
   
      
SCES553A − M AY 2004 − REVISED JULY 2004
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
DMember of the Texas Instruments
Widebus+ Family
DControl Inputs VIH/VIL Levels Are
Referenced to VCCA Voltage
DVCC Isolation Feature − If Either VCC Input
Is at GND, Both Ports Are in the
High-Impedance State
DOvervoltage-Tolerant Inputs/Outputs Allow
Mixed-Voltage-Mode Data Communications
DFully Configurable Dual-Rail Design Allows
Each Port to Operate Over the Full 1.2-V to
3.6-V Power-Supply Range
DIoff Supports Partial-Power-Down Mode
Operation
DI/Os Are 4.6-V Tolerant
DLatch-Up Performance Exceeds 100 mA Per
JESD 78, Class II
DESD Protection Exceeds JESD 22
− 4000-V Human-Body Model (A114-A)
− 200-V Machine Model (A115-A)
− 1000-V Charged-Device Model (C101)
description/ordering information
This 32-bit noninverting bus transceiver uses two separate configurable power-supply rails. The
SN74AVC32T245 i s optimized to operate with VCCA/VCCB set at 1.4 V to 3.6 V. It is operational with VCCA/VCCB
as low as 1.2 V. The A port is designed to track VCCA. VCCA accepts any supply voltage from 1.2 V to 3.6 V. The
B port is designed to track VCCB. VCCB accepts any supply voltage from 1.2 V to 3.6 V. This allows for universal
low-voltage bidirectional translation between any of the 1.2-V, 1.5-V, 1.8-V, 2.5-V, and 3.3-V voltage nodes.
The SN74AVC32T245 is designed for asynchronous communication between data buses. The device transmits
data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the
direction-control (DIR) input. The output-enable (OE) input can be used to disable the outputs so the buses are
effectively isolated.
The SN74AVC32T245 is designed so that the control pins (1DIR, 2DIR, 3DIR, 4DIR, 1OE, 2OE, 3OE, and 4OE)
are supplied by VCCA.
This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs,
preventing damaging current backflow through the device when it is powered down.
The V CC isolation feature ensures that if either VCC input is at GND, then both ports are in the high-impedance
state.
To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup
resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
ORDERING INFORMATION
TAPACKAGEORDERABLE
PART NUMBER TOP-SIDE
MARKING
−40°C to 85°C
LFBGA − GKE
Tape and reel
SN74AVC32T245GKER
WF245
−40
°
C to 85
°
C
LFBGA − ZKE (Pb-free)
Tape and reel
SN74AVC32T245ZKER
WF245
Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are
available at www.ti.com/sc/package.
Copyright 2004, Texas Instruments Incorporated
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Widebus+ is a trademark of Texas Instruments.
  !"# $ %&'# "$  (&)*%"# +"#',
+&%#$ %! # $('%%"#$ (' #-' #'!$  '."$ $#&!'#$
$#"+"+ /""#0, +&%# (%'$$1 +'$ # '%'$$"*0 %*&+'
#'$#1  "** (""!'#'$,

   
      
SCES553A − M AY 2004 − REVISED JULY 2004
2POST OFFICE BOX 655303 DALLAS, TEXAS 75265
terminal assignments
123456
A1B2 1B1 1DIR 1OE 1A1 1A2
B1B4 1B3 GND GND 1A3 1A4
C1B6 1B5 VCCB VCCA 1A5 1A6
D1B8 1B7 GND GND 1A7 1A8
E2B2 2B1 GND GND 2A1 2A2
F2B4 2B3 VCCB VCCA 2A3 2A4
G2B6 2B5 GND GND 2A5 2A6
H2B7 2B8 2DIR 2OE 2A8 2A7
J3B2 3B1 3DIR 3OE 3A1 3A2
K3B4 3B3 GND GND 3A3 3A4
L3B6 3B5 VCCB VCCA 3A5 3A6
M3B8 3B7 GND GND 3A7 3A8
N4B2 4B1 GND GND 4A1 4A2
P4B4 4B3 VCCB VCCA 4A3 4A4
R4B6 4B5 GND GND 4A5 4A6
T4B7 4B8 4DIR 4OE 4A8 4A7
FUNCTION TABLE
(each 8-bit section)
INPUTS
OPERATION
OE DIR OPERATION
L L B data to A bus
LH A data to B bus
H X Isolation
GKE OR ZKE PACKAGE
(TOP VIEW)
J
H
G
F
E
D
C
B
A
213465
P
N
M
L
K
T
R

   
      
SCES553A − M AY 2004 − REVISED JULY 2004
3
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
logic diagram (positive logic)
To Seven Other Channels
1DIR
1A1
1B1
1OE
To Seven Other Channels
2DIR
2A1
2B1
2OE
A3
A5
H3
E5
A4
A2
H4
E2
To Seven Other Channels
3DIR
3A1
3B1
3OE
To Seven Other Channels
4DIR
4A1
4B1
4OE
J3
J5
T3
N5
J4
J2
T4
N2

   
      
SCES553A − M AY 2004 − REVISED JULY 2004
4POST OFFICE BOX 655303 DALLAS, TEXAS 75265
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage range, VCCA and VCCB −0.5 V to 4.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input voltage range, VI (see Note 1): I/O ports (A port) −0.5 V to 4.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I/O ports (B port) −0.5 V to 4.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Control inputs −0.5 V to 4.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Voltage range applied to any output in the high-impedance or power-off state, VO
(see Note 1): A port −0.5 V to 4.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
B port −0.5 V to 4.6 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Voltage range applied to any output in the high or low state, VO
(see Notes 1 and 2): A port −0.5 V to VCCA + 0.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
B port −0.5 V to VCCB + 0.5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input clamp current, IIK (VI < 0) −50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output clamp current, IOK (VO < 0) −50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous output current, IO ±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous current through each VCCA, VCCB, and GND ±100 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Package thermal impedance, θJA (see Note 3): GKE/ZKE package 40°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range, Tstg −65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input voltage and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.
2. The output positive-voltage rating may be exceeded up to 4.6 V maximum if the output current rating is observed.
3. The package thermal impedance is calculated in accordance with JESD 51-7.

   
      
SCES553A − M AY 2004 − REVISED JULY 2004
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
recommended operating conditions (see Notes 4 through 6)
VCCI VCCO MIN MAX UNIT
VCCA Supply voltage 1.2 3.6 V
VCCB Supply voltage 1.2 3.6 V
High-level input
Data inputs
1.2 V to 1.95 V VCCI ×0.65
V
IH
High-level input
voltage
Data inputs
(see Note 7)
1.95 V to 2.7 V 1.6 V
VIH
voltage
(see Note 7)
2.7 V to 3.6 V 2
V
Low-level input
Data inputs
1.2 V to 1.95 V VCCI ×0.35
V
IL
Low-level input
voltage
Data inputs
(see Note 7)
1.95 V to 2.7 V 0.7 V
VIL
voltage
(see Note 7)
2.7 V to 3.6 V 0.8
V
High-level input
DIR
1.2 V to 1.95 V VCCA ×0.65
V
IH
High-level input
voltage
DIR
(referenced to V
CCA
)1.95 V to 2.7 V 1.6 V
VIH
voltage
(referenced to VCCA)
(see Note 8) 2.7 V to 3.6 V 2
V
Low-level input
DIR
1.2 V to 1.95 V VCCA ×0.35
V
IL
Low-level input
voltage
DIR
(referenced to V
CCA
)1.95 V to 2.7 V 0.7 V
VIL
voltage
(referenced to VCCA)
(see Note 8) 2.7 V to 3.6 V 0.8
V
VIInput voltage 0 3.6 V
VO
Output voltage
Active state 0 VCCO
V
VOOutput voltage 3-state 0 3.6 V
1.2 V −3
1.4 V to 1.6 V −6
I
OH
High-level output current 1.65 V to 1.95 V −8 mA
IOH
High-level output current
2.3 V to 2.7 V −9
mA
3 V to 3.6 V −12
1.2 V 3
1.4 V to 1.6 V 6
I
OL
Low-level output current 1.65 V to 1.95 V 8mA
IOL
Low-level output current
2.3 V to 2.7 V 9
mA
3 V to 3.6 V 12
t/vInput transition rise or fall rate 5 ns/V
TAOperating free-air temperature −40 85 °C
NOTES: 4. VCCI is the VCC associated with the data input port.
5. VCCO is the VCC associated with the output port.
6. All unused data inputs of the device must be held at VCCI or GND to ensure proper device operation. Refer to the TI application report,
Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
7. For VCCI values not specified in the data sheet, VIH min = VCCI × 0.7 V, VIL max = VCCI × 0.3 V.
8. For VCCI values not specified in the data sheet, VIH min = VCCA × 0.7 V, VIL max = VCCA × 0.3 V.

   
      
SCES553A − M AY 2004 − REVISED JULY 2004
6POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted) (see Notes 9 and 10)
TEST CONDITIONS
VCCA
VCCB
TA = 25°C −40°C TO 85°C
UNIT
TEST CONDITIONS
VCCA VCCB MIN TYP MAX MIN MAX
UNIT
IOH = −100 µA1.2 V to 3.6 V 1.2 V to 3.6 V VCCO − 0.2 V
IOH = −3 mA 1.2 V 1.2 V 0.95
IOH = −6 mA
VI = VIH
1.4 V 1.4 V 1.05
V
VOH IOH = −8 mA VI = VIH 1.65 V 1.65 V 1.2 V
IOH = −9 mA 2.3 V 2.3 V 1.75
IOH = −12 mA 3 V 3 V 2.3
IOL = 100 µA1.2 V to 3.6 V 1.2 V to 3.6 V 0.2
IOL = 3 mA 1.2 V 1.2 V 0.15
IOL = 6 mA
VI = VIL
1.4 V 1.4 V 0.35
V
VOL IOL = 8 mA VI = VIL 1.65 V 1.65 V 0.45 V
IOL = 9 mA 2.3 V 2.3 V 0.55
IOL = 12 mA 3 V 3 V 0.7
IIControl
inputs VI = VCCA or GND 1.2 V to 3.6 V 1.2 V to 3.6 V ±0.025 ±0.25 ±1µA
Ioff
A or B
port
VI or VO = 0 to 3.6 V
0 V 0 to 3.6 V ±0.1 ±2.5 ±5
A
Ioff A or B
port
VI or VO = 0 to 3.6 V 0 to 3.6 V 0 V ±0.1 ±2.5 ±5µA
IOZA or B
port
VO = VCCO or
GND,
VI = VCCI or GND, OE = VIH 3.6 V 3.6 V ±0.5 ±2.5 ±5µA
1.2 V to 3.6 V 1.2 V to 3.6 V 50
I
V
I
= V
CCI
or GND
,
I
O
= 0 0 V 3.6 V −10 µA
VI = VCCI or GND,
IO = 0
3.6 V 0 V 50
µA
1.2 V to 3.6 V 1.2 V to 3.6 V 50
I
V
I
= V
CCI
or GND
,
I
O
= 0 0 V 3.6 V 50 µA
VI = VCCI or GND,
IO = 0
3.6 V 0 V −10
µA
ICCA ) ICCB VI = VCCI or GND, IO = 0 1.2 V to 3.6 V 1.2 V to 3.6 V 90 µA
CiControl
inputs VI = 3.3 V or GND 3.3 V 3.3 V 3.5 pF
Cio A or B
port VO = 3.3 V or GND 3.3 V 3.3 V 7 pF
For I/O ports, the parameter IOZ includes the input leakage current.
NOTES: 9. VCCO is the VCC associated with the output port.
10. VCCI is the VCC associated with the input port.

   
      
SCES553A − M AY 2004 − REVISED JULY 2004
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
switching characteristics over recommended operating free-air temperature range,
VCCA = 1.2 V (see Figure 1)
PARAMETER
FROM
TO
VCCB = 1.2 V VCCB = 1.5 V VCCB = 1.8 V VCCB = 2.5 V VCCB = 3.3 V
UNIT
PARAMETER
FROM
(INPUT)
TO
(OUTPUT) TYP TYP TYP TYP TYP
UNIT
tPLH
A
B
4.1 3.3 3 2.8 3.2
ns
tPHL A B 4.1 3.3 3 2.8 3.2 ns
tPLH
B
A
4.4 4 3.8 3.6 3.5
ns
tPHL B A 4.4 4 3.8 3.6 3.5 ns
tPZH
OE
A
6.4 6.4 6.4 6.4 6.4
ns
tPZL OE A6.4 6.4 6.4 6.4 6.4 ns
tPZH
OE
B
6 4.6 4 3.4 3.2
ns
tPZL OE B6 4.6 4 3.4 3.2 ns
tPHZ
OE
A
6.6 6.6 6.6 6.6 6.8
ns
tPLZ OE A6.6 6.6 6.6 6.6 6.8 ns
tPHZ
OE
B
6 4.9 4.9 4.2 5.3
ns
tPLZ OE B6 4.9 4.9 4.2 5.3 ns
switching characteristics over recommended operating free-air temperature range,
VCCA = 1.5 V ± 0.1 V (see Figure 1)
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
VCCB = 1.2 V VCCB = 1.5 V
± 0.1 V VCCB = 1.8 V
± 0.15 V VCCB = 2.5 V
± 0.2 V VCCB = 3.3 V
± 0.3 V
UNIT
PARAMETER
(INPUT)
(OUTPUT)
TYP MIN MAX MIN MAX MIN MAX MIN MAX
UNIT
tPLH
A
B
3.6 0.5 6.2 0.5 5.2 0.5 4.1 0.5 3.7
ns
tPHL A B 3.6 0.5 6.2 0.5 5.2 0.5 4.1 0.5 3.7 ns
tPLH
B
A
3.3 0.5 6.2 0.5 5.9 0.5 5.6 0.5 5.5
ns
tPHL B A 3.3 0.5 6.2 0.5 5.9 0.5 5.6 0.5 5.5 ns
tPZH
OE
A
4.3 1 10.1 1 10.1 1 10.1 1 10.1
ns
tPZL OE A4.3 1 10.1 1 10.1 1 10.1 1 10.1 ns
tPZH
OE
B
5.6 1 10.1 0.5 8.1 0.5 5.9 0.5 5.2
ns
tPZL OE B5.6 1 10.1 0.5 8.1 0.5 5.9 0.5 5.2 ns
tPHZ
OE
A
4.5 1.5 9.1 1.5 9.1 1.5 9.1 1.5 9.1
ns
tPLZ OE A4.5 1.5 9.1 1.5 9.1 1.5 9.1 1.5 9.1 ns
tPHZ
OE
B
5.5 1.5 8.7 1.5 7.5 1 6.5 1 6.3
ns
tPLZ OE B5.5 1.5 8.7 1.5 7.5 1 6.5 1 6.3 ns

   
      
SCES553A − M AY 2004 − REVISED JULY 2004
8POST OFFICE BOX 655303 DALLAS, TEXAS 75265
switching characteristics over recommended operating free-air temperature range,
VCCA = 1.8 V ± 0.15 V (see Figure 1)
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
VCCB = 1.2 V VCCB = 1.5 V
± 0.1 V VCCB = 1.8 V
± 0.15 V VCCB = 2.5 V
± 0.2 V VCCB = 3.3 V
± 0.3 V
UNIT
PARAMETER
(INPUT)
(OUTPUT)
TYP MIN MAX MIN MAX MIN MAX MIN MAX
UNIT
tPLH
A
B
3.4 0.5 5.9 0.5 4.8 0.5 3.7 0.5 3.3
ns
tPHL A B 3.4 0.5 5.9 0.5 4.8 0.5 3.7 0.5 3.3 ns
tPLH
B
A
3 0.5 5.2 0.5 4.8 0.5 4.5 0.5 4.4
ns
tPHL B A 3 0.5 5.2 0.5 4.8 0.5 4.5 0.5 4.4 ns
tPZH
OE
A
3.4 1 7.8 1 7.8 1 7.8 1 7.8
ns
tPZL OE A3.4 1 7.8 1 7.8 1 7.8 1 7.8 ns
tPZH
OE
B
5.4 1 9.2 0.5 7.4 0.5 5.3 0.5 4.5
ns
tPZL OE B5.4 1 9.2 0.5 7.4 0.5 5.3 0.5 4.5 ns
tPHZ
OE
A
4.2 1.5 7.7 1.5 7.7 1.5 7.7 1.5 7.7
ns
tPLZ OE A4.2 1.5 7.7 1.5 7.7 1.5 7.7 1.5 7.7 ns
tPHZ
OE
B
5.2 1.5 8.4 1.5 7.1 1 5.9 1 5.7
ns
tPLZ OE B5.2 1.5 8.4 1.5 7.1 1 5.9 1 5.7 ns
switching characteristics over recommended operating free-air temperature range,
VCCA = 2.5 V ± 0.2 V (see Figure 1)
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
VCCB = 1.2 V VCCB = 1.5 V
± 0.1 V VCCB = 1.8 V
± 0.15 V VCCB = 2.5 V
± 0.2 V VCCB = 3.3 V
± 0.3 V
UNIT
PARAMETER
(INPUT)
(OUTPUT)
TYP MIN MAX MIN MAX MIN MAX MIN MAX
UNIT
tPLH
A
B
3.2 0.5 5.6 0.5 4.5 0.5 3.3 0.5 2.8
ns
tPHL A B 3.2 0.5 5.6 0.5 4.5 0.5 3.3 0.5 2.8 ns
tPLH
B
A
2.6 0.5 4.1 0.5 3.7 0.5 3.3 0.5 3.2
ns
tPHL B A 2.6 0.5 4.1 0.5 3.7 0.5 3.3 0.5 3.2 ns
tPZH
OE
A
2.5 0.5 5.3 0.5 5.3 0.5 5.3 0.5 5.3
ns
tPZL OE A2.5 0.5 5.3 0.5 5.3 0.5 5.3 0.5 5.3 ns
tPZH
OE
B
5.2 0.5 9.4 0.5 7.3 0.5 5.1 0.5 4.5
ns
tPZL OE B5.2 0.5 9.4 0.5 7.3 0.5 5.1 0.5 4.5 ns
tPHZ
OE
A
3 1 6.1 1 6.1 1 6.1 1 6.1
ns
tPLZ OE A3 1 6.1 1 6.1 1 6.1 1 6.1 ns
tPHZ
OE
B
5 1 7.9 1 6.6 1 6.1 1 5.2
ns
tPLZ OE B5 1 7.9 1 6.6 1 6.1 1 5.2 ns

   
      
SCES553A − M AY 2004 − REVISED JULY 2004
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
switching characteristics over recommended operating free-air temperature range,
VCCA = 3.3 V ± 0.3 V (see Figure 1)
PARAMETER
FROM
(INPUT)
TO
(OUTPUT)
VCCB = 1.2 V VCCB = 1.5 V
± 0.1 V VCCB = 1.8 V
± 0.15 V VCCB = 2.5 V
± 0.2 V VCCB = 3.3 V
± 0.3 V
UNIT
PARAMETER
(INPUT)
(OUTPUT)
TYP MIN MAX MIN MAX MIN MAX MIN MAX
UNIT
tPLH
A
B
3.2 0.5 5.5 0.5 4.4 0.5 3.2 0.5 2.7
ns
tPHL A B 3.2 0.5 5.5 0.5 4.4 0.5 3.2 0.5 2.7 ns
tPLH
B
A
2.8 0.5 3.7 0.5 3.3 0.5 2.8 0.5 2.7
ns
tPHL B A 2.8 0.5 3.7 0.5 3.3 0.5 2.8 0.5 2.7 ns
tPZH
OE
A
2.2 0.5 4.3 0.5 4.2 0.5 4.1 0.5 4
ns
tPZL OE A2.2 0.5 4.3 0.5 4.2 0.5 4.1 0.5 4 ns
tPZH
OE
B
5.1 0.5 9.3 0.5 7.2 0.5 4.9 0.5 4
ns
tPZL OE B5.1 0.5 9.3 0.5 7.2 0.5 4.9 0.5 4 ns
tPHZ
OE
A
3.4 0.5 5 0.5 5 0.5 5 0.5 5
ns
tPLZ OE A3.4 0.5 5 0.5 5 0.5 5 0.5 5 ns
tPHZ
OE
B
4.9 1 7.7 1 6.5 1 5.2 0.5 5
ns
tPLZ OE B4.9 1 7.7 1 6.5 1 5.2 0.5 5 ns
operating characteristics, TA = 25°C
PARAMETER TEST
CONDITIONS
VCCA =
VCCB = 1.2 V VCCA =
VCCB = 1.5 V VCCA =
VCCB = 1.8 V VCCA =
VCCB = 2.5 V VCCA =
VCCB = 3.3 V
UNIT
PARAMETER
CONDITIONS
TYP TYP TYP TYP TYP
UNIT
A to B
Outputs
enabled 11112
CpdA
A to B
Outputs
disabled CL = 0,
f = 10 MHz,
11111
pF
C
pdA
B to A
Outputs
enabled
f = 10 MHz,
tr = tf = 1 ns 13 13 14 15 16
pF
B to A
Outputs
disabled 11111
A to B
Outputs
enabled 13 13 14 15 16
CpdB
A to B
Outputs
disabled CL = 0,
f = 10 MHz,
11111
pF
C
pdB
B to A
Outputs
enabled
L
f = 10 MHz,
tr = tf = 1 ns 11112
pF
B to A
Outputs
disabled 11111
Power-dissipation capacitance per transceiver

   
      
SCES553A − M AY 2004 − REVISED JULY 2004
10 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
power-up considerations
A proper power-up sequence always should be followed to avoid excessive supply current, bus contention,
oscillations, or other anomalies. To guard against such power-up problems, take the following precautions:
1. Connect ground before any supply voltage is applied.
2. Power up VCCA.
3. VCCB can be ramped up along with or after VCCA.
typical total static power consumption (ICCA + ICCB)
Table 1
VCCB
VCCA
UNIT
V
CCB 0 V 1.2 V 1.5 V 1.8 V 2.5 V 3.3 V
UNIT
0 V 0 <1 <1 <1 <1 <1
1.2 V <1 <2 <2 <2 <2 2
1.5 V <1 <2 <2 <2 <2 2
µA
1.8 V <1 <2 <2 <2 <2 <2 µ
A
2.5 V <1 2 <2 <2 <2 <2
3.3 V <1 2 <2 <2 <2 <2

   
      
SCES553A − M AY 2004 − REVISED JULY 2004
11
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
CL − Load Capacitance − pF
0 102030405060
CL − Load Capacitance − pF
tPLH − Propagation Delay − ns
6
5
4
3
2
1
00 102030405060
6
5
4
3
2
1
0
6
5
4
3
2
1
0
TA = 25°C
VCCA = 1.2 V TA = 25°C
VCCA = 1.2 V
Figure 1 Figure 2
tPHL − Propagation Delay − ns
× VCCB= 1.2 V
+ VCCB = 1.5 V
VCCB = 1.8 V
H VCCB = 2.5 V
VCCB = 3.3 V
× VCCB = 1.2 V
+ VCCB = 1.5 V
VCCB = 1.8 V
H VCCB = 2.5 V
VCCB = 3.3 V
CL − Load Capacitance − pF
0 102030405060
6
5
4
3
2
1
0
tPHL − Propagation Delay − ns
tPLH − Propagation Delay − ns
0 102030405060
6
5
4
3
2
1
0
TA = 25°C
VCCA = 1.5 V
TA = 25°C
VCCA = 1.5 V
Figure 3 Figure 4
CL − Load Capacitance − pF
× VCCB = 1.2 V
+ VCCB = 1.5 V
VCCB = 1.8 V
H VCCB = 2.5 V
VCCB = 3.3 V
× VCCB = 1.2 V
+ VCCB = 1.5 V
VCCB = 1.8 V
H VCCB = 2.5 V
VCCB = 3.3 V

   
      
SCES553A − M AY 2004 − REVISED JULY 2004
12 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
tPHL − Propagation Delay − ns
tPLH − Propagation Delay − ns
0 102030405060
6
5
4
3
2
1
00 102030405060
6
5
4
3
2
1
0
TA = 25°C
VCCA = 1.8 V TA = 25°C
VCCA = 1.8 V
Figure 5 Figure 6
CL − Load Capacitance − pF CL − Load Capacitance − pF
× VCCB = 1.2 V
+ VCCB = 1.5 V
VCCB = 1.8 V
H VCCB = 2.5 V
VCCB = 3.3 V
× VCCB= 1.2 V
+ VCCB = 1.5 V
VCCB = 1.8 V
H VCCB = 2.5 V
VCCB = 3.3 V
CL − Load Capacitance − pF
tPHL − Propagation Delay − ns
tPLH − Propagation Delay − ns
0 102030405060
6
5
4
3
2
1
00 102030405060
6
5
4
3
2
1
0
TA = 25°C
VCCA = 2.5 V TA = 25°C
VCCA = 2.5 V
Figure 7 Figure 8
CL − Load Capacitance − pF
× VCCB = 1.2 V
+ VCCB = 1.5 V
VCCB = 1.8 V
H VCCB = 2.5 V
VCCB = 3.3 V
× VCCB = 1.2 V
+ VCCB = 1.5 V
VCCB = 1.8 V
H VCCB = 2.5 V
VCCB = 3.3 V

   
      
SCES553A − M AY 2004 − REVISED JULY 2004
13
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
CL − Load Capacitance − pF
0 102030405060
0 102030405060
6
5
4
3
2
1
0
6
5
4
3
2
1
0
6
5
4
3
2
1
0
Figure 9 Figure 10
TA = 25°C
VCCA = 3.3 V
TA = 25°C
VCCA = 3.3 V
CL − Load Capacitance − pF
tPHL − Propagation Delay − ns
tPLH − Propagation Delay − ns
× VCCB = 1.2 V
+ VCCB = 1.5 V
VCCB = 1.8 V
H VCCB = 2.5 V
VCCB = 3.3 V
× VCCB = 1.2 V
+ VCCB = 1.5 V
VCCB = 1.8 V
H VCCB = 2.5 V
VCCB = 3.3 V

   
      
SCES553A − M AY 2004 − REVISED JULY 2004
14 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
PARAMETER MEASUREMENT INFORMATION
VOH
VOL
From Output
Under Test
CL
(see Note A)
LOAD CIRCUIT
S1
2
×
V
CCO
Open
GND
RL
RL
tPLH tPHL
Output
Control
(low-level
enabling)
Output
Waveform 1
S1 at 2 × VCCO
(see Note B)
Output
Waveform 2
S1 at GND
(see Note B)
tPZL
tPZH
tPLZ
tPHZ
VCCA/2VCCA/2
VCCI/2 VCCI/2 VCCI
0 V
VCCO/2 VCCO/2
VOH
VOL
0 V
VCCO/2 VOL + VTP
VCCO/2 VOH − VTP
0 V
VCC
I
0 V
VCCI/2 VCCI/2
tw
Input
VCC
A
VCC
O
VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
VOLTAGE WAVEFORMS
PULSE DURATION
VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
Output
Input
tpd
tPLZ/tPZL
tPHZ/tPZH
Open
2 × VCCO
GND
TEST S1
NOTES: A. CL includes probe and jig capacitance.
B. W aveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.
Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: PRRv10 MHz, ZO = 50 , dv/dt 1 V/ns,
dv/dt 1 V/ns.
D. The outputs are measured one at a time, with one transition per measurement.
E. tPLZ and tPHZ are the same as tdis.
F. tPZL and tPZH are the same as ten.
G. tPLH and tPHL are the same as tpd.
H. VCCI is the VCC associated with the input port.
I. V
CCO
is the V
CC
associated with the output port.
1.2 V
1.5 V ± 0.1 V
1.8 V ± 0.15 V
2.5 V ± 0.2 V
3.3 V ± 0.3 V
2 k
2 k
2 k
2 k
2 k
VCCO RL0.1 V
0.1 V
0.15 V
0.15 V
0.3 V
VTP
CL
15 pF
15 pF
15 pF
15 pF
15 pF
Figure 11. Load Circuit and Voltage Waveforms
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI’ s terms
and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using TI components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right,
copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by TI regarding third-party products or services
does not constitute a license from TI to use such products or services or a warranty or endorsement thereof.
Use of such information may require a license from a third party under the patents or other intellectual property
of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of information in TI data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction
of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for
such altered documentation.
Resale of T I products or services with statements different from or beyond the parameters stated by TI for that
product or service voids all express and any implied warranties for the associated TI product or service and
is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Following are URLs where you can obtain information on other Texas Instruments products and application
solutions:
Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DSP dsp.ti.com Broadband www.ti.com/broadband
Interface interface.ti.com Digital Control www.ti.com/digitalcontrol
Logic logic.ti.com Military www.ti.com/military
Power Mgmt power.ti.com Optical Networking www.ti.com/opticalnetwork
Microcontrollers microcontroller.ti.com Security www.ti.com/security
Telephony www.ti.com/telephony
Video & Imaging www.ti.com/video
Wireless www.ti.com/wireless
Mailing Address: Texas Instruments
Post Office Box 655303 Dallas, Texas 75265
Copyright 2004, Texas Instruments Incorporated