Standard Power MOSFETs IRF630, IRF631, IRF632, IRF633 File Number 1578 Power MOS Field-Effect Transistors N-Channel Enhancement-Mode Power Field-Effect Transistors 8.0A and 9.0A, 150V-200V fos(on) = 0.4Q and0.60Q Features: @ SOA is power-dissipation limited Nanosecond switching speeds @ Linear transfer characteristics @ High input impedance B Majority carrier device The {SRF630, IRF631, IRF632 and IRF633 are n-channel enhancement-mode silicon-gate power field- effect transistors designed for applications such as switch- N-CHANNEL ENHANCEMENT MODE D Ss od! 3 92CS-33741 TERMINAL DIAGRAM TERMINAL DESIGNATION ing regulators, switching converters, motor drivers, relay SOURCE drivers, and drivers for high-power bipolar switching tran- DRAIN al = DRAIN sistors requiring high speed and low gate-drive power. {FLANGE} C) rs These types can be operated directly from integrated circuits. EW GATE The IRF-types are supplied in the JEDEC TO-220AB plastic 928-39828 package. JEDEC TO-220AB Absolute Maximum Ratings Parameter IRF630 IRF631 IRF632 IRF633 Units Vos Drain - Source Voltage 200 150 200 150 v VOGR Drain - Gate Voltage (gg = 20K) 200 150 20C) 150 Vv ip @Tc = 25C Continuous Drain Current Ex 9.0 8.0 8.0 A fp @ Te = 100C Continuous Orain Current 6.0 6.0 5.0 5.0 A IDM Pulsed Drain Current @ 36 36 32 32 A V6s Gate - Source Voltage +20 Vv Pp @Tc = 28C Max. Power Dissipation 78 {See Fig. 14] w Linear Derating Factor 0.6 {See Fig. 14} wee lim Inductive Current, Clamped. (See Fig. 15 and 16) = 1004H A 36 36 | 32 L 32 Te Storoge Temperature Range 85 to 150 *c Lead Temperature 300 (0.063 in. (1.6mm) from case for 10s) c 3-164Standard Power MOSFETs IRF630, IRF631, IRF632, IRF633 Electrical Characteristics @T = 25C (Unless Otherwise Specified) Parameter Type Min. | Typ. | Max. Units Test Conditions BVpgg Drain - Source Breakdown Voltage IRF630 - wapezz2 {| 200 | - | v Ves = OV IRF631 = inf633 | 15 - - v ip = 250uA VGSith) Gate Threshold Voltage ALL 2.0 = 4.0 v Vos = Vas-'p = 2504 'gss__ Gate-Source Leakage Forward ALL = = 500 nA VGs = 20V css _ Gate-Source Leakage Reverse ALL - - |[-500 nA Vas = -20V pss Zero Gate Voltage Drain Current ALL = | 280 BA Vog = Max. Rating. Vgg = OV = = | 1000 f yA Vpg = Max. Rating x 0.8, Vag = OV. To = 125C {Dion) In-State Brain Current @ IRFEIO " vareat | 2 | - | A Vos ? 'oiont * Rostontmax. Yas * OV IAF632 | 3g _ A IRF633 : RpSion) Static Drain-Source On-State IRF630 _ Resistance @ (RFG31 0.25 | 04 | o Une = 10V. Ip = 6.00 mres2 | | oa | oe 2 Gs oe IRF633 . . os Forward Transconductance @) ALL 30 | 48 $i Vos > 'piont *Fpston! max. 'p = 9-04 Cigs Input Capacitance ALL = 600 | pF Vag * OV. Vag = 25V.f = 1.0 MHz Coss Cutput Capacitance ALL = 250 = pF See Fig. 10 Criss Reverse Transfer Capacitance ALL - 80 _ pF tgiony _ Turn-On Delay Time ALL 7 = 30 ns Vop = 90. Ip = .0A,Z, = 152 i Rise Time ALL _ = 50 ns See Fig. 17 tdotty Turn-Off Delay Time ALL = - 50 ns IMOSFET suntehing umes are essentialty 1 Fall Time ALL = 40 ae independent of operating temperature.) Qa Total Gate Charge _ fa Yes = 10, \p = 128, Vos = 0.8 Max. Rating. 8 (Gate-Source Plus Gate-Drain) alt 19 30 " See Fig. 18 for test circuit. (Gate charge 1s essentially f Qgs Gate-Source Charge ALL _ 10 15 ac independent of operating temperature. | Qo Gate-Drain (Millec} Charge ALL = 3.0 14 nc Up imternal Orain Inductance ~ 3.5 - nH Measured from the Modified MOSFET contact screw an tab symbol showing the to center of die internal device ALL = 45 - nH Measured from the drain lead, 6mm (0.25 > in.) from package to center of die w ls tnternat Source Inductance ALL ~ 7.5 - nH Measured from the G source fead, 6mm is (0.25 in.| tram package to source $ bonding pad Thermal Resistance Rinsc Junetion-to-Case ALL ~ ~ | 1.67 | C/W : Rincg _Case-to-Sink ALL - 1.0 = oC AW Mounting surface flat. smooth, and greased. RinJA Junction-to-Ambient ALL = = 80 oC Free Air Operation Source-Drain Diode Ratings and Characteristics Is Continuaus Source Current wmre30 [| ~ | a0 A Modified MOSFET symbol (Body Diode} IRF631 ; showing the integral IRFES2 reverse P-N junction rectifier. Oo iRF633 | | Bo] &# isn Puise Source Current IRFE30 (Body Diode! @ tRF631 7 ~ 36 A S IRF632 s iaF633 | ~ | * a Vso Diode Forward Voltage @ (RF630 _ _ 2.0 Vv Te = 28C. Ig = 9.08, Vag = OV IRF631 IRF632 _ ~ areas | ~ | 18 v Tc = 25C, Ig = 8.0A, Veg = OV tyr Reverse Recovery Time ALL ~ 450] - ns Ty = 150C lp = 9.04, dig/dt = 100 Ais Qe Reverse Recovered Charge ALL - 3.0 - uC Ty = 150C, Ip = 9.0A, die/dt = 100 Aius ton Forward Turn-on Time ALL intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by Lg + Lp. WTy = 26C to 150C. @) Pulse Test: Putse width < 300zs, Duty Cycle < 2%, Repetitive Rating: Putse width limited by max. junction temperature. See Transient Thermal Impedance Curve (Fig. 5}. 3-165Standard Power MOSFETs IRF630, IRF631, IRF632, IRF633 3-166 80 uh PULSE ip, DRAIN CURRENT (AMPERES) 0 20 40 60 80 Vps. DRAIN-TQ-SOURCE VOLTAGE (VOLTS) Fig. 1 Typical Output Characteristics Ip, ORAIW CURRENT (AMPERES) a 1 2 3 4 Vps. DRAIN-TO-SQUACE VOLTAGE (VOLTS! Fig. 3 Typical Saturation Characteristics ~ s w 2 & SINGLE PULSE THERMAL IMPEDANCE) Zrnact/ Rinse. NORMALIZED EFFECTIVE TRANSIENT THERMAL IMPEDANCE (PER UNIT} e a to# 2 S193 2 108 ip. DRAIN CURRENT (AMPERES) 5 10-2 ig, DRAIN CURRENT {AMPERES} 19 2 5 Ww 50 16 80s PULSE Vos > 'otont * Roston) max. 0 1 2 a 4 5 6 ? Vas. GATE-TO-SQURCE VOLTAGE (VOLTS) Fig. 2 Typical Transfer Characteristics AREA IS LIMITED BY Te = 28C Ty = 150C MAX. I Rinse 1.6? C/W. PULSE 100 200 Vos. ORAIN.TO- SOURCE VOLTAGE (VOLTS) 500 Fig. 4 Maximum Safe Operating Area 1. DUTY FACTOR, D = iz . 2. PER UNIT BASE = Ainie = 1.67 DEG. CW. 3. Tym - Te = Pom Zinscltl. 2 5 10-1 2 5 1 2 5 1 11, SQUAAE WAVE PULSE DURATION (SECONDS} Fig. 5 Maximum Effective Transient Thermal impedance, Junction-to-Case Vs. Pulse DurationStandard Power MOSFETs IRF630, IRF631, IRF632, IRF633 3 we on Ty= 150C nm 3 5 a1, TRANSCONDUCTANCE {SIEMENS} pr, REVERSE DRAIN CURRENT (AMPERES) Vos > !oton) * Roston} 2 Tye 10 a 2 4 6 8 10 0 1 2 3 4 Ip, DRAIN CURRENT (AMPERES) Vgp. SOURCE-TO-DRAIN VOLTAGE (VOLTS) Fig. 6 Typical Transconductance Vs. Drain Current Fig. 7 Typical Source-Drain Diode Forward Voltage 125 22 1.15. = 4 2 a BVpgs. DRAIN-TO-SOURCE BREAKDOWN VOLTAGE (NORMALIZED) Apsjon). ORAIN-TO-SOUACE ON RESISTANCE (NORMALIZED) OFS 02 ac 0 40 80 120 160 -40 0 40 80 120 Ty, JUNCTION TEMPERATURE (C} Ty, JUNCTION TEMPERATURE (C) Fig. 8 Breakdown Voltage Vs. Temperature Fig. 9 ~ Normalized On-Resistance Vs. Temperature 2000 =0 t= MHz 1600 Cigg = Cop + Cy, Cas a Vos = 40 Cre = C = re Ce Cad g = ov _ Cogs = Cas + we ( Ta * Cy & | Vpg= leav. 1RF630, 632 8 1200 = Cas + Cog z z > 4 rr 5 2 S Z 2 S oo 3 o 2 o w t S 400 8 Ip 212A FOR TEST CIRCUIT SEE FIGURE 18 0 10 ~ 30 40 50 0 8 16 24 32 40 Vos, ORAIN-TO-SOURCE VOLTAGE (VOLTS) 0,. TOTAL GATE CHARGE (nC) Fig. 10 Typical Capacitance Vs. Drain-to-Source Voltage Fig. 11 Typical Gate Charge Vs. Gate-to-Source Voltage 3-167Standard Power MOSFETs 3-168 PRE 08 Ba z 3 e Vgg = 10V 8 3 at & oe 3 g 2 z z aw 8 2 s 2 oa o - =z z Vgg = 200 | os * % & 02 z a Rosion) MEASURED WITH CURRENT PULSE OF | 2.0 us DURATION. (NITIAL Tye 26C. (HEATING EFFECT OF 2.0 us PULSE IS MINIMAL } : : , Fr a te 20 38 40 Ig, GRAIN CURRENT (AMPERES) Fig. 12 ~ Typical On-Resistance Vs. Drain Current 80 70 6a 50 40 30 Pp. POWER DISSIPATION (WATTS) a 20 40 IRF630, IRF631, IRF632, IRF633 tRF630, 631 HRF632, 633 i ig, GRAIN CURRENT (AMPERES) 9 re) 56 15 160 (26 15 Tc. CASE TEMPERATURE (0C) Fig. 13 Maximum Drain Current Vs. Case Temperature 80 tag 126 140 Tg, CASE TEMPERATURE (C) Fig. 14 Power Vs. Temperature Derating Curve VARY ty TO OBTAIN REQUIRED PEAK 1, OUT Fig. 15 - Clamped inductive Test Circuit 4 Vp = 90 ay TkHe Yo TO SCOPE Fig. 17 Switching Time Test Circuit E, *0.58V pss Ve * 0.758Vns5 Fig. 16 ~ Clamped Inductive Waveforms O Wos (ISOLATED SupPcyi CURRENT REGULATOR SAME TYPE 12V T I 50 KS? t O2put ' BATTERY O -Yps 1D CURRENT SHUNT CURRENT = SHUNT Fig. 18 Gate Charge Test Circuit