LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
LM49350 Boomer® Audio Power Amplifier Series High Performance Audio Codec Sub-
System with a Ground-Referenced Stereo Headphone Amplifier & an Ultra Low EMI Class
D Loudspeaker Amplifier with Dual I
2
S/PCM Digital Audio Interfaces
Check for Samples: LM49350,LM49350RLEVAL
1FEATURES Micro-Power Shutdown Mode
Available in the 3.5 x 3.5 mm 36 Bump DSBGA
2 High Performance 96dB SNR Stereo DAC Package
High Performance 94dB SNR Stereo ADC
Up to 192kHz Stereo Audio Playback APPLICATIONS
Up to 48kHz Stereo Recording Smart Phones
Dual Bidirectional I2S or PCM Compatible Mobile Phones and VOIP Phones
Audio Interfaces Portable GPS Navigator and Portable Gaming
Read/Write I2C Compatible Control Interface Devices
Flexible Digital Mixer with Sample Rate Portable DVD/CD/AAC/MP3/MP4 Players
Conversion Digital Cameras/Camcorders
Dual Sigma-Delta PLLs for Operation from any
Clock at Any Sample rate KEY SPECIFICATIONS
Digital 3D Stereo Enhancement PHP at A_VDD = 3.3V, Stereo 32, 1% THD
Dual 5 Band Parametric Equalizers 69mW/ch (typ)
Cascadable DSP Effects that Allow 10 Band PLS at LS_VDD = 5V, 8, 1% THD 1.2W (typ)
Parametric Equalization PLS at LS_VDD = 4.2V, 8, 1% THD 825mW (typ)
ALC/Compressor/Limiter on Both DAC and PLS at LS_VDD = 3.3V, 8, 1% THD 495mW (typ)
ADC Paths PEP at A_VDD = 3.3V, 32BTL, 1% THD 58mW
Ultra Low EMI, Class D Loudspeaker Amplifier (typ)
with Spread Spectrum Control Supply Voltage Range
Ground Referenced Output Cap-Less D_VDD = 1.7V to 2.0V
Headphone Amplifier Operation LS_VDD and A_VDD = 2.7V to 5.5V
Earpiece Speaker Amplifier with Reduced
Power Consumption Mode for Mono I/O_VDD = 1.6V to 4.5V
Differential Line out Applications SNR (Stereo DAC at 48kHz) 96dB (typ)
Stereo Auxiliary Inputs or Mono Differential SNR (Stereo ADC at 48kHz) 94dB (typ)
Input PSRR at 217 Hz, A_VDD = 3.3V, (HP from AUX)
Differential Stereo Microphone Inputs with 97dB (typ)
Single-Ended Option
Automatic Level Control for Digital Audio DESCRIPTION
Inputs, Stereo Microphone Inputs, and Stereo The LM49350 is a high performance audio subsystem
Auxiliary Inputs that supports both analog and digital audio functions.
The LM49350 includes a high quality stereo DAC, a
Flexible Audio Routing from Input to Output high quality stereo ADC, a stereo headphone
16 Step Volume Control for Microphones with amplifier that supports ground referenced output cap-
2dB Steps less operation, a dual mode earpiece speaker
32 Step Volume Control for Auxiliary Inputs in amplifier, and a low EMI Class D loudspeaker
1.5dB Steps amplifier. It is designed for demanding applications in
mobile phones and other portable devices.
1Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
2All trademarks are the property of their respective owners.
PRODUCTION DATA information is current as of publication date. Copyright © 2008–2012, Texas Instruments Incorporated
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
DESCRIPTION CONTINUED
The LM49350 features dual bi-directional I2S or PCM audio interfaces for full range audio and an I2C compatible
interface for control. The stereo DAC path features an SNR of 96dB with 24-bit 48 kHz input. The headphone
amplifier delivers 69mWRMS (typ) to a 32single-ended stereo load with less than 1% distortion (THD+N) when
A_VDD = 3.3V. The earpiece speaker amplifier delivers 58mWRMS (typ) to a 32bridged-tied load with less than
1% distortion (THD+N) when A_VDD = 3.3V. The loudspeaker amplifier delivers up to 495mW into an 8load
with less than 1% distortion when LS_VDD = 3.3V and up to 1.2W when LS_VDD = 5.0V.
The LM49350 employs advanced techniques to reduce power consumption, to reduce controller overhead, to
speed development time, and to eliminate click and pop. Boomer audio power amplifiers were designed
specifically to provide high quality output power with a minimal amount of external components. It is therefore
ideally suited for mobile phone and other low voltage applications where minimal power consumption, PCB area
and cost are primary requirements.
2Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
AUX_OUT+
LS +
HPL
HPR
VREF_FLT
MIC_BIAS
MCLK
A_VDD
D_VDD
SCL
SDA
GPIO
PORT1_CLK
PORT1_SYNC
PORT1_SDI
PORT1_SDO
PORT2_CLK
PORT2_SYNC
PORT2_SDI
AUX_R / MONO_IN-
AUX_L / MONO_IN+
POWER MANAGEMENT
and CONTROL
CLOCK
NETWORK
with DUAL
6'PLLs
REGISTERS
I2C
SLAVE
BG
AB
AB
DIGITAL MIXER and AUDIO PORT INTERFACE
AUX_RIGHT
AUX_LEFT
-46.5 dB to 12 dB
6 dB to 36 dB
D
PORT2_SDO
RIGHT
ADC
6'
6'
LEFT
ADC
DAC
EFFECTS
VOL CTRL
DIGITAL 3D
5-BAND EQ
SOFT CLIP
ALC
AB
CHARGE
PUMP
CP+
CP-
LS_VDD LSGND
AGND
DGND
I/O_VDD
6'
LEFT
DAC
6'
RIGHT
DAC
MIC_RIGHT
MIC_LEFT
HP_VSS
LEFT_MIC/LINE+
VCM
VCM
DAC_LEFT
DAC_RIGHT
AUX_OUT-
LS -
LEFT_MIC/LINE-
RIGHT_MIC/LINE-
RIGHT_MIC/LINE+
VCM
ADC
EFFECTS
VOL CTRL
5-BAND EQ
SOFT CLIP
ALC
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
LM49350 Overview
Figure 1. LM49350 Block Diagram
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 3
Product Folder Links: LM49350 LM49350RLEVAL
LM49350
I2C
Baseband
Controller
CP+
HP_VSS
MCLK
AUX_OUT+
GPIO LS+
AUX_RAUX_L
Synthesized
FM Radio/TV Tuner
0.5 - 50
MHz
I2S/PCM
(PORT1)
Bluetooth
Transceiver I2S/PCM
(PORT2)
HPL
HPR
CP-
VREF
AGND
A_VDD
D_VDD LS_VDD
I/O_VDD
LSGNDDGND
LEFT_MIC-
MIC_BIAS
RIGHT_MIC+
AUX_OUT-
LS-
RIGHT_MIC-
LEFT_MIC+
32O
8O
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
Typical Application
Figure 2. Example Application in Multimedia Phone with a Dedicated Earpiece and Mono Loudspeaker
4Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
LM49350
I2C
Baseband
Controller
CP+
HP_VSS
MCLK
AUX_OUT+
GPIO
LS+
LM4675
LM4675 Can Be Used
for Stereo 8:Loudspeakers
AUX_RAUX_L
Synthesized
FM Radio/TV Tuner
0.5 - 50
MHz
I2S/PCM
(PORT1)
Bluetooth
Transceiver I2S/PCM
(PORT2)
HPL
HPR
CP-
VREF
AGND
A_VDD
D_VDD LS_VDD
I/O_VDD
LSGNDDGND
LEFT_MIC-
MIC_BIAS
RIGHT_MIC+
AUX_OUT-
LS-
RIGHT_MIC-
LEFT_MIC+
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
Figure 3. Example Application in Multimedia Phone Using Stereo Loudspeaker
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 5
Product Folder Links: LM49350 LM49350RLEVAL
LM49350
I2C
Baseband
Controller
CP+
HP_VSS
MCLK
AUX_OUT+
GPIO LS+
MONO_IN+
Voice
Modem
0.5 - 50
MHz
I2S/PCM
(PORT1)
Bluetooth
Transceiver I2S/PCM
(PORT2)
HPL
HPR
CP-
VREF
AGND
A_VDD
D_VDD LS_VDD
I/O_VDD
LSGNDDGND
LEFT_MIC-
MIC_BIAS
RIGHT _MIC+
MONO_IN-
AUX_OUT-
LS-
RIGHT _MIC-
LEFT_MIC+
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
Figure 4. Example Application in a Multimedia Phone Using a Dedicated RF Module for Voice Modern
Functions
6Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
LM49350
I2C
MP3/MP4
CODEC
CP+
HP_VSS
MCLK
AUX_OUT+
GPIO
LS+
LM4675
LM4675 Can Be Used
for Stereo Loudspeakers
AUX_IN-
AUX_IN+
Synthesized
FM Radio/
TV Tuner
(Stereo
Differential)
0.5 - 50
MHz
I2S/PCM
(PORT1)
Bluetooth
Transceiver I2S/PCM
(PORT2)
HPL
HPR
CP-
VREF
AGND
A_VDD
D_VDD LS_VDD
I/O_VDD
LSGNDDGND
LEFT_MIC-
MIC_BIAS
RIGHT_LINE+
AUX_OUT-
LS-
RIGHT_LINE-
LEFT_MIC+
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
Figure 5. Example Application in a Portable Media Player with a Differential Stereo Line Input
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 7
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
Connection Diagram
Figure 6. 36 Bump DSBGA
Top View (Bump Side Down)
See Package Number YPG0036TTA
PIN DESCRIPTIONS
Pin Pin Name Type Direction Description
A1 HPR Analog Output Headphone right output
A2 A_VDD Supply Input Headphone and mixer power supply input
A3 AGND Supply Input Headphone and mixer ground
A4 VREF_FLT Analog Input/Output Filter point for the microphone power supply and internal references
A5 GPIO Digital Input/Output General purpose input or output
A6 SDA Digital Input/Output I2C interface data line
B1 HPL Analog Output Headphone left output
B2 AUX_R Analog Input Right analog input
B3 AUX_L Analog Input Left analog input
B4 PORT2_SYNC Digital Input/Output Audio Port 2 SYNC Signal (can be master or slave)
B5 PORT2_SDI Digital Input Audio Port 2 serial data input
B6 SCL Digital Input I2C interface clock line
C1 HP_VSS Analog Output Negative power supply pin for the headphone amplifier
C2 AUX_OUT+ Analog Output Auxiliary positive output
C3 AUX_OUT- Analog Output Auxiliary negative output
C4 PORT2_SDO Digital Output Audio port 2 serial data out
C5 PORT2_CLK Digital Input/Output Audio port 2 clock signal (can be master or slave)
C6 MCLK Digital Input Input clock from 0.5MHz to 50 MHz
D1 CP- Analog Input/Output Charge pump flying capacitor negative input
D2 CP+ Analog Input/Output Charge pump flying capacitor positive input
D3 MIC_BIAS Analog Output Microphone ultra clean supply (2.2V)
D4 PORT1_SYNC Digital Input/Output Audio Port 1 sync signal (can be master or slave)
D5 PORT1_SDO Digital Output Audio Port 1 serial data output
D6 DGND Supply Input Digital ground
E1 LSGND Supply Input Loudspeaker ground
E2 LS_VDD Supply Input Loudspeaker power supply input
E3 RIGHT_MIC- Analog Input Right microphone negative input
E4 LEFT_MIC- Analog Output Left microphone negative input
E5 PORT1_SDI Digital Input Audio Port 1 serial data input
8Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
PIN DESCRIPTIONS (continued)
Pin Pin Name Type Direction Description
E6 D_VDD Supply Input Digital power supply input
F1 LS + Analog Output Loudspeaker positive output
F2 LS - Analog Output Loudspeaker negative output
F3 RIGHT_MIC + Analog Input Right microphone positive input
F4 LEFT_MIC + Analog Input Left microphone positive input
F5 PORT1_CLK Digital Input/Output Audio Port 1 clock signal (can be master or slave)
F6 I/O_VDD Supply Input Digital interface power supply input
PIN TYPE DEFINITIONS
Analog Input A pin that is used by the analog and is never driven by the device. Supplies are part of this
classification.
Analog Output A pin that is driven by the device and should not be driven by external sources.
Analog Input/Output A pin that is typically used for filtering a DC signal within the device. Passive
components can be connected to these pins.
Digital Input A pin that is used by the digital but is never driven by the device.
Digital Output A pin that is driven by the device and should not be driven by another device to avoid
contention.
Digital Input/Output A pin that is either open drain (SDA) or a bidirectional CMOS in/out. In the latter case
the direction is selected by a control register within the LM49350.
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.
ABSOLUTE MAXIMUM RATINGS(1)(2)(3)
Analog Supply Voltage (A_VDD and LS_VDD) 6.0V
Digital Supply Voltage D_VDD 2.2V
I/O Supply Voltage I/O_VDD 5.5V
Storage Temperature 65°C to +150°C
Power Dissipation(4) Internally Limited
ESD Ratings Human Body Model(5) 2000V
Machine Model(6) 200V
Junction Temperature 150°C
Thermal Resistance θJA YPG36 (soldered down to PCB with 2in21oz. copper plane) 60°C/W
Soldering Information See Applications Note AN-1112 (SNVA009).
(1) “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur, including inoperability and degradation of
device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or
other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating
Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions. All
voltages are measured with respect to the ground pin, unless otherwise specified.
(2) The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as
otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and
are not ensured.
(3) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and
specifications.
(4) The maximum power dissipation must be derated at elevated temperatures and is dictated by TJMAX,θJA, and the ambient temperature,
TA. The maximum allowable power dissipation is PDMAX = (TJMAX - TA) / θJA or the number given in Absolute Maximum Ratings,
whichever is lower.
(5) Human body model, applicable std. JESD22-A114C.
(6) Machine model, applicable std. JESD22-A115-A.
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 9
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
OPERATING RATINGS
Temperature Range 40°C to +85°C
Supply Voltage A_VDD and LS_VDD(1) 2.7V to 5.5V
D_VDD 1.7V to 2.0V
I/O_VDD 1.6V to 4.5V
(1) LS_VDD need to be the highest voltage than A_VDD, D_VDD, and I/O_VDD. For proper power supply sequence, LS_VDD need to be
applied first.
ELECTRICAL CHARACTERISTICS: A_VDD = LS_VDD = 3.3V; D_VDD = I/O_VDD = 1.8V(1)(2)
The following specifications apply for RL(LS) = 8, RL(HP) = 32, f = 1kHz, unless otherwise specified. Limits apply for TA=
25°C. LM49350 Units
Symbol Parameter Conditions (Limits)
Typical(3) Limit(4)
DC CHARACTERISTICS (Digital current combines D_VDD and I/O_VDD. Analog current combines A_VDD and LS_VDD)
Shutdown Mode,
DISD Digital Shutdown Current 2 15 µA (max)
fMCLK = 13MHz, PLL Off
DIST Digital Standby Current fMCLK = 12.288MHz, PMC On only 0.25 1 mA (max)
fMCLK = 11.2896MHz, fS= 44.1kHz,
Digital Active Current (MP3 Mode) Stereo DAC On, OSRDAC = 128, 0.9 2 mA (max)
PLL Off, HP On
Digital Active Current (FM Mode) fMCLK = 13MHz 0.2 0.5 mA (max)
Analog Audio modes
DIDD Digital Active Current (FM Record fMCLK = 12.288MHz, fS= 48kHz,
Mode) Stereo ADC On, OSRADC = 128, 1.5 2 mA (max)
PLL Off, Stereo Analog Inputs On
Digital Active Current (CODEC fMCLK = 11.2896MHz, fS= 44.1kHz,
Mode)- Mono ADC On, Stereo DAC On, 2.7 3.8 mA (max)
OSR = 128, PLL Off, MIC On
AISD Analog Shutdown Current Shutdown Mode 0.3 5 μA (max)
AIST Analog Standby Quiescent Current Reference Voltages On only 0.85 1.5 mA (max)
fMCLK = 11.2896MHz, fS= 44.1kHz,
Analog Supply Current (MP3 Mode) Stereo DAC On, OSRDAC = 128, 7.8 10 mA (max)
PLL Off, HP On
Analog Supply Current (FM Mode) Stereo Analog Inputs On, HP On 5.3 7 mA (max)
fMCLK = 12.288MHz, fS= 48kHz,
AIDD Analog Supply Current (FM Record Stereo ADC On, OSRADC = 128, 9.8 12 mA (max)
Mode) PLL Off, Stereo Analog Inputs On
fMCLK = 11.2896MHz, fS= 44.1kHz,
Analog Supply Current (CODEC Mono ADC On, Stereo DAC On, 13 15 mA (max)
Mode) OSR = 128, PLL Off, MIC On
fMCLK = 13MHz,
PLLIDD PLL Total Active Current 2.9 5.5 mA (max)
fPLLOUT = 12MHz, PLL On only
HPIDD Headphone Quiescent Current Stereo HP On only 3.5 mA
LSIDD Loudspeaker Quiescent Current LS On only 2.9 mA
MICIDD Microphone Quiescent Current mono MIC + MIC Bias On 0.5 mA
ADCIDD ADC Total Active Current fS= 48kHz, Stereo 9 mA
DACIDD DAC Total Active Current fS= 48kHz, Stereo 5.5 mA
(1) “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur, including inoperability and degradation of
device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or
other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating
Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions. All
voltages are measured with respect to the ground pin, unless otherwise specified.
(2) The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as
otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and
are not ensured.
(3) Typical values represent most likely parametric norms at TA= +25ºC, and at the Recommended Operation Conditions at the time of
product characterization and are not ensured.
(4) Datasheet min/max specification limits are specified by test or statistical analysis.
10 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
ELECTRICAL CHARACTERISTICS: A_VDD = LS_VDD = 3.3V; D_VDD = I/O_VDD =
1.8V(1)(2) (continued)
The following specifications apply for RL(LS) = 8, RL(HP) = 32, f = 1kHz, unless otherwise specified. Limits apply for TA=
25°C. LM49350 Units
Symbol Parameter Conditions (Limits)
Typical(3) Limit(4)
Auxiliary Input Amplifier Quiescent
AUXINIDD Stereo Auxiliary Inputs enabled 0.7 mA
Current AUX_LINE_OUT enabled 0.5 mA
Auxiliary Output Amplifier Quiescent
AUXOUTIDD Current Earpiece mode enabled 1.0 mA
LOUDSPEAKER AMPLIFIER
LSEFF Loudspeaker Efficiency PO= 400mW, RL= 883 %
PO= 400mW, f = 1kHz,
THD+N Total Harmonic Distortion + Noise 0.07 %
RL= 8, Mono Input Signal
RL= 8, f = 1kHz, THD+N = 1%, Mono Input Signal
LS_VDD = 3.3V 495 400 mW (min)
LS_VDD = 4.2V 825 mW
LS_VDD = 5V 1.2 W
POOutput Power RL= 4, f = 1kHz, THD+N = 1%, Mono Input Signal
LS_VDD = 3.3V 800 mW
LS_VDD = 4.2V 1.4 W
LS_VDD = 5V 2 W
VRIPPLE = 200mVP-P
fRIPPLE = 217Hz
PSRR Power Supply Rejection Ration 73 55 dB (min)
Mono Input Terminated
VREF = 1.0μF
Reference = VOUT (1% THD+N )
SNR Signal-to-Noise Ratio Gain = 0dB, A-weighted 95 85 dB (min)
Mono Input Terminated
eOS Gain = 0dB, A-weighted,
Output Noise 35 µV
Mono Input Terminated
VOS Offset Voltage Gain = 0dB, form Mono Input 10 50 mV (max)
TWU Turn-On Time PMC Clock = 300kHz 28 ms
HEADPHONE AMPLIFIERS
PO= 7.5mW, f = 1kHz,
THD+N Total Harmonic Distortion + Noise RL= 320.025 0.1 % (max)
Stereo Analog Input Signal
RL= 32, f = 1kHz, THD+N = 1%,
POHeadphone Output Power 69 60 mW (min)
Stereo Analog Input Signal
VRIPPLE = 200mVP-P, fRIPPLE = 217Hz
Stereo Analog Inputs Terminated,
PSRR Power Supply Rejection Ratio 97 75 dB (min)
VREF = 1.0μF, Mono Differential Input
Mode
Reference = VOUT (1% THD+N )
Gain = 0dB, A-weighted 106 98 dB (min)
Stereo Inputs Terminated
SNR Signal-to-Noise Ratio Reference = VOUT (0dBFS ) Gain =
0dB, 96 90 dB (min)
A-weighted, I2S Input = Digital Zero
Gain = 0dB, A-weighted, 8 µV
Stereo Inputs Terminated
eOS Output Noise Gain = 0dB, A-weighted, 16 µV
I2S Input = Digital Zero
PO= 60mW, f = 1kHz,
XTALK Crosstalk RL= 3271 dB
Stereo Analog Input Signal
ΔACH-CH Channel-to-Channel Gain Matching 0.03 dB
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 11
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
ELECTRICAL CHARACTERISTICS: A_VDD = LS_VDD = 3.3V; D_VDD = I/O_VDD =
1.8V(1)(2) (continued)
The following specifications apply for RL(LS) = 8, RL(HP) = 32, f = 1kHz, unless otherwise specified. Limits apply for TA=
25°C. LM49350 Units
Symbol Parameter Conditions (Limits)
Typical(3) Limit(4)
AUX Gain = 0dB 0.5 6 mV (max)
From Differential Mono Input
VOS Output Offset Voltage DAC Gain = 0dB, From DAC Input 1 6 mV (max)
fMCLK = 12.288MHz, PLL off
TWU Turn-On Time PMC Clock = 300kHz 28 ms
AUXILIARY OUTPUTS
AUX_LINE_OUT 0.004 %
RL= 5k, VOUT = 1VRMS
THD+N Total Harmonic Distortion + Noise Earpiece mode, f = 1kHz 0.08 %
RL= 32BTL, POUT = 20mW
Earpiece mode, f = 1kHz
POUT Output Power 58 45 mW (min)
RL= 32BTL, THD+N = 1%
VRIPPLE = 200mVP-P, fRIPPLE = 217Hz
Mono Input terminated, CREF = 1μF 100 dB
AUX_LINE_OUT
PSRR Power Supply Rejection Ratio VRIPPLE = 200mVP-P, fRIPPLE = 217Hz
Mono Input terminated, CREF = 1μF 94 62 dB (min)
Earpiece mode
Gain = 0dB, VREF = VOUT (1%THD+N)
SNR Signal-to-Noise Ratio 100 dB
A-weighted, Mono Input Terminated
Gain = 0dB, VREF = VOUT (1%THD+N)
OUT Output Noise 13 μV
A-weighted, Mono Input Terminated
Gain = 0dB, From Mono Input 7 mV
AUX_LINE_OUT
VOS Output Offset Voltage Gain = 0dB, From Mono Input 3 15 mV (max)
Earpiece mode
TWU Turn-On Time PMC Clock = 300kHz 28 ms
STEREO ADC
Differential Line Input
ADC Total Harmonic Distortion +
THD+NADC VIN = 200mVRMS, f = 1kHz 0.03 %
Noise Gain = 0dB
HPF On, fS= 48kHz 300 Hz
Lower -3dB Point
PBADC ADC Passband HPF On, Upper -3dB Point 0.41*fSkHz
RADC ADC Ripple ADC Compensated 0.1 dB
Reference = VOUT (0dBFS )
Gain = 6dB, 90 dB
A-weighted From MIC, fS= 8kHz
SNRADC ADC Signal-to-Noise Ratio Reference = VOUT (0dBFS )
Gain = 0dB, 94 dB
A-weighted From Stereo Input,
fS= 48kHz
ADCLEVEL ADC Full Scale Input Level 1 VRMS
STEREO DAC
I2S Input
DAC Total Harmonic Distortion +
THD+NDAC VIN = 500mFFSRMS, f = 1kHz 0.05 %
Noise Gain = 0dB
DACLEVEL DAC Full Scale Output Level 1 VRMS
RDAC DAC Ripple 0.1 dB
PBDAC DAC Passband Upper –3dB Point 0.45*fSkHz
SNRDAC DAC Signal-to-Noise Ratio fS= 48kHz, A-weighted 96 dB
12 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
ELECTRICAL CHARACTERISTICS: A_VDD = LS_VDD = 3.3V; D_VDD = I/O_VDD =
1.8V(1)(2) (continued)
The following specifications apply for RL(LS) = 8, RL(HP) = 32, f = 1kHz, unless otherwise specified. Limits apply for TA=
25°C. LM49350 Units
Symbol Parameter Conditions (Limits)
Typical(3) Limit(4)
MIC BIAS
VBIAS Microphone Bias Voltage MIC input selected 2.2 V
VOLUME CONTROL
Minimum Gain –46.5 dB
VCRAUX Stereo Input Volume Control Range Maximum Gain 12 dB
Minimum Gain –76.5 dB
VCRDAC DAC Volume Control Range Maximum Gain 18 dB
Minimum Gain –76.5 dB
VCRADC ADC Volume Control Range Maximum Gain 18 dB
Minimum Gain 6 dB
VCRMIC MIC Volume Control Range Maximum Gain 36 dB
SSAUX AUX Volume Control Stepsize 1.5 dB
SSDAC DAC Volume Control Stepsize 1.5 dB
SSADC DAC Volume Control Stepsize 1.5 dB
SSMIC MIC Volume Control Stepsize 2 dB
SVAUX AUX Volume Setting Variation ±1 dB (max)
SVMIC MIC Volume Setting Variation ±1 dB (max)
ANALOG INPUTS
AUXR Gain = 12dB 17.5 k
AUXR_RIN Right Auxiliary Input Impedance AUXR Gain = 0dB 38 k
AUXR Gain = –46.5dB 64 k
AUXL Gain = 12dB 17.5 k
AUXL_RIN Right Auxiliary Input Impedance AUXL Gain = 0dB 38 k
AUXL Gain = –46.5dB 64 k
MICR_RIN Right Microphone Input Impedance All MIC gain settings 50 k
MICL_RIN Left Microphone Input Impedance All MIC gain settings 50 k
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 13
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
TIMING CHARACTERISTICS: DVDD = I/OVDD = 1.8V(1)(2)
The following specifications apply for RL(SP) = 8, RL(HP) = 32, f = 1kHz, unless otherwise specified. Limits apply for TA=
25°C. LM49350 Units
Symbol Parameter Conditions Typical(3 (Limits)
Limit(4)
)
PLL
Minimum MCLK Frequency 0.5 MHz (min)
fIN PLL Input Frequency Range Maximum MCLK Frequency 50 MHz (max)
DIGITAL AUDIO INTERFACE TIMING
tBCLKR BCK rise time 3 ns (max)
tBCLKCF BCK fall time 3 ns (max)
tBCLKDS BCK duty cycle 50 %
WS Propagation Delay from BCK
tDL 10 ns (max)
falling edge
tDST DATA Setup Time to BCK Rising Edge 10 ns (min)
DATA Hold Time from BCK Rising
tDHT 10 ns (min)
Edge
CONTROL INTERFACE TIMING
SCL Frequency 400 kHz (max)
Hold Time (repeated START
1 0.6 μs (min)
Condition)
2 Clock Low Time 1.3 μs (min)
3 Clock High Time 600 ns (min)
Setup Time for a Repeated START
4 600 ns (min)
Condition 300 ns (min)
Output 900 ns (max)
5 Data Hold Time 0 ns (min)
Input 900 ns (max)
6 Data Setup Time 100 ns (min)
20+0.1CBns (min)
7 Rise Time of SDA and SCL 300 ns (max)
15+0.1CBns (min)
8 Fall Time SDA and SCL 300 ns (max)
9 Setup Time for STOP Condition 600 ns (min)
Bus Free Time Between a STOP and
10 1.3 μs (min)
START Condition 10 pF (min)
CBBus Capacitance 200 pF(max)
(1) “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur, including inoperability and degradation of
device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or
other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating
Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions. All
voltages are measured with respect to the ground pin, unless otherwise specified.
(2) The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as
otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and
are not ensured.
(3) Typical values represent most likely parametric norms at TA= +25ºC, and at the Recommended Operation Conditions at the time of
product characterization and are not ensured.
(4) Datasheet min/max specification limits are specified by test or statistical analysis.
14 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
TIMING CHARACTERISTICS: DVDD = I/OVDD = 1.8V(1)(2)
The following specifications apply for RL(SP) = 8, RL(HP) = 32, f = 1kHz, unless otherwise specified. Limits apply for TA=
25°C. LM49350 Units
Symbol Parameter Conditions Typical((Limit)
Limit(4)
3)
PLL
Minimum MCLK Frequency 0.5 MHz (min)
fIN PLL Input Frequency Range Maximum MCLK Frequency 50 MHz (max)
I2S MASTER TIMING
I2S_CLKPER I2S_CLK Period I2S Master 81.38 ns
tCLK_L I2S_CLK Low Time I2S Master 37 ns
tCLK_H I2S_CLK High Time I2S Master 37 ns
WS Propagation Delay from I2S_CLK
tWS_DLY I2S Master 21 ns
falling edge
SDO Propagation Delay from I2S_CLK
tSDO_DLY I2S Master 21 ns
falling edge
SDI Setup Time to I2S_CLK Rising
tDST I2S Master 20 ns
Edge
tDHT SDI Hold Time to I2S_CLK Rising Edge I2S Master 20 ns
I2S SLAVE TIMING
I2S_CLKPER I2S_CLK Period I2S Slave 81.38 ns (min)
tCLK_L I2S_CLK Low Time I2S Slave 37 ns (min)
tCLK_H I2S_CLK High Time I2S Slave 37 ns (min)
SDO Propagation Delay from I2S_CLK
tSDO_DLY I2S Slave 21 ns
falling edge
SDI Setup Time to I2S_CLK Rising
tDST I2S Slave 20 ns (min)
Edge
tDHT SDI Hold Time to I2S_CLK Rising Edge I2S Slave 20 ns (min)
WS Setup Time to I2S_CLK Rising
tWS_ST I2S Slave 20 ns (min)
Edge
tWS_HT WS Hold Time to I2S_CLK Rising Edge I2S Slave 20 ns (min)
(1) “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur, including inoperability and degradation of
device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or
other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating
Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions. All
voltages are measured with respect to the ground pin, unless otherwise specified.
(2) The Electrical Characteristics tables list ensured specifications under the listed Recommended Operating Conditions except as
otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and
are not ensured.
(3) Typical values represent most likely parametric norms at TA= +25ºC, and at the Recommended Operation Conditions at the time of
product characterization and are not ensured.
(4) Datasheet min/max specification limits are specified by test or statistical analysis.
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 15
Product Folder Links: LM49350 LM49350RLEVAL
I2S_CLK
I2S_WS
I2S_SDI
tDST tDHT
TWS_ST
I2S_SDO
TSDO_DLY
TWS_HT
(CLK_PHASE = 0)
I2S_CLKPER
TCLK_H TCLK_L
I2S_CLK
I2S_WS
I2S_SDO
TWS_DLY
I2S_CLKPER
TSDO_DLY
I2S_SDI
tDST tDHT
(CLK_PHASE = 0)
TCLK_H TCLK_L
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
w = write (SDA = “0”)
r = read (SDA = “1”)
ack = acknowledge (SDA pulled down by slave)
rs = repeated start
Figure 7. Timing for I2S Master
w = write (SDA = “0”)
r = read (SDA = “1”)
ack = acknowledge (SDA pulled down by slave)
rs = repeated start
Figure 8. Timing for I2S Slave
16 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
20 20k
FREQUENCY (Hz)
-100
+0
MAGNITUDE (dB)
10k1k 2k 5k50 100 200 500
-90
-80
-70
-60
-50
-40
-30
-20
-10
20 20k
FREQUENCY (Hz)
-3
MAGNITUDE (dB)
10k1k 2k 5k50 100 200 500
-2.5
-2
-1.5
-1
-0.5
-0
+0.5
+1
1k20
FREQUENCY (Hz)
MAGNITUDE (dB)
100 2k200 500 4k50
+1
-3
+0.5
-0
-0.5
-1
-1.5
-2
-2.5
20 20k
FREQUENCY (Hz)
-1
+1
MAGNITUDE (dB)
10k1k 2k 5k50 100 200 500
-0.8
-0.6
-0.4
-0.2
+0
+0.2
+0.4
+0.6
+0.8
1k20
FREQUENCY (Hz)
MAGNITUDE (dB)
100 2k200 500 4k50
+1
-3
+0.5
-0
-0.5
-1
-1.5
-2
-2.5
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
TYPICAL PERFORMANCE CHARACTERISTICS
DAC Frequency Response DAC Frequency Response
fS= 48kHz, OSR = 128 fS= 8kHz, OSR = 128
Figure 9. Figure 10.
Stereo Audio ADC Frequency Response Stereo Audio ADC Frequency Response
fS= 48kHz, OSR = 128, CIN = 1μF, MIC gain = 6dB fS= 8kHz, OSR = 128, CIN = 1μF, MIC gain = 6dB
Figure 11. Figure 12.
Stereo Audio ADC HPF Frequency Response
fS= 48kHz, OSR = 128, CIN = 1μF, MIC gain = 6dB
(Top-No HPF, Upper-HPF_Mode = '101',
Lower-HPF_Mode = '110)' Mono Voice ADC Frequency Response
Bottom-HPF_Mode = '111' fS= 48kHz, OSR = 128, CIN = 1μF, MIC gain = 6dB
Figure 13. Figure 14.
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 17
Product Folder Links: LM49350 LM49350RLEVAL
0.01
0.1
1
10
THD+N (%)
0.02
0.2
2
0.05
0.5
5
10m
INPUT VOLTAGE (VRMS)
1m 2m 50m
100m 500m 2
5m 20m 1200m
20 100 1k 10k 20k
0.001
0.01
0.1
1
10
THD+N (%)
FREQUENCY (Hz)
0.002
0.02
0.2
2
0.005
0.05
0.5
5
50 200 2k500 5k
1k20
FREQUENCY (Hz)
MAGNITUDE (dB)
100 2k200 500 4k50
+0
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
20 100 1k 10k 20k
0.001
0.01
0.1
1
10
THD+N (%)
FREQUENCY (Hz)
0.002
0.02
0.2
2
0.005
0.05
0.5
5
50 200 2k500 5k
1k20
FREQUENCY (Hz)
MAGNITUDE (dB)
100 2k200 500 4k50
+1
-3
+0.5
-0
-0.5
-1
-1.5
-2
-2.5
20 20k
FREQUENCY (Hz)
-100
+0
MAGNITUDE (dB)
10k1k 2k 5k50 100 200 500
-90
-80
-70
-60
-50
-40
-30
-20
-10
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
TYPICAL PERFORMANCE CHARACTERISTICS (continued)
Mono Voice ADC HPF Frequency Response
fS= 48kHz, OSR = 128, CIN = 1μF, MIC gain = 6dB
(Top-No HPF)
Mono Voice ADC Frequency Response (From Left to Right:
fS= 8kHz, OSR = 128, CIN = 1μF, MIC gain = 6dB HPF_Mode = '000', '001', '010', '011', '100')
Figure 15. Figure 16.
Mono Voice ADC HPF Frequency Response
fS= 8kHz, OSR = 128, CIN = 1μF, MIC gain = 6dB
(Top-No HPF) ADC Output THD+N vs Frequency
(From Left to Right: Differential Line Input, Aux Gain = 0dB
HPF_Mode = '000', '001', '010', '011', '100') VIN = 200mVRMS, fS= 48kHz
Figure 17. Figure 18.
ADC Output THD+N vs Frequency ADC Output THD+N vs VIN
Differential MIC Input, MIC Gain = 6dB Differential Line Input, Aux Gain = 0dB
VIN = 100mVRMS, fS= 48kHz VIN = 1kHz, fS= 48kHz
Figure 19. Figure 20.
18 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
10m 100m
OUTPUT POWER (W) 120m 200m 250m 500m
0.01
0.02
0.05
0.1
0.2
0.5
1
2
5
10
THD+N (%)
10m 100m
OUTPUT POWER (W) 120m 200m 250m 500m
0.01
0.02
0.05
0.1
0.2
0.5
1
2
5
10
THD+N (%)
10
5
2
1
0.5
0.2
0.1
0.05
0.02
0.01
FREQUENCY (Hz)
THD + N (%)
20 50 100 200 500 1k 2k 5k 10k 20k
20 100 1k 10k 20k
0.01
0.1
1
10
THD+N (%)
FREQUENCY (Hz)
0.02
0.2
2
0.05
0.5
5
50 200 2k500 5k
10m 100m 1
INPUT VOLTAGE (VRMS)
0.01
0.1
1
10
THD+N (%)
1m 20m 200m2m 50m 500m5m
0.02
0.2
2
0.05
0.5
5
20 100 1k 10k 20k
0.01
0.1
1
10
THD+N (%)
FREQUENCY (Hz)
0.02
0.2
2
0.05
0.5
5
50 200 2k500 5k
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
TYPICAL PERFORMANCE CHARACTERISTICS (continued)
ADC Output THD+N vs VIN Loudspeaker THD+N vs Frequency
Differential MIC Input, MIC Gain = 6dB Differential Aux Input, Aux Gain = 0dB
VIN = 1kHz, fS= 48kHz VDD = 3.3V, POUT = 400mW, RL= 8
Figure 21. Figure 22.
Loudspeaker THD+N vs Frequency Loudspeaker THD+N vs Frequency
Differential Aux Input, Aux Gain = 0dB Differential Aux Input, Aux Gain = 0dB
VDD = 5V, POUT = 400mW, RL= 8LS_VDD = 3.3V, POUT = 500mW, RL= 4
Figure 23. Figure 24.
Loudspeaker THD+N vs Output Power Loudspeaker THD+N vs Output Power
Differential Aux Input, Aux Gain = 0dB Differential Aux Input, Aux Gain = 0dB
VDD = 3.3V, VIN = 1kHz, RL= 8VDD = 4.2V, VIN = 1kHz, RL= 8
Figure 25. Figure 26.
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 19
Product Folder Links: LM49350 LM49350RLEVAL
20 100 FREQUENCY (Hz)
-120
-100
-80
-60
-40
-20
+0
PSRR (dB)
100k50 200500 1k 2k 5k 10k 20k 50k
-110
-90
-70
-50
-30
-10
20 100 FREQUENCY (Hz)
-120
-100
-80
-60
-40
-20
+0
PSRR (dB)
100k50 200500 1k 2k 5k 10k 20k 50k
-110
-90
-70
-50
-30
-10
10
5
2
1
0.5
0.2
0.1
0.05
0.02
0.01
OUTPUT POWER (W)
THD + N (%)
10m 20m 50m 100m 200m 500m 1 2 3
10
5
2
1
0.5
0.2
0.1
0.05
0.02
0.01
OUTPUT POWER (W)
THD + N (%)
10m 20m 50m 100m 200m 500m 1 2 3
10
5
2
1
0.5
0.2
0.1
0.05
0.02
0.01
OUTPUT POWER (W)
THD + N (%)
10m 20m 50m 100m 200m 500m 1 2 3
10m 100m
OUTPUT POWER (W) 120m 200m 250m 500m
0.01
0.02
0.05
0.1
0.2
0.5
1
2
5
10
THD+N (%)
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
TYPICAL PERFORMANCE CHARACTERISTICS (continued)
Loudspeaker THD+N vs Output Power Loudspeaker THD+N vs Output Power
Differential Aux Input, Aux Gain = 0dB Differential Aux Input, Aux Gain = 0dB
VDD = 5V, VIN = 1kHz, RL= 8LS_VDD = 3.3V, RL= 4, f = 1kHz
Figure 27. Figure 28.
Loudspeaker THD+N vs Output Power Loudspeaker THD+N vs Output Power
Differential Aux Input, Aux Gain = 0dB Differential Aux Input, Aux Gain = 0dB
LS_VDD = 4.2V, RL= 4, f = 1kHz LS_VDD = 5V, RL= 4, f = 1kHz
Figure 29. Figure 30.
Loudspeaker PSRR vs Frequency Loudspeaker PSRR vs Frequency
LS_VDD = 3.3V, Aux Gain = 0dB LS_VDD = 4.2V, Aux Gain = 0dB
Differential Aux Input to Ground Differential Aux Input to Ground
VRIPPLE = 200mVPP VRIPPLE = 200mVPP
Figure 31. Figure 32.
20 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
1m 10m 100m
OUTPUT POWER (W)
0.01
0.02
0.05
0.1
0.2
0.5
1
2
5
10
THD+N (%)
2m 20m
5m 50m
1m 10m 100m
OUTPUT POWER (W)
0.01
0.02
0.05
0.1
0.2
0.5
1
2
5
10
THD+N (%)
2m 20m
5m 50m
10
5
2
1
0.5
0.2
0.1
0.05
0.02
0.01
FREQUENCY (Hz)
THD + N (%)
20 50 100 200 500 1k 2k 5k 10k 20k
20 100 1k 10k 20k
0.001
0.01
0.1
1
10
THD+N (%)
FREQUENCY (Hz)
0.002
0.02
0.2
2
0.005
0.05
0.5
5
50 200 2k500 5k
20 100 1k 10k 20k
0.001
0.01
0.1
1
10
THD+N (%)
FREQUENCY (Hz)
0.002
0.02
0.2
2
0.005
0.05
0.5
5
50 200 2k500 5k
20 100 FREQUENCY (Hz)
-120
-100
-80
-60
-40
-20
+0
PSRR (dB)
100k50 200500 1k 2k 5k 10k 20k 50k
-110
-90
-70
-50
-30
-10
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
TYPICAL PERFORMANCE CHARACTERISTICS (continued)
Loudspeaker PSRR vs Frequency
LS_VDD = 5V, Aux Gain = 0dB Headphone THD+N vs Frequency
Differential Aux Input to Ground Stereo Aux Input, Aux Gain = 0dB
VRIPPLE = 200mVPP VDD = 3.3V, POUT = 7.5mW, RL= 32
Figure 33. Figure 34.
Headphone THD+N vs Frequency Headphone THD+N vs Frequency
Stereo Aux Input, Aux Gain = 0dB Differential Aux Input, Aux Gain = 0dB
VDD = 5V, POUT = 7.5mW, RL= 32A_VDD = 3.3V, POUT = 7.5mW, RL= 16
Figure 35. Figure 36.
Headphone THD+N vs Output Power Headphone THD+N vs Output Power
Stereo Aux Input, Aux Gain = 0dB Stereo Aux Input, Aux Gain = 0dB
VDD = 3.3V, VIN = 1kHz, RL= 32VDD = 5V, VIN = 1kHz, RL= 32
Figure 37. Figure 38.
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 21
Product Folder Links: LM49350 LM49350RLEVAL
20 100 1k 10k 100k
FREQUENCY (HZ)
-120
-70
-60
-50
-40
-30
-20
-10
+0
PSRR (dB)
2k 5k 20k 50k20050050
-100
-90
-80
-110
10
5
2
1
0.5
0.2
0.1
0.05
0.02
0.01
OUTPUT POWER (W)
THD + N (%)
1m 2m 5m 10m 20m 50m 100m
10
5
2
1
0.5
0.2
0.1
0.05
0.02
0.01
FREQUENCY (Hz)
THD + N (%)
20 50 100 200 500 1k 2k 5k 10k 20k
20 20k
FREQUENCY (Hz)
-100
+0
CROSSTALK (dB)
10k1k 2k 5k50 100 200 500
-90
-80
-70
-60
-50
-40
-30
-20
-10
10
5
2
1
0.5
0.2
0.1
0.05
0.02
0.01
OUTPUT POWER (W)
THD + N (%)
1m 2m 5m 10m 20m 50m 100m
PSRR (dB)
100 1k 10k
FREQUENCY (Hz)
200 2k20 500 5k50 20k 50k 100k
-120
-100
-80
-60
-40
-20
+0
-110
-90
-70
-50
-30
-10
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
TYPICAL PERFORMANCE CHARACTERISTICS (continued)
Headphone THD+N vs Output Power Headphone PSRR vs Frequency
A_VDD = 3.3V, Stereo Aux Input, Aux Gain = 0dB Differential Aux Input to Ground, Aux Gain = 0dB
RL= 16, f = 1kHz VRIPPLE = 200mVPP
Figure 39. Figure 40.
Earpiece THD+N vs Frequency
Headphone Crosstalk vs Frequency Differential Aux Input, Aux Gain = 0dB
Stereo Aux Inputs, Aux Gain = 0dB, RL= 32A_VDD = 3.3V, POUT = 20mW, RL= 32
Figure 41. Figure 42.
Earpiece THD+N vs Output Power Earpiece PSRR vs Frequency
Differential Aux Input, Aux Gain = 0dB Differential Aux Input to Ground, Aux Gain = 0dB
A_VDD45 = 3.3V, RL= 32, f = 1kHz VRIPPLE = 200mVPP
Figure 43. Figure 44.
22 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
20 100 FREQUENCY (Hz)
-120
-100
-80
-60
-40
-20
+0
PSRR (dB)
100k50 200500 1k 2k 5k 10k 20k 50k
-110
-90
-70
-50
-30
-10
10m 100m
OUTPUT VOLTAGE (VRMS)
120m 200m 250m 500m
0.01
0.02
0.05
0.1
0.2
0.5
1
2
5
10
THD+N (%)
0.001
0.002
0.005
20 100 1k 10k 20k
0.001
0.01
0.1
1
10
THD+N (%)
FREQUENCY (Hz)
0.002
0.02
0.2
2
0.005
0.05
0.5
5
50 200 2k500 5k
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
TYPICAL PERFORMANCE CHARACTERISTICS (continued)
AUXOUT THD+N vs Frequency AUXOUT THD+N vs Output Voltage
Differential Aux Input, Aux Gain = 0dB Differential Aux Input, Aux Gain = 0dB
VDD = 5V, VOUT = 1VRMS, RL= 5kVIN = 1kHz, RL= 5k
Figure 45. Figure 46.
Figure 47.
AUXOUT PSRR vs Frequency
Differential Aux Input to Ground, Aux Gain = 0dB
VRIPPLE = 200mVPP
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 23
Product Folder Links: LM49350 LM49350RLEVAL
SDA
SCL SP
START condition STOP condition
SCL
SDA
data
change
allowed
data
valid
data
change
allowed
data
valid
data
change
allowed
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
SYSTEM CONTROL
Method 1. I2C Compatible Interface
I2C SIGNALS
In I2C mode the LM49350 pin SCL is used for the I2C clock SCL and the pin SDA is used for the I2C data signal
SDA. Both these signals need a pull-up resistor according to I2C specification. The I2C slave address for
LM49350 is 00110102.
I2C DATA VALIDITY
The data on SDA line must be stable during the HIGH period of the clock signal (SCL). In other words, state of
the data line can only be changed when SCL is LOW.
Figure 48. I2C Signals: Data Validity
I2C START AND STOP CONDITIONS
START and STOP bits classify the beginning and the end of the I2C session. START condition is defined as SDA
signal transitioning from HIGH to LOW while SCL line is HIGH. STOP condition is defined as the SDA
transitioning from LOW to HIGH while SCL is HIGH. The I2C master always generates START and STOP bits.
The I2C bus is considered to be busy after START condition and free after STOP condition. During data
transmission, I2C master can generate repeated START conditions. First START and repeated START
conditions are equivalent, function-wise.
Figure 49. I2C Start and Stop Conditions
TRANSFERRING DATA
Every byte put on the SDA line must be eight bits long, with the most significant bit (MSB) being transferred first.
Each byte of data has to be followed by an acknowledge bit. The acknowledge related clock pulse is generated
by the master. The transmitter releases the SDA line (HIGH) during the acknowledge clock pulse. The receiver
must pull down the SDA line during the 9th clock pulse, signifying an acknowledge. A receiver which has been
addressed must generate an acknowledge after each byte has been received.
After the START condition, the I2C master sends a chip address. This address is seven bits long followed by an
eight bit which is a data direction bit (R/W). The LM49350 address is 00110102. For the eighth bit, a “0” indicates
a WRITE and a “1” indicates a READ. The second byte selects the register to which the data will be written. The
third byte contains data to write to the selected register.
24 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
SDA
SCL
1
82
3
76
5
8
10
4 9
1 7
ack from slave
ack from slave
w rs r stop
ack from slave ack from masterrepeated start data from slave
start w ack ack rs r ack ack stop
start
SCL
SDA
MSB Chip Address LSB
slave address =
00110102register address = 0x00h
MSB Register 0x00h LSB MSB Data LSB
MSB Chip Address LSB
slave address =
00110102register 0x00h data
ack ack ack ack
start MSB Chip Address LSB w ack MSB Register 0x02h LSB ack MSB Data LSB ack stop
ack from slave ack from slave ack from slave
SCL
SDA
start slave address =
00110102w ack register address = 0x02h ack ack
register 0x02h data stop
ADR6
Bit7 ADR5
bit6 ADR4
bit5 ADR3
bit4 ADR2
bit3 ADR1
bit2 ADR0
bit1 R/W
bit0
MSB LSB
I2C SLAVE address (chip address)
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
Figure 50. I2C Chip Address
Register changes take effect at the SCL rising edge during the last ACK from slave.
w = write (SDA = “0”)
r = read (SDA = “1”)
ack = acknowledge (SDA pulled down by slave)
rs = repeated start
Figure 51. Example I2C Write Cycle
When a READ function is to be accomplished, a WRITE function must precede the READ function, as shown in
the Figure 52 waveform.
Figure 52. Example I2C Read Cycle
Figure 53. I2C Timing Diagram
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 25
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
I2C TIMING PARAMETERS(1)
Limit
Symbol Parameter Units
Min Max
1 Hold Time (repeated) START Condition 0.6 µs
2 Clock Low Time 1.3 µs
3 Clock High Time 600 ns
4 Setup Time for a Repeated START Condition 600 ns
5 Data Hold Time (Output direction, delay generated by LM49350) 300 900 ns
5 Data Hold Time (Input direction, delay generated by the Master) 0 900 ns
6 Data Setup Time 100 ns
7 Rise Time of SDA and SCL 20+0.1Cb300 ns
8 Fall Time of SDA and SCL 15+0.1Cb300 ns
9 Set-up Time for STOP condition 600 ns
10 Bus Free Time between a STOP and a START Condition 1.3 µs
CBCapacitive Load for Each Bus Line 10 200 pF
(1) NOTE: Data specified by design
26 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
Device Register Map
Table 1. Device Register Map(1)
Address Register 7 6 5 4 3 2 1 0
BASIC SETUP
PMC CHIP PORT2 PORT1 MCLK OSC PLL2 PLL1 CHIP
0x00h SETUP ACTIVE CLK OVR CLK OVR OVR ENB ENB ENB ENABLE
PMC
0x01h PMC_CLK_SEL
CLOCKS
PMC
0x02h PMC_CLK_DIV(R)
CLK_DIV
PLLs
0x03h PLL2_CLK_SEL PLL1_CLK_SEL
0x04h PLL1 M PLL1 M
0x05h PLL1 N PLL1 N
PLL1
0x06h PLL2 P2[8] PLL1 P1[8] PLL1 N_MOD
N_MOD
0x07h PLL1 P1 PLL1 P1 [7:0]
0x08h PLL1 P2 PLL1 P2[7:0]
0x09h PLL2 M PLL2 M
0x0Ah PLL2 N PLL2 N
PLL2
0x0Bh PLL2 P[8] PLL2 N_MOD
N_MOD
0x0Ch PLL2 P PLL2 P[7:0]
ANALOG MIXER
0x10h CLASSD AUXL_LS AUXR_LS MICL_LS MICR_LS DACL_LS DACR_LS
HEAD DACR_HPL
0x11h AUXL_HPL AUXR_HPL MICL_HPL MICR_HPL DACL_HPL
PHONESL
HEAD AUXR_ DACL_ DACR_
0x12h AUXL_HPR MICL_HPR MICR_HPR
HPR HPR HPR
PHONESR
0x13h AUX_OUT AUXL_AX AUXR_AX MICL_AX MICR_AX DACL_AX DACR_AX
OUTPUT CP_
0x14h AUX-6dB LS-6dB HP-6dB EPMODE
OPTIONS FORCE
AUXL_ AUXR_ MICL_ MICR_ DACL_ DACR_
0x15h ADC ADCR ADCL ADCR ADCL ADCR ADCL
0x16h MICL_LVL MUTE SE/DIFF MIC_L_LEVEL
0x17h MICR_LVL MUTE SE/DIFF MIC_R_LEVEL
FROM
0x18h AUXL_LVL AUX_L_LEVEL
LINEL
FROM
0x19h AUXR_LVL DIFF_MODE AUX_R_LEVEL
LINER
ADC
0x20h ADC BASIC DSPONLY ADC_CLK_SEL MUTE_R MUTE_L ADC_OSR MONO
ADC
0x21h ADC_CLK_DIV (T)
CLOCK
0x22h ADC_DSP ADC_TRIM
DAC
DAC_BASI
0x30h DSPONLY DAC_CLK_SEL MUTE_R MUTE_L DAC_OSR
C
DAC_CLOC
0x31h DAC_CLK_DIV (S)
K
0x32h DAC_DSP DAC_TRIM
(1) Unless otherwise specified, the default values of the I2C registers is 0x00h.
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 27
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
Table 1. Device Register Map(1) (continued)
Address Register 7 6 5 4 3 2 1 0
DIGITAL MIXER
0x40h IPLVL1 PORT2_RX_R_LVL PORT2_RX_L_LVL PORT1_RX_R_LVL PORT1_RX_L_LVL
0x41h IPLVL2 INTERP_L_LVL INTERP_R_LVL ADC_R_LVL ADC_L_LVL
0x42h OPPORT1 MONO SWAP R_SEL L_SEL
0x43h OPPORT2 MONO SWAP R_SEL L_SEL
0x44h OPDAC SWAP ADCR PORT2R PORT1R ADCL PORT2L PORT1L
0x45h OPDECI MXRCLK_SEL R_SEL L_SEL
AUDIO PORT 1
STEREO_SY STEREO_S
0x50h BASIC NC_ YNC_ CLK_PH SYNC_MS CLK_MS TX_ENB RX_ENB STEREO
MODE PHASE
0x51h CLK_GEN1 CLK_SEL HALF_CYCLE_DIVDER
SYNTH_DE
0x52h CLK_GEN2 SYNTH_NOM
NOM
SYNC_
0x53h SYNC_WIDTH(MONO MODE) SYNC_RATE
GEN
DATA_
0x54h TX_EXTRA_BITS TX_WIDTH RX_WIDTH
WIDTH
0x55h RX_MODE A/ULAW COMPAND MSB_POSITION RX_MODE
0x56h TX_MODE A/ULAW COMPAND MSB_POSITION TX_MODE
AUDIO PORT 2
STEREO_SY STEREO_S
0x60h BASIC NC_ YNC_ CLK_PH SYNC_MS CLK_MS TX_ENB RX_ENB STEREO
MODE PHASE
0x61h CLK_GEN1 CLK_SEL HALF_CYCLE_DIVDER
SYNTH_
0x62h CLK_GEN2 SYNTH_NOM
DENOM
SYNC_
0x63h SYNC_WIDTH(MONO MODE) SYNC_RATE
GEN
DATA_
0x64h TX_EXTRA_BITS TX_WIDTH RX_WIDTH
WIDTH
0x65h RX_MODE A/ULAW COMPAND MSB_POSITION RX_MODE
0x66h TX_MODE A/ULAW COMPAND MSB_POSITION TX_MODE
EFFECTS ENGINE
ADC ADC ADC ADC ADC
0x70h ADC FX SCLP ENB EQ ENB PK ENB ALC ENB HPF_ENB
DAC DAC DAC DAC DAC
0x71h DAC FX SCLP ENB 3D ENB EQ ENB PK ENB ALC ENB
ADC EFFECTS
0x80h HPF HPF MODE
ADC SOURCE SOURCE STEREO
0x81h LIMITER SAMPLE_RATE
ALC 1 OVR SEL LINK
ADC
0x82h NG_ENB NOISE_FLOOR
ALC 2
ADC
0x83h ALC_TARGET_LEVEL
ALC 3
ADC
0x84h ATTACK_RATE
ALC 4
ADC
0x85h PK_DECAY_RATE DECAY_RATE/RELEASE_RATE
ALC 5
28 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
Table 1. Device Register Map(1) (continued)
Address Register 7 6 5 4 3 2 1 0
ADC
0x86h HOLDTIME
ALC 6
ADC
0x87h MAX_LEVEL
ALC 7
ADC
0x88h MIN_LEVEL
ALC 8
ADC L
0x89h ADC_L_LEVEL
LEVEL
ADC R
0x8Ah ADC_R_LEVEL
LEVEL
0x8Bh EQ BAND 1 LEVEL FREQ
0x8Ch EQ BAND 2 Q LEVEL FREQ
0x8Dh EQ BAND 3 Q LEVEL FREQ
0x8Eh EQ BAND 4 Q LEVEL FREQ
0x8Fh EQ BAND 5 LEVEL FREQ
SOFTCLIP SOFT
0x90h THRESHOLD
1 KNEE
SOFTCLIP
0x91h RATIO
2
SOFTCLIP
0x92h LEVEL
3
ADC EFFECT MONITORS
0x98h LVLMONL ADC LEFT LEVEL MONITOR
0x99h LVLMONR ADC RIGHT LEVEL MONITOR
SCLP_R SCLP_L EQ_R EQ_L ADC_R ADC_L
GAIN_R GAIN_L
0x9Ah FXCLIP CLIP CLIP
CLIP CLIP CLIP CLIP CLIP CLIP
SCLP_R SCLP_L
0x9Bh ALCMONL ADC LEFT ALC MONITOR
DISTORT DISTORT
SCLP_L SCLP_R
0x9Ch ALCMONR ADC RIGHT ALC MONITOR
DISTORT DISTORT
DAC EFFECTS
DAC STEREO
0xA0h LIMITER SAMPLE_RATE
ALC 1 LINK
DAC
0xA1h NG_ENB NOISE_FLOOR
ALC 2
DAC
0xA2h AGC_TARGET_LEVEL
ALC 3
DAC
0xA3h ATTACK_RATE
ALC 4
DAC
0xA4h PK_DECAY_RATE DECAY_RATE/RELEASE_RATE
ALC 5
DAC
0xA5h HOLDTIME
ALC 6
DAC
0xA6h MAX_LEVEL
ALC 7
DAC
0xA7h MIN_LEVEL
ALC 8
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 29
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
Table 1. Device Register Map(1) (continued)
Address Register 7 6 5 4 3 2 1 0
DAC L
0xA8h DAC_L_LEVEL
LEVEL
DAC R
0xA9h DAC_R_LEVEL
LEVEL EFFECT_
0xAAh DAC_3D ATTEN FILTER_TYPE EFFECT_LEVEL MODE
0xABh EQ BAND 1 LEVEL FREQ
0xACh EQ BAND 2 Q LEVEL FREQ
0xADh EQ BAND 3 Q LEVEL FREQ
0xAEh EQ BAND 4 Q LEVEL FREQ
0xAFh EQ BAND 5 LEVEL FREQ
SOFTCLIP SOFT
0xB0h THRESHOLD
1 KNEE
SOFTCLIP
0xB1h RATIO
2
SOFTCLIP
0xB2h LEVEL
3
DAC EFFECT MONITORS
0xB8h LVLMONL DAC LEFT LEVEL MONITOR
0xB9h LVLMONR DAC RIGHT LEVEL MONITOR
SCLP_R SCLP_L EQ_R EQ_L 3D_R 3D_L GAIN_R GAIN_L
0xBAh FXCLIP CLIP CLIP
CLIP CLIP CLIP CLIP CLIP CLIP
SCLP_R SCLP_L
0xBBh ALCMONL DAC LEFT ALC MONITOR
DISTORT DISTORT
SCLP_L SCLP_R
0xBCh ALCMONR DAC RIGHT ALC MONITOR
DISTORT DISTORT
GPIO
0xE0h GPIO TEMP SHORT GPIO_RX GPIO_TX GPIO_MODE
SPREAD SPECTRUM
SS_
0xF1h SS RSVD RSVD
DISABLE
ADC COMPENSATION FILTER
ADC_C0_
0xF8h ADC_C0_LSB
LSB
ADC_C0_
0xF9h ADC_C0_MSB
MSB
ADC_C1_
0xFAh ADC_C1_LSB
LSB
ADC_C1_
0xFBh ADC_C1_MSB
MSB
ADC_C2_
0xFCh ADC_C2_LSB
LSB
ADC_C2_M
0xFDh ADC_C2_MSB
SB
AUX_LINE_ AUX_LINE_
0xFEh RSVD
OUT OUT
30 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
Basic PMC Setup Register
This register is used to control the LM49350's Basic Power Management Setup:
Table 2. PMC_SETUP (0x00h)
Bits Field Description
When this bit is set the power management will enable the MCLK I/O or internal oscillator(1). It
will then use this clock to sequence the enabling of the analog references and bias points.
When this bit is cleared the PMC will bring the analog down gently and disable the MCLK or
oscillator.
0 CHIP_ENABLE CHIP _ENABLE Chip Status
0 Turn Chip Off
1 Turn Chip On
This enables the primary PLL
PLL1_ENABLE PLL1 Status
1 PLL1_ENB 0 PLL1 Off
1 PLL1 On
This enables the secondary PLL
PLL2_ENABLE PLL2 Status
2 PLL2_ENB 0 PLL2 Off
1 PLL2 On
This enables the internal 300kHz Oscillator. For analog only chip modes, the oscillator can be
used instead of an external system clock to drive the chip's power management (PMC).
OSC_ENABLE Oscillator Status
3 OSC_ENB 0 Oscillator Off
1 Oscillator On
This forces the MCLK input to enable, regardless of requirement. If set, the audio ports and
digital mixer can be activated even if the chip is in shutdown mode. This assumes that MCLK
is selected as the clock source and that there is an active clock signal driving the MCLK pin.
Setting this bit reduces power consumption, by allowing audio ports and digital mixer to
operate while the analog sections of the chip is powered down.
4 MCLK_OVR MCLK_OVR Comment
0 I/O control is automatic
1 MCLK input forced on.
This forces the clock input of Audio Port 1 input to enable, regardless of other port settings.
PORT1_CLK_OVR Comment
5 PORT1_CLK_OVR 0 I/O control is automatic
1 PORT_CLK input forced on
This forces the clock input of Audio Port 2 input to enable, regardless of other port settings.
PORT2_CLK_OVR Comment
6 PORT2_CLK_OVR 0 I/O control is automatic
1 PORT_CLK input forced on
7 CHIP_ACTIVE This bit is used to read back the enable status of the chip.
(1) If the PMC is set to operate from one of the audio ports then it will wait for the port to be enabled or the relevant over ride bit to be set,
forcing the port clock input to enable.
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 31
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
PMC Clocks Register
This register is used to control the LM49350's Basic Power Management Setup:
Table 3. PMC_SETUP (0x01h)
Bits Field Description
1:0 PMC_CLK_SEL This selects the source of the PMC input clock.
PMC_CLK_SEL PMC Input Clock Source
00 MCLK (Default divide is 40)
01 Internal 300kHz Oscillator
10 DAC SOURCE CLOCK
11 ADC SOURCE CLOCK
PMC Clock Divide Register
This register is used to control the LM49350's Power Management Circuits Clocks:
Table 4. PMC_SETUP (0x02h) (Default data value is 0x50h)
Bits Field Description
7:0 PMC_CLK_DIV This programs the half cycle divider that precedes the PMC. The PMC should run from a
300kHz clock. The default of this divider is 0x50h (divide by 40) to get a 300kHz PMC clock
from a 12MHz or 12.288MHz MCLK.
Program this divider with the division you want, multiplied by 2, and subtract 1.
PMC_CLK_DIV Divide by
00000000 1
00000001 1
00000010 1.5
00000011 2
00000100 2.5
00000101 3
11111101 126
11111110 127.5
11111111 128
LM49350 Clock Network
Refer to Figure 54
The audio DAC and ADC operate at a clock frequency of 2*OSR*fSwhere OSR is the oversampling ratio and fS
is the sampling frequency of the DAC or ADC. The DAC can operate at four different OSR settings (128, 125, 64,
32). The ADC can operate at three different OSR settings (128, 125, 64). For example, if the stereo DAC or ADC
is set at OSR = 128, a 12.288MHz clock is required for 48kHz data. If a 12.288MHz clock is not available, then
one of the LM49350's dual PLLs can be used to generate the desired clock frequency. Otherwise, if a
12.288MHz is available, then the PLL can be bypassed to reduce power consumption. The DAC clock divider (S
divider) or ADC clock divider (T divider) can also be used to generate the correct clock. If an 18.432 MHz clock is
available, the S or T divider could be set to 1.5 in order to generate a 12.288MHz clock from 18.432MHz without
using a PLL.
The DAC path clock (DAC_SOURCE_CLK) and ADC path clock (ADC_SOURCE_CLK) can be driven directly by
the MCLK input, the PORT1_CLK input, the PORT2_CLK input, PLL1's output, or PLL2's output.
For instances where a PLL must be used, the PLL input clock can come from three sources. The clock input to
PLL1 or PLL2 can come from the MCLK input, the PORT1_CLK input, or the PORT2_CLK input.
32 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
The LM49350's Power Management Circuit (PMC) requires a clock that is independent from the DAC or ADC. It
is recommended to provide a 300kHz clock at Point C. The PMC clock divider (R divider) is available to
generate the correct clock to the PMC block. The PMC clock path can be driven directly by the MCLK input, the
internal 300kHz oscillator, the DAC_SOURCE_CLK, or the ADC_SOURCE_CLK.
Table 5. DAC Clock Requirements
DAC Sample Rate Clock Required at A Clock Required at A Clock Required at A Clock Required at A
(kHz) (OSR = 128) (OSR= 125) (OSR = 64) (OSR = 32)
8 2.048 MHz 2 MHz 1.024 MHz 0.512 MHz
11.025 2.8224 MHz 2.75625 MHz 1.4112 MHz 0.7056 MHz
12 3.072 MHz 3 MHz 1.536 MHz 0.768 MHz
16 4.096 MHz 4 MHz 2.048 MHz 1.024 MHz
22.05 5.6448 MHz 5.5125 MHz 2.8224 MHz 1.4112 MHz
24 6.144 MHz 6 MHz 3.072 MHz 1.536 MHz
32 8.192 MHz 8 MHz 4.096 MHz 2.048MHz
44.1 11.2896 MHz 11.025 MHz 5.6448 MHz 2.8224 MHz
48 12.288 MHz 12 MHz 6.144 MHz 3.072 MHz
96 24.576 MHz 24 MHz 12.288 MHz 6.144 MHz
192 24.576 MHz 12.288 MHz
Table 6. ADC Clock Requirements
ADC Sample Rate Clock Required at B Clock Required at B Clock Required at B
(kHz) (OSR = 128) (OSR= 125) (OSR = 64)
8 2.048 MHz 2 MHz 1.024 MHz
11.025 2.8224 MHz 2.75625 MHz 1.4112 MHz
12 3.072 MHz 3 MHz 1.536 MHz
16 4.096 MHz 4 MHz 2.048 MHz
22.05 5.6448 MHz 5.5125 MHz 2.8224 MHz
24 6.144 MHz 6 MHz 3.072 MHz
32 8.192 MHz 8 MHz 4.096 MHz
44.1 11.2896 MHz 11.025 MHz 5.6448 MHz
48 12.288 MHz 12 MHz 6.144 MHz
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 33
Product Folder Links: LM49350 LM49350RLEVAL
PLL_P
1 ± 25 MHz
P1 = 0,1 + 0/2 _> 256
8
PLL_M PLL_N_MOD
7
5
9
% N
% P
VCO
6'M
140 to 240 MHz
0.7 < 5 MHz
% M
N=0, 1 + 0/32 _> 250
Phase Comparator
and Charge Pump
P= 0.1 + 0/2 _> 64
0.5 - 50 MHz
PLL_N
I
8
9
PLL_P2
P2A = 0,1 + 0/2 _> 256
1 ± 25 MHz
1 ± 25 MHz
P2B = 0,1 + 0/2 _> 256
PLL_P2
8
PLL_M PLL_N_MOD
7
5
9
% N
% P1
% P2
VCO
6'M
140 to
210 MHz
0.7 < 5 MHz
% M
N=0, 1 + 0/32 _> 250
Phase Comparator
and Charge Pump
P= 0.1 + 0/2 _> 64
0.5 - 50 MHz
PLL_N
I
8
-300 kHz
MCLK
0_> 50 MHz
0_50 MHz
OSCILLATOR
INTERNAL
PORT2_CLK
AUDIO PORT 1
PMC
Stereo DAC
MIXER
Stereo ADC
PLL1
% S
1 ± 25 MHz
R, S, T = Half Cycle 1, 1.5, 2, 2.5 _> 128
% T
% R
PLL2
AUDIO PORT 2
PORT1_CLK
0_50 MHz
A
B
C
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
Figure 54. Internal Clock Network
PLL Setup Registers
Figure 55. PLL1 Loop
Figure 56. PLL2 Loop
34 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
The LM49350 contains two PLLs for flexible operation of its dual audio ports. PLL1 has a P1 and P2 output
divider thereby allowing PLL1 to generate two distinct clock outputs. The equations for PLL1's generated output
clocks are as follows:
fOUT1 = (fIN . N1/ M1. P1) (1)
fOUT2 = (fIN . N1/ M1. P2) (2)
where:
N1= PLL1_N + PLL1_N_MOD (3)
M1= (PLL1_M + 1) / 2 (4)
P1= (PLL1_P1 + 1) / 2 (5)
P2= (PLL1_P2 + 1) / 2 (6)
The equations for PLL2's generated output clock are as follows:
fOUT3 = (fIN.N2/ M2.P) (7)
where:
N2= PLL2_N + PLL2_N_MOD (8)
M2= (PLL2_M + 1) / 2 (9)
P = (PLL2_P + 1) / 2 (10)
The VCO frequency and comparison frequencies are as follows:
fVCO = fOUT.P (11)
fCOMP = fIN/M (12)
Keep fVCO between 140MHz to 240MHz and keep fCOMP between 700kHz to 5MHz.
Table 7. PLL Settings for Common System Clock Frequencies
fIN (MHz) M N N_MOD P fOUT (MHz) Error (Hz)
12 2.5 32 0 12.5 12288000 0
13 15.5 175 26 12 12287970 –30
14.4 12.5 128 0 12 12288000 0
16.2 13.5 128 0 12.5 12288000 0
16.8 3.5 32 0 12.5 12288000 0
19.2 12.5 96 0 12 12288000 0
19.68 20.5 160 0 12.5 12288000 0
19.8 16.5 128 0 12.5 12288000 0
27 22.5 128 0 12.5 12288000 0
12 12.5 147 0 12.5 11289600 0
12.288 10 147 0 16 11289600 0
13 9 144 19 18.5 11289603 +3
13.5 15.5 213 28 16.5 11289589 –11
14.4 12.5 147 0 15 11289600 0
16.2 22.5 196 0 12.5 11289600 0
16.8 12.5 126 0 15 11289600 0
19.2 20 147 0 12.5 11289600 0
19.68 20.5 147 0 12.5 11289600 0
19.8 27.5 196 0 12.5 11289600 0
27 37.5 196 0 12.5 12289600 0
11.2896 10.5 195 0 17.5 12000000 0
12.288 8 125 0 16 12000000 0
13 6.5 102 0 17 12000000 0
13.5 4.5 68 0 17 12000000 0
14.4 6 85 0 17 12000000 0
16.2 13.5 170 0 17 12000000 0
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 35
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
Table 7. PLL Settings for Common System Clock Frequencies (continued)
fIN (MHz) M N N_MOD P fOUT (MHz) Error (Hz)
16.8 7 85 0 17 12000000 0
19.2 8 85 0 17 12000000 0
19.68 20.5 200 0 16 12000000 0
19.8 16.5 170 0 17 12000000 0
11.2896 8 125 0 16 11025000 0
12 10 147 0 16 11025000 0
12.288 8 114 27 16 11025000 0
13 6.5 96 15 17.5 11025000 0
13.5 10 147 0 18 11025000 0
14.4 4 49 0 16 11025000 0
16.2 4 49 0 18 11025000 0
16.8 16 189 0 18 11025000 0
19.2 16 147 0 16 11025000 0
19.68 16 189 0 18 11025000 0
19.8 16 147 0 16.5 11025000 0
Table 8. PLL_CLOCK_SOURCE (0x03h)
Bits Field Description
1:0 PLL1_CLK_SEL This selects the source of the input clock to PLL1
PLL1_CLK_SEL PLL1 Input Clock Source
00 MCLK
01 PORT1_CLK
10 PORT2_CLK
11 RESERVED
Table 9. PLL1_M (0x04h)
Bits Field Description
6:0 PLL1_M This programs the PLL1 M divider to divide from 1 to 64.
PLL1_M PLL1 Input Divider Vaue
000000 1
000001 1
000010 1.5
000011 2
000100 2.5
000101 3
1111101 63
1111110 63.5
1111111 64
36 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
Table 10. PLL1_N (0x05h)
Bits Field Description
7:0 PLL1_N This programs the PLL1 N divider to divide from 1 to 250.
PLL1_N Feedback Divider Value
00000000 to 00001010 10
00001011 11
00001100 12
00001101 13
00001110 14
00001111 15
11111000 248
11111001 249
11111010 to 11111111 250
Table 11. PLL1_N_MOD (0x06h)
Bits Field Description
4:0 PLL1_N_MOD This programs the sigma-delta modulator in PLL1
PLL1_N_MOD Fractional Part of N
00000 0
00001 1/32
00010 2/32
00011 3/32
00100 4/32
00101 5/32
11101 20/32
11110 30/32
11111 31/32
5 PLL1_P1[8] This sets the MSB of the 1st P Divider on PLL1 which is part of a standard half-cycle divider
control.
6 PLL1_P2[8] This sets the MSB of the 2nd P Divider on PLL1 which is part of a standard half-cycle divider
control.
Table 12. PLL1_P1 (0x07h)
Bits Field Description
7:0 PLL1_P1[7:0] This programs the 8 LSBs of the PLL1's P1 Divider. These LSBs combine with PLL1_P1[8] which
allows the P1 divider to divide by up to 256
PLL1_P1 P1 Divider Value
000000000 1
000000001 1
000000010 1.5
000000011 2
000000100 2.5
000000101 3
111111101 255
111111110 255.5
111111111 256
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 37
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
Table 13. PLL1_P2 (0x08h)
Bits Field Description
7:0 PLL1_P2[7:0] This programs 8 LSBs of PLL1's P2 Divider. These LSBs combine with PLL1_P2[8] which allows
the P2 divider to divide by up to 256
PLL1_P2 P2 Divider Value
000000000 1
000000001 1
000000010 1.5
000000011 2
000000100 2.5
000000101 3
111111101 255
111111110 255.5
111111111 256
Table 14. PLL2_M (0x09h)
Bits Field Description
6:0 PLL2_M This programs the PLL2 M divider to divide from 1 to 64.
PLL2_M PLL2 Input Divider Value
0000000 1
0000001 1
0000010 1.5
0000011 2
0000100 2.5
0000101 3
1111101 63
0000010 63.5
1111111 64
Table 15. PLL2_N (0x0Ah)
Bits Field Description
7:0 PLL2_N This programs PLL2's N divider to divide from 10 to 250.
PLL2_N Comment
00000000 to 00001010 10
00001011 11
00001100 12
00001101 13
00001110 14
00001111 15
11111000 248
11111001 249
11111010 to 11111111 250
38 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
Table 16. PLL2_N_MOD (0x0Bh)
Bits Field Description
4:0 PLL2_N_MOD This programs the sigma-delta modulator in PLL2
PLL2_N_MOD Fractional Part of N
00000 0
00001 1/32
00010 2/32
00011 3/32
00100 4/32
00101 5/32
11101 29/32
11110 30/32
11111 31/32
5 PLL2_P[8] This is the MSB of the P Divider on PLL2.
Table 17. PLL2_P (0x0Ch)
Bits Field Description
7:0 PLL2_P[7:0] This programs the 8 LSBs of PLL2's P Divider. These LSBs combine with PLL2_P[8] which allows
the P divider to divide by up to 256
PLL2_P P Divides by
000000000 1
000000001 1
000000010 1.5
000000011 2
000000100 2.5
000000101 3
111111101 255
111111110 255.5
111111111 256
Analog Mixer Control Registers
This register is used to control the LM49350's Analog Mixer:
Table 18. CLASS_D_OUTPUT (0x10h)
Bits Field Description
0 DACR_LS The right DAC output is added to the loudspeaker output.
1 DACL_LS The left DAC output is added to the loudspeaker output.
2 MICR_LS The right MIC input is added to the loudspeaker output. Setting this bit enables MIC BIAS.
3 MICL_LS The left MIC input is added to the loudspeaker output. Setting this bit enables MIC BIAS.
4 AUXR_LS The right AUX input is added to the loudspeaker output.
5 AUXL_LS The left AUX input is added to the loudspeaker output.
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 39
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
CLASS D LOUDSPEAKER AMPLIFIER
The LM49350 features a filterless modulation scheme. The differential outputs of the device switch at 300kHz
from VDD to GND. When there is no input signal applied, the two outputs (LS+ and LS-) switch with a 50% duty
cycle, with both outputs in phase. Because the outputs of the LM49350 are differential, the two signals cancel
each other. This results in no net voltage across the speaker, thus there is no load current during an idle state,
conserving power.
With an input signal applied, the duty cycle (pulse width) of the LM49350 outputs changes. For increasing output
voltages, the duty cycle of LS+ increases, while the duty cycle of LS- decreases. For decreasing output voltages,
the converse occurs, the duty cycle of LS- increases while the duty cycle of LS+ decreases. The difference
between the two pulse widths yields the differential output voltage.
SPREAD SPECTRUM MODULATION
The LM49350 features a fitlerless spread spectrum modulation scheme that eliminates the need for output filters,
ferrite beads or chokes. The switching frequency varies by ±30% about a 300kHz center frequency, reducing the
wideband spectral content, improving EMI emissions radiated by the speaker and associated cables and traces.
Where a fixed frequency class D exhibits large amounts of spectral energy at multiples of the switching
frequency, the spread spectrum architecture of the LM49350 spreads that energy over a larger bandwidth. The
cycle-to-cycle variation of the switching period does not affect the audio reproduction or efficiency.
CLASS D POWER DISSIPATION AND EFFICIENCY
In general terms, efficiency is considered to be the ratio of useful work output divided by the total energy required
to produce it with the difference being the power dissipated, typically, in the IC. The key here is “useful” work. For
audio systems, the energy delivered in the audible bands is considered useful including the distortion products of
the input signal. Sub-sonic (DC) and super-sonic components (>22kHz) are not useful. The difference between
the power flowing from the power supply and the audio band power being transduced is dissipated in the
LM49350 and in the transducer load. The amount of power dissipation in the LM49350's class D amplifier is very
low. This is because the ON resistance of the switches used to form the output waveforms is typically less than
0.25. This leaves only the transducer load as a potential "sink" for the small excess of input power over audio
band output power. The LM49350 dissipates only a fraction of the excess power requiring no additional PCB
area or copper plane to act as a heat sink.
EMI/RFI Filtering
If system level PCB layout constraints require the LM49350’s Class D output bumps to be placed far away from
the speaker or the Class D output traces to be routed near EMI/RFI sensitive components, an external EMI/RFI
filter should be used. A series ferrite bead placed close to the Class D output bumps along with a shunt capacitor
to ground placed close to the ferrite bead will reduce the EMI/RFI emissions of the Class D amplifier’s switching
outputs. The ferrite bead must be rated with a current rating high enough to properly drive the loudspeaker. The
ferrite bead that is rated for 1A or greater is recommended. The DC resistance of the ferrite bead is another
important specification that must be taken into consideration. A low DC resistance will minimize any power losses
dissipated by the EMI/RFI filter thereby preserving the power efficiency advantages of the Class D amplifier.
Selecting a ferrite bead with high DC resistance will decrease output power delivered to speaker and reduce the
Class D amplifier’s efficiency. The shunt capacitor needs to have low ESR. A 10pF ceramic capacitor with a X7R
dielectric is recommended as a starting point. Care needs to be taken to ensure that the value of the shunt
capacitor does not exceed 47pF when using a low resistance ferrite bead in order to prevent permanent damage
to the low side FETs of the Class D output stage.
40 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
10 pF Speaker
Ferrite Bead
LSGND
LM49350
Class D LS-
LS+
10 pF
Ferrite Bead
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
Figure 57. EMI/RFI Filter for the Class D Amplifier
Table 19. LEFT HEADPHONE_OUTPUT (0x11h)
Bits Field Description
0 DACR_HPL The right DAC output is added to the left headphone output.
1 DACL_HPL The left DAC output is added to the left headphone output.
2 MICR_HPL The right MIC input is added to the left headphone output. Setting this bit enables MIC BIAS.
3 MICL_HPL The left MIC input is added to the left headphone output. Setting this bit enables MIC BIAS.
4 AUXR_HPL The right AUX input is added to the left headphone output.
5 AUXL_HPL The left AUX input is added to the left headphone output.
Table 20. RIGHT HEADPHONE_OUTPUT (0x12h)
Bits Field Description
0 DACR_HPR The right DAC output is added to the right headphone output.
1 DACL_HPR The left DAC output is added to the right headphone output.
The right MIC input is added to the right headphone output. Setting this bit enables the MIC BIAS
2 MICR_HPR output.
The left MIC input is added to the right headphone output. Setting this bit enables the MIC BIAS
3 MICL_HPR output.
4 AUXR_HPR The right AUX input is added to the right headphone output.
5 AUXL_HPR The left AUX input is added to the right headphone output.
HEADPHONE AMPLIFIER FUNCTION
The LM49350 headphone amplifier features TI’s ground referenced architecture that eliminates the large DC-
blocking capacitors required at the outputs of traditional headphone amplifiers. A low-noise inverting charge
pump creates a negative supply (HP_VSS) from the positive supply voltage (LS_VDD). The headphone amplifiers
operate from these bipolar supplies, with the amplifier outputs biased about GND, instead of a nominal DC
voltage (typically VDD/2), like traditional amplifiers. Because there is no DC component to the headphone output
signals, the large DC-blocking capacitors (typically 220μF) are not necessary, conserving board space and
system cost, while improving frequency response.
CHARGE PUMP CAPACITOR SELECTION
Use low ESR ceramic capacitors (less than 100m) for optimum performance.
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 41
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
CHARGE PUMP FLYING CAPACITOR (C6)
The flying capacitor (C6) affects the load regulation and output impedance of the charge pump. A C6 value that
is too low results in a loss of current drive, leading to a loss of amplifier headroom. A higher valued C6 improves
load regulation and lowers charge pump output impedance to an extent. Above 2.2μF, the RDS(ON) of the charge
pump switches and the ESR of C6 and C5 dominate the output impedance. A lower value capacitor can be used
in systems with low maximum output power requirements. Please refer to the demonstration board schematic
shown in Schematic Diagram.
CHARGE PUMP FLYING CAPACITOR (C5)
The value and ESR of the hold capacitor (C5) directly affects the ripple on CPVSS. Increasing the value of C5
reduces output ripple. Decreasing the ESR of C5 reduces both output ripple and charge pump output impedance.
A lower value capacitor can be used in systems with low maximum output power requirements. Please refer to
the demonstration board schematic shown in Schematic Diagram.
Table 21. AUX_OUTPUT (0x13h)
Bits Field Description
0 DACR_AUX The right DAC output is added to the AUX output.
1 DACL_AUX The left DAC output is added to the AUX output.
2 MICR_AUX The right MIC input is added to the AUX output. Setting this bit enables the MIC BIAS output.
3 MICL_AUX The left MIC input is added to the AUX output. Setting this bit enables the MIC BIAS output.
4 AUXR_AUX The right AUX input is added to the AUX output.
5 AUXL_AUX The left AUX input is added to the AUX output.
AUXILIARY OUTPUT AMPLIFIER
The LM49350’s auxiliary output (AUXOUT) amplifier provides differential drive capability to loads that are
connected across its outputs. This results in output signals at the AUX_OUT+ and AUX_OUT- pins that are 180
degrees out of phase with respect to each other. This effectively doubles the maximum possible output swing for
a specific supply voltage when compared to single-ended output configurations. The differential output
configuration also allows the load to be isolated from ground since both the AUX_OUT+ and AUX_OUT- pins are
biased at the same DC potential. This eliminates the need for any large and expensive DC blocking capacitors at
the AUXOUT amplifier outputs. The load can then be directly connected to the positive and negative outputs of
the AUXOUT amplifier which then isolates it from any ground noise, thereby improving signal to noise ratio
(SNR) and power supply rejection ratio (PSRR).
The AUXOUT amplifier has two modes of operation. The primary mode of operation is high current drive mode
(Earpiece Mode) where the AUXOUT amplifier can be used to differentially drive a mono earpiece speaker. The
secondary mode of operation is low current drive mode where the AUXOUT amplifier operates in a power saving
mode (AUX_LINE_OUT Mode) to provide a differential output that is used as a mono differential line level input
to a standalone mono differential input class D amplifier (LM4675) for stereo loudspeaker applications.
Table 22. OUTPUT_OPTIONS (0x14h)
Bits Field Description
0 EPMODE If set the HPR output is driven with the negative input of the HPL output stage.
If set, both HPL and HPR are attenuated by 6dB. This is useful when adding stereo signals
1 HP_NEG_6dB that need more headroom due to being highly correlated.
If set the class D output is attenuated by 6dB. This is useful when adding stereo signals that
2 LS_NEG_6dB need more headroom due to being highly correlated.
If set the AUX output is attenuated by 6dB. This is useful when adding stereo signals that
3 AUX_NEG_6dB need more headroom due to being highly correlated.
4 CP_FORCE If set, a -LS_VDD rail will be created on HP_VSS, even if the HP output stage is not required.
42 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
Table 23. ADC_INPUT (0x15h)
Bits Field Description
0 DACR_ADCR The right DAC output is added to the ADC right input.
1 DACL_ADCL The left DAC output is added to the ADC left input.
2 MICR_ADCR The right MIC input is added to the ADC right input. Setting this bit enables MIC BIAS.
3 MICL_ADCL The left MIC input is added to the ADC left input. Setting this bit enables MIC BIAS.
4 AUXR_ADCR The right AUX input is added to the ADC right input.
5 AUXL_ADCL The left AUX input is added to the ADC left input.
Table 24. MIC_L_INPUT (0x16h)
Bits Field Description
3:0 MIC_L_LEVEL This sets the gain of the left microphone preamp.
MIC_L_LEVEL Gain
0000 6dB
0001 8dB
0010 10dB
0011 12dB
0100 14dB
0101 16dB
0110 18dB
0111 20dB
1000 22dB
1001 24dB
1010 26dB
1011 28dB
1100 30dB
1101 32dB
1110 34dB
1111 36dB
4 SE_DIFF If set, the MIC_L negative input is ignored.
5 MUTE If set, the left microphone preamp is muted.
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 43
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
Table 25. MIC_R_INPUT (0x17h)
Bits Field Description
3:0 MIC_R_LEVEL This sets the gain of the right microphone preamp.
MIC_R_LEVEL Gain
0000 6dB
0001 8dB
0010 10dB
0011 12dB
0100 14dB
0101 16dB
0110 18dB
0111 20dB
1000 22dB
1001 24dB
1010 26dB
1011 28dB
1100 30dB
1101 32dB
1110 34dB
1111 36dB
4 SE_DIFF If set, the MIC_R negative input is ignored.
5 MUTE If set, the right microphone preamp is muted.
44 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
Table 26. AUX_L_INPUT (0x18h)
Bits Field Description
5:0 AUX_L_LEVEL This programs the left AUX input level. All gain changes are performed at zero crossings.
AUX_L_LEVEL Level AUX_L_LEVEL Level
000000 –46.5dB 100000 1.5dB
000001 –45dB 100001 3dB
000010 –43.5dB 100010 4.5dB
000011 –42dB 100011 6dB
000100 –40.5dB 100100 7.5dB
000101 –39dB 100101 9dB
000110 –37.5dB 100110 10.5dB
000111 –36dB 100111 12dB
001000 –34.5dB 101000 12dB
001001 –33dB 101001 12dB
001010 –31.5dB 101010 12dB
001011 –30dB 101011 12dB
001100 –28.5dB 101100 12dB
001101 –27dB 101101 12dB
001110 –25.5dB 101110 12dB
001111 –24dB 101111 12dB
010000 –22.5dB 110000 12dB
010001 –21dB 110001 12dB
010010 –19.5dB 110010 12dB
010011 –18dB 110011 12dB
010100 –16.5dB 110100 12dB
010101 –15dB 110101 12dB
010110 –13.5dB 110110 12dB
010111 –12dB 110111 12dB
011000 –10.5dB 111000 12dB
011000 –9dB 111001 12dB
011001 –7.5dB 111010 12dB
011010 –6dB 111011 12dB
011100 –4.5dB 111100 12dB
011101 –3dB 111101 12dB
011110 –1.5dB 111110 12dB
011111 0dB 111111 12dB
6 FROM_LINE_L If set, the LEFT_MIC/LINE differential input is routed to the AUX_L input amplifier for line level volume control.
This bit overrides the DIFF_MODE (bit 7 of 0x19h) setting.
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 45
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
Table 27. AUX_R_INPUT (0x19h)
Bits Field Description
5:0 AUX_R_LEVEL This programs the right AUX input level. All gain changes are performed at zero crossings.
AUX_R_LEVEL Level AUX_R_LEVEL Level
000000 –46.5dB 100000 1.5dB
000001 –45dB 100001 3dB
000010 –43.5dB 100010 4.5dB
000011 –42dB 100011 6dB
000100 –40.5dB 100100 7.5dB
000101 –39dB 100101 9dB
000110 –37.5dB 100110 10.5dB
000111 –36dB 100111 12dB
001000 –34.5dB 101000 12dB
001001 –33dB 101001 12dB
001010 –31.5dB 101010 12dB
001011 –30dB 101011 12dB
001100 –28.5dB 101100 12dB
001101 –27dB 101101 12dB
001110 –25.5dB 101110 12dB
001111 –24dB 101111 12dB
010000 –22.5dB 110000 12dB
010001 –21dB 110001 12dB
010010 –19.5dB 110010 12dB
010011 –18dB 110011 12dB
010100 –16.5dB 110100 12dB
010101 –15dB 110101 12dB
010110 –13.5dB 110110 12dB
010111 –12dB 110111 12dB
011000 –10.5dB 111000 12dB
011000 –9dB 111001 12dB
011001 –7.5dB 111010 12dB
011010 –6dB 111011 12dB
011100 –4.5dB 111100 12dB
011101 –3dB 111101 12dB
011110 –1.5dB 111110 12dB
011111 0dB 111111 12dB
6 FROM_LINE_R If set, the RIGHT_MIC/LINE differential input is routed to the AUX_R input amplifier for line level volume
control. This bit overrides the DIFF_MODE (bit 7) setting.
7 DIFF_MODE If set, the stereo single-ended inputs AUX_L and AUX_R convert to a mono differential input pair MONO_IN+
and MONO_IN-.
(MONO_IN+) - (MONO_IN-) is routed to the AUX_L input amplifier.
(MONO_IN-) - (MONO_IN+) is routed to the AUX_R input amplifier.
(unless overriden by the respective FROM_LINE bits).
46 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
ADC Control Registers
This register is used to control the LM49350's ADC:
Table 28. ADC Basic (0x20h)
Bits Field Description
0 MONO This sets mono or stereo operation of the ADC.
MONO ADC Operation
0 Stereo Audio
1 Mono Voice (Right ADC channel disabled, Left ADC channel active)
1 OSR This sets the oversampling ratio of the ADC.
OSR Stereo Audio ADC Mono Voice ADC Oversampling Ratio
Oversampling Ratio
0 128 125
1 64 128
2 MUTE_L If set, a digital mute is applied to the Left (or mono) ADC output.
3 MUTE_R If set, a digital mute is applied to the Right ADC output.
6.4 ADC_CLK_SEL This selects the source of the ADC clock domain, ADC_SOURCE_CLK.
ADC_CLK_SEL Source
000 MCLK
001 PORT1_RX_CLK
010 PORT2_RX_CLK
011 PLL1_OUTPUT2
100 PLL2_OUTPUT
7 ADC_DSP_ONLY If set the ADC's analog circuitry is disabled to reduce power consumption, however, ADC DSP
functionality is maintained. This can be used to perform asyncronous resampling between audio rates
of a common family. Setting this bit is also useful whenever applying Automatic Level Control (ALC)
to an analog only audio path.
Table 29. ADC_CLK_DIV (0x21h)
Bits Field Description
7:0 ADC_CLK_DIV This programs the half cycle divider that preceeds the ADC. The input of this divider should be around
12MHz. The default of this divider is 0x00.
Program this divider with the division you want, multiplied by 2, and subtract 1.
ADC_CLK_DIV Divides by
00000000 1
00000001 1
00000010 1.5
00000011 2
11111101 127
11111110 127.5
11111111 128
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 47
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
Table 30. ADC TRIM (0x22h)
Bits Field Description
7:0 ADC_TRIM If set, the ADC is compensated with recommended compensation filter coefficients. The recommended
ADC compensation filter coefficients are programmed as follows:
Register 0xF8h set to 0x00h
Register 0xF9h set to 0x01h
Register 0xFAh set to 0x96h
Register 0xFBh set to 0xFBh
Register 0xFCh set to 0x30h
Register 0xFDh set to 0x62h
DAC Control Registers
This register is used to control the LM49350's DAC:
Table 31. DAC Basic (0x30h)
Bits Field Description
1:0 MODE This programs the over sampling ratio of the stereo DAC.
MODE DAC Oversampling Ratio
00 125
01 128
10 64
11 32
2 MUTE_L This digitally mutes the Left DAC output.
3 MUTE_R This digitally mutes the Right DAC output.
6:4 DAC_CLK_SEL This selects the source of the DAC clock domain, DAC_SOURCE_CLK.
DAC_CLK_SEL Source
000 MCLK
001 PORT1_RX_CLK
010 PORT2_RX_CLK
011 PLL1_OUTPUT1
100 PLL2_OUTPUT
7 DSP_ONLY If set, the DAC's analog circuitry is disabled to reduce power consumption, however DAC DSP
functionality is maintained. This can be used to perform asyncronous resampling between audio rates of
a common family.
Table 32. DAC_CLK_DIV (0x31h)
Bits Field Description
7:0 DAC_CLK_DIV This programs the half cycle divider that precedes the DAC. The input of this divider should be around
12MHz. The default of this divider is 0x00.
Program this divider with the division you want, multiplied by 2, and subtract 1.
DAC_CLK_DIV Divides by
00000000 1
00000001 1
00000010 1.5
00000011 2
11111101 127
11111110 127.5
11111111 128
48 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
Digital Mixer Control Registers
DIGITAL MIXER
The LM49350’s digital mixer allows for flexible routing of digital audio signals between both audio ports, DAC,
and ADC. This mixer handles which digital data path (Port1 RX data, Port2 RX data, or ADC output) is routed to
the DAC input. The digital mixer also selects the appropriate digital data path [Port1 RX data, Port2 RX data,
ADC output, or DAC DSP (Interpolator)] output that is used for data transmission on Audio Port 1 and 2. Audio
inputs to the digital mixer can be attenuated down to -18dB to avoid clipping conditions. The digital mixer also
allows direct routing from the DAC interpolator output to the ADC decimator input which allows the DAC and
ADC DSP blocks to be cascaded without having to enable the analog of the DAC and ADC inorder to save
power.
Another key feature of the digital mixer is sample rate conversion (SRC) between audio ports. This allows
simultaneous operation of the dual audio ports even if each port is operating at a different sample rate. The
LM49350 can be used as an audio port bridge with SRC capability. The digital mixer allows either straight pass
through between audio ports or, if desired, DSP effects can be added to the digital audio signal during audio port
bridge operation. The digital mixer automatically handles stereo I2S to mono PCM conversion between audio
ports and vice versa.
Figure 58. Digital Mixer
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 49
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
The LM49350 includes two separate and independent DSP blocks, one for the DAC and the other for the ADC.
The digital mixer also allows both DSP blocks to be cascaded together in either order so that the DSP effects
from both blocks can be combined into the same signal path. For example, the 5 band parametric EQ of each
DSP block can be combined together to form a 10 band parametric EQ for added flexibility.
This register is used to control the LM49350's digital mixer:
Table 33. Input Levels 1 (0x40h)
Bits Field Description
1:0 PORT1_RX_L This programs the input level of the data arriving from the left receive channel of Audio Port 1.
_LVL PORT1_RX_L_LVL Level
00 0dB
01 –6dB
10 –12dB
11 –18dB
3:2 PORT1_RX_R This programs the input level of the data arriving from the right receive channel of Audio Port 1.
_LVL PORT1_RX_R_LVL Level
00 0dB
01 –6dB
10 –12dB
11 –18dB
5:4 PORT2_RX_L This programs the input level of the data arriving from the left receive channel of Audio Port 2.
_LVL PORT2_RX_L_LVL Level
00 0dB
01 –6dB
10 –12dB
11 –18dB
7:6 PORT2_RX_R This programs the input level of the data arriving from the right receive channel of Audio Port 2.
_LVL PORT2_RX_R_LVL Level
00 0dB
01 –6dB
10 –12dB
11 –18dB
50 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
Table 34. Input Levels 2 (0x41h)
Bits Field Description
1:0 ADC_L_LVL This programs the input level of the data arriving from the left ADC channel.
ADC_L_LVL Level
00 0dB
01 –6dB
10 –12dB
11 –18dB
3:2 ADC_R_LVL This programs the input level of the data arriving from the right ADC channel.
ADC_R_LVL Level
00 0dB
01 –6dB
10 –12dB
11 –18dB
5:4 INTERP_L_LVL This programs the input level of the data arriving from the left DAC's interpolator output.
INTERP_L_LVL Level
00 0dB
01 –6dB
10 –12dB
11 –18dB
7:6 INTERP_R_LVL This programs the input level of the data arriving from the right DAC's interpolator output.
INTERP_R_LVL Level
00 0dB
01 –6dB
10 –12dB
11 –18dB
Table 35. Audio Port 1 Input (0x42h)
Bits Field Description
1:0 L_SEL This selects which input is fed to the Left TX Channel of Audio Port 1.
L_SEL Selected Input
00 None
01 ADC_L
10 PORT2_RX_L
11 DAC_INTERP_L
3:2 R_SEL This selects which input is fed to the Right TX Channel of Audio Port 1.
R_SEL Selected Input
00 None
01 ADC_R
10 PORT2_RX_R
11 DAC_INTERP_R
4 SWAP If set, this swaps the Left and Right outputs to Audio Port 1. The swap bit can be used to control which
microphone is being used for audio port transmit. For example, if LEFT_MIC is used as a primary handset
microphone and RIGHT_MIC is used a headset microphone, the SWAP bit allows the audio port to select
one of the microphones at a time for audio port transmit via the ADC.
5 MONO If set, the right channel is ignored and the left channel becomes (left+right)/2.
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 51
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
Table 36. Audio Port 2 Input (0x43h)
Bits Field Description
1:0 L_SEL This selects which input is fed to Audio Port 2's Left TX Channel.
L_SEL Selected Input
00 None
01 ADC_L
10 PORT1_RX_L
11 DAC_INTERP_L
3:2 R_SEL This selects which input is fed to Audio Port 2's Right TX Channel.
R_SEL Selected Input
00 None
01 ADC_R
10 PORT1_RX_R
11 DAC_INTERP_R
4 SWAP If set, this swaps the Left and Right outputs to Audio Port 2. The swap bit can be used to control which
microphone is being used for audio port transmit. For example, if LEFT_MIC is used as a primary handset
microphone and RIGHT_MIC is used a headset microphone, the SWAP bit allows the audio port to select
one of the microphones at a time for audio port transmit via the ADC.
5 MONO If set, the right channel is ignored and the left channel becomes (left+right)/2.
Table 37. DAC Input Select (0x44h)
Bits Field Description
0 PORT1_L This adds Audio Port 1's left RX channel to the DAC's left input.
1 PORT2_L This adds Audio Port 2's left RX channel to the DAC's left input.
2 ADC_L This adds the ADC's left output to the DAC's left input
3 PORT1_R This adds Audio Port 1's right RX channel to the DAC's right input.
4 PORT2_R This adds Audio Port 2's right RX channel to the DAC's right input.
5 ADC_R This adds the ADC's right output to the DAC's right input.
6 SWAP If set, this swaps the Left and Right inputs to the DAC.
Table 38. Decimator Input Select (0x45h)
Bits Field Description
1:0 L_SEL This selects which input is fed to the left ADC's decimator input.
L_SEL Selected Input
00 None
01 PORT1_RX_L
10 PORT2_RX_L
11 DAC_INTERP_L
3:2 R_SEL This selects which input is fed to the right ADC's decimator input.
R_SEL Selected Input
00 None
01 PORT1_RX_R
10 PORT2_RX_R
11 DAC_INTERP_R
52 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
0 23 22 21 3 2 1 0 23 22 21 3 2 1 0
I2S_CLK
I2S_SDO/
I2S_SDI
I2S_SYNC
Left Word Right Word
23 22 21 20 2 1 0 23 22 21 20 2 1 0 23
I2S_CLK
I2S_SDO/
I2S_SDI
I2S_SYNC
Left Word Right Word
23 22 21 2 1 0 23 22 21 2 1 0
I2S_CLK
I2S_SDO/
I2S_SDI
I2S_SYNC
Left Word Right Word
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
Table 38. Decimator Input Select (0x45h) (continued)
Bits Field Description
5:4 MXR_CLK_SEL This selects sets the source of the Digital Mixer Clock. The 'Auto' setting will automatically select the source
with the highest clock frequency. Whenever the DAC interpolator (DAC_OSR_L or DAC_OSR_R) is selected
then MXR_CLK_SEL should be set to '10'.
MXR_CLK_SEL Selected Input
00 Auto
01 MCLK
10 DAC
11 ADC
Audio Port Control Registers
Figure 59. I2S Serial Data Format (24 bit example)
Figure 60. Left Justified Data Format (24 bit example)
Figure 61. Right Justified Data Format (24 bit example)
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 53
Product Folder Links: LM49350 LM49350RLEVAL
0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9
PCM_CLK
PCM_SDO/
PCM_SDI
PCM_SYNC
Short frame sync mode
Long frame sync mode
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
Figure 62. PCM Serial Data Format (16 bit example)
The following registers are used to control the LM49350's audio ports. Audio Port 1 and Audio Port 2 are
identical. Port 1 is programmed through the (0x5Xh) registers. Port 2 is programmed through the (0x6Xh)
registers.
Table 39. BASIC_SETUP (0x50h/0x60h)
Bits Field Description
0 STEREO If set, the audio port will receive and transmit stereo data.
1 RX_ENABLE If set the input is enabled (enables the SDI port and input shift register and any clock
generation required).
2 TX_ENABLE If set the output is enabled (enables the SDO port and output shift register and any clock
generation required).
3 CLOCK_MS If set the audio port will transmit the clock when either the RX or TX is enabled.
4 SYNC_MS If set the audio port will transmit the sync signal when either the RX or TX is enabled.
5 CLOCK_PHASE This sets how data is clocked by the Audio Port.
CLOCK_PHASE Audio Data Mode
0 I2S (TX on falling edge, RX on rising edge)
1 PCM (TX on rising edge, RX on falling edge)
6 STEREO_SYNC_PHASE If set, this reverses the left and right channel data of the Audio Port.
STEREO_SYNC_PHASE Audio Port Data Orientation
0 Left channel data goes to left channel output.
Right channel data goes to right channel output.
1 Right channel data goes to left channel output.
Left channel data goes to right channel output.
7 SYNC_INVERT If this bit is set the SYNC is inverted before the receiver and transmitter.
SYNC_INVERT Sync Orientation
0 SYNC Low = Left, SYNC High = Right
1 SYNC Low = Right, SYNC High = Left
54 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
Table 40. CLK_GEN_1 (0x51h/0x61h)
Bits Field Description
5:0 HALF_CYCLE_CLK_DI This programs the half-cycle divider that generates the master clocks in the audio port. The input of
V this divider should be around 12MHz. The default of this divider is 0x00, i.e. bypassed.
Program this divider with the division you want, multiplied by 2, and subtract 1.
HALF_CYCLE_CLK_DIV Divides By
000000 BYPASS
000001 1
000010 1.5
000011 2
111101 31
111110 31.5
11111 32
6 CLOCK_SEL This selects the clock source of the master mode Audio Port Clock generator's half-cycle divider.
0 = DAC_SOURCE_CLK
1 = ADC_SOURCE_CLK
Table 41. CLK_GEN_1 (0x52h/62h)
Bits Field Description
2:0 SYNTH_NUM Along with SYNTH_DENOM, this sets the clock divider that generates the Port 1 or Port 2 clock in master
mode. SYNTH_NUM Numerator
000 SYNTH_DENOM (1/1)
001 100/SYNTH_DENOM
010 96/SYNTH_DENOM
011 80/SYNTH_DENOM
100 72/SYNTH_DENOM
101 64/SYNTH_DENOM
110 48/SYNTH_DENOM
111 0/SYNTH_DENOM
3 SYNTH_DENOM Along with SYNTH_NUM, this sets the clock divider that generates the Port 1 or Port 2 clock in master
mode. SYNTH_DENOM Denominator
0 128
1 125
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 55
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
Table 42. CLK_GEN_1 (0x53h/63h)
Bits Field Description
2:0 SYNC_RATE This sets the number of clock cycles before the sync pattern repeats. This depends if the audio port data
is mono or stereo.
In MONO mode:
SYNC_RATE Number of Clock Cycles
000 8
001 12
010 16
011 18
100 20
101 24
110 25
111 32
In STEREO mode:
SYNC_RATE Number of Clock Cycles
000 16
001 24
010 32
011 36
100 40
101 48
110 50
111 64
5:3 SYNC_WIDTH In MONO mode, this programs the width (in number of bits) of the SYNC signal.
SYNC_WIDTH Width of SYNC (in bits)
000 1
001 2
010 4
011 7
100 8
101 11
110 15
111 16
56 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
Table 43. DATA_WIDTHS (0x54h/64h)
Bits Field Description
2:0 RX_WIDTH This programs the expected bits per word of the serial data input SDI.
RX_WIDTH Bits
000 24
001 20
010 18
011 16
100 14
101 13
110 12
111 8
5:3 TX_WIDTH This programs the bits per word of the serial data output SDO.
TX_WIDTH Description
000 24
001 20
010 18
011 16
100 14
101 13
110 12
111 8
7:6 TX_EXTRA_BITS This programs the TX data output padding.
TX_EXTRA_BITS Description
00 0
01 1
10 High-Z
11 High-Z
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 57
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
Table 44. RX_MODE (0x55h/65h)
Bits Field Description
0 RX_MODE This sets the RX data input justification with respect to the SYNC signal.
RX_MODE Description
0 MSB Justified
1 LSB Justified
5:1 MSB_POSITION This specifies the bit location of the MSB from the start of the frame (MSB Justified) or from the end of the
frame (LSB Justified).
MSB_POSITION Description
00000 0(Left Justified/PCM Long)
00001 1(I2S/PCM Short)
00010 2
00011 3
00100 4
00101 5
00110 6
00111 7
01000 8
01001 9
01010 10
01011 11
01100 12
01101 13
01110 14
01111 15
10000 16
10001 17
10010 18
10011 19
10100 20
10101 21
10110 22
10111 23
11000 24
11001 25
11010 26
11011 27
11100 28
11101 29
11110 30
11111 31
6 COMPAND If set, audio data will be companded.
7μLaw/A-Law This sets the audio companding mode.
μLaw/A-Law Compand Mode
0μLaw
1 A-Law
58 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
Table 45. TX_MODE (0x56h/x66h)
Bits Field Description
0 TX_MODE This sets the TX data output justification with respect to the SYNC signal.
TX_MODE Description
0 MSB Justified
1 LSB Justified
5:1 MSB_POSITION This specifies the bit location of the MSB from the start of the frame (MSB Justified) or from the end of the
frame (LSB Justified).
MSB_POSITION Description
00000 0(Left Justified/PCM Long)
00001 1(I2S/PCM Short)
00010 2
00011 3
00100 4
00101 5
00110 6
00111 7
01000 8
01001 9
01010 10
01011 11
01100 12
01101 13
01110 14
01111 15
10000 16
10001 17
10010 18
10011 19
10100 20
10101 21
10110 22
10111 23
11000 24
11001 25
11010 26
11011 27
11100 28
11101 29
11110 30
11111 31
6 COMPAND If set, audio data will be companded.
7μLaw/A-Law This sets the audio companding mode.
μLaw/A-Law Compand Mode
0μLaw
1 A-Law
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 59
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
Digital Effects Engine
DIGITAL SIGNAL PROCESSOR (DSP)
The LM49350 is designed to handle the entire audio signal conditioning and processing within the audio system,
thereby freeing up the workload of any other applications processor contained within the system. The LM49350
features two independent DSPs, one for the DAC and the other for the ADC. Each DSP is fully featured and
performs as a professional quality digital audio effects engine. The data paths on each DSP engine are 24 bits
wide for ultimate flexibility. Both DSP engines feature digital volume control, automatic level control (ALC), digital
soft clip compression, and a 5-band parametric EQ. The ADC DSP engine adds a dedicated high-pass filter to
reduce wind noise or pop noise during uplink. The DAC DSP engine adds a digital 3D algorithm that allows for
stereo widening of the original audio signal. The effects chain of each DSP engine is shown by the diagrams
below.
Figure 63. ADC DSP Effects Chain
Figure 64. DAC DSP Effects Chain
The ADC and DAC DSP engines can be cascaded together in any order via the digital mixer to combine different
audio effects to the same signal path. For example, a signal can be processed with high-pass filtering from the
ADC effects engine with 3D stereo widening from the DAC effects engine. The 5-band parametric EQs from each
DSP engine can be combined to form a single 10-band parametric EQ or a single 5-band parametric EQ with
±30dB (instead of ±15dB) gain control for each band.
Table 46. ADC EFFECTS (0x70h)
Bits Field Description
0 ADC_HPF_ENB This enables the ADC's High Pass Filter.
1 ADC_ALC_ENB This enables the ADC's Auto Level Control.
2 ADC_PK_ENB This enables the ADC's Peak Detector.
3 ADC_EQ_ENB This enables the ADC's 5-band Parametric EQ.
4 ADC_SCLP_ENB This enables the ADC's Soft Clip Feature.
60 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
Table 47. DAC EFFECTS (0x71h)
Bits Field Description
0 DAC_ALC_ENB This enables the DAC's Auto Level Control.
1 DAC_PK_ENB This enables the DAC's Peak Detector.
2 DAC_EQ_ENB This enables the DAC's 5-band Parametric EQ.
3 DAC_3D_ENB This enables the DAC's Stereo Widening Circuit.
4 ADC_SCLP_ENB This enables the DAC's Soft Clip Feature.
Table 48. HPF MODE (0x80h)
Bits Field Description
2:0 HPF_MODE This configures the ADC's High Pass Filter. To calculate the –3dB cutoff frequency, multiply the
coefficient by the sample rate (Hz): fC= XN.fS(Hz)
HPF_MODE Coefficient Filter Characteristics
fC= 220Hz for:
000 X0= 0.0275 8kHz Voice
001 X1= 0.01833 12kHz Voice
010 X2= 0.01375 16kHz Voice
011 X3= 0.009166 24kHz Voice
100 X4= 0.006875 32kHz Voice
fC= 100Hz for:
101 X5= 0.003125 32kHz Audio
110 X6= 0.0020833 48kHz Audio
fC=150Hz for:
111 X7= 0.0015625 96kHz Audio
ALC OVERVIEW
The Automatic Level Control (ALC) system can be used to regulate the audio output level to a user defined
target level. The ALC feature is especially useful whenever the level of the audio input is unknown,
unpredictable, or has a large dynamic range. The main purpose of the ALC is to optimize the dynamic range of
the audio input to audio output path.
There are two separate and independent ALC circuits in the LM49350. One of the ALC circuits is located within
the DAC DSP effects block. The other ALC circuit is integrated into the ADC DSP effects block. The DAC ALC
controls the DAC digital gain. The ADC ALC controls the auxiliary input amplifier gain or microphone preamplifier
gain. The dual ALCs can be used to regulate the level of the analog (Stereo Auxiliary, mono differential, Stereo
MIC/LINE) and digital (Port1 Data In, Port2 Data In) audio inputs. The ALC regulated output can be routed to any
of the LM49350’s amplifier outputs for playback. The ALC regulated output can also be routed to Audio Port1 or
Audio Port2 for digital data transmission via I2S or PCM.
Only audio inputs that are considered signals (rather than noise) are sent to the ALC’s peak detector block. The
peak detector compares the level of the audio input versus the ALC target level (TARGET_LEVEL). Signals
lower than the target level will be amplified and signals higher than the target level will be attenuated. Any audio
input that is lower than the level specified by the noise floor level (NOISE_FLOOR) will be considered as noise
and will be gated from the ALC’s peak detector in order to avoid noise pumping. So it is important to set
NOISE_FLOOR to correlate with the signal to noise ratio of the corresponding audio path. In some instances (ie.
Conference calls), it may be desirable to mute audio input signals that consist solely of background noise from
the audio output. This is accomplished by enabling the ALC’s noise gate (NG_ENB). When the noise gate is
enabled, signals lower than the noise floor level will be muted from the audio output.
If the audio input signal is below the target level, the ALC will increase the gain of the corresponding volume
control until the signal reaches the target level. The rate at which the ALC performs gain increases is known as
decay rate (DECAY RATE). But before each ALC gain increase the ALC must wait a predetermined amount of
time (HOLD TIME). If the audio input signal is above the target level, the ALC will decrease the gain of the
corresponding volume control until the signal reaches the target level. The rate at which the ALC performs
attenuation is known as attack rate (ATTACK RATE). The ALC’s peak detector tracks increases in audio input
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 61
Product Folder Links: LM49350 LM49350RLEVAL
(1)
(1) Decay hold time, (2) Slow Decay, (3) Quick Attack
(2) (3)
12 dB 10 dB
14 dB
12 dB
signal below target
attack
decay
microphone gain
target level
signal above target
peak detection
and ADC output
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
signal amplitude instantaneously, but tracks decreases in audio input signal amplitude at programmable rate
(PEAK DECAY TIME). ATTACK RATE, DECAY RATE, HOLD TIME, and PEAK DECAY TIME are fully
adjustable which allows flexible operation of the ALC circuit. The ALC’s timers are based on the sample rate of
the DAC or ADC, so the closest corresponding sample rate must be programmed into the ALC SAMPLE RATE
setting (for DAC ALC) or the ALC MODE setting (for ADC ALC).
Figure 65. ALC Example
Table 49. ADC_ALC_1 (0x81h)
Bits Field Description
2:0 SAMPLE_RATE This programs the timers on the ALC with the closest sample rate of the ADC.
SAMPLE_RATE ADC Fs
000 8kHz
001 12kHz
010 16kHz
011 24kHz
100 32kHz
101 48kHz
110 96kHz
111 192kHz
3 LIMITER If set, the circuit will never apply gain to the signal, no matter how small, but it will attenuate the signal
as soon as it reaches target and release it at the decay rate, once signal level reduces below target.
The I2C gain setting (at the time the LIMITER is enabled) is the maximum gain that the ALC will apply.
Care should be taken when choosing the optimum I2C gain setting whenever enabling the Limiter.
4 STEREO LINK If set, the ALC circuit uses the stereo average of the input signals to control the gain of the stereo
output. This maintains stereo imaging. If this bit is cleared, then both channels operate as dual mono.
5 SOURCE_SEL If SOURCE_OVR is set then this manually overrides the selection of the input amplifier that is used to
alter the gain for ALC operation.
0 = Both ALCs control AUX gain
1 = Both ALCs control MIC gain
6 SOURCE_OVR If set, the output of the ALC is not set automatically but is controlled by the SOURCE_SEL bit. If
cleared each ALC controls the input gain of the amplifier (AUX or MIC) that is set to that ADC channel
(or MIC if both are selected).
62 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
Table 50. ADC_ALC_2 (0x82h)
Bits Field Description
3:0 NOISE_FLOOR This sets the anticipated noise floor. Signals lower than the noise floor specified will be gated from the
ALC to avoid noise pumping.
NOISE_FLOOR Noise Floor (dB)
0000 –39
0001 –42
0010 –45
0011 –48
0100 –51
0101 –54
0110 –57
0111 –60
1000 –63
1001 –66
1010 –69
1011 –72
1100 –75
1101 –78
1110 –81
1111 –84
4 NG_ENB This enables the Noise Gate.
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 63
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
Table 51. ADC_ALC_3 (0x83h)
Bits Field Description
4:0 TARGET_LEVEL This sets the desired target output level. Signals lower than this will be amplified and signals larger
than this will be attenuated.
TARGET_LEVEL Target Level (dB)
00000 –1.5
00001 –3
00010 –4.5
00011 –6
00100 –7.5
00101 –9
00110 –10.5
00111 –12
01000 –13.5
01001 –15
01010 –16.5
01011 –18
01100 –19.5
01101 –21
01110 –22.5
01111 –24
10000 –25.5
10001 –27
10010 –28.5
10011 –30
10100 –31.5
10101 –33
10110 –34.5
10111 –36
11000 –37.5
11001 –39
11010 –40.5
11011 –42
11100 –43.5
11101 –45
11110 –46.5
11111 –48
64 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
Table 52. ADC_ALC_4 (0x84h)
Bits Field Description
4:0 ATTACK_RATE This sets the rate at which the ALC will reduce gain if it detects the input signal is large.
ATTACK_RATE Time between gain steps (μs)
00000 21
00001 42
00010 83
00011 167
00100 250
00101 333
00110 417
00111 542
01000 729
01001 958
01010 1250
01011 1604
01100 1896
01101 2208
01110 2792
01111 3708
10000 4792
10001 5688
10010 6563
10011 8396
10100 11000
10101 14167
10110 17083
10111 20000
11000 25000
11001 32000
11010 45000
11011 60000
11100 75000
11101 87500
11110 100000
11111 114583
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 65
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
Table 53. ADC_ALC_5 (0x85h)
Bits Field Description
4:0 DECAY_RATE This sets the rate at which the ALC will increase gain if it detects the input signal is too small.
DECAY_RATE Time between gain steps (μs)
00000 104
00001 125
00010 167
00011 250
00100 292
00101 396
00110 500
00111 708
01000 896
01001 1250
01010 1396
01011 2000
01100 2708
01101 3500
01110 4750
01111 6250
10000 8000
10001 11000
10010 14000
10011 18500
10100 25000
10101 32000
10110 42000
10111 55000
11000 72500
11001 100000
11010 125000
11011 160000
11100 225000
11101 300000
11110 375000
11111 500000 (0.5s)
7:5 PK_DECAY_RATE PK_DECAY_RATE Max Time to track decay
000 1.3ms
001 2.6ms
010 5.3ms
011 10.6ms
100 21.3ms
101 42.6.3ms
110 85.5ms
111 2.73 secs
66 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
Table 54. ADC_ALC_6 (0x86h)
Bits Field Description
4:0 HOLD_TIME This sets how long the ALC circuit waits before increasing the gain.
HOLD_TIME Time (ms)
00000 1
00001 1.25
00010 1.6
00011 2
00100 2.5
00101 3.2
00110 4
00111 5
01000 6.25
01001 8
01010 10
01011 12.5
01100 16
01101 20
01110 25
01111 32
10000 40
10001 50
10010 64
10011 80
10100 100
10101 125
10110 160
10111 200
11000 250
11001 320
11010 400
11011 500
11100 640
11101 800
11110 1000
11111 1250
Table 55. ADC_ALC_7 (0x87h)
Bits Field Description
5:0 MAX_LEVEL This sets the maximum allowed gain of the volume control to the output amplifier. If the volume
control is less than 6 bits the relevant LSBs are used as the limit and the MSBs are ignored.
Table 56. ADC_ALC_8 (0x88h)
Bits Field Description
5:0 MIN_LEVEL This sets the minimum allowed gain of the volume control to the output amplifier. If the volume
control is less than 6 bits the relevant LSBs are used as the limit and the MSBs are ignored.
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 67
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
Table 57. ADC_L_LEVEL (0x89h) (Default data value is 0x33h)
Bits Field Description
5:0 ADC_L_LEVEL This sets the post ADC digital gain of the left channel.
ADC_L_LEVEL Level ADC_L_LEVEL Level
000000 -76.5dB 100000 -28.5dB
000001 -75dB 100001 -27dB
000010 -73.5dB 100010 -25.5dB
000011 -72dB 100011 -24dB
000100 -70.5dB 100100 -22.5dB
000101 -69dB 100101 -21dB
000110 -67.5dB 100110 -20.5dB
000111 -66dB 100111 -18dB
001000 -64.5dB 101000 -16.5dB
001001 -63dB 101001 -15dB
001010 -61.5dB 101010 -13.5dB
001011 -60dB 101011 -12dB
001100 -58.5dB 101100 -10.5dB
001101 -57dB 101101 -9dB
001110 -55.5dB 101110 -7.5dB
001111 -54dB 101111 -6dB
010000 -52.5dB 110000 -4.5dB
010001 -51dB 110001 -3dB
010010 -49.5dB 110010 -1.5dB
010011 -48dB 110011 0dB
010100 -46.5dB 110100 1.5dB
010101 -45dB 110101 3dB
010110 -43.5dB 110110 4.5dB
010111 -42dB 110111 6dB
011000 -40.5dB 111000 7.5dB
011001 -39dB 111001 9dB
011010 -37.5dB 111010 10.5dB
011011 -36dB 111011 12dB
011100 -34.5dB 111100 13.5dB
011101 -33dB 111101 15dB
011110 -31.5dB 111110 16.5dB
011111 -30dB 111111 18dB
68 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
Table 58. ADC_R_LEVEL (0x8Ah) (Default data value is 0x33h)
Bits Field Description
5:0 ADC_R_LEVEL This sets the post ADC digital gain of the right channel.
ADC_R_LEVEL Level ADC_R_LEVEL Level
000000 -76.5dB 100000 -28.5dB
000001 -75dB 100001 -27dB
000010 -73.5dB 100010 -25.5dB
000011 -72dB 100011 -24dB
000100 -70.5dB 100100 -22.5dB
000101 -69dB 100101 -21dB
000110 -67.5dB 100110 -20.5dB
000111 -66dB 100111 -18dB
001000 -64.5dB 101000 -16.5dB
001001 -63dB 101001 -15dB
001010 -61.5dB 101010 -13.5dB
001011 -60dB 101011 -12dB
001100 -58.5dB 101100 -10.5dB
001101 -57dB 101101 -9dB
001110 -55.5dB 101110 -7.5dB
001111 -54dB 101111 -6dB
010000 -52.5dB 110000 -4.5dB
010001 -51dB 110001 -3dB
010010 -49.5dB 110010 -1.5dB
010011 -48dB 110011 0dB
010100 -46.5dB 110100 1.5dB
010101 -45dB 110101 3dB
010110 -43.5dB 110110 4.5dB
010111 -42dB 110111 6dB
011000 -40.5dB 111000 7.5dB
011001 -39dB 111001 9dB
011010 -37.5dB 111010 10.5dB
011011 -36dB 111011 12dB
011100 -34.5dB 111100 13.5dB
011101 -33dB 111101 15dB
011110 -31.5dB 111110 16.5dB
011111 -30dB 111111 18dB
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 69
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
Table 59. EQ_BAND_1 (0x8Bh)
Bits Field Description
1:0 FREQ This sets the Sub-bass shelving filter's cut-off frequency. The cut-off frequencies shown are
based on a 48kHz sample rate. Using lower sample rates will scale down the cut-off
frequencies proportionately.
FREQ Frequency (Hz)
00 60
01 80
10 100
11 120
6:2 LEVEL This sets the gain at fc.
LEVEL Effect
00000 Off (0dB)
00001 -15dB
00010 -14dB
00011 -13dB
00100 -12dB
00101 -11dB
00110 -10dB
00111 -9dB
01000 -8dB
01001 -7dB
01010 -6dB
01011 -5dB
01100 -4dB
01101 -3dB
01110 -2dB
01111 -1dB
10000 0dB
10001 1dB
10010 2dB
10011 3dB
10100 4dB
10101 5dB
10110 6dB
10111 7dB
11000 8dB
11001 9dB
11010 10dB
11011 11dB
11100 12dB
11101 13dB
11110 14dB
11111 15dB
70 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
Table 60. EQ_BAND_2 (0x8Ch)
Bits Field Description
1:0 FREQ This sets the Bass peak filter's center frequency. The cut-off frequencies shown are based
on a 48kHz sample rate. Using lower sample rates will scale down the cut-off frequencies
proportionately.
FREQ Frequency (Hz)
00 150
01 200
10 250
11 300
6:2 LEVEL This sets the gain at fc.
LEVEL Effect
00000 Off (0dB)
00001 -15dB
00010 -14dB
00011 -13dB
00100 -12dB
00101 -11dB
00110 -10dB
00111 -9dB
01000 -8dB
01001 -7dB
01010 -6dB
01011 -5dB
01100 -4dB
01101 -3dB
01110 -2dB
01111 -1dB
10000 0dB
10001 1dB
10010 2dB
10011 3dB
10100 4dB
10101 5dB
10110 6dB
10111 7dB
11000 8dB
11001 9dB
11010 10dB
11011 11dB
11100 12dB
11101 13dB
11110 14dB
11111 15dB
7 Q Programs the width of the peak filter.
Q Bandwidth
0 2/3 Octave
1 4/3 Octave
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 71
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
Table 61. EQ_BAND_3 (0x8Dh)
Bits Field Description
1:0 FREQ This sets the Mid peak filter's center frequency. The cut-off frequencies shown are based on
a 48kHz sample rate. Using lower sample rates will scale down the cut-off frequencies
proportionately.
FREQ Frequency (Hz)
00 600
01 800
10 1k
11 1.2k
6:2 LEVEL This sets the gain at fC.
LEVEL Effect
00000 Off (0dB)
00001 -15dB
00010 -14dB
00011 -13dB
00100 -12dB
00101 -11dB
00110 -10dB
00111 -9dB
01000 -8dB
01001 -7dB
01010 -6dB
01011 -5dB
01100 -4dB
01101 -3dB
01110 -2dB
01111 -1dB
10000 0dB
10001 1dB
10010 2dB
10011 3dB
10100 4dB
10101 5dB
10110 6dB
10111 7dB
11000 8dB
11001 9dB
11010 10dB
11011 11dB
11100 12dB
11101 13dB
11110 14dB
11111 15dB
7 Q This programs the width of the peak filter.
Q Bandwidth
0 2/3 Octave
1 4/3 Octave
72 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
Table 62. EQ_BAND_4 (0x8Eh)
Bits Field Description
1:0 FREQ This sets the Treble peak filter's center frequency. The cut-off frequencies shown are based
on a 48kHz sample rate. Using lower sample rates will scale down the cut-off frequencies
proportionately.
FREQ Frequency (Hz)
00 2k
01 2.7k
10 3.4k
11 4.1k
6:2 LEVEL This sets the gain at fC.
LEVEL Effect
00000 Off (0dB)
00001 -15dB
00010 -14dB
00011 -13dB
00100 -12dB
00101 -11dB
00110 -10dB
00111 -9dB
01000 -8dB
01001 -7dB
01010 -6dB
01011 -5dB
01100 -4dB
01101 -3dB
01110 -2dB
01111 -1dB
10000 0dB
10001 1dB
10010 2dB
10011 3dB
10100 4dB
10101 5dB
10110 6dB
10111 7dB
11000 8dB
11001 9dB
11010 10dB
11011 11dB
11100 12dB
11101 13dB
11110 14dB
11111 15dB
7 Q This programs the width of the peak filter.
Q Bandwidth
0 2/3 Octave
1 4/3 Octave
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 73
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
Table 63. EQ_BAND_5 (0x8Fh)
Bits Field Description
1:0 FREQ This sets the presence shelving filter's cut-off frequency. The cut-off frequencies shown are
based on a 48kHz sample rate. Using lower sample rates will scale down the cut-off
frequencies proportionately.
FREQ Frequency (Hz)
00 7k
01 9k
10 11k
11 20k
6:2 LEVEL This sets the gain at fC.
LEVEL Effect
00000 Off (0dB)
00001 -15dB
00010 -14dB
00011 -13dB
00100 -12dB
00101 -11dB
00110 -10dB
00111 -9dB
01000 -8dB
01001 -7dB
01010 -6dB
01011 -5dB
01100 -4dB
01101 -3dB
01110 -2dB
01111 -1dB
10000 0dB
10001 1dB
10010 2dB
10011 3dB
10100 4dB
10101 5dB
10110 6dB
10111 7dB
11000 8dB
11001 9dB
11010 10dB
11011 11dB
11100 12dB
11101 13dB
11110 14dB
11111 15dB
74 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
Table 64. SOFTCLIP1 (0x90h)
Bits Field Description
3:0 THRESHOLD This sets the threshold level of the audio compressor. Audio signals above the threshold
will be compressed.
THRESHOLD Threshold Level (dB)
0000 -36dB
0001 -30dB
0010 -24dB
0011 -20dB
0100 -18dB
0101 -17dB
0110 -16dB
0111 -15dB
1000 -14dB
1001 -12dB
1010 -10dB
1011 -8dB
1100 -6dB
1101 -4dB
1110 -2.5dB
1111 -1dB
4 SOFT_KNEE If set, the audio compressor will automatically apply higher compression ratios to audio
signals higher than the threshold level. As the audio signal approaches levels higher than
the threshold, SOFT_KNEE will increase the compression RATIO. The highest
compression that the SOFT_KNEE algorithm will apply is the compression that is set by
RATIO.
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 75
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
Table 65. SOFTCLIP2 (0x91h)
Bits Field Description
4:0 RATIO This sets the ratio at which the audio is compressed to when it passes beyond the
threshold. In SOFT_KNEE mode this is the final level of compression.
RATIO Ratio
00000 1:1 (Bypass)
00001 1:1.2
00010 1:1.4
00011 1:1.7
00100 1:2.0
00101 1:2.4
00110 1:2.8
00111 1:3.4
01000 1:4.0
01001 1:4.7
01010 1:5.7
01011 1:6.7
01100 1:8.0
01101 1:9.5
01110 1:11.3
01111 1:13.5
10000 1:16.0
10001 1:19.0
10010 1:22.8
10011 1:27.0
10100 1:32.0
10101 1:37.9
10110 1:45.5
10111 1:53.9
11000 1:64.0
11001 1:75.0
11010 1:91.0
11011 1:108
11100 1:128
11101 1:152
11110 1:182
11111 1:215
76 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
Table 66. SOFTCLIP3 (0x92h)
Bits Field Description
4:0 LEVEL This sets the post compressor gain level.
LEVEL Level (dB)
00000 -22.5dB
00001 -21dB
00010 -19.5dB
00011 -18dB
00100 -16.5dB
00101 -15dB
00110 -13.5dB
00111 -12dB
01000 -10.5dB
01001 -9dB
01010 -7.5dB
01011 -6dB
01100 -4.5dB
01101 -3dB
01110 -1.5dB
01111 0dB
10000 1.5dB
10001 3dB
10010 4.5dB
10011 6dB
10100 7.5dB
10101 9dB
10110 10.5dB
10111 12dB
11000 13.5dB
11001 15dB
11010 16.5dB
11011 18dB
11100 19.5dB
11101 21dB
11110 22.5dB
11111 24dB
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 77
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
DAC Effects Registers
Table 67. DAC_ALC_1 (0xA0h)
Bits Field Description
2:0 SAMPLE_ RATE This programs the timers on the ALC with the closest DAC sample rate.
SAMPLE_ RATE DAC Fs
000 8kHz
001 12kHz
010 16kHz
011 24kHz
100 32kHz
101 48kHz
110 96kHz
111 192kHz
3 LIMITER If set, the circuit will never apply gain to the signal, no matter how small, but it will attenuate
the signal as soon as it reaches target and release it at the decay rate, once signal level
reduces below target. The I2C gain setting (at the time the LIMITER is enabled) is the
maximum gain that the ALC will apply. Care should be taken when choosing the optimum
I2C gain setting whenever enabling the Limiter.
4 STEREO LINK If set, the ALC circuit uses the stereo average of the input signals to control the gain of the
stereo output. This maintains stereo imaging. If this bit is cleared, then both channels
operate as dual mono.
Table 68. DAC_ALC_2 (0xA1h)
Bits Field Description
3:0 NOISE_FLOOR This sets the anticipated noise floor. Signals lower than the specified noise floor will be
gated from the ALC to avoid noise pumping.
NOISE_FLOOR Noise Floor (dB)
0000 -39
0001 -42
0010 -45
0011 -48
0100 -51
0101 -54
0110 -57
0111 -60
1000 -63
1001 -66
1010 -69
1011 -72
1100 -75
1101 -78
1110 -81
1111 -84
4 NG_ENB This enables the Noise Gate
78 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
Table 69. DAC_ALC_3 (0xA2h)
Bits Field Description
4:0 TARGET_LEVEL This sets the desired output level. Signals lower than this will be amplified and signals
larger than this will be attenuated.
TARGET_LEVEL Target Level (dB)
00000 -1.5
00001 -3
00010 -4.5
00011 -6
00100 -7.5
00101 -9
00110 -10.5
00111 -12
01000 -13.5
01001 -15
01010 -16.5
01011 -18
01100 -19.5
01101 -21
01110 -22.5
01111 -24
10000 -25.5
10001 -27
10010 -28.5
10011 -30
10100 -31.5
10101 -33
10110 -34.5
10111 -36
11000 -37.5
11001 -39
11010 -40.5
11011 -42
11100 -43.5
11101 -45
11110 -46.5
11111 -48
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 79
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
Table 70. DAC_ALC_4 (0xA3h)
Bits Field Description
4:0 ATTACK_RATE This sets the rate at which the ALC will reduce gain if it detects the input signal is too large.
ATTACK_RATE Time between gain steps(us)
00000 21
00001 42
00010 83
00011 167
00100 250
00101 333
00110 417
00111 542
01000 729
01001 958
01010 1250
01011 1604
01100 1896
01101 2208
01110 2792
01111 3708
10000 4792
10001 5688
10010 6563
10011 8396
10100 11000
10101 14167
10110 17083
10111 20000
11000 25000
11001 32000
11010 45000
11011 60000
11100 75000
11101 87500
11110 100000
11111 114583
80 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
Table 71. DAC_ALC_5 (0xA4h)
Bits Field Description
4:0 DECAY_RATE This sets the rate at which the ALC will increase gain if it detects the input signal is too
small.DECAY_RATE Time between gain steps (us)
00000 104
00001 125
00010 167
00011 250
00100 292
00101 396
00110 500
00111 708
01000 896
01001 1250
01010 1396
01011 2000
01100 2708
01101 3500
01110 4750
01111 6250
10000 8000
10001 11000
10010 14000
10011 18500
10100 25000
10101 32000
10110 42000
10111 55000
11000 72500
11001 100000
11010 125000
11011 160000
11100 225000
11101 300000
11110 375000
11111 500000 (0.5s)
7:5 PK_DECAY_RATE This sets how precise the ALC will track amplitude reductions of the audio input. The
shorter the length of time for PK_DECAY_RATE, the more responsive the ALC will be
when applying gain increases whenever the audio falls below target level.
PK_DECAY_RATE Time
000 1.3ms
001 2.6ms
010 5.3ms
011 10.6ms
100 21.3ms
101 42.6ms
110 85.5ms
111 2.73secs
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 81
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
Table 72. DAC_ALC_6 (0xA5h)
Bits Field Description
4:0 HOLD_TIME This sets how long the ALC circuit waits before increasing the gain.
HOLDTIME Time (ms)
00000 1
00001 1.25
00010 1.6
00011 2
00100 2.5
00101 3.2
00110 4
00111 5
01000 6.25
01001 8
01010 10
01011 12.5
01100 16
01101 20
01110 25
01111 32
10000 40
10001 50
10010 64
10011 80
10100 100
10101 125
10110 160
10111 200
11000 250
11001 320
11010 400
11011 500
11100 640
11101 800
11110 1000
11111 1250
Table 73. DAC_ALC_7 (0xA6h)
Bits Field Description
5:0 MAX_LEVEL This sets the maximum allowed gain to the digital level control when the ALC is used.
Table 74. DAC_ALC_8 (0xA7h)
Bits Field Description
5:0 MIN_LEVEL This sets the minimum allowed gain to the digital level control when the ALC is used.
82 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
Table 75. DAC_L_LEVEL (0xA8h) (Default data value is 0x33h)
Bits Field Description
5:0 DAC_L_LEVEL This sets the pre DAC digital gain.
DAC_L_LEVEL Level DAC_L_LEVEL Level
000000 -76.5dB 100000 -28.5dB
000001 -75dB 100001 -27dB
000010 -73.5dB 100010 -25.5dB
000011 -72dB 100011 -24dB
000100 -70.5dB 100100 -22.5dB
000101 -69dB 100101 -21dB
000110 -67.5dB 100110 -20.5dB
000111 -66dB 100111 -18dB
001000 -64.5dB 101000 -16.5dB
001001 -63dB 101001 -15dB
001010 -61.5dB 101010 -13.5dB
001011 -60dB 101011 -12dB
001100 -58.5dB 101100 -10.5dB
001101 -57dB 101101 -9dB
001110 -55.5dB 101110 -7.5dB
001111 -54dB 101111 -6dB
010000 -52.5dB 110000 -4.5dB
010001 -51dB 110001 -3dB
010010 -49.5dB 110010 -1.5dB
010011 -48dB 110011 0dB
010100 -46.5dB 110100 1.5dB
010101 -45dB 110101 3dB
010110 -43.5dB 110110 4.5dB
010111 -42dB 110111 6dB
011000 -40.5dB 111000 7.5dB
011001 -39dB 111001 9dB
011010 -37.5dB 111010 10.5dB
011011 -36dB 111011 12dB
011100 -34.5dB 111100 13.5dB
011101 -33dB 111101 15dB
011110 -31.5dB 111110 16.5dB
011111 -30dB 111111 18dB
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 83
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
Table 76. DAC_R_LEVEL (0xA9h) (Default data value is 0x33h)
Bits Field Description
5:0 DAC_R_LEVEL This sets the pre DAC digital gain.
DAC_R_LEVEL Level DAC_R_LEVEL Level
000000 -76.5dB 100000 -28.5dB
000001 -75dB 100001 -27dB
000010 -73.5dB 100010 -25.5dB
000011 -72dB 100011 -24dB
000100 -70.5dB 100100 -22.5dB
000101 -69dB 100101 -21dB
000110 -67.5dB 100110 -20.5dB
000111 -66dB 100111 -18dB
001000 -64.5dB 101000 -16.5dB
001001 -63dB 101001 -15dB
001010 -61.5dB 101010 -13.5dB
001011 -60dB 101011 -12dB
001100 -58.5dB 101100 -10.5dB
001101 -57dB 101101 -9dB
001110 -55.5dB 101110 -7.5dB
001111 -54dB 101111 -6dB
010000 -52.5dB 110000 -4.5dB
010001 -51dB 110001 -3dB
010010 -49.5dB 110010 -1.5dB
010011 -48dB 110011 0dB
010100 -46.5dB 110100 1.5dB
010101 -45dB 110101 3dB
010110 -43.5dB 110110 4.5dB
010111 -42dB 110111 6dB
011000 -40.5dB 111000 7.5dB
011001 -39dB 111001 9dB
011010 -37.5dB 111010 10.5dB
011011 -36dB 111011 12dB
011100 -34.5dB 111100 13.5dB
011101 -33dB 111101 15dB
011110 -31.5dB 111110 16.5dB
011111 -30dB 111111 18dB
84 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
Table 77. DAC_3D (0xAAh)
Bits Field Description
0 EFFECT_MODE This sets the digital 3D stereo enhancement mode.
EFFECT_MODE Type
0 Loudspeaker
1 Headphone
2:1 EFFECT_LEVEL This sets the applied level of 3D effect.
EFFECT_LEVEL Level
00 25%
01 37.50%
10 50%
11 75%
6:3 FILTER_TYPE This sets the 3D effect filter response.
FILTER_TYPE Response
0000 200Hz HPF
0001 300Hz HPF
0010 600Hz HPF
0011 900Hz HPF
0100 200Hz-500Hz BPF
0101 200Hz-1kHz BPF
0110 200Hz-1.6kHz BPF
0111 200Hz-2.5kHz BPF
1000 300Hz-1kHz BPF
1001 300Hz-1.6kHz BPF
1010 300Hz-2.5kHz BPF
1011 600Hz-1kHz BPF
1100 600Hz-1.6kHz BPF
1101 600Hz-2.5kHz BPF
1110 900Hz-1.6kHz BPF
1111 900Hz-2.5kHz BPF
7 ATTENUATE If set, the inputs are reduced by 6dB before 3D effects are applied in order to avoid
clipping.
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 85
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
Table 78. EQ_BAND_1 (0xABh)
Bits Field Description
1:0 FREQ This sets the Sub-bass shelving filter's cut-off frequency. The cut-off frequencies shown
are based on a 48kHz sample rate. Using lower sample rates will scale down the cut-off
frequencies proportionately.
FREQ Frequency (Hz)
00 60
01 80
10 100
11 120
6:2 LEVEL This sets the gain at fC.
LEVEL Effect
00000 Off (0dB)
00001 -15dB
00010 -14dB
00011 -13dB
00100 -12dB
00101 -11dB
00110 -10dB
00111 -9dB
01000 -8dB
01001 -7dB
01010 -6dB
01011 -5dB
01100 -4dB
01101 -3dB
01110 -2dB
01111 -1dB
10000 0dB
10001 1dB
10010 2dB
10011 3dB
10100 4dB
10101 5dB
10110 6dB
10111 7dB
11000 8dB
11001 9dB
11010 10dB
11011 11dB
11100 12dB
11101 13dB
11110 14dB
11111 15dB
86 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
Table 79. EQ_BAND_2 (0xACh)
Bits Field Description
1:0 FREQ This sets the Bass peak filter's center frequency. The cut-off frequencies shown are based
on a 48kHz sample rate. Using lower sample rates will scale down the cut-off frequencies
proportionately.
FREQ Frequency (Hz)
00 150
01 200
10 250
11 300
6:2 LEVEL This sets the gain at fC.
LEVEL Effect
00000 Off (0dB)
00001 -15dB
00010 -14dB
00011 -13dB
00100 -12dB
00101 -11dB
00110 -10dB
00111 -9dB
01000 -8dB
01001 -7dB
01010 -6dB
01011 -5dB
01100 -4dB
01101 -3dB
01110 -2dB
01111 -1dB
10000 0dB
10001 1dB
10010 2dB
10011 3dB
10100 4dB
10101 5dB
10110 6dB
10111 7dB
11000 8dB
11001 9dB
11010 10dB
11011 11dB
11100 12dB
11101 13dB
11110 14dB
11111 15dB
7 Q This programs the width of the peak filter.
Q Bandwidth
0 2/3 Octave
1 4/3 Octave
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 87
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
Table 80. EQ_BAND_3 (0xADh)
Bits Field Description
1:0 FREQ This sets the Mid peak filter's center frequency. The cut-off frequencies shown are based
on a 48kHz sample rate. Using lower sample rates will scale down the cut-off frequencies
proportionately.
FREQ Frequency (Hz)
00 600
01 800
10 1k
11 1.2k
6:2 LEVEL This sets the gain at fC.
LEVEL Effect
00000 Off (0dB)
00001 -15dB
00010 -14dB
00011 -13dB
00100 -12dB
00101 -11dB
00110 -10dB
00111 -9dB
01000 -8dB
01001 -7dB
01010 -6dB
01011 -5dB
01100 -4dB
01101 -3dB
01110 -2dB
01111 -1dB
10000 0dB
10001 1dB
10010 2dB
10011 3dB
10100 4dB
10101 5dB
10110 6dB
10111 7dB
11000 8dB
11001 9dB
11010 10dB
11011 11dB
11100 12dB
11101 13dB
11110 14dB
11111 15dB
7 Q This programs the width of the peak filter.
Q Bandwidth
0 2/3 Octave
1 4/3 Octave
88 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
Table 81. EQ_BAND_4 (0xAEh)
Bits Field Description
1:0 FREQ This sets the Treble peak filter's center frequency. The cut-off frequencies shown are based
on a 48kHz sample rate. Using lower sample rates will scale down the cut-off frequencies
proportionately.
FREQ Frequency (Hz)
00 2k
01 2.7k
10 3.4k
11 4.1k
6:2 LEVEL This sets the gain at fC.
LEVEL Effect
00000 Off (0dB)
00001 -15dB
00010 -14dB
00011 -13dB
00100 -12dB
00101 -11dB
00110 -10dB
00111 -9dB
01000 -8dB
01001 -7dB
01010 -6dB
01011 -5dB
01100 -4dB
01101 -3dB
01110 -2dB
01111 -1dB
10000 0dB
10001 1dB
10010 2dB
10011 3dB
10100 4dB
10101 5dB
10110 6dB
10111 7dB
11000 8dB
11001 9dB
11010 10dB
11011 11dB
11100 12dB
11101 13dB
11110 14dB
11111 15dB
7 Q This programs the width of the peak filter.
Q Bandwidth
0 2/3 Octave
1 4/3 Octave
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 89
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
Table 82. EQ_BAND_5 (0xAFh)
Bits Field Description
1:0 FREQ This sets the presence shelving filter's cut-off frequency. The cut-off frequencies shown are
based on a 48kHz sample rate. Using lower sample rates will scale down the cut-off
frequencies proportionately.
FREQ Frequency (Hz)
00 7k
01 9k
10 11k
11 20k
6:2 LEVEL This sets the gain at fC.
LEVEL Effect
00000 Off (0dB)
00001 -15dB
00010 -14dB
00011 -13dB
00100 -12dB
00101 -11dB
00110 -10dB
00111 -9dB
01000 -8dB
01001 -7dB
01010 -6dB
01011 -5dB
01100 -4dB
01101 -3dB
01110 -2dB
01111 -1dB
10000 0dB
10001 1dB
10010 2dB
10011 3dB
10100 4dB
10101 5dB
10110 6dB
10111 7dB
11000 8dB
11001 9dB
11010 10dB
11011 11dB
11100 12dB
11101 13dB
11110 14dB
11111 15dB
90 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
Table 83. SOFTCLIP1 (0xB0h)
Bits Field Description
3:0 TRESHOLD This sets the threshold level of the audio compressor. Audio signals above the threshold
will be compressed.
THRESHOLD Threshold Level (dB)
0000 -36dB
0001 -30dB
0010 -24dB
0011 -20dB
0100 -18dB
0101 -17dB
0110 -16dB
0111 -15dB
1000 -14dB
1001 -12dB
1010 -10dB
1011 -8dB
1100 -6dB
1101 -4dB
1110 -2.5dB
1111 -1dB
4 SOFT_KNEE If set, the audio compressor will automatically apply higher compression ratios to audio
signals higher than the threshold level. As the audio signal approaches levels higher than
the threshold, SOFT_KNEE will increase the compression RATIO. The highest
compression that the SOFT_KNEE algorithm will apply is the compression that is set by
RATIO.
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 91
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
Table 84. SOFTCLIP2 (0xB1h)
Bits Field Description
4:0 RATIO This sets the ratio at which the audio is compressed to when it passes beyond the
threshold. In soft clip mode this is the final level of compression.
RATIO Ratio
00000 1:1 (Bypass)
00001 1:1.2
00010 1:1.4
00011 1:1.7
00100 1:2.0
00101 1:2.4
00110 1:2.8
00111 1:3.4
01000 1:4.0
01001 1:4.7
01010 1:5.7
01011 1:6.7
01100 1:8.0
01101 1:9.5
01110 1:11.3
01111 1:13.5
10000 1:16.0
10001 1:19.0
10010 1:22.8
10011 1:27.0
10100 1:32.0
10101 1:37.9
10110 1:45.5
10111 1:53.9
11000 1:64
11001 1:75.9
11010 1:91.0
11011 1:108
11100 1:128
11101 1:152
11110 1:182
11111 1:215
92 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
Table 85. SOFTCLIP3 (0xB2h)
Table 40:Bits Field Description
4:0 LEVEL This sets the post compressor gain level.
LEVEL Level (dB)
00000 -22.5dB
00001 -21dB
00010 -19.5dB
00011 -18dB
00100 -16.5dB
00101 -15dB
00110 -13.5dB
00111 -12dB
01000 -10.5dB
01001 -9dB
01010 -7.5dB
01011 -6dB
01100 -4.5dB
01101 -3dB
01110 -1.5dB
01111 0dB
10000 1.5dB
10001 3dB
10010 4.5dB
10011 6dB
10100 7.5dB
10101 9dB
10110 10.5dB
10111 12dB
11000 13.5dB
11001 15dB
11010 16.5dB
11011 18dB
11100 19.5dB
11101 21dB
11110 22.5dB
11111 24dB
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 93
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
GPIO Registers
Table 86. GPIO (0xE0h)
Bits Field Description
3:0 GPIO_MODE This sets the mode of the GPIO pin.
GPIO_MODE GPIO Function
0000 OFF (input disabled)
0001 GPIO_RX
0010 GPIO_TX
0011 HP_ENB (out)
0100 HP_ENB (out)
0101 LS_ENB (out)
0110 LS_ENB (out)
0111 SHORT_CCT or THERMAL (out)
1000 SHORT_CCT or THERMAL or CLIP (out)
1001 CLIP (out)
1010 ADC_NG_ACTIVE (out)
1011 ADC_NG_ACTIVE (out)
1100 MIC_MUTE (in)
1101 MIC_MUTE (in)
1110 CHIP_ENB (in)
1111 CHIP_ENB (in)
4 GPIO_TX If set, the GPIO pin will transmit a logic high whenever GPIO_MODE is set to '0010'.
5 GPIO_RX This bit reports what logic level is present on the GPIO pin.
6 SHORT_CCT If set, the GPIO records that a short circuit event has occurred on the class D outputs.
7 THERMAL_EVENT If set records that a temperature event has occurred on the die.
Clear on Write (1).
Table 87. DEBUG1 (0xF0h)
Bits Field Description
1:0 DAC_DITHER This sets the amount of DAC dither. Lower levels of the dither may improve the noise floor of
_LVL the DAC.
DAC_DITHER Level
_LVL
00 Very Small
01 Small
10 Medium (Default)
11 Large
3:2 DAC_DITHER This sets the DAC dither mode.
_MODE DAC_DITHER Mode
_MODE
00 AUTOMATIC
01 ON
10 OFF
4 Not Used
5 SOFT_RESET If set, the LM49350 enters RESET mode. To bring the LM49350 back out of RESET mode,
then set this bit back to zero.
7:6 RSVD Reserved
94 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
Table 88. Spread Spectrum (0xF1h)
Bits Field Description
1:0 RSVD Reserved
2 SS_DISABLE If this bit is set, Spread Spectrum mode will be disabled from the Class D amplifier.
Table 89. ADC Compensation Filter C0 LSBs (0xF8h)
Bits Field Description
7:0 ADC_CO_LSB Bits 7:0 of C0[15:0]
Table 90. ADC Compensation Filter C0 MSBs (0xF9h)
Bits Field Description
7:0 ADC_CO_MSB Bits 15:0 of C0[15:0]
Table 91. ADC Compensation Filter C1 LSBs (0xFAh)
Bits Field Description
7:0 ADC_C1_LSB Bits 7:0 of C1[15:0]
Table 92. ADC Compensation Filter C1 MSBs (0xFBh)
Bits Field Description
7:0 ADC_C1_MSB Bits 15:0 of C1[15:0]
Table 93. ADC Compensation Filter C2 LSBs (0xFCh)
Bits Field Description
7:0 ADC_C2_LSB Bits 7:0 of C2[15:0]
Table 94. ADC Compensation Filter C2 MSBs (0xFDh)
Bits Field Description
7:0 ADC_C2_MSB Bits 15:0 of C2[15:0]
Table 95. AUX_LINEOUT (0xFE)
Bits Field Description
4:0 RSVD Reserved
5 AUX_LINE_OUT If set, the earpiece amplifier operates in a low current drive mode for line out applications in
order to reduce power consumption.
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 95
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
Schematic Diagram
Figure 66. Demo Board Schematic
96 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
Demonstration Board Layout
Figure 67. Top Silkscreen Layer
Figure 68. Top Layer
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 97
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
Figure 69. Inner Layer 1
Figure 70. Inner Layer 2
98 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
Figure 71. Bottom Silkscreen Layer
Figure 72. Bottom Layer
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 99
Product Folder Links: LM49350 LM49350RLEVAL
LM49350
I2C
Baseband
Controller
CP+
HP_VSS
MCLK
AUX_OUT+
GPIO LS+
AUX_RAUX_L
Synthesized
FM Radio / TV Tuner
0.5 - 50
MHz
I2S / PCM
(PORT1)
Bluetooth
Transceiver I2S / PCM
(PORT2)
HPL
HPR
CP-
VREF
AGND
A_VDD
D_VDD LS_VDD
I/O_VDD
LSGNDDGND
LEFT_MIC+
MIC_BIAS
RIGHT_MIC+
AUX_OUT-
LS-
RIGHT_MIC-
LEFT_MIC-
32Ö
8Ö
VDD
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
APPLICATION NOTE FOR LM49350
POWER CONNECTIONS
Recommended target application circuit must provide same voltage level for A_VDD and LSVDD to get
performance on Electrical Specifications on LM49350 datasheet.
Figure 73. Recommended Power Connection
100 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
A_VDD LS_VDD
LEFT_MIC+
MIC_BIAS
RIGHT_MIC+
RIGHT_MIC-
LEFT_MIC-
VDD
RB CB
A_VDD LS_VDD
LEFT_MIC+
MIC_BIAS
RIGHT_MIC+
RIGHT_MIC-
LEFT_MIC-
VDD
LS_VDD
LEFT_MIC+
MIC_BIAS
RIGHT_MIC+
RIGHT_MIC-
LEFT_MIC-
VDD
RB
CB
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
MICROPHONE BIAS CONFIGURATIONS
Schematic Considerations for MEMs Microphones
The internal microphone bias of the LM49350 is provided through a two stage amplifier. Adding a capacitor larger
than 100pF directly to this pin can cause instability. In many cases, when using MEMs microphones, a larger
bypass capacitor is required on the MIC_BIAS pin. To avoid oscillations and to keep the device stable, it is
recommended to add a resistor (RB) greater than 10in series with the capacitor (CB). Another option is to bias
the MEMs microphone from the 1.8V supply used for D_VDD/IO_VDD.
Figure 74. Schematic for MEMs Microphones
Schematic Considerations for ECM Microphones
When using ECM microphones, refer to the configurations shown in Figure 73 or Figure 74 to bias the
microphones. In many cases, an RC filter is required to provide a more stable microphone bias (see Figure 74).
In this case, a 10resistor (RB) in series with CBis recommended.
Figure 75. Schematic Option for ECM Microphones Figure 76. Schematic Option for ECM Microphones
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 101
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
www.ti.com
PCB LAYOUT CONSIDERATIONS
Microphone Inputs
When routing the differential microphone inputs the electrical length of the two traces should be well matched.
The differential input pair can be routed in parallel on the same plane or the traces can overlap on two adjacent
planes. It is important to surround these traces with a ground plane or trace to isolate the microphone inputs from
the noise coupling from the class D amplifier.
Class D Loudspeaker
To minimize trace resistance and therefore maintain the highest possible output power, the power (LS_VDD) and
class D output (LS-, LS+) traces should be as wide as possible. It is also essential to keep these same traces as
short and well shielded as possible to decrease the amount of EMI radiation.
Capacitors
All supply bypass capacitors (for A_VDD, D_VDD. I/O VDD, and LS_VDD), and charge pump capacitors should be
as close to the device as possible. Careful consideration should be taken with the ground connection of the
analog supply (A_VDD) bypass cap, for proper performance it should be referenced to a low noise ground plane.
The charge pump capacitors and traces connecting the capacitor to the device should be kept away from the
input and output traces to avoid noise coupling issues.
102 Submit Documentation Feedback Copyright © 2008–2012, Texas Instruments Incorporated
Product Folder Links: LM49350 LM49350RLEVAL
LM49350, LM49350RLEVAL
www.ti.com
SNAS359D SEPTEMBER 2008REVISED JUNE 2012
REVISION HISTORY
Rev Date Description
1.0 09/03/08 Initial released.
1.01 09/04/08 Text edits.
1.02 09/22/08 Text edits.
1.03 10/24/08 Text edits.
1.04 12/15/08 Text edits and replaced the top silkscreen layer.
1.05 05/27/09 Added the EMI/RFI section and the corresponding graphic.
1.06 05/29/09 Text edits.
1.07 04/09/10 Text edits.
1.08 04/15/10 Text edits.
1.09 09/17/10 Added the Application section required for Leadcore (chipset partner).
1.10 03/23/11 Input minor text edits.
Added sections 29.2 and 29.3 including their corresponding graphics, then generated a
1.11 04/05/11 CONFIDENTIAL version for LEADCORE.
1.12 04/12/11 Edited Figure 32 and input text edits.
1.13 04/13/11 Input text edits.
1.14 08/24/11 Added table: RX_MODE (0x55h/65h).
Added the one more Timing Char table (DVDD = I/OVDD = 1.8V with the 2 diagrams (Timing
1.15 03/16/12 I2S Master and Timing for I2S Slave).
1.16 06/29/12 Edited Figures 2, 3, 4, and 5 (Typical Application circuit diagrams).
Copyright © 2008–2012, Texas Instruments Incorporated Submit Documentation Feedback 103
Product Folder Links: LM49350 LM49350RLEVAL
PACKAGE OPTION ADDENDUM
www.ti.com 11-Apr-2013
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status
(1)
Package Type Package
Drawing Pins Package
Qty Eco Plan
(2)
Lead/Ball Finish MSL Peak Temp
(3)
Op Temp (°C) Top-Side Markings
(4)
Samples
LM49350RL/NOPB ACTIVE DSBGA YPG 36 250 Green (RoHS
& no Sb/Br) SNAG Level-1-260C-UNLIM -40 to 85 GJ8
LM49350RLX/NOPB ACTIVE DSBGA YPG 36 1000 Green (RoHS
& no Sb/Br) SNAG Level-1-260C-UNLIM -40 to 85 GJ8
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4) Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a
continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm) B0
(mm) K0
(mm) P1
(mm) W
(mm) Pin1
Quadrant
LM49350RL/NOPB DSBGA YPG 36 250 178.0 12.4 3.63 3.63 0.76 8.0 12.0 Q1
LM49350RLX/NOPB DSBGA YPG 36 1000 178.0 12.4 3.63 3.63 0.76 8.0 12.0 Q1
PACKAGE MATERIALS INFORMATION
www.ti.com 11-Oct-2013
Pack Materials-Page 1
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
LM49350RL/NOPB DSBGA YPG 36 250 210.0 185.0 35.0
LM49350RLX/NOPB DSBGA YPG 36 1000 210.0 185.0 35.0
PACKAGE MATERIALS INFORMATION
www.ti.com 11-Oct-2013
Pack Materials-Page 2
MECHANICAL DATA
YPG0036xxx
www.ti.com
RLA36XXX (Rev A)
0.650±0.075
D
E
4214895/A 12/12
A
. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
NOTES:
D: Max =
E: Max =
3.49 mm, Min =
3.49 mm, Min =
3.43 mm
3.43 mm
IMPORTANT NOTICE
Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its
semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers
should obtain the latest relevant information before placing orders and should verify that such information is current and complete.
TI’s published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated
circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and
services.
Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is
accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced
documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements
different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the
associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyers and others who are developing systems that incorporate TI products (collectively, “Designers”) understand and agree that Designers
remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have
full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products
used in or for Designers’ applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with
respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous
consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and
take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will
thoroughly test such applications and the functionality of such TI products as used in such applications.
TI’s provision of technical, application or other design advice, quality characterization, reliability data or other services or information,
including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to
assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any
way, Designer (individually or, if Designer is acting on behalf of a company, Designer’s company) agrees to use any particular TI Resource
solely for this purpose and subject to the terms of this Notice.
TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI
products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections,
enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically
described in the published documentation for a particular TI Resource.
Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that
include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE
TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY
RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or
endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR
REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO
ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL
PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM,
INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF
PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL,
DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN
CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949
and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.
Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such
products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards
and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must
ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in
life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use.
Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life
support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all
medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.
TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product).
Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications
and that proper product selection is at Designers’ own risk. Designers are solely responsible for compliance with all legal and regulatory
requirements in connection with such selection.
Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer’s non-
compliance with the terms and provisions of this Notice.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2017, Texas Instruments Incorporated
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Texas Instruments:
LM49350RL/NOPB LM49350RLEVAL LM49350RLX/NOPB