KAI-1020 IMAGE SENSOR
1000 (H) X 1000 (V) INTERLINE CCD IMAGE SENSOR
JUNE 22, 2012
DEVICE PERFORMANCE SPECIFICATION
REVISION 1.0 PS-0019
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 2
TABLE OF CONTENTS
Summary Specification ......................................................................................................................................................................................... 6
Description .................................................................................................................................................................................................... 6
Features ......................................................................................................................................................................................................... 6
Applications .................................................................................................................................................................................................. 6
Ordering Information ............................................................................................................................................................................................ 7
Device Description ................................................................................................................................................................................................. 8
Architecture .................................................................................................................................................................................................. 8
Physical Description .................................................................................................................................................................................... 9
Pin Description and Device Orientation ............................................................................................................................................ 9
Imaging Performance .......................................................................................................................................................................................... 12
Optical Specification ................................................................................................................................................................................ 12
CCD Specifications ................................................................................................................................................................................... 12
CDS Output Specification ....................................................................................................................................................................... 12
General Monochrome ........................................................................................................................................................................... 12
General Color ............................................................................................................................................................................................. 13
Power ........................................................................................................................................................................................................... 13
Typical Performance Curves ............................................................................................................................................................................ 14
Monochrome Quantum Efficiency ....................................................................................................................................................... 14
Color (Bayer RGB) Quantum Efficiency ............................................................................................................................................... 14
Photoresponse versus Angle ................................................................................................................................................................. 15
Sensor Power ............................................................................................................................................................................................. 15
Frame Rate ................................................................................................................................................................................................. 16
Defect Definitions ................................................................................................................................................................................................ 18
Specifications............................................................................................................................................................................................. 18
Defect Map............................................................................................................................................................................................. 18
Test Definitions ..................................................................................................................................................................................................... 19
Test Conditions ......................................................................................................................................................................................... 19
Test System Conversion Factors....................................................................................................................................................... 19
Tests ............................................................................................................................................................................................................. 19
Dark Field Center Uniformity ............................................................................................................................................................ 19
Dark Field Global Uniformity ............................................................................................................................................................. 19
Global Uniformity ................................................................................................................................................................................. 20
Global Peak to Peak Uniformity ........................................................................................................................................................ 20
Center Uniformity ................................................................................................................................................................................ 20
Dark Field Defect Test ........................................................................................................................................................................ 20
Bright Field Defect Test ...................................................................................................................................................................... 21
Bright Field Minor Defect Test.......................................................................................................................................................... 22
Bright Field Column Average Magnitude Test .............................................................................................................................. 22
Test Regions of Interest ......................................................................................................................................................................... 23
Test Sub Regions of Interest ............................................................................................................................................................. 23
Signal Level Calculation ...................................................................................................................................................................... 24
Center Region of Interest .................................................................................................................................................................. 25
Zones 1 and 2......................................................................................................................................................................................... 26
Operation .................................................................................................................................................................................................................. 27
Single or Dual output............................................................................................................................................................................... 27
The KAI-1020 Pixel ................................................................................................................................................................................... 28
High Level Block Diagram ....................................................................................................................................................................... 29
Main Timing ................................................................................................................................................................................................ 30
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 3
Vertical Frame Timing ............................................................................................................................................................................. 30
Horizontal Line Timing ............................................................................................................................................................................ 31
Single Output ........................................................................................................................................................................................ 32
Dual Output ........................................................................................................................................................................................... 33
Electronic Shutter ..................................................................................................................................................................................... 34
Substrate Voltage ................................................................................................................................................................................ 34
Substrate Voltage and Antiblooming.............................................................................................................................................. 34
Electronic Shutter Timing ................................................................................................................................................................... 35
Fast Dump .................................................................................................................................................................................................. 36
Binning and Interlaced Modes............................................................................................................................................................... 37
Correlated Double Sampling (CDS) ...................................................................................................................................................... 38
CDS Timing Edge Alignment .............................................................................................................................................................. 38
Disabling the CDS ................................................................................................................................................................................. 39
Timing and Voltage Specifications ....................................................................................................................................................... 40
Absolute Maximum Ratings ............................................................................................................................................................... 40
Timing ...................................................................................................................................................................................................... 40
Bias Voltages ......................................................................................................................................................................................... 40
Power Up Sequence ............................................................................................................................................................................. 41
Pulse Amplitudes .................................................................................................................................................................................. 41
Timing Examples ....................................................................................................................................................................................... 42
Progressive Scan ................................................................................................................................................................................... 42
Fast Line Dump ..................................................................................................................................................................................... 43
Interlaced Field Integration ............................................................................................................................................................ 44
Camera Design ........................................................................................................................................................................................................ 45
Low Level Block Diagram ........................................................................................................................................................................ 45
Horizontal CCD Drive Circuit ................................................................................................................................................................. 46
Vertical CCD ............................................................................................................................................................................................... 47
Electronic Shutter ..................................................................................................................................................................................... 48
CDS Timing Inputs .................................................................................................................................................................................... 49
CDS Output Circuit ................................................................................................................................................................................... 50
Power Supplies .......................................................................................................................................................................................... 51
KAI-1020 Evaluation Board ............................................................................................................................................................................... 52
Front Side ................................................................................................................................................................................................... 52
Back Side ..................................................................................................................................................................................................... 53
Schematics .................................................................................................................................................................................................. 54
KAI-1020 ................................................................................................................................................................................................. 54
Timing Logic ........................................................................................................................................................................................... 55
Output 1 ................................................................................................................................................................................................. 56
Output 2 ................................................................................................................................................................................................. 57
Automatic Offset and Power Supply ............................................................................................................................................... 58
Parts List ..................................................................................................................................................................................................... 59
Digital Output Connector ....................................................................................................................................................................... 60
Power Connector ...................................................................................................................................................................................... 61
Mode Switch .............................................................................................................................................................................................. 61
Exposure Switch ........................................................................................................................................................................................ 61
Substrate Voltage Trim ........................................................................................................................................................................... 62
Evaluation Board Notes .......................................................................................................................................................................... 62
Timing ...................................................................................................................................................................................................... 62
Output Channel .................................................................................................................................................................................... 62
Automatic Offset .................................................................................................................................................................................. 62
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 4
Oscilloscope Traces .................................................................................................................................................................................. 63
CDS Timing ............................................................................................................................................................................................. 63
Vertical Retrace .................................................................................................................................................................................... 64
Horizontal Retrace ............................................................................................................................................................................... 65
Storage and Handling .......................................................................................................................................................................................... 66
Storage Conditions................................................................................................................................................................................... 66
ESD ............................................................................................................................................................................................................... 66
Cover Glass Care and Cleanliness ......................................................................................................................................................... 66
Environmental Exposure ........................................................................................................................................................................ 66
Soldering Recommendations ................................................................................................................................................................ 66
Mechanical Drawings ........................................................................................................................................................................................... 67
Completed Assembly ............................................................................................................................................................................... 67
Pin Grid Array......................................................................................................................................................................................... 67
Leadless Chip Carrier ........................................................................................................................................................................... 68
Leadless Chip Carrier and Soldering ................................................................................................................................................ 68
Cover Glass ................................................................................................................................................................................................. 69
Pin Grid Array Cover Glass .................................................................................................................................................................. 69
Leadless Chip Carrier Cover Glass .................................................................................................................................................... 70
Glass Transmission ............................................................................................................................................................................... 71
Quality Assurance and Reliability .................................................................................................................................................................. 72
Quality and Reliability ............................................................................................................................................................................. 72
Replacement .............................................................................................................................................................................................. 72
Liability of the Supplier ........................................................................................................................................................................... 72
Liability of the Customer ........................................................................................................................................................................ 72
Test Data Retention ................................................................................................................................................................................. 72
Mechanical .................................................................................................................................................................................................. 72
Life Support Applications Policy .................................................................................................................................................................... 72
Revision Changes................................................................................................................................................................................................... 73
MTD/PS-0205 ............................................................................................................................................................................................. 73
PS-0019 ....................................................................................................................................................................................................... 74
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 5
TABLE OF FIGURES
Figure 1: Block Diagram ................................................................................................................................................................................ 8
Figure 2: Pin 1 Location ................................................................................................................................................................................. 9
Figure 3: PGA Package Pin Designations - Top View ........................................................................................................................... 10
Figure 4: LCC Package Pin Designations - Top View ............................................................................................................................ 11
Figure 5: Monochrome Quantum Efficiency .......................................................................................................................................... 14
Figure 6: Color (Bayer RGB) Quantum Efficiency .................................................................................................................................. 14
Figure 7: Photoresponse versus Angle .................................................................................................................................................... 15
Figure 8: Power ............................................................................................................................................................................................. 15
Figure 9: Frame Rate 1000 x 750 PixelsFigure 10: Frame Rate 1000 x 1000 Pixels ..................................................................... 16
Figure 11: Frame Rate 1000 x 250 pixelsFigure 12: Frame Rate 1000 x 500 Pixels ..................................................................... 16
Figure 13: Frame Rate 1000 x 1000 Pixels Interlaced .......................................................................................................................... 17
Figure 14: Test Sub Regions of Interest .................................................................................................................................................. 23
Figure 15: Regions of Interest ................................................................................................................................................................... 24
Figure 16: Center Region of Interest ....................................................................................................................................................... 25
Figure 17: Zones 1 and 2 ............................................................................................................................................................................. 26
Figure 18: Single or Dual Output Mode of Operation ......................................................................................................................... 27
Figure 19: Pixel .............................................................................................................................................................................................. 28
Figure 20: High Level Block Diagram ....................................................................................................................................................... 29
Figure 21: Timing Flow Chart ..................................................................................................................................................................... 30
Figure 22: Vertical Frame Timing .............................................................................................................................................................. 30
Figure 23: Horizontal Line Timing ............................................................................................................................................................. 31
Figure 24: Electronic Shutter Timing ....................................................................................................................................................... 35
Figure 25: Fast Dump timing ...................................................................................................................................................................... 36
Figure 26: Binning Line Timing .................................................................................................................................................................. 37
Figure 27: Correlated Double Sampling Block Diagram...................................................................................................................... 38
Figure 28: Correlated Double Sampling Timing .................................................................................................................................... 39
Figure 29: Progressive Scan Timing Example ........................................................................................................................................ 42
Figure 30: Fast Line Dump Timing Example ........................................................................................................................................... 43
Figure 31: Interlaced - Field Integration Timing Example................................................................................................................... 44
Figure 32: Low Level Block Diagram ........................................................................................................................................................ 45
Figure 33: HCCD Drive Circuit Block Diagram ........................................................................................................................................ 46
Figure 34: VCCD Block Diagram ................................................................................................................................................................ 47
Figure 35: Electronic Shutter Block Diagram ......................................................................................................................................... 48
Figure 36: Correlated Double Sampling Block Diagram...................................................................................................................... 49
Figure 37: Correlated Double Sampling Output Circuit Block Diagram ......................................................................................... 50
Figure 38: Power Supply Block Diagram ................................................................................................................................................. 51
Figure 39: Evaluation Board - Front Side ................................................................................................................................................ 52
Figure 40: Evaluation Board - Back Side .................................................................................................................................................. 53
Figure 41: KAI-1020 Schematic .................................................................................................................................................................. 54
Figure 42: Timing Logic Schematic ........................................................................................................................................................... 55
Figure 43: Output 1 Schematic .................................................................................................................................................................. 56
Figure 44: Output 2 Schematic .................................................................................................................................................................. 57
Figure 45: Automatic Offset and Power Supply Schematic ............................................................................................................... 58
Figure 46: Power Connector Block Diagram .......................................................................................................................................... 61
Figure 47: CDS Timing Oscilloscope Traces ............................................................................................................................................ 63
Figure 48: Vertical Retrace Oscilloscope Traces ................................................................................................................................... 64
Figure 49: Horizontal Retrace Oscilloscope Traces .............................................................................................................................. 65
Figure 50: PGA Completed Assembly ...................................................................................................................................................... 67
Figure 51: LCC Completed Assembly ....................................................................................................................................................... 68
Figure 52: PGA Cover Glass ........................................................................................................................................................................ 69
Figure 53: LCC Cover Glass ......................................................................................................................................................................... 70
Figure 54: Cover Glass Transmission ........................................................................................................................................................ 71
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 6
Summary Specification
KAI-1020 Image Sensor
DESCRIPTION
The KAI-1020 Image Sensor is a one megapixel interline
CCD with integrated clock drivers and on-chip correlated
double sampling. The progressive scan architecture and
global electronic shutter provide excellent image quality
for full motion video and still image capture.
The integrated clock drivers allow for easy integration
with CMOS logic timing generators. The sensor features
a fast line dump for high-speed sub-window readout and
single (30 fps) or dual (48 fps) output operation.
FEATURES
10 bits dynamic range at 40 MHz
Large 7.4 µm square pixels for high sensitivity
Progressive scan (non-interlaced)
Integrated vertical clock drivers
Integrated correlated double sampling (CDS) up
to 40 MHz
Integrated electronic shutter driver
Reversible HCCD capable of 40MHz operation All
timing inputs 0 to 5 Volts
Single or dual video output operation
Progressive scan or interlaced
Fast dump gate for high speed sub-window
readout
Antiblooming protection
APPLICATIONS
Machine Vision
Medical
Scientific
Surveillance
Parameter
Typical Value
Architecture
Interline CCD, Progressive Scan
Total Number of Pixels
1028 (H) x 1008 (V)
Number of Effective Pixels
1004 (H) x 1004 (V)
Number of Active Pixels
1000 (H) x 1000 (V)
Pixel Size
7.4 µm (H) x 7.4 µm (V)
Active Image Size
7.4 mm (H) x 7.4 mm (V)
10.5 mm (diagonal)
Aspect Ratio
1:1
Number of Outputs
1 or 2
Saturation Signal
40,000 electrons
Output Sensitivity
12 µV/electron
Quantum Efficiency
-ABA (500nm)
-CBA (620 nm, 540 nm, 460nm)
44%
31%, 36%, 41%
Dark Noise
50 electrons rms
Dark Current (Typical)
<0.5 nA/cm2
Dynamic Range
58 dB
Blooming Suppression
100 X
Image Lag
<10 electrons
Smear
<0.03%
Maximum Data Rate
40 MHz/Channel (2 channels)
Frame Rate
Progressive Scan, One Output
Progressive Scan, Dual Outputs
Interlaced Scan, One Output
30 fps
48 fps
49 fps
Integrated Vertical Clock Drivers
Integrated Correlated Double Sampling (CDS)
Integrated Electronic Shutter Driver
Package
68 pin PGA or
64 pin CLCC
Cover Glass
AR coated, 2 sides
All parameters above are specified at T = 40 °C
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 7
Ordering Information
Catalog
Number
Product Name
Description
2H4889
KAI- 1020-AAA-JP-BA
Monochrome, No Microlens, PGA Package,
Taped Clear Cover Glass, no coatings, Standard Grade
KAI-1020
Serial Number
4H0934
KAI- 1020-ABB-FD-AE
Monochrome, Telecentric Microlens, CLCC Package,
Clear Cover Glass with AR coating (both sides), Engineering Sample
KAI-1020-ABB
Serial Number
4H0933
KAI- 1020-ABB-FD-BA
Monochrome, Telecentric Microlens, CLCC Package,
Clear Cover Glass with AR coating (both sides), Standard Grade
4H0932
KAI- 1020-ABB-JB-AE
Monochrome, Telecentric Microlens, PGA Package,
Clear Cover Glass (no coatings), Engineering Sample
4H0931
KAI- 1020-ABB-JB-BA
Monochrome, Telecentric Microlens, PGA Package,
Clear Cover Glass (no coatings), Standard Grade
4H0910
KAI- 1020-ABB-JD-AE
Monochrome, Telecentric Microlens, PGA Package,
Clear Cover Glass with AR coating (both sides), Engineering Sample
4H0935
KAI- 1020-ABB-JD-BA
Monochrome, Telecentric Microlens, PGA Package,
Clear Cover Glass with AR coating (both sides), Standard Grade
2H4996
KAI- 1020-CBA-FD-AE
Color (Bayer RGB), Telecentric Microlens, CLCC Package,
Clear Cover Glass with AR coating (both sides), Engineering Sample
KAI-1020CM
Serial Number
4H0131
KAI- 1020-CBA-FD-BA
Color (Bayer RGB), Telecentric Microlens, CLCC Package,
Clear Cover Glass with AR coating (both sides), Standard Grade
4H0194
KAI- 1020-CBA-JD-AE
Color (Bayer RGB), Telecentric Microlens, PGA Package,
Clear Cover Glass with AR coating (both sides), Engineering Sample
4H0193
KAI- 1020-CBA-JD-BA
Color (Bayer RGB), Telecentric Microlens, PGA Package,
Clear Cover Glass with AR coating (both sides), Standard Grade
1E9790
KEK-1E9790-KAI-1020-12-40
Evaluation Board (Complete Kit)
n/a
See Application Note Product Naming Convention for a full description of the naming convention used for Truesense
Imaging image sensors. For reference documentation, including information on evaluation kits, please visit our web
site at www.truesenseimaging.com.
Please address all inquiries and purchase orders to:
Truesense Imaging, Inc.
1964 Lake Avenue
Rochester, New York 14615
Phone: (585) 784-5500
E-mail: info@truesenseimaging.com
Truesense Imaging reserves the right to change any information contained herein without notice. All information
furnished by Truesense Imaging is believed to be accurate.
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 8
Device Description
ARCHITECTURE
Figure 1: Block Diagram
There are 4 light shielded rows followed 1004 photoactive rows. The first 2 and the last 2 photoactive rows are buffer
rows giving a total of 1000 lines of image data.
In the single output mode all pixels are clocked out of the Video 1 output in the lower left corner of the sensor. The
first 8 empty pixels of each line do not receive charge from the vertical shift register. The next 12 pixels receive charge
from the left light-shielded edge followed by 1004 photo-sensitive pixels and finally 12 more light shielded pixels from
the right edge of the sensor. The first and last 2 photosensitive pixels are buffer pixels giving a total of 1000 pixels of
image data.
In the dual output mode the clocking of the right half of the horizontal CCD is reversed. The left half of the image is
clocked out Video 1 and the right half of the image is clocked out Video 2. Each row consists of 8 empty pixels followed
by 12 light shielded pixels followed by 502 photosensitive pixels. When reconstructing the image, data from Video 2
will have to be reversed in a line buffer and appended to the Video 1 data.
1000 (H) x 1000 (V)
Active Pixels
GG
R
BGG
R
B
GG
R
B
GG
R
B
4 Dark Rows
12 Dark Columns
12 Dark Columns
VOUT1 VOUT2
2 Buffer Columns
2 Buffer Columns
2 Buffer Rows
2 Buffer Rows
Pixel 1,1
Dual
Output
or
812 21000 212 8
Single
812 2500 500 212 8
Fast Line Dump
8 empty pixels
8 empty pixels
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 9
PHYSICAL DESCRIPTION
Pin Description and Device Orientation
Pin Grid Array
When viewed from the top with the pin 1 index to the upper left, the center of the photoactive pixel array is offset
0.006" above the physical center of the package. The pin 1 index is located in the corner of the package above pins L2
and K1. When operated in single output mode the first pixel out of the sensor will be in the corner closest to VOUT1B
(pin L9). The HCCD is parallel to the row of pins A10 to L10. In the pictures below, the VCCD transfers charge down.
Figure 2: Pin 1 Location
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 10
Pin Grid Array Pin Description
R2
C11
S2B
D11
H1BR
E11
H1S
F11
GND
G11
H2BL
H11
S1A
J11
T1
K11 T2
B11
VDD
L10 VOUT2B
A10
S2A
C10
H2BR
D10
GND
E10
H2S
F10
H1BL
G10
S1B
H10
R1
J10K10 VDD
B10
C1D1E1F1G1H1J1K1 B1
VSUB
L2 V1IN
A2C2D2E2F2G2H2J2
V2IN
K2 B2
GND
B9
VDD
B8
V1S5
B7
V1OUT
B6
V1LOW
B5
SHC2
B4
SH
B3
VOUT2A
A9
V1
A8
V1MID
A7
A6
SHD1C1
A5
SHC1
A4
VSH15
A3
GND
K9
VDD
K8
V2B
K7
V2S9
K6
V2A
K5
V2MID
K4
V2LOW
K3
VOUT1B
L9
VOUT1A
L8
FD
L7
V2S5
L6
VSUB
L5
V2HIGH
L4
V2OUT
L3
Pin 1 Index
Figure 3: PGA Package Pin Designations - Top View
Label
Pin
Function
Label
Pin
Function
V2IN
K2
VCCD gate phase 2 input
H1S
F11
HCCD storage phase 1 clock input
VSUB
L2
substrate voltage input
GND
E10
Ground (0V)
V2LOW
K3
VCCD phase 2 clock driver low
H1BR
E11
HCCD right phase 1 barrier clock input
V2OUT
L3
VCCD phase 2 clock driver output
H2BR
D10
HCCD right phase 2 barrier clock input
V2MID
K4
VCCD phase 2 clock driver mid
S2B
D11
Video 2 CDS sample B clock input
V2HIGH
L4
VCCD phase 2 clock driver high
S2A
C10
Video 2 CDS sample A clock input
K5
VCCD phase 2 clock driver input A
R2
C11
Video 2 CDS reset clock input
VSUB
L5
substrate voltage input
T2
B11
Video 2 CDS transfer clock input
V2S9
K6
VCCD phase 2 clock driver +9V
VDD2
B10
Video 2 CDS +15V
V2S5
L6
VCCD phase 2 clock driver +5V
fast dump clock driver +5V
VOUT2B
A10
Video 2 CDS output B
V2B
K7
VCCD phase 2 clock driver input B
GND
B9
Ground (0V)
FD
L7
fast dump clock driver input
VOUT2A
A9
Video 2 CDS output A
VDD1
K8
Video 1 CDS +15V
VDD2
B8
Video 2 CDS +15V
VOUT1A
L8
Video 1 CDS output A
V1
A8
VCCD phase 1 clock driver input
GND
K9
Ground (0V)
V1S5
B7
VCCD phase 1 clock driver +5V
VOUT1B
L9
Video 1 CDS output B
V1MID
A7
VCCD phase 1 clock driver mid
VDD1
L10
Video 1 CDS +15V supply
V1OUT
B6
VCCD phase 1 clock driver output
T1
K11
Video 1 CDS transfer clock input
V1LOW
B5
VCCD phase 1 clock driver low
R1
J10
Video 1 CDS reset clock input
SHD1C1
A5
shutter driver connection
S1A
J11
Video 1 CDS sample A clock input
SHC2
B4
shutter driver connection
S1B
H10
Video 1 CDS sample B clock input
SHC1
A4
shutter driver connection
H2BL
H11
HCCD left phase 2 barrier clock input
SH
B3
shutter driver clock input
H1BL
G10
HCCD left phase 1 barrier clock input
VSH15
A3
shutter driver +15V
GND
G11
Ground (0V)
V1IN
A2
VCCD gate phase 1 input
H2S
F10
HCCD storage phase 2 clock input
All pins not listed must be unconnected.
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 11
Leadless Chip Carrier
Figure 4: LCC Package Pin Designations - Top View
Pin
Description
Pin
Description
1
V2IN
25
H2S
2
VSUB
26
H1S
3
V2LOW
27
GND
4
V2OUT
28
H1BR
5
V2MID
29
H2BR
6
V2HIGH
30
S2B
7
V2A
31
S2A
8
No Connect
32
R2
9
V2S9
33
T2
10
V2S5
34
VDD
11
V2B
35
VOUT2B
12
FD
36
GND
13
VDD
37
VOUT2A
14
VOUT1A
38
VDD
15
GND
39
V1
16
VOUT1B
40
V1S5
17
VDD
41
V1MID
18
T1
42
V1OUT
19
R1
43
V1LOW
20
S1A
44
SHD1C1
21
S1B
45
SHC2
22
H2BL
46
SHC1
23
H1BL
47
SH
24
GND
48
VSH15
50-64
No Connect
49
V1IN
1 161764
32
3348
49
8
24
40
56
V2IN
VSUB
V2LOW
V2OUT
V2MID
V2HIGH
V2A
N/C
V2S9
V2S5
V2B
FD
VDD
VOUT1A
GND
VOUT1B
VDD
T1
R1
S1A
S1B
H2BL
H1BL
GND
H2S
H1S
GND
H1BR
H2BR
S2B
S2A
R2
T2
VDD
VOUT2B
GND
VOUT2A
VDD
V1
V1MID
V1S5
V1LOW
SHD1C1
SHC2
SHC1
V1OUT
SH
VSH15
V1IN
N/C
N/C
N/C
N/C
N/C
N/C
N/C
N/C
N/C
N/C
N/C
N/C
N/C
N/C
N/C
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 12
Imaging Performance
OPTICAL SPECIFICATION
Symbol
Description
Min.
Nom.
Max.
Units
Notes
Sampling Plan
QEmax
Peak Quantum Efficiency
42
45
%
1
Design
QE
Peak Quantum Efficiency Wavelength
490
nm
1
Design
QEh
Microlens Acceptance Angle (horizontal)
12
13
degrees
2
Design
QEv
Microlens Acceptance Angle (vertical)
25
30
degrees
2
Design
QE(540)
Quantum Efficiency at 540nm
38
40
%
1
Design
PNU
Photoresponse nonuniformity
5
%
Design
NL
Maximum Photoresponse Nonlinearity
2
%
3, 4,18
Die
G
Maximum Gain Difference Between Outputs
10
%
3, 4,18
Die
NL
Maximum Signal Error caused by Nonlinearity Differences
1
%
3, 4,18
Die
Dark Center Uniformity
12
e- rms
19, 20
Die
Dark Global Uniformity
2
mVpp
19, 20
Die
Global Uniformity
5
%rms
19, 20
Die
Global Peak to Peak Uniformity
15
%pp
19, 20
Die
Center Uniformity
0.7
%rms
19, 20
Die
CCD SPECIFICATIONS
Symbol
Description
Min.
Nom.
Max.
Units
Notes
Sampling Plan
Vne
Vertical CCD Charge Capacity
54
60
ke-
Design
Hne
Horizontal CCD Charge Capacity
110
120
ke-
Design
Pne
Photodiode Charge Capacity
38
42
ke-
5
Die
Id
Dark Current
0.2
0.5
nA/cm2
6
Die
Lag
Image Lag
< 10
50
e-
7
Design
Xab
Antiblooming factor
100
300
1, 8, 9, 10, 11
Design
Smr
Vertical Smear
-75
-72
dB
1, 8, 9
Design
CDS OUTPUT SPECIFICATION
Symbol
Description
Nominal
Units
Notes
Sampling Plan
Pd
Power Dissipation
213
mW
12
Design
F-3dB
Bandwidth
140
MHz
12
Design
CL
Max Off-chip Load
10
pF
13
Design
Av
Gain
0.70
12
Design
V/N
Sensitivity
13
V/e-
12
Design
R
Output Impedance
160
12
Design
Vsat
Saturation Voltage
500
mV
5, 12
Die
Iout
Output Bias Current
3.0
mA
Design
GENERAL MONOCHROME
Symbol
Description
Nominal
Units
Notes
Sampling Plan
ne-T
Total Camera Noise
42
e- rms
6, 14
Design
DR
Dynamic Range
60
dB
15
Design
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 13
GENERAL COLOR
Symbol
Description
Nominal
Units
Notes
Sampling Plan
ne-T
Total Camera Noise
50
e- rms
6, 14
Design
DR
Dynamic Range
58
dB
15
Design
POWER
Description
Nominal
Units
Notes
Single Channel CDS
213
mW
12
VCCD clock driver
71
mW
16
Electronic shutter driver
1.1
mW
HCCD
122
mW
16, 17
Total Power
407
mW
12, 16
Notes:
1. Measured with F/4 imaging optics.
2. Value is the angular range of incident light for which the quantum efficiency is at least 50% of QEmax at a wavelength of
QE. Angles are measured with respect to the sensor surface normal in a plane parallel to the horizontal axis (QEh) or in a
plane parallel to the vertical axis (QEv).
3. Value is over the range of 10% to 90% of photodiode saturation.
4. Value is for the sensor operated without binning.
5. This value depends on the substrate voltage setting. Higher photodiode saturation charge capacities will lower the
antiblooming specification. Substrate voltage will be specified with each part for 42 ke-.
6. Measured at 40 °C, 40 MHz HCCD frequency.
7. This is the first field decay lag at 70% saturation. Measured by strobe illumination of the device at 70% of photodiode

8. Measured with a spot size of 100 vertical pixels, no electronic shutter.
9. Measured with green light (500 nm to 580 nm).
10. A blooming condition is defined as when the spot size doubles in size.
11. Antiblooming factor is the light intensity which causes blooming divided by the light intensity which first saturates the
photodiodes.
12. Single output power, 3 mA load
13. With total output load capacitance of CL= 10 pF between the outputs and AC ground.
14. Includes system electronics noise, dark pattern noise and dark current shot noise at 40 MHz. Total noise measured on the
KAI-1020 evaluation board.
15. Uses 20LOG(Pne/ne-T)
16. At 30 frames/sec, single output
17. This includes the power of the external HCCD clock driver.
18. For the sampling plan, measured at 10 MHz
19. Tested at 27 °C and 40 °C
20. See Tests
n defined
n, at the discretion of Truesense Imaging, against the specified performance
limits.
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 14
Typical Performance Curves
MONOCHROME QUANTUM EFFICIENCY
Figure 5: Monochrome Quantum Efficiency
COLOR (BAYER RGB) QUANTUM EFFICIENCY
Figure 6: Color (Bayer RGB) Quantum Efficiency
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
300 400 500 600 700 800 900 1000
Absolute
Quantum
Efficiency
Wavelength (nm)
Without Cover Glass
Without Cover Glass, without Microlens
0
5
10
15
20
25
30
35
40
45
350 400 450 500 550 600 650 700 750 800 850 900 950 1000
Quantum Efficiency
Wavelength (nm)
Red Green Blue
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 15
PHOTORESPONSE VERSUS ANGLE
The horizontal curve is where the incident light angle is varied in a plane parallel to the HCCD.
The vertical curve is where the incident light angle is varied in a plane perpendicular to the HCCD.
Figure 7: Photoresponse versus Angle
SENSOR POWER
Figure 8: Power
0
10
20
30
40
50
60
70
80
90
100
110
-35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35
Photoresponse (relative)
Angle (degrees)
Horizontal
Vertical
KAI-1020 Power (single output)
0
100
200
300
400
500
0 5 10 15 20 25 30
Frames/sec
Power (mW)
HCCD
VCCD
Total Power
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 16
FRAME RATE
Figure 9: Frame Rate 1000 x 750 Pixels Figure 10: Frame Rate 1000 x 1000 Pixels
Figure 11: Frame Rate 1000 x 250 pixels Figure 12: Frame Rate 1000 x 500 Pixels
Frame Rate (75% subsample 1000 x 750 pixels)
0
10
20
30
40
50
60
0 5 10 15 20 25 30 35 40
Pixel Frequency (MHz)
Frames/sec
single output
dual output
Frame Rate (1000 x 1000 pixels)
0
10
20
30
40
50
0 5 10 15 20 25 30 35 40
Pixel Frequency (MHz)
Frames/sec
dual output
single output
Frame Rate (25% subsample 1000 x 250 pixels)
0
20
40
60
80
100
0 5 10 15 20 25 30 35 40
Pixel Frequency (MHz)
Frames/sec
single output
dual output
Frame Rate (50% subsample 1000 x 500 pixels)
0
10
20
30
40
50
60
70
80
0 5 10 15 20 25 30 35 40
Pixel Frequency (MHz)
Frames/sec
single output
dual output
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 17
Figure 13: Frame Rate 1000 x 1000 Pixels Interlaced
Frame Rate (1000 x 1000 pixels) Interlaced
0
10
20
30
40
50
60
70
80
0 5 10 15 20 25 30 35 40
Pixel Frequency (MHz)
Frames/sec
dual output
single output
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 18
Defect Definitions
SPECIFICATIONS
Name
Definition
Maximum
Temperature(s)
tested at (°C)
Notes
Sampling
Plan
Dark field major bright
defective pixel
Defect 28mV
10
27, 40
1
Die
Bright field major dark or
bright defective pixel
Defect 11%
Die
Bright field minor dark
defective pixel
Defect 5%
20 in Zone 2
27, 40
8
Die
Dark field minor bright
defective pixel
Defect 14mV
100
27, 40
2
Die
Bright field dead dark pixel
Defect 40%
0
27, 40
5
Die
Bright field nearly dead dark
pixel
Defect 20%
0 in Zone 1
1 in Zone 2
27, 40
5, 8
Die
Dark field saturated bright
pixel
Defect 106mV
0
27, 40
3
Die
Dark field minor cluster
defect
A group of 2 to 10 contiguous dark
field minor defective pixels
0
27, 40
4
Die
Bright field minor cluster
defect
A group of 2 to 10 contiguous bright
field minor defective pixels
2 in Zone 2
27, 40
4, 8
Die
Major cluster defect
A group of 2 to 10 contiguous major
defective pixels
0
27, 40
4
Die
Column defect
A group of more than 10 contiguous
major defective pixels along a single
column
0
27, 40
Die
Column Average Magnitude
Within ± 0.4% of regional average (5
columns)
0
27, 40
6, 7
Die
Notes:
1. The defect threshold was determined by using a threshold of 8mV at an integration time of 33 milliseconds and scaling it
by the actual integration time used of 117 msec. [8mV * (117 msec/ 33 msec) = 28 mV]
2. The defect threshold was determined by using a threshold of 4mV at an integration time of 33 milliseconds and scaling it
by the actual integration time used of 117 msec. [4mV * (117 msec/ 33 msec) = 14 mV]
3. The defect threshold was determined by using a threshold of 30mV at an integration time of 33 milliseconds and scaling it
by the actual integration time used of 117 msec. [30mV * (117 msec/ 33 msec) = 106 mV]
4. The maximum width of any cluster defect is 2 pixels.
5. Only dark defects.
6. Local average is centered on column.
7. See Test Regions of Interest for region used.
8. See Figure 17 for zone 1 and 2 definitions.
Defect Map
The defect map supplied with each sensor is based upon testing at an ambient (27°C) temperature. Minor point defects
are not included in the defect map. All defective pixels are referenced to pixel 1, 1 in the defect map (see Figure 15:
Regions of Interest).
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 19
Test Definitions
TEST CONDITIONS
Description
Condition
Notes
Frame time
117 msec
1
Horizontal clock frequency
10 MHz
Light source (LED)
Continuous green illumination centered at 530 nm
2
Operation
Nominal operating voltages and timing
Notes:
1. Electronic shutter is not used. Integration time equals frame time.
2. Green LED used: Nichia NSPG500S.
Test System Conversion Factors
KAI-1020 output sensitivity: V per electron
Test system gain (measured): 0.25 mV per ADU
Test system gain (calculated): 19 electrons per ADU
TESTS
Dark Field Center Uniformity
This test is performed under dark field conditions. Only the center 100 by 100 pixels of the sensor are used for this test
(pixels 431, 431 to pixel 530, 530). See Figure 16.
 (
)
Units: e- rms. DPS integration time: Device Performance Specification Integration Time = 33 msec.
Dark Field Global Uniformity
This test is performed under dark field conditions. The sensor is partitioned into 100 sub regions of interest, each of
which is 100 by 100 pixels in size. See Figure 14. The average signal level of each of the 100 sub regions of interest is
calculated. The signal level of each of the sub regions of interest is calculated using the following formula:
Signal of ROI[i] = (ROI Average in ADU Horizontal overclock average in ADU) * mV per count
Where i = 1 to 100. During this calculation on the 100 sub regions of interest, the maximum and minimum signal levels
are found. The dark field global uniformity is then calculated as the maximum signal found minus the minimum signal
level found.
Units: mVpp (millivolts peak to peak)
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 20
Global Uniformity
This test is performed with the light source illuminated to a level such that the output of the sensor is at 70% of
saturation (approximately 364 mV). Prior to this test being performed the substrate voltage has been set such that the
charge capacity of the sensor is 520mV. Global uniformity is defined as:
Signal Area Active
Deviation Standard Area Active
* 100 Uniformity Global
Units: %rms. Active Area Signal = Active Area Average Horizontal Overclock Average.
Global Peak to Peak Uniformity
This test is performed with the light source illuminated to a level such that the output of the sensor is at 70% of
saturation (approximately 364 mV). Prior to this test being performed the substrate voltage has been set such that the
charge capacity of the sensor is 520mV. The sensor is partitioned into 100 sub regions of interest, each of which is 100
by 100 pixels in size. See Figure 14. The average signal level of each of the 100 sub regions of interest (ROI) is
calculated. The signal level of each of the sub regions of interest is calculated using the following formula
Signal of ROI[i] = (ROI Average in ADU Horizontal overclock average in ADU) * mV per count
Where i = 1 to 100. During this calculation on the 100 sub regions of interest, the maximum and minimum signal levels
are found. The global peak to peak uniformity is then calculated as:
Signal Area Active
Signal Minimum - Signal Maximum
Uniformity Global
Units: %pp
Center Uniformity
This test is performed with the light source illuminated to a level such that the output of the sensor is at 70% of
saturation (approximately 364 mV). Prior to this test being performed the substrate voltage has been set such that the
charge capacity of the sensor is 520mV. Defects are excluded for the calculation of this test. This test is performed on
the center 100 by 100 pixels (See Test Regions of Interest and Figure 16) of the sensor. Center uniformity is defined as:
Signal ROI Center
Deviation Standard ROI Center
* 100 Uniformity ROI Center
Units: %rms. Center ROI Signal = Center ROI Average Horizontal Overclock Average
Dark Field Defect Test
This test is performed under dark field conditions. The sensor is partitioned into 100 sub regions of interest, each of
which is 100 by 100 pixels in size (see Figure 14). In each region of interest, the median value of all pixels is found. For
each region of interest, a pixel is marked defective if it is greater than or equal to the median value of that region of
interest plus the defect threshold specified.
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 21
Bright Field Defect Test
This test is performed with the light source illuminated to a level such that the output of the sensor is at 70% of
saturation (approximately 364 mV). Prior to this test being performed the substrate voltage has been set such that the
charge capacity of the sensor is 520 mV. The average signal level of all active pixels is found. The bright and dark
thresholds are set as:
Dark defect threshold = Active Area Signal * threshold
Bright defect threshold = Active Area Signal * threshold
The sensor is then partitioned into 100 sub regions of interest, each of which is 100 by 100 pixels in size. See Figure 14:
Test Sub Regions of Interest. In each region of interest, the average value of all pixels is found. For each region of
interest, a pixel is marked defective if it is greater than or equal to the median value of that region of interest plus the
bright threshold specified or if it is less than or equal to the median value of that region of interest minus the dark
threshold specified.
Example for major bright field defective pixels:
Average value of all active pixels is found to be 365 mV.
Dark defect threshold: 365mV * 11% = 40mV
Bright defect threshold: 365mV * 11% = 40mV
Region of interest #1 selected. This region of interest is pixels 1, 1 to pixels 100,100.
o Median of this region of interest is found to be 366 mV.
o Any pixel in this region of interest that is (366+40mV) 406mV in intensity will be marked defective.
o Any pixel in this region of interest that is (366-40mV) 324mV in intensity will be marked defective.
All remaining 99 sub regions of interest are analyzed for defective pixels in the same manner.
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 22
Bright Field Minor Defect Test
This test is performed with the light source illuminated to a level such that the output of the sensor is at 70% of
saturation (approximately 364 mV). Prior to this test being performed the substrate voltage has been set such that the
charge capacity of the sensor is 520 mV. The average signal level of all active pixels is found. The dark threshold is set
as:
Dark defect threshold = Active Area Signal * threshold
The sensor is then partitioned into 2500 sub regions of interest, each of which is 20 by 20 pixels in size. In each region
of interest, the average value of all pixels is found. For each region of interest, a pixel is marked defective if it is less
than or equal to the median value of that region of interest minus the dark threshold specified.
Example for bright field minor defective pixels:
Average value of all active pixels is found to be 365 mV.
Dark defect threshold: 365mV * 5% = 18mV
Region of interest #1 selected. This region of interest is pixels 1, 1 to pixels 20, 20.
o Median of this region of interest is found to be 366 mV.
o Any pixel in this region of interest that is <= (366-18mV) 348mV in intensity will be marked defective.
All remaining 2499 sub regions of interest are analyzed for defective pixels in the same manner.
Bright Field Column Average Magnitude Test
This test is performed with the light source illuminated to a level such that the output of the sensor is at 70% of
saturation (approximately 364 mV). Prior to this test being performed the substrate voltage has been set such that the
charge capacity of the sensor is 520 mV. A column is marked as defective if
4.0
lumn x))Avg(Avg(Co lumn x))Avg(Avg(Co - n) Avg(Column
abs*100
Where x=n-2 to n+2
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 23
TEST REGIONS OF INTEREST
Number of pixels
1027 (H) x 1008 (V)
Number of photo sensitive pixels
1004 (H) x 1004 (V)
Number of active pixels
1000 (H) x 1000 (V)
Active Area ROI
Pixel (1, 1) to Pixel (1000, 1000)
Column Magnitude Test ROI
Pixel (11, 11) to Pixel (990, 990)
Notes:
1. Only the active pixels are used for performance and defect tests. See Figure 15.
Test Sub Regions of Interest
Pixel
(1,1)
Pixel
(1000,1000)
1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100
Figure 14: Test Sub Regions of Interest
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 24
Signal Level Calculation
Signal levels are calculated by using the average of the region of interest under test and subtracting off the horizontal
overclock region. The test system timing is configured such that the sensor is overclocked in both the vertical and
horizontal directions. See Figure 15 for a pictorial representation of the regions.
Example: To determine the active area average in millivolts, the following calculation used:
Active area signal (mV) = (Active area average horizontal overclock average) * mV per count
Pixel 1,1
Vertical Overclock
Horizontal Overclock
2 buffer rows
2 buffer rows
2 buffer rows
2 buffer rows
12 dark rows
12 dark rows
4 dark rows
Vout1
Figure 15: Regions of Interest
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 25
Center Region of Interest
1,1 1000,1
1000,10001,1000
450,450
549,549
Figure 16: Center Region of Interest
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 26
Zones 1 and 2
Zone 2 includes zone 1
1,1 1000,1
1000,10001,1000
500
980
Zone 2
Zone 1
Figure 17: Zones 1 and 2
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 27
Operation
SINGLE OR DUAL OUTPUT
Figure 18: Single or Dual Output Mode of Operation
The KAI-1020 is designed to read the image out of one output at 30 frames/second or two outputs at
48 frames/second. In the dual output mode the right half of the horizontal shift register reverses its direction of
charge transfer. The left half of the image is read out of video 1 and the right half of the image is read out of video 2.
There are no dark reference rows at the top and 4 dark rows at the bottom of the image sensor. The 4 dark rows
should not be used for a dark reference level. The dark rows will contain smear signal from bright light sources. Use the
12 dark columns on the left or right side of the image sensor as a dark reference.
zero dark rows
12 dark columns
12 dark columns
4 dark rows
1004 x 1004
photoactive pixels
zero dark rows
12 dark columns
12 dark columns
4 dark rows
1004 x 1004
photoactive pixels
502 8
1004
502
8
8
Video 1
Video 1 Video 2
12
12
12
12
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 28
Figure 19: Pixel
THE KAI-1020 PIXEL
The pixel is 7.4 µm square. It consists of a light sensitive photodiode and an optically shielded vertical shift register.
The vertical shift register is a charge-coupled device (VCCD). Each pixel is covered by a microlens to increase the light
gathering efficiency of the photodiode.
Under normal operation, the image capture process begins with a 4 µs long pulse on the electronic shutter trigger
input SH. The electronic shutter empties all charge from every photodiode in the pixel array.
The photodiodes start collecting light on the falling edge of the SH pulse. For each photon that is incident upon the
7.4 µm square area of the pixel, the probability of an electron being generated in the photodiode is given by the
quantum efficiency (QE). At the end of the desired integration time, a 10 µs pulse on V2B transfers the charge
(electrons) collected in the photodiode into the VCCD. The integration tiV2B.
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 29
HIGH LEVEL BLOCK DIAGRAM
Figure 20: High Level Block Diagram
All timing inputs are driven by 5 V logic. The image sensor has integrated clock drivers to generate the proper voltages
for the internal CCD gates. There are two VCCD clock drivers. Both the phase 1 and phase 2 VCCD drivers control the
shifting of charge through the VCCD. The phase 2 driver also controls the transfer of charge from the photodiodes to
the VCCD.
There is an integrated fast dump driver, which allows an entire row of pixels to be quickly discarded without clocking
the row through the HCCD.
An integrated electronic shutter driver generates a >30 volt pulse on the substrate to simultaneously empty every
photodiode on the image sensor.
Each of the two outputs has a correlated double sampling circuit to simplify the analog signal processing in the camera.
The horizontal clock timing selects which outputs are active.
HCCD
VCCD
phase 1
Driver
VCCD
phase 2
Driver
Fast Dump
Driver Electronic
Shutter
Driver
fV1
fSH
fV2A
fV2B
fFD
pixel array
substrate
CDS 1
fT1
fR1
fS1A
fS1B
VOUT1A
VOUT1B
CDS 2
fT2
fR2
fS2A
fS2B
VOUT2A
VOUT2B
fH2S
fH1BR
fH2BR
fH1S
fH1BL
fH2BL
KAI-1020
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 30
MAIN TIMING
Figure 21: Timing Flow Chart
VERTICAL FRAME TIMING
Figure 22: Vertical Frame Timing
The vertical frame timing may begin once the last pixel of the image sensor has been read out of the HCCD. The
beginning of the vertical frame timing is at the rising edge of V2A. After the rising edge of V2A there must be a
delay of TVP µs before a pulse of TV3 µs on V2B and V1. The charge is transferred from the photodiodes to the
VCCD during the time TV3. The falling edge of V2B marks the end of the photodiode integration time. After the
pulse on V2B the V1 and V2A should remain idle for TVP µs before the horizontal line timing period begins. This
allows the clock and well voltages time to settle for efficient charge transfer in the VCCD.
All HCCD and CDS timing inputs should run continuously through the vertical frame timing period. For an extremely
short integration time, it is allowed to place an electronic shutter pulse on SH at any time during the vertical frame
timing. The SH and V2B pulses may be overlapped. The integration time will be fr
V2B.
vertical frame
timing
horizontal line
timing
repeat for
1008 lines
0
5
0
5
0
5
0
5
0
5
fV1
fV2A
fV2B
fH1S
fH2S
TVP
TVCCD
TVP
TV3
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 31
HORIZONTAL LINE TIMING
Figure 23: Horizontal Line Timing
522 pixels 522 pixels video 2
fH1S
fH2S
fH1BL
fH2BL fH2BR
fH1BR
KAI-1020 HCCD
timing inputs
0
5
0
5
0
5
0
5
0
5
fH1S
fH2S
fV1
fV2A
fV2B
TVCCD TVCCD
TP
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 32
When the V1 timing inputs are pulsed, charge in every pixel of the VCCD is shifted one row towards the
HCCD. The last row next to the HCCD is shifted into the HCCD. When the VCCD is shifted, the timing signals to the
HCCD must be stopped. H1S must be stopped in the high state and H2S must be stopped in the low state. The
HCCD clocking may begin TVCCD µs after the falling edge of the V2A and V1 pulse. The timing inputs to the CDS
should run continuously through the horizontal line timing.
The HCCD has a total of 1036 pixels. The 1028 vertical shift registers (columns) are shifted into the center 1028 pixels
of the HCCD. There are 8 pixels at both ends of the HCCD which receive no charge from a vertical shift register. The
first 8 clock cycles of the HCCD will be empty pixels (containing no electrons). The next 12 clock cycles will contain only
electrons generated by dark current in the VCCD and photodiodes. The next 1004 clock cycles will contain photo-
electrons (image data). Finally, the last 12 clock cycles will contain only electrons generated by dark current in the
VCCD and photodiodes. Of the 12 dark columns, the first and last dark columns should not be used for determining the
zero signal level. Some light does leak into the first and last dark columns. Only use the center 10 columns of the 12
column dark reference.
When the HCCD is shifting valid image data, the timing inputs to the electronic shutter driver (SH), VCCD driver
(V2A, V2B, FD) should be held at the low level. This prevents unwanted noise from
being introduced into the CDS circuit.
The HCCD is a type of charge coupled device known as a pseudo-two phase CCD. This type of CCD has the ability to
shift charge in two directions. This allows the entire image to be shifted out to the video 1 output CDS, or to the video
2 output CDS (left/right image reversal). The HCCD is split into two equal halves of 522 pixels each. When operating
the sensor in single output mode the two halves of the HCCD are shifted in the same direction. When operating the
sensor in dual output mode the two halves of the HCCD are shifted in opposite directions. The direction of charge
transfer in each half is controlled by the H1BL, H2BL, H1BR, and H2BR timing inputs.
Single Output
To direct all pixels to the video 1 output make the following HCCD connections:
H1S = H1BL, H2BR
H2S = fH2BL, H1BR
To direct all pixels to the video 2 output make the following HCCD connections:
H1S = H2BL, H1BR
H2S fH1BL, H2BR
In each case the first 8 pixels will contain no electrons, followed by 12 dark reference pixels containing only electrons
generated by dark current, followed by 1004 photo-active pixels, followed by 12 dark reference pixels. The HCCD must
be clocked for at least 1028 cycles. The VCCD may be clocked immediately after the 1028th HCCD clock cycle.
If the sensor is to be permanently operated in single output mode through video 1, then VDD2 (pins B8, and B10) may
be connected to GND. This disables the video 2 CDS and lowers the power consumption.
If the sensor is to be permanently operated in single output mode through video 2, then VDD1 and VDD2 supplies
must be +15 V. The VDD1 supplies must always be at +15 V for the sensor to operate properly.
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 33
Dual Output
To use both outputs for faster image readout, make the following HCCD connections:
H1S = H1BL, H1BR
H2S = H2BL, H2BR
For both outputs the first 8 HCCD clock cycles contain no electrons, followed by 12 dark reference pixels containing
only dark current electrons, followed by 502 photo-active pixels. This adds up to 522 pixels, but the HCCD should be
clocked for at least 523 cycles before the next VCCD line shift takes place. The extra HCCD clock cycle ensures that the
signal from the last pixel exits the CDS circuit before the VCCD drivers switch the gate voltages. This extra cycle is not
needed for the single output modes because in that case, the last pixel is from a column of the dark reference which is
not used. See the section on correlated double sampling for a description of the one pixel delay in the CDS circuit.
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 34
ELECTRONIC SHUTTER
Substrate Voltage
The voltage on the substrate, pins L1 and L5, determines the charge capacity of the photodiodes. When VSUB is 8
volts the photodiodes will be at their maximum charge capacity. Increasing VSUB above 8 volts decreases the charge
capacity of the photodiodes until 30 volts when the photodiodes have a charge capacity of zero electrons. Therefore, a
short pulse on VSUB, with a peak amplitude greater than 30 volts, empties all photodiodes and provides the electronic
shuttering action.
Substrate Voltage and Antiblooming
It may appear the optimal substrate voltage setting is 8 volts to obtain the maximum charge capacity and dynamic
range. While setting VSUB to 8 volts will provide the maximum dynamic range, it will also provide the minimum
antiblooming protection.
The KAI-1020 VCCD has a charge capacity of 60,000 electrons (60 ke-). If the VSUB voltage is set such that the
photodiode holds more than 60 ke-, then when the charge is transferred from a full photodiode to VCCD, the VCCD will
overflow. This overflow condition manifests itself in the image by making bright spots appear elongated in the vertical
direction. The size increase of a bright spot is called blooming when the spot doubles in size.
The blooming can be eliminated by increasing the voltage on VSUB to lower the charge capacity of the photodiode.
This ensures the VCCD charge capacity is greater than the photodiode capacity. There are cases where an extremely
bright spot will still cause blooming in the VCCD. Normally, when the photodiode is full, any additional electrons
generated by photons will spill out of the photodiode. The excess electrons are drained harmlessly out to the
substrate. There is a maximum rate at which the electrons can be drained to the substrate.
If that maximum rate is exceeded, (say, for example, by a very bright light source) then it is possible for the total
amount of charge in the photodiode to exceed the VCCD capacity. This results in blooming.
The amount of antiblooming protection also decreases when the integration time is decreased.
There is a compromise between photodiode dynamic range (controlled by VSUB) and the amount of antiblooming
protection. A low VSUB voltage provides the maximum dynamic range and minimum (or no) antiblooming protection. A
high VSUB voltage provides lower dynamic range and maximum antiblooming protection. The optimal setting of VSUB
is written on the container in which each KAI-1020 is shipped. The given VSUB voltage for each sensor is selected to
provide antiblooming protection for bright spots at least 100 times saturation, while maintaining at least 500 mV of
dynamic range.
A detailed discussion of antiblooming and smear may be found in IEEE Transactions on Electron Devices vol. 39 no. 11,
pg. 2508.
Extremely bright light can potentially harm solid state imagers such as Charge-Coupled Devices (CCDs). Refer to
Application Note Using Interline CCD Image Sensors in High Intensity Visible Lighting Conditions.
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 35
Electronic Shutter Timing
The electronic shutter provides a method of precisely controlling the image exposure time without any mechanical
components. If an integration time of TINT is desired, then the substrate voltage of the sensor is pulsed to at least
30 volts TINT seconds before the photodiode to VCCD transfer pulse o V2B. The large substrate voltage pulse is
generated by the KAI-1020. The electronic shutter is triggered by a 5 volt pulse on SH. Use of the electronic shutter
does not have to wait until the previously acquired image has been completely read out of the VCCD. The electronic
shutter pulse may be added to the end of the horizontal line timing and just after the last pixel has been read out of
the HCCD. H1S and H2S must be clocked during the electronic shutter pulse.
Figure 24: Electronic Shutter Timing
0
5
0
5
0
5
0
5
0
5
0
5
fH1S
fH2S
fV1
fV2A
fV2B
fSH
TVCCD TVCCD TVCCD TVCCD
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 36
FAST DUMP
The KAI-1020 has the ability to rapidly discard (fast dump, FD) entire lines of the image. The fast dump is a drain
attached to the last row of the VCCD just before the HCCD. When the fast dump is activated by taking FD high,
charge from the VCCD goes into the drain instead of into the HCCD.
Figure 25: Fast Dump timing
This timing diagram shows how two lines are dumFD should go high once the last pixel
of the preceding line has been read out. Cycle the VCCD for the number of rows to be dumped. The above timing
diagrams shows two rows being dumped. When the proper number of rows have been dumped bring FD low. Then
clock the VCCD through one more cycle to shift a row into the HCCD.
The fast dump can be used to sub-sample the image for increased frame rates. For example, by dumping the even
numbered lines, the image will be sub-sampled by a factor of 2 and the frame rate will almost increase by a factor of 2.
Horizontal sub-sampling is not possible. The HCCD must always be cycled for the entire number of pixels in one line.
Another way to increase the frame rate is through sub-windowing. For example, suppose only the center 512 lines of
the image are needed. Turn on the fast dump and clock the VCCD for 256 lines. Then turn off the fast dump and clock
the VCCD (and HCCD) for 512 lines. Finally, turn the fast dump on again and clock the VCCD for 240 lines.
0
5
0
5
0
5
0
5
0
5
0
5
fH1S
fH2S
fV1
fV2A
fV2B
fFD
TVCCD TVCCD
TP
TVCCD TVCCD TVCCD TVCCD
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 37
BINNING AND INTERLACED MODES
Binning is a readout mode of progressive scan CCD image sensors where more than one row at a time is clocked into
the HCCD before reading out the HCCD. This timing mode sums two or more rows together. It increases the frame
rate because there are fewer total rows to read out of the HCCD. The following timing diagram shows how two rows
are summed together:
Figure 26: Binning Line Timing
When binning two rows together only 504 rows need to be read out of the HCCD instead of the normal 1008 rows. The
HCCD will hold up to two VCCD rows of full signal without blooming. Binning more than two rows may cause horizontal
blooming for saturated signal levels.
Interlaced readout is a form of binning. To read out the even field use binning to sum together rows 0+1, rows 2+3, ...
rows 1006+1007. To read out the odd field use binning to read out rows 0+1+2, rows 3+4, rows 5+6, .... rows
1005+1006, rows 1007+1008. The odd field may also be read out as row 0, rows 1+2, rows 3+4, .... rows 1005+1006. See
the Interlaced Field Integration section for an example of interlaced timing.
0
5
0
5
0
5
0
5
fH1S
fH2S
fV1
fV2A
TVCCD TVCCD
TP
0
5
0
5
fV2B
fFD
TVCCD TVCCD
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 38
CORRELATED DOUBLE SAMPLING (CDS)
Figure 27: Correlated Double Sampling Block Diagram
Correlated double sampling is a method of measuring the amount of charge in each pixel. The electrons in the last
pixel of the HCCD are transferred onto a very small sensing capacitor, C, on the falling edge of H2S. The voltage on C
will change by about 20 µV for each electron that was in the HCCD. The process of measuring the amount of charge
begins by resetting the value of C to an internally generated reference voltage, vref. A short pulse on R at the rising
edge of H2S will reset C. After C has been reset, its voltage is sampled and stored on CSA by a short pulse on switch
SA. Then on the falling edge of H2S, electrons are transferred onto the capacitor, C. The new voltage on C is
sampled and stored on CSB by a short pulse on switch SB. These two sampled voltages are then transferred to
capacitors CT. T and R generally occur at the same time. An external operational
amplifier is used to subtract the two voltages on VOUTA and VOUTB. The output of the op-amp will be proportional to
the number of electrons contained in one pixel. Note that it takes one entire pixel clock cycle for the value of the pixel
to appear on VOUTA and VOUTB. The A and B outputs of the CDS circuit will be in the range of 7 to 11 volts.
CDS Timing Edge Alignment
1. The edge alignments of the CDS timing pulses SA, SB, T, and R are critical to proper operation of the
CDS circuit.
2. The falling edge of R must not overlap the rising edge of SA
3. The falling SA must come at the same time or before the falling eH2
4. The rising edge of SB must H2
5. SB must R
6. R may come before the rising edge of H2
7. T should always be driveR
8. The pulse R, SA, and SB are 1/3 of TP
fR
fSA
fSB
fT
VOUTA
VOUTB
HCCD
output
vref
C
CSA
CSB
CTA
CTB
VDD
VDD
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 39
Figure 28: Correlated Double Sampling Timing
Disabling the CDS
There may be instances when the camera designer may want to use an external CDS. Such cases may occur at pixel
clock frequencies 20MHz or slower where integrated CDS, analog to digital converter (A/D), and auto offset/gain
circuits are available. These external CDS circuits require the raw unprocessed video waveform. The raw video can be
obtained by permanently turning on the SA, SB, and T switches by connecting them to a voltage in the range of 8
to 10V (the V2HIGH supply voltage, for example). Then place a load of 4 mA to 5 mA on VOUTA and a load of 0.1mA on
VOUTB. VOUTA will be the raw video output suitable for external CDS circuits. The 5mA load may be a 2.0k resistor
and the 0.1 mA load may be an 80k resistor to GND. An external CDS is not recommended for pixel frequencies above
20MHz.
0
5
fH2
0
5
0
5
fR
fSA
0
5
0
5
fSB
fT
TP
TP/3 TP/3 TP/3
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 40
TIMING AND VOLTAGE SPECIFICATIONS
Absolute Maximum Ratings
Min.
Max.
Units
Notes
Temperature
Operation without damage
-50
70
C
Storage
-55
70
C
Voltage
between pins
VSUB to GND
8
20
V
1
VDD to GND
0
17
V
V1 to V2, FD to V1, V2
-10
10
V
H1 to H2
-8
8
V
R, T, SA, SB to GND
-9
12
V
H1, H2 to V1, V2
-9
10
V
Current
Video Output Bias Current
0
7
mA
2
Notes:
1. For electronic shuttering VSUB may be pulsed to 35 V for up to 10 µs.
2. Note that the current bias affects the amplifier bandwidth.
Timing
Time
Min.
Nominal
Max.
Units
TP
25
25
500
ns
TVCCD
3.6
3.6
10
µs
TVP
20
25
40
µs
TV3
8
10
15
µs
Bias Voltages
Bias
Min
(Volts)
Nominal
(Volts)
Max
(Volts)
Peak Current
(mA)
Peak Current
Frequency
Avg. Current
(mA)
V1S5
4
5
6
2
2L
0.13
V1MID
-1.5
-1.2
-1.0
110
L
3
V1LOW
-9.5
-9
-8.5
110
L
3
V2S5
4
5
6
2
2L
0.5
V2S9
8
9
10
2
F
0.3
V2HIGH
8
9
10
110
L
0.01
V2MID
-1.5
-1.2
-1.0
110
L
3
V2LOW
-9.5
-9
-8.5
110
220
L
F
3.8
VDD1
14.5
15
15.5
14
VDD2
14.5
15
15.5
14
VSH15
14
15
16
1
F
0.08
VSUB
8
*
14
0.03
Notes:
1. Average currents are for 30 frames/second
2. Peak switching currents are for less than 1 µs duration
3. L = once per line time, 2L = twice per line time, F = once per frame time
4. Substrate bias voltage for a 500mV output range is written on the shipping container for each part
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 41
Power Up Sequence
1. Power up VSUB, V1LOW, V2LOW first
2. Then power up VDD, VSH15, V2S5, V1S5, V1MID, V2MID and V2HIGH
3. Then after the coupling capacitors on all of the timing inputs have charged, begin clocking the timing inputs.
Any positive voltage should never be allowed to go negative. Any negative voltage should never be allowed to go
positive.
Note that the shutter driver clock input does not use a coupling capacitor. It must be driven directly from a 5V logic
buffer as shown in the evaluation board schematic.
Pulse Amplitudes
Clock
Min. Amplitude
(volts)
Coupling
Min. Coupling
Capacitor Value
(µF)
Max. Coupling
Capacitor Value
(µF)
SH
3.5
DC
--
--
H1
4.7
AC
0.1
0.47
H2
4.7
AC
0.1
0.47
SA
4.7
AC
0.01
0.47
SB
4.7
AC
0.01
0.47
R
4.7
AC
0.01
0.47
T
4.7
AC
0.01
0.47
V1
4.0
AC
0.01
0.47
V2A
4.0
AC
0.01
0.47
V2B
4.0
AC
0.01
0.47
FD
4.0
AC
0.1
0.47
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 42
TIMING EXAMPLES
Progressive Scan
V2B
V2A
V1
H1
H2
SH
FD
V2B
V2A
V1
H1
H2
SH
FD
progressive scan, no electronic shutter
exposure time = frame time
progressive scan, using electronic shutter
frame time
exposure time
repeat 1008 times
Move this pulse in increments of one line time
to change the exposure time
This line has 7.2 µs more HCCD
clock cycles than all other lines
1028 clock cycles single output
523 clock cycles dual output
Figure 29: Progressive Scan Timing Example
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 43
Fast Line Dump
V2B
V2A
V1
H1
H2
SH
FD
repeat 256 times repeat 252 timesrepeat 500 times
fast dump timing, reads out the center 500 rows
exposure time = frame time
repeat 256 times repeat 252 times
repeat 500 times
frame time
SH pulse width = 3.6 µs, total interval = 7.2 µs
exposure time
V2B
V2A
V1
H1
H2
SH
FD
fast dump timing with electronic shutter, reads out the center 500 rows
1028 clock cycles single output
523 clock cycles dual output
Figure 30: Fast Line Dump Timing Example
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 44
Interlaced Field Integration
V2B
V2A
V1
H1
H2
SH
FD
repeat 256 times repeat 252 timesrepeat 500 times
fast dump timing, reads out the center 500 rows
exposure time = frame time
repeat 256 times repeat 252 times
repeat 500 times
frame time
SH pulse width = 3.6 µs, total interval = 7.2 µs
exposure time
V2B
V2A
V1
H1
H2
SH
FD
fast dump timing with electronic shutter, reads out the center 500 rows
1028 clock cycles single output
523 clock cycles dual output
Figure 31: Interlaced - Field Integration Timing Example
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 45
Camera Design
LOW LEVEL BLOCK DIAGRAM
Figure 32: Low Level Block Diagram
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 46
HORIZONTAL CCD DRIVE CIRCUIT
Figure 33: HCCD Drive Circuit Block Diagram
The HCCD clock inputs should be driven by buffers capable of driving a capacitance of 60 pF and having a full voltage
swing of at least 4.7 V. A 74AC04 or equivalent is recommended to drive the HCCD. The HCCD requires a 0 to 5 V
clock. A negative clock level is easily obtained by capacitive coupling and a diode to clamp the high level to GND. Every
HCCD clock input has a 300 k on chip resistor to GND.
The inputs to the above circuits, H1 and H2, are 5V logic from the timing generator (a programmable gate array for
example). If the camera is to have selectable single or dual output modes of operation, then the timing logic needs to
generate two extra signals for the H1BR and H2BR timing. For single output mode program the timing such that
H1BR=H2 and H2BR=H1. For dual output mode program the timing such that H1BR=H1 and H2BR=H2.
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 47
VERTICAL CCD
The VCCD clock inputs, V2A, V2B, V1, and FD have a capacitive load of approximately 10 pF. Each input is
connected to V2LOW and V1LOW by a 60 k internal resistor. There is also an internal diode connected to V2LOW and
V1LOW. The 5 V logic drivers must be connected to the sensor inputs through capacitors. These inputs require a clock
of at least 4 V amplitude. Most PGA's can drive these inputs directly. The external capacitor and internal diode level
shift the 0V to 5V input to V2LOW to V2LOW + 5.
The on chip VCCD clock drivers switch their outputs, V1OUT and V2OUT, between the supply voltages V1LOW, V1MID,
V2LOW, V2MID, and V2HIGH. The truth table correlating the voltage on V1OUT and V2OUT to the timing inputs is:
φV1
V1OUT
L
V1MID
H
V1LOW
φV2A
φV2B
V2OUT
L
L
V2LOW
H
L
V2MID
L
H
V2HIGH
H
H
V2HIGH
L = logic low level
H = logic high level
The output of the VCCD driver is connected to the VCCD gates by wiring V1OUT to V1IN and V2OUT to V2IN. The fast
dump driver has no external output. It is wired internally to the VCCD fast dump gate.
Figure 34: VCCD Block Diagram
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 48
ELECTRONIC SHUTTER
The electronic shutter input, SH, is the only input driven directly by CMOS logic. No capacitive coupling is required.
SH (pin B3) has approximately a 10 pF load. The logic low level must be less than 0.5 V and the logic high level must
be greater than 3.5 V. Most programmable gate SH directly. The on chip electronic shutter driver is a
charge pumping circuit. It uses C1, C2, D1, and D2 to generate a >25 V pulse that is added onto the substrate DC bias
voltage. The substrate bias voltage is set by a trim-pot R2 or by some programmable voltage source. The substrate bias
voltage absolutely MUST be adjustable. The camera designer CAN NOT rely on every KAI-1020 image sensor requiring
the same substrate bias. An adjustment range of 8 to 13 V must be allowed. Each image sensor has the optimal
substrate bias voltage (as measured on the VSUB pin) printed on the shipping container.
Figure 35: Electronic Shutter Block Diagram
The minimum allowed voltage on VSUB is 8 V. Lower voltages may destroy the CDS and clock driver circuits.
Note: Extremely bright light can potentially harm solid state imagers such as Charge-Coupled Devices (CCDs). Refer to
Application Note Using Interline CCD Image Sensors in High Intensity Visible Lighting Conditions.
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 49
CDS TIMING INPUTS
The CDS timing inputs R, T, SA, and SB should be driven by CMOS logic with fast rise and fall times and an
amplitude of at least 4.7 V. The capacitance of each pin on the sensor is approximately 10 pF. The pulses are level
shifted positive by 1 V or 2 V on the sensor. If driving this input directly from a programmable gate array, be aware that
some PGA's do not have outputs with amplitudes of 4.7 V. It is recommended that the CDS timing inputs be driven by a
74AC04 to insure a 5 V pulse amplitude with fast edges.
Figure 36: Correlated Double Sampling Block Diagram
If the camera will only operate R2, T2, S2A, and S2B inputs should be connected
to GND. All CDS timing inputs must be coupled with a capacitor.
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 50
CDS OUTPUT CIRCUIT
Figure 37: Correlated Double Sampling Output Circuit Block Diagram
In the above schematic the differential video outputs VOUTB and VOUTA are subtracted by op-amp U2A. The video
outputs will have a DC level of 7 to 11 V. U2B then inverts the signal and applies a gain of 2.1 relative to the offset
voltage. The output of U2B will match the 500 mV output range of the KAI-1020 to the 1 V input range of the analog to
digital converter (A/D).
VOUTB will swing in the negative direction with increasing light level. The output of U2A will swing in the positive
direction with increasing light level. The output of U2B (input to the A/D) will swing in the negative direction. This
means the A/D output will be 0 counts when the image sensor is saturated. The digital data will have to be inverted
before being transmitted to a digital image capture device. See the KAI-1020 evaluation board schematic for a simple
method of inverting the data with no additional components.
The offset will have to be dynamically adjusted to match the zero light level of the image sensor. A circuit should
examine the digital data in the dark reference columns and adjust the offset voltage of U2B to maintain a constant
zero reference level in the A/D converter. The dynamic adjustment of the offset voltage will remove most temperature
dependent drifts. Small temperature-dependent gain changes will still be present. See the KAI-1020 evaluation board
schematic for an example of a circuit to generate the offset voltage.
This output circuit provides 10 bits of dynamic range on the KAI-1020 evaluation board. It is not the optimum circuit.
For optimum differential common mode noise rejection and linearity, the CDS output circuit should take into account
 impedance of the CDS output drive transistor.
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 51
POWER SUPPLIES
+15V VSH15(A3)
VDD1(K8,L10)
VDD2(B10,B8)
+5V V2S5(L6)
V1S5(B7)
+9V V2HIGH(L4)
V2S9(K6)
-9V V2HIGH(K3)
V1LOW(K6)
GND V1MID(A7)
V2MID(K4)
0.1u
D2 D4
Figure 38: Power Supply Block Diagram
The V1MID and V2MID connections must be set to 1.0 to 1.5 V. Since V1MID and V2MID only sink current, two diodes
can be used to set this voltage.
If the sensor is to use only the single output mode, then VDD2(B10,B8) can be connected to GND. VOUT2A(A9) and
VOUT2B(A10) also should be connected to GND in the single output only mode.
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 52
KAI-1020 Evaluation Board
FRONT SIDE
Figure 39: Evaluation Board - Front Side
pin 1 index
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 53
BACK SIDE
Figure 40: Evaluation Board - Back Side
+5V
GND
GND
+15V
-15V
Power
substrate
voltage
trim
Electronic shutter
exposure control
Fast Dump On
Fast Dump Off
Interlaced
Progressive 2 Outputs
1 Output
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 54
SCHEMATICS
KAI-1020
Figure 41: KAI-1020 Schematic
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 55
Timing Logic
Figure 42: Timing Logic Schematic
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 56
Output 1
Figure 43: Output 1 Schematic
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 57
Output 2
Figure 44: Output 2 Schematic
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 58
Automatic Offset and Power Supply
Figure 45: Automatic Offset and Power Supply Schematic
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 59
PARTS LIST
C1
PCAP, 4.7µF
R1
VRES,10K
SW1
DIP8
4 POS DIP SW
C2
CAP, 0.1µF
R2
RES,470
SW2
DIAL
16 POS ROTARY
C3
CAP, 1µF
R3
RES,1K
U1
KAI1020
IMAGE SENSOR
C4-9
CAP, 0.1µF
R7
RES,20
U2
AD9042/SO
A/D ANALOG DEV
C10
CAP, 4.7µF
R8
RESNET
U3
OPAMP DUAL,OPA2650U
BURR BROWN
C11, C12
CAP, 0.1µF
R9
RES,100
U4
AD9042/SO
A/D ANALOG DEV
C13-15
CAP, 4.7µF
R10, R11
RES,1K
U5
OPAMP DUAL,OPA2650U
BURR BROWN
C16
CAP, 0.1µF
R12
RES,2K
U6
DS90C031
NATIONAL
C17
CAP, 1µF
R13
RES,1K
U7
LM337L
C18-21
CAP, 0.1µF
R14
RESNET
U8
LAT1032E TQFP100
LATTICE SEMI
C22
CAP, 4.7µF
R15
RESNET
U9
74AC04
C23, C24
CAP, 0.1µF
R16, R17
RES,1K
U10
DELAY10
DATA DELAY DEV
711 2.5 ns
C25
CAP, 4.7µF
R18
RES,2K
U11
74AC04
C26
CAP, 0.1µF
R19
RES,1K
U12
LAT1016
LATTICE SEMI
C27
CAP, 4.7µF
R20
RES,470
U13
OPAMP-DUAL, LMC6492BEM
NATIONAL
C28
CAP, 0.1µF
R21
RES,1K
U14
OSC\SO
80 MHZ
C29
CAP, 4.7µF
R23
RES,5.6K
U15-20
DS90C031
NATIONAL
C30
CAP, 0.1µF
R24
RES,2K
U21
LM317L
C31
CAP, 4.7µF
R25
RES,20
U22, U23
NC7SZ126
FAIRCHILD
C32-38
CAP, 0.1µF
R26
RES,2K
L1-4
FB
FERRITE BEAD
C39
CAP, 4.7µF
R27
RES,100
J1
SCSI-100
C40-52
CAP, 0.1µF
R28
RESNET
J2
HEADER10
POWER CONN
C53-55
CAP, 4.7µF
R29
RES,2K
J3
SIP\8P
PROGRAM CONN
C56-58
CAP, 0.1µF
R30
RES,200
J4
LATCON
PROGRAM CONN
C59
CAP, 4.7µF
R31
RES,200
C60-63
CAP, 0.1µF
R32
RES,1.24K
C64
CAP, 4.7µF
R33
RES,220
C65-72
CAP, 0.1µF
R34
RES,1.24K
D1-3
MMBD914
R35
RES,220
D4, D5
MMBD2837
R36
RES,1.5K
R43
RES,100K
R44
RES,200
R45
RES,100K
R46
RES,200
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 60
DIGITAL OUTPUT CONNECTOR
The output connector is a 100 pin female SCSI type connector, pin compatible with the National Instruments PCI-1424
digital frame grabber, part number 777662-02. The interface cable is available from National Instruments, part number
185012-02.
Output 1
Pin
Output 2
Pin
Sync
Pin
data 0+
1
data 0+
51
pixel +
49
data 0-
2
data 0-
52
pixel -
50
data 1+
3
data 1+
53
line +
43
data 1-
4
data 1-
54
line -
44
data 2+
5
data 2+
55
frame +
41
data 2-
6
data 2-
56
frame -
42
data 3+
7
data 3+
57
field index
45
data 3-
8
data 3-
58
GND
99
data 4+
9
data 4+
59
GND
100
data 4-
10
data 4-
60
data 5+
11
data 5+
61
data 5-
12
data 5-
62
data 6+
13
data 6+
63
data 6-
14
data 6-
64
data 7+
15
data 7+
65
data 7-
16
data 7-
66
data 8+
17
data 8+
67
data 8-
18
data 8-
68
data 9+
19
data 9+
69
data 9-
20
data 9-
70
data 10+
21
data 10+
71
data 10-
22
data 10-
72
data 11+
23
data 11+
73
data 11-
24
data 11-
74
All other pins have no connection. All outputs are driven by low voltage differential line drivers (LVDS) except for the
field index which is TTL.
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 61
POWER CONNECTOR
Figure 46: Power Connector Block Diagram
The evaluation board requires +15 V, -15 V, and +5 V. The current draw for each supply is:
Supply
Current (mA)
+15
62
-15
18
+5
780
MODE SWITCH
Switch
On
Off
1
Fast Dump off
Fast Dump on
2
1 output
2 outputs
3
---
----
4
Progressive scan
Interlaced
When the fast dump is activated the timing dumps the first 256 lines, then reads out 512 lines of image data, and
finally it dumps the last 240 lines. The resulting image is 1000 columns by 512 rows. The interlaced mode timing is not
programmed to support fast dumping.
EXPOSURE SWITCH
All exposure times are in µs. Electronic shuttering is not programmed into the timing generator for interlaced mode.
Exposure Setting
FD Off: 1 output
FD Off: 2 outputs
FD On: 1 output
FD On: 2 outputs
0
33300
20600
20600
14160
1
16400
10160
6000
4400
2
7960
4960
3000
2540
3
3740
2320
1860
1840
4
1616
1016
1700
1700
5
564
362
824
824
6
298
198
460
460
7
68
55
93
93
+15 +15
GND GND
-15 -15
GND GND
+5 +5
0.1"
0.1"
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 62
SUBSTRATE VOLTAGE TRIM
This variable resistor allows the substrate voltage to be varied from 0 V to 15 V. Adjusting this voltage will change the
charge capacity and anti-blooming of the pixel photodiodes. Do not adjust the voltage below 8 V.
EVALUATION BOARD NOTES
Timing
The main timing is generated by a programmable gate array U8. The HCCD drive is setup for selectable single or dual
output by inverting the H2BR and H2BL timing signals depending on the setting of the mode switch SW1.
The short pulses for R, T, SA, and SB are generated by combining (logical and/or) the outputs of the delay line
U10. Each tap on U10 delays the system clock by 2.5ns.
The amount of noise in the KAI-1020 will have a strong dependence on the stability of the timing inputs. The most
sensitive inputs are the HCCD and the CDS timing inputs. The evaluation board uses one PGA (U8) to hold all of the
counters and to generate the CDS timing. This is not the optimum arrangement. Though gray code counters were used,
some fixed pattern column noise can be seen in the image from the counters inside U8. The counters inside U8 cause
small disturbances of the HCCD and CDS timing. One solution to eliminate this noise source is to separate the counters
and CDS pulse generation into two separate PGA's. One PGA would contain all of the counters for the rows and
columns, and send a HCCD gating signal to a second PGA. The second PGA would output the HCCD clock as well as
form the CDS timing pulses from the multi-tap delay line U10. This second PGA would contain no counters.
Output Channel
The output circuit is identical to section 0. The two op-amps U5A and U5B present an inverted signal to the ADC U4.
The offset circuit will maintain the digital output of U4 at 4080 when the image sensor is in the dark. The output of U4
will be zero when the image sensor is saturated with light. The digital data is inverted by swapping the high and low
outputs of the differential line drivers on the output connector.
Automatic Offset
U12 is used to control the automatic offset circuit. U8 sends a signal to U12 on the line BLKLEV when the output of the
analog to digital converter corresponds to the center 10 columns of the KAI1020 dark reference. When U12 receives
the signal from U8, U12 compares the outputs of the A/D converters to the number 4080. If the output is above or
below 4080, U12 enables the buffers U22 and U23 and sets their inputs to cause the integrators U13A and U13B to
raise or lower the offset voltages.
A separate PGA (U12) is used to monitor the output of the A/D converters. This function should not be combined with
U8 into one PGA. If only one PGA is used then the digital data will cause noise in the timing outputs to the image
sensor. This is especially true when the A/D outputs are near a major bit boundary, such as 2048 or 1024. At these bit
boundaries there are a large number of bits changing value that would disturb the stability of the HCCD and CDS
clocking.
The automatic offset updates the offset every line. This does cause some noise in the image because the offset
changes slightly each line time. An improved offset circuit would measure the offset error along the entire column and
then correct the offset voltage once per frame.
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 63
OSCILLOSCOPE TRACES
This section contains oscilloscope traces of signals measured on the KAI-1020 pins. Some of the timing signals are not 0
to 5V because the KAI-1020 has level shifted the signals. All signals were measured on the KAI-1020 evaluation board.
CDS Timing
Figure 47: CDS Timing Oscilloscope Traces
KAI-1020 40 MHz Timing
-6
-4
-2
0
2
4
6
8
10
0 5 10 15 20 25 30 35 40 45 50
Time (ns)
Volts
H2S
R
SB
SA
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 64
Vertical Retrace
Figure 48: Vertical Retrace Oscilloscope Traces
KAI1020 Vertical Retrace
-10
-8
-6
-4
-2
0
2
4
6
8
10
Volts
V2OUT
V1OUT
-10
-8
-6
-4
-2
0
-10 0 10 20 30 40 50 60 70 80 90
Time (µs)
Volts
V2B
V1
V2A
KAI-1020 Vertical Retrace
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 65
Horizontal Retrace
Figure 49: Horizontal Retrace Oscilloscope Traces
KAI1020 Horizontal Retrace
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
Volts
V1OUT
V2OUT
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0
1
-1 0 1 2 3 4 5 6 7 8
Time (µs)
Volts
H1S
V1, V2A
KAI-1020 Horizontal Retrace
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 66
Storage and Handling
STORAGE CONDITIONS
Description
Symbol
Minimum
Maximum
Units
Notes
Storage
Temperature
TST
-55
70
°C
1
Humidity
RH
5
90
%
2
Notes:
1. Long-term exposure toward the maximum
temperature will accelerate color filter degradation.
2. T=25 °C. Excessive humidity will degrade MTTF
ESD
1. This device contains limited protection against
Electrostatic Discharge (ESD). ESD events may
cause irreparable damage to a CCD image sensor
either immediately or well after the ESD event
occurred. Failure to protect the sensor from
electrostatic discharge may affect device
performance and reliability.
2. Devices should be handled in accordance with
strict ESD procedures for Class 0 (<250V per
JESD22 Human Body Model test), or Class A
(<200V JESD22 Machine Model test) devices.
Devices are shipped in static-safe containers and
should only be handled at static-safe
workstations.
3. See Application Note Image Sensor Handling Best
Practices for proper handling and grounding
procedures. This application note also contains
workplace recommendations to minimize
electrostatic discharge.
4. Store devices in containers made of electro-
conductive materials.
COVER GLASS CARE AND CLEANLINESS
1. The cover glass is highly susceptible to particles
and other contamination. Perform all assembly
operations in a clean environment.
2. Touching the cover glass must be avoided.
3. Improper cleaning of the cover glass may
damage these devices. Refer to Application Note
Image Sensor Handling Best Practices.
ENVIRONMENTAL EXPOSURE
1. Extremely bright light can potentially harm CCD
image sensors. Do not expose to strong sunlight
for long periods of time, as the color filters
and/or microlenses may become discolored. In
addition, long time exposures to a static high
contrast scene should be avoided. Localized
changes in response may occur from color
filter/microlens aging. For Interline devices, refer
to Application Note Using Interline CCD Image
Sensors in High Intensity Visible lighting
Conditions.
2. Exposure to temperatures exceeding maximum
specified levels should be avoided for storage
and operation, as device performance and
reliability may be affected.
3. Avoid sudden temperature changes.
4. Exposure to excessive humidity may affect
device characteristics and may alter device
performance and reliability, and therefore should
be avoided.
5. Avoid storage of the product in the presence of
dust or corrosive agents or gases, as
deterioration of lead solderability may occur. It is
advised that the solderability of the device leads
be assessed after an extended period of storage,
over one year.
SOLDERING RECOMMENDATIONS
1. The soldering iron tip temperature is not to
exceed 370 °C. Higher temperatures may alter
device performance and reliability.
2. Flow soldering method is not recommended.
Solder dipping can cause damage to the glass
and harm the imaging capability of the device.
Recommended method is by partial heating using
a grounded 30 W soldering iron. Heat each pin
for less than 2 seconds duration.
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 67
Mechanical Drawings
COMPLETED ASSEMBLY
Pin Grid Array
Figure 50: PGA Completed Assembly
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 68
Leadless Chip Carrier
Figure 51: LCC Completed Assembly
Leadless Chip Carrier and Soldering
Care should be taken when using reflow ovens to solder the KAI-1020 to circuit boards. Extreme temperatures may
cause degradation to the color filters or microlens material.
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 69
COVER GLASS
Pin Grid Array Cover Glass
Figure 52: PGA Cover Glass
Notes:
1. Dust / Scratch 10 micron max
2. Substrate: SCHOTT D-263T eco OR Equivalent
3. Epoxy: NCO-150HB
Thickness   0.13]
4. Double-Sided AR Coating Reflectance
a. 420nm 435nm < 2.0%
b. 435nm 630nm < 0.8%
c. 630nm 680nm < 2.0%
5. Units: IN [MM]
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 70
Leadless Chip Carrier Cover Glass
Figure 53: LCC Cover Glass
NOTE:
1. Double-side AR Coating Reflectance
a. 420nm 435nm < 2.0%
b. 435nm 630nm < 0.8%
c. 630nm 0 680nm < 2.0%
2. Substrate: SCHOTT D-263T eco or equivalent
3. Epoxy: NCO-150HB
Thickness   0.13]
4. Dust, Scratch specification
a. 10 micron max
5. UNITS: IN [MM]
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 71
Glass Transmission
Figure 54: Cover Glass Transmission
0
10
20
30
40
50
60
70
80
90
100
200 300 400 500 600 700 800 900
Transmission (%)
Wavelength (nm)
KAI-1020 Glass Transmission
KAI-1020 AR Glass
AR coated used on both package
configurations
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 72
Quality Assurance and Reliability
QUALITY AND RELIABILITY
All image sensors conform to the specifications stated in this document. This is accomplished through a combination
of statistical process control and visual inspection and electrical testing at key points of the manufacturing process,
using industry standard methods. Information concerning the quality assurance and reliability testing procedures and
results are available from Truesense Imaging upon request. For further information refer to Application Note Quality
and Reliability.
REPLACEMENT
All devices are warranted against failure in accordance with the Terms of Sale. Devices that fail due to mechanical and
electrical damage caused by the customer will not be replaced.
LIABILITY OF THE SUPPLIER
A reject is defined as an image sensor that does not meet all of the specifications in this document upon receipt by the
customer. Product liability is limited to the cost of the defective item, as defined in the Terms of Sale.
LIABILITY OF THE CUSTOMER
Damage from mishandling (scratches or breakage), electrostatic discharge (ESD), or other electrical misuse of the
device beyond the stated operating or storage limits, which occurred after receipt of the sensor by the customer, shall
be the responsibility of the customer.
TEST DATA RETENTION
Image sensors shall have an identifying number traceable to a test data file. Test data shall be kept for a period of 2
years after date of delivery.
MECHANICAL
The device assembly drawing is provided as a reference.
Truesense Imaging reserves the right to change any information contained herein without notice. All information
furnished by Truesense Imaging is believed to be accurate.
Life Support Applications Policy
Truesense Imaging image sensors are not authorized for and should not be used within Life Support Systems without
the specific written consent of Truesense Imaging, Inc.
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 73
Revision Changes
MTD/PS-0205
Revision Number
Description of Changes
0.0
Original formal version.
1.0
Correct VS29 connection to 9 volt supply, not 15 volt supply in schematic on page 42.
Added Revision Changes
2.0
Added section 1.3.5 General Color
Added section 1.4.2 Color Quantum Efficiency
Added section 1.4.3 Color Filter Array Pattern
Updated section 2.2.1 Pin Grid Array Package Drawing
Added section 2.2 Leadless Chip Carrier Package
Added section 3 Glass

Section 6.5 Parts List
U13: Corrected from OPAMP-DUAL LM 649BEM to LMC6942BEM
U22, U23: Corrected from NCSZ126 to NC7SZ126
3.0
Updated page layout.
Section numbers removed.
Updated drawing in section 1.2 to show buffer columns and rows.
Updated section 1.4.1 Monochrome Quantum Efficiency.
Updated section 1.4.3 CFA pattern to show buffer columns and rows.
Updated section 1.9 Quality Assurance and Reliability.
Added section 1.10.1 Available Part Configurations.
Updated section 3.1 Pin Grid Array Package Cover Glass. Glass changed from clear to MAR. Updated section 3.3 Glass
Transmission.
Section 4.11.2 Bias Voltages, changed V1MID and V2 MID from
min 1.5, nom 1.0, max 0.5 to
min 1.5, num 1.2, max 1.0
Section 4.11.2 Added power up sequence note.
4.0
Corrected figure on page 4. Buffers rows and columns were incorrect. Changed from 4 rows/columns to 2 rows/columns.
Corrected figure on page 8. Buffers rows and columns were incorrect. Changed from 4 rows/columns to 2 rows/columns.
4.1
Added to the CDS Output Specification table an Output Bias Current nominal value.
Correlated Double Sampling (CDS) Section 
the
change made in revision 2.0.
Updated schematic to show two diodes for V1MID and V2MID power supply. Corrected sentences below schematics from
0.6 to 1.5V. Since V1MID and V2MID only sink current, one diode can
ID and V2MID connections must be set to 1.0 to 1.5V. Since V1MID and V2MID
only sink current, two diodes can be used to set this voltage. This change is to match the update in revision 3.0.
Updated schematic addition of D4, which sets the V1MID and V2MID voltage to 1.2V.
5.0
Updated format
Updated pictures on Summary Specification page
Added sampling plan to performance parameters
Update evaluation board pictures
Merged MTD-PS-0293 KAI-1020 Test Supplement specification into this document
6.0
Using Interline CCD Image Sensors in High Intensity Visible Lighting Conditions
to the following sections
Operation, Electronic Shutter
Camera Design, Electronic Shutter
Storage and Handling
Changed cover glass material to D263T eco or equivalent
KAI-1020 Image Sensor
www.truesenseimaging.com Revision 1.0 PS-0019 Pg 74
©Truesense Imaging Inc., 2012. TRUESENSE is a registered trademark of Truesense Imaging, Inc.
PS-0019
Revision Number
Description of Changes
1.0
Initial release with new document number, updated branding and document template
Updated Storage and Handling and Quality Assurance and Reliability sections
Reorganized structure for consistency with other Interline Transfer CCD documents