Data Sheet
Rev. 2.0, 2010-08-02
Automotive Power
BTS5090-2EKA
Smart High-Side Power Switch
Dual Channel, 90mΩ
PROFET™+ 12V
Data Sheet 2 Rev. 2.0, 2010-08-02
PROFET™+ 12V
BTS5090-2EKA
Table of Contents
1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1 Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Voltage and Current Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.2 Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3.1 PCB set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3.2 Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1 Output ON-state Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Turn ON/OFF Characteristics with Resistive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3 Inductive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3.1 Output Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3.2 Maximum Load Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.4 Inverse Current Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.5 Electrical Characteristics Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6 Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.1 Loss of Ground Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2 Undervoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.3 Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.4 Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.5 Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.5.1 Current Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.5.2 Temperature Limitation in the Power DMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.5.3 Short Circuit Appearance with Channel in Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.6 Electrical Characteristics for the Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7 Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.1 IS Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.2 SENSE Signal in Different Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.3 SENSE Signal in the Nominal Current Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.3.1 SENSE Signal Variation as a Function of Temperature and Load Current . . . . . . . . . . . . . . . . . . . 29
7.3.2 SENSE Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.3.3 SENSE Signal in Open Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.3.3.1 Open Load in ON Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.3.3.2 Open Load in OFF Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.3.3.3 Open Load Diagnostic Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.3.4 SENSE Signal with OUT in Short Circuit to VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.3.5 SENSE Signal in Case of Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.3.6 SENSE Signal in Case of Inverse Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.4 Electrical Characteristics Diagnostic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8 Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.1 Input Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table of Contents
Data Sheet 3 Rev. 2.0, 2010-08-02
PROFET™+ 12V
BTS5090-2EKA
Table of Contents
8.2 DEN / DSEL Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.3 Input Pin Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
8.4 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9 Characterization Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9.1 General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9.1.1 Minimum Functional Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9.1.2 Undervoltage Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9.1.3 Current Consumption One Channel active . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.1.4 Current Consumption Two Channels active . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.1.5 Standby Current for Whole Device with Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
9.2 Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
9.2.1 Output Voltage Drop Limitation at Low Load Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
9.2.2 Drain to Source Clamp Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
9.2.3 Slew Rate at Turn ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9.2.4 Slew Rate at Turn OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9.2.5 Turn ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9.2.6 Turn OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.2.7 Turn ON / OFF matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
9.2.8 Switch ON Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9.2.9 Switch OFF Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
9.3 Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.3.1 Overload Condition in the Low Voltage Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.3.2 Overload Condition in the High Voltage Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.4 Diagnostic Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
9.4.1 Current Sense at no Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
9.4.2 Open Load Detection Threshold in ON State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
9.4.3 Sense Signal Maximum Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
9.4.4 Sense Signal maximum Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
9.5 Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
9.5.1 Input Voltage Threshold ON to OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
9.5.2 Input Voltage Threshold OFF to ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
9.5.3 Input Voltage Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
9.5.4 Input Current High Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
10 Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
10.1 Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
11 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
12 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
PG-DSO-14-40 EP
Type Package Marking
BTS5090-2EKA PG-DSO-14-40 EP BTS5090-2EKA
Data Sheet 4 Rev. 2.0, 2010-08-02
PROFET™+ 12V
Smart High-Side Power Switch
BTS5090-2EKA
1Overview
Application
Suitable for resistive, inductive and capacitive loads
Replaces electromechanical relays, fuses and discrete circuits
Most suitable for loads with high inrush current, such as lamps
Basic Features
Two channel device
Very low stand-by current
3.3 V and 5 V compatible logic inputs
Electrostatic discharge protection (ESD)
Optimized electromagnetic compatibility
Logic ground independent from load ground
Very low power DMOS leakage current in OFF state
Green product (RoHS compliant)
AEC qualified
Description
The BTS5090-2EKA is a 90 mΩ dual channel Smart High-Side Power Switch, embedded in a PG-DSO-14-40 EP,
Exposed Pad package, providing protective functions and diagnosis. The power transistor is built by an N-channel
vertical power MOSFET with charge pump. The device is integrated in Smart6 technology. It is specially designed
to drive lamps up to 1 * P21W, as well as LEDs in the harsh automotive environment.
Table 1 Product Summary
Parameter Symbol Value
Operating voltage range VS(OP) 5 V ... 28 V
Maximum supply voltage VS(LD) 41 V
Maximum ON state resistance at TJ = 150 °C per channel RDS(ON) 180 mΩ
Nominal load current (one channel active) IL(NOM)1 3.5 A
Nominal load current (both channels active) IL(NOM)2 2.5 A
Typical current sense ratio kILIS 1500
Minimum current limitation IL5(SC) 20 A
Maximum standby current with load at TJ = 25 °C IS(OFF) 500 nA
Data Sheet 5 Rev. 2.0, 2010-08-02
PROFET™+ 12V
BTS5090-2EKA
Overview
Diagnostic Functions
Proportional load current sense for both channels multiplexed
Open load in ON and OFF
Short circuit to battery and ground
Overtemperature
Stable diagnostic signal during short circuit
Enhanced kILIS dependency with temperature and load current
Protection Functions
Stable behavior during undervoltage
Reverse polarity protection with external components
Secure load turn-off during logic ground disconnect with external components
Overtemperature protection with restart
Overvoltage protection with external components
Voltage dependent current limitation
Enhanced short circuit operation
BTS5090-2EKA
Block Diagram
Data Sheet 6 Rev. 2.0, 2010-08-02
PROFET™+ 12V
2 Block Diagram
Figure 1 Block Diagram for the BTS5090-2EKA
Block diagram DxS.vsd
Channel 0 VS
OUT 0
IN0
T
driver
logic
gate control
&
charge pump
load current sense and
open load detection
over
temperature clamp for
inductive load
over current
switch limit
forward voltage drop detection
voltage sensor
GND
ESD
protection
IS
DEN
Channel 1
DSEL
IN1 Control and protection circuit equivalent to channel 0
T
VS
OUT 1
internal
power
supply
Data Sheet 7 Rev. 2.0, 2010-08-02
PROFET™+ 12V
BTS5090-2EKA
Pin Configuration
3 Pin Configuration
3.1 Pin Assignment
Figure 2 Pin Configuration
3.2 Pin Definitions and Functions
Pin Symbol Function
1GNDGrouND; Ground connection
2IN0INput channel 0; Input signal for channel 0 activation
3DENDiagnostic ENable; Digital signal to enable/disable the diagnosis of the device
4ISSense; Sense current of the selected channel
5 DSEL Diagnostic SELection; Digital signal to select the channel to be diagnosed
6IN1INput channel 1; Input signal for channel 1 activation
7, 11 NC Not Connected; No internal connection to the chip
8, 9, 10 OUT1 OUTput 1; Protected high side power output channel 11)
1) All output pins of a given channel must be connected together on the PCB. All pins of an output are internally connected
together. PCB traces have to be designed to withstand the maximum current which can flow.
12, 13, 14 OUT0 OUTput 0; Protected high side power output channel 01)
Cooling Tab VSVoltage Supply; Battery voltage
Pinout dual SO14 .vsd
OUT0
OUT0
OUT0
NC
OUT1
OUT1
OUT1
GND
IN0
DEN
IS
DSEL
IN1
NC
14
13
12
11
10
9
8
1
2
3
4
5
6
7
BTS5090-2EKA
Pin Configuration
Data Sheet 8 Rev. 2.0, 2010-08-02
PROFET™+ 12V
3.3 Voltage and Current Definition
Figure 3 shows all terms used in this data sheet, with associated convention for positive values.
Figure 3 Voltage and Current Definition
V
S
IN0
IN1
DEN
DSEL
IS GND
OUT0
OUT1
I
IN0
I
IN1
I
DEN
I
DSEL
I
IS
V
S
V
IN0
V
IN1
V
DEN
V
DSEL
V
IS
I
S
I
GND
V
DS0
V
DS1
V
OUT0
V
OUT1
I
OUT1
I
OUT0
voltage and current convention.vsd
Data Sheet 9 Rev. 2.0, 2010-08-02
PROFET™+ 12V
BTS5090-2EKA
General Product Characteristics
4 General Product Characteristics
4.1 Absolute Maximum Ratings
Table 2 Absolute Maximum Ratings 1)
TJ = -40°C to +150°C; (unless otherwise specified)
Parameter Symbol Values Unit Note /
Test Condition
Number
Min. Typ. Max.
Supply Voltages
Supply voltage VS-0.3 28 V P_4.1.1
Reverse polarity voltage -VS(REV) 0–16Vt < 2 min
TA = 25 °C
RL 6 Ω
RGND = 150 Ω
P_4.1.2
Supply voltage for short
circuit protection
VBAT(SC) 0–24 V
2) RECU = 20 mΩ
RCable= 16 mΩ/m
LCable= 1 μH/m,
l = 0 or 5 m
See Chapter 6
and Figure 53
P_4.1.3
Supply voltage for Load dump
protection
VS(LD) – – 41 V 3) RI = 2 Ω
RL = 6 Ω
P_4.1.12
Short Circuit Capability
Permanent short circuit
IN pin toggles
nRSC1 100 – k
cycle
2) 100 ppm
tON = 300ms
P_4.1.4
Input Pins
Voltage at INPUT pins VIN -0.3
–6
7
V–
t < 2 min
P_4.1.13
Current through INPUT pins IIN -2 2 mA P_4.1.14
Voltage at DEN pin VDEN -0.3
–6
7
V–
t < 2 min
P_4.1.15
Current through DEN pin IDEN -2 2 mA P_4.1.16
Voltage at DSEL pin VDSEL -0.3
–6
7
V–
t < 2 min
P_4.1.17
Current through DSEL pin IDSEL -2 2 mA P_4.1.18
Sense Pin
Voltage at IS pin VIS -0.3 VSV P_4.1.19
Current through IS pin IIS -25 50 mA P_4.1.20
Power Stage
Load current | IL |–IL(LIM) A P_4.1.21
Power dissipation (DC) PTOT ––1.9WTA = 85 °C
TJ < 150 °C
P_4.1.22
BTS5090-2EKA
General Product Characteristics
Data Sheet 10 Rev. 2.0, 2010-08-02
PROFET™+ 12V
Notes
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute
maximum rating conditions for extended periods may affect device reliability.
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not
designed for continuous repetitive operation.
Maximum energy dissipation
Single pulse (one channel)
EAS ––42mJIL(0) = 3 A
TJ(0) = 150 °C
VS = 13.5 V
P_4.1.23
Voltage at power transistor VDS 41 V P_4.1.26
Currents
Current through ground pin I GND -10
-150
–10
20
mA
t < 2 min
P_4.1.27
Temperatures
Junction temperature TJ-40 150 °C P_4.1.28
Storage temperature TSTG -55 150 °C P_4.1.30
ESD Susceptibility
ESD susceptibility (all pins) VESD -2 2 kV 4) HBM P_4.1.31
ESD susceptibility OUT Pin
vs. GND and VS connected
VESD -4 4 kV 4) HBM P_4.1.32
ESD susceptibility VESD -500 500 V 5) CDM P_4.1.33
ESD susceptibility pin
(corner pins)
VESD -750 750 V 5) CDM P_4.1.34
1) Not subject to production test. Specified by design.
2) Hardware set-up in accordance to AEC Q100-012 and AEC Q101-006.
3) VS(LD) is setup without the DUT connected to the generator per ISO 7637-1.
4) ESD susceptibility HBM according to EIA/JESD 22-A 114B.
5) “CDM” EIA/JESD22-C101 or ESDA STM5.3.1
Table 2 Absolute Maximum Ratings (cont’d)1)
TJ = -40°C to +150°C; (unless otherwise specified)
Parameter Symbol Values Unit Note /
Test Condition
Number
Min. Typ. Max.
Data Sheet 11 Rev. 2.0, 2010-08-02
PROFET™+ 12V
BTS5090-2EKA
General Product Characteristics
4.2 Functional Range
Table 3 Functional Range TJ = -40°C to +150°C; (unless otherwise specified)
Parameter Symbol Values Unit Note /
Test Condition
Number
Min. Typ. Max.
Nominal operating voltage VNOM 8 13.5 18 V P_4.2.1
Extended operating voltage VS(OP) 5–28 V
2) VIN = 4.5 V
RL = 6 Ω
VDS < 0.5 V
See Figure 15
P_4.2.2
Minimum functional supply
voltage
VS(OP)_MIN 3.8 4.3 5 V 1) VIN = 4.5 V
RL = 6 Ω
From IOUT = 0 A
to
VDS < 0.5 V;
See Figure 15
See Figure 29
P_4.2.3
Undervoltage shutdown VS(UV) 3 3.5 4.1 V 1) VIN = 4.5 V
VDEN = 0 V
RL = 6 Ω
From VDS < 1 V;
to IOUT = 0 A
See Figure 15
See Figure 30
P_4.2.4
Undervoltage shutdown
hysteresis
VS(UV)_HYS 850 mV 2) P_4.2.13
Operating current
One channel active
IGND_1 –3.56mAVIN = 5.5 V
VDEN = 5.5 V
Device in RDS(ON)
VS = 18 V
See Figure 31
P_4.2.5
Operating current
All channels active
IGND_2 –58mAVIN = 5.5 V
VDEN = 5.5 V
Device in RDS(ON)
VS = 18 V
See Figure 32
P_4.2.6
Standby current for whole
device with load (ambiente)
IS(OFF) –0.10.5μA1) VS = 18 V
VOUT = 0 V
VIN floating
VDEN floating
TJ 85 °C
See Figure 33
P_4.2.7
BTS5090-2EKA
General Product Characteristics
Data Sheet 12 Rev. 2.0, 2010-08-02
PROFET™+ 12V
Note: Within the functional range the IC operates as described in the circuit description. The electrical
characteristics are specified within the conditions given in the related electrical characteristics table.
4.3 Thermal Resistance
4.3.1 PCB set up
Figure 4 2s2p PCB Cross Section
Maximum standby current for
whole device with load
IS(OFF)_150 –320μAVS = 18 V
VOUT = 0 V
VIN floating
VDEN floating
TJ = 150 °C
See Figure 33
P_4.2.10
Standby current for whole
device with load, diagnostic
active
IS(OFF_DEN) –0.6–mA
2) VS = 18 V
VOUT = 0 V
VIN floating
VDEN = 5.5 V
P_4.2.8
1) Test at TJ = -40°C only
2) Not subject to production test. Specified by design.
Table 4 Thermal Resistance
Parameter Symbol Values Unit Note /
Test Condition
Number
Min. Typ. Max.
Junction to soldering point RthJS –5–K/W
1)
1) Not subject to production test. Specified by design.
P_4.3.1
Junction to ambient
Both channels active
RthJA –34–K/W
1) 2)
2)Specified Rthja value is according to JEDEC JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The
product (chip + package) was simulated on a 76.4 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70μm
Cu, 2 x 35 μm Cu). Where applicable, a thermal via array under the exposed pad contacts the first inner copper
layer. Please refer to Figure 4 and Figure 5.
P_4.3.2
Table 3 Functional Range (cont’d)TJ = -40°C to +150°C; (unless otherwise specified)
Parameter Symbol Values Unit Note /
Test Condition
Number
Min. Typ. Max.
1.5mm
70µm
35µm
0.3mm
PCB 2s2p.vsd
Data Sheet 13 Rev. 2.0, 2010-08-02
PROFET™+ 12V
BTS5090-2EKA
General Product Characteristics
Figure 5 PC Board Top and Bottom View for Thermal Simulation with 600 mm² Cooling Area
4.3.2 Thermal Impedance
Figure 6 Typical Thermal Impedance. PCB set up according Figure 5
thermique SO14.vsd
1
2
3
4
5
6
7
14
13
12
11
10
9
8
COOLING
TAB
V
S
PCB top view
PCB bottom view
0.1
1
10
100
0.0001 0.001 0.01 0.1 1 10 100 1000
time [sec]
Zth-JA [K/W
]
2s2p
1s0p - 600 mm²
1s0p - 300 mm²
1s0p - footprint
BTS5090-2EKA
General Product Characteristics
Data Sheet 14 Rev. 2.0, 2010-08-02
PROFET™+ 12V
Figure 7 Typical Thermal Resistance. PCB set up 1s0p
Data Sheet 15 Rev. 2.0, 2010-08-02
PROFET™+ 12V
BTS5090-2EKA
Power Stage
5 Power Stage
The power stages are built using an N-channel vertical power MOSFET (DMOS) with charge pump.
5.1 Output ON-state Resistance
The ON-state resistance RDS(ON) depends on the supply voltage as well as the junction temperature TJ. Figure 8
shows the dependencies in terms of temperature and supply voltage for the typical ON-state resistance. The
behavior in reverse polarity is described in Chapter 6.4.
Figure 8 Typical ON-state Resistance
A high signal at the input pin (see Chapter 8) causes the power DMOS to switch ON with a dedicated slope, which
is optimized in terms of EMC emission.
5.2 Turn ON/OFF Characteristics with Resistive Load
Figure 9 shows the typical timing when switching a resistive load.
Figure 9 Switching a Resistive Load Timing
Rdson_90.vsd
50
60
70
80
90
100
110
120
130
140
150
160
-40 -10 20 50 80 110 140
Junction Temperature (Tj)
R
DS(ON)
(m
Ω)
0
50
100
150
200
0 3 6 9 12 15 18
Supply Voltage V
S
(V)
R
DS(ON)
(m
Ω)
IN
t
VOUT
tON
tON_DELAY tOFF
90% VS
10% VS
VIN_H
VIN_L
t
Switching times.vsd
tOFF_DELAY
30% VS
70% VS
dV/dt ON dV/dt OFF
BTS5090-2EKA
Power Stage
Data Sheet 16 Rev. 2.0, 2010-08-02
PROFET™+ 12V
5.3 Inductive Load
5.3.1 Output Clamping
When switching OFF inductive loads with high side switches, the voltage VOUT drops below ground potential,
because the inductance intends to continue driving the current. To prevent the destruction of the device by
avalanche due to high voltages, there is a voltage clamp mechanism ZDS(AZ) implemented that limits negative
output voltage to a certain level (VS - VDS(AZ)). Please refer to Figure 10 and Figure 11 for details. Nevertheless,
the maximum allowed load inductance is limited.
Figure 10 Output Clamp (OUT0 and OUT1)
Figure 11 Switching an Inductive Load Timing
V
BAT
V
OUT
I
L
L, R
L
V
S
OUT
V
DS
LOGIC
IN
V
IN
Output clamp.svg
Z
DS(AZ)
GND
Z
GND
IN
V
OUT
I
L
V
S
V
S
-V
DS(AZ)
t
t
t
Switching an inductance.vsd
Data Sheet 17 Rev. 2.0, 2010-08-02
PROFET™+ 12V
BTS5090-2EKA
Power Stage
5.3.2 Maximum Load Inductance
During demagnetization of inductive loads, energy has to be dissipated in the BTS5090-2EKA. This energy can
be calculated with following equation:
(1)
Following equation simplifies under the assumption of RL = 0 Ω.
(2)
The energy, which is converted into heat, is limited by the thermal design of the component. See Figure 12 for the
maximum allowed energy dissipation as a function of the load current.
Figure 12 Maximum Energy Dissipation Single Pulse, TJ(0) = 150 °C; VS = 13.5V
5.4 Inverse Current Capability
In case of inverse current, meaning a voltage VINV at the OUTput higher than the supply voltage VS, a current IINV
will flow from output to VS pin via the body diode of the power transistor (please refer to Figure 13). The output
stage follows the state of the IN pin, except if the IN pin goes from OFF to ON during inverse. In that particular
case, the output stage is kept OFF until the inverse current disappears. Nevertheless, the current IINV should not
be higher than IL(INV). Otherwise, the second channel can be corrupted and erratic behavior can be observed. If
the affected channel is OFF, the diagnostic will detect an open load at OFF. If the affected channel is ON, the
diagnostic will detect open load at ON (the overtemperature signal is inhibited). At the appearance of VINV, a
parasitic diagnostic can be observed at the unaffected channel. After, the diagnosis is valid and reflects the output
state. At VINV vanishing, the diagnosis is valid and reflects the output state. During inverse current, no protection
function are available.
EV
DS AZ() L
RL
------
×VSVDS AZ()
RL
-------------------------------- 1RLIL
×
VSVDS AZ()
--------------------------------
⎝⎠
⎛⎞
ln IL
+××=
E1
2
---LI
21VS
VSVDS AZ()
--------------------------------
⎝⎠
⎛⎞
×××=
1
10
100
1000
0123456
I
L
[A]
E
AS
[mJ]
EAS90.vsd
BTS5090-2EKA
Power Stage
Data Sheet 18 Rev. 2.0, 2010-08-02
PROFET™+ 12V
Figure 13 Inverse Current Circuitry
OUT
V
S
V
BAT
IL(INV)
OL
comp.
inverse current.svg
V
INV
INV
Comp.
Gate driver
Device
logic
GND
Z
GND
Data Sheet 19 Rev. 2.0, 2010-08-02
PROFET™+ 12V
BTS5090-2EKA
Power Stage
5.5 Electrical Characteristics Power Stage
Table 5 Electrical Characteristics: Power Stage
VS = 8 V to 18 V, TJ = -40°C to +150°C (unless otherwise specified).
Typical values are given at VS = 13.5 V, TJ = 25 °C
Parameter Symbol Values Unit Note /
Test Condition
Number
Min. Typ. Max.
ON-state resistance per
channel
RDS(ON)_150 67 170 180 mΩIL = IL4 = 4 A
VIN = 4.5 V
TJ = 150 °C
See Figure 8
P_5.5.1
ON-state resistance per
channel
RDS(ON)_25 –90–mΩ1) TJ = 25 °C P_5.5.21
Nominal load current
One channel active
IL(NOM)1 –3.5–A
1) TA = 85 °C
TJ < 150 °C
P_5.5.2
Nominal load current
All channel active
IL(NOM)2 –2.5–A P_5.5.3
Output voltage drop limitation
at small load currents
VDS(NL) –1025mVIL = IL0 = mA
See Figure 34
P_5.5.4
Drain to source clamping
voltage
VDS(AZ) = [VS - VOUT]
VDS(AZ) 41 47 53 V IDS = 20 mA
See Figure 11
See Figure 35
P_5.5.5
Output leakage current per
channel; TJ 85 °C
IL(OFF) –0.10.5μA2) VIN floating
VOUT = 0 V
TJ 85 °C
P_5.5.6
Output leakage current per
channel; TJ = 150 °C
IL(OFF)_150 –1,510μAVIN floating
VOUT = 0 V
TJ = 150 °C
P_5.5.8
Inverse current capability IL(INV) –2.5–A
1) VS < VOUTx P_5.5.9
Slew rate
30% to 70% VS
dV/dtON 0.1 0.25 0.5 V/μsRL = 6 Ω
VS = 13.5 V
See Figure 9
See Figure 36
See Figure 37
See Figure 38
See Figure 39
See Figure 40
P_5.5.11
Slew rate
70% to 30% VS
-dV/dtOFF 0.1 0.25 0.5 V/μs P_5.5.12
Slew rate matching
dV/dtON - dV/dtOFF
ΔdV/dt-0.15 0 0.15 V/μs P_5.5.13
Turn-ON time to VOUT = 90%
VS
tON 30 100 230 μs P_5.5.14
Turn-OFF time to VOUT = 10%
VS
tOFF 30 100 230 μs P_5.5.15
Turn-ON / OFF matching
tOFF - tON
ΔtSW -50 0 50 μs P_5.5.16
Turn-ON time to VOUT = 10%
VS
tON_delay 10 35 100 μs P_5.5.17
Turn-OFF time to VOUT = 90%
VS
tOFF_delay 10 35 100 μs P_5.5.18
BTS5090-2EKA
Power Stage
Data Sheet 20 Rev. 2.0, 2010-08-02
PROFET™+ 12V
Switch ON energy EON –0.8–mJ
1) RL = 6 Ω
VOUT = 90% VS
VS = 18 V
See Figure 41
P_5.5.19
Switch OFF energy EOFF –0.7–mJ
1) RL = 6 Ω
VOUT = 10% VS
VS = 18 V
See Figure 42
P_5.5.20
1) Not subject to production test, specified by design.
2) Test at TJ = -40°C only
Table 5 Electrical Characteristics: Power Stage (cont’d)
VS = 8 V to 18 V, TJ = -40°C to +150°C (unless otherwise specified).
Typical values are given at VS = 13.5 V, TJ = 25 °C
Parameter Symbol Values Unit Note /
Test Condition
Number
Min. Typ. Max.
Data Sheet 21 Rev. 2.0, 2010-08-02
PROFET™+ 12V
BTS5090-2EKA
Protection Functions
6 Protection Functions
The device provides integrated protection functions. These functions are designed to prevent the destruction of
the IC from fault conditions described in the data sheet. Fault conditions are considered as “outside” normal
operating range. Protection functions are designed for neither continuous nor repetitive operation.
6.1 Loss of Ground Protection
In case of loss of the module ground and the load remains connected to ground, the device protects itself by
automatically turning OFF (when it was previously ON) or remains OFF, regardless of the voltage applied on IN
pins.
In case of loss of device ground, it’s recommended to use input resistors between the microcontroller and the
BTS5090-2EKA to ensure switching OFF of channels.
In case of loss of module or device ground, a current (IOUT(GND)) can flow out of the DMOS. Figure 14 sketches
the situation.
ZGND can be either resistor or diode.
Figure 14 Loss of Ground Protection with External Components
6.2 Undervoltage Protection
Between VS(UV) and VS(OP), the undervoltage mechanism is triggered. VS(OP) represents the minimum voltage
where the switching ON and OFF can takes place. VS(UV) represents the minimum voltage the switch can hold ON.
If the supply voltage is below the undervoltage mechanism VS(UV), the device is OFF (turns OFF). As soon as the
supply voltage is above the undervoltage mechanism VS(OP), then the device can be switched ON. When the switch
is ON, protection functions are operational. Nevertheless, the diagnosis is not guaranteed until VS is in the VNOM
range. Figure 15 sketches the undervoltage mechanism.
INx
DEN
IS
ZDESD GND
OUTx
VS
VBAT
ZD(AZ)
LOGIC
DSEL
Loss of ground protection.svg
I
OUT(GND)
Z
DS(AZ)
R
IN
R
DEN
R
DSEL
R
SENSE
R
IS
ZIS(AZ)
Z
GND
BTS5090-2EKA
Protection Functions
Data Sheet 22 Rev. 2.0, 2010-08-02
PROFET™+ 12V
Figure 15 Undervoltage Behavior
6.3 Overvoltage Protection
There is an integrated clamp mechanism for overvoltage protection (ZD(AZ)). To guarantee this mechanism
operates properly in the application, the current in the Zener diode has to be limited by a ground resistor. Figure 16
shows a typical application to withstand overvoltage issues. In case of supply voltage higher than VS(AZ), the power
transistor switches ON and the voltage across the logic section is clamped. As a result, the internal ground
potential rises to VS - VS(AZ). Due to the ESD Zener diodes, the potential at pin INx, DSEL and DEN rises almost
to that potential, depending on the impedance of the connected circuitry. In the case the device was ON, prior to
overvoltage, the BTS5090-2EKA remains ON. In the case the BTS5090-2EKA was OFF, prior to overvoltage, the
power transistor can be activated. In the case the supply voltage is in above VBAT(SC) and below VDS(AZ), the output
transistor is still operational and follows the input. If at least one channel is in the ON state, parameters are no
longer guaranteed and lifetime is reduced compared to the nominal supply voltage range. This especially impacts
the short circuit robustness, as well as the maximum energy EAS capability. ZGND as a resistor (150 Ω) will offer
superior results compared to a diode and resistor (1 kΩ).
Figure 16 Overvoltage Protection with External Components
undervoltage behavior.vsd
V
OUT
V
S(OP)
V
S(UV)
V
S
INx
DEN
IS
ZD
ESD
GND
OUTx
V
S
V
BAT
Z
D(AZ)
LOGIC
DSEL
Overvoltage protection.svg
Z
DS(AZ)
IN0
IN1
R
IN
R
DEN
R
DSEL
R
SENSE
R
IS
I
SOV
Z
IS(AZ)
Z
GND
Data Sheet 23 Rev. 2.0, 2010-08-02
PROFET™+ 12V
BTS5090-2EKA
Protection Functions
6.4 Reverse Polarity Protection
In case of reverse polarity, the intrinsic body diodes of the power DMOS causes power dissipation. The current in
this intrinsic body diode is limited by the load itself. Additionally, the current into the ground path and the logic pins
has to be limited to the maximum current described in Chapter 4.1 with an external resistor. Figure 17 shows a
typical application. RGND resistor is used to limit the current in the Zener protection of the device. Resistors RDSEL,
RDEN, and RIN are used to limit the current in the logic of the device and in the ESD protection stage. RSENSE is used
to limit the current in the sense transistor which behaves as a diode. The recommended value for RDEN = RDSEL =
RIN = RSENSE = 4.7 kΩ. ZGND can be either a 150 Ω resistor or Schottky diode with 1 kΩ resistor in parallel.
In case the overvoltage is not considered in the application, RGND can be replaced by a Schottky diode and 1kΩ
resistor in parallel. Optionally a capacitor in parallel is recommended for EMC reasons.
During reverse polarity, no protection functions are available.
Figure 17 Reverse Polarity Protection with External Components
6.5 Overload Protection
In case of overload, such as high inrush of cold lamp filament, or short circuit to ground, the BTS5090-2EKA offers
several protection mechanisms.
6.5.1 Current Limitation
At first step, the instantaneous power in the switch is maintained at a safe value by limiting the current to the
maximum current allowed in the switch IL(SC). During this time, the DMOS temperature is increasing, which affects
the current flowing in the DMOS. The current limitation value is VDS dependent. Figure 18 shows the behavior of
the current limitation as a function of the drain to source voltage.
INx
DEN
IS
ZDESD GND
OUTx
VS
-V
S(REV)
ZD(AZ)
LOGIC
DSEL
Reverse Polarity.vsd
ZDS(AZ)
IN0
R
IN
R
DEN
R
DSE L
R
SENSE
R
IS
V
DS(REV)
Micro controller
protection diodes
ZIS(AZ)
Z
GND
BTS5090-2EKA
Protection Functions
Data Sheet 24 Rev. 2.0, 2010-08-02
PROFET™+ 12V
Figure 18 Current Limitation (typical behavior)
6.5.2 Temperature Limitation in the Power DMOS
Each channel incorporates both an absolute (TJ(SC)) and a dynamic (TJ(SW)) temperature sensor. Activation of
either sensor will cause an overheated channel to switch OFF to prevent destruction. Any protective switch OFF
latches the output until the temperature has reached an acceptable value. Figure 19 gives a sketch of the
situation. The ΔTSTEP describes the device’s warming, due to the overcurrent in the channel.
A retry strategy is implemented such that when the DMOS temperature has cooled down enough, the switch is
switched ON again, if the IN pin signal is still high (restart behavior).
Data Sheet 25 Rev. 2.0, 2010-08-02
PROFET™+ 12V
BTS5090-2EKA
Protection Functions
Figure 19 Overload Protection
Note: For better understanding, the time scale is not linear. The real timing of this drawing is application dependant
and cannot be described.
6.5.3 Short Circuit Appearance with Channel in Parallel
The two channels are not synchronized in the restart event. When the two channels are in temperature limitation,
the channel which has cooled down the fastest doesn’t wait the second one to be cooled down as well to restart.
Thus, it is not recommended to use the device with channel in parallel.
IN
t
I
L
t
I
L(x)SC
I
IS
t
0A
I
IS(FAULT)
V
DEN
t
0V
T
DMOS
t
ΔT
STEP
T
A
ΔT
J(S W)
ΔT
J(S W )
ΔT
J(S W)
Hard start . vsd
t
sIS ( FAUL T)
I
L(NOM)
I
L(NOM)
/ k
ILIS
t
sIS (OT _ bl a nk)
T
J( SC)
t
sIS (OFF )
LOAD CURRENT LIMITATION PHASE LOAD CURRENT BELOW
LIMITATION PHASE
BTS5090-2EKA
Protection Functions
Data Sheet 26 Rev. 2.0, 2010-08-02
PROFET™+ 12V
6.6 Electrical Characteristics for the Protection Functions
Table 6 Electrical Characteristics: Protection
VS = 8 V to 18 V, TJ = -40°C to +150°C (unless otherwise specified).
Typical values are given at VS = 13.5 V, TJ = 25 °C
Parameter Symbol Values Unit Note /
Test Condition
Number
Min. Typ. Max.
Loss of Ground
Output leakage current while
GND disconnected
IOUT(GND) –0.1–mA
1) 2) VS = 28 V
See Figure 14
1) All pins are disconnected except VS and OUT.
2) Not Subject to production test, specified by design
P_6.6.1
Reverse Polarity
Drain source diode voltage
during reverse polarity
VDS(REV) 200 650 700 mV IL = - 2 A
TJ = 150 °C
See Figure 17
P_6.6.2
Overvoltage
Overvoltage protection VS(AZ) 41 47 53 V ISOV = 5 mA
See Figure 16
P_6.6.3
Overload Condition
Load current limitation IL5(SC) 20 30 40 A 3)VDS = 5 V
See Figure 18 and
Figure 43
3) Test at TJ = -40°C only
P_6.6.4
Load current limitation IL28(SC) –15–A
2) VDS = 28 V
See Figure 18 and
Figure 44
P_6.6.7
Short circuit current during
over temperature toggling
IL(RMS) –3–A
2) VIN = 4.5 V
RSHORT = 100 mΩ
LSHORT = 5 μH
P_6.6.12
Dynamic temperature
increase while switching
ΔTJ(SW) –80–K
4) See Figure 19
4) Functional test only
P_6.6.8
Thermal shutdown
temperature
TJ(SC) 150 170 4) 200 4) °C5) See Figure 19
5) Test at TJ = +150°C only
P_6.6.10
Thermal shutdown hysteresis ΔTJ(SC) – 20 – K 5) 4) See Figure 19 P_6.6.11
Data Sheet 27 Rev. 2.0, 2010-08-02
PROFET™+ 12V
BTS5090-2EKA
Diagnostic Functions
7 Diagnostic Functions
For diagnosis purpose, the BTS5090-2EKA provides a combination of digital and analog signals at pin IS. These
signals are called SENSE. In case the diagnostic is disabled via DEN, pin IS becomes high impedance. In case
DEN is activated, the SENSE of the channel X is enabled/disabled via associated pin DSEL. Table 7 gives the
truth table.
7.1 IS Pin
The BTS5090-2EKA provides a SENSE current written IIS at pin IS. As long as no “hard” failure mode occurs (short
circuit to GND / current limitation / overtemperature / excessive dynamic temperature increase or open load at
OFF) a proportional signal to the load current (ratio kILIS = IL / IIS) is provided. The complete IS pin and diagnostic
mechanism is described on Figure 20. The accuracy of the SENSE depends on temperature and load current.
The IS pin multiplexes the current IIS(0) and IIS(1), via the pin DSEL. Thanks to this multiplexing, the matching
between kILISCHANNEL0 and kILISCHANNEL1 is optimized. Due to the ESD protection, in connection to VS, it is not
recommended to share the IS pin with other devices if these devices are using another battery feed. The
consequence is that the unsupplied device would be fed via the IS pin of the supplied device.
Figure 20 Diagnostic Block Diagram
Table 7 Diagnostic Truth Table
DEN DSEL IS
0 don’t care Z
1 0 Sense output 0 IIS(0)
1 1 Sense output 1 IIS(1)
V
s
I
IS0
=
I
L0
/ k
ILIS
DEN
IS
0
1
DSEL
Sense schematic.svg
I
IS1
=
I
L1
/ k
ILIS
1
0
Z
IS(AZ)
I
IS(FAULT)
FAULT
BTS5090-2EKA
Diagnostic Functions
Data Sheet 28 Rev. 2.0, 2010-08-02
PROFET™+ 12V
7.2 SENSE Signal in Different Operating Modes
Table 8 gives a quick reference for the state of the IS pin during device operation.
Table 8 Sense Signal, Function of Operation Mode
Operation Mode Input level Channel X DEN1)
1) The table doesn’t indicate but it is assumed that the appropriate channel is selected via the DSEL pin.
Output Level Diagnostic Output
Normal operation OFF H Z Z
Short circuit to GND ~ GND Z
Overtemperature Z Z
Short circuit to VSVSIIS(FAULT)
Open Load < VOL(OFF)
> VOL(OFF)
2)
2) With additional pull-up resistor.
Z
IIS(FAULT)
Inverse current ~ VINV IIS(FAULT)
Normal operation ON ~ VSIIS = IL / kILIS
Current limitation < VSIIS(FAULT)
Short circuit to GND ~ GND IIS(FAULT)
Overtemperature TJ(SW)
event
ZIIS(FAULT)
Short circuit to VSVSIIS < IL / kILIS
Open Load ~ VS
3)
3) The output current has to be smaller than IL(OL).
IIS < IIS(OL)
Inverse current ~ VINV IIS < IIS(OL)
4)
4) After maximum tINV.
Underload ~ VS
5)
5) The output current has to be higher than IL(OL).
IIS(OL) < IIS < IL(nom) / kILIS
Don’t care Don’t care L Don’t care Z
Data Sheet 29 Rev. 2.0, 2010-08-02
PROFET™+ 12V
BTS5090-2EKA
Diagnostic Functions
7.3 SENSE Signal in the Nominal Current Range
Figure 21 and Figure 22 show the current sense as a function of the load current in the power DMOS. Usually, a
pull-down resistor RIS is connected to the IS pin. This resistor has to be higher than 560 Ω to limit the power losses
in the sense circuitry. A typical value is 1.2 kΩ. The blue curve represents the ideal SENSE, assuming an ideal
kILIS factor value. The red curves show the accuracy the device provides across full temperature range, at a
defined current.
Figure 21 Current Sense for Nominal Load
7.3.1 SENSE Signal Variation as a Function of Temperature and Load Current
In some applications a better accuracy is required around half the nominal current IL(NOM). To achieve this accuracy
requirement, a calibration on the application is possible. To avoid multiple calibration points at different load and
temperature conditions, the BTS5090-2EKA allows limited derating of the kILIS value, at nominal load current (IL3;
TJ = +25 °C). This derating is described by the parameter ΔkILIS. Figure 22 shows the behavior of the SENSE
current, assuming one calibration point at nominal load at +25 °C.
The blue line indicates the ideal kILIS ratio.
The green lines indicate the derating on the parameter across temperature and voltage, assuming one calibration
point at nominal temperature and nominal battery voltage.
The red lines indicate the kILIS accuracy without calibration.
0.0
1.0
2.0
3.0
4.0
5.0
6.0
01234567
I
L
[A]
I
IS
[m A]
K
ILIS ideal
I
IS
=
kilis BTS5090
k
ilis4
K
ilis3
K
ilis2
K
ilis1
I
L
BTS5090-2EKA
Diagnostic Functions
Data Sheet 30 Rev. 2.0, 2010-08-02
PROFET™+ 12V
Figure 22 Improved SENSE Accuracy with One Calibration Point
7.3.2 SENSE Signal Timing
Figure 23 shows the timing during settling and disabling of the SENSE.
Figure 23 SENSE Settling / Disabling Timing
V
INx
t
I
L
t
I
IS
t
V
DEN
t
t
sIS(ON)
t
sIS(OFF )
t
ONx
90% of
IIS static
90% of
IL static
t
sIS(ON _DEN)
t
sIS( LC)
V
INy
t
I
Ly
t
V
DSEL
t
t
sIS(chC)
cur r ent sense settling disabling time .vsd
t
ONx
t
OFFx
t
ONy
Data Sheet 31 Rev. 2.0, 2010-08-02
PROFET™+ 12V
BTS5090-2EKA
Diagnostic Functions
7.3.3 SENSE Signal in Open Load
7.3.3.1 Open Load in ON Diagnostic
If the channel is ON, a leakage current can still flow through an open load, for example due to humidity. The
parameter IL(OL) gives the threshold of recognition for this leakage current. If the current IL flowing out the power
DMOS is below this value, the device recognizes a failure, if the DEN (and DSEL) is selected. In that case, the
SENSE current is below IIS(OL). Otherwise, the minimum SENSE current is given above parameter IIS(OL).
Figure 24 shows the SENSE current behavior in this area. The red curve shows a typical product curve. The blue
curve shows the ideal kILIS ratio.
Figure 24 Current Sense Ratio for Low Currents
7.3.3.2 Open Load in OFF Diagnostic
For open load diagnosis in OFF-state, an external output pull-up resistor (ROL) is recommended. For the
calculation of pull-up resistor value, the leakage currents and the open load threshold voltage VOL(OFF) have to be
taken into account. Figure 25 gives a sketch of the situation. Ileakage defines the leakage current in the complete
system, including IL(OFF) (see Chapter 5.5) and external leakages, e.g, due to humidity, corrosion, etc.... in the
application.
To reduce the stand-by current of the system, an open load resistor switch SOL is recommended. If the channel x
is OFF, the output is no longer pulled down by the load and VOUT voltage rises to nearly VS. This is recognized by
the device as an open load. The voltage threshold is given by VOL(OFF). In that case, the SENSE signal is switched
to the IIS(FAULT).
An additional RPD resistor can be used to pull VOUT to 0V. Otherwise, the OUT pin is floating. This resistor can be
used as well for short circuit to battery detection, see Chapter 7.3.4.
I
IS
I
L
Sense for OL .vsd
I
L(OL)
I
IS(OL)
BTS5090-2EKA
Diagnostic Functions
Data Sheet 32 Rev. 2.0, 2010-08-02
PROFET™+ 12V
Figure 25 Open Load Detection in OFF Electrical Equivalent Circuit
7.3.3.3 Open Load Diagnostic Timing
Figure 26 shows the timing during either Open Load in ON or OFF condition when the DEN pin is HIGH. Please
note that a delay tsIS(FAULT_OL_OFF) has to be respected after the falling edge of the input, when applying an open
load in OFF diagnosis request, otherwise the diagnosis can be wrong.
Figure 26 SENSE Signal in Open Load Timing
OUT
VS
SOL
Vbat
V
OL(OFF)
I
leakage
I
IS(FAULT)
IS
I
LOFF
OL
comp.
Open Load in OFF.svg
R
OL
ZGND
RIS
R
leakage
GND
RPD
VIN
tVOUT
t
IIS
t
tsIS(LC)
90% of I
IIS(FAULT)
static
tsIS(FAULT_OL_OFF)
Error Settling Disabling Time.vsd
VS-VOL(OFF)
R
DS(ON)
x I
L
IOUT
Load is present Open load
shutdown with load
t
Data Sheet 33 Rev. 2.0, 2010-08-02
PROFET™+ 12V
BTS5090-2EKA
Diagnostic Functions
7.3.4 SENSE Signal with OUT in Short Circuit to VS
In case of a short circuit between the OUTput-pin and the VS pin, all or portion (depending on the short circuit
impedance) of the load current will flow through the short circuit. As a result, a lower current compared to the
normal operation will flow through the DMOS of the BTS5090-2EKA, which can be recognized at the SENSE
signal. The open load at OFF detection circuitry can also be used to distinguish a short circuit to VS. In that case,
an external resistor to ground RSC_VS is required. Figure 27 gives a sketch of the situation.
Figure 27 Short Circuit to Battery Detection in OFF Electrical Equivalent Circuit
7.3.5 SENSE Signal in Case of Overload
An overload condition is defined by a current flowing out of the DMOS reaching the current limitation and / or the
absolute dynamic temperature swing TJ(SW) is reached, and / or the junction temperature reaches the thermal
shutdown temperature TJ(SC). Please refer to Chapter 6.5 for details.
In that case, the SENSE signal given is by IIS(FAULT) when the diagnostic is selected.
The device has a thermal restart behavior, such that when the overtemperature or the exceed dynamic
temperature condition has disappeared, the DMOS is reactivated if the IN is still at logical level one. If the DEN
pin is activated, and DSEL pin is selected to the correct channel, SENSE is not toggling with the restart mechanism
and remains to IIS(FAULT).
7.3.6 SENSE Signal in Case of Inverse Current
In the case of inverse current, the sense signal of the affected channel will indicate open load in OFF state and
indicate open load in ON state. The unaffected channel indicates normal behavior as long as the IINV current is not
exceeding the maximum value specified in Chapter 5.4.
V
S
V
bat
V
OL(OFF)
I
IS(FAULT)
IS
OL
comp.
Short circuit to Vs.svg
V
BAT
OUT
GND
Z
GND
R
SC_VS
R
IS
BTS5090-2EKA
Diagnostic Functions
Data Sheet 34 Rev. 2.0, 2010-08-02
PROFET™+ 12V
7.4 Electrical Characteristics Diagnostic Function
Table 9 Electrical Characteristics: Diagnostics
VS = 8 V to 18 V, TJ = -40°C to +150°C (unless otherwise specified).
Typical values are given at VS = 13.5 V, TJ = 25 °C
Parameter Symbol Values Unit Note /
Test Condition
Number
Min. Typ. Max.
Load Condition Threshold for Diagnostic
Open load detection
threshold in OFF state
VS - VOL(OFF) 4–6V
1) VIN = 0 V
VDEN = 4.5 V
See Figure 26
P_7.5.1
Open load detection
threshold in ON state
IL(OL) 5–30 mAVIN = VDEN = 4.5 V
IIS(OL) = 8 μA
See Figure 24
See Figure 46
P_7.5.2
Sense Pin
IS pin leakage current when
sense is disabled
IIS_(DIS) ––1μA1) VIN = 4.5 V
VDEN = 0 V
IL = IL4 = 4 A
P_7.5.4
Sense signal saturation
voltage
VS - VIS
(RANGE)
0–3V
3) VIN = 0 V
VOUT = VS > 10 V
VDEN = 4.5 V
IIS = 6 mA
See Figure 47
P_7.5.6
Sense signal maximum
current in fault condition
IIS(FAULT) 61535 mAVIS = VIN = VDSEL = 0 V
VOUT = VS > 10 V
VDEN = 4.5 V
See Figure 20
See Figure 48
P_7.5.7
Sense pin maximum voltage VIS(AZ) 41 47 53 V IIS = 5 mA
See Figure 20
P_7.5.3
Current Sense Ratio Signal in the Nominal Area, Stable Load Current Condition
Current sense ratio
IL0 = 50 mA
kILIS0 -50 1650 +50 % VIN = 4.5 V
VDEN = 4.5 V
See Figure 21
TJ = -40 °C; 150 °C
P_7.5.8
Current sense ratio
IL1 = 0.5 A
kILIS1 -34 1500 +34 % P_7.5.9
Current sense ratio
IL2 = 1 A
kILIS2 -13 1500 +13 % P_7.5.10
Current sense ratio
IL3 = 2 A
kILIS3 -9 1500 +9 % P_7.5.11
Current sense ratio
IL4 = 4 A
kILIS4 -8 1500 +8 % P_7.5.12
kILIS derating with current and
temperature
ΔkILIS -8 0 +8 % 3) kILIS3 versus kILIS2
See Figure 22
P_7.5.17
Diagnostic Timing in Normal Condition
Data Sheet 35 Rev. 2.0, 2010-08-02
PROFET™+ 12V
BTS5090-2EKA
Diagnostic Functions
Current sense settling time to
kILIS function stable after
positive input slope on both
INput and DEN
tsIS(ON) 0–250μs3) VDEN = VIN = 0 to
4.5 V
VS = 13.5 V
RIS = 1.2 kΩ
CSENSE < 100 pF
IL = IL3 = 2 A
See Figure 23
P_7.5.18
Current sense settling time
with load current stable and
transition of the DEN
tsIS(ON_DEN) 0–20μs1) VIN = 4.5 V
VDEN = 0 to 4.5 V
RIS = 1.2 kΩ
CSENSE < 100 pF
IL = IL3 = 2 A
See Figure 23
P_7.5.19
Current sense settling time to
IIS stable after positive input
slope on current load
tsIS(LC) 0–20μs1) VIN = 4.5 V
VDEN = 4.5 V
RIS = 1.2 kΩ
CSENSE < 100 pF
IL = IL2 = 1 A to IL = IL3
= 2 A
See Figure 23
P_7.5.20
Diagnostic Timing in Open Load Condition
Current sense settling time to
IIS stable for open load
detection in OFF state
tsIS(FAULT_OL_
OFF)
0–150μs1) VIN = 0V
VDEN = 0 to 4.5 V
RIS = 1.2 kΩ
CSENSE < 100 pF
VOUT = VS = 13.5 V
See Figure 26
P_7.5.22
Diagnostic Timing in Overload Condition
Current sense settling time to
IIS stable for overload
detection
tsIS(FAULT) 0–250μs1) 2) VIN = VDEN = 0 to
4.5 V
RIS = 1.2 kΩ
CSENSE < 100 pF
VDS = 5 V
See Figure 19
P_7.5.24
Current sense over
temperature blanking time
tsIS(OT_blank) 350 μs3) VIN = VDEN = 4.5 V
RIS = 1.2 kΩ
CSENSE < 100 pF
VDS = 5 V to 0 V
See Figure 19
P_7.5.32
Table 9 Electrical Characteristics: Diagnostics (cont’d)
VS = 8 V to 18 V, TJ = -40°C to +150°C (unless otherwise specified).
Typical values are given at VS = 13.5 V, TJ = 25 °C
Parameter Symbol Values Unit Note /
Test Condition
Number
Min. Typ. Max.
BTS5090-2EKA
Diagnostic Functions
Data Sheet 36 Rev. 2.0, 2010-08-02
PROFET™+ 12V
Diagnostic disable time
DEN transition to
IIS < 50% IL /kILIS
tsIS(OFF) 0–30μs1) VIN = 4.5 V
VDEN = 4.5 V to 0 V
RIS = 1.2 kΩ
CSENSE < 100 pF
IL = IL3 = 2 A
See Figure 23
P_7.5.25
Current sense settling time
from one channel to another
tsIS(ChC) 0–20μsVIN0 = VIN1 = 4.5 V
VDEN = 4.5 V
VDSEL = 0 to 4.5 V
RIS = 1.2 kΩ
CSENSE < 100 pF
IL(OUT0) = IL3 = 2 A
IL(OUT1) = IL2 = 1 A
See Figure 23
P_7.5.26
1) DSEL pin select channel 0 only.
2) Test at TJ = -40°C only
3) Not subject to production test, specified by design
Table 9 Electrical Characteristics: Diagnostics (cont’d)
VS = 8 V to 18 V, TJ = -40°C to +150°C (unless otherwise specified).
Typical values are given at VS = 13.5 V, TJ = 25 °C
Parameter Symbol Values Unit Note /
Test Condition
Number
Min. Typ. Max.
Data Sheet 37 Rev. 2.0, 2010-08-02
PROFET™+ 12V
BTS5090-2EKA
Input Pins
8 Input Pins
8.1 Input Circuitry
The input circuitry is compatible with 3.3 and 5 V microcontrollers. The concept of the input pin is to react to voltage
thresholds. An implemented Schmidt trigger avoids any undefined state if the voltage on the input pin is slowly
increasing or decreasing. The output is either OFF or ON but cannot be in a linear or undefined state. The input
circuitry is compatible with PWM applications. Figure 28 shows the electrical equivalent input circuitry. In case the
pin is not needed, it must be left opened, or must be connected to device ground (and not module ground) via a
4.7kΩ input resistor.
Figure 28 Input Pin Circuitry
8.2 DEN / DSEL Pin
The DEN / DSEL pins enable and disable the diagnostic functionality of the device. The pins have the same
structure as the Input pins, please refer to Figure 28.
8.3 Input Pin Voltage
The IN, DSEL and DEN use a comparator with hysteresis. The switching ON / OFF takes place in a defined region,
set by the thresholds VIN(L) Max. and VIN(H) Min. The exact value where the ON and OFF take place are unknown
and depends on the process, as well as the temperature. To avoid cross talk and parasitic turn ON and OFF, a
hysteresis is implemented. This ensures a certain immunity to noise.
GND
IN
Input cir cuitr y.vsd
BTS5090-2EKA
Input Pins
Data Sheet 38 Rev. 2.0, 2010-08-02
PROFET™+ 12V
8.4 Electrical Characteristics
Table 10 Electrical Characteristics: Input Pins
VS = 8 V to 18 V, TJ = -40°C to +150°C (unless otherwise specified).
Typical values are given at VS = 13.5 V, TJ = 25 °C
Parameter Symbol Values Unit Note /
Test Condition
Number
Min. Typ. Max.
INput Pins Characteristics
Low level input voltage range VIN(L) -0.3 0.8 V See Figure 49 P_8.4.1
High level input voltage range VIN(H) 2 – 6 V See Figure 50 P_8.4.2
Input voltage hysteresis VIN(HYS) 250 mV 1) See Figure 51
1) Not subject to production test, specified by design
P_8.4.3
Low level input current IIN(L) 11025μAVIN = 0.8 V P_8.4.4
High level input current IIN(H) 21025μAVIN = 5.5 V
See Figure 52
P_8.4.5
DEN Pin
Low level input voltage range VDEN(L) -0.3 0.8 V P_8.4.6
High level input voltage range VDEN(H) 2–6V P_8.4.7
Input voltage hysteresis VDEN(HYS) 250 mV 1) P_8.4.8
Low level input current IDEN(L) 11025μAVDEN = 0.8 V P_8.4.9
High level input current IDEN(H) 21025μAVDEN = 5.5 V P_8.4.10
DSEL Pin
Low level input voltage range VDSEL(L) -0.3 0.8 V P_8.4.11
High level input voltage range VDSEL(H) 2–6V P_8.4.12
Input voltage hysteresis VDSEL(HYS) 250 mV 1) P_8.4.13
Low level input current IDSEL(L) 11025μAVDSEL = 0.8 V P_8.4.14
High level input current IDSEL(H) 21025μAVDSEL = 5.5 V P_8.4.15
Data Sheet 39 Rev. 2.0, 2010-08-02
PROFET™+ 12V
BTS5090-2EKA
Characterization Results
9 Characterization Results
The characterization have been performed on 3 lots, with 3 devices each. Characterization have been performed
at 8 V, 13.5 V and 18 V, from -40°C to 160°C. When no dependency to voltage is seen, only one curve (13,5V) is
sketched.
9.1 General Product Characteristics
9.1.1 Minimum Functional Supply Voltage
P_4.2.3
Figure 29 Minimum Functional Supply Voltage VS(OP)_MIN = f(TJ)
9.1.2 Undervoltage Shutdown
P_4.2.4
Figure 30 Undervoltage Threshold VS(UV) = f(TJ)
3,8
4,2
4,6
5
-40 0 40 80 120 160
Junction Temp (°C)
VS(OP)_MIN (V)
minimum functional supply.vsd
Undervoltage_shutdown.vsd
3
3,25
3,5
3,75
4
-40 0 40 80 120 160
Junction Temp (°C)
VS(UV) (V
)
BTS5090-2EKA
Characterization Results
Data Sheet 40 Rev. 2.0, 2010-08-02
PROFET™+ 12V
9.1.3 Current Consumption One Channel active
P_4.2.5
Figure 31 Current Consumption for Whole Device with Load. One Channel Active IGND_1 = f(TJ;VS)
9.1.4 Current Consumption Two Channels active
P_4.2.6
Figure 32 Current Consumption for Whole Device with Load. Two Channels Active IGND_2 = f(TJ;VS)
9.1.5 Standby Current for Whole Device with Load
P_4.2.7, P_4.2.10
Figure 33 Standby Current for Whole Device with Load. IS(OFF) = f(TJ;VS)
Current consumption one channel active.vsd
0
3
6
-40 0 40 80 120 160
Junction Temp (°C)
I_GND1 (mA
)
I_GND1 @ 8 V
I_GND1 @ 13.5V
I_GND1 @ 1 8V
Current consumption two channel active.vsd
0
3
6
9
-40 0 40 80 120 160
Junction Temp (°C)
I_GND2 (mA
)
I_GND2 @ 8V
I_GND2 @ 13.5V
I_GND2 @ 18V
0
2
4
6
-40 0 40 80 120 160
Junction Temp (°C)
IS(OFF) (µA
)
IS(OFF) @ 18V
IS(OFF) @ 13.5V
IS(OFF) @ 8V
Data Sheet 41 Rev. 2.0, 2010-08-02
PROFET™+ 12V
BTS5090-2EKA
Characterization Results
9.2 Power Stage
9.2.1 Output Voltage Drop Limitation at Low Load Current
P_5.5.4
Figure 34 Output Voltage Drop Limitation at Low Load Current VDS(NL) = f(TJ;VS) ; IL = IL(0) = 50mA
9.2.2 Drain to Source Clamp Voltage
P_5.5.5
Figure 35 Drain to Source Clamp Voltage VDS(AZ) = f(TJ)
7
9
11
13
-40 0 40 80 120 160
Junction Temp (°C)
VDS(NL) (mV
)
Output Voltage drop limitation at low load current.vsd
40
44
48
52
-40 0 40 80 120 160
Junction Temp (°C)
VDS(AZ) (V
)
Drain to source clamp voltage.vsd
BTS5090-2EKA
Characterization Results
Data Sheet 42 Rev. 2.0, 2010-08-02
PROFET™+ 12V
9.2.3 Slew Rate at Turn ON
P_5.5.11
Figure 36 Slew Rate at Turn ON dV/dtON = f(TJ;VS), RL = 6 Ω
9.2.4 Slew Rate at Turn OFF
P_5.5.12
Figure 37 Slew Rate at Turn OFF - dV/dtOFF = f(TJ;VS), RL = 6 Ω
9.2.5 Turn ON
P_5.5.14
Figure 38 Turn ON tON = f(TJ;VS), RL = 6 Ω
dV_dt_ON.vsd
0,1
0,3
0,5
-40 0 40 80 120 160
Junction Temp (°C)
dV/dt_ON (V/µs
)
dV/dt_ON @ 8V
dV/dt_ON @ 13.5V
dV/dt_ON @ 18V
dV_dt_OFF.vsd
0,1
0,3
0,5
-40 0 40 80 120 160
Junction Temp (°C)
dV/dt_OFF (V/µs
)
dV/dt_OFF @ 8V
dV/dt_OFF @ 13.5V
dV/dt_OFF @ 18V
30
130
230
-40 0 40 80 120 160
Junction Temp (°C)
t_ON 90%s)
tON 90%@18V
tON 90%@13,5V
tON 90%@8V
tON_90.vsd
Data Sheet 43 Rev. 2.0, 2010-08-02
PROFET™+ 12V
BTS5090-2EKA
Characterization Results
9.2.6 Turn OFF
P_5.5.11
Figure 39 Turn OFF tOFF = f(TJ;VS), RL = 6 Ω
9.2.7 Turn ON / OFF matching
P_5.5.16
Figure 40 Turn ON / OFF matching ΔtSW = f(TJ;VS), RL = 6 Ω
30
130
230
-40 0 40 80 120 160
Junction Temp (°C)
t_OFF 10% (µs)
tOFF 10%@18V
tOFF 10%@13,5V
tOFF 10%@8V
tOFF_90.vsd
delta_t_SW_OFF_ON.vsd
-50
-25
0
25
50
-40 0 40 80 120 160
Junction Temp (°C)
delta t SW (µs)
delta_t_SW @ 8V
delta_t_SW @ 13.5V
delta_t_SW @ 18V
BTS5090-2EKA
Characterization Results
Data Sheet 44 Rev. 2.0, 2010-08-02
PROFET™+ 12V
9.2.8 Switch ON Energy
P_5.5.19
Figure 41 Switch ON Energy EON = f(TJ;VS), RL = 6 Ω
9.2.9 Switch OFF Energy
P_5.5.20
Figure 42 Switch OFF Energy EOFF = f(TJ;VS), RL = 6 Ω
0
250
500
750
1000
-40 0 40 80 120 160
Junction Temp (°C)
E_ON (µJ)
Sw itch ON energy @ 18V
Sw itch ON energy @ 13,5V
Sw itch ON energy @ 8V
0
250
500
750
1000
-40 0 40 80 120 160
Junction Temp (°C)
E_ON (µJ)
Switch O N energy @ 18V
Switch O N energy @ 13,5V
Switch O N energy @ 8V
Data Sheet 45 Rev. 2.0, 2010-08-02
PROFET™+ 12V
BTS5090-2EKA
Characterization Results
9.3 Protection Functions
9.3.1 Overload Condition in the Low Voltage Area
P_6.6.4
Figure 43 Overload Condition in the Low Voltage Area IL5(SC) = f(TJ;VS)
9.3.2 Overload Condition in the High Voltage Area
P_6.6.7
Figure 44 Overload Condition in the High Voltage Area IL28(SC) = f(TJ;VS)
20
25
30
35
40
-40 0 40 80 120 160
Junction Temp (°C)
IL5(SC) (V)
IL(SC)_5V @ 8V
IL(SC)_5V @ 13.5V
IL(SC)_5V @ 18V
10
15
20
-40 0 40 80 120 160
Junction Temp (°C)
IL28(SC) (V)
BTS5090-2EKA
Characterization Results
Data Sheet 46 Rev. 2.0, 2010-08-02
PROFET™+ 12V
9.4 Diagnostic Mechanism
9.4.1 Current Sense at no Load
Figure 45 Current Sense at no Load IIS = f(TJ;VS), IL = 0
9.4.2 Open Load Detection Threshold in ON State
P_7.5.2
Figure 46 Open Load Detection ON State Hysteresis IL(OL) = f(TJ;VS)
0
0,5
1
1,5
2
2,5
-40 0 40 80 120 160
Junction Temp (°C)
I_IS @ IL = 0mA (µA
)
Current_sense_0mA.vsd
Data Sheet 47 Rev. 2.0, 2010-08-02
PROFET™+ 12V
BTS5090-2EKA
Characterization Results
9.4.3 Sense Signal Maximum Voltage
P_7.5.3
Figure 47 Sense Signal Maximum Voltage VS - VIS(RANGE) =f(TJ;VS)
9.4.4 Sense Signal maximum Current
P_7.5.7
Figure 48 Sense Signal Maximum Current in Fault Condition IIS(FAULT) = f(TJ;VS)
1
2
3
-40 0 40 80 120 160
Junction Temp (°C)
V
S
- V
IS
_RANGE (V)
VIS_RANGE @ 8V
VIS_RANGE @ 13.5V
VIS_RANGE @ 18V
IIS_FAULT.vsd
6
16
26
36
-40 0 40 80 120 160
Junction Temp (°C)
IIS_FAULT (mA
)
IIS_FAULT @ 8V
IIS_FAULT @ 13.5V
IIS_FAULT @ 18V
BTS5090-2EKA
Characterization Results
Data Sheet 48 Rev. 2.0, 2010-08-02
PROFET™+ 12V
9.5 Input Pins
9.5.1 Input Voltage Threshold ON to OFF
P_8.4.1
Figure 49 Input Voltage Threshold VIN(L) = f(TJ;VS)
9.5.2 Input Voltage Threshold OFF to ON
P_8.4.2
Figure 50 Input Voltage Threshold VIN(H) = f(TJ;VS)
Input_pin_low_voltage.vsd
0
0,5
1
1,5
2
-40 0 40 80 120 160
Junction Temp (°C)
V_INH(L) (V)
I_IN(L) @ 8V
I_IN(L) @ 13.5V
I_IN(L) @ 18V
Input_pin_high_voltage.vsd
0
0,5
1
1,5
2
-40 0 40 80 120 160
Junction Temp (°C)
V_INH(H) (V)
Data Sheet 49 Rev. 2.0, 2010-08-02
PROFET™+ 12V
BTS5090-2EKA
Characterization Results
9.5.3 Input Voltage Hysteresis
P_8.4.3
Figure 51 Input Voltage Hysteresis VIN(HYS) = f(TJ;VS)
9.5.4 Input Current High Level
P_8.4.5
Figure 52 Input Current High Level IIN(H) = f(TJ;VS)
0
100
200
300
400
-40 0 40 80 120 160
Junction Temp (°C)
V_IN(HYS) (mV
)
V_IN(HYS) @ 8V
V_IN(HYS) 13.5V
V_IN(HYS) @ 18V
Input_pin_voltage_hysteresis.vsd
0
5
10
15
20
25
-40 0 40 80 120 160
Junction Temp (°C)
I_INH(H) (µA)
Input_pin_high_current.vsd
BTS5090-2EKA
Application Information
Data Sheet 50 Rev. 2.0, 2010-08-02
PROFET™+ 12V
10 Application Information
Note: The following information is given as a hint for the implementation of the device only and shall not be
regarded as a description or warranty of a certain functionality, condition or quality of the device.
Figure 53 Application Diagram with BTS5090-2EKA
Note: This is a very simplified example of an application circuit. The function must be verified in the real application.
Table 11 Bill of Material
Reference Value Purpose
RIN 4.7 kΩProtection of the micro controller during overvoltage, reverse polarity
Guarantee BTS5090-2EKA channels OFF during loss of ground
RDEN 4.7 kΩProtection of the micro controller during overvoltage, reverse polarity
Guarantee BTS5090-2EKA channels OFF during loss of ground
RPD 47 kΩPolarization of the output
Improve BTS5090-2EKA immunity to electromagnetic noise
RDSEL 4.7 kΩProtection of the micro controller during overvoltage, reverse polarity
Guarantee BTS5090-2EKA channels OFF during loss of ground
RIS 1.2 kΩSense resistor
OUT
OUT
OUT
OUT
A/D
Vss
Vdd
Micro controller
IN0
IN1
DEN
DSEL
IS GND
OUT0
OUT1
V
s
V
BAT
C
SENSE
Application example.svg
Z1
R/L cable
R/L cable
R/L cable
C
OUT1
C
OUT0
R
IN
R
IN
R
DEN
R
DSEL
R
A/D
R
SENSE
R
IS
R
GND
V
DD
R
PD
R
PD
C
VS
R
OL
T
1
D
Z2
Data Sheet 51 Rev. 2.0, 2010-08-02
PROFET™+ 12V
BTS5090-2EKA
Application Information
10.1 Further Application Information
Please contact us to get the pin FMEA
Existing App. Notes
For further information you may visit http://www.infineon.com/profet
RSENSE 4.7 kΩOvervoltage, reverse polarity, loss of ground. Value to be tuned with micro
controller specification.
ROL 1.5 kΩEnsure polarization of the BTS5090-2EKA output during open load in OFF
diagnostic
RA/D 4.7 kΩProtection of the micro controller during overvoltage, reverse polarity
D BAS21 Protection of the BTS5090-2EKA during reverse polarity
RGND 1 kΩTo keep the device GND at a stable potential during clamping
Z1 7 V Zener diode Protection of the micro controller during overvoltage
Z2 36 V Zener
diode
Protection of the device during overvoltage
T1 BC 807 Switch the battery voltage for open load in OFF diagnostic
CSENSE 100 pF Sense signal filtering
CVS 100 nF Filtering of the voltage spikes on the battery line
COUT0 4.7 nF Protection of the BTS5090-2EKA during ESD and BCI
COUT1 4.7 nF Protection of the BTS5090-2EKA during ESD and BCI
Table 11 Bill of Material (cont’d)
Reference Value Purpose
BTS5090-2EKA
Package Outlines
Data Sheet 52 Rev. 2.0, 2010-08-02
PROFET™+ 12V
11 Package Outlines
Figure 54 PG-DSO-14-40 EP (Plastic Dual Small Outline Package) (RoHS-Compliant)
Green Product (RoHS compliant)
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e
Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).
GPS01207
0.2
-0.1
8˚ MAX.
0˚...8˚
1.27
0.41
±0.09 2)
A-B0.2
M
C14x
D
Seating Plane
(1.47)
1.7 MAX.
Stand Off
CC
0.08
-0.1
0.1
+0
8˚ MAX.
0˚...8˚
0.35 x 45˚
3.9
±0.11)
0.1 DC2x
±0.25
0.64
6
DD
±0.2
0.2
M
+0.06
0.19
8˚ MAX.
A
17
814
B
C0.1 A-B 2x
±0.1
8.65
Index Marking
6.4
Bottom View
±0.1
±0.1
2.65
71
14 8
2) Does not include dambar protrusion of 0.13 max.
1) Does not include plastic or metal protrusion of 0.15 max. per side
3) JEDEC reference MS-012 variation BB
Data Sheet 53 Rev. 2.0, 2010-08-02
PROFET™+ 12V
BTS5090-2EKA
Revision History
12 Revision History
Version Date Parameter Changes
2.0 2010-05-31 Creation of the Data Sheet
Edition 2010-08-02
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2010 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights
of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the types in
question, please contact the nearest Infineon Technologies Office.
Infineon Technologies components may be used in life-support devices or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may
be endangered.