306) 7929237 O o029843 4 mm T-3-I | OT SGS-THOMSON *- -THOHSON TREZOO/FI S47, iiCROELECTROMICS IRFZ22/F N - CHANNEL ENHANCEMENT MODE POWER MOS TRANSISTORS TYPE Voss Rpsyon) Ip IRFZ20 50 V 0.1 2 15 A IRFZ20Fi 50 V 0.1 Q 125A IRFZ22 50 V 0.12 0 14, A IRFZ20FI 50 V 0.12 2 12 =A N-CHANNEL POWER MOS TRANSISTORS * VERY LOW Ros (on e LOW DRIVE ENERGY FOR EASY DRIVE COST EFFECTIVE INDUSTRIAL APPLICATIONS: e AUTOMOTIVE POWER ACTUATORS TO-220 ISOWATT220 e MOTOR CONTROLS INVERTERS N-channel enhancement mode POWER MOS field effect transistors. Easy drive and very fast switch- INTERNAL SCHEMATIC o ing times make these POWER MOS transistors DIAGRAM ideal for high speed switching circuits applications __ such as power actuators driving, motor drive includ- ing brushless motors, hydraulic actuator and many G other in automotive and automatic guided vehicle applications. They also find use DC/DC convert- ers and uninterruptible power supplies s ABSOLUTE MAXIMUM RATINGS IRF Z20 Z22 Z20Fl Z22Fl _ Vps * Drain-source voltage (Vas = 0) 50 V _ Vocr * Drain-gate voltage (Reg =20 KQ) 50 Vv as Gate-source voltage +20 Vv lpm () Drain current (pulsed) 60 56 A lbim Drain inductive current, clamped (L= 100 nH) 60 56 A Z20 Z22 Ib Drain current (cont.) at T,= 25C 15 14 A Ib Drain current (cont.) at Ty = 100C 10 9 A Z20Fl Z22FI ID" Drain current (cont.) at T,= 25C 12.5 12 A Ip" Drain current (cont.) at T,= 100C 7.5 . 7 A _ TO-220 ISOWATT220 Prot Total dissipation at T, <25C 40 30 WwW . Derating factor 0.32 0.24 WIC Tetg Storage temperature 55 to 150 C Tj Max. operating junction temperature 150 C * Tj= 25C to 125C () Repetitive Rating: Pulse width limited by max junction temperature a See note on ISOWATT220 in this datasheet June 1988 6 361 rcJREZ20/FL.IREZ29/FI 30E D MM 7929237 0029844 b i THERMAL DATA" = S-THOMSON Rihj- case Thermal resistance junction-case Thermal resistance case-sink Rih-amb Thermal resistance junction-ambient T Maximum lead temperature for soidering purpose the-s T-39-1] TO-220 | ISOWATT220 max 3.12! 4.16 oCiW typ 0.5 oCiwW max 80 oCIW 300 C ELECTRICAL CHARACTERISTICS (T,,5 = 25C unless otherwise specified) Parameters Test Conditions Min. | Typ. | Max. | Unit OFF Vian) pss Drain-source Ip= 250 pA Vesg= 0 50 Vv breakdown voltage loss Zero gate voltage Vps= Max Rating 250 | pA drain current (Vgg=0) | Vpg= Max Rating x 0.8 T,= 125C 1000; pA lass Gate-body leakage Veg = +20 V +500) nA current (Vpg = 0) ON ek Ves (th) Gate threshold voltage Vps= Ves IDb= 250 pA 2 4 Vv ID(on) On-state drain current | Vpg> Ip (ony * Rogion) max Vas= 10 V for IRFZ20/IRFZ20FI 15 A for IRFZ22/IRFZ22FI 14 A Ros (on) Static drain-source Veg= 10 V Ip= 9.0A on resistance for IRFZ20/IRFZ20FI 0.10| 2 for IRFZ20/IRFZ22Fl 0.12) 2 DYNAMIC Gts ** Forward Vps> 15 fon x Ros (on) max 5 mho transconductance Ip= 9.0 Cigg Input capacitance 850 | pF oss Output capacitance Vpgs= 25 V f= 1 MHz 350 | pF 138 Reverse transfer Veg= 0 100 | pF capacitance SWITCHING ty (on) Turn-on time Vpp= 25 V Ip= 9.0A 30 ; ns 1 Rise time R;= 50 2 90 | ns ta (ot) _Turn-off delay time (see test circuit) 40 | ns tr Fall time 30 ns Qy Total Gate Charge Vas=10V Ip= 20A 17 | nc Vps= Max Rating x 0.8 (see test circuit) 2/6 G7 sGs- 97. SS THOMSON 362_ 30E D> mm 7929237 0029845 5 = . IRFZ20/F1 - IRFZ22/Fi S G S-THOMSON ELECTRICAL CHARACTERISTICS (Continued) __ Parameters Test Conditions Min. | Typ. | Max. | Unit f= on 17 ~ : T-39-11 SOURCE DRAIN DIODE - Isp Source-drain current | for IRFZ20/IRFZ20FI 15 | ns for IRFZ22/IRFZ22Fl 14 ns Isp (*) Source-drain current | for IRFZ20/IRFZ20Fi 60 A (pulsed) for IRFZ22/IRFZ22Fl 56 A Vas= 0 Vsp** Forward on voltage for IRFZ20/IRFZ20FI Igp= 15 A 15) V for IRFZ22/IRFZ221F Isp = 14A 14, V tir Reverse recovery Tj= 150C 100 ns time Qe Reverse recovered Isp = 15 A di/dt = 100 Alps 0.4 pC charge ** Pulsed: Pulse duration < 300 ys, duty cycle < 1.5% () Repetitive Rating: Pulse \ width limited by max junction temperature n See note on ISOWATT220 in this datasheet Safe operating areas Thermal impedance Derating curve (standard package) (standard package) (standard package) GU-1hb4 K He t crt Sz! i 1074 &=! ! Zt Zth's KRthy- = Se 2 {tt : ii | 1 | 107 107? i . wit tf Mgo tf St? Yost we ne 10? 2 407 wt 0 25 50 75 100, 125. Tease (*C} Output characteristics Output characteristics Transfer characteristics ts bal bla Ty=-55C Tyx25eC Ty=125C 20 to! Ves > hitesy*Posteaaax 0 1 2 3 Ypst) q 10 20 30 40 50 Vost) 0 2 & 6 8 10 12 Vgst) 7: SGS-THOMSON 3/6 ky, 3S8sH 363 a oc a... aaa ataIRFZ20Fl - IRFZ22/FI 30E D MM 7929237 GO2da4b T Static drain-source on resistance Transconductance 6533 astS) 19 6 10 20 30 40 50 lA) Gate charge vs gate-source voltage Normalized on resistance vs temperature Gh KAI {norm} 12 4/6 Posten (a) 025 020 0% 010 Q 10 20 30 40 50 tA} Capacitance variation f 21MHz + 0 S 10 1% 20 25 30 35 Vps() Source-drain diode forward characteristics SG S-THOMSON - Maximum drain current vs temperature Normalized breakdown voltage vs temperature -40 0 40 80 120 Ty (C) 364 SL. SGS THOMSON LECTACNICS__ AGE D a 79eqe3? OOes4? | IRFZ20/Fl - IRFZ22/F I 7 S G S-THOMSON 77-39-11 S Clamped inductive test circuit - Clamped inductive waveforms =~ L VARY t, TO OBTAIN REQUIRED PEAK 4 yyy Vos Ey Vog=t0V T t Ec=0.75 BVpss SC-0243 SC-0242 Switching times test circuit Gate charge test circuit Von 0 *Vps ADJUST R, TO OBTAIN SPECIFIED ly ot SAME TYPE Vos 2 =" DUT : -Vos SC-0246 CURRENT CURRENT SAMPLING SAMPLING RESISTOR RESISTOR SC-0244 5/6 365IRFZ20/FI-IREZ22/FL. CS CG SH THOMSON = J0E D 2429237 p029a48 3m T-~39~1] ISOWATT220 PACKAGE THERMAL IMPEDANCE OF . CHARACTERISTICS AND APPLICATION. ISOWATT220 PACKAGE ISOWATT220 is fully isolated to 2000V dc. Its ther- Fig. 1 illustrates the elements contributing to the mal impedance, given in the data sheet, is optimi- thermal resistance of transistor heatsink assembly, sed to give efficient thermal conduction together using ISOWATT220 package. with excellent electrical isolation. The total thermal resistance Rip gon is the sum of The structure of the case ensures optimum distan- each of these elements. ces between the pins and heatsink. The The transient thermal impedance, Z;, for different ISOWATT220 package eliminates the need for ex- pulse durations can be estimated as follows: ternal isolation so reducing fixing hardware. Accu- 1 - for a short duration power pulse less than ims: rate moulding techniques used in manufacture assure consistent heat spreader-to-heatsink capa- Zth< Rihu-c citance. ISOWATT220 thermal performance is better than 2- for an intermediate power pulse of 5ms to 50ms: that of the standard part, mounted with a 0.4mm Zin= Pinu-c mica washer. The thermally conductive plastic has a higher breakdown rating andis less fragile than 3 for long power pulses of the order of 500ms or mica or plastic sheets. Power derating for greater: ISOWATT220 packages is determined by: Zn= Rinc + Rincus + PRints-amb Ty - T, It is often possibile to discern these areas on tran- Pp= sient thermal impedance curves. th from this lpmax for the POWER MOS can be cal- culated: Fig. 1 Po Ren- Rene-Hs Rens-amb Ragcony (at 150C) WA -V/A WA lpmax< ISOWATT DATA Safe operating areas Thermal impedance Derating curve -942274 bla} Ee Tht 50 AW WI 2 | t 10" H ' Zth= KRiny- [ff 5s s24p 4 40 { i TUL 30 tel 20 lo en OF Sas 228 [~C Crt SINGYE PULSE { t 2 0 ev et oe? tt tts 0 25 50 75 100 125 Tegs(Cl [ 6/6 5. SGS-THOMSON MISE SELECTED MES