K7P321874C 1Mx36 & 2Mx18 SRAM
K7P323674C
Rev. 1.2 February 2007
- 1 -
36Mb Late Write SRAM Specification
119BGA with Pb & Pb-Free
(RoHS compliant)
* Samsung Electronics reserves the right to change products or specification without notice.
INFORMATION IN THIS DOCUMENT IS PROVIDED IN RELATION TO SAMSUNG PRODUCTS,
AND IS SUBJECT TO CHANGE WITHOUT NOTICE.
NOTHING IN THIS DOCUMENT SHALL BE CONSTRUED AS GRANTING ANY LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,
TO ANY INTELLECTUAL PROPERTY RIGHTS IN SAMSUNG PRODUCTS OR TECHNOLOGY.
ALL INFORMATION IN THIS DOCUMENT IS PROVIDED
ON AS "AS IS" BASIS WITHOUT GUARANTEE OR WARRANTY OF ANY KIND.
1. For updates or additional information about Samsung products, contact your nearest Samsung office.
2. Samsung products are not intended for use in life support, critical care, medical, safety equipment, or simi-
lar applications where Product failure could result in loss of life or personal or physical harm, or any military
or defense application, or any governmental procurement to which special terms or provisions may apply.
K7P321874C 1Mx36 & 2Mx18 SRAM
K7P323674C
Rev. 1.2 February 2007
- 2 -
1Mx36 & 2Mx18 Synchronous Pipelined SRAM
Revision History
Rev. No.
Rev. 0.0
Rev. 0.1
Rev. 0.2
Rev. 0.3
Rev. 1.0
Rev. 1.1
Rev. 1.2
Remark
Advance
Preliminary
Preliminary
Preliminary
Final
Final
Final
History
1. Initial Document
1. Change VDD range : from 1.8~2.5V to 1.8 or 2.5V
1. Put the data in the table of DC Characteristics, Pin Capacitance and Thermal
Resistance.
1. Change Samsung JEDEC Code in ID REGISTER DEFINITION
1. Correct typo
1. Change Max. VREF and VCM-CLK from 0.9V to 0.95V in recommended DC
operating conditions.
1. Change VOH in JTAG DC OPERATING CONDITION
Draft Date
Dec. 2005
Jan. 2006
Apr. 2006
Jun. 2006
Aug. 2006
Dec. 2006
Feb. 2007
Document Title
K7P321874C 1Mx36 & 2Mx18 SRAM
K7P323674C
Rev. 1.2 February 2007
- 3 -
1Mx36 & 2Mx18 Synchronous Pipelined SRAM
FEATURES
Org. Maximum
Frequency
Access
Time VDD Part Number
1Mx36 300MHz 1.6 2.5V K7P323674C-H(G)1C30
250MHz 2.0 1.8 / 2.5V K7P323674C-H(G)1C25
2Mx18 300MHz 1.6 2.5V K7P321874C-H(G)1C30
250MHz 2.0 1.8 / 2.5V K7P321874C-H(G)1C25
• 1Mx36 or 2Mx18 Organizations.
• 1.8 or 2.5V VDD/1.5V ~1.8VDDQ.
• HSTL Input and Output Levels.
• Differential, HSTL Clock Inputs K, K.
• Synchronous Read and Write Operation
• Registered Input and Registered Output
• Internal Pipeline Latches to Support Late Write.
Note 1 : H(G) [Package type] : G-Pb Free, H-Pb
2 : 300MHz is supported only at 2.5V VDD. 250MHz is the maximum speed at 1.8V VDD
GENERAL DESCRIPTION
The K7P323674C and K7P321874C are 37,748,736 bit Synchronous Pipeline Mode SRAM. It is organized as 1,048,576 words of 36
bits(or 2,097,152 words of 18 bits)and is implemented in SAMSUNGs advanced CMOS technology.
Single differential HSTL level K clocks are used to initiate the read/write operation and all internal operations are self-timed. At the
rising edge of K clock, All addresses, Write Enables, Synchronous Select and Data Ins are registered internally. Data outs are
updated from output registers edge of the next rising edge of the K clock. An internal write data buffer allows write data to follow one
cycle after addresses and controls. The package is 119(7x17) Ball Grid Array with balls on a 1.27mm pitch.
• Byte Write Capability(four byte write selects, one for each 9bits)
• Synchronous or Asynchronous Output Enable.
• Power Down Mode via ZZ Signal.
• Programmable Impedance Output Drivers.
• JTAG 1149.1 Compatible Test Access port.
• 119(7x17)Pin Ball Grid Array Package(14mmx22mm).
ORDERING INFORMATION
K7P321874C 1Mx36 & 2Mx18 SRAM
K7P323674C
Rev. 1.2 February 2007
- 4 -
PIN DESCRIPTION
Pin Name Pin Description Pin Name Pin Description
K, K Differential Clocks VREF HSTL Input Reference Voltage
SAn Synchronous Address Input M1, M2 Read Protocol Mode Pins ( M1=VSS, M2=VDDQ )
DQn Bi-directional Data Bus G Asynchronous Output Enable
SW Synchronous Global Write Enable SS Synchronous Select
SWa Synchronous Byte a Write Enable TCK JTAG Test Clock
SWb Synchronous Byte b Write Enable TMS JTAG Test Mode Select
SWc Synchronous Byte c Write Enable TDI JTAG Test Data Input
SWd Synchronous Byte d Write Enable TDO JTAG Test Data Output
ZZ Asynchronous Power Down ZQ Output Driver Impedance Control
VDD Core Power Supply VSS GND
VDDQ Output Power Supply NC No Connection
FUNCTIONAL BLOCK DIAGRAM
SA[0:19] or SA[0:20]
CK
SS
SW
SWx
G
1Mx36
Data In
ZZ
DQx[1:9]
(x=a, b, c, d)
or (x=a, b)
(x=a, b, c, d)
or (x=a, b)
K
KCK
or
2Mx18
Array
Row Decoder
Column Decoder
Write/Read Circuit
Register
0 1
Data Out
Register
1
Read
Address
Register Write
Address
Register
Latch
SW
Register
SW
Register
Latch
SWx
Register
SWx
Register
SS
Register
SS
Register
0
K7P321874C 1Mx36 & 2Mx18 SRAM
K7P323674C
Rev. 1.2 February 2007
- 5 -
PACKAGE PIN CONFIGURATIONS(TOP VIEW)
K7P323674C(1Mx36)
1234567
AVDDQ SA SA NC SA SA VDDQ
BNC SA SA SA SA SA NC
CNC SA SA VDD SA SA NC
DDQc DQc VSS ZQ VSS DQb DQb
EDQc DQc VSS SS VSS DQb DQb
FVDDQ DQc VSS G VSS DQb VDDQ
GDQc DQc SWcNCSWbDQbDQb
HDQc DQc VSS NC VSS DQb DQb
JVDDQ VDD VREF VDD VREF VDD VDDQ
KDQd DQd VSS KVSS DQa DQa
LDQd DQd SWdKSWaDQaDQa
MVDDQ DQd VSS SW VSS DQa VDDQ
NDQd DQd VSS SA VSS DQa DQa
PDQd DQd VSS SA VSS DQa DQa
RNC SA M1VDD M2SA2NC
TNC NC SA SA SA NC ZZ
UVDDQ TMS TDI TCK TDO NC VDDQ
K7P321874C(2Mx18)
1234567
AVDDQ SA SA NC SA SA VDDQ
BNC SA SA SA SA SA NC
CNC SA SA VDD SA SA NC
DDQb NC VSS ZQ VSS DQa NC
ENC DQb VSS SS VSS NC DQa
FVDDQ NC VSS G VSS DQa VDDQ
GNC DQb SWbNC NC NCDQa
HDQb NC VSS NC VSS DQa NC
JVDDQ VDD VREF VDD VREF VDD VDDQ
KNC DQb VSS KVSS NC DQa
LDQb NC NC K SWaDQa NC
MVDDQ DQb VSS SW VSS NC VDDQ
NDQb NC VSS SA VSS DQa NC
PNC DQb VSS SA VSS NC DQa
RNC SA M1VDD M2SA NC
TNC SA SA NC SA SA ZZ
UVDDQ TMS TDI TCK TDO NC VDDQ
K7P321874C 1Mx36 & 2Mx18 SRAM
K7P323674C
Rev. 1.2 February 2007
- 6 -
During reads, the address is registered during the frist clock edge, the internal array is read between this first edge and the second
edge, and data is captured in the output register and driven to the CPU during the second clock edge. SS is driven low during this
cycle, signaling that the SRAM should drive out the data.
During consecutive read cycles where the address is the same, the data output must be held constant without any glitches. This
characteristic is because the SRAM will be read by devices that will operate slower than the SRAM frequency and will require multi-
ple SRAM cycles to perform a single read operation.
Write(Store) Operation
All addresses and SW are sampled on the clock rising edge. SW is low on the rising clock. Write data is sampled on the rising clock,
one cycle after write address and SW have been sampled by the SRAM. SS will be driven low during the same cycle that the
Address, SW and SW[a:d] are valid to signal that a valid operation is on the Address and Control Input.
Pipelined write are supported. This is done by using write data buffers on the SRAM that capture the write addresses on one write
cycle, and write the array on the next write cycle. The "next write cycle" can actually be many cycles away, broken by a series of
read cycles. Byte writes are supported. The byte write signals SW[a:d] signal which 9-bit bytes will be writen. Timing of SW[a:d] is the
same as the SW signal.
Bypass Read Operation
Since write data is not fully written into the array on first write cycle, there is a need to sense the address in case a future read is to be
done from the location that has not been written yet. For this case, the address comparator check to see if the new read address is
the same as the contents of the stored write address Latch. If the contents match, the read data must be supplied from the stored
write data latch with standard read timing. If there is no match, the read data comes from the SRAM array. The bypassing of the
SRAM array occurs on a byte by byte basis. If one byte is written and the other bytes are not, read data from the last written will have
new byte data from the write data buffer and the other bytes from the SRAM array.
Mode Control
There are two mode control select pins (M1 and M2) used to set the proper read protocol. This SRAM supports single clock pipelined
operating mode. For proper specified device operation, M1 must be connected to VSS and M2 must be connected to VDDQ. These
mode pins must be set at power-up and must not change during device operation.
Programmable Impedance Output Buffer Operation
This HSTL Late Write SRAM has been designed with programmable impedance output buffers. The SRAMs output buffer impedance
can be adjusted to match the system data bus impedance, by connecting a external resistor (RQ) between the ZQ pin of the SRAM
and VSS. The value of RQ must be five times the value of the intended line impedance driven by the SRAM. For example, a 250
resistor will give an output buffer impedance of 50. The allowable range of RQ is from 175 to 350. Internal circuits evaluate and
periodically adjust the output buffer impedance, as the impedance is affected by drifts in supply voltage and temperature. One evalu-
ation occurs every 32 clock cycles, with each evaluation moving the output buffer impedance level only one step at a time toward the
optimum level. Impedance updates occur when the SRAM is in High-Z state, and thus are triggered by write and deselect operations.
Updates will also be triggered with G HIGH initiated High-Z state, providing the specified G setup and hold times are met. Impedance
match is not instantaneous upon power-up. In order to guarantee optimum output driver impedance, the SRAM requires a minimum
number of non-read cycles (1,024) after power-up. The output buffers can also be programmed in a minimum impedance configura-
tion by connecting ZQ to VSS or VDDQ.
Power-Up/Power-Down Supply Voltage Sequencing
The following power-up supply voltage application is recommended: VSS, VDD, VDDQ, VREF, then VIN. VDD and VDDQ can be applied
simultaneously, as long as VDDQ does not exceed VDD by more than 0.5V during power-up. The following power-down supply voltage
removal sequence is recommended: VIN, VREF, VDDQ, VDD, VSS. VDD and VDDQ can be removed simultaneously, as long as VDDQ
does not exceed VDD by more than 0.5V during power-down.
Sleep Mode
Sleep mode is a low power mode initiated by bringing the asynchronous ZZ pin high. During sleep mode, all other inputs are ignored
and outputs are brought to a High-Impedance state. Sleep mode current and output High-Z are guaranteed after the specified sleep
mode enable time. During sleep mode the memory array data content is preserved. Sleep mode must not be initiated until after all
pending operations have completed, as any pending operation is not guaranteed to properly complete after sleep mode is initiated.
Normal operations can be resumed by bringing the ZZ pin low, but only after the specified sleep mode recovery time.
Read Operation
K7P321874C 1Mx36 & 2Mx18 SRAM
K7P323674C
Rev. 1.2 February 2007
- 7 -
TRUTH TABLE
NOTE : K & K are complementary
KZZ GSS SW SWaSWbSWcSWdDQa DQb DQc DQd Operation
XHXXXXXXXHi-ZHi-ZHi-ZHi-ZPower Down Mode. No Operation
XLHXXXXXXHi-ZHi-ZHi-ZHi-ZOutput Disabled.
LLHXXXXXHi-ZHi-ZHi-ZHi-ZOutput Disabled. No Operation
LLLHXXXXD
OUT DOUT DOUT DOUT Read Cycle
L X L L H H H H Hi-Z Hi-Z Hi-Z Hi-Z No Bytes Written
LXLLLHHHD
IN Hi-Z Hi-Z Hi-Z Write first byte
LXLLHLHHHi-ZD
IN Hi-Z Hi-Z Write second byte
L X L L H H L H Hi-Z Hi-Z DIN Hi-Z Write third byte
L X L L H H H L Hi-Z Hi-Z Hi-Z DIN Write fourth byte
LXLLLLLLD
IN DIN DIN DIN Write all bytes
ABSOLUTE MAXIMUM RATINGS
Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and
functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied.
Exposure to absolute maximum rating conditions for extended periods may affect reliability.
Parameter Symbol Value Unit
Core Supply Voltage Relative to VSS VDD -0.5 to 3.13 V
Output Supply Voltage Relative to VSS VDDQ -0.5 to 2.4 V
Voltage on any I/O pin Relative to VSS VIN -0.5 to VDDQ+0.5 (2.4V MAX)V
Output Short-Circuit Current IOUT 25 mA
Operating Temperature TOPR 0 to 70 °C
Storage Temperature TSTG -55 to 125 °C
RECOMMENDED DC OPERATING CONDITIONS
NOTE : 1. These are DC test criteria. DC design criteria is VREF±50mV. The AC VIH/VIL levels are defined separately for measuring timing parame-
ters.
2. VIH (Max)DC=VDDQ+0.3, VIH (Max)AC=VDDQ+0.85V(pulse width 3ns).
3. VIL (Min)DC=-0.3V, VIL (Min)AC=-1.5V(pulse width 3ns).
4. VIN-CLK specifies the maximum allowable DC level for the differential clock. i.e VIL-CLK and VIH-CLK.
5. VDIF-CLK specifies the minimum Clock differential voltage required for switching. i.e DC voltage difference between VIL-CLK and VIH-CLK.
6. VCM-CLK specifies the Clock crossing point for the differential clock or the allowable common clock level for a single ended clock
7. This device support both 250MHz and 300MHz frequency at VDD1. and support only 250MHz frequency at VDD2.
Parameter Symbol Min Typ Max Unit Note
Core Power Supply Voltage VDD1 2.37 2.5 2.63 V 7
VDD2 1.7 1.8 1.9 V 7
Output Power Supply Voltage VDDQ 1.4 1.5 1.9 V
Input High Level VIH VREF+0.1 - VDDQ+0.3 V 1, 2
Input Low Level VIL -0.3 - VREF-0.1 V1, 3
Input Reference Voltage VREF 0.6 VDDQ/2 0.95 V
Clock Input Signal Voltage VIN-CLK -0.3 - VDDQ+0.3 V 1, 4
Clock Input Differential Voltage VDIF-CLK 0.1 - VDDQ+0.6 V 1, 5
Clock Input Common Mode Voltage VCM-CLK 0.6 0.75 0.95 V 1, 6
K7P321874C 1Mx36 & 2Mx18 SRAM
K7P323674C
Rev. 1.2 February 2007
- 8 -
DC CHARACTERISTICS
NOTE :1. Minimum cycle. IOUT=0mA.
2. 50% read cycles.
3. |IOH|=(VDDQ/2)/(RQ/5)±15% @VOH=VDDQ/2 for 175 RQ 350.
4. |IOL|=(VDDQ/2)/(RQ/5)±15% @VOL=VDDQ/2 for 175 RQ 350.
5. Programmable Impedance Output Buffer Mode. The ZQ pin is connected to VSS through RQ.
6. Minimum Impedance Output Buffer Mode. The ZQ pin is connected to VSS or VDD.
Parameter Symbol Min Max Unit Note
Average Power Supply Operating Current-x36
(VIN=VIH or VIL, ZZ & SS=VIL)
IDD30
IDD25 -620
550 mA 1, 2
Average Power Supply Operating Current-x18
(VIN=VIH or VIL, ZZ & SS=VIL)
IDD30
IDD25 -570
500 mA 1, 2
Power Supply Standby Current
(VIN=VIH or VIL, ZZ=VIH)ISBZZ -70mA1
Active Standby Power Supply Current
(VIN=VIH or VIL, SS=VIH, ZZ=VIL)ISBSS - 200 mA 1
Input Leakage Current
(VIN=VSS or VDDQ)ILI -1 1 µA
Output Leakage Current
(VOUT=VSS or VDDQ, DQ in High-Z) ILO -1 1 µA
Output High Voltage(Programmable Impedance Mode) VOH1 VDDQ/2 VDDQ V3,5
Output Low Voltage(Programmable Impedance Mode) VOL1 VSS VDDQ/2 V 4,5
Output High Voltage(IOH=-0.1mA) VOH2 VDDQ-0.2 VDDQ V6
Output Low Voltage(IOL=0.1MA) VOL2 VSS 0.2 V 6
Output High Voltage(IOH=-6mA) VOH3 VDDQ-0.4 VDDQ V6
Output Low Voltage(IOL=6mA) VOL3 VSS 0.4 V 6
PIN CAPACITANCE
NOTE : Periodically sampled and not 100% tested.(TA=25°C, f=1MHz)
Parameter Symbol Test Condition Min Max Unit
Input Capacitance CIN VIN=0V - 4 pF
Data Output Capacitance COUT VOUT=0V - 5 pF
Clock Capacitance CCLK VCLK=0V - 5 pF
K7P321874C 1Mx36 & 2Mx18 SRAM
K7P323674C
Rev. 1.2 February 2007
- 9 -
AC TEST CONDITIONS (TA=0 ~ 70°C, VDD=1.7 ~ 1.9V and 2.37 ~ 2.63V, VDDQ=1.4~1.9V)
NOTE : Parameters are tested with RQ=250and VDDQ=1.5V.
Parameter Symbol Value Unit
Core Power Supply Voltage VDD 1.7~1.9 and 2.37~2.63 V
Output Power Supply Voltage VDDQ 1.4~1.9 V
Input High/Low Level VIH/VIL VDDQ/2 ± 0.5 V
Input Reference Level VREF VDDQ/2 V
Input Rise/Fall Time TR/TF0.5/0.5 ns
Input and Out Timing Reference Level VDDQ/2 V
Clock Input Timing Reference Level Cross Point V
50
50
AC TEST OUTPUT LOAD
255pF
DQ
VDDQ/2
5pF
VDDQ/2
50
50
VDDQ/2
AC CHARACTERISTICS
Parameter Symbol
-30 -25
Unit Note
2.5V VDD Only 1.8V / 2.5V VDD
Min Max Min Max
Clock Cycle Time tKHKH 3.3 - 4.0 - ns
Clock High Pulse Width tKHKL 1.3 - 1.6 - ns
Clock Low Pulse Width tKLKH 1.3 - 1.6 - ns
Clock High to Output Valid tKHQV -1.6-2.0ns
Clock High to Output Hold tKHQX 0.5 - 0.5 - ns
Address Setup Time tAVKH 0.3 - 0.3 - ns
Address Hold Time tKHAX 0.5 - 0.5 - ns
Write Data Setup Time tDVKH 0.3 - 0.3 - ns
Write Data Hold Time tKHDX 0.5 - 0.5 - ns
SW, SW[a:d] Setup Time tWVKH 0.3 - 0.3 - ns
SW, SW[a:d] Hold Time tKHWX 0.5 - 0.5 - ns
SS Setup Time tSVKH 0.3 - 0.3 - ns
SS Hold Time tKHSX 0.5 - 0.5 - ns
Clock High to Output Hi-Z tKHQZ -1.6-2.0ns
Clock High to Output Low-Z tKHQX1 0.5 - 0.5 - ns
G High to Output High-Z tGHQZ -1.6-2.0ns
G Low to Output Low-Z tGLQX 0.5 - 0.5 - ns
G Low to Output Valid tGLQV -1.6-2.0ns
ZZ High to Power Down(Sleep Time) tZZE - 15 - 15 ns
ZZ Low to Recovery(Wake-up Time) tZZR - 20 - 20 ns
K7P321874C 1Mx36 & 2Mx18 SRAM
K7P323674C
Rev. 1.2 February 2007
- 10
TIMING WAVEFORMS OF NORMAL ACTIVE CYCLES (SS Controlled, G=Low)
12345678
K
SAn
SS
SW
SWx
DQn
NOTE
1. D3 is the input data written in memory location A3.
2. Q4 is the output data read from the write data buffer(not from the cell array), as a result of address A4 being a match from the
last write cycle address.
A1A2A3A4A5A4A6A7
Q1D3D4Q5Q4
TIMING WAVEFORMS OF NORMAL ACTIVE CYCLES (G Controlled, SS=Low)
12345678
K
SAn
G
SW
SWx
DQn
NOTE
1. D3 is the input data written in memory location A3.
2. Q4 is the output data read from the write data buffer(not from the cell array), as a result of address A4 being a match from the last
write cycle address.
A1A2A3A4A5A4A6A7
Q2
Q1D3D4Q5Q4Q2
tKHKH
tKHAX
tAVKH
tKHKL tKLKH
tKHSX
tSVKH
tWVKH tKHWX tWVKH tKHWX
tKHQX1 tKHQX
tWVKH tKHWX
tKHQV tKHDX
tKHQZ tDVKH tKHDX
tKHKH
tGHQZ
tGLQX
tGLQV
K7P321874C 1Mx36 & 2Mx18 SRAM
K7P323674C
Rev. 1.2 February 2007
- 11
TIMING WAVEFORMS OF STANDBY CYCLES
12345678
K
SAn
SS
SW
SWx
DQn
ZZ
A2A1A2A3
Q1Q2Q1
A1
tKHKH
tZZE tZZR
tKHQV
tKHQV
K7P321874C 1Mx36 & 2Mx18 SRAM
K7P323674C
Rev. 1.2 February 2007
- 12
JTAG Instruction Coding
NOTE :
1. Places DQs in Hi-Z in order to sample all input data regardless of
other SRAM inputs.
2. TDI is sampled as an input to the first ID register to allow for the serial
shift of the external TDI data.
3. Bypass register is initiated to VSS when BYPASS instruction is
invoked. The Bypass Register also holds serially loaded TDI when
exiting the Shift DR states.
4. SAMPLE instruction dose not places DQs in Hi-Z.
5. PRIVATE is reserved for the exclusive use of SAMSUNG. This
instruction should not be used.
IR2 IR1 IR0 Instruction TDO Output Notes
0 0 0 SAMPLE-Z Boundary Scan Register 1
0 0 1 IDCODE Identification Register 2
0 1 0 SAMPLE-Z Boundary Scan Register 1
0 1 1 BYPASS Bypass Register 3
1 0 0 SAMPLE Boundary Scan Register 4
101 PRIVATE 5
1 1 0 BYPASS Bypass Register 3
1 1 1 BYPASS Bypass Register 3
IEEE 1149.1 TEST ACCESS PORT AND BOUNDARY SCAN-JTAG
This part contains an IEEE standard 1149.1 Compatible Teat Access Port(TAP). The package pads are monitored by the Serial Scan
circuitry when in test mode. This is to support connectivity testing during manufacturing and system diagnostics. Internal data is not
driven out of the SRAM under JTAG control. In conformance with IEEE 1149.1, the SRAM contains a TAP controller, Instruction Reg-
ister, Bypass Register and ID register. The TAP controller has a standard 16-state machine that resets internally upon power-up,
therefore, TRST signal is not required. It is possible to use this device without utilizing the TAP. To disable the TAP controller without
interfacing with normal operation of the SRAM, TCK must be tied to VSS to preclude mid level input. TMS and TDI are designed so an
undriven input will produce a response identical to the application of a logic 1, and may be left unconnected. But they may also be
tied to VDD through a resistor. TDO should be left unconnected.
TAP Controller State Diagram
JTAG Block Diagram
SRAM
CORE
BYPASS Reg.
Identification Reg.
Instruction Reg.
Control Signals
TAP Controller
TDO
M2M1
TDI
TMS
TCK
Test Logic Reset
Run Test Idle
011
1
1
0
0
0
1
0
1
1
0
0
0
1
0
1
1
1
0
0
0
0
0
0
0
Select DR
Capture DR
Shift DR
Exit1 DR
Pause DR
Exit2 DR
Update DR
Select IR
Capture IR
Shift IR
Exit1 IR
Pause IR
Exit2 IR
Update IR
1
1
1
1
1
K7P321874C 1Mx36 & 2Mx18 SRAM
K7P323674C
Rev. 1.2 February 2007
- 13
ID REGISTER DEFINITION
Part Revision Number
(31:28)
Part Configuration
(27:18)
Vendor Definition
(17:12)
Samsung JEDEC Code
(11: 1) Start Bit(0)
1Mx36 0000 01000 00100 XXXXXX 00011001110 1
2Mx18 0000 01001 00011 XXXXXX 00011001110 1
BOUNDARY SCAN EXIT ORDER(x36)
36 3B SA SA 5B 35
37 2B SA SA 6B 34
38 3A SA SA 5A 33
39 3C SA SA 5C 32
40 2C SA SA 6C 31
41 2A SA SA 6A 30
42 2D DQc9DQb96D 29
43 1D DQc8DQb87D 28
44 2E DQc7DQb76E 27
45 1E DQc6DQb67E 26
46 2F DQc5DQb56F 25
47 2G DQc4DQb46G 24
48 1G DQc3DQb37G 23
49 2H DQc2DQb26H 22
50 1H DQc1DQb17H 21
51 3G SWcSWb5G 20
52 4D ZQ G4F 19
53 4E SS K4K18
54 4B SA K4L 17
55 4H NC* SWa5L 16
56 4M SW DQa17K 15
57 3L SWdDQa26K 14
58 1K DQd1DQa37L 13
59 2K DQd2DQa46L 12
60 1L DQd3DQa56M 11
61 2L DQd4DQa67N 10
62 2M DQd5DQa76N 9
63 1N DQd6DQa87P 8
64 2N DQd7DQa96P 7
65 1P DQd8ZZ 7T 6
66 2P DQd9SA 5T 5
67 3T SA SA 6R 4
68 2R SA SA 4T 3
69 4N SA SA 4P 2
70 3R M1M25R 1
BOUNDARY SCAN EXIT ORDER(x18)
26 3B SA SA 5B 25
27 2B SA SA 6B 24
28 3A SA SA 5A 23
29 3C SA SA 5C 22
30 2C SA SA 6C 21
31 2A SA SA 6A 20
DQa96D 19
32 1D DQb1
33 2E DQb2
DQa87E 18
DQa76F 17
34 2G DQb3
DQa67G 16
DQa56H 15
35 1H DQb4
36 3G SWb
37 4D ZQ G4F 14
38 4E SS K4K13
39 4B SA K4L 12
40 4H NC* SWa5L 11
41 4M SW DQa47K 10
42 2K DQb5DQa36L 9
43 1L DQb6
44 2M DQb7DQa26N 8
45 1N DQb8DQa17P 7
ZZ 7T 6
46 2P DQb9SA 5T 5
47 3T SA SA 6R 4
48 2R SA
49 4N SA SA 4P 3
50 2T SA SA 6T 2
51 3R M1M25R 1
SCAN REGISTER DEFINITION
Part Instruction Register Bypass Register ID Register Boundary Scan
1Mx36 3 bits 1 bits 32 bits 70 bits
2Mx18 3 bits 1 bits 32 bits 51 bits
NOTE :1. Pin 4H is no connection pin to internal chip and the scanned data is "0".
1
1
K7P321874C 1Mx36 & 2Mx18 SRAM
K7P323674C
Rev. 1.2 February 2007
- 14
JTAG DC OPERATING CONDITIONS
NOTE : 1. The input level of SRAM pin is to follow the SRAM DC specification.
Parameter Symbol Min Typ Max Unit Note
Power Supply Voltage VDD 1.7 2.5 2.63 V
Input High Level VIH 0.7*VDD -VDD+0.3 V
Input Low Level VIL -0.3 - 0.3*VDD V
Output High Voltage(IOH=-2mA) VOH 0.75*VDD -VDD V
Output Low Voltage(IOL=2mA) VOL VSS -0.2V
JTAG TIMING DIAGRAM
JTAG AC Characteristics
Parameter Symbol Min Max Unit Note
TCK Cycle Time tCHCH 50 - ns
TCK High Pulse Width tCHCL 20 - ns
TCK Low Pulse Width tCLCH 20 - ns
TMS Input Setup Time tMVCH 5-ns
TMS Input Hold Time tCHMX 5-ns
TDI Input Setup Time tDVCH 5-ns
TDI Input Hold Time tCHDX 5-ns
SRAM Input Setup Time tSVCH 5-ns
SRAM Input Hold Time tCHSX 5-ns
Clock Low to Output Valid tCLQV 010ns
JTAG AC TEST CONDITIONS
NOTE : 1. See SRAM AC test output load on page 7.
Parameter Symbol Min Unit Note
Input High/Low Level VIH/VIL VDD/0.0 V
Input Rise/Fall Time TR/TF 1.0/1.0 ns
Input and Output Timing Reference Level VDD/2 V 1
TCK
TMS
TDI
PI
tCHCH
tMVCH tCHMX
tCHCL tCLCH
tDVCH tCHDX
tCLQV
TDO
(SRAM)
tSVCH tCHSX
K7P321874C 1Mx36 & 2Mx18 SRAM
K7P323674C
Rev. 1.2 February 2007
- 15
119 BGA PACKAGE DIMENSIONS
119 BGA PACKAGE THERMAL CHARACTERISTICS
NOTE : 1. Junction temperature can be calculated by : TJ = TA + PD x Theta_JA.
Parameter Symbol Thermal Resistance Unit Note
Junction to Ambient (at still air) Theta_JA 20.0 °C/W 1.5W Heating
Junction to Case Theta_JC 4.3 °C/W
Junction to Board Theta_JB 5.4 °C/W 1.5W Heating
119x 0.750±0.15
1.27 x 6 = 7.62
12.50 ± 0.10
0.60±0.10
4x C1.00 4x C0.70
14.00 ± 0.10
22.00 ± 0.10
20.50 ± 0.10
NOTE :
1.All Dimensions are in Millimeters.
2. Cavity Surface : Mat finish (Rz 10~15um)
Pin Surface : polish (Rz 2um Max)
3. Solder Ball to PCB Offset : 0.10 MAX.
4. PCB to Cavity Offset : 0.10 MAX.
5. PKG Warpage : 0.05 MAX
# A1 INDEX MARK
2.00
2.00 1.00 Dp 0.10 ± 0.05
2.00
2.00
2.00 Dp 0.10 ± 0.05
0.15 MAX
0.30 MAX
1.27 x 16 = 20.32
1.27
1.27
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
25° ± 5°
0.56 ± 0.04
0.90 ± 0.05
1.50 ± 0.10
2.21 MAX
1234567