446xC/E
80/202 DocID027107 Rev 6
6.3.5 Reset and power control block characteristics
The parameters given in Table 21 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 16.
Table 21. reset and power control block characteristics
Symbol Parameter Conditions Min Typ Max Unit
VPVD
Programmable voltage
detector level selection
PLS[2:0]=000 (rising edge) 2.09 2.14 2.19 V
PLS[2:0]=000 (falling edge) 1.98 2.04 2.08 V
PLS[2:0]=001 (rising edge) 2.23 2.30 2.37 V
PLS[2:0]=001 (falling edge) 2.13 2.19 2.25 V
PLS[2:0]=010 (rising edge) 2.39 2.45 2.51 V
PLS[2:0]=010 (falling edge) 2.29 2.35 2.39 V
PLS[2:0]=011 (rising edge) 2.54 2.60 2.65 V
PLS[2:0]=011 (falling edge) 2.44 2.51 2.56 V
PLS[2:0]=100 (rising edge) 2.70 2.76 2.82 V
PLS[2:0]=100 (falling edge) 2.59 2.66 2.71 V
PLS[2:0]=101 (rising edge) 2.86 2.93 2.99 V
PLS[2:0]=101 (falling edge) 2.65 2.84 3.02 V
PLS[2:0]=110 (rising edge) 2.96 3.03 3.10 V
PLS[2:0]=110 (falling edge) 2.85 2.93 2.99 V
PLS[2:0]=111 (rising edge) 3.07 3.14 3.21 V
PLS[2:0]=111 (falling edge) 2.95 3.03 3.09 V
VPVDhyst(1) PVD hysteresis - - 100 - mV
VPOR/PDR
Power-on/power-down
reset threshold
Falling edge 1.60 1.68 1.76 V
Rising edge 1.64 1.72 1.80 V
VPDRhyst(1) PDR hysteresis - - 40 - mV
VBOR1
Brownout level 1
threshold
Falling edge 2.13 2.19 2.24 V
Rising edge 2.23 2.29 2.33 V
VBOR2
Brownout level 2
threshold
Falling edge 2.44 2.50 2.56 V
Rising edge 2.53 2.59 2.63 V
VBOR3
Brownout level 3
threshold
Falling edge 2.75 2.83 2.88 V
Rising edge 2.85 2.92 2.97 V
VBORhyst(1) BOR hysteresis - - 100 - mV
TRSTTEMPO
(1)(2) POR reset temporization - 0.5 1.5 3.0 ms
DocID027107 Rev 6 81/202
STM32F446xC/E Electrical characteristics
175
6.3.6 Over-drive switching characteristics
When the over-drive mode switches from enabled to disabled or disabled to enabled, the
system clock is stalled during the internal voltage set-up.
The over-drive switching characteristics are given in Table 22. They are sbject to general
operating conditions for TA.
6.3.7 Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 19: Current consumption
measurement scheme.
All the run-mode current consumption measurements given in this section are performed
with a reduced code that gives a consumption equivalent to CoreMark code.
IRUSH(1)
InRush current on
voltage regulator power-
on (POR or wakeup
from Standby)
- - 160 200 mA
ERUSH(1)
InRush energy on
voltage regulator power-
on (POR or wakeup
from Standby)
VDD = 1.7 V, TA = 105 °C,
IRUSH = 171 mA for 31 µs --5.4µC
1. Guaranteed based on test during characterization.
2. The reset temporization is measured from the power-on (POR reset or wakeup from VBAT) to the instant
when first instruction is read by the user application code.
Table 21. reset and power control block characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 22. Over-drive switching characteristics(1)
1. Guaranteed based on test during characterization.
Symbol Parameter Conditions Min Typ Max Unit
Tod_swen Over_drive switch
enable time
HSI -45 -
µs
HSE max for 4 MHz
and min for 26 MHz 45 -100
External HSE
50 MHz -40 -
Tod_swdis Over_drive switch
disable time
HSI -20 -
HSE max for 4 MHz
and min for 26 MHz. 20 -80
External HSE
50 MHz -15 -
Electrical characteristics STM32F446xC/E
82/202 DocID027107 Rev 6
Typical and maximum current consumption
The MCU is placed under the following conditions:
All I/O pins are in input mode with a static value at VDD or VSS (no load).
All peripherals are disabled except if it is explicitly mentioned.
The Flash memory access time is adjusted both to fHCLK frequency and VDD range
(see Table 17: Limitations depending on the operating power supply range).
Regulator ON
The voltage scaling and over-drive mode are adjusted to fHCLK frequency as follows:
Scale 3 for fHCLK 120 MHz
Scale 2 for 120 MHz < fHCLK 144 MHz
Scale 1 for 144 MHz < fHCLK 180 MHz. The over-drive is only ON at 180 MHz.
The system clock is HCLK, fPCLK1 = fHCLK/4, and fPCLK2 = fHCLK/2.
External clock frequency is 8 MHz and PLL is ON when fHCLK is higher than 16 MHz.
Flash is enabled except if explicitly mentioned as disable.
The maximum values are obtained for VDD = 3.6 V and a maximum ambient
temperature (TA), and the typical values for TA= 25 °C and VDD = 3.3 V unless
otherwise specified.
DocID027107 Rev 6 83/202
STM32F446xC/E Electrical characteristics
175
Table 23. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator enabled except prefetch) or RAM(1)
Symbol Parameter Conditions fHCLK (MHz) Typ
Max(2)
Unit
TA =
25 °C
TA =
85 °C
TA =
105 °C
IDD
Supply
current in
RUN mode
External clock,
PLL ON,
all peripherals
enabled(3)(4)
180 72 83.0(5) 100.0 110.0(5)
mA
168 65 71.0 95.3 101.0
150 59 63.6 85.4 100.8
144(6) 54 58.4 78.8 91.2
120 40 44.9 62.1 73.2
90 30 35.3 50.7 60.0
60 21 25.5 39.2 46.8
30 12 16.2 28.1 36.0
25 10 14.41 26.17 32.4
HSI, PLL OFF,
all peripherals
enabled
16 6 11.4 23.1 25.2
8 3 9.5 20.3 22.5
4 2.3 8.3 18.9 21.1
2 1.8 7.7 18.1 20.5
External clock,
PLL ON,
all Peripherals
disabled(3)
180 32 42.0(5) 59.0 75.0(5)
168 29 35.5 51.4 55.7
150 26 31.5 47.8 51.9
144(6) 24 29.2 44.7 48.6
120 18 23.3 36.8 40.4
90 14 19.0 31.8 35.1
60 10 14.7 26.9 29.9
30 6 10.7 22.1 24.9
25 5 9.96 21.24 24.02
HSI, PLL OFF,
all peripherals
disabled(3)
16 3 8.7 18.9 21.9
8 2 8.1 17.8 20.9
4 1.7 7.64 17.23 20.32
2 1.4 7.4 16.94 20.03
1. Code and data processing running from SRAM1 using boot pins.
2. Guaranteed based on test during characterization.
3. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption
should be considered.
4. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC
for the analog part.
5. Tested in production.
6. Overdrive OFF
Electrical characteristics STM32F446xC/E
84/202 DocID027107 Rev 6
Table 24. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator enabled with prefetch) or RAM(1)
Symbol Parameter Conditions fHCLK (MHz) Typ
Max(2)
Unit
TA =
25 °C
TA =
85 °C
TA =
105 °C
IDD
Supply
current in
RUN mode
External clock,
PLL ON,
all peripherals
enabled(3)(4)
180 86 93.0 115.0 125.0
mA
168(5) 79 85.1 111.2 117.7
150 73 79.6 104.8 111.2
144(5) 68 73.5 97.3 103.3
120 54 59.3 79.7 84.7
90 42 47.23 65.50 70.10
60 29 33.7 49.5 53.4
30 16 20.8 34.0 37.4
25 13 18.4 31.2 34.5
HSI, PLL OFF,
all peripherals
enabled(3)(4)
16 8 13.8 25.0 28.3
8 5 10.8 21.1 24.2
4 3.0 9.1 18.9 22.0
2 2.1 8.1 17.8 20.9
External clock,
PLL ON,
all Peripherals
disabled(3)
180 46 55.0 75.0 86.0
168 43 49.6 67.5 72.6
150 41 48.2 65.8 70.8
144(5) 38 43.6 61.9 66.8
120 32 37.3 53.7 58.0
90 26 30.7 46.0 50.0
60 18 22.8 36.4 40.1
30 10 14.9 27.1 30.2
25 9 13.55 25.40 28.54
HSI, PLL OFF,
all peripherals
disabled(3)
16 5 11.1 21.8 25.0
8 3 9.5 19.4 22.5
4 2.4 8.34 18.10 21.17
2 1.8 7.77 17.39 20.50
1. Code and data processing running from SRAM1 using boot pins.
2. Guaranteed based on test during characterization.
3. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption
should be considered.
4. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC
for the analog part.
5. Overdrive OFF
DocID027107 Rev 6 85/202
STM32F446xC/E Electrical characteristics
175
Table 25. Typical and maximum current consumption in Run mode, code with data processing
running from Flash memory (ART accelerator disabled)
Symbol Parameter Conditions fHCLK (MHz) Typ
Max(1)
Unit
TA=
25 °C TA=85 °C TA=105 °C
IDD
Supply
current in
RUN mode
External clock,
PLL ON,
all peripherals
enabled(2)(3)
180 81 89.0 110.0 120.0
mA
168(4) 74 80.2 105.7 112.0
150 69 74.9 99.5 105.6
144(4) 63 69.3 92.4 98.1
120 51 56.3 76.1 81.1
90 40 45.32 63.19 67.63
60 28 33.1 48.7 52.6
30 16 20.8 34.0 37.4
25 13 18.4 31.2 34.5
External clock,
PLL ON,
all Peripherals
disabled(2)(3)
16 8 13.8 25.0 28.2
8 5 10.8 21.1 24.2
4 3.0 9.1 19.0 22.0
2 2.1 8.1 17.9 20.9
180 41 47.0 69.0 79.0
168 38 43.2 61.9 67.1
150 37 41.8 60.3 65.4
144(4) 34 39.3 56.9 61.6
120 29 34.3 50.2 54.4
HSI, PLL OFF,
all peripherals
disabled(3)
90 24 28.8 43.6 47.5
60 17 22.0 35.6 39.2
30 10 14.8 27.0 30.1
25 8 13.51 25.36 28.47
HSI, PLL OFF,
all Peripherals
disabled(3)
16 5 11.1 21.8 24.9
8 3 9.5 19.4 22.5
4 2.3 8.35 18.12 21.17
2 1.8 7.78 17.42 20.51
1. Guaranteed based on test during characterization unless otherwise specified.
2. When analog peripheral blocks such as ADCs, DACs, HSE, LSE, HSI, or LSI are ON, an additional power consumption
should be considered.
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA per ADC for
the analog part.
4. Overdrive OFF
Electrical characteristics STM32F446xC/E
86/202 DocID027107 Rev 6
Table 26. Typical and maximum current consumption in Sleep mode(1)
Symbol Parameter Conditions fHCLK
(MHz) Typ
Max
Unit
TA = 25
°C
TA = 25
°C
TA = 25
°C
IDD
Supply
current in
Sleep
mode
all
peripherals
enabled
External
clock,
PLL ON,
Flash on
180 51.2 59.00 77.25 102.00
mA
168(2) 46.8 53.94 66.48 79.40
150 42.2 49.26 60.84 73.41
144(2) 38.6 45.37 55.47 66.96
120 29.3 35.70 42.49 51.46
90 22.8 29.17 34.78 43.12
60 16.3 22.41 27.12 34.83
30 10.1 16.03 19.72 26.86
25 9.0 14.92 18.41 25.38
HSI, PLL
off, Flash
on
16 6.5 13.10 15.1 22.3
8 5.2 12.31 13.5 20.4
4 4.5 11.63 12.5 19.3
2 4.1 11.23 12.0 18.8
DocID027107 Rev 6 87/202
STM32F446xC/E Electrical characteristics
175
IDD
Supply
current in
Sleep
mode
External
clock, PLL
on all
peripherals
disabled
Flash on
180 11.36 17.59 28.2 51.6
mA
168(2) 10.20 16.19 22.0 31.8
150 9.53 15.59 21.1 30.9
144(2) 8.90 14.87 19.7 28.4
120 7.35 13.24 16.5 23.3
90 6.39 12.40 15.3 21.9
60 5.28 11.17 14.1 20.7
30 4.43 10.31 13.1 19.6
25 4.23 10.12 12.85 19.30
Flash in
Deep
Power
Down
mode
180 8.3 13.44 30.72 37.20
168(2) 7.3 12.25 25.16 28.80
150 6.7 11.60 24.27 27.84
144(2) 6.1 11.08 23.25 26.28
120 4.7 9.64 20.95 23.72
90 3.8 8.80 19.77 22.57
60 2.8 7.74 18.69 21.32
30 2.0 6.89 17.66 20.40
25 1.8 6.70 17.43 20.17
Flash in
STOP
mode
180 8.3 13.44 30.72 37.20
168(2) 7.3 12.25 25.16 28.80
150 6.7 11.60 24.27 27.84
144(2) 6.1 11.08 23.25 26.28
120 4.7 9.64 20.95 23.72
90 3.8 8.80 19.77 22.57
60 2.8 7.74 18.69 21.32
30 2.0 6.89 17.66 20.40
25 1.8 6.70 17.43 20.17
Table 26. Typical and maximum current consumption in Sleep mode(1) (continued)
Symbol Parameter Conditions fHCLK
(MHz) Typ
Max
Unit
TA = 25
°C
TA = 25
°C
TA = 25
°C
Electrical characteristics STM32F446xC/E
88/202 DocID027107 Rev 6
IDD
Supply
current in
Sleep
mode
HSI, PLL
off, all
peripherals
disabled
Flash on
16 3.89 4.93 11.72 18.54
mA
8 2.45 3.29 11.66 18.46
4 1.69 2.56 11.60 18.40
2 1.28 2.22 11.57 18.37
Flash in
Deep
Power
Down
mode
16 1.0 6.65 16.54 19.50
8 0.9 6.93 16.48 19.45
4 0.9 6.90 16.43 19.39
2 0.9 6.88 16.41 19.37
Flash in
STOP
mode
16 1.0 6.7 16.5 19.5
8 0.9 6.9 16.5 19.5
4 0.9 6.9 16.4 19.4
2 0.9 6.9 16.4 19.4
1. Guaranteed based on test during characterization unless otherwise specified.
2. Overdrive OFF
Table 26. Typical and maximum current consumption in Sleep mode(1) (continued)
Symbol Parameter Conditions fHCLK
(MHz) Typ
Max
Unit
TA = 25
°C
TA = 25
°C
TA = 25
°C
DocID027107 Rev 6 89/202
STM32F446xC/E Electrical characteristics
175
Table 27. Typical and maximum current consumptions in Stop mode
Symbol Parameter Conditions
Typ
Max
Unit
VDD = 3.6 V
TA =
25 °C
TA =
25 °C(1)
TA =
85 °C
TA =
105 °C(1)
IDD_STOP_NM
(normal
mode)
Supply current in
Stop mode with
voltage regulator in
main regulator mode
Flash memory in Stop mode, all
oscillators OFF, no independent
watchdog
0.234 1.2 10 16
mA
Flash memory in Deep power
down mode, all oscillators OFF,
no independent watchdog
0.205 1 9.5 15
Supply current in
Stop mode with
voltage regulator in
Low Power regulator
mode
Flash memory in Stop mode, all
oscillators OFF, no independent
watchdog
0.15 0.95 8.5 14
Flash memory in Deep power
down mode, all oscillators OFF,
no independent watchdog
0.121 0.9 6 12
IDD_STOP_UD
M(under-
drive mode)
Supply current in
Stop mode with
voltage regulator in
main regulator and
under-drive mode
Flash memory in Deep power
down mode, main regulator in
under-drive mode, all oscillators
OFF, no independent watchdog
0.119 0.4 3 5
Supply current in
Stop mode with
voltage regulator in
Low Power regulator
and under-drive
mode
Flash memory in Deep power
down mode, Low Power
regulator in under-drive mode,
all oscillators OFF, no
independent watchdog
0.055 0.35 3 5
1. Data based on characterization, tested in production.
Electrical characteristics STM32F446xC/E
90/202 DocID027107 Rev 6
Table 28. Typical and maximum current consumptions in Standby mode
Symbol Parameter Conditions
Typ(1) Max(2)
Unit
TA = 25 °C TA =
25 °C
TA =
85 °C
TA =
105 °C
VDD =
1.7 V
VDD=
2.4 V
VDD =
3.3 V VDD = 3.3 V
IDD_STBY
Supply
current in
Standby mode
Backup SRAM ON, and LSE
oscillator in low power mode 2.43 3.44 4.12 7 20 36
µA
Backup SRAM OFF, RTC ON
and LSE oscillator in low
power mode
1.81 2.81 3.33 6 17 31
Backup SRAM ON, RTC ON
and LSE oscillator in high
drive mode
3.32 4.33 4.95 8 21 37
Backup SRAM OFF, RTC ON
and LSE oscillator in high
drive mode
2.57 3.59 4.16 7 18 32
Backup SRAM ON, RTC and
LSE OFF 2.03 2.73 3.5 6(3) 19 35(3)
Backup SRAM OFF, RTC
and LSE OFF 1.28 1.97 2.03 5(3) 16 30(3)
1. When the PDR is OFF (internal reset is OFF), the typical current consumption is reduced by 1.2 µA.
2. Guaranteed based on test during characterization unless otherwise specified.
3. Tested in production.
DocID027107 Rev 6 91/202
STM32F446xC/E Electrical characteristics
175
Figure 21. Typical VBAT current consumption
(RTC ON/backup RAM OFF and LSE in low power mode)
Table 29. Typical and maximum current consumptions in VBAT mode
Symbol Parameter Conditions(1)
Typ Max(2)
Unit
TA = 25 °C TA =
85 °C
TA =
105 °C
VBAT
=
1.7 V
VBAT=
2.4 V
VBAT
=
3.3 V
VBAT = 3.6 V
IDD_VBAT
Backup
domain
supply
current
Backup SRAM ON, RTC ON
and LSE oscillator in low power
mode
1.46 1.62 1.83 6 11
µA
Backup SRAM OFF, RTC ON
and LSE oscillator in low power
mode
0.72 0.85 1.00 3 5
Backup SRAM ON, RTC ON
and LSE oscillator in high drive
mode
2.24 2.40 2.64 - -
Backup SRAM OFF, RTC ON
and LSE oscillator in high drive
mode
1.50 1.64 1.86 - -
Backup SRAM ON, RTC and
LSE OFF 0.74 0.75 0.78 5 10
Backup SRAM OFF, RTC and
LSE OFF 0.05 0.05 0.05 2 4
1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values.
2. Guaranteed based on test during characterization.
Electrical characteristics STM32F446xC/E
92/202 DocID027107 Rev 6
Figure 22. Typical VBAT current consumption
(RTC ON/backup RAM OFF and LSE in high drive mode)
Additional current consumption
The MCU is placed under the following conditions:
All I/O pins are configured in analog mode.
The Flash memory access time is adjusted to fHCLK frequency.
The voltage scaling is adjusted to fHCLK frequency as follows:
Scale 3 for fHCLK 120 MHz,
Scale 2 for 120 MHz < fHCLK 144 MHz
Scale 1 for 144 MHz < fHCLK 180 MHz. The over-drive is only ON at 180 MHz.
The system clock is HCLK, fPCLK1 = fHCLK/4, and fPCLK2 = fHCLK/2.
HSE crystal clock frequency is 8 MHz.
Flash is enabled except if explicitly mentioned as disable.
When the regulator is OFF, V12 is provided externally as described in Table 16:
General operating conditions
TA= 25 °C.
DocID027107 Rev 6 93/202
STM32F446xC/E Electrical characteristics
175
Table 30. Typical current consumption in Run mode, code with data processing
running from Flash memory or RAM, regulator ON
(ART accelerator enabled except prefetch), VDD=1.7 V(1)
Symbol Parameter Conditions fHCLK (MHz) Typ
Max
Unit
TA =
25 °C
TA =
85 °C
TA =
105 °C
IDD
Supply current in
Run mode from
VDD supply
All Peripherals
enabled
168 65.11 70.0 79.7 90.0
mA
150 58.31 62.8 73.4 79.9
144 53.14 57.1 69.9 75.3
120 39.58 47.2 60.7 71.4
90 29.99 34.70 45.23 49.34
60 20.37 25.2 35.2 38.2
30 11.37 12.9 28.4 33.2
25 9.65 10.9 17.8 24.3
All Peripherals
disabled
168 29.74 32.43 42.4 48.5
150 25.81 29.12 39.4 43.8
144 24.57 26.61 36.0 41.9
120 17.69 22.09 32.9 40.8
90 13.58 15.92 30.0 36.5
60 9.41 11.05 24.4 30.2
30 5.44 6.64 15.0 22.0
25 4.73 5.72 12.57 19.06
1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherals (such as ADC,
or DAC) is not included.
Electrical characteristics STM32F446xC/E
94/202 DocID027107 Rev 6
Table 31. Typical current consumption in Run mode, code with data processing running
from Flash memory, regulator OFF (ART accelerator enabled except prefetch)(1)
Symbol Parameter Conditions fHCLK
(MHz)
VDD=3.3 V VDD=1.7 V
Unit
IDD12 IDD IDD12 IDD
IDD12 / IDD
Supply current in
Run mode from
V12 and VDD
supply
All Peripherals
enabled
168 61.72 1.6 60.15 1.5
mA
150 51.69 1.5 55.46 1.4
144 51.45 1.5 50.94 1.3
120 38.94 1.3 40.66 1.2
90 29.48 1.1 28.18 1.0
60 19.23 1.0 20.05 0.8
30 10.41 0.9 11.26 0.7
25 8.83 0.8 9.56 0.6
All Peripherals
disabled
168 31.44 1.6 30.06 1.5
150 28.67 1.5 27.38 1.4
144 25.51 1.5 23.37 1.3
120 19.06 1.3 21.73 1.2
90 14.83 1.2 14.74 1.0
60 10.16 1.0 10.30 0.8
30 5.41 0.9 5.64 0.7
25 4.599 0.8 4.80 0.6
1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherals (such as ADC,
or DAC) is not included.
DocID027107 Rev 6 95/202
STM32F446xC/E Electrical characteristics
175
Table 32. Typical current consumption in Sleep mode, regulator ON, VDD=1.7 V(1)
Symbol Parameter Conditions fHCLK (MHz) Typ
Max
Unit
TA =
25 °C
TA =
85 °C
TA =
105 °C
IDD
Supply current in
Sleep mode from
VDD supply
All Peripherals
enabled Flash
on
168 43.7 47.5 66.5 79.3
mA
150 39.2 42.7 60.7 73.3
144 35.7 38.8 55.3 66.9
120 26.5 28.6 41.8 51.6
90 20.0 21.91 33.85 43.20
60 13.6 15.2 25.8 34.9
30 7.4 8.5 18.4 27.0
25 6.3 7.5 16.9 25.5
All Peripherals
disabled, flash
on
168 7.3 8.6 21.2 31.9
150 6.6 7.94 20.4 31.0
144 6.0 7.3 18.6 28.5
120 4.6 5.5 14.9 23.4
90 3.6 4.6 13.6 22.1
60 2.6 3.4 12.5 20.8
30 1.8 2.7 11.3 19.7
25 1.6 2.49 11.09 19.42
1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherals (such as ADC,
or DAC) is not included.
Electrical characteristics STM32F446xC/E
96/202 DocID027107 Rev 6
I/O system current consumption
The current consumption of the I/O system has two components: static and
dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Table 56: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins which should be
configured as analog inputs.
Table 33. Typical current consumption in Sleep mode, regulator OFF(1)
Symbol Parameter Conditions fHCLK (MHz)
VDD=3.3 V VDD=1.7 V Unit
IDD12 IDD IDD12 IDD -
IDD12/IDD
Supply current
in Sleep mode
from V12 and
VDD supply
All Peripherals
enabled
180 47.605 1.2 NA NA
mA
168 44.35 1.0 41.53 0.8
150 40.58 0.9 39.96 0.8
144 35.68 0.9 34.60 0.7
120 27.30 0.9 29.11 0.7
90 20.69 0.8 19.78 0.6
60 13.88 0.7 13.36 0.6
30 7.66 0.7 7.85 0.6
25 6.49 0.7 6.66 0.5
All Peripherals
disabled
180 8.71 1.2 NA NA
168 7.00 0.9 8.42 0.8
150 6.88 0.9 7.61 0.8
144 6.29 0.9 6.99 0.7
120 4.87 0.9 5.95 0.7
90 3.78 0.8 3.96 0.6
60 2.66 0.7 2.80 0.6
30 1.65 0.7 1.74 0.6
25 1.45 0.7 1.52 0.5
1. When peripherals are enabled, the power consumption corresponding to the analog part of the peripherals (such as ADC,
or DAC) is not included.
DocID027107 Rev 6 97/202
STM32F446xC/E Electrical characteristics
175
Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done either by using pull-up/down resistors or by configuring the
pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption (see Table 35: Peripheral current
consumption), the I/Os used by an application also contribute to the current consumption.
When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O
pin circuitry and to charge/discharge the capacitive load (internal or external) connected to
the pin:
ISW VDD fSW C××=
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDD is the MCU supply voltage
fSW is the I/O switching frequency
C is the total capacitance seen by the I/O pin: C = CINT+ CEXT
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
Table 34. Switching output I/O current consumption(1)
Symbol Parameter Conditions
I/O toggling
frequency
(fsw)
Typ Unit
IDDIO
I/O switching
Current
VDD = 3.3 V
C= CINT(2)
2 MHz 0.0
mA
8 MHz 0.2
25 MHz 0.6
50 MHz 1.1
60 MHz 1.3
84 MHz 1.8
90 MHz 1.9
VDD = 3.3 V
CEXT = 0 pF
C = CINT + CEXT
+ CS
2 MHz 0.1
8 MHz 0.4
25 MHz 1.23
50 MHz 2.43
60 MHz 2.93
84 MHz 3.86
90 MHz 4.07
Electrical characteristics STM32F446xC/E
98/202 DocID027107 Rev 6
On-chip peripheral current consumption
The MCU is placed under the following conditions:
At startup, all I/O pins are in analog input configuration.
All peripherals are disabled unless otherwise mentioned.
HCLK is the system clock. fPCLK1 = fHCLK/4, and fPCLK2 = fHCLK/2.
The given value is calculated by measuring the difference of current consumption
with all peripherals clocked off
with only one peripheral clocked on
–f
HCLK = 180 MHz (Scale1 + over-drive ON), fHCLK = 144 MHz (Scale 2),
fHCLK = 120 MHz (Scale 3)"
Ambient operating temperature is 25 °C and VDD=3.3 V.
IDDIO
I/O switching
Current
VDD = 3.3 V
CEXT = 10 pF
C = CINT + CEXT
+ CS
2 MHz 0.18
mA
8 MHz 0.67
25 MHz 2.09
50 MHz 3.6
60 MHz 4.5
84 MHz 7.8
90 MHz 9.8
VDD = 3.3 V
CEXT = 22 pF
C = CINT + CEXT
+ CS
2 MHz 0.26
8 MHz 1.01
25 MHz 3.14
50 MHz 6.39
60 MHz 10.68
VDD = 3.3 V
CEXT = 33 pF
C = CINT + Cext
+ CS
2 MHz 0.33
8 MHz 1.29
25 MHz 4.23
50 MHz 11.02
1. CS is the PCB board capacitance including the pad pin. CS = 7 pF (estimated value).
2. This test is performed by cutting the LQFP144 package pin (pad removal).
Table 34. Switching output I/O current consumption(1) (continued)
Symbol Parameter Conditions
I/O toggling
frequency
(fsw)
Typ Unit
DocID027107 Rev 6 99/202
STM32F446xC/E Electrical characteristics
175
Table 35. Peripheral current consumption
Peripheral
IDD(Typ Appli)
Unit
Scale 1 +
OverDrive Scale 2 Scale 3
AHB1
GPIOA 2.29 2.14 1.89
µA/MHz
GPIOB 2.29 2.13 1.89
GPIOC 2.33 2.17 1.93
GPIOD 2.34 2.19 1.94
GPIOE 2.39 2.19 1.93
GPIOF 2.31 2.14 1.91
GPIOG 2.36 2.19 1.94
GPIOH 2.13 1.98 1.75
CRC 0.53 0.51 0.46
BKPSRAM 0.76 0.72 0.65
DMA1(1) 2.39N + 4.13 2.23N+3.56 1.97N+3.51
DMA2(1) 2.39N + 4.45 2.19N+3.72 2.00N+3.66
OTG_HS+ULPI 45.45 42.08 37.28
AHB2
DCMI 3.74 3.42 3.01
µA/MHz
OTGFS 30.04 27.88 24.69
AHB3
FMC 16.15 15.01 13.33
µA/MHz
QSPI 16.78 15.60 13.84
Electrical characteristics STM32F446xC/E
100/202 DocID027107 Rev 6
APB1
TIM2 18.18 16.92 15.07
µA/MHz
TIM3 14.49 13.47 12.00
TIM4 15.18 14.11 12.50
TIM5 16.91 15.69 14.07
TIM6 2.69 2.47 2.20
TIM7 2.56 2.44 2.17
TIM12 7.07 6.56 5.83
TIM13 4.96 4.64 4.07
TIM14 5.09 4.72 4.27
WWDG 1.07 1.00 0.93
SPI2(2) 1.89 1.78 1.57
SPI3(2) 1.93 1.81 1.67
SPDIFRX 6.91 6.44 5.80
USART2 4.20 3.83 3.40
USART3 4.22 3.94 3.50
UART4 4.13 3.89 3.40
UART5 4.04 3.78 3.33
I2C1 3.98 3.69 3.33
I2C2 3.91 3.61 3.17
I2C3 3.76 3.53 3.13
FMPI2C1 5.51 5.19 4.57
CAN1 6.58 6.14 5.43
CAN2 5.91 5.56 4.90
CEC 0.71 0.69 0.60
DAC 2.96 2.72 2.40
Table 35. Peripheral current consumption (continued)
Peripheral
IDD(Typ Appli)
Unit
Scale 1 +
OverDrive Scale 2 Scale 3
DocID027107 Rev 6 101/202
STM32F446xC/E Electrical characteristics
175
6.3.8 Wakeup time from low-power modes
The wakeup times given in Table 36 are measured starting from the wakeup event trigger up
to the first instruction executed by the CPU:
For Stop or Sleep modes: the wakeup event is WFE.
WKUP (PA0) pin is used to wakeup from Standby, Stop and Sleep modes.
All timings are derived from tests performed under ambient temperature and VDD=3.3 V.
APB2
TIM1 17.51 16.28 14.43
µA/MHz
TIM8 18.40 17.10 15.22
USART1 4.53 4.21 3.72
USART6 4.53 4.21 3.72
ADC1 4.69 4.35 3.85
ADC2 4.70 4.35 3.87
ADC3 4.66 4.31 3.82
SDIO 9.06 8.38 7.47
SPI1 1.97 1.89 1.67
SPI4 1.88 1.75 1.57
SYSCFG 1.51 1.40 1.23
TIM9 8.17 7.64 6.77
TIM10 5.07 4.75 4.22
TIM11 5.37 5.06 4.50
SAI1 3.89 3.64 3.17
SAI2 3.74 3.49 3.10
Bus Matrix 8.15 8.10 7.13
1. N = Number of strean enable (1..8)
2. To enable an I2S peripheral, first set the I2SMOD bit and then the I2SE bit in the SPI_I2SCFGR register.
Table 35. Peripheral current consumption (continued)
Peripheral
IDD(Typ Appli)
Unit
Scale 1 +
OverDrive Scale 2 Scale 3
Electrical characteristics STM32F446xC/E
102/202 DocID027107 Rev 6
6.3.9 External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard I/O. The
external clock signal has to respect the Table 56: I/O static characteristics. However, the
recommended clock input waveform is shown in Figure 23.
The characteristics given in Table 37 result from tests performed using an high-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 16.
Table 36. Low-power mode wakeup timings
Symbol Parameter Conditions Typ(1) Max(1) Unit
tWUSLEEP(2) Wakeup from Sleep - 6 6
CPU
clock
cycle
TWUSLEEPFDSM(1)
Wakeup from Sleep
with Flash memory in
Deep power down
mode
- 33.5 50
µs
tWUSTOP(2)
Wakeup from Stop
mode with MR/LP
regulator in normal
mode
Main regulator is ON 12.8 15
Main regulator is ON and Flash
memory in Deep power down mode 104.9 115
Low power regulator is ON 20.6 28
Low power regulator is ON and
Flash memory in Deep power down
mode
112.8 120
tWUSTOP(2)
Wakeup from Stop
mode with MR/LP
regulator in Under-drive
mode
Main regulator in under-drive mode
(Flash memory in Deep power-
down mode)
110 140
Low power regulator in under-drive
mode
(Flash memory in Deep power-
down mode)
114.4 128
tWUSTDBY(2)(3) Wakeup from Standby
mode - 325 400
1. Guaranteed based on test during characterization.
2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first
instruction.
3. tWUSTDBY maximum value is given at –40 °C.
DocID027107 Rev 6 103/202
STM32F446xC/E Electrical characteristics
175
Low-speed external user clock generated from an external source
In bypass mode the LSE oscillator is switched off and the input pin is a standard I/O. The
external clock signal has to respect the Table 56: I/O static characteristics. However, the
recommended clock input waveform is shown in Figure 24.
The characteristics given in Table 38 result from tests performed using an low-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 16.
Table 37. High-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fHSE_ext
External user clock source
frequency(1)
-
1-50MHz
VHSEH OSC_IN input pin high level voltage 0.7VDD -V
DD V
VHSEL OSC_IN input pin low level voltage VSS -0.3V
DD
tw(HSE)
tw(HSE)
OSC_IN high or low time(1)
1. Guaranteed by design.
5--
ns
tr(HSE)
tf(HSE)
OSC_IN rise or fall time(1) --10
Cin(HSE) OSC_IN input capacitance(1) --5-pF
DuCy(HSE) Duty cycle - 45 - 55 %
ILOSC_IN Input leakage current VSS VIN VDD --±1µA
Table 38. Low-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fLSE_ext
User External clock source
frequency(1)
-
- 32.768 1000 kHz
VLSEH
OSC32_IN input pin high level
voltage 0.7VDD -V
DD V
VLSEL OSC32_IN input pin low level voltage VSS -0.3V
DD
tw(LSE)
tf(LSE)
OSC32_IN high or low time(1) 450 - -
ns
tr(LSE)
tf(LSE)
OSC32_IN rise or fall time(1) - - 200
Cin(LSE) OSC32_IN input capacitance(1) --5-pF
DuCy(LSE) Duty cycle - 30 - 70 %
ILOSC32_IN Input leakage current VSS VIN VDD --±1µA
1. Guaranteed by design.
Electrical characteristics STM32F446xC/E
104/202 DocID027107 Rev 6
Figure 23. High-speed external clock source AC timing diagram
Figure 24. Low-speed external clock source AC timing diagram
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 39. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
AI
/3# ?) .
%XTERNAL
34-&
CLOCKSOURCE
6(3%(
TF(3% T7(3%
),


4(3%
T
TR(3% T7(3%
F(3%?EXT
6(3%,
DL
26&B,1
([WHUQDO
670)
FORFNVRXUFH
9/6(+
WI/6( W:/6(
,/


7/6(
W
WU/6( W:/6(
I/6(BH[W
9/6(/
DocID027107 Rev 6 105/202
STM32F446xC/E Electrical characteristics
175
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 25). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2.
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 25. Typical application with an 8 MHz crystal
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 40. In
the application, the resonator and the load capacitors have to be placed as close as
Table 39. HSE 4-26 MHz oscillator characteristics (1)
1. Guaranteed by design.
Symbol Parameter Conditions Min Typ Max Unit
fOSC_IN Oscillator frequency - 4 - 26 MHz
RFFeedback resistor - - 200 - kΩ
IDD HSE current consumption
VDD=3.3 V,
ESR= 30 ,
CL=5 pF@25 MHz
- 450 -
µA
VDD=3.3 V,
ESR= 30 ,
CL=10 pF@25 MHz
- 530 -
ACCHSE(2)
2. This parameter depends on the crystal used in the application. The minimum and maximum values must
be respected to comply with USB standard specifications.
HSE accuracy - -500 - 500 ppm
Gm_crit_max Maximum critical crystal gmStartup - - 1 mA/V
tSU(HSE(3)
3. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is Guaranteed based on test during characterization. It is measured for a
standard crystal resonator and it can vary significantly with the crystal manufacturer.
Startup time VDD is stabilized - 2 - ms
DL
26&B28 7
26&B,1 I+6(
&/
5)
670)
0+]
UHVRQDWRU
5HVRQDWRUZLWK
LQWHJUDWHGFDSDFLWRUV
%LDV
FRQWUROOHG
JDLQ
5(;7
&/
Electrical characteristics STM32F446xC/E
106/202 DocID027107 Rev 6
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 26. Typical application with a 32.768 kHz crystal
Table 40. LSE oscillator characteristics (fLSE = 32.768 kHz) (1)
1. Guaranteed by design.
Symbol Parameter Conditions Min Typ Max Unit
RFFeedback resistor - - 18.4 - MΩ
IDD LSE current consumption - - - 1 µA
ACCLSE(2)
2. This parameter depends on the crystal used in the application. Refer to application note AN2867.
LSE accuracy - -500 - 500 ppm
Gm_crit_max Maximum critical crystal
gm
Startup low-power mode - - 0.56
µA/V
Startup high-drive mode - - 1.5
tSU(LSE)(3)
3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized
32.768 kHz oscillation is reached. This value is guaranteed based on test during characterization. It is
measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer.
startup time VDD is stabilized - 2 - s
DL
26&B28 7
26&B,1 I/6(
&/
5)
670)
N+]
UHVRQDWRU
5HVRQDWRUZLWK
LQWHJUDWHGFDSDFLWRUV
%LDV
FRQWUROOHG
JDLQ
&/
DocID027107 Rev 6 107/202
STM32F446xC/E Electrical characteristics
175
6.3.10 Internal clock source characteristics
The parameters given in Table 41 and Table 42 are derived from tests performed under
ambient temperature and VDD supply voltage conditions summarized in Table 16.
High-speed internal (HSI) RC oscillator
Figure 27. LACCHSI versus temperature
1. Guaranteed based on test during characterization.
Table 41. HSI oscillator characteristics (1)
1. VDD = 3.3 V, TA = –40 to 105 °C unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Unit
fHSI Frequency - - 16 - MHz
ACCHSI
Accuracy of the HSI
oscillator
User-trimmed with the RCC_CR
register(2)
2. Guaranteed by design.
--1%
TA = - 40 to 105 °C(3)
3. Guaranteed based on test during characterization.
- 8 - 4.5 %
TA = - 10 to 85 °C(3) - 4 - 4 %
TA = 25 °C(4)
4. Factory calibrated, parts not soldered.
- 1 - 1 %
tsu(HSI)(2) HSI oscillator
startup time --2.24µs
IDD(HSI)(2) HSI oscillator
power consumption - - 60 80 µA
-36








-IN
-AX
4YPICAL
4!#
!##(3)
Electrical characteristics STM32F446xC/E
108/202 DocID027107 Rev 6
Low-speed internal (LSI) RC oscillator
Figure 28. ACCLSI versus temperature
6.3.11 PLL characteristics
The parameters given in Table 43 and Table 44 are derived from tests performed under
temperature and VDD supply voltage conditions summarized in Table 16.
Table 42. LSI oscillator characteristics (1)
1. VDD = 3 V, TA = –40 to 105 °C unless otherwise specified.
Symbol Parameter Min Typ Max Unit
fLSI(2)
2. Guaranteed based on test during characterization..
Frequency 17 32 47 kHz
tsu(LSI)(3)
3. Guaranteed by design.
LSI oscillator startup time - 15 40 µs
IDD(LSI)(3) LSI oscillator power consumption - 0.4 0.6 µA
-36










.ORMALIZEDDEVIATI ON

4EMPERAT URE#
MAX
AVG
MIN
Table 43. Main PLL characteristics
Symbol Parameter Conditions Min Typ Max Unit
fPLL_IN PLL input clock(1) -0.95
(2) 12.10MHz
fPLL_OUT PLL multiplier output clock - 12.5 - 180 MHz
fPLL48_OUT
48 MHz PLL multiplier output
clock - - 48 75 MHz
fVCO_OUT PLL VCO output - 100 - 432 MHz
DocID027107 Rev 6 109/202
STM32F446xC/E Electrical characteristics
175
tLOCK PLL lock time
VCO freq = 100 MHz 75 - 200
µs
VCO freq = 432 MHz 100 - 300
Jitter(3)
Cycle-to-cycle jitter
System clock
120 MHz
RMS - 25 -
ps
peak
to
peak
-±150 -
Period Jitter
RMS - 15 -
peak
to
peak
-±200 -
Bit Time CAN jitter Cycle to cycle at 1 MHz
on 1000 samples -330 -
IDD(PLL)(4) PLL power consumption on VDD VCO freq = 100 MHz
VCO freq = 432 MHz
0.15
0.45 -0.40
0.75 mA
IDDA(PLL)(4) PLL power consumption on
VDDA
VCO freq = 100 MHz
VCO freq = 432 MHz
0.30
0.55 -0.40
0.85 mA
1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared
between PLL and PLLI2S.
2. Guaranteed by design.
3. The use of 2 PLLs in parallel could degraded the Jitter up to +30%.
4. Guaranteed based on test during characterization.
Table 43. Main PLL characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 44. PLLI2S (audio PLL) characteristics
Symbol Parameter Conditions Min Typ Max Unit
fPLLI2S_IN PLLI2S input clock(1) -0.95
(2) 12.10MHz
fPLLI2S_OUT PLLI2S multiplier output clock - - - 216 MHz
fVCO_OUT PLLI2S VCO output - 100 - 432 MHz
tLOCK PLLI2S lock time
VCO freq = 100 MHz 75 - 200
µs
VCO freq = 432 MHz 100 - 300
Jitter(3)
Master I2S clock jitter
Cycle to cycle at
12.288 MHz on
48KHz period,
N=432, R=5
RMS - 90 - -
peak
to
peak
- ±280 - ps
Average frequency of
12.288 MHz
N = 432, R = 5
on 1000 samples
-90 -ps
WS I2S clock jitter Cycle to cycle at 48 KHz
on 1000 samples -400 - ps
Electrical characteristics STM32F446xC/E
110/202 DocID027107 Rev 6
6.3.12 PLL spread spectrum clock generation (SSCG) characteristics
The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic
interferences (see Table 52: EMI characteristics). It is available only on the main PLL.
IDD(PLLI2S)(4) PLLI2S power consumption on
VDD
VCO freq = 100 MHz
VCO freq = 432 MHz
0.15
0.45 -0.40
0.75 mA
IDDA(PLLI2S)(4) PLLI2S power consumption on
VDDA
VCO freq = 100 MHz
VCO freq = 432 MHz
0.30
0.55 -0.40
0.85 mA
1. Take care of using the appropriate division factor M to have the specified PLL input clock values.
2. Guaranteed by design.
3. Value given with main PLL running.
4. Guaranteed based on test during characterization.
Table 44. PLLI2S (audio PLL) characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 45. PLLISAI characteristics
Symbol Parameter Conditions Min Typ Max Unit
fPLLSAI_IN PLLSAI input clock(1) -0.95
(2) 12.10MHz
fPLLSAI_OUT PLLSAI multiplier output clock - - - 216 MHz
fVCO_OUT PLLSAI VCO output - 100 - 432 MHz
tLOCK PLLSAI lock time
VCO freq = 100 MHz 75 - 200
µs
VCO freq = 432 MHz 100 - 300
Jitter(3)
Main SAI clock jitter
Cycle to cycle at
12.288 MHz on
48KHz period,
N=432, R=5
RMS - 90 - -
peak
to
peak
- ±280 - ps
Average frequency of
12.288 MHz
N = 432, R = 5
on 1000 samples
-90 -ps
FS clock jitter Cycle to cycle at 48 KHz
on 1000 samples -400 - ps
IDD(PLLSAI)(4) PLLSAI power consumption on
VDD
VCO freq = 100 MHz
VCO freq = 432 MHz
0.15
0.45 -0.40
0.75 mA
IDDA(PLLSAI)(4) PLLSAI power consumption on
VDDA
VCO freq = 100 MHz
VCO freq = 432 MHz
0.30
0.55 -0.40
0.85 mA
1. Take care of using the appropriate division factor M to have the specified PLL input clock values.
2. Guaranteed by design.
3. Value given with main PLL running.
4. Guaranteed based on test during characterization.
DocID027107 Rev 6 111/202
STM32F446xC/E Electrical characteristics
175
Equation 1
The frequency modulation period (MODEPER) is given by the equation below:
MODEPER round fPLL_IN 4f
Mod
×()[]=
fPLL_IN and fMod must be expressed in Hz.
As an example:
If fPLL_IN = 1 MHz, and fMOD = 1 kHz, the modulation depth (MODEPER) is given by
equation 1:
MODEPER round 106410
3
×()[]250==
Equation 2
Equation 2 allows to calculate the increment step (INCSTEP):
INCSTEP round 215 1()md PLLN××()100 5×MODEPER×()[]=
fVCO_OUT must be expressed in MHz.
With a modulation depth (md) = ±2 % (4 % peak to peak), and PLLN = 240 (in MHz):
INCSTEP round 215 1()2240××()100 5×250×()[]126md(quantitazed)%==
An amplitude quantization error may be generated because the linear modulation profile is
obtained by taking the quantized values (rounded to the nearest integer) of MODPER and
INCSTEP. As a result, the achieved modulation depth is quantized. The percentage
quantized modulation depth is given by the following formula:
mdquantized% MODEPER INCSTEP×100×5×()215 1()PLLN×()=
As a result:
mdquantized% 250 126×100×5×()215 1()240×()2.002%(peak)==
Table 46. SSCG parameters constraint
Symbol Parameter Min Typ Max(1) Unit
fMod Modulation frequency - - 10 KHz
md Peak modulation depth 0.25 - 2 %
MODEPER * INCSTEP - - - 215 1-
1. Guaranteed by design.
Electrical characteristics STM32F446xC/E
112/202 DocID027107 Rev 6
Figure 29 and Figure 30 show the main PLL output clock waveforms in center spread and
down spread modes, where:
F0 is fPLL_OUT nominal.
Tmode is the modulation period.
md is the modulation depth.
Figure 29. PLL output clock waveforms in center spread mode
Figure 30. PLL output clock waveforms in down spread mode
6.3.13 Memory characteristics
Flash memory
The characteristics are given at TA = - 40 to 105 °C unless otherwise specified.
The devices are shipped to customers with the Flash memory erased.
&REQUENCY0,,?/54
4IME
&
TMODE XTMODE
MD
AI
MD
)UHTXHQF\3//B287
7LPH
)
WPRGH [WPRGH
[PG
DLE
Table 47. Flash memory characteristics
Symbol Parameter Conditions Min Typ Max Unit
IDD Supply current
Write / Erase 8-bit mode, VDD = 1.7 V - 5 -
mAWrite / Erase 16-bit mode, VDD = 2.1 V - 8 -
Write / Erase 32-bit mode, VDD = 3.3 V - 12 -
DocID027107 Rev 6 113/202
STM32F446xC/E Electrical characteristics
175
Table 48. Flash memory programming
Symbol Parameter Conditions Min(1) Typ Max(1)
1. Guaranteed based on test during characterization.
Unit
tprog Word programming time Program/erase parallelism
(PSIZE) = x 8/16/32 -16100
(2)
2. The maximum programming time is measured after 100K erase operations.
µs
tERASE16KB Sector (16 KB) erase time
Program/erase parallelism
(PSIZE) = x 8 - 400 800
ms
Program/erase parallelism
(PSIZE) = x 16 - 300 600
Program/erase parallelism
(PSIZE) = x 32 - 250 500
tERASE64KB Sector (64 KB) erase time
Program/erase parallelism
(PSIZE) = x 8 - 1200 2400
ms
Program/erase parallelism
(PSIZE) = x 16 - 700 1400
Program/erase parallelism
(PSIZE) = x 32 - 550 1100
tERASE128KB Sector (128 KB) erase time
Program/erase parallelism
(PSIZE) = x 8 -24
s
Program/erase parallelism
(PSIZE) = x 16 -1.32.6
Program/erase parallelism
(PSIZE) = x 32 -12
tME Mass erase time
Program/erase parallelism
(PSIZE) = x 8 -816
s
Program/erase parallelism
(PSIZE) = x 16 -5.511
Program/erase parallelism
(PSIZE) = x 32 -816
Vprog Programming voltage
32-bit program operation 2.7 - 3.6 V
16-bit program operation 2.1 - 3.6 V
8-bit program operation 1.7 - 3.6 V
Table 49. Flash memory programming with VPP
Symbol Parameter Conditions Min(1) Typ Max(1) Unit
tprog Double word programming
TA = 0 to +40 °C
VDD = 3.3 V
VPP = 8.5 V
-16100
(2) µs
tERASE16KB Sector (16 KB) erase time - 230 -
mstERASE64KB Sector (64 KB) erase time - 490 -
tERASE128KB Sector (128 KB) erase time - 875 -
tME Mass erase time - 3.5 - s
Vprog Programming voltage - 2.7 - 3.6 V
Electrical characteristics STM32F446xC/E
114/202 DocID027107 Rev 6
6.3.14 EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS
through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant
with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 51. They are based on the EMS levels and classes
defined in application note AN1709.
VPP VPP voltage range - 7 - 9 V
IPP
Minimum current sunk on
the VPP pin -10--mA
tVPP(3) Cumulative time during
which VPP is applied - - - 1 hour
1. Guaranteed by design.
2. The maximum programming time is measured after 100K erase operations.
3. VPP should only be connected during programming/erasing.
Table 50. Flash memory endurance and data retention
Symbol Parameter
Conditions
Value
Unit
-- Min(1)
1. Guaranteed based on test during characterization.
NEND Endurance TA = –40 to +85 °C (6 suffix versions)
TA = –40 to +105 °C (7 suffix versions) 10 Kcycles
tRET Data retention
1 kcycle(2) at TA = 85 °C
2. Cycling performed over the whole temperature range.
30
Years1 kcycle(2) at TA = 105 °C 10
10 kcycles(2) at TA = 55 °C 20
Table 49. Flash memory programming with VPP (continued)
Symbol Parameter Conditions Min(1) Typ Max(1) Unit
DocID027107 Rev 6 115/202
STM32F446xC/E Electrical characteristics
175
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical Data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application,
executing EEMBC code, is running. This emission test is compliant with SAE IEC61967-2
standard which specifies the test board and the pin loading.
Table 51. EMS characteristics
Symbol Parameter Conditions Level/
Class
VFESD
Voltage limits to be applied on any I/O pin to
induce a functional disturbance
VDD = 3.3 V, LQFP144, TA =
+25 °C, fHCLK = 168 MHz, conforms
to IEC 61000-4-2
2B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, LQFP144,
TA = +25 °C, fHCLK = 168 MHz,
conforms to IEC 61000-4-2
4B
Electrical characteristics STM32F446xC/E
116/202 DocID027107 Rev 6
6.3.15 Absolute maximum ratings (electrical sensitivity)
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the ANSI/JEDEC standard.
Static latchup
Two complementary static tests are required on six parts to assess the latchup
performance:
A supply overvoltage is applied to each power supply pin
A current injection is applied to each input, output and configurable I/O pin
Table 52. EMI characteristics
Symbol Parameter Conditions Monitored
frequency band
Max vs.
[fHSE/fCPU]Unit
8/180 MHz
SEMI Peak level
VDD = 3.3 V, TA = 25 °C, LQFP144
package, conforming to SAE J1752/3
EEMBC, ART ON, all peripheral clocks
enabled, clock dithering disabled.
0.1 to 30 MHz 11
dBµV30 to 130 MHz 10
130 MHz to 1GHz 11
SAE EMI Level 3 -
VDD = 3.3 V, TA = 25 °C, LQFP144
package, conforming to SAE J1752/3
EEMBC, ART ON, all peripheral clocks
enabled, clock dithering enabled
0.1 to 30 MHz 24
dBµV30 to 130 MHz 25
130 MHz to 1GHz 20
SAE EMI level 4 -
Table 53. ESD absolute maximum ratings
Symbol Ratings Conditions Class Maximum
value(1) Unit
VESD(HBM)
Electrostatic
discharge voltage
(human body model)
TA = + 25 °C conforming to ANSI/JEDEC JS-001 2 2000
V
VESD(CDM)
Electrostatic
discharge voltage
(charge device model)
TA = + 25 °C conforming to ANSI/ESD STM5.3.1,
LQFP64, LQFP100, WLCSP81 packages C4 500
TA = + 25 °C conforming to ANSI/ESD STM5.3.1,
LQFP144, UFBGA144 (7 x 7), UFBGA144 (10 x 10)
packages
C3 250
1. Guaranteed based on test during characterization.
DocID027107 Rev 6 117/202
STM32F446xC/E Electrical characteristics
175
These tests are compliant with EIA/JESD 78A IC latchup standard.
6.3.16 I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product
operation. However, in order to give an indication of the robustness of the microcontroller in
cases when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (>5
LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of –
5 µA/+0 µA range), or other functional failure (for example reset, oscillator frequency
deviation).
Negative induced leakage current is caused by negative injection and positive induced
leakage current by positive injection.
The test results are given in Table 55.
Note: It is recommended to add a Schottky diode (pin to ground) to analog pins which may
potentially inject negative currents.
Table 54. Electrical sensitivities
Symbol Parameter Conditions Class
LU Static latch-up class TA = +105 °C conforming to JESD78A II level A
Table 55. I/O current injection susceptibility(1)
Symbol Description
Functional susceptibility
Unit
Negative
injection
Positive
injection
IINJ
Injected current on BOOT0 pin –0 NA
mA
Injected current on NRST pin –0 NA
Injected current on PE2, PE3,PE4, PE5, PE6, PC13, PC14,
PF10, PH0, PH1, NRST, PC0, PC1, PC2, PC3, PG15, PB3,
PB4, PB5, PB6, PB7, PB8, PB9, PE0, PE1
–0 NA
Injected current on any other FT and FTf pins -5 NA
Injected current on any other pins –5 +5
1. NA = not applicable.
Electrical characteristics STM32F446xC/E
118/202 DocID027107 Rev 6
6.3.17 I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 56: I/O static characteristics are
derived from tests performed under the conditions summarized in Table 16. All I/Os are
CMOS and TTL compliant.
Table 56. I/O static characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL
FT, FTf, TTa and NRST I/O
input low level voltage 1.7 V VDD 3.6 V - -
0.35VDD–0.04(1)
V
0.3VDD(2)
BOOT0 I/O input low level
voltage
1.75 V VDD
3.6 V,
– 40 °C TA
105 °C
--
0.1VDD+0.1(1)
1.7 V VDD 3.6 V,
0 °C TA 105 °C --
VIH
FT, FTf, TTa and NRST I/O
input high level voltage(4) 1.7 V VDD 3.6 V
0.45VDD+0.3(1)
--
V
0.7VDD(2)
BOOT0 I/O input high level
voltage
1.75 V VDD 3.6 V,
– 40 °C TA 105 °C
0.17VDD+0.7(1) --
1.7 V VDD 3.6 V,
0 °C TA 105 °C
VHYS
FT, FTf, TTa and NRST I/O
input hysteresis 1.7 V VDD 3.6 V - 10%VDD -
V
BOOT0 I/O input hysteresis
1.75 V VDD 3.6 V,
–40 °C TA 105 °C -
100m
-
1.7 V VDD 3.6 V,
0 °C TA 105 °C --
Ilkg
I/O input leakage current (3) VSS VIN VDD --±1
µA
I/O FT input leakage current
(4) VIN = 5 V - - 3
DocID027107 Rev 6 119/202
STM32F446xC/E Electrical characteristics
175
All I/Os are CMOS and TTL compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters. The
coverage of these requirements for FT I/Os is shown in Figure 31.
RPU
Weak pull-up
equivalent
resistor(5)
All pins
except for
PA10/PB12
(OTG_FS_ID,
OTG_HS_ID) VIN = VSS
30 40 50
kΩ
PA10/PB12
(OTG_FS_ID,
OTG_HS_ID)
71014
RPD
Weak pull-
down
equivalent
resistor(6)
All pins
except for
PA10/PB12
(OTG_FS_ID,
OTG_HS_ID) VIN = VDD
30 40 50
PA10/PB12
(OTG_FS_ID,
OTG_HS_ID)
71014
CIO(7) I/O pin capacitance - - 5 - pF
1. Guaranteed by design.
2. Tested in production.
3. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins, Refer to Table 55: I/O
current injection susceptibility
4. To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. Leakage could be
higher than the maximum value, if negative current is injected on adjacent pins.Refer to Table 55: I/O current injection
susceptibility
5. Pull-up resistors are designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the
series resistance is minimum (~10% order).
6. Pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the
series resistance is minimum (~10% order).
7. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed based on test during characterization.
Table 56. I/O static characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM32F446xC/E
120/202 DocID027107 Rev 6
Figure 31. FT I/O input characteristics
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or
source up to ±20 mA (with a relaxed VOL/VOH) except PC13, PC14 and PC15 which can
sink or source up to ±3mA. When using the PC13 to PC15 GPIOs in output mode, the speed
should not exceed 2 MHz with a maximum load of 30 pF.
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 6.2. In particular:
The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
ΣIVDD (see Table 14).
The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
ΣIVSS (see Table 14).
Output voltage levels
Unless otherwise specified, the parameters given in Table 57 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 16. All I/Os are CMOS and TTL compliant.
069



     



9''9
9,/9,+9
7HVWHGLQSURGXFWLRQ&026UHTXLUHPHQW9,+PLQ 9''
7HVWHGLQSURGXFWLRQ&026UHTXLUHPHQW9,/PD[ 9''
%DVHGRQ'HVLJQVLPXODWLRQV9,/PD[ 9''
77/UHTXLUHPHQW
9,+PLQ 9
77/UHTXLUHPHQW9,/PD[
9


$UHDQRW
GHWHUPLQHG


%DVHGRQ'HVLJQVLPXODWLRQV9,+PLQ 9''
DocID027107 Rev 6 121/202
STM32F446xC/E Electrical characteristics
175
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 32 and
Table 58, respectively.
Unless otherwise specified, the parameters given in Table 58 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 16.
Table 57. Output voltage characteristics
Symbol Parameter Conditions Min Max Unit
VOL(1)
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 14.
and the sum of IIO (I/O ports and control pins) must not exceed IVSS.
Output low level voltage for an I/O pin CMOS port(2)
IIO = +8 mA
2.7 V VDD 3.6 V
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
-0.4
V
VOH(3)
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in
Table 14 and the sum of IIO (I/O ports and control pins) must not exceed IVDD.
Output high level voltage for an I/O pin VDD–0.4 -
VOL (1) Output low level voltage for an I/O pin TTL port(2)
IIO =+ 8mA
2.7 V VDD 3.6 V
-0.4
V
VOH (3) Output high level voltage for an I/O pin 2.4 -
VOL(1) Output low level voltage for an I/O pin IIO = +20 mA
2.7 V VDD 3.6 V
-1.3
(4)
4. Based on characterization data.
V
VOH(3) Output high level voltage for an I/O pin VDD–1.3(4) -
VOL(1) Output low level voltage for an I/O pin IIO = +6 mA
1.8 V VDD 3.6 V
-0.4
(4)
V
VOH(3) Output high level voltage for an I/O pin VDD–0.4(4) -
VOL(1) Output low level voltage for an I/O pin IIO = +4 mA
1.7 V VDD 3.6V
-0.4
(5)
5. Guaranteed by design.
V
VOH(3) Output high level voltage for an I/O pin VDD–0.4(5) -
Table 58. I/O AC characteristics(1)(2)
OSPEEDR
y[1:0] bit
value(1)
Symbol Parameter Conditions Min Typ Max Unit
00
fmax(IO)out Maximum frequency(3)
CL = 50 pF, VDD 2.7 V - - 4
MHz
CL = 50 pF, VDD 1.7 V - - 2
CL = 10 pF, VDD 2.7 V - - 8
CL = 10 pF, VDD 1.8 V - - 4
CL = 10 pF, VDD 1.7 V - - 3
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
CL = 50 pF, VDD = 1.7 V
to 3.6 V --100ns
Electrical characteristics STM32F446xC/E
122/202 DocID027107 Rev 6
01
fmax(IO)out Maximum frequency(3)
CL = 50 pF, VDD 2.7 V - - 25
MHz
CL = 50 pF, VDD 1.8 V - - 12.5
CL = 50 pF, VDD 1.7 V - - 10
CL = 10 pF, VDD 2.7 V - - 50
CL = 10 pF, VDD 1.8 V - - 20
CL = 10 pF, VDD 1.7 V - - 12.5
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
CL = 50 pF, VDD 2.7 V - - 10
ns
CL = 10 pF, VDD 2.7 V - - 6
CL = 50 pF, VDD 1.7 V - - 20
CL = 10 pF, VDD 1.7 V - - 10
10
fmax(IO)out Maximum frequency(3)
CL = 40 pF, VDD 2.7 V - - 50(4)
MHz
CL = 10 pF, VDD 2.7 V - - 100(4)
CL = 40 pF, VDD 1.7 V - - 25
CL = 10 pF, VDD 1.8 V - - 50
CL = 10 pF, VDD 1.7 V - - 42.5
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
CL = 40 pF, VDD 2.7 V - - 6
ns
CL = 10 pF, VDD 2.7 V - - 4
CL = 40 pF, VDD 1.7 V - - 10
CL = 10 pF, VDD 1.7 V - - 6
11
fmax(IO)out Maximum frequency(3)
CL = 30 pF, VDD 2.7 V - - 100(4)
MHz
CL = 30 pF, VDD 1.8 V - - 50
CL = 30 pF, VDD 1.7 V - - 42.5
CL = 10 pF, VDD 2.7 V - - 180(4)
CL = 10 pF, VDD 1.8 V - - 100
CL = 10 pF, VDD 1.7 V - - 72.5
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
CL = 30 pF, VDD 2.7 V - - 4
ns
CL = 30 pF, VDD 1.8 V - - 6
CL = 30 pF, VDD 1.7 V - - 7
CL = 10 pF, VDD 2.7 V - - 2.5
CL = 10 pF, VDD 1.8 V - - 3.5
CL = 10 pF, VDD 1.7 V - - 4
-t
EXTIpw
Pulse width of external
signals detected by the EXTI
controller
-10--ns
Table 58. I/O AC characteristics(1)(2) (continued)
OSPEEDR
y[1:0] bit
value(1)
Symbol Parameter Conditions Min Typ Max Unit
DocID027107 Rev 6 123/202
STM32F446xC/E Electrical characteristics
175
Figure 32. I/O AC characteristics definition
6.3.18 NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU (see Table 56: I/O static characteristics).
Unless otherwise specified, the parameters given in Table 59 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 16.
1. Guaranteed by design.
2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F4xx reference manual for a description of
the GPIOx_SPEEDR GPIO port output speed register.
3. The maximum frequency is defined in Figure 32.
4. For maximum frequencies above 50 MHz and VDD > 2.4 V, the compensation cell should be used.
DLG



WU,2RXW
287387
(;7(51$/
21&/
0D[LPXPIUHTXHQF\LVDFKLHYHGLIWUWI7DQGLIWKHGXW\F\FOHLV
ZKHQORDGHGE\&/VSHFLILHGLQWKHWDEOH³,2$&FKDUDFWHULVWLFV´



7
WI,2RXW
Table 59. NRST pin characteristics
Symbol Parameter Conditions Min Typ Max Unit
RPU Weak pull-up equivalent resistor(1) VIN = VSS 30 40 50 kΩ
VF(NRST)(2) NRST Input filtered pulse - - - 100 ns
VNF(NRST)(2) NRST Input not filtered pulse VDD > 2.7 V 300 - - ns
TNRST_OUT Generated reset pulse duration Internal Reset source 20 - - µs
1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance must be minimum (~10% order).
2. Guaranteed by design.
Electrical characteristics STM32F446xC/E
124/202 DocID027107 Rev 6
Figure 33. Recommended NRST pin protection
1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 59. Otherwise the reset is not taken into account by the device.
3. The external capacitor on NRST must be placed as close as possible to the device.
6.3.19 TIM timer characteristics
The parameters given in Table 60 are guaranteed by design.
Refer to Section 6.3.17: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
6.3.20 Communications interfaces
I2C interface characteristics
The I2C interface meets the requirements of the standard I2C communication protocol with
the following restrictions: the I/O pins SDA and SCL too are mapped as not “true”
open-drain. When configured as open-drain, the PMOS connected between the I/O pin and
VDD is disabled, but is still present.
DLF
670)
538
1567

9''
)LOWHU
,QWHUQDO5HVHW
)
([WHUQDO
UHVHWFLUFXLW 
Table 60. TIMx characteristics(1)(2)
Symbol Parameter Conditions(3) Min Max Unit
tres(TIM) Timer resolution time
AHB/APBx prescaler=1 or
2 or 4, fTIMxCLK = 180 MHz 1-t
TIMxCLK
AHB/APBx prescaler>4,
fTIMxCLK = 90 MHz 1-t
TIMxCLK
fEXT
Timer external clock
frequency on CH1 to CH4 fTIMxCLK = 180 MHz
0f
TIMxCLK/2 MHz
ResTIM Timer resolution - 16/32 bit
tMAX_COUNT
Maximum possible count with
32-bit counter - - 65536 × 65536 tTIMxCLK
1. TIMx is used as a general term to refer to the TIM1 to TIM12 timers.
2. Guaranteed by design.
3. The maximum timer frequency on APB1 or APB2 is up to 180 MHz, by setting the TIMPRE bit in the RCC_DCKCFGR
register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = HCKL, otherwise TIMxCLK = 4x PCLKx.
DocID027107 Rev 6 125/202
STM32F446xC/E Electrical characteristics
175
The I2C characteristics are described in Table 61. Refer also to Section 6.3.17: I/O port
characteristics for more details on the input/output alternate function characteristics (SDA
and SCL).
Table 61. I2C characteristics
Symbol Parameter
Standard mode
I2C(1)(2)
1. Guaranteed based on test during characterization.
Fast mode I2C(1)(2)
2. fPCLK1 must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to
achieve fast mode I2C frequencies, and a multiple of 10 MHz to reach the 400 kHz maximum I2C fast mode
clock.
Unit
Min Max Min Max
tw(SCLL) SCL clock low time 4.7 - 1.3 -
µs
tw(SCLH) SCL clock high time 4.0 - 0.6 -
tsu(SDA) SDA setup time 250 - 100 -
ns
th(SDA) SDA data hold time - 3450(3)
3. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the
undefined region of the falling edge of SCL.
-900
(4)
4. The maximum data hold time has only to be met if the interface does not stretch the low period of SCL
signal.
tv(SDA, ACK) Data, ACK valid time - 3.45 - 0.9
tr(SDA)
tr(SCL)
SDA and SCL rise time - 1000 - 300
tf(SDA)
tf(SCL)
SDA and SCL fall time - 300 - 300
th(STA) Start condition hold time 4.0 - 0.6 -
µs
tsu(STA)
Repeated Start condition
setup time 4.7 - 0.6 -
tsu(STO) Stop condition setup time 4.0 - 0.6 - µs
tw(STO:STA)
Stop to Start condition time
(bus free) 4.7 - 1.3 - µs
tSP
Pulse width of the spikes
that are suppressed by the
analog filter for standard and
fast mode
- - 0.05 0.09(5)
5. The minimum width of the spikes filtered by the analog filter is above tSP(max).
µs
Cb
Capacitive load for each bus
line - 400 - 400 pF
Electrical characteristics STM32F446xC/E
126/202 DocID027107 Rev 6
Figure 34. I2C bus AC waveforms and measurement circuit
1. RS = series protection resistor.
2. RP = external pull-up resistor.
3. VDD_I2C is the I2C bus power supply.
DLF
53
,ð&EXV
s''B,&
670)[[
6'$
6&/
WI6'$ WU6'$
WK67$
WZ6&//
WZ6&/+
WVX6'$
WU6&/ WI6&/
WK6'$
67$575(3($7('
WVX67$
WVX672
6723 WZ67267$
s''B,&
5356
56
67$57
67$57
6'$
6&/
DocID027107 Rev 6 127/202
STM32F446xC/E Electrical characteristics
175
FMPI2C characteristics
The FMPI2C characteristics are described in Table 62.
Refer also to Section 6.3.17: I/O port characteristics for more details on the input/output
alternate function characteristics (SDA and SCL).
Table 62. FMPI2C characteristics(1)
-Parameter
Standard mode Fast mode Fast+ mode
Unit
Min Max Min Max Min Max
fFMPI2CC FMPI2CCLK frequency 2 - 8 - 17
16(2) -
us
tw(SCLL) SCL clock low time 4.7 - 1.3 - 0.5 -
tw(SCLH) SCL clock high time 4.0 - 0.6 - 0.26 -
tsu(SDA) SDA setup time 0.25 - 0.10 - 0.05 -
tH(SDA) SDA data hold time 0 - 0 - 0 -
tv(SDA,ACK) Data, ACK valid time - 3.45 - 0.9 - 0.45
tr(SDA)
tr(SCL)
SDA and SCL rise time - 0.100 - 0.30 - 0.12
tf(SDA)
tf(SCL)
SDA and SCL fall time - 0.30 - 0.30 - 0.12
th(STA) Start condition hold time 4 - 0.6 - 0.26 -
tsu(STA)
Repeated Start condition
setup time 4.7 - 0.6 - 0.26 -
tsu(STO) Stop condition setup time 4 - 0.6 - 0.26 -
tw(STO:STA) Stop to Start condition time
(bus free) 4.7 - 1.3 - 0.5 -
tSP
Pulse width of the spikes that
are suppressed by the
analog filter for standard and
fast mode
- - 0.05 0.09 0.05 0.09
Cb
Capacitive load for each bus
Line - 400 - 400 - 550(3) pF
1. Guaranteed based on test during characterization.
2. When tr(SDA,SCL)<=110ns.
3. Can be limited. Maximum supported value can be retrieved by referring to the following formulas:
tr(SDA/SCL) = 0.8473 x Rp x Cload
Rp(min) = (VDD -VOL(max)) / IOL(max)
Electrical characteristics STM32F446xC/E
128/202 DocID027107 Rev 6
Figure 35. FMPI2C timing diagram and measurement circuit
DLF
53
,ð&EXV
s''B,&
670)[[
6'$
6&/
WI6'$ WU6'$
WK67$
WZ6&//
WZ6&/+
WVX6'$
WU6&/ WI6&/
WK6'$
67$575(3($7('
WVX67$
WVX672
6723 WZ67267$
s''B,&
5356
56
67$57
67$57
6'$
6&/
DocID027107 Rev 6 129/202
STM32F446xC/E Electrical characteristics
175
SPI interface characteristics
Unless otherwise specified, the parameters given in Table 63 for SPI are derived from tests
performed under the ambient temperature, fPCLKx frequency and VDD supply voltage
conditions summarized in Table 16, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load C=30pF
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, SCK, MOSI, MISO for SPI).
Table 63. SPI dynamic characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
fSCK
1/tc(SCK)
SPI clock frequency
Master full duplex/receiver mode,
2.7 VVDD3.6 V
SPI1/4
--
45
MHz
Master transmitter
1.71V <VDD< 3.6V
SPI1/4
45
Master
1.71V <VDD< 3.6V
SPI1/2/3/4
22.5
Slave transmitter/
full duplex mode
SPI1/4
2.7V <VDD< 3.6V
45
Slave receiver mode
SPI1/4
1.71V <VDD< 3.6V
45
Slave mode
SPI1/2/3/4
1.71V <VDD< 3.6V
22.5(2)
Duty(SCK) Duty cycle of SPI clock
frequency Slave mode 30 50 70 %
Electrical characteristics STM32F446xC/E
130/202 DocID027107 Rev 6
Figure 36. SPI timing diagram - slave mode and CPHA = 0
tw(SCKH) SCK high and low time Master mode, SPI presc = 2 TPCLK - 1.5 TPCLK TPCLK + 1.5
ns
tw(SCKL)
tsu(NSS) NSS setup time Slave mode, SPI presc = 2 4TPCLK --
th(NSS) NSS hold time Slave mode, SPI presc = 2 2TPCLK
tsu(MI) Data input setup time
Master mode 4 - -
tsu(SI) Slave mode 3 - -
th(MI) Data input hold time
Master mode 4 - -
th(SI) Slave mode 2 - -
ta(SO) Data output access time Slave mode 7 - 21
tdis(SO) Data output disable time Slave mode 5 - 12
tv(SO)
Data output valid/hold
time
Slave mode (after enable edge),
2.7V VDD 3.6V -7.522
Slave mode (after enable edge),
1.7 V VDD 3.6 V - 7.5 10.5
th(SO)
Data output valid/hold
time Slave mode (after enable edge) 5 - -
tv(MO) Data output valid time Master mode (after enable edge) - 1.5 5
th(MO) Data output hold time Master mode (after enable edge) 0 - -
1. Guaranteed based on test during characterization.
2. Maximum frequency in Slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit into SCK low or
high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master
having tsu(MI) = 0 while Duty(SCK) = 50%.
Table 63. SPI dynamic characteristics(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
DLF
6&.,QSXW
166LQSXW
W68166 WF6&. WK166
&3+$ 
&32/ 
&3+$ 
&32/ 
WZ6&.+
WZ6&./
W962 WK62 WU6&.
WI6&. WGLV62
WD62
0,62
287387
026,
,1387
06%287 %,7287 /6%287
WVX6,
WK6,
06%,1 %,7,1 /6%,1
DocID027107 Rev 6 131/202
STM32F446xC/E Electrical characteristics
175
Figure 37. SPI timing diagram - slave mode and CPHA = 1
Figure 38. SPI timing diagram - master mode
DLE
166LQSXW
W68166 WF6&. WK166
6&.LQSXW
&3+$ 
&32/ 
&3+$ 
&32/ 
WZ6&.+
WZ6&./
WD62 WY62 WK62 WU6&.
WI6&. WGLV62
0,62
287387
026,
,1387
WVX6, WK6,
06%287
06%,1
%,7287 /6%287
/6%,1
%,7,1
DLF
6&.2XWSXW
&3+$
026,
287387
0,62
,13 87
&3+$
/6%287
/6%,1
&32/ 
&32/ 
% , 7287
166LQSXW
WF6&.
WZ6&.+
WZ6&./
WU6&.
WI6&.
WK0,
+LJK
6&.2XWSXW
&3+$
&3+$
&32/ 
&32/ 
WVX0,
WY02 WK02
06%,1 %,7,1
06%287
Electrical characteristics STM32F446xC/E
132/202 DocID027107 Rev 6
QSPI interface characteristics
Unless otherwise specified, the parameters given in Table 64 for QSPI are derived from
tests performed under the ambient temperature, fAHB frequency and VDD supply voltage
conditions summarized in Table 16, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 11
Capacitive load C=20pF
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate
function characteristics.
Table 64. QSPI dynamic characteristics in SDR Mode(1)
Symbol Parameter Conditions Min Typ Max Unit
fSCK
1/tc(SCK)
QSPI clock frequency
Write mode
1.71 VVDD3.6 V
Cload = 15 pF
--90
MHzRead mode
2.7V <VDD< 3.6V
Cload = 15 pF
--90
1.71 VVDD3.6 V - - 48
tw(CKH) QSPI clock high and low -
(T(CK) / 2) - 2 - T(CK) / 2
ns
tw(CKL) T(CK) / 2 - (T(CK) / 2) +2
ts(IN) Data input setup time - 2 - -
th(IN) Data input hold time - 4.5 - -
tv(OUT) Data output valid time - - 1.5 3
th(OUT) Data output hold time - 0 - -
1. Guaranteed based on test during characterization.
Table 65. QSPI dynamic characteristics in DDR Mode(1)
Symbol Parameter Conditions Min Typ Max Unit
fSCK
1/tc(SCK)
QSPI clock frequency
Write mode
1.71 VVDD3.6 V
Cload = 15 pF
--60
MHz
Read mode
2.7V <VDD< 3.6V
Cload = 15 pF
--
60
1.71 VVDD3.6 V --
48
DocID027107 Rev 6 133/202
STM32F446xC/E Electrical characteristics
175
I2S interface characteristics
Unless otherwise specified, the parameters given in Table 66 for the I2S interface are
derived from tests performed under the ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized in Table 16, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load C = 30 pF
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate
function characteristics (CK, SD, WS).
tw(CKH) QSPI clock high and low -
(T(CK) / 2) - 2 - T(CK) / 2
ns
tw(CKL) T(CK) / 2 - (T(CK) / 2) +2
ts(IN) Data input setup time - 0 - -
th(IN) Data input hold time - 5.5 - -
tv(OUT) Data output valid time
2.7V <VDD< 3.6V - 5.5 6.5
1.71V <VDD< 3.6V - 8 9.5
th(OUT) Data output hold time - 3.5 - -
1. Guaranteed based on test during characterization.
Table 65. QSPI dynamic characteristics in DDR Mode(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 66. I2S dynamic characteristics(1)
Symbol Parameter Conditions Min Max Unit
fMCK I2S Main clock output - 256 x 8K 256 x Fs(2) MHz
fCK I2S clock frequency
Master data - 64 x Fs
MHz
Slave data - 64 x Fs
DCK I2S clock frequency duty cycle Slave receiver 30 70 %
Electrical characteristics STM32F446xC/E
134/202 DocID027107 Rev 6
Note: Refer to the I2S section of RM0390 reference manual for more details on the sampling
frequency (FS).
fMCK, fCK, and DCK values reflect only the digital peripheral behavior. The values of these
parameters might be slightly impacted by the source clock precision. DCK depends mainly
on the value of ODD bit. The digital contribution leads to a minimum value of
(I2SDIV/(2*I2SDIV+ODD) and a maximum value of (I2SDIV+ODD)/(2*I2SDIV+ODD). FS
maximum value is supported for each mode/condition.
tv(WS) WS valid time Master mode - 5.5
ns
th(WS) WS hold time Master mode 1 -
tsu(WS) WS setup time
Slave mode 1 -
- PCM short pulse Slave mode(3) 2-
th(WS) WS hold time
Slave mode 3 -
- PCM short pulse Slave mode(3) 1.5 -
tsu(SD_MR) Data input setup time
Master receiver 3 -
tsu(SD_SR) Slave receiver 2.5 -
th(SD_MR) Data input hold time
Master receiver 4 -
th(SD_SR) Slave receiver 1 -
tv(SD_ST) Data output valid time
Slave transmitter (after enable edge) - 16
tv(SD_MT) Master transmitter (after enable edge) - 4.5
th(SD_ST) Data output hold time
Slave transmitter (after enable edge) 5 -
th(SD_MT) Master transmitter (after enable edge) 1 -
1. Guaranteed based on test during characterization.
2. The maximum value of 256xFs is 45 MHz (APB1 maximum frequency).
3. Measurement done with respect to I2S_CK rising edge.
Table 66. I2S dynamic characteristics(1) (continued)
Symbol Parameter Conditions Min Max Unit
DocID027107 Rev 6 135/202
STM32F446xC/E Electrical characteristics
175
Figure 39. I2S slave timing diagram (Philips protocol)(1)
1. .LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
Figure 40. I2S master timing diagram (Philips protocol)(1)
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
CK Input
CPOL = 0
CPOL = 1
tc(CK)
WS input
SDtransmit
SDreceive
tw(CKH) tw(CKL)
tsu(WS)tv(SD_ST) th(SD_ST)
th(WS)
tsu(SD_SR) th(SD_SR)
MSB receive Bitn receive LSB receive
MSB transmit Bitn transmit LSB transmit
ai14881b
LSB receive(2)
LSB transmit(2)
CK output
CPOL = 0
CPOL = 1
tc(CK)
WS output
SDreceive
SDtransmit
tw(CKH)
tw(CKL)
tsu(SD_MR)
tv(SD_MT) th(SD_MT)
th(WS)
th(SD_MR)
MSB receive Bitn receive LSB receive
MSB transmit Bitn transmit LSB transmit
ai14884b
tf(CK) tr(CK)
tv(WS)
LSB receive
(2)
LSB transmit
(2)
Electrical characteristics STM32F446xC/E
136/202 DocID027107 Rev 6
SAI characteristics
Unless otherwise specified, the parameters given in Table 67 for SAI are derived from tests
performed under the ambient temperature, fPCLKx frequency and VDD supply voltage
conditions summarized in Table 16, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load C=30 pF
Measurement points are performed at CMOS levels: 0.5VDD
Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate
function characteristics (SCK,SD,WS).
(3)
Table 67. SAI characteristics(1)
Symbol Parameter Conditions Min Max Unit
fMCK SAI Main clock output - 256 x 8K 256 x Fs MHz
fCK SAI clock frequency(2) Master data: 32 bits - 128 x Fs(3)
MHz
Slave data: 32 bits - 128 x Fs(3)
tv(FS) FS valid time
Master mode
2.7 V VDD 3.6 V -14%
Master mode
1.71 V VDD 3.6 V -17.5
ns
th(FS) FS hold time Master mode 7 -
tsu(FS) FS setup time Slave mode 1 -
th(FS) FS hold time Slave mode 1 -
tsu(SD_A_MR) Data input setup time
Master receiver 1 -
tsu(SD_B_SR) Slave receiver 1 -
th(SD_A_MR) Data input hold time
Master receiver 5 -
th(SD_B_SR) Slave receiver 1 -
tv(SD_B_ST) Data output valid time
Slave trasmitter (after enable edge
2.7 V VDD 3.6 V -9.5
Slave transmitter (after enable edge
1.71 V VDD 3.6 V -16
th(SD_B_ST) Data output hold time Slave transmitter (after enable edge 6 -
tv(SD_B_ST) Data output valid time
Master transmitter (after enable edge
2.7 V VDD 3.6 V -15
Master transmitter (after enable edge
1.71 V VDD 3.6 V -18
th(SD_B_ST) Data output hold time Master transmitter (after enable edge 7 -
1. Guaranteed based on test during characterization.
2. 256xFs maximum corresponds to 45 MHz (APB2 xaximum frequency)
3. With Fs = 192 KHz
DocID027107 Rev 6 137/202
STM32F446xC/E Electrical characteristics
175
Figure 41. SAI master timing waveforms
Figure 42. SAI slave timing waveforms
USB OTG full speed (FS) characteristics
This interface is present in both the USB OTG HS and USB OTG FS controllers.
Table 68. USB OTG full speed startup time
Symbol Parameter Max Unit
tSTARTUP(1)
1. Guaranteed by design.
USB OTG full speed transceiver startup time 1 µs
-36
3!)?3#+?8
3!)?&3?8
OUTPUT
F3#+
3!)?3$?8
TRANSMIT
TV&3
3LOTN
3!)?3$?8
RECEIVE
TH&3
3LOTN
TV3$?-4 TH3$?-4
3LOTN
TSU3$?-2 TH3$?-2
-36
3!)?3#+?8
3!)?&3?8
INPUT
3!)?3$?8
TRANSMIT
TSU&3
3LOTN
3!)?3$?8
RECEIVE
TW#+(?8 TH&3
3LOTN
TV3$?34 TH3$?34
3LOTN
TSU3$?32
TW#+,?8
TH3$?32
F3#+
Electrical characteristics STM32F446xC/E
138/202 DocID027107 Rev 6
Note: When VBUS sensing feature is enabled, PA9 and PB13 should be left at their default state
(floating input), not as alternate function. A typical 200 µA current consumption of the
sensing block (current to voltage conversion to determine the different sessions) can be
observed on PA9 and PB13 when the feature is enabled.
Figure 43. USB OTG full speed timings: definition of data signal rise and fall time
Table 69. USB OTG full speed DC electrical characteristics
Symbol Parameter Conditions Min.(1)
1. All the voltages are measured from the local ground potential.
Typ. Max.(1) Unit
Input
levels
VDDUSB
USB OTG full speed
transceiver operating
voltage
-3.0
(2)
2. The USB OTG full speed transceiver functionality is ensured down to 2.7 V but not the full USB full speed
electrical characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range.
-3.6V
VDI(3)
3. Guaranteed by design.
Differential input
sensitivity
I(USB_FS_DP/DM,
USB_HS_DP/DM) 0.2 - -
VVCM(3) Differential common mode
range Includes VDI range 0.8 - 2.5
VSE(3) Single ended receiver
threshold -1.3-2.0
Output
levels
VOL Static output level low RL of 1.5 kΩ to 3.6 V(4)
4. RL is the load connected on the USB OTG full speed drivers.
--0.3
V
VOH Static output level high RL of 15 kΩ to VSS(4) 2.8 - 3.6
RPD
PA11, PA12, PB14, PB15
(USB_FS_DP/DM,
USB_HS_DP/DM)
VIN = VDDUSB
17 21 24
kΩ
PA9, PB13
(OTG_FS_VBUS,
OTG_HS_VBUS)
0.65 1.1 2.0
RPU
PA12, PB15
(USB_FS_DP,
USB_HS_DP)
VIN = VSS 1.5 1.8 2.1
PA9, PB13
(OTG_FS_VBUS,
OTG_HS_VBUS)
VIN = VSS 0.25 0.37 0.55
DL
WI
66
WU
9
&56
9
'LIIHUHQWLDO
GDWDOLQHV
&URVVRYHU
SRLQWV
DocID027107 Rev 6 139/202
STM32F446xC/E Electrical characteristics
175
USB high speed (HS) characteristics
Unless otherwise specified, the parameters given in Table 73 for ULPI are derived from
tests performed under the ambient temperature, fHCLK frequency summarized in Table 72
and VDD supply voltage conditions summarized in Table 71, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10, unless otherwise specified
Capacitive load C = 30 pF, unless otherwise specified
Measurement points are done at CMOS levels: 0.5VDD.
Refer to Section 6.3.17: I/O port characteristics for more details on the input/output
characteristics.
Table 70. USB OTG full speed electrical characteristics(1)
1. Guaranteed by design.
Driver characteristics
Symbol Parameter Conditions Min Max Unit
trRise time(2)
2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB
Specification - Chapter 7 (version 2.0).
CL = 50 pF 420ns
tfFall time(2) CL = 50 pF 4 20 ns
trfm Rise/ fall time matching tr/tf90 110 %
VCRS Output signal crossover voltage - 1.3 2.0 V
ZDRV Output driver impedance(3)
3. No external termination series resistors are required on DP (D+) and DM (D-) pins since the matching
impedance is included in the embedded driver.
Driving high or
low 28 44 Ω
Table 71. USB HS DC electrical characteristics
Symbol Parameter Min.(1)
1. All the voltages are measured from the local ground potential.
Max.(1) Unit
Input level VDD USB OTG HS operating voltage 1.7 3.6 V
Table 72. USB HS clock timing parameters(1)
Symbol Parameter Min Typ Max Unit
-fHCLK value to guarantee proper operation of
USB HS interface 30 - - MHz
FSTART_8BIT Frequency (first transition) 8-bit ±10% 54 60 66 MHz
FSTEADY Frequency (steady state) ±500 ppm 59.97 60 60.03 MHz
DSTART_8BIT Duty cycle (first transition) 8-bit ±10% 40 50 60 %
DSTEADY Duty cycle (steady state) ±500 ppm 49.975 50 50.025 %
tSTEADY
Time to reach the steady state frequency and
duty cycle after the first transition --1.4ms
Electrical characteristics STM32F446xC/E
140/202 DocID027107 Rev 6
Figure 44. ULPI timing diagram
CAN (controller area network) interface
Refer to Section 6.3.17: I/O port characteristics for more details on the input/output alternate
function characteristics (CANx_TX and CANx_RX).
tSTART_DEV Clock startup time after the
de-assertion of SuspendM
Peripheral - - 5.6
ms
tSTART_HOST Host - - -
tPREP
PHY preparation time after the first transition
of the input clock ---µs
1. Guaranteed by design.
Table 72. USB HS clock timing parameters(1) (continued)
Symbol Parameter Min Typ Max Unit
#LOCK
#ONTROL)N
5,0)?$)2
5,0)?.84
DATA)N
BIT
#ONTROLOUT
5,0)?340
DATAOUT
BIT
T$$
T$#
T($
T3$
T(#
T3#
AIC
T$#
Table 73. Dynamic characteristics: USB ULPI(1)
Symbol Parameter Conditions Min. Typ. Max. Unit
tSC Control in (ULPI_DIR, ULPI_NXT) setup time - 1 - -
ns
tHC Control in (ULPI_DIR, ULPI_NXT) hold time - 1.5 - -
tSD Data in setup time - 1.5 - -
tHD Data in hold time - 1.5 - -
tDC/tDD Data/control output delay
2.7 V < VDD < 3.6 V,
CL = 20 pF -68.5
1.71 V < VDD < 3.6 V,
CL = 15 pF -611.5
1. Guaranteed based on test during characterization.
DocID027107 Rev 6 141/202
STM32F446xC/E Electrical characteristics
175
6.3.21 12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 74 are derived from tests
performed under the ambient temperature, fPCLK2 frequency and VDDA supply voltage
conditions summarized in Table 16.
Table 74. ADC characteristics
Symbol Parameter Conditions Min Typ Max Unit
VDDA Power supply
VDDA VREF+ < 1.2 V
1.7(1) -3.6
VVREF+ Positive reference voltage 1.7(1) -V
DDA
VREF- Negative reference voltage - - 0 -
fADC ADC clock frequency
VDDA = 1.7(1) to 2.4 V 0.6 15 18 MHz
VDDA = 2.4 to 3.6 V 0.6 30 36 MHz
fTRIG(2) External trigger frequency
fADC = 30 MHz,
12-bit resolution - - 1764 kHz
---171/f
ADC
VAIN Conversion voltage range(3) -0 (VSSA or VREF-
tied to ground) -V
REF+ V
RAIN(2) External input impedance See Equation 1 for
details --50κΩ
RADC(2)(4) Sampling switch resistance - - - 6 κΩ
CADC(2) Internal sample and hold
capacitor --47pF
tlat(2) Injection trigger conversion
latency
fADC = 30 MHz - - 0.100 µs
---3
(5) 1/fADC
tlatr(2) Regular trigger conversion
latency
fADC = 30 MHz - - 0.067 µs
---2
(5) 1/fADC
tS(2) Sampling time
fADC = 30 MHz 0.100 - 16 µs
- 3 - 480 1/fADC
tSTAB(2) Power-up time - - 2 3 µs
tCONV(2) Total conversion time (including
sampling time)
fADC = 30 MHz
12-bit resolution 0.50 - 16.40 µs
fADC = 30 MHz
10-bit resolution 0.43 - 16.34 µs
fADC = 30 MHz
8-bit resolution 0.37 - 16.27 µs
fADC = 30 MHz
6-bit resolution 0.30 - 16.20 µs
9 to 492 (tS for sampling +n-bit resolution for successive
approximation) 1/fADC
Electrical characteristics STM32F446xC/E
142/202 DocID027107 Rev 6
Equation 1: RAIN max formula
The formula above (Equation 1) is used to determine the maximum external impedance
allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of
sampling periods defined in the ADC_SMPR1 register.
fS(2)
Sampling rate
(fADC = 30 MHz, and
tS = 3 ADC cycles)
12-bit resolution
Single ADC - - 2 Msps
12-bit resolution
Interleave Dual ADC
mode
- - 3.75 Msps
12-bit resolution
Interleave Triple ADC
mode
- - 6 Msps
IVREF+(2)
ADC VREF DC current
consumption in conversion
mode
- - 300 500 µA
IVDDA(2)
ADC VDDA DC current
consumption in conversion
mode
--1.61.8mA
1. VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.16.2:
Internal reset OFF).
2. Guaranteed based on test during characterization.
3. VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA.
4. RADC maximum value is given for VDD=1.7 V, and minimum value for VDD=3.3 V.
5. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 74.
Table 74. ADC characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 75. ADC static accuracy at fADC = 18 MHz(1)
1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.
Symbol Parameter Test conditions Typ Max(2)
2. Guaranteed based on test during characterization.
Unit
ET Total unadjusted error
fADC =18 MHz
VDDA = 1.7 to 3.6 V
VREF = 1.7 to 3.6 V
VDDA VREF < 1.2 V
±3 ±4
LSB
EO Offset error ±2 ±3
EG Gain error ±1 ±3
ED Differential linearity error ±1 ±2
EL Integral linearity error ±2 ±3
RAIN
k0.5()
fADC CADC 2N2+
()ln××
---------------------------------------------------------------- RADC
=
DocID027107 Rev 6 143/202
STM32F446xC/E Electrical characteristics
175
a
Note: ADC accuracy vs. negative injection current: injecting a negative current on any analog
input pins should be avoided as this significantly reduces the accuracy of the conversion
Table 76. ADC static accuracy at fADC = 30 MHz(1)
1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.
Symbol Parameter Test conditions Typ Max(2)
2. Guaranteed based on test during characterization.
Unit
ET Total unadjusted error
fADC = 30 MHz,
RAIN < 10 kΩ,
VDDA = 2.4 to 3.6 V,
VREF = 1.7 to 3.6 V,
VDDA VREF < 1.2 V
±2 ±5
LSB
EO Offset error ±1.5 ±2.5
EG Gain error ±1.5 ±3
ED Differential linearity error ±1 ±2
EL Integral linearity error ±1.5 ±3
Table 77. ADC static accuracy at fADC = 36 MHz(1)
1. Better performance could be achieved in restricted VDD, frequency and temperature ranges.
Symbol Parameter Test conditions Typ Max(2)
2. Guaranteed based on test during characterization.
Unit
ET Total unadjusted error
fADC =36 MHz,
VDDA = 2.4 to 3.6 V,
VREF = 1.7 to 3.6 V
VDDA VREF < 1.2 V
±4 ±7
LSB
EO Offset error ±2 ±3
EG Gain error ±3 ±6
ED Differential linearity error ±2 ±3
EL Integral linearity error ±3 ±6
Table 78. ADC dynamic accuracy at fADC = 18 MHz - limited test conditions(1)
Symbol Parameter Test conditions Min Typ Max Unit
ENOB Effective number of bits fADC =18 MHz
VDDA = VREF+= 1.7 V
Input Frequency = 20 KHz
Temperature = 25 °C
10.3 10.4 - bits
SINAD Signal-to-noise and distortion ratio 64 64.2 -
dBSNR Signal-to-noise ratio 64 65 -
THD Total harmonic distortion -67 -72 -
1. Guaranteed based on test during characterization.
Table 79. ADC dynamic accuracy at fADC = 36 MHz - limited test conditions(1)
Symbol Parameter Test conditions Min Typ Max Unit
ENOB Effective number of bits fADC =36 MHz
VDDA = VREF+ = 3.3 V
Input Frequency = 20 KHz
Temperature = 25 °C
10.6 10.8 - bits
SINAD Signal-to noise and distortion ratio 66 67 -
dBSNR Signal-to noise ratio 64 68 -
THD Total harmonic distortion - 70 - 72 -
1. Guaranteed based on test during characterization.
Electrical characteristics STM32F446xC/E
144/202 DocID027107 Rev 6
being performed on another analog input. It is recommended to add a Schottky diode (pin to
ground) to analog pins which may potentially inject negative currents.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in
Section 6.3.17 does not affect the ADC accuracy.
Figure 45. ADC accuracy characteristics
1. See also Table 76.
2. Example of an actual transfer curve.
3. Ideal transfer curve.
4. End point correlation line.
5. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves.
EO = Offset Error: deviation between the first actual transition and the first ideal one.
EG = Gain Error: deviation between the last ideal transition and the last actual one.
ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.
EL = Integral Linearity Error: maximum deviation between any actual transition and the end point
correlation line.
AIC
%/
%'
, 3")$%!,



    


%4
%$
%,

6$$!
633!
62%&
 ORDEPENDINGONPACKAGE=
6$$!

;,3" )$%!,

DocID027107 Rev 6 145/202
STM32F446xC/E Electrical characteristics
175
Figure 46. Typical connection diagram using the ADC
1. Refer to Table 74 for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 5 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this,
fADC should be reduced.
DL
670)
9''
$,1[
,/$
9
97
5$,1
&SDUDVLWLF
9$,1
9
97
5$'&
&$'&
ELW
FRQYHUWHU
6DPSOHDQGKROG$'&
FRQYHUWHU
Electrical characteristics STM32F446xC/E
146/202 DocID027107 Rev 6
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 47 or Figure 48,
depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be
ceramic (good quality). They should be placed them as close as possible to the chip.
Figure 47. Power supply and reference decoupling (VREF+ not connected to VDDA)
1. VREF+ and VREF– inputs are both available on UFBGA144. VREF+ is also available on LQFP100, LQFP144,
and WLCSP81. When VREF+ and VREFare not available, they are internally connected to VDDA and VSSA.
670)
)Q)
)Q)
95()
9''$
966$95()

DLE
DocID027107 Rev 6 147/202
STM32F446xC/E Electrical characteristics
175
Figure 48. Power supply and reference decoupling (VREF+ connected to VDDA)
1. VREF+ and VREF– inputs are both available on UFBGA144. VREF+ is also available on LQFP100, LQFP144,
and WLCSP81. When VREF+ and VREFare not available, they are internally connected to VDDA and VSSA.
6.3.22 Temperature sensor characteristics
670)
)Q)
DLF
95()9''$
95()966$ 

Table 80. Temperature sensor characteristics
Symbol Parameter Min Typ Max Unit
TL(1) VSENSE linearity with temperature - ±1±C
Avg_Slope(1) Average slope - 2.5 - mV/°C
V25(1) Voltage at 25 °C - 0.76 - V
tSTART(2) Startup time - 6 10 µs
TS_temp(2) ADC sampling time when reading the temperature (1 °C accuracy) 10 - - µs
1. Guaranteed based on test during characterization.
2. Guaranteed by design.
Table 81. Temperature sensor calibration values
Symbol Parameter Memory address
TS_CAL1 TS ADC raw data acquired at temperature of 30 °C, VDDA= 3.3 V 0x1FFF 7A2C - 0x1FFF 7A2D
TS_CAL2 TS ADC raw data acquired at temperature of 110 °C, VDDA= 3.3 V 0x1FFF 7A2E - 0x1FFF 7A2F
Electrical characteristics STM32F446xC/E
148/202 DocID027107 Rev 6
6.3.23 VBAT monitoring characteristics
6.3.24 Reference voltage
The parameters given in Table 83 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 16.
6.3.25 DAC electrical characteristics
Table 82. VBAT monitoring characteristics
Symbol Parameter Min Typ Max Unit
R Resistor bridge for VBAT -50-KΩ
Q Ratio on VBAT measurement - 4 - -
Er(1) Error on Q - 1 - + 1 %
TS_vbat(2)(2) ADC sampling time when reading the VBAT
1 mV accuracy 5--µs
1. Guaranteed by design.
2. Shortest sampling time can be determined in the application by multiple iterations.
Table 83. internal reference voltage
Symbol Parameter Conditions Min Typ Max Unit
VREFINT Internal reference voltage –40 °C < TA < +105 °C 1.18 1.21 1.24 V
TS_vrefint(1) ADC sampling time when reading the
internal reference voltage -10--µs
VRERINT_s(2) Internal reference voltage spread over the
temperature range VDD = 3V ± 10mV - 3 5 mV
TCoeff(2) Temperature coefficient - - 30 50 ppm/°C
tSTART(2) Startup time - - 6 10 µs
1. Shortest sampling time can be determined in the application by multiple iterations.
2. Guaranteed by design.
Table 84. Internal reference voltage calibration values
Symbol Parameter Memory address
VREFIN_CAL Raw data acquired at temperature of 30 °C VDDA = 3.3 V 0x1FFF 7A2A - 0x1FFF 7A2B
Table 85. DAC characteristics
Symbol Parameter Conditions Min Typ Max Unit Comments
VDDA
Analog supply
voltage -1.7
(1) -3.6 V -
VREF+
Reference supply
voltage -1.7
(1) -3.6VV
REF+ VDDA
DocID027107 Rev 6 149/202
STM32F446xC/E Electrical characteristics
175
VSSA Ground - 0 - 0 V -
RLOAD(2) Resistive load
DAC
output
buffer ON
Connected
to VSSA
5- -
kΩ
-
Connected
to VDDA 25 - - -
RO(2) Impedance output
with buffer OFF ---15kΩ
When the buffer is OFF, the
Minimum resistive load
between DAC_OUT and VSS
to have a 1% accuracy is
1.5 MΩ
CLOAD(2) Capacitive load - - - 50 pF
Maximum capacitive load at
DAC_OUT pin (when the
buffer is ON).
DAC_OUT
min(2)
Lower DAC_OUT
voltage with buffer
ON
-0.2 --V
It gives the maximum output
excursion of the DAC.
It corresponds to 12-bit input
code (0x0E0) to (0xF1C) at
VREF+ = 3.6 V and (0x1C7) to
(0xE38) at VREF+ = 1.7 V
DAC_OUT
max(2)
Higher DAC_OUT
voltage with buffer
ON
---
VDDA
– 0.2 V
DAC_OUT
min(2)
Lower DAC_OUT
voltage with buffer
OFF
--0.5-mV
It gives the maximum output
excursion of the DAC.
DAC_OUT
max(2)
Higher DAC_OUT
voltage with buffer
OFF
---
VREF
+
1LSB
V
IVREF+(4)
DAC DC VREF
current
consumption in
quiescent mode
(Standby mode)
- - 170 240
µA
With no load, worst code
(0x800) at VREF+ = 3.6 V in
terms of DC consumption on
the inputs
--5075
With no load, worst code
(0xF1C) at VREF+ = 3.6 V in
terms of DC consumption on
the inputs
IDDA(4)
DAC DC VDDA
current
consumption in
quiescent mode(3)
- - 280 380 µA With no load, middle code
(0x800) on the inputs
- - 475 625 µA
With no load, worst code
(0xF1C) at VREF+ = 3.6 V in
terms of DC consumption on
the inputs
DNL(4)
Differential non
linearity Difference
between two
consecutive code-
1LSB)
- - - ±0.5 LSB Given for the DAC in 10-bit
configuration.
---±2 LSB
Given for the DAC in 12-bit
configuration.
Table 85. DAC characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit Comments
Electrical characteristics STM32F446xC/E
150/202 DocID027107 Rev 6
INL(4)
Integral non
linearity (difference
between
measured value at
Code i and the
value at Code i on
a line drawn
between Code 0
and last Code
1023)
---±1LSB
Given for the DAC in 10-bit
configuration.
---±4LSB
Given for the DAC in 12-bit
configuration.
Offset(4)
Offset error
(difference
between
measured value at
Code (0x800) and
the ideal value =
VREF+/2)
---±10mV
Given for the DAC in 12-bit
configuration
---±3LSB
Given for the DAC in 10-bit at
VREF+ = 3.6 V
- - - ±12 LSB Given for the DAC in 12-bit at
VREF+ = 3.6 V
Gain
error(4) Gain error - - - ±0.5 % Given for the DAC in 12-bit
configuration
tSETTLING(4
)
Total Harmonic
Distortion
Buffer ON
--36µs
CLOAD 50 pF,
RLOAD 5 kΩ
THD(4) -----dB
CLOAD 50 pF,
RLOAD 5 kΩ
Update
rate(2)
Max frequency for
a correct
DAC_OUT change
when small
variation in the
input code (from
code i to i+1LSB)
---1
MS/
s
CLOAD 50 pF,
RLOAD 5 kΩ
tWAKEUP(4)
Wakeup time from
off state (Setting
the ENx bit in the
DAC Control
register)
--6.510µs
CLOAD 50 pF, RLOAD 5 kΩ
input code between lowest
and highest possible ones.
PSRR+ (2)
Power supply
rejection ratio (to
VDDA) (static DC
measurement)
- - - 67 - 40 dB No RLOAD, CLOAD = 50 pF
1. VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.16.2:
Internal reset OFF).
2. Guaranteed by design.
3. The quiescent mode corresponds to a state where the DAC maintains a stable output level to ensure that no dynamic
consumption occurs.
4. Guaranteed based on test during characterization.
Table 85. DAC characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit Comments
DocID027107 Rev 6 151/202
STM32F446xC/E Electrical characteristics
175
Figure 49. 12-bit buffered/non-buffered DAC
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external
loads directly without the use of an external operational amplifier. The buffer can be bypassed by
configuring the BOFFx bit in the DAC_CR register.

%XIIHU
ELW
GLJLWDOWR
DQDORJ
FRQYHUWHU
%XIIHUHGQRQEXIIHUHG'$&
'$&[B287
5/2$'
&/2$'
DLG
Electrical characteristics STM32F446xC/E
152/202 DocID027107 Rev 6
6.3.26 FMC characteristics
Unless otherwise specified, the parameters given in Table 86 to Table 93 for the FMC
interface are derived from tests performed under the ambient temperature, fHCLK frequency
and VDD supply voltage conditions summarized in Table 15, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitance load C = 30 pF
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 6.3.17: I/O port characteristics for more details on the input/output
characteristics.
Asynchronous waveforms and timings
Figure 50 through Figure 53 represent asynchronous waveforms and Table 86 through
Table 93 provide the corresponding timings. The results shown in these tables are obtained
with the following FMC configuration:
AddressSetupTime = 0x1
AddressHoldTime = 0x1
DataSetupTime = 0x1 (except for asynchronous NWAIT mode , DataSetupTime = 0x5)
BusTurnAroundDuration = 0x0
In all timing tables, the THCLK is the HCLK clock period.
DocID027107 Rev 6 153/202
STM32F446xC/E Electrical characteristics
175
Figure 50. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms
1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.
$ATA
&-#?.%
&-#?.",;=
&-#?$;=
T
V",?.%
TH$ATA?.%
&-#?./%
!DDRESS
&-#?!;=
T
V!?.%
&-#?.7%
TSU$ATA?.%
TW.%
-36
W./%
TTV./%?.% TH.%?./%
TH$ATA?./%
TH!?./%
TH",?./%
TSU$ATA?./%
&-#?.!$6 
TV.!$6?.%
TW.!$6
&-#?.7!)4
TSU.7!)4?.%
TH.%?.7!)4
Electrical characteristics STM32F446xC/E
154/202 DocID027107 Rev 6
Table 86. Asynchronous non-multiplexed SRAM/PSRAM/NOR -
read timings(1)(2)
1. CL = 30 pF.
2. Guaranteed based on test during characterization.
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 2THCLK – 2 2 THCLK + 0.5
ns
tv(NOE_NE) FMC_NEx low to FMC_NOE low 0 1
tw(NOE) FMC_NOE low time 2THCLK - 1 2THCLK + 0.5
th(NE_NOE) FMC_NOE high to FMC_NE high hold time 0 -
tv(A_NE) FMC_NEx low to FMC_A valid - 0.5
th(A_NOE) Address hold time after FMC_NOE high 0 -
tv(BL_NE) FMC_NEx low to FMC_BL valid - 2
th(BL_NOE) FMC_BL hold time after FMC_NOE high 0 -
tsu(Data_NE) Data to FMC_NEx high setup time THCLK - 2 -
tsu(Data_NOE) Data to FMC_NOEx high setup time THCLK - 2 -
th(Data_NOE) Data hold time after FMC_NOE high 0 -
th(Data_NE) Data hold time after FMC_NEx high 0 -
tv(NADV_NE) FMC_NEx low to FMC_NADV low - 0
tw(NADV) FMC_NADV low time - THCLK +1
Table 87. Asynchronous non-multiplexed SRAM/PSRAM/NOR read -
NWAIT timings(1)(2)
1. CL = 30 pF.
2. Guaranteed based on test during characterization.
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 7THCLK + 1 7THCLK
ns
tw(NOE) FMC_NWE low time 5THCLK – 1 5THCLK + 1
tw(NWAIT) FMC_NWAIT low time THCLK – 0.5 -
tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high 5THCLK+ 1.5 -
th(NE_NWAIT)
FMC_NEx hold time after FMC_NWAIT
invalid 4THCLK + 1 -
DocID027107 Rev 6 155/202
STM32F446xC/E Electrical characteristics
175
Figure 51. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms
1. Mode 2/B, C and D only. In Mode 1, FMC_NADV is not used.
Table 88. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1)(2)
1. CL = 30 pF.
2. Guaranteed based on test during characterization.
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 3 THCLK - 2 3 THCLK +0.5
ns
tv(NWE_NE) FMC_NEx low to FMC_NWE low THCLK – 0.5 THCLK + 0.5
tw(NWE) FMC_NWE low time THCLK THCLK+ 0.5
th(NE_NWE) FMC_NWE high to FMC_NE high hold time THCLK + 0.5 -
tv(A_NE) FMC_NEx low to FMC_A valid - 0
th(A_NWE) Address hold time after FMC_NWE high THCLK - 0.5 -
tv(BL_NE) FMC_NEx low to FMC_BL valid - 1
th(BL_NWE) FMC_BL hold time after FMC_NWE high THCLK + 0.5 -
tv(Data_NE) Data to FMC_NEx low to Data valid - THCLK + 2
th(Data_NWE) Data hold time after FMC_NWE high THCLK + 0.5 -
tv(NADV_NE) FMC_NEx low to FMC_NADV low - 0
tw(NADV) FMC_NADV low time - THCLK+ 0.5
.",
$ATA
&-#?.%X
&-#?.",;=
&-#?$;=
T
V",?.%
TH$ATA?.7%
&-#?./%
!DDRESS
&-#?!;=
T
V!?.%
TW.7%
&-#?.7%
TV.7%?.% TH.%?.7%
TH!?.7%
TH",?.7%
TV$ATA?.%
TW.%
-36
&-#?.!$6 
TV.!$6?.%
TW.!$6
&-#?.7!)4
TSU.7!)4?.%
TH.%?.7!)4
Electrical characteristics STM32F446xC/E
156/202 DocID027107 Rev 6
Figure 52. Asynchronous multiplexed PSRAM/NOR read waveforms
Table 89. Asynchronous non-multiplexed SRAM/PSRAM/NOR write -
NWAIT timings(1)(2)
1. CL = 30 pF.
2. Guaranteed based on test during characterization.
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 8THCLK - 0.5 8THCLK + 1
ns
tw(NWE) FMC_NWE low time 6THCLK - 0.5 6THCLK + 1
tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high 6THCLK - 0.5 -
th(NE_NWAIT)
FMC_NEx hold time after FMC_NWAIT
invalid 4THCLK + 2 -
.",
$ATA
&-#? .",;=
&-#? !$;=
T
V",?.%
TH$ATA?.%
!DDRESS
&-#? !;=
T
V!?.%
&-#?.7%
TV!?.%
-36
!DDRESS
&-#?.!$6
TV.!$6?.%
TW.!$6
TSU$ATA?.%
T
H!$?.!$6
&-#? .%
&-#?./%
TW.%
TW./%
TV./%?.% TH.%?./%
TH!?./%
TH",?./%
TSU$ATA?./% TH$ATA?./%
&-#?.7!)4
TSU.7!)4?.%
TH.%?.7!)4
DocID027107 Rev 6 157/202
STM32F446xC/E Electrical characteristics
175
Table 90. Asynchronous multiplexed PSRAM/NOR read timings(1)(2)
1. CL = 30 pF.
2. Guaranteed based on test during characterization.
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 3THCLK – 2 3THCLK+0.5
ns
tv(NOE_NE) FMC_NEx low to FMC_NOE low 2THCLK – 0.5 2THCLK
ttw(NOE) FMC_NOE low time THCLK – 1 THCLK + 0.5
th(NE_NOE) FMC_NOE high to FMC_NE high hold time 0 -
tv(A_NE) FMC_NEx low to FMC_A valid - 2
tv(NADV_NE) FMC_NEx low to FMC_NADV low 0 2
tw(NADV) FMC_NADV low time THCLK – 0.5 THCLK + 0.5
th(AD_NADV)
FMC_AD(address) valid hold time after
FMC_NADV high) 0 -
th(A_NOE) Address hold time after FMC_NOE high THCLK – 0.5 -
th(BL_NOE) FMC_BL time after FMC_NOE high 0 -
tv(BL_NE) FMC_NEx low to FMC_BL valid - 2
tsu(Data_NE) Data to FMC_NEx high setup time THCLK + 1.5 -
tsu(Data_NOE) Data to FMC_NOE high setup time THCLK + 1 -
th(Data_NE) Data hold time after FMC_NEx high 0 -
th(Data_NOE) Data hold time after FMC_NOE high 0 -
Table 91. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings(1)(2)
1. CL = 30 pF.
2. Guaranteed based on test during characterization.
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 8THCLK - 1 8THCLK + 2
ns
tw(NOE) FMC_NWE low time 5THCLK – 1 5THCLK + 1
tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high 5THCLK + 1.5 -
th(NE_NWAIT)
FMC_NEx hold time after FMC_NWAIT
invalid 4THCLK + 1 -
Electrical characteristics STM32F446xC/E
158/202 DocID027107 Rev 6
Figure 53. Asynchronous multiplexed PSRAM/NOR write waveforms
.",
$ATA
&-#? .%X
&-#? .",;=
&-#? !$;=
T
V",?.%
TH$ATA?.7%
&-#?./%
!DDRESS
&-#? !;=
T
V!?.%
TW.7%
&-#?.7%
TV.7%?.% TH.%?.7%
TH!?.7%
TH",?.7%
TV!?.%
TW.%
-36
!DDRESS
&-#?.!$6
TV.!$6?.%
TW.!$6
TV$ATA?.!$6
T
H!$?.!$6
&-#?.7!)4
TSU.7!)4?.%
TH.%?.7!)4
DocID027107 Rev 6 159/202
STM32F446xC/E Electrical characteristics
175
Synchronous waveforms and timings
Figure 54 through Figure 57 represent synchronous waveforms and Table 94 through
Table 97 provide the corresponding timings. The results shown in these tables are obtained
with the following FMC configuration:
BurstAccessMode = FMC_BurstAccessMode_Enable;
MemoryType = FMC_MemoryType_CRAM;
WriteBurst = FMC_WriteBurst_Enable;
CLKDivision = 1; (0 is not supported, see the STM32F446 reference manual: RM0390)
DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM
Table 92. Asynchronous multiplexed PSRAM/NOR write timings(1)(2)
1. CL = 30 pF.
2. Guaranteed based on test during characterization.
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 4THCLK - 2 4THCLK+0.5
ns
tv(NWE_NE) FMC_NEx low to FMC_NWE low THCLK THCLK + 0.5
tw(NWE) FMC_NWE low time 2THCLK 2THCLK + 0.5
th(NE_NWE) FMC_NWE high to FMC_NE high hold time THCLK -
tv(A_NE) FMC_NEx low to FMC_A valid - 0
tv(NADV_NE) FMC_NEx low to FMC_NADV low 0.5 1
tw(NADV) FMC_NADV low time THCLK – 0.5 THCLK+ 0.5
th(AD_NADV)
FMC_AD(adress) valid hold time after
FMC_NADV high) THCLK – 2 -
th(A_NWE) Address hold time after FMC_NWE high THCLK -
th(BL_NWE) FMC_BL hold time after FMC_NWE high THCLK–2 -
tv(BL_NE) FMC_NEx low to FMC_BL valid - 2
tv(Data_NADV) FMC_NADV high to Data valid - THCLK + 1.5
th(Data_NWE) Data hold time after FMC_NWE high THCLK + 0.5 -
Table 93. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings(1)(2)
1. CL = 30 pF.
2. Guaranteed based on test during characterization.
Symbol Parameter Min Max Unit
tw(NE) FMC_NE low time 9THCLK 9THCLK + 0.5
ns
tw(NWE) FMC_NWE low time 7THCLK 7THCLK + 2
tsu(NWAIT_NE) FMC_NWAIT valid before FMC_NEx high 6THCLK + 1.5 -
th(NE_NWAIT)
FMC_NEx hold time after FMC_NWAIT
invalid 4THCLK – 1 -
Electrical characteristics STM32F446xC/E
160/202 DocID027107 Rev 6
In all timing tables, the THCLK is the HCLK clock period (with maximum
FMC_CLK = 90 MHz).
Figure 54. Synchronous multiplexed NOR/PSRAM read timings
&-#?#,+
&-#?.%X
&-#?.!$6
&-#?!;=
&-#?./%
&-#?!$;= !$;= $ $
&-#?.7!)4
7!)4#&'B
7!)40/,B
&-#?.7!)4
7!)4#&'B
7!)40/,B
TW#,+ TW#,+
$ATALATENCY
"53452.
TD#,+,.%X, TD#,+(.%X(
TD#,+,.!$6,
TD#,+,!6
TD#,+,.!$6(
TD#,+(!)6
TD#,+,./%, TD#,+(./%(
TD#,+,!$6
TD#,+,!$)6
TSU!$6#,+(
TH#,+(!$6
TSU!$6#,+( TH#,+(!$6
TSU.7!)46#,+( TH#,+(.7!)46
TSU.7!)46#,+( TH#,+(.7!)46
TSU.7!)46#,+( TH#,+(.7!)46
-36
DocID027107 Rev 6 161/202
STM32F446xC/E Electrical characteristics
175
Table 94. Synchronous multiplexed NOR/PSRAM read timings(1)(2)
1. CL = 30 pF.
2. Guaranteed based on test during characterization.
Symbol Parameter Min Max Unit
tw(CLK) FMC_CLK period 2THCLK -
ns
td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2) - 2.5
td(CLKH_NExH) FMC_CLK high to FMC_NEx high (x= 0…2) THCLK - 0.5 -
td(CLKL-NADVL) FMC_CLK low to FMC_NADV low - 0
td(CLKL-NADVH) FMC_CLK low to FMC_NADV high 0 -
td(CLKL-AV) FMC_CLK low to FMC_Ax valid (x=16…25) - 2.5
td(CLKH-AIV) FMC_CLK high to FMC_Ax invalid (x=16…25) THCLK -
td(CLKL-NOEL) FMC_CLK low to FMC_NOE low - 2
td(CLKH-NOEH) FMC_CLK high to FMC_NOE high THCLK – 0.5 -
td(CLKL-ADV) FMC_CLK low to FMC_AD[15:0] valid - 0.5
td(CLKL-ADIV) FMC_CLK low to FMC_AD[15:0] invalid 0 -
tsu(ADV-CLKH)
FMC_A/D[15:0] valid data before FMC_CLK
high 1 -
th(CLKH-ADV) FMC_A/D[15:0] valid data after FMC_CLK high 3.5 -
tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high 1 -
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high 3.5 -
Electrical characteristics STM32F446xC/E
162/202 DocID027107 Rev 6
Figure 55. Synchronous multiplexed PSRAM write timings
&-#?#,+
&-#?.%X
&-#?.!$6
&-#?!;=
&-#?.7%
&-#?!$;= !$;= $ $
&-#?.7!)4
7!)4#&'B
7!)40/,B
TW#,+ TW#,+
$ATALATENCY
"53452.
TD#,+,.%X, TD#,+(.%X(
TD#,+,.!$6,
TD#,+,!6
TD#,+,.!$6(
TD#,+(!)6
TD#,+(.7%(
TD#,+,.7%,
TD#,+(.",(
TD#,+,!$6
TD#,+,!$)6 TD#,+,$ATA
TSU.7!)46#,+( TH#,+(.7!)46
-36
TD#,+,$ATA
&-#?.",
DocID027107 Rev 6 163/202
STM32F446xC/E Electrical characteristics
175
Table 95. Synchronous multiplexed PSRAM write timings(1)(2)
1. CL = 30 pF.
2. Guaranteed based on test during characterization.
Symbol Parameter Min Max Unit
tw(CLK) FMC_CLK period, VDD range= 2.7 to 3.6 V 2THCLK - 1 -
ns
td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2) - 2.5
td(CLKH-NExH) FMC_CLK high to FMC_NEx high (x= 0…2) THCLK + 0.5 -
td(CLKL-NADVL) FMC_CLK low to FMC_NADV low - 2
td(CLKL-NADVH) FMC_CLK low to FMC_NADV high 0 -
td(CLKL-AV) FMC_CLK low to FMC_Ax valid (x=16…25) - 2
td(CLKH-AIV) FMC_CLK high to FMC_Ax invalid (x=16…25) THCLK -
td(CLKL-NWEL) FMC_CLK low to FMC_NWE low - 0
t(CLKH-NWEH) FMC_CLK high to FMC_NWE high THCLK - 0.5 -
td(CLKL-ADV) FMC_CLK low to FMC_AD[15:0] valid - 3
td(CLKL-ADIV) FMC_CLK low to FMC_AD[15:0] invalid 0 -
td(CLKL-DATA) FMC_A/D[15:0] valid data after FMC_CLK low - 3
td(CLKL-NBLL) FMC_CLK low to FMC_NBL low 0 -
td(CLKH-NBLH) FMC_CLK high to FMC_NBL high THCLK - 0.5 -
tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high 4 -
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high 0 -
Electrical characteristics STM32F446xC/E
164/202 DocID027107 Rev 6
Figure 56. Synchronous non-multiplexed NOR/PSRAM read timings
Table 96. Synchronous non-multiplexed NOR/PSRAM read timings(1)(2)
Symbol Parameter Min Max Unit
tw(CLK) FMC_CLK period 2THCLK -
ns
t(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2) - 2.5
td(CLKH-NExH) FMC_CLK high to FMC_NEx high (x= 0…2) THCLK – 0.5 -
td(CLKL-NADVL) FMC_CLK low to FMC_NADV low - 0
td(CLKL-NADVH) FMC_CLK low to FMC_NADV high 0 -
td(CLKL-AV) FMC_CLK low to FMC_Ax valid (x=16…25) - 2.5
td(CLKH-AIV) FMC_CLK high to FMC_Ax invalid (x=16…25) THCLK -
td(CLKL-NOEL) FMC_CLK low to FMC_NOE low - 2
td(CLKH-NOEH) FMC_CLK high to FMC_NOE high THCLK – 0.5 -
tsu(DV-CLKH) FMC_D[15:0] valid data before FMC_CLK high 1 -
th(CLKH-DV) FMC_D[15:0] valid data after FMC_CLK high 3.5 -
tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high 1 -
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high 3.5 -
&-#?#,+
&-#?.%X
&-#?!;=
&-#?./%
&-#?$;= $ $
&-#?.7!)4
7!)4#&'B
7!)40/,B
&-#?.7!)4
7!)4#&'B
7!)40/,B
TW#,+ TW#,+
$ATALATENCY
TD#,+,.%X, TD#,+(.%X(
TD#,+,!6 TD#,+(!)6
TD#,+,./%, TD#,+(./%(
TSU$6#,+( TH#,+($6
TSU$6#,+( TH#,+($6
TSU.7!)46#,+( TH#,+(.7!)46
TSU.7!)46#,+( TH#,+(.7!)46
TSU.7!)46#,+( TH#,+(.7!)46
-36
&-#?.!$6
TD#,+,.!$6, TD#,+,.!$6(
DocID027107 Rev 6 165/202
STM32F446xC/E Electrical characteristics
175
Figure 57. Synchronous non-multiplexed PSRAM write timings
1. CL = 30 pF.
2. Guaranteed based on test during characterization.
-36
&-#?#,+
&-#?.%X
&-#?!;=
&-#?.7%
&-#?$;= $ $
&-#?.7!)4
7!)4#&'B7!)40/,B
TW#,+ TW#,+
$ATALATENCY
TD#,+,.%X, TD#,+(.%X(
TD#,+,!6 TD#,+(!)6
TD#,+(.7%(
TD#,+,.7%,
TD#,+,$ATA
TSU.7!)46#,+(
TH#,+(.7!)46
&-#?.!$6
TD#,+,.!$6, TD#,+,.!$6(
TD#,+,$ATA
&-#?.",
TD#,+(.",(
Electrical characteristics STM32F446xC/E
166/202 DocID027107 Rev 6
NAND controller waveforms and timings
Figure 58 through Figure 61 represent synchronous waveforms, and Table 98 and Table 99
provide the corresponding timings. The results shown in this table are obtained with the
following FMC configuration:
COM.FSMC_SetupTime = 0x01;
COM.FMC_WaitSetupTime = 0x03;
COM.FMC_HoldSetupTime = 0x02;
COM.FMC_HiZSetupTime = 0x01;
ATT.FMC_SetupTime = 0x01;
ATT.FMC_WaitSetupTime = 0x03;
ATT.FMC_HoldSetupTime = 0x02;
ATT.FMC_HiZSetupTime = 0x01;
Bank = FMC_Bank_NAND;
MemoryDataWidth = FMC_MemoryDataWidth_16b;
ECC = FMC_ECC_Enable;
ECCPageSize = FMC_ECCPageSize_512Bytes;
TCLRSetupTime = 0;
TARSetupTime = 0.
In all timing tables, the THCLK is the HCLK clock period.
Table 97. Synchronous non-multiplexed PSRAM write timings(1)(2)
1. CL = 30 pF.
2. Guaranteed based on test during characterization.
Symbol Parameter Min Max Unit
tw(CLK) FMC_CLK period 2THCLK – 1 -
ns
td(CLKL-NExL) FMC_CLK low to FMC_NEx low (x=0..2) - 2.5
td(CLKH-NExH) FMC_CLK high to FMC_NEx high (x= 0…2) THCLK – 0.5 -
td(CLKL-NADVL) FMC_CLK low to FMC_NADV low - 2
td(CLKL-NADVH) FMC_CLK low to FMC_NADV high 0 -
td(CLKL-AV) FMC_CLK low to FMC_Ax valid (x=16…25) - 2
td(CLKH-AIV) FMC_CLK high to FMC_Ax invalid (x=16…25) 0 -
td(CLKL-NWEL) FMC_CLK low to FMC_NWE low - 3
td(CLKH-NWEH) FMC_CLK high to FMC_NWE high THCLK + 1 -
td(CLKL-Data) FMC_D[15:0] valid data after FMC_CLK low - 2.5
td(CLKL-NBLL) FMC_CLK low to FMC_NBL low 3 -
td(CLKH-NBLH) FMC_CLK high to FMC_NBL high THCLK + 1.5 -
tsu(NWAIT-CLKH) FMC_NWAIT valid before FMC_CLK high 1.5 -
th(CLKH-NWAIT) FMC_NWAIT valid after FMC_CLK high 0 -
DocID027107 Rev 6 167/202
STM32F446xC/E Electrical characteristics
175
Figure 58. NAND controller waveforms for read access
Figure 59. NAND controller waveforms for write access
&-#?.7%
&-#?./%.2%
&-#?$;=
TSU$./% TH./%$
-36
!,%&-#?!
#,%&-#?!
&-#?.#%X
TD!,%./% TH./%!,%
-36
TH.7%$
TV.7%$
&-#?.7%
&-#?./%.2%
&-#?$;=
!,%&-#?!
#,%&-#?!
&-#?.#%X
TD!,%.7% TH.7%!,%
Electrical characteristics STM32F446xC/E
168/202 DocID027107 Rev 6
Figure 60. NAND controller waveforms for common memory read access
Figure 61. NAND controller waveforms for common memory write access
Table 98. Switching characteristics for NAND Flash read cycles(1)
1. CL = 30 pF.
Symbol Parameter Min Max Unit
tw(N0E) FMC_NOE low width 4THCLK – 0.5 4THCLK + 0.5
ns
tsu(D-NOE) FMC_D[15-0] valid data before FMC_NOE high 9 -
th(NOE-D) FMC_D[15-0] valid data after FMC_NOE high 2.5 -
td(ALE-NOE) FMC_ALE valid before FMC_NOE low - 3THCLK - 0.5
th(NOE-ALE) FMC_NWE high to FMC_ALE invalid 3THCLK – 2 -
-36
&-#?.7%
&-#?./%
&-#?$;=
TW./%
TSU$./% TH./%$
!,%&-#?!
#,%&-#?!
&-#?.#%X
TD!,%./% TH./%!,%
-36
TW.7%
TH.7%$
TV.7%$
&-#?.7%
&-#?.
/%
&-#?$;=
TD$.7%
!,%&-#?!
#,%&-#?!
&-#?.#%X
TD!,%./% TH./%!,%
DocID027107 Rev 6 169/202
STM32F446xC/E Electrical characteristics
175
SDRAM waveforms and timings
Figure 62. SDRAM read access waveforms (CL = 1)
Table 99. Switching characteristics for NAND Flash write cycles(1)
1. CL = 30 pF.
Symbol Parameter Min Max Unit
tw(NWE) FMC_NWE low width 4THCLK - 2 4THCLK ns
tv(NWE-D) FMC_NWE low to FMC_D[15-0] valid 0 - ns
th(NWE-D) FMC_NWE high to FMC_D[15-0] invalid 3THCLK – 1 - ns
td(D-NWE) FMC_D[15-0] valid before FMC_NWE high 5THCLK – 3 - ns
td(ALE-NWE) FMC_ALE valid before FMC_NWE low - 3THCLK - 0.5 ns
th(NWE-ALE) FMC_NWE high to FMC_ALE invalid 3THCLK – 2 - ns
-36
2OWN #OL
&-#?3$#,+
&-#?!>@
&-#?3$.2!3
&-#?3$.#!3
&-#?3$.7%
&-#?$;=
&-#?3$.%;=
TD3$#,+,?!DD2 TD3$#,+,?!DD#
TH3$#,+,?!DD2
TH3$#,+,?!DD#
TD3$#,+,?3.$%
TSU3$#,+(?$ATA TH3$#,+(?$ATA
#OL #OLI #OLN
$ATA $ATAI $ATAN$ATA
TH3$#,+,?3.$%
TD3$#,+,?.2!3
TD3$#,+,?.#!3 TH3$#,+,?.#!3
TH3$#,+,?.2!3
Electrical characteristics STM32F446xC/E
170/202 DocID027107 Rev 6
Table 100. SDRAM read timings(1)(2)
1. CL = 30 pF on data and address lines. CL=15pF on FMC_SDCLK.
2. Guaranteed based on test during characterization.
Symbol Parameter Min Max Unit
tw(SDCLK) FMC_SDCLK period 2THCLK-0.5 2THCLK+0.5
ns
tsu(SDCLKH _Data) Data input setup time 1 -
th(SDCLKH_Data) Data input hold time 4 -
td(SDCLKL_Add) Address valid time - 3
td(SDCLKL_ SDNE) Chip select valid time - 1.5
th(SDCLKL_SDNE) Chip select hold time 0 -
td(SDCLKL_SDNRAS) SDNRAS valid time - 1.5
th(SDCLKL_SDNRAS) SDNRAS hold time 0 -
td(SDCLKL_SDNCAS) SDNCAS valid time - 0.5
th(SDCLKL_SDNCAS) SDNCAS hold time 0 -
Table 101. LPSDR SDRAM read timings(1)(2)
1. CL = 10 pF.
2. Guaranteed based on test during characterization.
Symbol Parameter Min Max Unit
tw(SDCLK) FMC_SDCLK period 2THCLK - 0.5 2THCLK + 0.5
ns
tsu(SDCLKH _Data) Data input setup time 1 -
th(SDCLKH_Data) Data input hold time 5 -
td(SDCLKL_Add) Address valid time - 3
td(SDCLKL_ SDNE) Chip select valid time - 3
th(SDCLKL_SDNE) Chip select hold time 0 -
td(SDCLKL_SDNRAS) SDNRAS valid time - 2
th(SDCLKL_SDNRAS) SDNRAS hold time 0 -
td(SDCLKL_SDNCAS) SDNCAS valid time - 2
th(SDCLKL_SDNCAS) SDNCAS hold time 0 -
DocID027107 Rev 6 171/202
STM32F446xC/E Electrical characteristics
175
Figure 63. SDRAM write access waveforms
Table 102. SDRAM write timings(1)(2)
1. CL = 10 pF on data and address line. CL=15 pF on FMC_SDCLK.
2. Guaranteed based on test during characterization.
Symbol Parameter Min Max Unit
F(SDCLK) Frequency of operation - 90 MHz
tw(SDCLK) FMC_SDCLK period 2THCLK - 0.5 2THCLK + 0.5
ns
td(SDCLKL _Data) Data output valid time - 2
th(SDCLKL _Data) Data output hold time 0.5 -
td(SDCLK _Add) Address valid time - 3
td(SDCLKL _SDNWE)) SDNWE valid time - 1.5
th(SDCLKL_SDNWE)) SDNWE hold time 0 -
td(SDCLKL_SDNE)) Chip select valid time - 1.5
th(SDCLKL_SDNE) Chip select hold time 0 -
td(SDCLKL_SDNRAS) SDNRAS valie time - 1
th(SDCLKL_SDNRAS) SDNRAS hold time 0 -
td(SDCLKL_SDNCAS) SDNCAS valid time - 1
th(SDCLKL_SDNCAS) SDNCAS hold time 0 -
-36
2OWN #OL
&-#?3$#,+
&-#?!>@
&-#?3$.2!3
&-#?3$.#!3
&-#?3$.7%
&-#?$;=
&-#?3$.%;=
TD3$#,+,?!DD2 TD3$#,+,?!DD#
TH3$#,+,?!DD2
TH3$#,+,?!DD#
TD3$#,+,?3.$%
TD3$#,+,?$ATA
TH3$#,+,?$ATA
#OL #OLI #OLN
$ATA $ATAI $ATAN$ATA
TH3$#,+,?3.$%
TD3$#,+,?.2!3
TD3$#,+,?.#!3 TH3$#,+,?.#!3
TH3$#,+,?.2!3
TD3$#,+,?.7% TH3$#,+,?.7%
&-#?.",;=
TD3$#,+,?.",
Electrical characteristics STM32F446xC/E
172/202 DocID027107 Rev 6
6.3.27 Camera interface (DCMI) timing specifications
Unless otherwise specified, the parameters given in Table 104 for DCMI are derived
from tests performed under the ambient temperature, fHCLK frequency and VDD supply
voltage summarized in Table 16, with the following configuration:
DCMI_PIXCLK polarity: falling
DCMI_VSYNC and DCMI_HSYNC polarity: high
Data formats: 14 bits
Table 103. LPSDR SDRAM write timings(1)(2)
1. CL = 10 pF.
2. Guaranteed based on test during characterization.
Symbol Parameter Min Max Unit
F(SDCLK) Frequency of operation - 84 MHz
tw(SDCLK) FMC_SDCLK period 2THCLK - 0.5 2THCLK + 0.5
ns
td(SDCLKL _Data) Data output valid time - 5
th(SDCLKL _Data) Data output hold time 0.5 -
td(SDCLK _Add) Address valid time - 3
td(SDCLKL _SDNWE)) SDNWE valid time - 3
th(SDCLKL_SDNWE)) SDNWE hold time 0 -
td(SDCLKL_SDNE)) Chip select valid time - 2.5
th(SDCLKL_ SDNE) Chip select hold time 0 -
td(SDCLKL_SDNRAS) SDNRAS valid time - 2
th(SDCLKL_SDNRAS) SDNRAS hold time 0 -
td(SDCLKL_SDNCAS) SDNCAS valid time - 2
td(SDCLKL_SDNCAS) SDNCAS hold time 0 -
Table 104. DCMI characteristics
Symbol Parameter Min Max Unit
- Frequency ratio DCMI_PIXCLK/fHCLK -0.4 -
DCMI_PIXCLK Pixel clock input - 54 MHz
DPixel Pixel clock input duty cycle 30 70 %
tsu(DATA) Data input setup time 1 -
ns
th(DATA) Data input hold time 3.5 -
tsu(HSYNC)
tsu(VSYNC)
DCMI_HSYNC/DCMI_VSYNC input setup time 2 -
th(HSYNC)
th(VSYNC)
DCMI_HSYNC/DCMI_VSYNC input hold time 0 -
DocID027107 Rev 6 173/202
STM32F446xC/E Electrical characteristics
175
Figure 64. DCMI timing diagram
6.3.28 SD/SDIO MMC card host interface (SDIO) characteristics
Unless otherwise specified, the parameters given in Table 105 for the SDIO are derived
from tests performed under the ambient temperature, fPCLK2 frequency and VDD supply
voltage conditions summarized in Table 16, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load C = 30 pF
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 6.3.17: I/O port characteristics for more details on the input/output
characteristics.
Figure 65. SDIO high-speed mode
069
'&0,B3,;&/.
WVX96<1&
WVX+6<1&
'&0,B+6<1&
'&0,B96<1&
'$7$>@
'&0,B3,;&/.
WK+6<1&
WK+6<1&
WVX'$7$ WK'$7$
T7#+(
#+
$#-$
OUTPUT
$#-$
INPUT
T#
T7#+,
T/6 T/(
T)35 T)(
TFTR
AI
Electrical characteristics STM32F446xC/E
174/202 DocID027107 Rev 6
Figure 66. SD default mode
AI
#+
$#-$
OUTPUT
T/6$ T/($
Table 105. Dynamic characteristics: SD / MMC characteristics(1)(2)
Symbol Parameter Conditions Min Typ Max Unit
fPP Clock frequency in data transfer mode - 0 - 50 MHz
- SDIO_CK/fPCLK2 frequency ratio - - - 8/3 -
tW(CKL) Clock low time fpp =50MHz 9.5 10.5 -
ns
tW(CKH) Clock high time fpp =50MHz 8.5 9.5 -
CMD, D inputs (referenced to CK) in MMC and SD HS mode
tISU Input setup time HS fpp =50MHz 1 - -
ns
tIH Input hold time HS fpp =50MHz 4.5 - -
CMD, D outputs (referenced to CK) in MMC and SD HS mode
tOV Output valid time HS fpp =50MHz - 12.5 13
ns
tOH Output hold time HS fpp =50MHz 11 - -
CMD, D inputs (referenced to CK) in SD default mode
tISUD Input setup time SD fpp =25MHz 2.5 - -
ns
tIHD Input hold time SD fpp =25MHz 5.5 - -
CMD, D outputs (referenced to CK) in SD default mode
tOVD Output valid default time SD fpp =24MHz -3.54
ns
tOHD Output hold default time SD fpp =24MHz 2- -
1. Guaranteed based on test during characterization.
2. VDD = 2.7 to 3.6 V.
DocID027107 Rev 6 175/202
STM32F446xC/E Electrical characteristics
175
6.3.29 RTC characteristics
Table 106. Dynamic characteristics: eMMC characteristics VDD = 1.7 V to 1.9 V(1)(2)
Symbol Parameter Conditions Min Typ Max Unit
fPP Clock frequency in data transfer mode - 0 - 50 MHz
- SDIO_CK/fPCLK2 frequency ratio - - - 8/3 -
tW(CKL) Clock low time fpp =50MHz 9.5 10.5 -
ns
tW(CKH) Clock high time fpp =50MHz 8.5 9.5 -
CMD, D inputs (referenced to CK) in eMMC mode
tISU Input setup time HS fpp =50MHz 0.5 - -
ns
tIH Input hold time HS fpp =50MHz 7.5 - -
CMD, D outputs (referenced to CK) in eMMC mode
tOV Output valid time HS fpp =50MHz - 13.5 14.5
ns
tOH Output hold time HS fpp =50MHz 12 - -
1. Guaranteed based on test during characterization.
2. VDD = 2.7 to 3.6 V.
Table 107. RTC characteristics
Symbol Parameter Conditions Min Max
-f
PCLK1/RTCCLK frequency ratio Any read/write operation
from/to an RTC register 4-
Package information STM32F446xC/E
176/202 DocID027107 Rev 6
7 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
7.1 LQFP64 package information
Figure 67. LQFP64-10x10 mm 64 pin low-profile quad flat package outline
1. Drawing is not to scale
:B0(B9
$
$
$
6($7,1*3/$1(
FFF &
E
&
F
$
/
/
.
,'(17,),&$7,21
3,1
'
'
'
H







(
(
(
*$8*(3/$1(
PP
Table 108. LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
DocID027107 Rev 6 177/202
STM32F446xC/E Package information
199
Figure 68. LQFP64 Recommended footprint
1. Drawing is not to scale.
2. Dimensions are in millimeters.
D 11.800 12.000 12.200 0.4646 0.4724 0.4803
D1 9.800 10.000 10.200 0.3858 0.3937 0.4016
D3 - 7.500 - - 0.2953 -
E 11.800 12.000 12.200 0.4646 0.4724 0.4803
E1 9.800 10.000 10.200 0.3858 0.3937 0.4016
E3 - 7.500 - - 0.2953 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
K 0°3.5°7° 0°3.5°7°
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 108. LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max



 










AIC
Package information STM32F446xC/E
178/202 DocID027107 Rev 6
Device marking for LQFP64
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 69. LQFP64 marking example (package top view)
1. Parts marked as “ES”, "E" or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
06Y9
670)
$
<::
5HYLVLRQFRGH
'DWHFRGH
3LQLGHQWLILHU
3URGXFWLGHQWLILFDWLRQ
5(7
DocID027107 Rev 6 179/202
STM32F446xC/E Package information
199
7.2 LQFP100 package information
Figure 70. LQFP100, 14 x 14 mm 100-pin low-profile quad flat package outline
1. Drawing is not to scale.
E
)$%.4)&)#!4)/.
0).
'!5'%0,!.%
MM
3%!4).'0,!.%
$
$
$
%
%
%
+
CCC #
#




 

,?-%?6
!
!
!
,
,
C
B
!
Table 109. LQPF100, 14 x 14 mm 100-pin low-profile quad flat
package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 15.800 16.000 16.200 0.6220 0.6299 0.6378
D1 13.800 14.000 14.200 0.5433 0.5512 0.5591
D3 - 12.000 - - 0.4724 -
E 15.800 16.000 16.200 0.6220 0.6299 0.6378
Package information STM32F446xC/E
180/202 DocID027107 Rev 6
Figure 71. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat
recommended footprint
1. Dimensions are expressed in millimeters.
E1 13.800 14.000 14.200 0.5433 0.5512 0.5591
E3 - 12.000 - - 0.4724 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0°3.5°7° 0°3.5°7°
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 109. LQPF100, 14 x 14 mm 100-pin low-profile quad flat
package mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
 
 

 
 




AIC
DocID027107 Rev 6 181/202
STM32F446xC/E Package information
199
Device marking for LQFP100 package
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 72. LQFP100 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
06Y9
670)
9&7 $
3URGXFWLGHQWLILFDWLRQ
5HYLVLRQFRGH
::
<
'DWHFRGH
3LQLGHQWLILHU
Package information STM32F446xC/E
182/202 DocID027107 Rev 6
7.3 LQFP144 package information.
Figure 73. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package outline
1. Drawing is not to scale.
E
)$%.4)&)#!4)/.
0).
'!5'%0,!.%
MM
3%!4).'
0,!.%
$
$
$
%
%
%
+
CCC #
#




 

!?-%?6
!
!
!
,
,
C
B
!
H
,'(17,),&$7,21
3,1
*$8*(3/$1(
PP
'
'
'
(
(
(
.
FFF &




 

$B0(B9
$
$
$
/
/
F
E
$
DocID027107 Rev 6 183/202
STM32F446xC/E Package information
199
Table 110. LQFP144, 20 x 20 mm, 144-pin low-profile quad flat package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 21.800 22.000 22.200 0.8583 0.8661 0.874
D1 19.800 20.000 20.200 0.7795 0.7874 0.7953
D3 - 17.500 - - 0.689 -
E 21.800 22.000 22.200 0.8583 0.8661 0.8740
E1 19.800 20.000 20.200 0.7795 0.7874 0.7953
E3 - 17.500 - - 0.6890 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0°3.5°7° 0°3.5°7°
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Package information STM32F446xC/E
184/202 DocID027107 Rev 6
Figure 74. LQFP144 recommended footprint
1. Dimensions are expressed in millimeters.


 




DLH






DocID027107 Rev 6 185/202
STM32F446xC/E Package information
199
Device marking for LQFP144 package
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 75. LQFP144 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
06Y9
'DWHFRGH
3LQLGHQWLILHU
670)=(7
$
3URGXFWLGHQWLILFDWLRQ
5HYLVLRQFRGH
<::
2SWLRQDOJDWHPDUN
Package information STM32F446xC/E
186/202 DocID027107 Rev 6
7.4 UFBGA144 7 x 7 mm package information
Figure 76. UFBGA144 - 144-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball
grid array package outline
1. Drawing is not in scale.
Table 111. UFBGA144 - 144-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball
grid array package mechanical data
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
A 0.460 0.530 0.600 0.0181 0.0209 0.0236
A1 0.050 0.080 0.110 0.0020 0.0031 0.0043
A2 0.400 0.450 0.500 0.0157 0.0177 0.0197
A3 - 0.130 - - 0.0051 -
A4 0.270 0.320 0.370 0.0106 0.0126 0.0146
b 0.230 0.280 0.320 0.0091 0.0110 0.0126
D 6.950 7.000 7.050 0.2736 0.2756 0.2776
D1 5.450 5.500 5.550 0.2146 0.2165 0.2185
E 6.950 7.000 7.050 0.2736 0.2756 0.2776
E1 5.450 5.500 5.550 0.2146 0.2165 0.2185
e - 0.500 - - 0.0197 -
F 0.700 0.750 0.800 0.0276 0.0295 0.0315
$$6B0(B9
6HDWLQJSODQH
$
H)
)
'
0
EEDOOV
$
(
7239,(:%277209,(:

H
$
$
<
;
=
GGG =
'
(
HHH = < ;
III
0
0=
$
$
$EDOO
LGHQWLILHU
$EDOO
LQGH[DUHD
DocID027107 Rev 6 187/202
STM32F446xC/E Package information
199
Figure 77. UFBGA144 - 144-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball
grid array package recommended footprint
ddd - - 0.100 - - 0.0039
eee - - 0.150 - - 0.0059
fff - - 0.050 - - 0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 112. UFBGA144 recommended PCB design rules (0.50 mm pitch BGA)
Dimension Recommended values
Pitch 0.50 mm
Dpad 0.280 mm
Dsm 0.370 mm typ. (depends on the soldermask
registration tolerance)
Stencil opening 0.280 mm
Stencil thickness Between 0.100 mm and 0.125 mm
Pad trace width 0.120 mm
Table 111. UFBGA144 - 144-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball
grid array package mechanical data (continued)
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
Ϭ^ͺ&Wͺsϭ
'SDG
'VP
Package information STM32F446xC/E
188/202 DocID027107 Rev 6
Device marking for UFBGA144 7 x 7 mm package
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 78. UQFP144 7 x 7 mm marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
06Y9
670)
< ::
3URGXFW
LGHQWLILFDWLRQ
$GGLWLRQDO
LQIRUPDWLRQ
'DWHFRGH
%DOO$
LQGHQWLILHU
=(+
$
DocID027107 Rev 6 189/202
STM32F446xC/E Package information
199
7.5 UFBGA144 10 x 10 mm package information
Figure 79. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball
grid array package outline
1. Drawing is not to scale.
Table 113. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball
grid array package mechanical data
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
A 0.460 0.530 0.600 0.0181 0.0209 0.0236
A1 0.050 0.080 0.110 0.0020 0.0031 0.0043
A2 0.400 0.450 0.500 0.0157 0.0177 0.0197
A3 0.050 0.080 0.110 - 0.0051 -
A4 0.270 0.320 0.370 0.0106 0.0126 0.0146
b 0.360 0.400 0.440 0.0091 0.0110 0.0130
D 9.950 10.000 10.050 0.2736 0.2756 0.2776
D1 8.750 8.800 8.850 0.2343 0.2362 0.2382
E 9.950 10.000 10.050 0.2736 0.2756 0.2776
E1 8.750 8.800 8.850 0.2343 0.2362 0.2382
e 0.750 0.800 0.850 - 0.0197 -
$<B0(B9
6HDWLQJSODQH
$
H)
)
'
0
EEDOOV
$
(
7239,(:%277209,(:

H
$
$
%
$
&
GGG =
'
(
HHH & $ %
III
0
0&
$
$
$EDOO
LGHQWLILHU
$EDOO
LQGH[DUHD
Package information STM32F446xC/E
190/202 DocID027107 Rev 6
Figure 80. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball
grid array package recommended footprint
F 0.550 0.600 0.650 0.0177 0.0197 0.0217
ddd - - 0.080 - - 0.0039
eee - - 0.150 - - 0.0059
fff - - 0.080 - - 0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 114. UFBGA144 recommended PCB design rules (0.80 mm pitch BGA)
Dimension Recommended values
Pitch 0.80 mm
Dpad 0.400 mm
Dsm 0.550 mm typ. (depends on the soldermask
registration tolerance)
Stencil opening 0.400 mm
Stencil thickness Between 0.100 mm and 0.125 mm
Pad trace width 0.120 mm
Table 113. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball
grid array package mechanical data (continued)
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
ϬϮzͺ&Wͺsϭ
'SDG
'VP
DocID027107 Rev 6 191/202
STM32F446xC/E Package information
199
Device marking for UFBGA144 10 x 10 mm package
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 81. UQFP144 10 x 10 mm marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
06Y9
670)
< ::
3URGXFW
LGHQWLILFDWLRQ
$GGLWLRQDO
LQIRUPDWLRQ
'DWHFRGH
%DOO$
LQGHQWLILHU
=(-
$
Package information STM32F446xC/E
192/202 DocID027107 Rev 6
7.6 WLCSP81 package information
Figure 82. WLCSP81 - 81-pin, 3.693 x 3.815 mm, 0.4 mm pitch wafer level chip scale
package outline
1. Drawing is not to scale.
Table 115. WLCSP81- 81-pin, 3.693 x 3.815 mm, 0.4 mm pitch wafer level chip scale
package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 0.600 - - 0.0236
A1 - 0.170 - - 0.0067 -
A2 - 0.380 - - 0.0150 -
A3(2) - 0.025 - - 0.0010 -
b(3) 0.220 0.250 0.280 0.0087 0.0098 0.0110
D 3.658 3.693 3.728 0.1440 0.1454 0.1468
E 3.780 3.815 3.850 0.1488 0.1502 0.1516
e - 0.400 - - 0.0157 -
e1 - 3.200 - - 0.1260 -
e2 - 3.200 - - 0.1260 -
$7B0(B9
7RSYLHZ
:DIHUEDFNVLGH
6LGHYLHZ
'HWDLO$
%RWWRPYLHZ
%XPSVLGH
$EDOO
ORFDWLRQ
$
'HWDLO$
URWDWHGE\
'
6HDWLQJSODQH
$
$
E
(
H
H
H
*
)
H
$
$EDOO
ORFDWLRQ
=
DDD
EEE =
HHH =
-
$
; <
TGGG0
=
TFFF0
=
DocID027107 Rev 6 193/202
STM32F446xC/E Package information
199
Figure 83. WLCSP81- 81-pin, 4.4084 x 3.7594 mm, 0.4 mm pitch wafer level chip scale
package recommended footprint
F - 0.2465 - - 0.0097 -
G - 0.3075 - - 0.0121 -
aaa - - 0.100 - - 0.0039
bbb - - 0.100 - - 0.0039
ccc - - 0.100 - - 0.0039
ddd - - 0.050 - - 0.0020
eee - - 0.050 - - 0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. Back side coating
3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
Table 116. WLCSP81 recommended PCB design rules (0.4 mm pitch)
Dimension Recommended values
Pitch 0.4 mm
Dpad 0.225 mm
Dsm 0.290 mm typ. (depends on the soldermask
registration tolerance)
Stencil opening 0.250 mm
Stencil thickness 0.100 mm
Table 115. WLCSP81- 81-pin, 3.693 x 3.815 mm, 0.4 mm pitch wafer level chip scale
package mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
$7B)3B9
'SDG
'VP
Package information STM32F446xC/E
194/202 DocID027107 Rev 6
Device marking for WLCSP81 package
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 84. WLCSP81 10 x 10 mm marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
06Y9
670)
< ::
3URGXFW
LGHQWLILFDWLRQ
$GGLWLRQDO
LQIRUPDWLRQ
'DWHFRGH
3LQLGHQWLILHU
0&<
$
DocID027107 Rev 6 195/202
STM32F446xC/E Package information
199
7.7 Thermal characteristics
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max x Θ
JA)
Where:
TA max is the maximum ambient temperature in °C,
•Θ
JA is the package junction-to-ambient thermal resistance, in °C/W,
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org.
Table 117. Package thermal characteristics
Symbol Parameter Value Unit
Θ
JA
Thermal resistance junction-ambient
LQFP64 - 10 × 10 mm 46
°C/W
Thermal resistance junction-ambient
LQFP100 - 14 × 14 mm / 0.5 mm pitch 42
Thermal resistance junction-ambient
LQFP144 - 20 × 20 mm / 0.5 mm pitch 33
Thermal resistance junction-ambient
UFBGA144 - 7 × 7 mm / 0.5 mm pitch 51
Thermal resistance junction-ambient
UFBGA144 - 10 × 10 mm / 0.8 mm pitch 48
Thermal resistance junction-ambient
WLCSP81 48
Part numbering STM32F446xC/E
196/202 DocID027107 Rev 6
8 Part numbering
For a list of available options (speed, package, etc.) or for further information on any aspect
of this device, please contact your nearest ST sales office.
Table 118. Ordering information scheme
Example: STM32 F 446 V C T 6 xxx
Device family
STM32 = ARM-based 32-bit microcontroller
Product type
F = general-purpose
Device subfamily
446= STM32F446xC/E,
Pin count
M = 81 pins
R = 64 pins
V = 100 pins
Z = 144 pins
Flash memory size
C=256 Kbytes of Flash memory
E=512 Kbytes of Flash memory
Package
H = UFBGA (7 x 7 mm)
J = UFBGA (10 x 10 mm)
T = LQFP
Y = WLCSP
Temperature range
6 = Industrial temperature range, –40 to 85 °C.
7 = Industrial temperature range, –40 to 105 °C.
Options
xxx = programmed parts
TR = tape and reel
DocID027107 Rev 6 197/202
STM32F446xC/E Application block diagrams
199
Appendix A Application block diagrams
A.1 USB OTG full speed (FS) interface solutions
Figure 85. USB controller configured as peripheral-only and used in Full speed mode
1. External voltage regulator only needed when building a VBUS powered device.
2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance
thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.
Figure 86. USB controller configured as host-only and used in full speed mode
1. The current limiter is required only if the application has to support a VBUS powered device. A basic power
switch can be used if 5 V are available on the application board.
2. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance
thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.
966
9WR9''86%
9ROWDJHUHJXODWRU
9''86%
26&B,1
26&B287
06Y9
9''
'3
3$3%
3$3% '0
86%6WG%FRQQHFWRU
9%86
34-&XX
6$$
6"53
$0
633
53"3TD!CONNECTOR
$-
'0)/)21
'0)/
%.
/VERCURRENT
60WR
/3#?).
/3#?/54
-36
#URRENTLIMITER
POWERSWITCH
0!0"
0!0"
Application block diagrams STM32F446xC/E
198/202 DocID027107 Rev 6
Figure 87. USB controller configured in dual mode and used in full speed mode
1. External voltage regulator only needed when building a VBUS powered device.
2. The current limiter is required only if the application has to support a VBUS powered device. A basic power
switch can be used if 5 V are available on the application board.
3. The ID pin is required in dual role only.
4. The same application can be developed using the OTG HS in FS mode to achieve enhanced performance
thanks to the large Rx/Tx FIFO and to a dedicated DMA controller.
34-&XX
6$$
6"53
$0
633
0!0"
0!0"
0!0"
53"MICRO!"CONNECTOR
$-
'0)/)21
'0)/
%.
/VERCURRENT
60WR
6TO6
$$
VOLTAGEREGULATOR 
6$$
)$
0!0"
/3#?).
/3#?/54
-36
#URRENTLIMITER
POWERSWITCH
DocID027107 Rev 6 199/202
STM32F446xC/E Application block diagrams
199
A.2 USB OTG high speed (HS) interface solutions
Figure 88. USB controller configured as peripheral, host, or dual-mode
and used in high speed mode
1. It is possible to use MCO1 or MCO2 to save a crystal. It is however not mandatory to clock the
STM32F446xx with a 24 or 26 MHz crystal when using USB HS. The above figure only shows an example
of a possible connection.
2. The ID pin is required in dual role only.
$0
34-&XX
$-
6"53
633
$-
$0
)$
53"
53"(3
/4'#TRL
&30(9
5,0)
(IGHSPEED
/4'0(9
5,0)?#,+
5,0)?$;=
5,0)?$)2
5,0)?340
5,0)?.84
NOTCONNECTED
CONNECTOR
-#/OR-#/
OR-(Z84
0,, 84
8)
-36
Revision history STM32F446xC/E
200/202 DocID027107 Rev 6
Revision history
Table 119. Document revision history
Date Revision Changes
17-Feb-2015 1 Initial release.
16-Mar-2015 2
Added note 2 inside Table 2
Updated Table 11 , Table 23, Table 24, Table 25, Table 26, Table 30,
Table 51, Table 52, Table 53, and Table 61
Added condition inside Typical and maximum current consumption and
Additional current consumption
Added FMPI2C characteristics
Added Table 62 and Figure 35
29-May-2015 3
Updated:
Section 6.3.15: Absolute maximum ratings (electrical sensitivity)
Section 7: Package information
Table 2: STM32F446xC/E features and peripheral counts
Table 13: STM32F446xC/xE WLCSP81 ballout
Figure 53: ESD absolute maximum ratings
Figure 54: Synchronous multiplexed NOR/PSRAM read timings
Added:
Figure 78: UQFP144 7 x 7 mm marking example (package top view),
Figure 81: UQFP144 10 x 10 mm marking example (package top
view),
Figure 84: WLCSP81 10 x 10 mm marking example (package top
view)
10-Aug-2015 4
Updated:
Figure 14: STM32F446xC/xE UFBGA144 ballout
Table 10: STM32F446xx pin and ball descriptions
Table 18: VCAP_1/VCAP_2 operating conditions
Section 3.15: Power supply schemes
Section 6.3.2: VCAP_1/VCAP_2 external capacitor
Added:
Figure 5: VDDUSB connected to an external independent power
supply
Notes 3 and 4 below Figure 18: Power supply scheme
DocID027107 Rev 6 201/202
STM32F446xC/E Revision history
201
03-Nov-2015 5
Updated:
Introduction;
Table 2: STM32F446xC/E features and peripheral counts
Table 43: Main PLL characteristics
Title of Table 45: PLLISAI characteristics
Table 109: LQPF100, 14 x 14 mm 100-pin low-profile quad flat
package mechanical data
Table 118: Ordering information scheme
Figure 10: STM32F446xC/xE LQFP64 pinout
Figure 11: STM32F446xC/xE LQFP100 pinout
Added:
Figure 77: UFBGA144 - 144-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine
pitch ball grid array package recommended footprint
Figure 111: UFBGA144 - 144-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine
pitch ball grid array package mechanical data
02-Sep-2016 6
Updated:
Section 7: Package information;
Table 30: Typical current consumption in Run mode, code with data
processing running from Flash memory or RAM, regulator ON (ART
accelerator enabled except prefetch), VDD=1.7 V
Table 74: ADC characteristics
Table 85: DAC characteristics
Added:
Note 3 in Figure 33: Recommended NRST pin protection
Note 4 in Table 41: HSI oscillator characteristics
Table 119. Document revision history (continued)
Date Revision Changes
STM32F446xC/E
202/202 DocID027107 Rev 6
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2016 STMicroelectronics – All rights reserved