©2004 Semiconductor Components Industries, LLC.
September-2017, Rev 3
Publication Order Number:
HUF75344G3/DD
HUF75344G3, HUF75344P3
N-Channel UltraFET Power MOSFET
55 V, 75 A, 8 mΩ
These N-Channel power MOSFETs are manufactured
using the innovative UltraFET process. This advanced
process technology achieves the lowest possible on-
resistance per silicon area, resulting in outstanding
performance. This device is capable of withstanding high
energy in the avalanche mode and the diode exhibits very
low reverse recovery time and stored charge. It was
designed for use in applications where power efficiency is
important, such as switching regulators, switching
converters, motor drivers, relay drivers, low-voltage bus
switches, and power management in portable and battery-
operated products.
Formerly developmental ty pe TA75344.
Features
75A, 55V
Simulation Models
- Temperature Compensated PSPICE® and SABER™
Models
- Thermal Impedance PSPICE and SABER Models
Available on the web at: www.fairchildsemi.com
Peak Current vs Pulse Width Cur ve
UIS Rating Curve
Related Literature
- TB334, “Guidelines for Soldering Surface Mount
Components to PC Boards”
Symbol
Packaging
All ON Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.
Ordering Information
PART NUMBER PACKAGE BRAND
HUF75344G3 TO-247 75344G
HUF75344P3 TO-220AB 75344P
D
G
S
JEDEC STYLE T O-247 JEDEC TO-220AB
SOURCE
DRAIN
GATE
DRAIN
(TAB)
DRAIN
SOURCE
GATE
DRAIN
(FLANGE)
Data Sheet October 2013
www.onsemi.com
2
Absolute Maximum Ratings TC = 25oC, Unless Otherwise Specified UNITS
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . V DSS 55 V
Drain to Gate Voltage (RGS = 20k) (Note 1) . . . . . . . . . . . . . VDGR 55 V
Gate to Sou rc e Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VGS ±20 V
Drain Current
Continuous (Figure 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ID
Pulsed Dr a i n Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .IDM 75
Figure 4 A
Pulsed Avalan che Ra tin g. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . EAS Figure 6
Power Dissipat io n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PD
Derate Above 25oC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
1.90 W
W/oC
Operating and Storage Temperature . . . . . . . . . . . . . . . . . .TJ, TSTG -55 to 175 oC
Maximum Temperature for Soldering
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . .TL
P ackage Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . Tpkg 300
260
oC
oC
CAUTION: S tresses ab ove those l isted in “A bsolute Maximu m Rating s” may cause per manent d amage to t he device. This is a str ess on ly rating and operation o f the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. TJ = 25oC to 150oC.
Electrical Specifications TC = 25oC, Unless Otherwise Specified
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNITS
OFF STATE SPECIFICATIONS
Drain to Source Breakdown Voltage BVDSS ID = 250µA, VGS = 0V (Figure 11) 55 - - V
Zero Gate Voltage Drain Current IDSS VDS = 50V, VGS = 0V - - 1 µA
VDS = 45V, VGS = 0V, TC = 150oC--250µA
Gate to Source Leakage Current IGSS VGS = ±20V - - ±100 nA
ON STAT E SPECIFICAT ION S
Gate to Source Threshold Voltage VGS(TH) VGS = VDS, ID = 250µA (Figure 10) 2 - 4 V
Drain to Source On Resistance rDS(ON) ID = 75A, VGS = 10V (Figure 9) - 6.5 8.0 m
THERMAL SPECI FICATIONS
Thermal Resistance Junction to Case RθJC (Figure 3) - - 0.52 oC/W
Thermal Resistance Junction to Ambient RθJA TO-247 - - 30 oC/W
TO-220 - - 62 oC/W
SWITCHING SPECIFICATIONS (VGS = 10V)
Turn-On Time tON VDD = 30V, ID 75A,
RL = 0.4, VGS = 10V,
RGS = 3.0
--187ns
Turn-On Del ay Time td(ON) -13- ns
Rise Time tr- 125 - ns
Turn-Off Delay Time td(OFF) -46- ns
Fall Ti me tf-57- ns
Turn-Off Time tOFF --147ns
GATE CHARGE SPECIFICATIONS
Total Gate Charge Qg(TOT) VGS = 0V to 20V VDD = 30V,
ID 75A,
RL = 0.4
Ig(REF) = 1.0mA
(Figure 13)
- 175 210 nC
Gate Charge at 10V Qg(10) VGS = 0V to 10V - 90 108 nC
Threshold Gate Charge Qg(TH) VGS = 0V to 2V - 5 .9 7.0 nC
Gate to Source Gate Charge Qgs -14-nC
Reverse Transfer Capacitance Qgd -39-nC
CAPACITANCE SPECIFICATIONS
Input Capacitance CISS VDS = 25V, VGS = 0V,
f = 1M H z
(Figure 12)
- 3200 - pF
Output Capacitance COSS - 1170 - pF
Reverse Transfer Capacitance CRSS - 310 - pF
HUF75344G3, HUF75344P3
Sour ce to Drain Diode Specifications
PARAMETER SYMBOL TEST CONDITIONS MIN TYP MAX UNI TS
Source to Drain Diode Voltage VSD ISD = 75A - - 1.25 V
Reverse Recovery Time trr ISD = 75A, dISD/ dt = 100A/µs - - 105 ns
Reverse Recovered Charge QRR ISD = 75A, dISD/dt = 100A/µs - - 210 nC
Typical Performance Curves
FIGURE 1. NORMALIZED PO WER DISSIPATION vs CASE
TEMPERATURE FIGURE 2. MAXIMUM CONTI NUOUS DRAIN CURRENT vs
CASE TEMPERATURE
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE
TC, CASE TEMPERATURE (oC)
POWER DISSIPATION MULTIPLIER
00 25 50 75 100 150
0.2
0.4
0.6
0.8
1.0
1.2
125 175
I
D
, DRAIN CURRENT (A)
T
C
, CASE TEMPERATURE (
o
C)
20
40
60
80
50 75 100 125 150 175
025
t, RECTANGULAR PULSE DURATION (s)
SINGLE PULSE
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
PDM
t1t2
DUTY CYCLE - DESCENDING ORDER
0.5
0.2
0.1
0.05
0.01
0.02
10-4 10-3 10-2 10-1 100101
10-5
0.1
1
2
0.01
ZθJC, NORMALIZED
THERMAL IMPEDANCE
HUF75344G3, HUF75344P3
www.onsemi.com
3
FIGURE 4. PEAK CURRENT CAPABILITY
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA NOTE: Refer to ON Semiconductor Application Notes AN9321 and
AN9322.
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY
FIGURE 7. SATURATION CHARACTERISTICS FIGURE 8. TRANSFER CHARACTERISTICS
Typical Performance Curves (Continued)
10
1
10
0
10
-1
10
-2
10
-3
10
-4
10
-5
50
100
2000 T
C
= 25
o
C
I = I
25
175 - T
C
150
FOR TEMPERATURES
ABO VE 25
o
C DERATE PEAK
CURRENT AS FOLLOW S:
V
GS
= 10V
I
DM
, PEAK CURRENT (A)
t, PULSE WIDTH (s)
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
1000
V
GS
= 20V
10
100
1000
10 100
11200
V
DS
, DRAIN TO SOURCE VOLTAGE (V)
I
D
, DRAIN CURRENT (A)
T
J
= MAX RATED
T
C
= 25
o
C
100
µ
s
10ms
1ms
V
DSS(MAX)
= 55V
LIMITED BY r
DS(ON)
AREA MAY BE
OPERATION IN THIS
tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD)
If R = 0
If R 0
tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
STARTING TJ = 25oC
STARTING TJ = 150oC
1100.01
1000
10
IAS, AVALANCHE CURRENT (A)
tAV, TIME IN AVALANCHE (ms)
0.1
100
ID, DRAIN CURRENT (A)
VDS, DRAIN TO SOURCE VO LTAGE (V)
0
30
60
90
120
150
01234
VGS = 10V
PULSE DURATION = 80µs
TC = 25oC
VGS = 5V
VGS = 6V
VGS = 20V
VGS = 7V
DUTY CYCLE = 0.5% MAX
0 3 4.5 6 7.51.5
0
30
60
90
120
ID, DRAIN CURRENT (A)
VGS, GATE TO SOURCE VOLTAGE (V)
150
175
o
C
-55oC
25oC
DUTY CYCLE = 0.5% MAX
PULSE DURATION = 80µs
VDD = 15V
HUF75344G3, HUF75344P3
www.onsemi.com
4
FIGURE 9. NORMALIZED DRAIN T O SOURCE ON
RESISTANCE vs JUNCTION TEMPERATURE FIGURE 10. NORMALIZED GATE THRESHOLD V OLTA GE vs
JUNCTION TEMPERATURE
FIGURE 11. NORMALIZED DRAIN T O SOURCE BREAKDOWN
VOLTAGE vs JUNCTION TEMPERATURE FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE
NOTE: Refer to ON Semiconductor Application Notes AN7254 and AN7260.
FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT
Typical Performance Curves (Continued)
0.5
1.0
1.5
2.0
2.5
-80 -40 040 80 120 160
NORMALIZED DRAIN TO SOURCE
TJ, JUNCTION TEMPERATURE (oC)
ON RESISTANCE
200
PULSE DURATION = 80µs
VGS = 10V, ID = 75A
DUTY CYCLE = 0.5% MAX VGS = VDS, ID = 250µA
-80 -40 0 40 80 120 160
0.4
0.6
0.8
1.0
1.2
NORMALIZED GATE
TJ, JUNCTION TEMPERATURE (oC)
THRESHOLD VOLTAGE
200
ID = 250µA
1.2
1.1
0.9-80 -40 0 40 80 120 160
TJ, JUNCTION TEMPERATURE (oC)
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
200
1.0
3000
00 20304050
C, CAPACITANCE (pF)
4500
VDS, DRAIN TO SOURCE VOLTAGE (V)
1500
6010
CISS
CRSS
COSS
VGS = 0V, f = 1MHz
CISS = CGS + CGD
CRSS = CGD
COSS CDS + CGD
VGS, GATE TO SOURCE VOLTAGE (V)
Qg, GATE CHARGE (nC)
0
2
4
6
8
10
0 255075100
VDD = 30V
ID = 75A
ID = 55A
ID = 35A
ID = 20A
WAVEFORMS IN
DESCENDING ORDER:
HUF75344G3, HUF75344P3
www.onsemi.com
5
Test Circuits and Waveforms
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT FIGURE 15. UNCLAMPED ENERGY W AVEFORMS
FIGURE 16. GATE CHARGE TEST CIRCUIT FIGURE 17. GATE CHARGE WAVEFORM
FIGURE 18. SWITCHING TIME TEST CIRCUIT FIGURE 19. RESISTIVE SWITCHING WAVEFORMS
tP
VGS
0.01
L
IAS
+
-
VDS
VDD
RG
DUT
VARY tP TO OBTAIN
REQUIRED PEAK IAS
0V
VDD
VDS
BVDSS
tP
IAS
tAV
0
RL
VGS +
-
VDS
VDD
DUT
IG(REF)
VDD
Qg(TH)
VGS = 2V
Qg(10)
VGS = 10V
Qg(TOT)
VGS = 20V
VDS
VGS
Ig(REF)
0
0
Qgs Qgd
VGS
RL
RGS DUT
+
-VDD
VDS
VGS
tON
td(ON)
tr
90%
10%
VDS 90%
10%
tf
td(OFF)
tOFF
90%
50%
50%
10% PULSE WIDTH
VGS
0
0
HUF75344G3, HUF75344P3
www.onsemi.com
6
PSPICE Electrical Model
.SUBCKT HUF75337 2 1 3 ; rev 3 Feb 1999
CA 12 8 4.9e-9
CB 15 14 4.75e-9
CIN 6 8 2.85e-9
DBODY 7 5 DBODYMOD
DBREAK 5 11 DBREAKMOD
DPLCAP 10 5 DPLCAPMOD
EBREAK 11 7 17 18 59.7
EDS 14 8 5 8 1
EGS 13 8 6 8 1
ESG 6 10 6 8 1
EVTHRES 6 21 19 8 1
EVTEM P 20 6 18 22 1
IT 8 17 1
LDRA IN 2 5 1e - 9
LGATE 1 9 2.6e-9
LSOURCE 3 7 1.1e-9
KGATE LSOURCE LGATE 0.0085
MMED 16 6 8 8 MMEDMOD
MSTRO 16 6 8 8 MSTROMOD
MWEAK 16 21 8 8 MWEAKMOD
RBREAK 17 18 RBREAKMOD 1
RDRAIN 50 16 RDRAINMOD 1.94e-3
RGATE 9 20 0.36
RLDRAIN 2 5 10
RLGATE 1 9 26
RLSOURCE 3 7 11
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
RSOURCE 8 7 RSOURCEMOD 3.5e-3
RVTHRES 22 8 RVTHRESMOD 1
RVTEMP 18 19 RVTEMPMOD 1
S1A 6 12 13 8 S1AM OD
S1B 13 12 13 8 S1BMOD
S2A 6 15 14 13 S2AMOD
S2B 13 15 14 13 S2BMOD
VBAT 22 19 DC 1
ESLC 51 50 VA LUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5 ,51)/(1e-6*400),3 ))}
.MODEL DBODYMOD D (IS = 2.95e-12 RS = 2.6e-3 TRS1 = 1.05e-3 TRS2 = 5. 0e-7 CJO = 5.19e-9 TT = 5.9e-8 M = 0.55)
.MODEL DBREAKMOD D (RS = 1. 65e-1 IKF = 30 TRS1 = 1.15e-4 TRS2 = 2.27e-6)
.MODEL DPLCAPMOD D (CJO = 5.40e-9 IS = 1e-30 N=1 M = 0.88 )
.MODEL MMEDMOD NMOS (VTO = 3.29 KP = 5.5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 0.36)
.MODEL MSTROMOD NMOS (VTO = 3.83 KP = 123 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)
.MODEL MWEAKMOD NMOS (VTO = 2.90 KP =0.04 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 3.6)
.MODEL RBREAKMOD RE S (TC1 = 1.1 5e-3 TC2 = 2.0e-7)
.MODEL RDRAINMOD RES (TC1 = 1. 37e-2 TC2 = 3.85e-5)
.MODEL RSLCMOD RES (TC1 = 1.45e-4 TC 2 = 2.11e-6)
.MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0)
.MODEL RVTHRESMOD RES (TC1 = -3.7e-3 TC2 = -1.6e-5)
.MODEL RVTEMPMOD RES (TC1 = -2.4e-3 TC2 = 7e-7)
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -6.9 VOFF= -3.9)
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -3.9 VOFF= -6.9)
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.99 VOFF= 2.39)
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 2.39 VOFF= -2.99)
.ENDS
NOTE: For further discussion of the PSPICE m odel, consult A New PSPICE Sub-Circu it for the Power MOSFET Feat ur ing Global
Temperature Options; IEEE Power Electronics Speci alist Conference Records, 1991, written by William J. Hepp and C. F rank Wheatle y.
18
22
+-
6
8
+
-
5
51
+
-
19
8
+-
17
18
6
8
+
-
5
8+
-
RBREAK
RVTEMP
VBAT
RVTHRES
IT
17 18
19
22
12
13
15
S1A
S1B
S2A
S2B
CA CB
EGS EDS
14
8
13
814
13
MWEAK
EBREAK DBODY
RSOURCE
SOURCE
11
73
LSOURCE
RLSOURCE
CIN
RDRAIN
EVTHRES 16
21
8
MMED
MSTRO
DRAIN
2
LDRAIN
RLDRAIN
DBREAK
DPLCAP
ESLC
RSLC1
10
5
51
50
RSLC2
1
GATE RGATE EVTEMP
9
ESG
LGATE
RLGATE 20
+
-
+
-
+
-
6
HUF75344G3, HUF75344P3
www.onsemi.com
7
SABER Electrical Model
REV 3 February 1999
template huf7 5344 n2, n1, n3
electrical n2, n1, n3
{
var i iscl
d..model dbodymod = (is = 2.95e-12, cjo = 5.19e-9, tt = 5.90e-8, m = 0.55)
d..model dbreakmod = ()
d..model dplcapmod = (cjo = 5.40e-9, is = 1e-30, n = 1, m = 0.88)
m..model mmedmod = (type=_n, vto = 3.29, kp = 5.5, is = 1e-30, tox = 1)
m..model mstrongmod = (type=_n, vto = 3.83, kp = 123, is = 1e-30, tox = 1)
m..model mweakmod = (type=_n, vto = 2.90, kp = 0.04, is = 1e-30, tox = 1)
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -6.9, voff = -3.9)
sw_vcsp..model s1bmod = (ron = 1e-5, roff = 0.1, von = -3.9, voff = -6.9)
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -2.99, voff = 2.39)
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 2.39, voff = -2.99)
c.ca n12 n8 = 4.9e-9
c.cb n15 n14 = 4.75e-9
c.ci n n6 n8 = 2.85e-9
d.dbody n7 n71 = model=dbodymod
d.dbreak n72 n11 = model=dbreakmod
d.dplc ap n10 n5 = model=dplcapmod
i.it n8 n17 = 1
l.ldrain n2 n5 = 1e-9
l.lgate n1 n9 = 2.6e- 9
l.lsou rce n3 n7 = 1.1e-9
k.kl i(l.lgate) i(l.lsource) = l(l.lgate), l(l.lsource), 0.0085
m.mmed n16 n6 n8 n8 = model=mmedmod, l = 1u, w = 1u
m.mstr ong n16 n6 n8 n8 = model=ms trongmod, l = 1u, w = 1u
m.mweak n16 n21 n8 n8 = model=mweak m od, l = 1u, w = 1u
res.rbreak n17 n18 = 1, tc1 = 1.15e-3, tc2 = 2e-7
res.rdbody n71 n5 = 2.6e-3, tc1 = 1. 05e-3, tc2 = 5e-7
res.rdbreak n72 n5 = 1.65e-1, t c1 = 1.15e-4, t c2 = 2.27e-6
res.rdrain n50 n16 = 1.9 4e-3, tc1 = 1.37e-2, tc2 = 3.85e-5
res.rgate n9 n20 = 0.36
res.rldrain n2 n5 = 10
res.r l gate n1 n9 = 26
res.rlsource n3 n7 = 11
res.rslc1 n5 n51 = 1e-6, tc1 = 1.45e-4, tc2 = 2.11e-6
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 3.5e-3, tc1 = 0, tc2 = 0
res.rvtemp n18 n19 = 1, tc1 = -2.4e-3, tc2 = 7e-7
res.rvthres n22 n8 = 1, tc1 = -3.7e-3, tc2 = -1.6e-5
spe.e break n11 n7 n17 n18 = 59. 7
spe.eds n14 n8 n5 n8 = 1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
spe.evthres n6 n21 n19 n8 = 1
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc = 1
equa tions {
i (n51- >n50) + = iscl
iscl: v(n51,n50 ) = ((v(n5,n51)/(1e-9+abs( v(n5,n51))))*((abs(v(n5,n51)*1e6/400))** 3))
}
}
18
22
+-
6
8
+
-
19
8
+-
17
18
6
8
+
-
5
8+
-
RBREAK
RVTEMP
VBAT
RVTHRES
IT
17 18
19
22
12
13
15
S1A
S1B
S2A
S2B
CA CB
EGS EDS
14
8
13
814
13
MWEAK
EBREAK DBODY
RSOURCE
SOURCE
11
73
LSOURCE
RLSOURCE
CIN
RDRAIN
EVTHRES 16
21
8
MMED
MSTRO
DRAIN
2
LDRAIN
RLDRAIN
DBREAK
DPLCAP
ISCL
RSLC1
10
5
51
50
RSLC2
1
GATE RGATE EVTEMP
9
ESG
LGATE
RLGATE 20
+
-
+
-
+
-
6
RDBODY
RDBREAK
72
71
HUF75344G3, HUF75344P3
www.onsemi.com
8
SPICE Thermal Model
REV 5 February 1999
HUF75344
CTHERM1 th 6 5.0e-3
CTHERM2 6 5 1.0e-2
CTHERM3 5 4 1.3e-2
CTHERM4 4 3 1.5e-2
CTHERM5 3 2 2.2e-2
CTHERM6 2 tl 8.5e-2
RTHERM1 th 6 6.0e-4
RTHERM2 6 5 3.5e-3
RTHERM3 5 4 2.5e-2
RTHERM4 4 3 4.8e-2
RTHERM5 3 2 1.6e-1
RTHERM6 2 tl 1.8e-1
SABER Thermal Model
SABER thermal mode l HUF75344
template thermal_model th tl
thermal_c th, tl
{
ctherm.ctherm1 th 6 = 5.0e-3
ctherm.ctherm2 6 5 = 1.0e-2
ctherm.ctherm3 5 4 = 1.3e-2
ctherm.ctherm4 4 3 = 1.5e-2
ctherm.ctherm5 3 2 = 2.2e-2
ctherm.ctherm 6 2 tl = 5.5e-2
rtherm.rtherm1 th 6 = 6.0e-4
rtherm.rtherm2 6 5 = 3.5e-3
rtherm.rtherm3 5 4 = 2.5e-2
rtherm.rtherm4 4 3 = 4.8e-2
rtherm.rtherm5 3 2 = 1.6e-1
rtherm.rtherm6 2 tl = 1.8e-1
}
RTHERM4
RTHERM6
RTHERM5
RTHERM3
RTHERM2
RTHERM1
CTHERM4
CTHERM6
CTHERM5
CTHERM3
CTHERM2
CTHERM1
tl
2
3
4
5
6
th JUNCTION
CASE
HUF75344G3, HUF75344P3
www.onsemi.com
9
ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This
literature is subject to all applicable copyright laws and is not for resale in any manner.
PUBLICATION ORDERING INFORMATION
N. American Technical Support: 8002829855 Toll Free
USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81358171050
www.onsemi.com
LITERATURE FULFILLMENT:
Literature Distribution Center for ON Semiconductor
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA
Phone: 3036752175 or 8003443860 Toll Free USA/Canada
Fax: 3036752176 or 8003443867 Toll Free USA/Canada
Email: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local
Sales Representative
© Semiconductor Components Industries, LLC