8535AG-31 www.icst.com/products/hiperclocks.html REV. B APRIL 29, 2005
1
Integrated
Circuit
Systems, Inc.
ICS8535-31
LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/
LVCMOS-TO-3.3V LVPECL FANOUT BUFFER
GENERAL DESCRIPTION
The ICS8535-31 is a low skew, high performance
1-to-4 3.3V Crystal Oscillator/LVCMOS-to-3.3V
LVPECL fanout buffer and a member of the
HiPerClockS™ family of High Performance Clock
Solutions from ICS. The ICS8535-31 has select-
able single ended clock or crystal inputs. The single ended
clock input accepts LVCMOS or LVTTL input levels and
translate them to 3.3V LVPECL levels. The output enable is
internally synchronized to eliminate runt pulses on the out-
puts during asynchronous assertion/deassertion of the clock
enable pin.
Guaranteed output and part-to-part skew characteristics
make the ICS8535-31 ideal for those applications demand-
ing well defined performance and repeatability.
FEATURES
4 differential 3.3V LVPECL outputs
Selectable LVCMOS/LVTTL CLK or crystal inputs
CLK can accept the following input levels: LVCMOS, LVTTL
Maximum output frequency: 266MHz
Output skew: 30ps (maximum)
Part-to-part skew: 200ps (maximum)
Propagation delay: 1.65ns (maximum)
Additive phase jitter, RMS: 0.057ps (typical)
3.3V operating supply
0°C to 70°C ambient operating temperature
Lead-Free package fully RoHS compliant
Industrial Temperature information available upon request
Replaces the ICS8535-11
BLOCK DIAGRAM PIN ASSIGNMENT
ICS8535-31
20-Lead TSSOP
6.5mm x 4.4mm x 0.92mm package body
G Package
Top View
VEE
CLK_EN
CLK_SEL
CLK
nc
XTAL_IN
XTAL_OUT
nc
nc
VCC
1
2
3
4
5
6
7
8
9
10
20
19
18
17
16
15
14
13
12
11
Q0
nQ0
VCC
Q1
nQ1
Q2
nQ2
VCC
Q3
nQ3
HiPerClockS™
ICS
CLK
Q0
nQ0
Q1
nQ1
Q2
nQ2
Q3
nQ3
CLK_EN
CLK_SEL
D
LE
Q
0
1
OSC
XTAL_IN
XTAL_OUT
Pullup
Pulldown
Pulldown
8535AG-31 www.icst.com/products/hiperclocks.html REV. B APRIL 29, 2005
2
Integrated
Circuit
Systems, Inc.
ICS8535-31
LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/
LVCMOS-TO-3.3V LVPECL FANOUT BUFFER
TABLE 2. PIN CHARACTERISTICS
TABLE 1. PIN DESCRIPTIONS
lobmySretemaraPsnoitidnoCtseTmuminiMlacipyTmumixaMstinU
C
NI
ecnaticapaCtupnI 4Fp
R
PULLUP
rotsiseRpulluPtupnI 15kΩ
R
NWODLLUP
rotsiseRnwodlluPtupnI 15kΩ
rebmuNemaNepyTnoitpircseD
1V
EE
rewoP.nipylppusevitageN
2NE_KLCtupnIpulluP
kcolcswollofstuptuokcolc,HGIHnehW.elbanekcolcgnizinorhcnyS
.hgihd
ecroferastuptuoQn,woldecroferastuptuoQ,WOLnehW.tupni
.slevelecafretniLTTVL/SOMCVL
3LES_KLCtupnInwodlluP .st
upniLATXstceles,HGIHnehW.tupnitceleskcolC
.slevelecafretniLTTVL/SOMCVL.tupniKLCstceles,WOLnehW
4KLCtupnInw
odlluP.slevelecafretniLTTVL/SOMCVL.tupnikcolC
9,8,5cndesunU.tcennocoN
,6
7
,NI_LATX
TUO_LATX tupnI .tupniehtsiNI
_LATX.ecafretnirotallicsolatsyrC
.tuptuoehtsiTUO_LATX
81,31,01V
CC
rewoP.snipylppusevitisoP
21,113Q,3QntuptuO.slevelecafretniLCEPVL.stuptuokcolclaitnereffiD
51,412Q,2QntuptuO.sl
evelecafretniLCEPVL.stuptuokcolclaitnereffiD
71,611Q,1QntuptuO.slevelecafretniLCEPVL.stuptuokcolclaitnere
ffiD
02,910Q,0QntuptuO.slevelecafretniLCEPVL.stuptuokcolclaitnereffiD
:ETON
pulluP
dna
nwodlluP
.seulavlacipytrof,scitsiretcarahCniP,2elbaTeeS.srotsisertupnilanretniotrefer
8535AG-31 www.icst.com/products/hiperclocks.html REV. B APRIL 29, 2005
3
Integrated
Circuit
Systems, Inc.
ICS8535-31
LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/
LVCMOS-TO-3.3V LVPECL FANOUT BUFFER
TABLE 3A. CONTROL INPUT FUNCTION TABLE
TABLE 3B. CLOCK INPUT FUNCTION TABLE
stupnIstuptuO
NE_KLCLES_KLCecruoSdetceleS3Q:0Q3Qn:0Qn
00 KLCWOL;delbasiDHGIH;delbasiD
01 TUO_LATX,NI_LATXWOL;delbasiDHG
IH;delbasiD
10 KLCdelbanEdelbanE
11 TUO_LATX,NI_LATXdelbanEdelbanE
latsyrcrokcolctupnignillafdnagnisiragniwollofde
lbanerodelbasiderastuptuokcolceht,sehctiwsNE_KLCretfA
ninwohssaegderotallicso
erugiF
.1
.B3elbaTnidebircsedsatupniKLCehtfonoitcnufaerastuptuoehtfoetatseht,edomevitcaehtnI
stupnIstuptuO
KLC3Q:0Q3Qn:0Qn
0WOLHGIH
1HGIHWOL
Enabled
Disabled
CLK
CLK_EN
nQ0:nQ3
Q0:Q3
FIGURE 1. CLK_EN TIMING DIAGRAM
8535AG-31 www.icst.com/products/hiperclocks.html REV. B APRIL 29, 2005
4
Integrated
Circuit
Systems, Inc.
ICS8535-31
LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/
LVCMOS-TO-3.3V LVPECL FANOUT BUFFER
TABLE 4B. LVCMOS / LVTTL DC CHARACTERISTICS, VCC = 3.3V±5%, TA = 0°C TO 70°C
lobmySretemaraPsnoitidnoCtseTmuminiMlacipyTmumixaMstinU
V
HI
egatloVhgiHtupnI 2V
CC
V3.0+V
V
LI
egatloVwoLtupnI 3.0-8.0V
I
HI
tnerruChgiHtupnI
,KLC
LES_KLC V
NI
V=
CC
V564.3=051Aµ
NE_KLCV
NI
V=
CC
V564.3=5Aµ
I
LI
tnerruCwoLtupnI
,KLC
LES_KLC V
NI
V,V0=
CC
V564.3=5-Aµ
NE_KLCV
NI
V,V0=
CC
V564.3=051-Aµ
TABLE 4C. LVPECL DC CHARACTERISTICS, VCC = 3.3V±5%, TA = 0°C TO 70°C
lobmySretemaraPsnoitidnoCtseTmuminiMlacipyTmumixaMstinU
V
HO
1ETON;egatloVhgiHtuptuOV
CC
4.1-V
CC
9.0-V
V
LO
1ETON;egatloVwoLtuptuOV
CC
-0.2V
CC
-7.1V
V
GNIWS
gniwSegatloVtuptuOkaeP-ot-kaeP6.00.1V
05htiwdetanimretstuptuO:1ETON ΩVot
CC
.V2-
TABLE 4A. POWER SUPPLY DC CHARACTERISTICS, VCC = 3.3V±5%, TA = 0°C TO 70°C
lobmySretemaraPsnoitidnoCtseTmuminiMlacipyTmumixaMstinU
V
CC
egatloVylppuSrewoP 531.33.3564.3V
I
EE
tnerruCylppuSrewoP 06Am
ABSOLUTE MAXIMUM RATINGS
Supply Voltage, V
CC 4.6V
Inputs, VI-0.5V to VCC + 0.5V
Outputs, IO
Continuous Current 50mA
Surge Current 100mA
Package Thermal Impedance, θ
JA 73.2°C/W (0 lfpm)
Storage Temperature, T
STG -65°C to 150°C
NOTE: Stresses beyond those listed under Absolute
Maximum Ratings may cause permanent damage to the
device. These ratings are stress specifications only. Functional
operation of product at these conditions or any conditions be-
yond those listed in the
DC Characteristics
or
AC Character-
istics
is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect product reliability.
8535AG-31 www.icst.com/products/hiperclocks.html REV. B APRIL 29, 2005
5
Integrated
Circuit
Systems, Inc.
ICS8535-31
LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/
LVCMOS-TO-3.3V LVPECL FANOUT BUFFER
TABLE 6. AC CHARACTERISTICS, VCC = 3.3V±5%, TA = 0°C TO 70°C
lobmySretemaraPsnoitidnoCtseTmuminiMlacipyTmumixaMstinU
f
XAM
ycneuqerFtuptuO 662zHM
t
DP
1ETON;yaleDnoitagaporP 54.156.1sn
t
tij ;SMR,rettiJesahPevitiddAreffuB
noitceSrettiJesahPevitiddAotrefer
,zHM25.551
:egnaRnoitargetnI(
)zHM02-
zHk21
750.0sp
t
)o(ks4,2ETON;wekStuptuO 03sp
t
)pp(ks4,3ETON;wekStraP-ot-traP 002sp
t
R
t/
F
emiTllaF/esiRtuptuO%08ot%02003006sp
cdoelcyCytuDtuptuO 6445%
ƒtaderusaemsretemarapllA .esiwrehtodetonsselnuzHM6
62
VehtmorfderusaeM:1ETON
CC
.tniopgnissorctuptuolaitnereffidehtottupniehtfo2/
.snoitidnocdaollauqehtiwdnaegatlovylppusemasehttastu
ptuoneewtebwekssadenifeD:2ETON
.stniopssorclaitnereffidtuptuoehttaderusaeM
daollauqehtiwdnasegatlovylpp
usemasehttagnitareposecivedtnereffidnostuptuoneewtebwekssadenifeD:3ETON
.stniopssorclaitnereffidehttad
erusaemerastuptuoeht,ecivedhcaenostupnifoepytemasehtgnisU.snoitidnoc
.56dradnatSCEDEJhtiwecnadroccanid
enifedsiretemarapsihT:4ETON
TABLE 5. CRYSTAL CHARACTERISTICS
retemaraPsnoitidnoCtseTmuminiMlacipyTmumixaMstinU
noitallicsOfoedoM latnemadnuF
ycneuqerF 2104zHM
)RSE(ecnatsiseR
seireStnelaviuqE 05 Ω
ecnaticapaCtnuhS 7Fp
leveLevirD 1Wm
8535AG-31 www.icst.com/products/hiperclocks.html REV. B APRIL 29, 2005
6
Integrated
Circuit
Systems, Inc.
ICS8535-31
LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/
LVCMOS-TO-3.3V LVPECL FANOUT BUFFER
ADDITIVE PHASE JITTER
Additive Phase Jitter, RMS
@ 155.52MHz (12kHz to 20MHz)
= 0.057ps typical
0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
-150
-160
-170
-180
-190
1k 10k 100k 1M 10M 100M
The spectral purity in a band at a specific offset from the funda-
mental compared to the power of the fundamental is called the
dBc Phase Noise.
This value is normally expressed using a
Phase noise plot and is most often the specified plot in many
applications. Phase noise is defined as the ratio of the noise
power present in a 1Hz band at a specified offset from the fun-
damental frequency to the power value of the fundamental. This
ratio is expressed in decibels (dBm) or a ratio of the power in
As with most timing specifications, phase noise measurements
have issues. The primary issue relates to the limitations of the
equipment. Often the noise floor of the equipment is higher than
the noise floor of the device. This is illustrated above. The de-
the 1Hz band to the power in the fundamental. When the re-
quired offset is specified, the phase noise is called a
dBc
value,
which simply means dBm at a specified offset from the funda-
mental. By investigating jitter in the frequency domain, we get a
better understanding of its effects on the desired application over
the entire time record of the signal. It is mathematically possible
to calculate an expected bit error rate given a phase noise plot.
vice meets the noise floor of what is shown, but can actually be
lower. The phase noise is dependant on the input source and
measurement equipment.
OFFSET FROM CARRIER FREQUENCY (HZ)
SSB PHASE NOISE dBc/HZ
8535AG-31 www.icst.com/products/hiperclocks.html REV. B APRIL 29, 2005
7
Integrated
Circuit
Systems, Inc.
ICS8535-31
LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/
LVCMOS-TO-3.3V LVPECL FANOUT BUFFER
PARAMETER MEASUREMENT INFORMATION
PROPAGATION DELAY
OUTPUT SKEW3.3V OUTPUT LOAD AC TEST CIRCUIT
SCOPE
Qx
nQx
LVPECL
2V
OUTPUT RISE/FALL TIME
OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD
-1.3V ± 0.165V
t
sk(o)
nQx
Qx
nQy
Qy
Clock
Outputs 20%
80% 80%
20%
t
R
t
F
V
SWING
Pulse Width
tPERIOD
t
PW
t
PERIOD
odc =
Q0:Q3
nQ0:nQ3
t
PD
V
CC
2
CLK
Q0:Q3
nQ0:nQ3
VEE
VCC
8535AG-31 www.icst.com/products/hiperclocks.html REV. B APRIL 29, 2005
8
Integrated
Circuit
Systems, Inc.
ICS8535-31
LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/
LVCMOS-TO-3.3V LVPECL FANOUT BUFFER
APPLICATION INFORMATION
V
CC
- 2V
50Ω50Ω
RTT
Z
o
= 50Ω
Z
o
= 50Ω
FOUT FIN
RTT = Z
o
1
((V
OH
+ V
OL
) / (V
CC
– 2)) – 2
3.3V
125Ω125Ω
84Ω84Ω
Zo = 50Ω
Zo = 50Ω
FOUT FIN
The clock layout topology shown below is a typical termina-
tion for LVPECL outputs. The two different layouts mentioned
are recommended only as guidelines.
FOUT and nFOUT are low impedance follower outputs that gen-
erate ECL/LVPECL compatible outputs. Therefore, terminating
resistors (DC current path to ground) or current sources must
be used for functionality. These outputs are designed to drive
50Ω transmission lines. Matched impedance techniques should
be used to maximize operating frequency and minimize signal
distortion.
Figures 2A and 2B
show two different layouts which
are recommended only as guidelines. Other suitable clock lay-
outs may exist and it would be recommended that the board
designers simulate to guarantee compatibility across all printed
circuit and clock component process variations.
TERMINATION FOR LVPECL OUTPUTS
FIGURE 2B. LVPECL OUTPUT TERMINATIONFIGURE 2A. LVPECL OUTPUT TERMINATION
Figure 3. CRYSTAL INPUt INTERFACE
CRYSTAL INPUT INTERFACE
The ICS8535-31 has been characterized with 18pF parallel
resonant crystals. The capacitor values, C1 and C2, shown
in
Figure 3
below were determined using an 18pF parallel reso-
nant crystal and were chosen to minimize the ppm error.
These same capacitor values will tune any 18pF parallel reso-
nant crystal over the frequency range and other parameters
specified in this data sheet. The optimum C1 and C2 values
can be slightly adjusted for different board layouts.
C1
18p
X1
18pF Parallel Crystal
C2
22p
XTAL_IN
XTAL_OUT
8535AG-31 www.icst.com/products/hiperclocks.html REV. B APRIL 29, 2005
9
Integrated
Circuit
Systems, Inc.
ICS8535-31
LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/
LVCMOS-TO-3.3V LVPECL FANOUT BUFFER
POWER CONSIDERATIONS
This section provides information on power dissipation and junction temperature for the ICS8535-31.
Equations and example calculations are also provided.
1. Power Dissipation.
The total power dissipation for the ICS8535-31 is the sum of the core power plus the power dissipated in the load(s).
The following is the power dissipation for VCC = 3.3V + 5% = 3.465V, which gives worst case results.
NOTE: Please refer to Section 3 for details on calculating power dissipated in the load.
Power (core)MAX = VCC_MAX * IEE_MAX = 3.465V * 60mA = 207.9mW
Power (outputs)MAX = 30mW/Loaded Output pair
If all outputs are loaded, the total power is 4 * 30mW = 120mW
Total Power_MAX (3.465V, with all outputs switching) = 207.9mW + 120mW = 327.9mW
2. Junction Temperature.
Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the
device. The maximum recommended junction temperature for HiPerClockSTM devices is 125°C.
The equation for Tj is as follows: Tj = θJA * Pd_total + TA
Tj = Junction Temperature
θJA = Junction-to-Ambient Thermal Resistance
Pd_total = Total Device Power Dissipation (example calculation is in section 1 above)
TA = Ambient Temperature
In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θJA
must be used. Assuming a
moderate air flow of 200 linear feet per minute and a multi-layer board, the appropriate value is 66.6°C/W per Table 7 below.
Therefore, Tj for an ambient temperature of 70°C with all outputs switching is:
70°C + 0.328W * 66.6°C/W = 92°C. This is well below the limit of 125°C.
This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow,
and the type of board (single layer or multi-layer).
θθ
θθ
θJA by Velocity (Linear Feet per Minute)
0 200 500
Single-Layer PCB, JEDEC Standard Test Boards 114.5°C/W 98.0°C/W 88.0°C/W
Multi-Layer PCB, JEDEC Standard Test Boards 73.2°C/W 66.6°C/W 63.5°C/W
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.
TABLE 7. THERMAL RESISTANCE θθ
θθ
θJA FOR 20-PIN TSSOP, FORCED CONVECTION
8535AG-31 www.icst.com/products/hiperclocks.html REV. B APRIL 29, 2005
10
Integrated
Circuit
Systems, Inc.
ICS8535-31
LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/
LVCMOS-TO-3.3V LVPECL FANOUT BUFFER
3. Calculations and Equations.
The purpose of this section is to derive the power dissipated into the load.
LVPECL output driver circuit and termination are shown in
Figure 4.
To calculate worst case power dissipation into the load, use the following equations which assume a 50Ω load, and a termination
voltage of V
CC
- 2V.
For logic high, VOUT = VOH_MAX = VCC_MAX – 0.9V
(VCC_MAX - VOH_MAX
) = 0.9V
For logic low, VOUT = VOL_MAX = VCC_MAX
– 1.7V
(VCC_MAX - VOL_MAX
) = 1.7V
Pd_H is power dissipation when the output drives high.
Pd_L is the power dissipation when the output drives low.
Pd_H = [(VOH_MAX
– (VCC_MAX
- 2V))/R
L
] * (VCC_MAX
- VOH_MAX) = [(2V - (V
CC_MAX - VOH_MAX
))/R
L
] * (VCC_MAX
- VOH_MAX) =
[(2V - 0.9V)/50Ω] * 0.9V = 19.8mW
Pd_L = [(VOL_MAX
– (VCC_MAX
- 2V))/R
L
] * (VCC_MAX
- VOL_MAX) = [(2V - (V
CC_MAX - VOL_MAX
))/R
L
] * (VCC_MAX
- VOL_MAX) =
[(2V - 1.7V)/50Ω] * 1.7V = 10.2mW
Total Power Dissipation per output pair = Pd_H + Pd_L = 30mW
FIGURE 4. LVPECL DRIVER CIRCUIT AND TERMINATION
Q1
VOUT
VCC
RL
50
VCC - 2V
8535AG-31 www.icst.com/products/hiperclocks.html REV. B APRIL 29, 2005
11
Integrated
Circuit
Systems, Inc.
ICS8535-31
LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/
LVCMOS-TO-3.3V LVPECL FANOUT BUFFER
RELIABILITY INFORMATION
TRANSISTOR COUNT
The transistor count for ICS8535-31 is: 428
TABLE 8. θJAVS. AIR FLOW TABLE FOR 20 LEAD TSSOP
θθ
θθ
θJA by Velocity (Linear Feet per Minute)
0 200 500
Single-Layer PCB, JEDEC Standard Test Boards 114.5°C/W 98.0°C/W 88.0°C/W
Multi-Layer PCB, JEDEC Standard Test Boards 73.C/W 66.6°C/W 63.C/W
NOTE: Most modern PCB designs use multi-layered boards. The data in the second row pertains to most designs.
8535AG-31 www.icst.com/products/hiperclocks.html REV. B APRIL 29, 2005
12
Integrated
Circuit
Systems, Inc.
ICS8535-31
LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/
LVCMOS-TO-3.3V LVPECL FANOUT BUFFER
PACKAGE OUTLINE - G SUFFIX FOR 20 LEAD TSSOP
TABLE 9. PACKAGE DIMENSIONS
Reference Document: JEDEC Publication 95, MO-153
LOBMYS sretemilliM
NIMXAM
N02
A--02.1
1A50.051.0
2A08.050.1
b91.003.0
c90.002.0
D04.606.6
ECISAB04.6
1E03.405.4
eCISAB56.0
L54.057.0
α°
8
aaa--01.0
8535AG-31 www.icst.com/products/hiperclocks.html REV. B APRIL 29, 2005
13
Integrated
Circuit
Systems, Inc.
ICS8535-31
LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/
LVCMOS-TO-3.3V LVPECL FANOUT BUFFER
TABLE 10. ORDERING INFORMATION
While the information presented herein has been checked for both accuracy and reliability, Integrated Circuit Systems, Incorporated (ICS) assumes no responsibility for either its use
or for infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use
in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are
not recommended without additional processing by ICS. ICS reserves the right to change any circuitry or specifications without notice. ICS does not authorize or warrant any ICS
product for use in life support devices or critical medical instruments.
rebmuNredrO/traPgnikraMegakcaPgnigakcaPgnippihSerutarepmeT
13-GA5358SCI13-GA5358SCIPOSSTdael02ebutC°07otC°0
T13
-GA5358SCI13-GA5358SCIPOSSTdael02leer&epat0052C°07otC°0
FL13-GA5358SCIL13GA5358SCIPOSST"eerF-daeL"dael02ebutC°
07otC°0
TFL13-GA5358SCIL13GA5358SCIPOSST"eerF-daeL"dael02leer&epat0052C°07otC°0
The aforementioned trademark, HiPerClockS™ is a trademark of Integrated Circuit Systems, Inc. or its subsidiaries in the United States and/or other countries.
NOTE: Parts that are ordered with an “LF” suffix to the part number are the Pb-Free configuration and are RoHS compliant.
8535AG-31 www.icst.com/products/hiperclocks.html REV. B APRIL 29, 2005
14
Integrated
Circuit
Systems, Inc.
ICS8535-31
LOW SKEW, 1-TO-4, CRYSTAL OSCILLATOR/
LVCMOS-TO-3.3V LVPECL FANOUT BUFFER
TEEHSYROTSIHNOISIVER
veRelbaTegaPegnahCfonoitpircseDetaD
B6T
1
5
ot.xamsp001morftellubwekStraP-ot-traPdetcerro
c-noitceSserutaeF
.xamsp002
ot.xamsp001morfwekStraP-ot-traPdetcerroc-elbaTscitsiretcarahCCA
.xamsp002
50/
92/4