IRF1104S/LPbF
HEXFET® Power MOSFET
PD - 95526
lAdvanced Process Technology
lUltra Low On-Resistance
lSurface Mount (IRF1104S)
lLow-profile through-hole (IRF1104L)
l175°C Operating Temperature
lFast Switching
lFully Avalanche Rated
Parameter Typ. Max. Units
RθJC Junction-to-Case ––– 0.9
RθJA Junction-to-Ambient(PCB Mounted,steady-state)** 62
Thermal Resistance
°C/W
Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V 100
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 71A
IDM Pulsed Drain Current  400
PD @TA = 25°C Power Dissipation 2.4 W
PD @TC = 25°C Power Dissipation 170 W
Linear Derating Factor 1.1 W/°C
VGS Gate-to-Source Voltage ±20 V
EAS Single Pulse Avalanche Energy 350 mJ
IAR Avalanche Current60 A
EAR Repetitive Avalanche Energy17 mJ
dv/dt Peak Diode Recovery dv/dt  5.0 V/ns
TJOperating Junction and -55 to + 175
TSTG Storage Temperature Range
Soldering Temperature, for 10 seconds 300 (1.6mm from case )
°C
Absolute Maximum Ratings
Fifth Generation HEXFETs from International Rectifier utilize
advanced processing techniques to achieve extremely low
on-resistance per silicon area. This benefit, combined with
the fast switching speed and ruggedized device design that
HEXFET Power MOSFETs are well known for, provides the
designer with an extremely efficient and reliable device for
use in a wide variety of applications.
The D2Pak is a surface mount power package capable of
accommodating die sizes up to HEX-4. It provides the
highest power capability and the lowest possible on-resistance
in any existing surface mount package. The D2Pak is
suitable for high current applications because of its low
internal connection resistance and can dissipate up to 2.0W
in a typical surface mount application.
The through-hole version (IRF1104L) is available for low-
profile applications.
Description
2
D Pak
TO-262
S
D
G
7/20/04
www.irf.com 1
VDSS = 40V
RDS(on) = 0.009
ID = 100A
lLead-Free
IRF1104S/LPbF
2www.irf.com
Repetitive rating; pulse width limited by
max. junction temperature. ( See fig. 11 )
ISD 60A, di/dt 304A/µs, VDD V(BR)DSS,
TJ 175°C
Notes:
Starting TJ = 25°C, L = 194µH
RG = 25, IAS = 60A. (See Figure 12)
Pulse width 300µs; duty cycle 2%.
** When mounted on 1" square PCB ( FR-4 or G-10 Material ).
For recommended footprint and soldering techniques refer to application note #AN-994.
Uses IRF1104 data and test conditions.
Source-Drain Ratings and Characteristics
Parameter Min. Typ. Max. Units Conditions
ISContinuous Source Current MOSFET symbol
(Body Diode) ––– ––– showing the
ISM Pulsed Source Current integral reverse
(Body Diode) ––– ––– p-n junction diode.
VSD Diode Forward Voltage ––– ––– 1.3 V TJ = 25°C, IS =60A, VGS = 0V
trr Reverse Recovery Time ––– 74 110 ns TJ = 25°C, IF =60A
Qrr Reverse Recovery Charge ––– 188 280 nC di/dt = 100A/µs 
ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
A
100
400
S
D
G
Calculated continuous current based on maximum allowable
junction temperature;for recommended current-handling of the
package refer to Design Tip # 93-4
Parameter Min. Typ. Max. Units Conditions
V(BR)DSS Drain-to-Source Breakdown Voltage 40 –– ––– V VGS = 0V, ID = 250µA
V(BR)DSS/TJBreakdown Voltage Temp. Coefficient ––– 0.038 –– V/°C Reference to 25°C, ID = 1mA
RDS(on) Static Drain-to-Source On-Resistance ––– ––– 0.009 VGS = 10V, ID = 60A
VGS(th) Gate Threshold Voltage 2.0 –– 4.0 V VDS = VGS, ID = 250µA
gfs Forward Transconductance 37 ––– ––– S VDS = 30V, ID = 60A
––– ––– 25 µA VDS = 40V, VGS = 0V
––– ––– 250 VDS = 32V, VGS = 0V, TJ = 150°C
Gate-to-Source Forward Leakage ––– ––– 100 VGS = 20V
Gate-to-Source Reverse Leakage ––– ––– -100 nA VGS = -20V
QgTotal Gate Charge –– ––– 93 ID = 60A
Qgs Gate-to-Source Charge ––– ––– 29 nC VDS = 32V
Qgd Gate-to-Drain ("Miller") Charge ––– ––– 30 VGS = 10V, See Fig. 6 and 13
td(on) Turn-On Delay Time ––– 15 ––– VDD = 20V
trRise Time ––– 114 ––– ID = 60A
td(off) Turn-Off Delay Time ––– 28 ––– RG = 3.6
tfFall Time ––– 19 ––– RD = 0.33, See Fig. 10 
Between lead,
––– ––– and center of die contact
Ciss Input Capacitance ––– 2900 ––– VGS = 0V
Coss Output Capacitance ––– 1100 ––– pF VDS = 25V
Crss Reverse Transfer Capacitance ––– 250 ––– ƒ = 1.0MHz, See Fig. 5
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
IGSS
ns
IDSS Drain-to-Source Leakage Current
nH
7.5
LSInternal Source Inductance
IRF1104S/LPbF
www.irf.com 3
Fig 4. Normalized On-Resistance
Vs. Temperature
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
1
10
100
1000
0.1 1 10 100
20µs PULSE WIDTH
T = 175 C
J°
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
4.5V
1
10
100
1000
0.1 1 10 100
20µs PULSE WIDTH
T = 25 C
J°
TOP
BOTTOM
VGS
15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
4.5V
V , Drain-to-Source Voltage (V)
I , Drain-to-Source Current (A)
DS
D
4.5V
0.1
1
10
100
1000
4.0 5.0 6.0 7.0 8.0 9.0 10.0
V = 50V
20µs PULSE WIDTH
DS
V , Gate-to-Source Voltage (V)
I , Drain-to-Source Current (A)
GS
D
T = 175 C
J°
T = 25 C
J°
-60 -40 -20 020 40 60 80 100 120 140 160 180
0.0
0.5
1.0
1.5
2.0
2.5
T , Junction Temperature ( C)
R , Drain-to-Source On Resistance
(Normalized)
J
DS(on)
°
V =
I =
GS
D
10V
100A
IRF1104S/LPbF
4www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
1 10 100
0
1000
2000
3000
4000
5000
V , Drain-to-Source Voltage (V)
C, Capacitance (pF)
DS
V
C
C
C
=
=
=
=
0V,
C
C
C
f = 1MHz
+ C
+ C
C SHORTED
GS
iss gs gd , ds
rss gd
oss ds gd
Ciss
Coss
Crss
0.1
1
10
100
1000
0.2 0.8 1.4 2.0 2.6
V ,Source-to-Drain Voltage (V)
I , Reverse Drain Current (A)
SD
SD
V = 0 V
GS
T = 25 C
J°
T = 175 C
J°
1
10
100
1000
10000
1 10 100
OPERATION IN THIS AREA LIMITED
BY RDS(on)
Single Pulse
T
T
= 175 C
= 25 C
°
°
J
C
V , Drain-to-Source Voltage (V)
I , Drain Current (A)I , Drain Current (A)
DS
D
10us
100us
1ms
10ms
025 50 75 100
0
5
10
15
20
Q , Total Gate Charge (nC)
V , Gate-to-Source Voltage (V)
G
GS
FOR TEST CIRCUIT
SEE FIGURE
I =
D
13
60A
V = 20V
DS
V = 32V
DS
IRF1104S/LPbF
www.irf.com 5
Fig 10a. Switching Time Test Circuit
VDS
90%
10%
VGS
t
d(on)
t
r
t
d(off)
t
f
Fig 10b. Switching Time Waveforms
VDS
Pulse Width 1 µs
Duty Factor 0.1 %
RD
VGS
RG
D.U.T.
10V
+
-
VDD
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current Vs.
Case Temperature
0.01
0.1
1
0.00001 0.0001 0.001 0.01 0.1 1
Notes:
1. Duty factor D = t / t
2. Peak T = P x Z + T
1 2
JDM thJC C
P
t
t
DM
1
2
t , Rectangular Pulse Duration (sec)
Thermal Response (Z )
1
thJC
0.01
0.02
0.05
0.10
0.20
D = 0.50
SINGLE PULSE
(THERMAL RESPONSE)
25 50 75 100 125 150 175
0
20
40
60
80
100
T , Case Temperature ( C)
I , Drain Current (A)
°
C
D
LIMITED BY PACKAGE
IRF1104S/LPbF
6www.irf.com
Q
G
Q
GS
Q
GD
V
G
Charge
D.U.T. V
DS
I
D
I
G
3mA
V
GS
.3µF
50K
.2µF
12V
Current Regulator
Same Type as D.U.T.
Current Sampling Resistors
+
-
10 V
Fig 13b. Gate Charge Test Circuit
Fig 13a. Basic Gate Charge Waveform
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
Fig 12a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
25 50 75 100 125 150 175
0
200
400
600
800
Starting T , Junction Temperature ( C)
E , Single Pulse Avalanche Energy (mJ)
J
AS
°
ID
TOP
BOTTOM
24A
42A
60A
IRF1104S/LPbF
www.irf.com 7
Peak Diode Recovery dv/dt Test Circuit
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
VGS=10V
VDD
ISD
Driver Gate Drive
D.U.T. ISD Waveform
D.U.T. VDS Waveform
Inductor Curent
D = P. W .
Period
+
-
+
+
+
-
-
-
Fig 14. For N-Channel HEXFETS
* VGS = 5V for Logic Level Devices
RG
VDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
*
IRF1104S/LPbF
8www.irf.com
N ote: "P " in as s embly line
pos ition indicates "L ead-F ree"
F530S
T H IS IS AN IR F 530S WIT H
LOT CODE 8024
AS S EMB LED ON WW 02, 2000
IN THE ASSEMBLY LINE "L"
AS S E M B L Y
LOT CODE
IN T E R N AT IONAL
RECTIFIER
LOGO
PART NUMBER
DATE CODE
YEAR 0 = 2000
WEEK 02
LINE L
OR
F 530S
A = ASSEMBLY SITE CODE
WEEK 02
P = DES IGNATE S LEAD-FREE
PRODUCT (OPTIONAL)
RECTIFIER
IN T E R N AT ION AL
LOGO
LOT CODE
AS S E MB L Y
YEAR 0 = 2000
DAT E CODE
PART NUMBER
D2Pak Part Marking Information (Lead-Free)
D2Pak Package Outline
Dimensions are shown in millimeters (inches)
IRF1104S/LPbF
www.irf.com 9
AS S E MB L Y
LOT CODE
RECTIFIER
INTE RNAT IONAL
AS SE MB LE D ON WW 19, 1997
Note: "P" in as s embly line
pos ition indicates "L ead-F ree"
IN THE ASSEMBLY LINE "C" LOGO
THIS IS AN IRL3103L
LOT CODE 1789
E XAMP L E :
LINE C
DAT E CODE
WEEK 19
YEAR 7 = 1997
PART NUMBE R
PART NUMBER
LOGO
LOT CODE
ASSEMBLY
INTERNATIONAL
RECT IF IER
PRODUCT (OPTIONAL)
P = DES IGNAT ES LE AD-FREE
A = ASSEMBLY SITE CODE
WE E K 19
YEAR 7 = 1997
DAT E CODE
OR
TO-262 Part Marking Information
TO-262 Package Outline
IGBT
1- GATE
2- COLLECTOR
3- EMITTER
IRF1104S/LPbF
10 www.irf.com
3
4
4
TRR
FEED DIRECTION
1.85 (.073)
1.65 (.065)
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
TRL
FEED DIRECTION
10.90 (.429)
10.70 (.421)
16.10 (.634)
15.90 (.626)
1.75 (.069)
1.25 (.049)
11.60 (.457)
11.40 (.449) 15.42 (.609)
15.22 (.601)
4.72 (.136)
4.52 (.178)
24.30 (.957)
23.90 (.941)
0.368 (.0145)
0.342 (.0135)
1.60 (.063)
1.50 (.059)
13.50 (.532)
12.80 (.504)
330.00
(14.173)
MAX.
27.40 (1.079)
23.90 (.941)
60.00 (2.362)
MIN.
30.40 (1.197)
MAX.
26.40 (1.039)
24.40 (.961)
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
D2Pak Tape & Reel Infomation
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.07/04
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/