VSM = 6500 V ITAVM = 1405 A ITRMS = 2205 A ITSM = 22000 A VT0 = 1.20 V rT = 0.600 m Bi-Directional Control Thyristor 5STB 13N6500 Doc. No. 5SYA1035-03 Sep. 01 * Two thyristors integrated into one wafer * Patented free-floating silicon technology * Designed for traction, energy and industrial applications * Optimum power handling capability * Interdigitated amplifying gate. The electrical and thermal data are valid for one thyristor half of the device. Blocking Part Number 5STB 13N6500 5STB 13N6200 5STB 13N5800 Conditions VSM 6500 V 6200 V 5800 V f = 5 Hz, tp = 10ms VRM 5600 V 5300 V 4900 V f = 50 Hz,tp = 10ms ISM 400 mA VSM IRM 400 mA VRM dV/dtcrit 2000 V/s @ Exp. to 0.67xVSM VRM is equal to VSM up to Tj = 110C Mechanical data FM a Mounting force nom. 90 kN min. 81 kN max. 108 kN Acceleration Device unclamped 50 m/s2 Device clamped 100 m/s2 m Weight 2.9 kg DS Surface creepage distance 53 mm Da Air strike distance 22 mm ABB Semiconductors AG reserves the right to change specifications without notice. Tj = 125C 5STB 13N6500 On-state ITAVM ITRMS Max. average on-state t Max. RMS on-state current ITSM Max. peak non-repetitive 22000 A tp = 10 ms Tj = 125C surge current 24000 A tp = 8.3 ms After surge: 2420 kA2s tp = 10 ms VD = VR = 0V 2390 kA2s tp = 8.3 ms I2t 1405 A Half sine wave, TC = 70C 2205 A Limiting load integral VT On-state voltage 2.12 V IT = 1500 A VT0 Threshold voltage 1.20 V IT = 670 - 2000 A rT Slope resistance 0.600 m IH Holding current 100-300 mA Tj = 25C 50-175 mA Tj = 125C 100-500 mA Tj = 25C 50-300 mA Tj = 125C IL Latching current Tj = 125C Switching di/dtcrit Critical rate of rise of on-state current 250 A/s Cont. f = 50 Hz VD 0.67VDRM , Tj = 125C 500 A/s 60 sec. f = 50Hz ITRM = 2000 A IFG = 2 A, tr = 0.5 s IFG = 2 A, tr = 0.5 s td Delay time 3.0 s VD = 0.4VDRM tq Turn-off time 800 s VD 0.67VDRM ITRM = 2000 A, Tj = 125C dvD/dt = 20V/s VR > 200 V, diT/dt = -1.5 A/s Qrr Recovery charge min 2400 As max 3800 As Triggering VGT Gate trigger voltage 2.6 V Tj = 25C IGT Gate trigger current 400 mA Tj = 25C VGD Gate non-trigger voltage 0.3 V VD = 0.4VRM Tj = 125C IGD Gate non-trigger current 10 mA VD = 0.4VRM Tj = 125C VFGM Peak forward gate voltage 12 V IFGM Peak forward gate current 10 A VRGM Peak reverse gate voltage 10 V PG Maximum gate power loss 3W ABB Semiconductors AG reserves the right to change specifications without notice. Doc. No. 5SYA1035-03 Sep. 01 page 2 of 6 5STB 13N6500 Thermal Tj Operating junction temperature range -40...125 C Tstg Storage temperature range -40...150 C RthJC Thermal resistance 22.8 K/kW Anode side cooled junction to case 22.8 K/kW Cathode side cooled 11.4 K/kW Double side cooled RthCH Thermal resistance case to 4 K/kW Single side cooled heat sink 2 K/kW Double side cooled Analytical function for transient thermal impedance: ZthJC [K/kW] 15 ZthJC(t) = a Ri(1 - e - t/ i ) i =1 10 5 i 1 2 3 4 Ri(K/kW) 6.77 2.51 1.34 0.78 i(s) 0.8651 0.1558 0.0212 0.0075 Fm = 81..108 kN Double-side cooling 0 0.001 BN1 n 180 sine: add 1 K/kW 180 rectangular: add 1 K/kW 120 rectangular: add 1 K/kW 60 rectangular: add 2 K/kW 0.010 0.100 1.000 10.000 t [s] Fig. 1 Transient thermal impedance junction to case. On-state characteristic model: VT = A + B iT + C ln(iT +1) + D IT Valid for iT = 200 - 2000 A A B C D 1.328 0.000257 -0.092 0.028 Fig. 2 On-state characteristics. Fig. 3 On-state characteristics. ABB Semiconductors AG reserves the right to change specifications without notice. Doc. No. 5SYA1035-03 Sep. 01 page 3 of 6 5STB 13N6500 Tcase (C) 130 Double-sided cooling 125 120 DC 180 rectangular 180 sine 120 rectangular 115 110 105 100 95 90 85 5STB 13N6500 80 75 70 0 500 1000 1500 2000 2500 ITAV (A) Fig. 4 On-state power dissipation vs. mean onstate current. Turn - on losses excluded. Fig. 5 Max. permissible case temperature vs. mean on-state current. Fig. 6 Surge on-state current vs. pulse length. Half-sine wave. Fig. 7 Surge on-state current vs. number of pulses. Half-sine wave, 10 ms, 50Hz. ABB Semiconductors AG reserves the right to change specifications without notice. Doc. No. 5SYA1035-03 Sep. 01 page 4 of 6 5STB 13N6500 Fig. 8 Gate trigger characteristics. Fig. 9 Max. peak gate power loss. Fig. 10 Recovery charge vs. decay rate of onstate current. Fig. 11 Peak reverse recovery current vs. decay rate of on-state current. Turn - off time, typical parameter relationship. 1.3 f 2 (-di T /dt) 1.2 1.0 Fig. 12 tq/tq1 = f1(Tj) 5STB 13N6500 1.1 0 4 8 12 16 20 Fig. 13 tq/tq1 = f2(-diT/dt) tq = tq1 * f1(Tj) * f2(-diT/dt) * f3(dv/dt) 24 28 32 - diT/dt (A/s) Fig. 14 tq/tq1 = f3(dv/dt) tq1 :at normalized values (see page 2) tq : at varying conditions ABB Semiconductors AG reserves the right to change specifications without notice. Doc. No. 5SYA1035-03 Sep. 01 page 5 of 6 5STB 13N6500 Turn-on and Turn-off losses Won (Ws/pulse) 6 tp = 1 ms tp = 2 ms tp = 5 ms tp = 10 ms 5 4 Won (Ws/pulse) 5 di/dt di/dt di/dt di/dt 4 = 10 A/s = 5 A/s = 2 A/s = 1 A/s 3 3 5STB 13N6500 1 0 0 1 2 3 4 5 6 7 8 9 10 11 12 IT (kA) 5STB 13N6500 2 2 1 0 0 1 2 3 4 5 6 7 8 9 Fig. 15 Won = f(IT, tP), Tj = 125C. Half sinusoidal waves. Fig. 16 Won = f(IT, di/dt), Tj = 125 C. Rectangular waves. Fig. 17 Woff = f(V0, IT), Tj = 125 C. Half sinusoidal waves. tP = 10 ms. Fig. 18 Woff = f(V0,di/dt), Tj = 125 C. Rectangular waves. 10 11 12 IT (kA) ABB Semiconductors AG reserves the right to change specifications without notice. ABB Semiconductors AG Fabrikstrasse 3 CH-5600 Lenzburg, Switzerland Telephone Fax Email Internet +41 (0)62 888 6419 +41 (0)62 888 6306 abbsem@ch.abb.com www.abbsem.com Doc. No. 5SYA1035-03 Sep. 01