ASAHI KASEI [AK2574]
<MS0266-E-00> -1- 2003/12
AK2574
156M Laser Diode Driver + APC for Burst Mode
Features
- 156M Laser Diode Driver for burst mode application
- BIAS current switching
- Programmable laser BIAS and modulation current
controlled by an on-chip temperature sensor
(APC_FF)
- Two current output 8 bit DACs,
I-DAC1: 85mA sink for modulation current
I-DAC2: 54mA sink for BIAS current
- Power failure alarm (TXACT), CLK failure alarm
(CLKALM)
- I2CTM compatible digital I/F
- Duty adjustment
- Single 3.3V +/- 0.2V operation
Applications
ITU-T G.983 ATM-PON ONU
I2CTM is a trademark o f Philips Corporation.
Description
The AK2574 is a 1chip LDD (Laser Diode Driver) and
an APC (Auto Power Control) for burst mode
application such as ATM-PON. It contains not only
156M LDD for modulatin current but also BIAS
current switching, programmable BIAS and
modulation currents, duty adjustment, I2CTM interface,
an EEPROM for storing LD characteristics and user
information.
The AK2574 has an APC FF (Feed-forward) function
that supplies a programmed current in response to the
temperature.
All program and operational functions can be set
through the I2CTM compatible interface and stored in the
on-chip EEPROM.
Ordering Information
Product Number PKG
AK2574VB BCC++ 48 (7mm * 7mm)
Block Diagram
APC_FF
OSC
IBIAS
BIAS_
GEN
BIAS
RB (12k)
TEMPSENS
Monitor
PD
RPD
CLK
(LVPECL)
DATA
(LVPECL) MOD
DRIVER
LD
TEMPMON
Imod
Digital I/F (I2CTM)
SCL SDA* WP**
TXDIS
CONTROL
DATAP
DATAN
CLKP
CLKN
IMODN IMOD
*: Open Drain
TXACT
**: Pull-up
BRST
(LVPECL)
BRSTP
BRSTN
CLK_
DET
FF
FF
AND
EEPROM
BIAS
DRIVER
DUTY_
ADJ
COMP
(TXACT)
DAC
(TXACT) AND
PDIN
Ibias
CLKALM
I-DAC1
I-DAC2
ADC
data data_ff
clk
brst brst_ff
comp_out
i_pd txact_ref SET/
RESET
IBIASC1
IBIASC2 0.1uF
0.1uF
SEL
SEL
330
IBIASR1
ASAHI KASEI [AK2574]
<MS0266-E-00> -2- 2003/12
- Contents -
. Pin Description ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 4
. Absolute Maximum Rating 6
. Recommend Operation Conditions・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 6
. Electrical Chracteristics ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 6
1. Power Consumption・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 6
2. EEPROM・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 6
3. Digital Input / Output DC Characteristics ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 7
4. I2CTM I/F AC Characteristics・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 7
5. LVPECL I/F ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 8
6. BRST Timing (SEL=”L”, without CLK)・・・・・・・・・・・・・・・・・・・・・・・・ 8
7. BRST Timing (SEL=”H”, with CLK)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 9
8. I-DAC1・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 9
9. I-DAC2・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・10
10. Duty Cycle Adjustment・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・10
11. DAC (TXACT)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・10
12. PDIN Capacitance・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・10
13. BIASGEN・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・10
14. Temperature Sensor ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・10
15. ADC・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・11
16. Power On Reset ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・11
17. On-chip Oscillator ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・11
. Package Information・・・・・・ 12
. Circuit Description・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 13
1. Parameter Notation ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・13
1.1 Parameter Definition ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・13
1.2 Operation Overview・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・13
2. LD Driver ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・14
2.1 Driver ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・14
2.2 LVPECL Input (DATAP/DATAN/CLKP/CLKN/BRSTP/BRSTN) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・14
2.2.1 LVPECL Input Characteristics・・・・・・・・・・・・・・・・・・・・・・14
2.2.2 Input Timing (SEL=”H, in the case of the latched DATA with CLK) ・・15
2.2.3 Input Timing (SEL=”L, in the case of direct DATA) ・・・・・・・・・・・・・・・・・・・・16
2.3 Duty Adjustment ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・16
2.4 APC ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・17
2.4.1 APC_FF・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・17
2.4.2 I-DAC・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・17
2.4.3 I-DAC2 Minimum Current Output・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・18
2.4.4 Temperature Sensor (TEMPSENS)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・18
3. Alarm ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・20
3.1 TXACT・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・20
3.2 CLKALM ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・21
4. Shutdown ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・21
5. I2CTM I/F・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・22
5.1 Memory Map ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・22
5.2 Read / Write Operation・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・23
5.2.1 Byte Write・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・23
5.2.2 Page Write・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・23
ASAHI KASEI [AK2574]
<MS0266-E-00> -3- 2003/12
5.2.3 Current Address Read・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・23
5.2.4 Random Read・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・23
5.2.5 Sequential Read・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・23
5.2.6 Data Change・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・24
5.2.7 Start / Stop Condition ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・24
5.3 EEPROM ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・24
5.4 Register・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・26
6. Operation Mode ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・27
6.1 Self-running Mode ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・27
6.2 Adjustment Mode ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・27
6.3 EEPROM Mode ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・27
6.4 MODE Control ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・27
6.5 Operation Mode Protection ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・27
6.6 Operation Mode Status ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・27
7. Module Adjustment Example・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・28
. Circuit Example・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 29
ASAHI KASEI [AK2574]
<MS0266-E-00> -4- 2003/12
. Pin Description
The symbol of I/O column shows below.
Ai: Analog input, Ai_l: LVPECL input, Ao: Analog output
Di: Digital input, Di_pu: Digital input with pulled-up resistor, Do: Digital output,
Dio_od: Digital input / output (open drain)
PWR: Power or VSS
PIN#
Symbol Function I/O Remark
1 SDA Serial data input / output (Open drain). Connect to VDD with 4.7k
to 10kΩ resistor. Dio_od AC load
100pF
2 NC No Connection. Connect to the VSS (recommended) or leave open.
3 SCL Serial clock input. The data (SDA) is shifted in at the rising edge of
SCL and is shifted out at the falling edge of SCL. Di Do not
leave open
4 CLKALM Sets the alarm when detects 1s or 0s sequential clock input.
During CLKALM detection, the AK2574 goes into “TX disable”.
The detection time is 100ns (typ). The CLKALM is reset when 1
clock is detected. The polarity can be set with EEPROM.
When SEL=”L”, CLKALM is set “non-detected” polarity.
Do AC load
30pF
5 TXDIS TX Disable.
The polarity can be set with EEPROM. When set “TX disable”,
IMOD and IBIAS are Hi-Z. Use 4.7kΩ or more for externally
pulled-up or pulled-down.
Di Do not
leave open
6 WP Write Protect. Internally pulled-up with 20kΩ (typ).
“H” sets device address 101000 and only user area of EEPROM
can be accessed as read-only. L sets device address as 1010 and
full of EEPROM can be accessed as read/write.
Di_pu
7 CLKN Negative LVPECL clock input. Input Impedance >= 10kΩ.
Connect to VSS when SEL = “L”. Ai_l
8 CLKP Positive LVPECL clock input. Input Impedance >= 10kΩ.
Connect to VDD or leave open when SEL = “L”. Ai_l
9 SEL H” for latched data with clock. DATA (DATAP DATAN) and
BRST (BRSTP BRSTN) are shifted into the falling edge of CLK.
(CLKP – CLKN).
“L” for direct data.
Di Do not
leave open
10 DATAN Negative LVPECL data input. Input Impedance >= 10kΩ Ai_l
11 DATAP Positive LVPECL data input. Input Impedance >= 10kΩ Ai_l
12, 13
NC No Connection. Connect to the VSS or leave open.
14 TEST6 Test input. Leave open for normal operation. Do Leave open
15 BRSTN Negative LVPECL burst control input.
Input Impedance >= 10kΩ Ai_l
16 BRSTP Positive LVPECL burst control input.
Input Impedance >= 10kΩ Ai_l
17 TEST5 Test input. Connect to VSS for normal operation Di
18 TEST4 Test input. Connect to VSS for normal operation Di
19 TEST3 Test input. Connect to VSS for normal operation Di
20 TEST2 Test input. Connect to VSS for normal operation Di
Connect to
VSS.
21 VSSDR VSS for MOD driver circuit. PWR
22 VDDDR Power supply for MOD driver circuit. PWR
23 VDDMD Power supply for MOD current circuit. PWR
24 VSSMD VSS for MOD current drive circuit. PWR
25, 26
NC No Connection. Connect to the VSS (recommended) or leave open.
ASAHI KASEI [AK2574]
<MS0266-E-00> -5- 2003/12
Pin Description (Continued)
PIN#
Symbol Function I/O Remark
27, 28
IMODN Negative MOD current output.
Sinks MOD current when input data is “L”. Ao
29, 30
IMOD Positive MOD current output.
Sinks up to 85mA (typ) MOD current when input data is “H”.
MOD current is adjusted with I-DAC1.
IMOD voltage should be (VDD 1.8V) or more.
Ao
31 VSSMD VSS for MOD current drive circuit. PWR
32 VSSBI VSS for BIAS current drive circuit. PWR
33, 34
IBIAS BIAS current output. Sinks up to 54mA (typ) current.
BIAS current is adjusted with I-DAC2.
IBIAS voltage should be (VDD 1.8V) or more.
Ao
35 VSSBI VSS for BIAS current drive circuit. PWR
36 IBIASC1 Connect to VSS with 0.1uF ± 50% (in the operating temerature
range) capacitor. Ao
37 NC No Connection. Connect to the VSS (recommended) or leave open.
38 IBIASC2 Connect to VSS with 0.1uF ± 50% (in the operating temerature
range) capacitor. Ao
39 IBIASR1 Connect to IBIASSC1 with 330Ω± 1% resistor. Ao
40 PDIN Monitor PD voltage input. Monitor PD current is converted to the
voltage with resistor. Ai
41 TEMPMON
Temperature sensor monitor output. Ao AC load
30pF
DC load
50kΩ
42 BIAS BIAS reference for internal circuit. Connect to VSS with 12kΩ±
1% resistor. Ao
43 AVDD Power supply for analog circuit. PWR
44 AVSS VSS for analog circuit. PWR
45 TXACT TXACT is set when PDIN voltage beyond the reference voltage
(DACAPC output) and is kept during BRST=”H”. TXACT is reset
when BRST is transient “H” “L”. The polarity can be set with
EEPROM. TXACT is valid within 2ms after power-up.
Do
46 TEST1 Test input. Connect to VSS for normal operation Di Connect to
VSS.
47 DVSS VSS for digital circuit. PWR
48 DVDD Power supply for digital circuit. PWR
Center PAD of PKG should be connected to the VSS for good electrical performance and radiation of heat.
ASAHI KASEI [AK2574]
<MS0266-E-00> -6- 2003/12
. Absolute Maximum Rating
Item Symbol Min Max Unit Remarks
Supply Voltage VDD -0.3 6.0 V
GND VSS 0.0 0.0 V Reference Voltage
Input voltage VIN VSS - 0.3 VDD + 0.3 V Except VDD
Input Current IIN -10 10 mA Except VDD
Storage Temperature TSTG -55 130 °C Note 1
Stress beyond “Absolute Maximum Range may cause permanent damage to the device.
Note 1: Except Data retention. Data retention is prescribed at section- 2. EEPROM.
. Recommended Operation Conditions
Item Symbol Min Typ Max Unit Remarks
Operating Ambient Ta1 -40 85 °C
VDD1 3.1 3.3 3.5 V Except AVDD
VDD2 3.0 3.3 3.5 V AVDD
Power Supply
VSS 0.0 0.0 0.0 V Reference Voltage
. Electrical Characteristics
1. Power Consumption
Item Symbol
min typ max Unit Remarks
Supply Current 1 (All VDD) IDD1 - 8.5 11 mA Note 1, 2, 4
Supply Current 2 (All VDD) IDD2 36 41 mA Note 1, 3, 5
Supply Current 3 (AVDD only) IDD3 - 10.1 12.5 mA Note 1, 3, 5
Note 1: without BIAS and modulation current.
Note 2: R_DAC1 = R_DAC2 = 00h, PDIN = 1V.
Note 3: R_DAC1 = R_DAC2 = FFh (Full code), PDIN = 1V.
Note 4: DATAP = BRSTP = “L”, DATAN = BRSTP = “H”, CLKP = “H”, CLKN = “L”.
Note 5: 155.52Mbps, PN7, BRSTP=”H”, BRSTN=”L”.
2. EEPROM
Item Min max Unit Remarks
Endurance 10000 - Write Cycle Note 1
Data retention 10 - Year Junction Temperature = 85
Note 1: This parameter is characterized and is not 100% tested.
Important Notice: The AKM factory adjusted data are stored in advance at address location (Device Address = A6h,
Address = 60h) for the offset of the on-chip temperature sensor. If such excess temperature stress is to be applied to
the AK2574 which exceeds a guaranteed EEPROM data retention conditions (for 10 years at 85), it is important to
read the pre-determined value in advance and to re-write the same data back into EEPROM after an exposure to the
excess temperature environment. Even if the exposure time is shorter than the retention time, any accelerated
temperature stress tests (such as baking) are performed, it is recommended to read the pre-set data first and to
re-write it after the test. Access to un-used address locations is not functionally guaranteed.
Refer to section- 5.3 for EEPROM map.
ASAHI KASEI [AK2574]
<MS0266-E-00> -7- 2003/12
3. Digital Input / Output DC Characteristics
Item Symbol
min max Unit Conditions
Input High Level VIH 2.0 V
Input Low Level VIL 0.8 V Note 1
Output High Level VOH 0.9VDD V IOH = -0.2mA
Output Low Level VOL 0.4 V IOL = 1mA (SDA)
IOL = 0.2mA (Except SDA)
Input Leakage Current 1 IL1 10 uA except WP pin
Input Leakage Current 2 IL2 350 uA WP pin
Note 1: except DATAP, DATAN, CLKP, CLKN, BRSTP and BRSTN pins.
4. I2CTM I/F AC Characteristics
Symbol Parameter min max Unit Remark
tSCL Clock Frequency, SCL 100 kHz
tLOW Clock Pulse Width Low 4.7 us
tHigh Clock Pulse Width High 4.0 us
tI Noise Suppression Time 100 ns
tAA Clock Low to Data Out Valid 0.1 4.5 us
tBUF Time Before a New Transmission 4.7 us
tHD.STA Start Hold Time 4.7 us
tSU.STA Start Setup Time 4.0 us
tHD.DAT Data Hold Time 0 us
tSU.DAT Data Setup Time 200 ns
tR Input Rise Time 1.0 us Note 1
tF Input Fall Time 0.3 us Note 1
tSU.STO Stop Setup Time 4.7 us
tDH SDATA Hold Time 100 ns
tWR Write Cycle Time 10 ms
Note 1: This parameter is characterized and is not 100% tested.
SCL
SDA (IN)
SDA (OUT)
tF
tSU.STA tHD.STA
tAA
tHD.DAT tSU.DAT tSU.STO
tDH tBUF
tR
ASAHI KASEI [AK2574]
<MS0266-E-00> -8- 2003/12
5. LVPECL I/F (CLKP, CLKN, DATAP, DATAN, BRSTP, BRSTN)
Item Symbol
min typ max Unit Remarks
Single-ended Input Voltage Swing
Vamp 0.1 1.2 V
Common Voltage Vcom 0.5*VDD
VDD 1.0
V
BIAS Voltage Vbias 0.6*VDD V
Input Impedance Zin 10 kΩ
Vcom
Vamp
CLKP/CLKN
DATAP/DATAN
BRSTP/BRTSTN
6. BRST Timing (SEL=”L”, without CLK)
Item Symbol
Conditions min typ max Unit Remarks
Delay Time of BRST “L” H”
to First DATA Tdr-bd
12.8 ns
Delay Time of Last DATA
to IBIAS OFF Tdf-di Last Data=1
R_DAC2=0Fh
2 ns
R_DAC2=0Fh
120 150 %
R_DAC2=2Fh
108 %
IBIAS Overshoot rib1
R_DAC2=FFh
98 %
Note 1
IBIAS Error before 2ns
of First DATA rib2 R_DAC2=0Fh
+/- 15 % Note 1
Delay Time of BRST “H”L”
to TXACT OFF Tdf-bt R_DAC2=0Fh
16 ns
Delay Time of First DATA
to TXACT Detection Tdr-dt
Note 2
Note 1: This parameter is characterized and is not 100% tested.
Note 2: Depends on TXACT detection level, Monitor PD current, etc. For more information, see VI. 3.1 TXACT”.
BRSTP - BRSTN
DATAP - DATAN
IBIAS Current
IMOD Current
TXACT
Tdr-dt
Tdf-di
Tdf-bt
Tdr-bd
2ns
100% Nominal
rib1 rib2
ASAHI KASEI [AK2574]
<MS0266-E-00> -9- 2003/12
7. BRST Timing (SEL=”H”, with CLK)
Item Symbol
Conditions min typ max Unit Remarks
DATA Set-up Time Tsu 1.5
DATA Hold Time Th 1.0
BRST Set-up Time Tsu-b 1.5
BRST Hold Time Th-b 1.0
Note 1
Delay Time of BRST L” “H”
to First DATA Tdr-bd
12.8 12.86 ns
Delay Time of Last DATA
to IBIAS OFF Tdf-di Last Data=1
R_DAC2=0Fh
2 ns
R_DAC2=0Fh
120 150 %
R_DAC2=2Fh
108 %
IBIAS Overshoot rib1
R_DAC2=FFh
98 %
Note 1
IBIAS Error before 2ns
of First DATA rib2 R_DAC2=0Fh
+/- 15 % Note 1
Delay Time of BRST “H””L”
to TXACT OFF Tdf-bt R_DAC2=0Fh
16 ns
Delay Time of First DATA
to TXACT Detection Tdr-dt
Note 2
Note 1: This parameter is characterized and is not 100% tested.
Note 2: Depends on TXACT detection level, Monitor PD current, etc. For more information, see VI. 3.1 TXACT”.
BRSTP - BRSTN
CLKP- CLKN
DATAP - DATAN
IBIAS Current
IMOD Current
TXACT
Tsu Th
Tdr-dt
Tdf-di
Tdf-bt
Tdr-bdTsu-b
2ns
100% Nominal
rib1 rib2
Th-b
8. I-DAC1
Item Condition min typ max Unit Remark
Resolution 8 bit
Output
Current with
Full Code IMOD = VDD – 1.8V
76 85 94 mA
Current Supply with
Shutdown
IMOD = VDD 100 uA TXDIS = “1”
1 LSB Current Step IMOD = VDD – 1.8V
0.333 mA
DNL IMOD = VDD – 1.8V
-1 +1 LSB Code 20h to FFh
ASAHI KASEI [AK2574]
<MS0266-E-00> -10- 2003/12
9. I-DAC2
Item Condition min typ max Unit Remark
Resolution 8 bit
Maximum Output
Current IBIAS = VDD – 1.8V
R_DAC2=FFh 48 54 60 mA
Minimum Output
Current 1 IBIAS = VDD
1 R_DAC2 5 1.06 1.2 mA R_DAC2 = 1 to 5
Minimum Output
Current 2 IBIAS = VDD
R_DAC2 = 0 0 mA R_DAC2 = 0
Current
Supply with
Shutdown
IBIAS = VDD 100 uA TXDIS = “1”
1 LSB Current Step IBIAS = VDD 1.8V
0.212 mA
DNL IBIAS = VDD 1.8V
-1 +1 LSB Code 20h to FFh
10. Duty Cycle Adjustment
Item Condition min typ max Unit Remarks
Maximum Pulse Extended 0.5 ns Note 1
1 LSB Pulse Extended Step 0.03 ns 32 Steps
Pulse Extended Stability 0.3ns Extended
Ta=-40 to 85,
VDD=3.13.5V
0.2 ns Note 1
Note 1: This parameter is characterized and is not 100% tested.
11. DAC (TXACT)
Item Condition min typ max Unit Remarks
Resolution 3 bit
R_CMPTH[2:0]=011 0.86 0.9 0.94 V
R_CMPTH[2:0]=010 0.76 0.8 0.84 V
R_CMPTH[2:0]=001 0.66 0.7 0.74 V
R_CMPTH[2:0]=000 0.56 0.6 0.64 V
R_CMPTH[2:0]=100 0.46 0.5 0.54 V
R_CMPTH[2:0]=101 0.36 0.4 0.44 V
R_CMPTH[2:0]=110 0.26 0.3 0.34 V
Output Voltage
R_CMPTH[2:0]=111 0.16 0.2 0.24 V
12. PDIN Capacitance
Item Condition min typ max Unit Remarks
PDIN Capacitance 14 26 pF
13. BIASGEN
Item Condition min typ max Unit Remark
BIAS pin Voltage 1.2 V
14. Temperature Sensor
Item Condition min typ max Unit Remark
Voltage Slope TEMPMON Voltage
-12.14 -11.56 -10.98 mV / Note 1
Offset Adjustment Target
Ta = 35 1.215 V
Note 1: This parameter is characterized and is not 100% tested.
ASAHI KASEI [AK2574]
<MS0266-E-00> -11- 2003/12
15. ADC
Item Condition min typ max Unit Remark
Resolution 7 bit
Maximum Input Voltage 2.09 2.2 2.31 V
Minimum Input Voltage 0 V
DNL -1/2 +1/2 LSB
16. Power On Reset
Item Condition min typ max Unit Remark
Detect Voltage 2.3 2.5 2.7 V
When detects the voltage drop, the AK2574 goes into shutdown condition.
17. On-chip Oscillator
Item Condition min typ max Unit Remark
Clock Frequency 2.15 MHz
ASAHI KASEI [AK2574]
<MS0266-E-00> -12- 2003/12
. Package Information
(1) Package Type: 48 pin BCC++
(2) Marking Information:
(a) PIN#1 Indication:
(b) Logo: AKM
(c) Marking Code: AK2574VB
(d) Date Code: YYWWXXX (7 digit)
(3) Package Outline
AKM
AK2574VB
YYWWXXX
7.0±0.1
7.0±0.1
37 25
131
0.45±0.06
0.45±0.06
"C" Part"B" Part
0.45±0.06
0.45±0.06
C0.2
0.14
MIN
0.3±0.06
0.4±0.06
"A" Part
0.80
MAX
0.075±0.025
0.05
5.0
25 37
5.1
5.5±0.06
6.2
6.15
6.2
0.5
0.5±0.1
0.09MIN
5.0
6.15
1
"B"
13
"C"
"A"
ASAHI KASEI [AK2574]
<MS0266-E-00> -13- 2003/12
. Circuit Description
1. Parameter Notation
1.1 Parameter Definition
In the AK2574 Circuit Description, in order to distinguish various pre-set parameter sources from EEPROM,
Registers or Device pins, “Identifier - Main name” notation is used as shown in Table 1-1. For ease of operational
description, small letters sometimes expresses internal signals.
Table 1-1 Parameter Definitions
Identifier
Main Name Remark Example
Register R_ REGISTER name
(All Capital) Indicates register R_DAC1
EEPROM E_ EEPROM name
(All Capital)) Indicates EEPROM E_DAC1
Ether or both Register
or /and EEPROM RE_ REGISTER /
EEPROM name
(All Capital)
Indicates either register
or EEPROM RE_DAC1
PIN P_ PIN name
(All Capital) P_PDIN
BLOCK None BLOCK name
(All Capital)) I-DAC1
Internal Node None signal name
(small letter) txact_ref
1.2 Operation Overview
The AK2574 has 3 primary functions; 125M / 156M modulation (MOD) current switching and BIAS current
switching part, APC (Automatic Power Control) part, and the Control part to control operation modes of the AK2574
operation.
There are 3 operation modes in the AK2574. Since each adjusting function is controlled through I2CTM Interface, it
realizes an automatic parameter adjustment.
(1) Self-running Mode
Self-running mode is ready for normal operation after all adjustments are completed. In this mode, temperature
detection, EEPROM access and feeding current are automatically performed using the on-chip oscillator. The
AK2574 works in this mode after power-on.
(2) Adjustment Mode
Adjustment mode is designed for training the LD characteristics. The AK2574 operates according to the register
settings set through the I2CTM I/F.
(3) EEPROM Mode
EEPROM mode is used for storing LD characteristics into EEPROM via I 2CTM I/F.
ASAHI KASEI [AK2574]
<MS0266-E-00> -14- 2003/12
2. LD Driver
Fig 2-1 illustrates the block diagram of LD driver function.
The AK2574 LD driver contains a Driver part, an APC part, a LVPECL I/F part and a programmable duty
adjustment.
The driver part is composed of 156M MOD current switching controlled by DATA, and BIAS current switching
controlled by BRST.
APC part is composed of a programmable BIAS and MOD currents in response to the temperature (APC_FF), an
on-chip temperature sensor, and 2 current DACS (I-DAC1 and I-DAC2).
The LVPECL I/F part is composed of LVPECL I/F for data, clock and the burst control signal (BRST).
Fig 2-1 Driver Block Diagram
IBIAS
CLK
(LVPECL)
DATA
(LVPECL)
LD
Imod
DATAP
DATAN
CLKP
CLKN
IMODN IMOD
BRST
(LVPECL)
BRSTP
BRSTN
CLKALM
FF
FF
AND DUTY_
ADJ
Ibias
data data_ff
clk
brst brst_ff
IBIASC1
IBIASC2 0.1uF
0.1uF
SEL
SEL
330Ω
IBIASR1
I-DAC1
I-DAC2
EEPEOMTEMP_SENS
R_DAC1
R_DAC2
R_TEMP
Driver
LVPECL I/F
APC
ADC
vtemp
2.1 Driver
The 156M MOD driver is composed of the differential current switches, and it sinks the MOD current from IMOD pin
when DATA (DATAP DATAN) = 1 and sinks the current from IMODN when DATA = 0. DATA is set “0” when
BRST (BRSTP – BRSTN) = 0.
The BIAS driver is composed of the single-end current switch, and it sinks the BIAS current from IBIAS when
BRTS=1. To protect the last LD current at BRST 10, BIAS current turned off timing is delayed for a duty extended
when the last DATA=1.
2.2 LVPECL I/F (DATAP, DATAN, CLKP, CLKN, BRSTP, BRTSN)
The AK2574 supports direct data or latched data input (see Table 2-1). Connect CLKP = VDD or leave open and
CLKN = VSS when SEL = “L”.
Table 2-1 Data input
SEL (CMOS)
“L” Direct data
“H” Latched data with clock
2.2.1 LVPECL Input Characteristics
Table 2-2 shows LVPECL input characteristics. The AK2574 LVPECL input, which is biased to 0.6 * VDD with 10k
Ω or more impedance respectively.
ASAHI KASEI [AK2574]
<MS0266-E-00> -15- 2003/12
Table 2-2 LVPEL Interface characteristics
Item Symbol min typ max Unit
Reference Remarks
Single-ended Input
Voltage Swing |Vamp|
0.1 1.2 V Fig 2-2
Common Voltage Vcom 0.5*VDD
VDD – 1.0
V Fig 2-2
BIAS Voltage Vbias 0.6*VDD V Fig 2-3
Input Impedance Zin 10 kΩ Fig 2-3
Set-up Time tsu 1.5 ns Fig 2-4
Hold Time th 1.0 ns Fig 2-4 Note 1
Note 1: This parameter is characterized and is not 100% tested.
Fig 2-2 DATA / CLK / BRST Input Level
Vcom
Vamp
CLKP/CLKN
DATAP/DATAN
BRSTP/BRTSTN
Fig 2-3 LVPECL input circuit
DATAP
DATAN
CLKP
CLKN
BRSTP
BRSTN
AK2574
Zin
Vbias
82Ω
130Ω
Fig 2-4 Set-up & Hold Time
DATA
(DATAP - DATAN)
CLK
(CLKP - CLKN)
tsu th
2.2.2 Input Timing (SEL=”H”, in the case of the latched DATA with CLK)
BRST (BRSTP BRSTN) and DATA (DATAP – DATAN) are shifted into AK2574 at the falling edge of CLK (CLKP
CLKN). BIAS driver is turned on within 2 clock (12.8ns max) when BRST = 1. DATA input should be 2 clock (=
12.8ns min) behind BRST = 1. Fig 2-5 illustrates the timing example.
ASAHI KASEI [AK2574]
<MS0266-E-00> -16- 2003/12
Fig 2-5 Input timing example with CLK
BRSTP - BRSTN
CLKP- CLKN
DATAP - DATAN
Preamble + Delimiter
(24bit include Guard Time) ATM Cell (53byte)
2 CLK (typ)
2.2.3 Input Timing (SEL=”L”, in the case of direct DATA)
AK2574 operates without CLK when SEL=”L”. DATA input should be 12.8ns or more behind BRST = 0 1
transition. To protect the last DATA, BRST 1 0 transition should be behind the last DATA input. Fig 2-6 illustrates
the timing example.
Fig 2-6 Input timing example without CLK
BRSTP - BRSTN
DATAP - DATAN
Preamble + Delimiter
(24bit included Guard Time) ATM Cell (53byte)
12.8ns (min)
2.3 Duty Adjustment
AK2574 supplies a programmed duty adjustment in response to the temperature from an on-chip temperature
sensor (every 6, Duty data is stored in E_DUTY_TC, see Table 6-3 for more information). Write same data into
E_DUTY_TC for constant duty adjustment. Table 2-3 and 2-4 show the characteristics of duty adjustment function.
Table 2-3 Duty Adjustment characteristics
Item Symbol
min typ max Unit Remarks
Maximum Pulse Extended Td 0.5 ns Note 1
1 LSB Pulse Extended Step Tstep 0.03 ns 32 Steps
Pulse Extended Stability Tsta 0.2 ns Ta=-40 to 85, VDDDR=3.13.5V
0.3ns Extended (Note 1)
Note 1: This parameter is characterized and is not 100% tested.
Table 2-4 Pulse Extended
R_DUTY Pulse Extended (typ) [ns] Remark
0 0
1 0.03
2 0.06
.
. .
.
30 0.90
31 0.93
ASAHI KASEI [AK2574]
<MS0266-E-00> -17- 2003/12
2.4 APC
AK2574 provides the APC (Auto Power Control) function for the burst mode application. APC is composed of a
programmable BIAS and MOD currents in response to the temperature (APC_FF), an on-chip temperature sensor,
and 2 current DACs (I-DAC1 and I-DAC2).
2.4.1 APC_FF
Fig 2-7 illustrates the APC_FF functions. The operation is as follows:
(1) Analog to digital conversion of the voltage (7 bit) that reflects the temperature for every temperature detection
period (128ms typ).
(2) Read the 8 bit current data (address is indicated by the ADC data) from EEPROM and set this value to the
I-DACs.
If the current data over temperature is set to each EEPROM address, the compensated current is supplied to the LD
automatically.
To use this function, current data should be stored in EEPROM in advance. The temperature sensor covers –40 to
+115 and EEPROM is prepared with 1.5 steps.
Fig 2-7 APC FF function
ADC
(7bit) EEPROM I-DAC1
R_TEMP R_DAC1
Address Data
MOD
Driver
TEMPSENS
I-DAC2
Memory for
I-DAC1
Memory for
I-DAC2
R_DAC2
LD
Temperature
Voltage
TEMPSENS
charatcteristics
BIAS Current
MOD Current
Addressing with
R_TEMP BIAS
Driver
2.4.2 I-DAC
AK2574 has two current output 8 bit DACs; I-DAC1 and I-DAC2.
I-DAC1 is 85mA @ Full code sink type current DAC for MOD current and I-DAC2 is 54mA @ Full code sink type
current DAC for BIAS current.
Table 2-5 shows I-DAC1 characteristics and Table 2-6 shows I-DAC2 characteristics.
Table 2-5 I-DAC1 Characteristics
Item Condition min typ max Unit Remark
Resolution 8 bit
Output Current with
Full Code IMOD = VDD – 1.8V
76 85 94 mA
1 LSB Current Step IMOD = VDD 1.8V
0.333 mA
DNL IMOD = VDD – 1.8V
-1 +1 LSB Code 20h to FFh
ASAHI KASEI [AK2574]
<MS0266-E-00> -18- 2003/12
Table 2-6 I-DAC2 Characteristics
Item Condition min typ max Unit Remark
Resolution 8 bit
Maximum Output
Current IBIAS = VDD 1.8V
R_DAC2=FFh 48 54 60 mA
Minimum Output
Current 1 IBIAS = VDD
1 R_DAC2 5 1.06 1.2 mA See 2.4.3
Minimum Output
Current 2 IBIAS = VDD
R_DAC2 = 0 0 mA
1 LSB Current Step IBIAS = VDD – 1.8V
0.212 mA
DNL IBIAS = VDD – 1.8V
-1 +1 LSB Code 20h to FFh
2.4.3 I-DAC2 Minimum Current Output
Table 2-7 shows the relationship between EEPROM setting (E_DAC2_TC) and I-DAC2 code (R_DAC2). The data to
be set to I -DAC2 (R_DAC2) is limited to 5 or more for BIAS current circuit stability. From 1 to 5 code is changed to 5
and is set to I-DAC2. In the case of 0 code, BIAS driver is turned off and IBIAS pin is Hi-Z.
Table 2-7 I-DAC2 Code Setting
E_DAC2_TC R_DAC2 (I-DAC2 code) Remarks
0 BIAS Driver = OFF IBIAS = Hi-Z
14 5 Code 1 to 4 is forced to be 5
5 or more E_DAC2_TC No modification
2.4.4 Temperature Sensor (TEMPSENS)
Fig 2 - 8 shows an on-chip temperature sensor characteristics and Table 2-8 shows the relationship between detected
temperature and ADC code.
Fig 2-8 On-chip Temperature Sensor Characteristics
On-chip Temperature sensor characteristics
0.0
0.5
1.0
1.5
2.0
2.5
-40 -20 0 20 40 60 80 100 120
Temperature t [°C]
Output voltage V [V]
(1) Slope: -11.56mV/ (typ)
(2) V(t) = -0.01156 * t + 1.62 [V] (typ)
(3) AD_code = int( V(t) / 2.2 * 127 +0.5) = int(-0.667*t + 94.0)
(4) Temperature step @ AD_code=1LSB: 1.49/LSB
Note: Temperature sensor detects the junction temperature, not LD or ambient temperature.
ASAHI KASEI [AK2574]
<MS0266-E-00> -19- 2003/12
Table 2-8 AD code and detected temperature [typ]
AD code Temp [] AD code Temp []
AD code Temp []
AD code Temp []
0
140.1
32
92.2
64
44.2
96
-3.7
1
138.6
33
90.7
65
42.7
97
-5.2
2
137.1
34
89.2
66
41.2
98
-6.7
3
135.6
35
87.7
67
39.7
99
-8.2
4
134.1
36
86.2
68
38.2
100
-9.7
5
132.6
37
84.7
69
36.7
101
-11.2
6
131.1
38
83.2
70
35.2
102
-12.7
7
129.6
39
81.7
71
33.7
103
-14.2
8
128.2
40
80.2
72
32.2
104
-15.7
9
126.7
41
78.7
73
30.7
105
-17.2
10
125.2
42
77.2
74
29.2
106
-18.7
11
123.7
43
75.7
75
27.7
107
-20.2
12
122.2
44
74.2
76
26.3
108
-21.7
13
120.7
45
72.7
77
24.8
109
-23.2
14
119.2
46
71.2
78
23.3
110
-24.7
15
117.7
47
69.7
79
21.8
111
-26.2
16
116.2
48
68.2
80
20.3
112
-27.7
17
114.7
49
66.7
81
18.8
113
-29.2
18
113.2
50
65.2
82
17.3
114
-30.7
19
111.7
51
63.7
83
15.8
115
-32.2
20
110.2
52
62.2
84
14.3
116
-33.7
21
108.7
53
60.7
85
12.8
117
-35.2
22
107.2
54
59.2
86
11.3
118
-36.7
23
105.7
55
57.7
87
9.8
119
-38.2
24
104.2
56
56.2
88
8.3
120
-39.7
25
102.7
57
54.7
89
6.8
121
-41.2
26
101.2
58
53.2
90
5.3
122
-42.7
27
99.7
59
51.7
91
3.8
123
-44.2
28
98.2
60
50.2
92
2.3
124
-45.7
29
96.7
61
48.7
93
0.8
125
-47.2
30
95.2
62
47.2
94
-0.7
126
-48.7
31
93.7
63
45.7
95
-2.2
127
-50.2
ASAHI KASEI [AK2574]
<MS0266-E-00> -20- 2003/12
3. Alarm
AK2574 has 2 alarm functions as shown in Table 3-1.
Table 3-1 Alarm function
ALM Detection condition Release condition Detected Time
TXACT When the PDIN voltage (monitor PD current) is
beyond the reference voltage (txact_ref). TXACT is
kept once TXACT detection until BRST=”L”.
BRST=”L” Depens on the condition.
See 3.1 TXACT for more
information
CLKALM When the detected 0s or 1s sequential CLK input
(100ns typical). When detected CLKALM,
AK2574 goes into “Shutdwon”.
Polarity of CLK is
changed 100ns (typ)
200ns (max)
3.1 TXACT
Fig 3- 1illustrates TXACT block diagram. TXACT is detected when the PDIN voltage is beyond the reference voltage
(txact_ref), and TXACT is held during BRST = “H”. The txact_ref is set with RE_DAC_TXACT. TXACT detection
time depends on the Monitor PD current (i_pd) and capacitance (CMPD), external resistor (RPD), AK2574 PDIN
capactance (CPDIN) and txact_ref voltage (see Fig 3-2 for the reference).
Table 3-2 shows the PDIN capacitance (CPDIN) and Table 3-3 shouws the relationship between txact_ref and
RE_DAC_TXACT. The polarity of TXACT can be set by RE_TXACT_POL (0: “H” at detection, 1: “L” at detection).
The TXACT detection time (t_act) is estimated under the 50% mark data input and average monitor current as
follows:
)
2/_* _
1(*)(*_ pdiRPD reftxact
LNCPDINCMPDRPDactt +=
Note: TXACT detection time varies with input data pattern.
Fig 3-1 TXACT block diagram
Monitor
PD
RPD
TXACT
DAC
(TXACT)
AND
PDIN
comp_out
i_pd
txact_ref
SET/
RESET
COMP
CPDIN
BRST
Fig 3-2 Reference figures for TXACT detection time
RPD
vpd
comp_out
i_pd
txact_ref
COMP
CMPD CPDIN
i_pd @ DATA=1
0 @ DATA=0
ASAHI KASEI [AK2574]
<MS0266-E-00> -21- 2003/12
Table 3-2 PDIN capacitance (CPDIN)
Item min typ max Unit Remark
PDIN Capacitance (CPDIN)
14 26 pF
Table 3-3 TXACT Reference Voltage txact_ref RE_DAC_TXACT
min typ max unit Remarks
011 0.86 0.9 0.94 V
010 0.76 0.8 0.84 V
001 0.66 0.7 0.74 V
000 0.56 0.6 0.64 V
100 0.46 0.5 0.54 V
101 0.36 0.4 0.44 V
110 0.26 0.3 0.34 V
111 0.16 0.2 0.24 V
3.2 CLKALM
CLKALM is detected when input CLK is 0 s or 1 s fixed more than 100ns (typ). The polarity of CLKALM can be set
by RE_CLKALM_POL (0: “H at detection, 1: “L” at detection). AK2574 goes into “shutdown” (see 4. Shutdown)
when CLKALM is detected.
4. Shutdown
Table 4-1 shows the shutdown condition and Table 4-2 shows AK2574 operation at shutdown. AK2574 goes into
“Shutdown” when TXDIS request from TXDIS pin or CLKALM detection. The polarity of TXDIS can be set by
RE_TXDIS_POL (0: “H” shutdown, 1: “L” shutdown).
Table 4-1 Shutdown Condition
TXDIS (Note1) CLKALM (Note2) Operation Remarks
1 X Shutdown Shutdown by pin
0 0 Normal Operation
0 1 Shutdown Shutdown by CLKALM detection
Note 1: 1 means shutdown request from TXDIS pin.
Note 2: 1 means CLKALM detection.
Table 4-2 AK2574 operation at shutdown
Function Operation Remarks
I-DAC1 / 2 output High-Z (0mA output)
APC_FF Normal Operation
MOD Driver DATA=0
BIAS Driver OFF (BRST=0)
CLKALM Normal Operation
TXACT Hold non-detected polarity
ASAHI KASEI [AK2574]
<MS0266-E-00> -22- 2003/12
5. I2CTM I/F
5.1 Memory Map
Table 5-1 shows the EEPROM / Register address map. Access to memory (EEPROM / registers) is done via the I2CTM
I/F format.
WP (Write Protect) may limit the access of memory as shown in Table 5-2.
Table 5-1 Memory map
Device Address
Device Address-1 Device Address-2
Address Data
A0h 1010 000 00000000 to
01111111 User Area
(EEPROM, 1kbit)
A0h 1010 000 10000000 to
11111111 No memory
A2h 1010 001 00000000 to
11111111 No memory
A4h 1010 010
00000000 to
11111111
A6h 1010 011 00000000 to
01111111
Adjustment data
(EEPROM, 3kbit)
A6h 1010 011 10000000 to
11111111 No memory
A8h 1010 100 00000000 to
00010011 Registers
A8h 1010 100 00010011 to
11111110 No memory
A8h 1010 100 11111111 AK2574 Operation mode
change
Table 5-2 Memory access limitation with WP
Item WP = “L” WP = “H”
Device Address 1010xxx 1010000
ACK (Note 1) when receive device address when receive device address
EEPROM / Register
Access Full access
User area only (read only)
Operating mode Full Self running mode only
Page Write 16 byte (without registers) -
Sequential Read from 00000000000 to 01111111111 from 00000000 to 01111111
Registers Access Random access only -
Note 1: During EEPROM Write operation, no ACK is generated.
ASAHI KASEI [AK2574]
<MS0266-E-00> -23- 2003/12
5.2 Read/Write Operation
5.2.1 Byte Write
1 0 1 0
Device
Address-1 Device
Address-2
0
R/
W
0
A
C
K
Address
(MSB First)
0
A
C
K
Data
(MSB First)
0
A
C
K
S
T
A
R
T
S
T
O
P
SDA
5.2.2 Page Write
AK2574 is capable of 16-byte page write.
0
SDA
A
C
K
S
T
O
P
Data (Address)
0
. . . . 0
A
C
K
A
C
K
Data (Address + n)
1 0 1 0
Device
Address-1 Device
Address-2
0
R/
W
0
A
C
K
Address
(MSB First)
0
A
C
K
S
T
A
R
T
0
A
C
K
Data (Address + 1)
5.2.3 Current Address Read
The internal address counter maintains the last address accessed during the last read or write operation, incremented
by one. The roll over address is changed WP setting. Refer to Table 5-2 in detail.
1010
Device
Address-1 Device
Address-2
1
R/
W
0
A
C
K
Data
(MSB First)
1
N
O
A
C
K
S
T
A
R
T
S
T
O
P
SDA
5.2.4 Random Read
A random read requires a “dummy” byte write sequence to specified “Address. After receive the ACK from AK2574,
perform “current address read” (see 5.2.2).
1 0 1 0
Device
Address-1 Device
Address-2
0
R/
W
0
A
C
K
Address
(MSB First)
0
A
C
K
A
C
K
S
T
A
R
T
SDA
S
T
O
P
Data
(MSB First)
*1 1010
Device
Address-1 Device
Address-2
1
R/
W
0
S
T
A
R
T
N
O
A
C
K
1
Dummy Write *1: Don't care when WP="H"
5.2.5 Sequential Read
Sequential read can be initiated as ether “Current Address Read or “Random Read”. After issuing either of them, the
AK2574 continues to output data for each ACK received.
Device
Address-2
1
R/
W
0
A
C
K
Data-1
(MSB First)
0
A
C
K
SDA
A
C
K
S
T
O
P
0
Data-2
0
. . . . 1
A
C
K
N
O
A
C
K
Data-n
. . . .
ASAHI KASEI [AK2574]
<MS0266-E-00> -24- 2003/12
5.2.6 Data Change
The SDA pin is normally pulled high with 4.7k to 10kΩ. Data on the SDA pin may change only during SCL low time
period. Data changes during SCL high periods will indicate a start or stop condition.
SDA
SCL
Data
Stable Data
Change
5.2.7 Start / Stop Condition
Start Condition: A high-to-low transition of SDA with SCL high is a start condition that must precede any other
command.
Stop Condition: A low-to-high transition of SDA with SCL high is a stop condition.
SDA
SCL
START STOP
5.3 EEPROM
EEPROM memory map is shown in Table 5-3, 5-4 and 5-5.
EEPROM access is limited with WP pin and Operation mode (refer to Table 6-1, for more information).
WP = “L”: Full access
WP = “H”: User area only with read only
(Note) The AKM factory adjusted data are stored in advance at address (Device Address = A6h, Address = 60h) for
the offset of the on-chip temperature sensor. If such excess temperature stress is to be applied to this device
which exceeds a guaranteed EEPROM data retention conditions ( for 10 years at 85), it is important to read
the pre-determined value in advance and to re-write the same data back into EEPROM after an exposure to
the excess temperature environment. Even if the exposure time is shorter than the retention time, any
accelerated temperature stress tests (such as baking) are performed, it is recommended to read the pre-set
data first and to re-write it after the tests.
ASAHI KASEI [AK2574]
<MS0266-E-00> -25- 2003/12
Table 5-3 EEPROM Address MAP
Device
Address
Address DATA (D7-D0) Initial
Value Remark
A0h 00h (0)
7Fh (127) User Area
(1kbit) 00h
A0h 80h (128)
FFh (255)
A2h 00h (0)
FFh (255)
No Memory
A4h 00 h(0)
7F h(127) E_DAC1_TC
Temperature data for I-DAC1 (1kbit) 00h Addressing with R_TEMP
(1.5 step)
A4h 80h (128)
FFh (255) E_DAC2_TC
Temperature data for I-DAC2 (1kbit) 00h Addressing with R_TEMP
(1.5 step)
A6h 00h (0)
1Fh(31) E_DUTY_TC (256bit)
Temperature data for Duty Adjustment 00h Addressing with MSB 5bit of
R_TEMP (6 step)
A6h 20h (32)
5Fh (95) Reserved 00h
A6h 60h (96)
7Fh (255) Adjustment data
(256bit) see Table 5-4 and 5-5
Table 5-4 Adjustment Data Area (Device Address = A6h)
EEPROM Address
Function Bit
Initial
Value Remark
E_VREFTRIM[7:4] 60h Oscillator Frequency 4
E_TEMP_OFFSET
[3:0] 60h Temperature sensor offset 4 Factory
Setting
E_TXDIS_POL[2] 61h TXDIS Polarity 1 0 0: Shutdown atH
1: Shutdown at “L”
E_TXACT_POL[1] 61h TXACT Polarity 1 0 0: “H” at TXACT detection
1: “L” at TXACT detection
E_CLKALM_POL[0]
61h CLKALM Polarity 1 0 0: “Hat CLKALM detection
1: “L” at CLKALM detection
E_DAC_TXACT 62h TXACT Reference Voltage 3 000 see Table 3-2
E_AKM_SET[1:0] 6Dh AKM 初期設定値 2 00
Table 5-5 EEPROM Map (Adjustment Data Area)
Address
D7 D6 D5 D4 D3 D2 D1 D0
60h VREFTRIM TEMP_OFFSET
61h TXDIS_
POL TXACT_
POL CLKALM_
POL
62h DAC_TXACT
63h-6Ch
6Dh AKM_SET
6Eh-FFh
Reserved
ASAHI KASEI [AK2574]
<MS0266-E-00> -26- 2003/12
5.4 Register
Register memory map is shown in Table 5-6 and 5-7. Register access is limited with WP pin and Operation mode
(refer to Fig 6-1, for more information).
Table 5-6 Register (Device Address = A8h)
Register Address
Function Bit
R/W
(Note 1)
Remark
R_VREFTRIM[7:4] 00h Oscillator Frequency 4 R/W
R_TEMP_OFFSET
[3:0] 00h Temperature sensor offset
4 R/W
R_TXDIS_POL[2] 01h TXDIS Polarity 1 R/W 0: Shutdown at “H
1: Shutdown at “L”
R_TXACT_POL[1] 01h TXACT Polarity 1 R/W 0: “H” at TXACT detection
1: “L” at TXACT detection
R_CLKALM_POL[0]
01h CLKALM Polarity 1 R/W 0: “H” at CLKALM detection
1: “L” at CLKALM detection
R_DAC_TXACT[2:0] 02h DAC(TXACT) 3 R/W see Table 3-2
R_TXACT_THRU[0] 04h TXACT Hold 1 R/W 0: TXACT Hold
(Normal Operation)
1: TXACT (Real-Time)
R_DAC1[7:0] 05h I-DAC1 Current Setting 8 R/W see Table 2-5
R_DAC2[7:0] 06h I-DAC2 Current Setting 8 R/W see Table 2-6
R_DUTY[4:0] 07h Duty Adjustment 5 R/W see Table 2-4
R_MODE[3:0] 08h Operation Mode Status 4 R see Table 6-3
R_TEMP[6:0] 0Ch Detected Temperature 7 R see Table 2-8
AKM Test 0Dh -
13h
Test for AKM
(Reserved) NA Reserved
Note 1:
R: Read Only.
R/W: Read/Write, Write data is hold unless re-writing or operation mode changing. All adjustment would be
done by R/W registers.
Table 5-7 Register Map
Address
D7 D6 D5 D4 D3 D2 D1 D0
00h VREFTRIM TEMP_OFFSET
01h TXDIS_
POL TXACT_
POL CLKALM_
POL
02h DAC_TXACT
03h
04h TXACT_
THRU
05h DAC1
06h DAC2
07h DUTY
08h MODE
09h
0Ah
0Bh
0Ch TEMP
0Dh
13h Reserved
(AKM Test)
ASAHI KASEI [AK2574]
<MS0266-E-00> -27- 2003/12
6. Operation Mode
The AK2574 has 3 operating modes: Self-running, Adjustment and EEPROM mode.
6.1 Self-running Mode
Self-running mode is ready for normal operation after all adjustments are completed. In this mode, temperature
detection, EEPROM access and feeding current are automatically performed using the on-chip oscillator. The
AK2574 works in this mode after power-on.
6.2 Adjustment Mode
Adjustment mode is designed for training the LD characteristics. The AK2574 operates according to the register
settings set through the I2CTM I/F.
6.3 EEPROM Mode
EEPROM mode is used for storing LD characteristics into EEPROM. Transition from EEPROM mode to
Adjustment mode is prohibition.
6.4 MODE Control
The AK2574 operation modes are c hanged through the I2CTM interface. Table 6 -1 shows the access limitation of each
operation mode and Table 6-2 shows the command to change operation mode.
Note: The I2CTM interface access is prohibited for 2ms after power-on or mode transfer to self-running mode.
Table 6-1 Access limitation of each operation mode
EEPROM Access Register Access
Operation mode Read Write Read Write
Self-running mode
(WP=”L”) × ×
(except mode-change command)
Adjustment mode
(WP=”L”) ×
EEPROM mode
(WP=”L”) ×
(except mode-change command)
WP = “H”
Self-running mode only
(User Area Only) × × ×
Table 6-2 Operation mode change
Device Address R/W Address Data Operation mode
1010100 W 11111111 10100000 Self-running mode
1010100 W 11111111 10100111 Adjustment mode
1010100 W 11111111 10101110 EEPROM mode
6.5 Operation Mode Protection
When set WP = “H”, only self-running mode is selected.
6.6 Operation Mode Status
Operation mode is stored in R_MODE register. Table 6 -3 shows the relationship between the Operation m ode and
R_MODE. When set WP = “H”, access to R_MODE is prohibition.
Table 6-3 R_MODE
Operation mode R_MODE[3:0]
Self-running mode 0000
Adjustment mode 0111
EEPROM mode 1110
ASAHI KASEI [AK2574]
<MS0266-E-00> -28- 2003/12
7. Module Adjustment Example
Table 7-1 shows the module adjustment example.
Table 7-1 Module Adjustment Example
No.
Item Contents
1 Go to Adjustment mode Issues “Changing to Adjustment mode command” (see Table 5-2) via I2CTM I/F.
2 Continuous operation Set BRST=”H” to operate AK2574 as a continuous operation.
3 LD current adjustment Adjust R_DAC1 for modulation current and R_DAC2 for BIAS current of LD.
4 Duty adjustment Adjust R_DUTY for 50% duty of LD power, if necessary. After duty
adjustment, tune MOD and BIAS current by R_DAC1 and R_DAC2, if
necessary.
5 TXACT adjustment Adjust LD power by R_DAC1 and R_DAC2 to 3dB down of minimum LD
power that you would like to detect TXACT. Input the burst control signal and
adjust R_DAC_TXACT for tunning TXACT detection time. For more
information, see “3.1 TXACT”.
6 Verification of TXACT Set R_DAC1 and R_DAC2 back to normal power. Confirm TXACT detection
time.
7 Read temperature data Read R_TEMP (on-chip temperature sensor detection temperature).
8 Estimate LD temperature
characteristics (1) 2 or more temperature adjustment
Do step 2 to 8 with different temperature and estimate LD current data of
look-up table.
(2) Single point adjustment
Calculate LD current data of look-up table with on-chip temperature sensor
gain (-1.49/LSB), R_TEMP and LD characteristics.
9 Write adjustment data to
EEPROM (1) Make the data for EEPROM.
(2) Issue mode change command to EEPROM.
(3) Write adjustment data to EEPROM.
(4) Read EEPROM data and verify it.
10 Self running mode Issue mode change command to self-running. AK2574 operates temperature
detection, feed current in response to temperature, and a feedback operation
automatically according to the data in EEPROM.
ASAHI KASEI [AK2574]
<MS0266-E-00> -29- 2003/12
. Circuit Example
Fig-A illustrates circuit example of AK2574.
Fig-A Circuit Example
DATAP
DATAN
SEL
CLKP
CLKN
TD +
TD -
VDD or Open
DATAP
DATAN
SEL
CLKP
CLKN
TD +
TD -
LVPECL I/F
DATA Only DATA & CLK
R111
R112
R113
R114
CLK +
CLK -
R121
R122
R123
R124
R125
R126
R127
R128
R111 = R113 = 130Ω
R112 = R114 = 82Ω
R121 = R123 = R125 = R127 = 130Ω
R122 = R124 = R126 = R128 = 82Ω
AK2574VB
DVSS
AVSS
CLKALM
BIAS
TESTMON
PDIN
IBIASR1
AVDD
IBIASC2
TEST6
TEST5
TEST4
TEST3
TEST2
TEST1
VSSDR
VDDDR
NC
VDDMD
VSSMD
IMODN
IMODN
IMOD
IMOD
VSSMD
VSSBI
IBIAS
IBIAS
VSSBI
IBIAS
C1
NC
DATAP
DATAN
SEL
CLKP
CLKN
WP
TXDIS
DVDD
SDA
SCL
Open
LVPECL I/F
(see below)
LD
PD
R7
VCC = 3.3V +/- 0.2V
VCC or GND
TXACT
BRSTN
BRSTP LVPECL I/F
NC
NC
NC
113
25
NC
37
R2 = 12kΩ +/- 1%
C11=C13=C15=C17=C19=C21 = 0.1uF
C12=C14=C16=C18=C20=C22
= 0.01uF or 0.001uF
R5=R6=R7 = 4.7kΩ~10kΩ
R1
R2
R3
R5
R6
R131
R132
R133
R134
R8
C1
C2
C11 C12
C13 C14
C15
C16
C17 C18
C20
C19
R1 = 330Ω +/- 1%
R3 = 82kΩ +/- 1%
R8 = 4.7Ω~10Ω
C1=C2=0.1uF +/- 50%
(under operating temperature)
R131 = R133 = 130Ω
R132 = R134 = 82Ω
Normal Operation with Open: Pull-down
Shutdown Operation with Open: Pull-up
Do not leave open For full access: GND
For write protection: Open or VDD
C21 C22
Pull-up or pull down
Do not leave open
VCC or GND
ASAHI KASEI [AK2574]
<MS0266-E-00> -30- 2003/12
IMPORTANT NOTICE
These products and their specifications are subject to change without notice.
Before considering any use or application, consult the Asahi Kasei Microsystems Co., Ltd. (AKM) sales office or
authorized distributor concerning their current status.
AKM assumes no liability for infringement of any patent, intellectual property, or other right in the application or use
of any information contained herein.
Any export of these products, or devices or systems containing them, may require an export license or other official
approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange,
or strategic materials.
AKM products are neither intended nor authorized for use as critical components in any safety, life support, or other
hazard related device or system, and AKM assumes no responsibility relating to any such use, except with the
express written consent of the Representative Director of AKM. As used here:
(a) A hazard related device or system is one designed or intended for life support or maintenance of safety or for
applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform
may reasonably be expected to result in loss of life or in significant injury or damage to person or property.
(b) A critical component is one whose failure to function or perform may reasonably be expected to result, whether
directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which
must therefore meet very high standards of performance and reliability.
It is the responsibility of the buyer or distributor of an AKM product who distributes, disposes of, or otherwise places
the product with a third party to notify that party in advance of the above content and conditions, and the buyer or
distributor agrees to assume any and all responsibility and liability for and hold AKM harmless from any and all
claims arising from the use of said product in the absence of such notification.