IBM043616CBLBC
IBM041816CBLBC
16Mb (512K x 36 & 1M x 18) SRAM
CBLBCds.fm.00
June 3, 2002 Page 1 of 25
Features
512K x 36 or 1M x 18 organization
•CMOS technology
Double-data-rate and single-data-rate synchro-
nous mode of operation
Pipeline mode of operation
Self-timed late write with full data coherency
Single differential clock
1.8V high-speed transceiver logic (HSTL) I/O
2.5V power supply, 1.8V VDDQ
Registered addresses, controls, and data-ins
Burst mode of operation
Common I/O
Asynchronous output enable
Boundary scan using a limited set of JTAG
1149.1 functions
9 x 17 bump ball grid array package with SRAM
JEDEC standard pinout and boundary SCAN
order
Programmable impedance output driver
Description
The IBM043616CBLBC and IBM041816CBLBC
16Mb SRAMs are synchronous pipeline-mode, high-
performance CMOS static random-access memo-
ries that have wide I/O and achieve 2.2ns cycle
times. Single differential CK clocks are used to ini-
tialize the read/write operation, and all internal oper-
ations are self-timed. At the rising edge of the CK
clock, addresses and controls are registered inter-
nally. Data-outs are updated from output registers
on the next rising and falling edges of the CK clock,
hence the double data rate. Internal write buffers
allow write data to follow one cycle after addresses
and controls. The SRAM is operated with a single
2.5V power supply and is compatible with HSTL I/O
interfaces.
.
IBM043616CBLBC
IBM041816CBLBC
16Mb (512K x 36 & 1M x 18) SRAM
Page 2 of 25
CBLBCds.fm.00
June 3, 2002
x36 BGA Bump Layout (Top View)
123456789
A VSS VDDQ SA13 SA11 ZQ SA10 SA8 VDDQ VSS
B DQ23 DQ20 SA14 VSS B1 VSS SA7 DQ15 DQ12
C VSS VDDQ SA15 SA12 G SA9 SA6 VDDQ VSS
D DQ24 DQ21 SA18 VSS VDD VSS SA5 DQ14 DQ11
E VSS VDDQ VSS VDD VREF VDD VSS VDDQ VSS
F DQ25 CQ DQ18 VDD VDD VDD DQ17 CQ DQ10
G VSS VDDQ VSS VSS CK VSS VSS VDDQ VSS
H DQ26 DQ22 DQ19 VDD CK VDD DQ16 DQ13 DQ9
J VSS VDDQ VSS VDD VDD VDD VSS VDDQ VSS
K DQ27 DQ31 DQ34 VSS B2 VSS DQ1 DQ4 DQ8
L VSS VDDQ VSS LBO B3 MODE1VSS VDDQ VSS
M DQ28 CQ DQ35 VDD VDD VDD DQ0 CQ DQ7
N VSS VDDQ VSS VDD VREF VDD VSS VDDQ VSS
P DQ29 DQ32 NC VSS VDD VSS SA4 DQ3 DQ6
R VSS VDDQ VDD SA17 SA1 SA2 VDD VDDQ VSS
T DQ30 DQ33 SA16 VSS SA0 VSS SA3 DQ2 DQ5
U VSS VDDQ TMS TDI TCK TDO NC2VDDQ VSS
1. Connect the Mode pin to VSS. The Mode pin has a very small pull down, less than 5µA current at VDD input.
2. ESD protection diodes reside on this NC bump.
x18 BGA Bump Layout (Top View)
123456789
A VSS VDDQ SA13 SA11 ZQ SA10 SA8 VDDQ VSS
B NC DQ10 SA14 VSS B1 VSS SA7 NC DQ5
C VSS VDDQ SA15 SA12 G SA9 SA6 VDDQ VSS
D DQ11 NC SA18 VSS VDD VSS SA5 DQ7 NC
E VSS VDDQ VSS VDD VREF VDD VSS VDDQ VSS
F NC CQ NC VDD VDD VDD DQ8 NC DQ4
G VSS VDDQ VSS VSS CK VSS VSS VDDQ VSS
H DQ12 NC DQ9 VDD CK VDD NC DQ6 NC
J VSS VDDQ VSS VDD VDD VDD VSS VDDQ VSS
K NC DQ15 NC VSS B2 VSS DQ0 NC DQ3
L VSS VDDQ VSS LBO B3 MODE1VSS VDDQ VSS
M DQ13 NC DQ17 VDD VDD VDD NC CQ NC
N VSS VDDQ VSS VDD VREF VDD VSS VDDQ VSS
P NC DQ16 SA19 VSS VDD VSS SA4 NC DQ2
R VSS VDDQ VDD SA17 SA1 SA2 VDD VDDQ VSS
T DQ14 NC SA16 VSS SA0 VSS SA3 DQ1 NC
U VSS VDDQ TMS TDI TCK TDO NC2VDDQ VSS
1. Connect the Mode pin to VSS. The Mode pin has a very small pull down, less than 5µA current at VDD input.
2. ESD protection diodes reside on this NC bump.
IBM043616CBLBC
IBM041816CBLBC
16Mb (512K x 36 & 1M x 18) SRAM
CBLBCds.fm.00
June 3, 2002 Page 3 of 25
Pin Description
SA0–SA19 Address Input (SA0–SA1 burst-control start-
ing addresses) TDO IEEE 1149.1 Test Output (LVTTL level)
DQ0–DQ35 Data I/O G Asynchronous Output Enable
CQ, CQ Differential Echo Clocks MODE
Mode Pin. Connect to VSS. A waiver to float Mode
may be obtained; contact your field applications
engineer (FAE).
CK, CK Differential Input Register Clocks VREF HSTL Input Reference Voltage
B1 B1 = 0 initiates a Load operation VDD Power Supply (2.5V)
B2 B2 = 0 initiates a Write operation VSS Ground
B3 B3 = 0 Double Data Rate,
B3 = 1 Single Data Rate VDDQ Output Power Supply
LBO
Linear Burst Order (LBO = 1, interleave
mode; LBO = 0, linear mode), (can be tied to
VDD or VSS)
ZQ Output Driver Impedance Control
TMS, TDI, TCK IEEE 1149.1 Test Inputs (LVTTL levels) NC No Connect
Ordering Information
Part Number Organization Cycle Time (ns) Package
IBM043616CBLBC-22 512K x 36 2.2 9 x 17 BGA
IBM043616CBLBC-24 512K x 36 2.4 9 x 17 BGA
IBM043616CBLBC-27 512K x 36 2.7 9 x 17 BGA
IBM043616CBLBC-30 512K x 36 3.0 9 x 17 BGA
IBM041816CBLBC-22 1M x 18 2.2 9 x 17 BGA
IBM041816CBLBC-24 1M x 18 2.4 9 x 17 BGA
IBM041816CBLBC-27 1M x 18 2.7 9 x 17 BGA
IBM041816CBLBC-30 1M x 18 3.0 9 x 17 BGA
IBM043616CBLBC
IBM041816CBLBC
16Mb (512K x 36 & 1M x 18) SRAM
Page 4 of 25
CBLBCds.fm.00
June 3, 2002
Block Diagram (x36 Double Data Rate Mode)
256K x 72
Buffer
Write
Decode
0
2:1 Mux
DQ0-DQ35
Read Add
Reg
Compare
CK,CK
B1-B3
SA0-SA18
Array
G
101
Buffer
Write
01 01
REG
Output Output
REG
0
1
36
36
36 36
36 36
36
36
REG
Output Output
REG
0
1
4
4
CQa,CQa
CQb,CQb
01 01
EE
VDD VSS
E
Write
Add Reg
E
Burst
Logic
A2-A18
A0,A1 A0’,A1’
A0’ A0’
A0’ A0’
Control
Logic
Load
Write
Output Enable
E
Advance
Match
36 36
IBM043616CBLBC
IBM041816CBLBC
16Mb (512K x 36 & 1M x 18) SRAM
CBLBCds.fm.00
June 3, 2002 Page 5 of 25
SRAM Features
Double Data Rate (DDR) and Single Data Rate (SDR) Modes
The timing diagram on page 6 shows input and output data placements for both DDR and SDR modes. In
DDR read mode, two sets of data-outs are generated from the second rising and falling edges of the CK
clock, assuming the first rising edge of the CK clock samples the base address. The first of the two data-out
sets (DOUT-A) is generated from the sampled base address (Base-A). The second data-out set (DOUT-A’) is
generated from the next burst-order address, according to the burst-order definition. Similarly, a DDR write
requires data-in placement on the second rising and falling CK edges. In SDR read mode, only one set of
data-outs is generated from the second rising CK edge. In SDR write mode, one set of data-ins is sampled on
the second rising CK edge. The user may switch from DDR to SDR mode (or vice-versa) during any LOAD
(B1 = 0) operation.
Late Write
The late-write function allows write data to be registered one cycle after addresses and controls. This feature
eliminates one of two bus-turnaround cycles normally required when going from a read to a write operation.
Late write is accomplished by buffering write addresses and data. The SRAM array update occurs during the
third write cycle. Read-cycle addresses are monitored to determine if read data is to be supplied from the
SRAM array or the write buffer. Full data coherency is maintained for both DDR and SDR operations. As a
result, NOP (write buffer flush) operations are not required going from write cycles to read cycles.
Echo Clocks
Echo clocks CQ and CQ are generated from rising and falling edges of the CK clock, with access times repre-
sentative of the data-outs. Echo clocks keep running during write and NOP operations. Echo-clock operation
is identical for both double-data-rate and single-data-rate operations. The close tracking of echo clocks and
data-out timings allows the echo clocks to be used as capture clocks for the data-outs by the receiving
device.
IBM043616CBLBC
IBM041816CBLBC
16Mb (512K x 36 & 1M x 18) SRAM
Page 6 of 25
CBLBCds.fm.00
June 3, 2002
Programmable Impedance and Power-Up Requirements
An external resistor, RQ, must be connected between the ZQ pin on the SRAM and VSS to allow the SRAM to
adjust its output driver impedance. The value of RQ must be five times the value of the intended line imped-
ance driven by the SRAM. The allowable range of RQ to guarantee impedance matching with a tolerance of
15% is between 175 and 350. Periodic readjustment of the output driver impedance is necessary because
the impedance is affected by drifts in supply voltage and temperature. One evaluation occurs every 64 clock
cycles, and each evaluation may move the output driver impedance level one step at a time towards the opti-
mum level. The output driver has 64 discrete binary weighted steps. Impedance updates for zeros occur
whenever the SRAM is driving ones for the same DQs; impedance updates for ones occur whenever SRAM
is driving zeros for the same DQs. Updates of both zeros and ones occur when the SRAM is High-Z. Further-
more, to guarantee the output driver impedance, the SRAM requires 2048 clock cycles and a Read ‘0’ and
Read ‘1’ or a Read ‘1’ and a Read ‘0’ across all used outputs. The RC time constant of the loaded RQ trace
must be less than 3ns.
Power-Up and Power-Down Sequences
The power supplies need to be powered up in the following sequence: VDD, VDDQ, VREF, followed by inputs.
The power-down sequence must be the reverse. VDDQ must not exceed VDD.
Initial Writes
DQ and CQ timings will not be guaranteed until at least two write cycles are performed. These cycles can be
part of the programmable impedance initial cycles.
Timing Diagram: Double Data Rate and Single Data Rate Modes
SA/Bs
CK,CK
DOUT-A DOUT-A’ DOUT-B
DIN-A DIN-A’ DIN-B DIN-B’
DIN-A DIN-B
DOUT-B’
Base-A Base-B Base-C Base-D
CQ,CQ
DOUT-C
DQ: DDR READ
DQ: SDR READ DOUT-B
DOUT-A DOUT-C
DIN-C DIN-C’
DQ: DDR WRITE
DIN-C
DQ: SDR WRITE
IBM043616CBLBC
IBM041816CBLBC
16Mb (512K x 36 & 1M x 18) SRAM
CBLBCds.fm.00
June 3, 2002 Page 7 of 25
Function Control
The function control is dependent on the state of the three function control pins (B1, B2, and B3), captured
when CK transitions from low to high as described in the following table (“n” refers to the current cycle and
“n-1” refers to the previous SRAM cycle).
Burst Order Definition
The DC state of the LBO pin determines the burst order of the addresses, given the starting address in a
Load operation (B1 = 0). The following table defines the order of addresses for the two different states of
LBO.
B1 (n-1) B2 (n-1) B3 (n-1) B1 (n) B2 (n) B3 (n) Function (n)
X X X 0 0 0 Load New Address, Double Data Rate (DDR) Write
X X X 0 0 1 Load New Address, Single Data Rate (SDR) Write
X X X 0 1 0 Load New Address, DDR Read
X X X 0 1 1 Load New Address, SDR Read
0 0 0 1 1 X Continue Burst, DDR Write
0 0 1 1 1 X Continue Burst, SDR Write
0 1 0 1 1 X Continue Burst, DDR Read
0 1 1 1 1 X Continue Burst, SDR Read
X X X 1 0 X NOP (High-Z cycle n+1)
1 0 X 1 X X NOP (High-Z cycle n+2)
Address Sequence when LBO = VDD (Interleave Burst)
SA1 SA0 SA1 SA0 SA1 SA0 SA1 SA0
Starting address 00011011
Second address 01001110
Third address 10110001
Fourth address 11100100
Address Sequence when LBO = VSS (Linear Burst)
SA1 SA0 SA1 SA0 SA1 SA0 SA1 SA0
Starting address 0 0 0 1 1 0 1 1
Second address 0 1 1 0 1 1 0 0
Third address 1 0 1 1 0 0 0 1
Fourth address 1 1 0 0 0 1 1 0
IBM043616CBLBC
IBM041816CBLBC
16Mb (512K x 36 & 1M x 18) SRAM
Page 8 of 25
CBLBCds.fm.00
June 3, 2002
Clock Truth Table
CK B1 (n) B2 (n) B3 (n) DQ (n) DQ (n + 1) DQ (n + 1.5) MODE
LH LHH X
Dout 0-35 Previous Data
Held Read Cycle SDR
LHLHL X
Dout 0-35a Dout 0-35b Read Cycle DDR
LHLLH X
DIN 0-35 X Write Cycle SDR
LHLLL X
DIN 0-35a DIN 0-35b Write Cycle DDR
LH H L X X High-Z High-Z NOP (Deselect) Cycle
LHH H X Continue Burst Operation
Output Enable Truth Table
Operation (n, n + 1) G (n) G (n + 1) DQ (n) DQ (n + 1)
Read L L X DOUT 0-35
Read H H High-Z High-Z
Write L L X High-Z
NOP L L X High-Z
Absolute Maximum Ratings
Symbol Parameter Rating Units
Notes
VDD Power Supply Voltage -0.5 to 2.825 V 1
VDDQ Power Supply Voltage -0.5 to 2.825 V 1
VIN Input Voltage -0.5 to 2.825 V 1
VOUT Output Voltage -0.5 to 2.825 V 1
TJOperating Temperature 0 to +110 °C 1
TSTG Storage Temperature -55 to +125 °C 1
IOUT Short Circuit Output Current 25 mA 1
1. Stresses greater than those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a
stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational
sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reli-
ability.
IBM043616CBLBC
IBM041816CBLBC
16Mb (512K x 36 & 1M x 18) SRAM
CBLBCds.fm.00
June 3, 2002 Page 9 of 25
Recommended DC Operating Conditions (TA = 0 to 85°C)
Symbol Parameter Min. Typ. Max. Units Notes
VDD Supply Voltage 2.5V - 5% 2.5 2.5V + 5% V 1
VDDQ Output Driver Supply Voltage 1.4 1.8 1.9 V 1
VIH Input High Voltage VREF +0.1 VDDQ + 0.3 V 1, 2
VIL Input Low Voltage -0.3 VREF - 0.1 V 1, 3
VREF Input Reference Voltage 0.68 .9 1.0 V 1, 6
VIN - CLK Clocks Signal Voltage -0.3 VDDQ + 0.3 V 1, 4
VDIF - CLK Differential Clocks Signal Voltage 0.1 VDDQ + 0.6 V 1, 5
VCM - CLK Clocks Common Mode Voltage 0.55 1.0 V 1
1. All voltages referenced to VSS. All VDD, VDDQ, and VSS pins must be connected.
2. VIH(Max)DC = VDDQ + 0.3V, VIH(Max) AC = VDDQ +0.85 (pulse width 2ns).
3. VIL(Min)DC = -0.3 V, VIL(Min)AC = -1.5V (pulse width 2ns).
4. VIN-CLK specifies the maximum allowable DC excursions of each differential clock (CK, CK).
5. VDIF-CLK specifies the minimum clock differential voltage required for switching.
6. Peak-to-peak AC component superimposed on VREF may not exceed 5% of VREF
.
DC Electrical Characteristics (TA = 0 to +85°C, VDD = 2.5V ± 5%) (Page 1 of 2)
Symbol Parameter Min. Max. Units Notes
IDD
Average Power Supply Operating Current
(IOUT = 0, VIN = VIH or VIL)
x36
-22 800
mA 1
-24 750
-27 700
-30 640
x18
-22 625
mA 1
-24 540
-27 515
-30 470
ISB
Power Supply Standby Current
(SS = VIH. All other inputs = VIH or VIL.
IOUT = 0) 200 mA 1
ILI Input Leakage Current, any input
(VIN = VSS or VDDQ) -2 +2 µA
ILO Output Leakage Current
(VOUT = VSS or VDDQ, DQ in High-Z) -5 +5 µA
1. IOUT = Chip Output Current.
2. Minimum Impedance Output Driver.
3. For JTAG inputs only.
4. JTAG output current leakage is not provided since it is not driven; it is an output only.
IBM043616CBLBC
IBM041816CBLBC
16Mb (512K x 36 & 1M x 18) SRAM
Page 10 of 25
CBLBCds.fm.00
June 3, 2002
VOH Output High Level Voltage
(IOH = -6mA) VDDQ -0.4 VDDQ V 2
VOL Output Low Level Voltage
(IOL = +6mA) VSS V
SS +0.4 V 2
ILIJTAG
JTAG Leakage Input Current
(VIN = VSS or VDD)-70 +10 µA3
ILOJTAG JTAG Leakage Output Current 4
DC Electrical Characteristics (TA = 0 to +85°C, VDD = 2.5V ± 5%) (Page 2 of 2)
Symbol Parameter Min. Max. Units Notes
1. IOUT = Chip Output Current.
2. Minimum Impedance Output Driver.
3. For JTAG inputs only.
4. JTAG output current leakage is not provided since it is not driven; it is an output only.
IBM043616CBLBC
IBM041816CBLBC
16Mb (512K x 36 & 1M x 18) SRAM
CBLBCds.fm.00
June 3, 2002 Page 11 of 25
Programmable Impedance Output Driver DC Electrical Characteristics
(TA = 0 to +85°C, VDD = 2.5V ± 5%)
Symbol Parameter Min. Max. Units Notes
VOH Output High Voltage VDDQ / 2 VDDQ V 1, 3
VOL Output Low Voltage VSS V
DDQ/2 V 2, 3
1. IOH = (VDDQ / 2) / (RQ / 5) ± 15% @ VOH = VDDQ / 2 (for: 175Ω ≤ RQ 350Ω).
2. IOL = (VDDQ / 2) / (RQ / 5) ± 15% @ VOL = VDDQ / 2 (for: 175 RQ 350Ω).
3. Parameter tested with RQ = 250 and VDDQ = 1.8 V.
PBGA Thermal Characteristics
Symbol Parameter Rating Units
RΘJC Thermal Resistance Junction to Case 1 °C/W
Capacitance (TA = 0 to +85°C, VDD = 2.5V ±5%, f = 1MHz)
Symbol Parameter Test Condition Max. Units
CIN Input Capacitance VIN = 0V 4 pF
COUT Data I/O Capacitance (DQ0–DQ35) VOUT = 0V 5 pF
AC Input Characteristics (TA = 0 to +85°C, VDD = 2.5V ± 5%)
Symbol Parameter Min. Max. Units Notes
VIH (ac) AC Input Logic High VREF + 400 mV 3, 4
VIL (ac) AC Input Logic Low VREF - 400 mV 3, 4
VDIF (ac) Clock Input Differential Voltage 800 mV 2, 3
VREF (ac) VREF Peak-to-Peak AC Voltage 5% VREF (dc) mV 1
1. The peak-to-peak AC component superimposed on VREF may not exceed 5% of the DC component of VREF.
2. SRAM performance is a function of clock input differential voltage (VDIF).
3. To guarantee AC characteristics; VIH, VIL, Trise, and Tfall of the inputs and clocks must be within 20% of each other. If these condi-
tions are not met then:
Setup time is measured from clock crossing to inputs at their switched VIHAC, VILAC levels.
Hold time is measured from clock crossing to inputs switching out of their valid VIHAC, VILAC levels.
4. See AC Test Loading on page 12.
IBM043616CBLBC
IBM041816CBLBC
16Mb (512K x 36 & 1M x 18) SRAM
Page 12 of 25
CBLBCds.fm.00
June 3, 2002
AC Input Definition
AC Test Loading
AC Test Conditions (TA = 0 to +85°C, VDD = 2.5V ± 5%, VDDQ = 1.8V)
Symbol Parameter Conditions Units Notes
VIH Input High Level 1.5 V 2
VIL Input Low Level 0.3 V 2
VREF Input Reference Voltage 0.9 V 2
VDIF-CLK Differential Clocks Voltage 1.2 V 2
VCM-CLK Clocks Common Mode Voltage 0.9 V 2
TR Input Rise Time 0.5 ns 2
TF Input Fall Time 0.5 ns 2
I/O Signals Reference Level (except CK clocks) 0.9 V 2
Clocks Reference Level Differential Cross Point V 2
Output Load Conditions 1
1. See AC Test Loading on page 12.
2. Due to tester limitations and applied guardbands, the part is tested to AC test conditions and not worst-case specification condi-
tions. For application robustness, it is recommended that at a minimum AC test conditions are applied.
VIH (ac)
VREF
VIL (ac)
VDIF
DQ
0.9V
50
50
25 5pF
0.9V
50
50
5pF
0.9V
IBM043616CBLBC
IBM041816CBLBC
16Mb (512K x 36 & 1M x 18) SRAM
CBLBCds.fm.00
June 3, 2002 Page 13 of 25
AC Characteristics (TA = 0 to +85°C, VDD = 2.5 V +10/5%)
Symbol Parameter
-22 -24 -27 -30
Units Notes
Min. Max. Min. Max. Min. Max. Min. Max.
tKHKH Cycle Time 2.2 2.4 2.7 3.0 ns
tKHKL Clock High Pulse Width 1.0 1.0 1.3 1.4 ns
tKLKH Clock Low Pulse Width 1.0 1.0 1.3 1.4 ns
tAVKH Address Setup Time 0.25 0.25 0.3 0.3 ns 1, 8, 5, 7
tKHAX Address Hold Time 0.25 0.25 0.3 0.3 ns 1, 8, 5, 7
tBVKH Function Control (B1, B2, B3) Setup Time 0.25 0.25 0.3 0.3 ns 1, 8, 5, 7
tKHBX Function Control (B1, B2, B3) Hold Time 0.25 0.25 0.3 0.3 ns 1, 8, 5, 7
tDVKH Data In Setup Time 0.21 0.21 0.25 0.25 ns 1, 8, 5, 7
tKHDX Data In Hold Time 0.21 0.21 0.25 0.25 ns 1, 8, 5, 7
tINPW Input Pulse Width 0.8 0.8 1.0 1.0 6
tCHCL Echo Clock (CQ) High Pulse Width tKHKL-
0.1
tKHKL+
0.1
tKHKL-
0.1
tKHKL+
0.1
tKHKL-
0.1
tKHKL+
0.1
tKHKL-
0.1
tKHKL+
0.1 ns 1, 2, 5
tCLCH Echo Clock (CQ) Low Pulse Width tKLKH-
0.1
tKLKH+
0.1
tKLKH-
0.1
tKLKH+
0.1
tKLKH-
0.1
tKLKH+
0.1
tKLKH-
0.1
tKLKH+
0.1 ns 1, 2 5
tKXCV Clock (CK) crossing to Echo Clock (CQ)
Valid 0.8 2.1 0.8 2.1 0.8 2.0 0.8 1.7 ns 1, 3, 5
tKXQV Clock (CK) crossing to Output Valid 0.8 2.1 0.8 2.1 0.8 2.0 0.8 1.7 ns 1, 5
tKXQZ Clock (CK) crossing to Output High-Z 0.8 2.1 0.8 2.1 0.8 2.0 0.8 1.7 ns 1, 5
tKXQLZ Clock (CK) crossing to Output Active 0.8 2.1 0.8 2.1 0.8 2.0 0.8 1.7 ns 1, 5
tQVTRK
Echo Clock (CQ) Valid to Output Valid
Tracking (tKXCV - tKXQV)-0.15 0.15 -0.15 0.15 -0.15 0.15 -0.2 0.2 ns 1, 2, 4, 5
tQZTRK
Echo Clock (CQ) Valid to Output High-Z
Tracking (tKXCV - tKXQZ)-0.15 0.15 -0.15 0.15 -0.15 0.15 -0.2 0.2 ns 1, 2, 4, 5
tQLZTRK
Echo Clock (CQ) Valid to Output Active
Tracking (tKXCV - tKXQLZ)-0.2 0.2 -0.2 0.2 -0.2 0.2 -0.2 0.2 ns 1, 2, 4, 5
tGHQZ Output Enable (G) High to High-Z 0.3 1.7 0.3 1.7 0.3 1.7 0.3 2.0 ns 2
tGLQV Output Enable (G) Low to Output Valid 0.3 1.7 0.3 1.7 0.3 1.7 0.3 2.0 ns 2
1. See AC Test Loading on page 12.
2. These parameters may not be tested at the values shown in this table, and may only be guaranteed by design.
3. Echo Clock (CQ) Valid refers to CQ and CQ rising and falling edges.
4. The tracking between echo-clock access times and DQ access times is across all cycle boundaries for any given SRAM address
and function pattern.
5. CK and CK clocks must be used differentially in order to meet specification.
6. Inputs to switch a maximum of once per applied cycle. For example, Data equals (TKHKH)/2; Address and Controls equal TKHKH.
7. To guarantee AC characteristics; VIH, VIL, Trise, and Tfall of inputs and clocks must be within 20% of each other. If these conditions
are not met then:
Setup time is measured from clock crossing to inputs at their switched VIHAC, VILAC levels.
Hold time is measured from clock crossing to inputs switching out of their valid VIHAC, VILAC levels.
8. Guaranteed by design and tested without guardband.
IBM043616CBLBC
IBM041816CBLBC
16Mb (512K x 36 & 1M x 18) SRAM
Page 14 of 25
CBLBCds.fm.00
June 3, 2002
Timing Diagram (Read and NOP Cycles)
B2
G
DQ
SA
tKHKH
Q1 Q2 Q3a
tKHKL
tGHQZ
tAVKH
tKHAX
tGLQV
A2
A1
tKLKH
tBVKH
tKHBX
B1
tBVKH
tKHBX
B3
tBVKH
tKHBX
CK,CK
Q4a
Q3b
CQ,CQ
Q4b Q4c Q4d
tKXCV
tKXCV
tKXQV
tKXQV tKXQZ
tCHCL tCLCH
A4
A3
SDR READ SDR READ DDR READ DDR READ CONTINUE
BURST NOP NOP
tCLQX
tKXQV
IBM043616CBLBC
IBM041816CBLBC
16Mb (512K x 36 & 1M x 18) SRAM
CBLBCds.fm.00
June 3, 2002 Page 15 of 25
Timing Diagram (Read, Write Cycles)
B2
G
DQ
SA
tKHKH
D3
tKHKL
tAVKH
tKHAX
A2
A1
tKLKH
tBVKH tKHBX
B1
tBVKH
tKHBX
B3
tBVKH
tKHBX
CK,CK
CQ,CQ
tKXCV
tKXQV
tDVKH
tKHDX
a
D3
b
D4
a
D4
b
D4
c
D4
da
D4
b
A4
A3
SDR Read SDR Write DDR Write Continue
D2
Q1
tGHQZ
DDR Write
Burst
D4
c
D4
Continue
Burst
Continue
Burst
tINPW
tINPW
tINPW
IBM043616CBLBC
IBM041816CBLBC
16Mb (512K x 36 & 1M x 18) SRAM
Page 16 of 25
CBLBCds.fm.00
June 3, 2002
IEEE 1149.1 TAP and Boundary Scan
The SRAM provides a limited set of JTAG functions intended to test the interconnection between SRAM I/Os
and printed circuit board traces or other components. There is no multiplexer in the path from the I/O pins to
the RAM core.
In conformance with IEEE standard 1149.1, the SRAM contains a TAP controller, instruction register, bound-
ary scan register, bypass register, and ID register.
The TAP controller has a standard 16-state machine that resets internally upon power up; therefore, a TRST
signal is not required.
Signal List:
TCK: Test Clock
TMS: Test Mode Select
TDI: Test Data In
TDO: Test Data Out
JTAG Recommended DC Operating Conditions (TA = 0 to 85°C)
Symbol Parameter Min. Typ. Max. Units Notes
VIH1 JTAG Input High Voltage 1.7 2.8 V
VIL1 JTAG Input Low Voltage -0.3 0.8 V
VOH1 JTAG Output High Level 2.1 V 2
VOL1 JTAG Output Low Level 0.2 V 1
1. OH1 = -2mA at 2.1V.
2. OL1 = +2mA at 0.2V.
JTAG AC Test Conditions (TA = 0 to +85°C, VDD = 2.5V ± 5%)
Symbol Parameter Conditions Units
Notes
VIH1 Input Pulse High Level 2.0 V
VIL1 Input Pulse Low Level 0.0 V
TR1 Input Rise Time 2.0 ns
TF1 Input Fall Time 2.0 ns
Input and Output Timing Reference Level 1.0 V 1
1. See AC Test Loading on page 12.
IBM043616CBLBC
IBM041816CBLBC
16Mb (512K x 36 & 1M x 18) SRAM
CBLBCds.fm.00
June 3, 2002 Page 17 of 25
JTAG AC Characteristics (TA = 0 to +85°C, VDD = 2.5V ± 5%)
Symbol Parameter Min. Max. Units Notes
tTHTH TCK Cycle Time 20 ns
tTHTL TCK High Pulse Width 7 ns
tTLTH TCK Low Pulse Width 7 ns
tMVTH TMS Setup 4 ns
tTHMX TMS Hold 4 ns
tDVTH TDI Setup 4 ns
tTHDX TDI Hold 4 ns
tTLOV TCK Low to Valid Data 7 ns 1
1. See AC Test Loading on page 12.
JTAG Timing Diagram
TCK
TMS
TDI
TDO
tTHTL tTLTH tTHTH
tTHMX
tMVTH
tDVTH
tTHDX
tTLOV
IBM043616CBLBC
IBM041816CBLBC
16Mb (512K x 36 & 1M x 18) SRAM
Page 18 of 25
CBLBCds.fm.00
June 3, 2002
Scan Register Definition
Register Name Bit Size x18 Bit Size x36
Instruction 3 3
Bypass 1 1
ID 32 32
Boundary Scan1, 2 49 68
1. The boundary-scan chain consists of the following bits:
36 or 18 bits for data inputs depending on x36 or x18 configuration
19 bits for SA0–SA18 for x36; 20 bits for SA0–SA19 for x18
4 or 2 bits for CQ and CQ clocks depending on x36 or x18 configuration
9 bits for CK, CK, ZQ, LBO, B1, B2, B3, MODE and G
2. CK and CK clocks connect to a differential receiver that generates a single-ended clock signal. This signal and its inverted value
are used for boundary-scan sampling. CQ and CQ clocks are sampled from the CK and CK boundary-scan register inputs.
ID Register Definition
Part
Field Bit Number and Description
Revision Number
(31:28)
IBM Internal Use
Device Density and
Configuration (27:19)
Vendor Definition
(18:12)
Manufacture JEDEC
Code (11:1)
Start
Bit(0)
1M x 18 XXXX 011100001 0110011 00010100100 1
512K x 36 XXXX 011011110 0110011 00010100100 1
IBM043616CBLBC
IBM041816CBLBC
16Mb (512K x 36 & 1M x 18) SRAM
CBLBCds.fm.00
June 3, 2002 Page 19 of 25
This part has not been designed to comply with the following sections of IEEE 1149.1:
7.2.1.b, e
7.7.1.a–f
10.1.1.b, e
10.7.1.a–d
Instruction Set
Code Instruction Notes
000 SAMPLE-Z 1
001 IDCODE 1
010 SAMPLE-Z 1
011 PRIVATE 4
100 SAMPLE 3
101 PRIVATE 4
110 PRIVATE 4
111 BYPASS 2
1. Places DQs in High-Z in order to sample all input data regardless of other SRAM inputs.
2. BYPASS register is initialized to VSS when BYPASS instruction is invoked. The BYPASS register also holds the last serially-loaded
TDI when exiting the Shift DR state.
3. SAMPLE instruction does not place DQs in High-Z.
4. PRIVATE is reserved for the exclusive use of IBM. Invoking this instruction will cause improper SRAM functionality.
IBM043616CBLBC
IBM041816CBLBC
16Mb (512K x 36 & 1M x 18) SRAM
Page 20 of 25
CBLBCds.fm.00
June 3, 2002
Boundary Scan Order (x36)
Exit Order Signal Bump # Exit Order Signal Bump # Exit Order Signal Bump #
1 SA1 5R 24 CQ 8F 47 CQ 2F
2 SA0 5T 25 DQ11 9D 48 DQ25 1F
3 SA2 6R 26 DQ17 7F 49 DQ19 3H
4 SA3 7T 27 DQ14 8D 50 DQ22 2H
5 SA4 7P 28 DQ12 9B 51 DQ26 1H
6 DQ2 8T 29 DQ15 8B 52 ZQ 5A
7 DQ5 9T 30 SA5 7D 53 B1 5B
8 DQ3 8P 31 SA6 7C 54 B2 5K
9 DQ0 7M 32 SA7 7B 55 B3 5L
10 DQ6 9P 33 SA8 7A 56 LBO 4L
11 CQ 8M 34 SA9 6C 57 DQ27 1K
12 DQ7 9M 35 SA10 6A 58 DQ31 2K
13DQ17K36SA114A59DQ343K
14 DQ4 8K 37SA124C 60DQ281M
15DQ89K38SA133A61CQ
2M
16 MODE16L 39 SA14 3B 62 DQ29 1P
17 CK 5H 40 SA15 3C 63 DQ35 3M
18 CK 5G 41 SA18 3D 64 DQ32 2P
19 G 5C 42 DQ20 2B 65 DQ30 1T
20 DQ9 9H 43 DQ23 1B 66 DQ33 2T
21 DQ13 8H 44 DQ21 2D 67 SA16 3T
22 DQ16 7H 45 DQ18 3F 68 SA17 4R
23 DQ10 9F 46 DQ24 1D
1. Mode will scan out the value placed on the Mode pin, or if the Mode pin is floated, Mode will scan VSS.
IBM043616CBLBC
IBM041816CBLBC
16Mb (512K x 36 & 1M x 18) SRAM
CBLBCds.fm.00
June 3, 2002 Page 21 of 25
Boundary Scan Order (x18)
Exit Order Signal Bump # Exit Order Signal Bump #
1 SA1 5R 26 SA11 4A
2 SA0 5T 27 SA12 4C
3 SA2 6R 28 SA13 3A
4 SA3 7T 29 SA14 3B
5 SA4 7P 30 SA15 3C
6 DQ1 8T 31 SA18 3D
7 DQ2 9P 32 DQ10 2B
8 CQ 8M 33 DQ11 1D
9 DQ0 7K 34 CQ 2F
10 DQ3 9K 35 DQ9 3H
11 MODE16L 36 DQ12 1H
12 CK 5H 37 ZQ 5A
13 CK 5G 38 B1 5B
14 G 5C 39 B2 5K
15 DQ6 8H 40 B3 5L
16 DQ4 9F 41 LBO 4L
17 DQ8 7F 42 DQ15 2K
18 DQ7 8D 43 DQ13 1M
19 DQ5 9B 44 DQ17 3M
20 SA5 7D 45 DQ16 2P
21 SA6 7C 46 DQ14 1T
22 SA7 7B 47 SA19 3P
23 SA8 7A 48 SA16 3T
24 SA9 6C 49 SA17 4R
25 SA10 6A
1. Mode will scan out the value placed on the Mode pin, or if the Mode pin is floated, Mode will scan VSS.
IBM043616CBLBC
IBM041816CBLBC
16Mb (512K x 36 & 1M x 18) SRAM
Page 22 of 25
CBLBCds.fm.00
June 3, 2002
TAP Controller State Machine
Test Logic Reset
Run Test Idle Select DR
Capture DR
Shift DR
Exit1 DR
Pause DR
Exit2 DR
Update DR
Select IR
Capture IR
Shift IR
Exit1 IR
Pause IR
Exit2 IR
Update IR
1
1
1
00
0
0
1
0
1
1
0
1
1
1
0
01
1
1
0
1
0
0
0
1
1
0
0
0
0
1
IBM043616CBLBC
IBM041816CBLBC
16Mb (512K x 36 & 1M x 18) SRAM
CBLBCds.fm.00
June 3, 2002 Page 23 of 25
9 x 17 BGA Dimensions
Note: All dimensions are in millimeters.
1
2
3
4
5
6
7
1.27
Solder Ball 0.889 ± 0.04 diameter
UTRPNMLKJHFGEDCB
A
0.84
1.92
8
9
20.32
Plate
0.71 ± 0.05
0.701 ± 0.099
Under fill
0.0826 ± 0.0254
0.725 ± 0.2
Indicates A1
Location
81G5788 Plate
Chip
12.7
22.00
19.968
2.549 ± 0.13
0.1778
Under fill
14
11.968
16.764
10.16 12.294
2.618 ± 0.254
Flush to 1.4 Max
IBM043616CBLBC
IBM041816CBLBC
16Mb (512K x 36 & 1M x 18) SRAM
Page 24 of 25
CBLBCds.fm.00
June 3, 2002
Revision Log
Rev Contents of Modification
June 3, 2002 Initial release (00).
Copyright and Disclaimer
Copyright International Business Machines Corporation 2002
All Rights Reserved
Printed in the United States of America June 2002
The following are trademarks of International Business Machines Corporation in the United States, or other countries,
or both.
IBM IBM Logo
IEEE and IEEE 802 are registered trademarks in the United States of the Institute of Electrical and Electronics Engineers.
Other company, product, and service names may be trademarks or service marks of others.
All information contained in this document is subject to change without notice. The products described in this document
are NOT intended for use in implantation, life support, space, nuclear, or military applications where malfunction may
result in injury or death to persons. The information contained in this document does not affect or change IBM product
specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity under
the intellectual property rights of IBM or third parties. All information contained in this document was obtained in specific
environments, and is presented as an illustration. The results obtained in other operating environments may vary.
THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN “AS IS” BASIS. In no event will IBM be
liable for damages arising directly or indirectly from any use of the information contained in this document.
IBM Microelectronics Division
1580 Route 52, Bldg. 504
Hopewell Junction,
NY 12533-6351
The IBM home page can be found at http://www.ibm.com
The IBM Microelectronics Division home page can be found at http://www.chips.ibm.com
June 3, 2002