PA343
PA343U 1
PA343
FEATURES
♦ RoHSCOMPLIANT
♦ SURFACEMOUNTPACKAGE
♦ MONOLITHICMOSTECHNOLOGY
♦ LOWCOST
♦ HIGHVOLTAGEOPERATION–350V
♦ LOWQUIESCENTCURRENTTYP.–2.2mA
♦ NOSECONDBREAKDOWN
♦ HIGHOUTPUTCURRENT–120mAPEAK
APPLICATIONS
♦ TELEPHONERINGGENERATOR
♦ PIEZOELECTRICPOSITIONING
♦ ELECTROSTATICTRANSDUCER&
DEFLECTION
♦ DEFORMABLEMIRRORFOCUSING
DESCRIPTION
ThePA343isadualhighvoltagemonolithicMOSFET
operational amplier achieving performance features
previouslyfoundonlyinhybriddesignswhileincreas-
ingreliability.Thisapproachprovidesacost-effective
solutiontoapplicationswheremultipleampliersare
required.Inputsareprotectedfromexcessivecommon
modeanddifferentialmodevoltages.Thesafeoperat-
ing area (SOA) has no secondary breakdown limita-
tionsandcanbeobservedwithalltypeloadsbychoos-
ing an appropriate current limiting resistor. External
compensationprovidestheuserexibilityinchoosing
optimumgainandbandwidthfortheapplication.
ThePA343DFispackagedina24pinPSOP(JEDEC
MO-166) package. The heatslug of the PA343DF
packageisisolatedinexcessoffullsupplyvoltage.
FIGURE1:EquivalentSchematic(oneof2Channels)
High Voltage Power Operational Amplifier
PA343
ILIM
OUT
-IN
+IN
+VS
-VS
CC2
CC1
Q2
D4
Q11
Q7
Q1
Q15
Q12
Q5
Q9
Q14
Q13
Q10
Q6
Q4
Q3
Q8
D2 D3
D1
D5
Copyright © Apex Microtechnology, Inc. 2012
(All Rights Reserved)
www.apexanalog.com OCT2012
PA343UREVB
PA343
2 PA343U
TYPICALAPPLICATION
AsinglePA343amplieroperatesasabridgedriverforapiezotransducerprovidingalowcost660volttotaldrive
capability.TheRNCNnetworkservestoraisetheapparentgainofA2athighfrequencies.IfRNissetequaltoRthe
amplierscanbecompensatedidenticallyandwillhavematchingbandwidths.Seeapplicationnote20formore
details.
FIGURE2.ExternalConnections.
24-pinPSOP
PACKAGESTYLEDF
CC
*
*
*
*
CC
RCL
RCL
+Vsa
NC
La
COMPa
COMPa
OUTa
NC
-INb
+INb
-Vsb
-Vsa
NC
NC
+INa
-INa
NC
OUTb
COMPb
COMPb
ILb
NC
+Vsb
24
1
+
-
+
-
A
B
ForCCvalues,seegraphonpage4.
Note:CCmustberatedforfullsupplyvoltage.
* Supply bypassing required. See general Operating Consid-
erations.
A
PA343
B
PA343
20R
PIEZO
TRANSDUCER
20R
RN
20R
CN
R
V
IN
–175
+175
–175
+175
R
CL
R
CL
47 47
10pF 10pF
FIGURE3.LowCost660vp-pPiezoDrive
PA343
PA343U 3
Parameter TestConditions(Note1) Min Typ Max Units
INPUT
OFFSETVOLTAGE,initial 12 40 mV
OFFSETVOLTAGE,vs.temperature
(Note3) 25°Cto85°C 17 250 µV/°C
OFFSETVOLTAGE,vs.temperature
(Note3) -25°Cto25°C 18 500 µV/°C
OFFSETVOLTAGE,vs.supply 4.5 µV/V
OFFSETVOLTAGE,vs.time 80 µV/kh
BIASCURRENT,initial 50 200 pA
BIASCURRENT,vs.supply 2 pA/V
OFFSETCURRENT,initial 50 200 pA
INPUTIMPEDANCE,DC 1011 Ω
INPUTCAPACITANCE 3 pF
COMMONMODE,voltagerange +VS-12 V
COMMONMODE,voltagerange -VS+12 V
COMMONMODEREJECTION,DC VCM=±90VDC 84 115 dB
NOISE,broadband 10kHzBW,RS=1KΩ 337 µVRMS
GAIN
OPENLOOPat15Hz RL=5KΩ 90 103 dB
GAINBANDWIDTHPRODUCT @1MHz 10 MHz
POWERBANDWIDTH 280Vp-p 35 kHz
Parameter Symbol Min Max Units
SUPPLYVOLTAGE,+VSto-VS350 V
OUTPUTCURRENT,continuouswithinSOA 60 mA
OUTPUTCURRENT,peak 120 mA
POWERDISSIPATION,continuous@TC=25°C 12 W
INPUTVOLTAGE,differential -16 +16 V
INPUTVOLTAGE,commonmode -VS+VSV
TEMPERATURE,pinsolder-10sec 220 °C
TEMPERATURE,junction(Note2) 150 °C
TEMPERATURE,storage -65 150 °C
TEMPERATURERANGE,powered(case) -40 125 °C
1.CHARACTERISTICSANDSPECIFICATIONS
ABSOLUTEMAXIMUMRATINGS
SPECIFICATIONS(PERAMPLIFIER)
PA343
4 PA343U
Parameter TestConditions(Note1) Min Typ Max Units
OUTPUT
VOLTAGESWING IO=40mA ±VS-12 ±VS-10 V
CURRENT,peak(Note3) 120 mA
CURRENT,continuous 60 mA
SETTLINGTIMEto0.1% 10Vstep,AV=-10 2 µs
SLEWRATE CC=4.7pF 32 V/µS
RESISTANCE,10mA(Note4) RCL=0Ω 91 Ω
RESISTANCE,40mA(Note4) RCL=0Ω 65 Ω
POWERSUPPLY
VOLTAGE ±10 ±150 ±175 V
CURRENT,quiescent 2.2 2.5 mA
THERMAL
RESISTANCE,junctiontocase
AC,singleamplier F>60Hz 6 7 °C/W
DC,singleamplier F<60Hz 9 11 °C/W
AC,bothamplier(Note5) 3.3 4.0 °C/W
DC,bothamplier(Note5) 5.0 6.0 °C/W
RESISTANCE,junctiontoair
(Note6) Fulltemperaturerange 25 °C/W
TEMPERATURERANGE,case Meetsfullrangespecications -25 +85 °C
NOTES:
1. UnlessotherwisenotedTC=25°C,CC=6.8pF.DCinputspecicationsare±valuegiven.Powersup-
plyvoltageistypicalrating.
2. Longtermoperationatthemaximumjunctiontemperaturewillresultinreducedproductlife.Derate
internalpowerdissipationtoachievehighMTTF.Forguidance,refertoheatsinkdatasheet.
3. Guaranteedbutnottested.
4. TheselectedvalueofRCLmustbeaddedtothevaluesgivenfortotaloutputresistance.
5. Ratingapplieswhenpowerdissipationisequalinthetwoampliers.
6. Ratingapplieswithsolderconnectionofheatslugtoaminimum1in2foilareaoftheprintedcircuit
board.
ThePA340isconstructedfromMOSFETtransistors.ESDhandlingproceduresmustbeobserved.
CAUTION
PA343
PA343U 5
2.TYPICALPERFORMANCEGRAPHS
0
5
10
15
20
25
30
0 20 40 60 80 100 120
VDROP FROM VS, (V)
OUTPUT CURRENT, IO (mA)
OUTPUTVOLTAGESWING
VDROP-@27°C
VDROP-@85°C
VDROP+@85°C
VDROP+@27°C
40
50
60
70
80
90
100
POWER SUPPLY REJECTION, PSR (dB)
FREQUENCY, F (Hz)
POWERSUPPLYREJECTION
10 100K10K1K100
POSITIVE
NEGATIVE
0
20
40
60
80
100
120
COMMON MODE REJECTION, CMR (dB)
FREQUENCY, F (Hz)
COMMONMODEREJECTION
10 100K10K1K100
96
98
100
102
20 60 100 140 180 220 260 300 340
NORMALIZED QUIESCENT CURRENT (%)
TOTAL SUPPLY VOLTAGE, (V)
QUIESCENTCURRENT
IQ(-40°C)
I
Q
(25°C)
I
Q
(125°C)
0
10
20
30
5 15 25 35 45 55 65 75 85
SLEW RATE, (V/us)
COMPENSATION CAPACITANCE, C
C
(pF)
SLEWRATE
RISE
FALL
DISTORTION, (%)
FREQUENCY, F (Hz)
HARMONICDISTORTION
30VP-P
60VP-P
180VP-P
A V = 20
C C = 15pF
R L = 2K
0.001
10
1
0.1
0.01
100 100K10K1K
10
100
1000
10K 100K 1M
OUTPUT VOLTAGE, (VOUT) (P-P)
FREQUENCY, F (Hz)
POWERRESPONSE
33pF
2.2pF
6.8pF
15pF
68pF
-180
-170
-160
-150
-140
-130
-120
-110
-100
-90
10K 100K 1M 10M
PHASE,Φ(°)
FREQUENCY, F (Hz)
PHASERESPONSE
2.2pF
68pF
6.8pF
15pF
0.75pF
-80
-20
0
20
40
60
80
100
OPEN LOOP GAIN, A (dB)
FREQUENCY, F (Hz)
SMALLSIGNALRESPONSE
0.75pF
68pF
15pF
6.8pF
2.2pF
10 10M1M100K10K1K100
0.1
1
10
100
101
COMPENSATION, pF
GAIN
GAINANDCOMPENSATION
0.1
125°C
85°C
55°C
25°C
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
-40 -20 0 20 40 60 80 100 120
VBE (V)
TEMPERATURE (°C)
VBEforILIMIT
VBE-
VBE+
0 20 40 60 80 100
TEMPERATURE, T (C)
0
5
10
POWER DERATING
INTERNAL POWER DISSIPATION, P(W)
25
15
20
T = T
A
T = T
C
Both Amplifiers
Single Amplifier
T = T
A
T = T
C
PA343
6 PA343U
3. APPLICATIONINFORMATION
PleasereadApplicationNote1"GeneralOperatingConsiderations"whichcoversstability,powersupplies, heat
sinking, mounting, current limit, SOA interpretation, and specication interpretation. Visit www.apexanalog.com
fordesigntoolsthathelpautomatetaskssuchascalculationsforstability,internalpowerdissipation,currentlimit,
heatsinkselection,ApexMicrotechnology'scompleteApplicationNoteslibrary,TechnicalSeminarWorkbookand
EvaluationKits.
3.1 PHASECOMPENSATION
Openloopgainandphaseshiftbothincreasewithincreasingtemperature.ThePHASECOMPENSATIONtypical
graphshowsclosedloopgainandphasecompensationcapacitorvaluerelationshipsforfourcasetemperatures.
Thecurvesarebasedonachievingaphasemarginof50°.Calculatethehighestcasetemperaturefortheapplica-
tion(maximum ambienttemperatureandhighestinternalpowerdissipation)before choosingthecompensation.
Keepinmindthatwhenworkingwithsmallvaluesofcompensation,parasiticsmayplayalargeroleinperformance
ofthenishedcircuit.Thecompensationcapacitormustberatedforatleastthetotalvoltageappliedtotheamplier
andshouldbeatemperaturestabletypesuchasNPOorCOG.
3.2 OTHERSTABILITYCONCERNS
Therearetwoimportantconceptsaboutclosedloopgainwhenchoosingcompensation.Theystemfromthefact
thatwhile"gain"isthemostcommonlyusedterm,β (thefeedbackfactor)isreallywhatcountswhendesigningfor
stability.
1. Gainmustbecalculatedasanon-invertingcircuit(equalinputandfeedbackresistorscanprovideasignalgain
of-1,butforcalculatingoffseterrors,noise,andstability,thisisagainof2).
2. Includingafeedbackcapacitorchangesthefeedbackfactororgainofthecircuit.ConsiderRin=4.7k,Rf=47k
foragainof11.Compensationof4.7to6.8pFwouldbereasonable.Adding33pFparalleltothe47krollsoffthe
circuitat103kHz,andat2MHzhasreducedgainfrom11toroughly1.5andthecircuitislikelytooscillate.
AsageneralruletheDCsummingjunctionimpedance(parallelcombinationofthefeedbackresistorandallinput
resistors)shouldbelimitedto5kohmsorless.Theamplierinputcapacitanceofabout6pF,pluscapacitanceof
connectingtracesorwiresand(ifused)asocketwillcauseundesirablecircuitperformanceandevenoscillationif
theseresistancesaretoohigh.Incircuitsrequiringhighresistances,measureorestimatethetotalsumpointca-
pacitance,multiplybyRin/Rf,andparallelRfwiththisvalue.Capacitorsincludedforthispurposeareusuallyinthe
singledigitpFrange.ThistechniqueresultsinequalfeedbackfactorcalculationsforACandDCcases.Itdoesnot
producearolloff,butmerelykeepsβconstantoverawidefrequencyrange.Paragraph6ofApplicationNote19
detailssuitablestabilitytestsforthenishedcircuit.
3.3 CURRENTLIMIT
Forproperoperation,thecurrentlimitingresistor,RCL,mustbeconnectedasshowninFigure3,“ExternalConnec-
tions”.Thecurrentlimitcanbepredictedasfollows:

ILIMIT = VBE
RCL
The“VBEforILIMIT”performancegraphisusedtondVBE.Onthisgraph,theVBE+andVBE−curvesshowthevoltages
acrossthecurrentlimitingresistoratwhichcurrentlimitingisturnedon.TheVBE+curveshowstheseturn-onvolt-
ageswhentheamplierissourcingcurrent,andtheVBE−curveshowsthesevoltageswhentheamplierissinking
current.
Thecurrentlimitcanbethoughtofasaceilingorlimitforsafeoperation.Forcontinuousoperationitisanyvalue
betweenthedesiredloadcurrentand60mA(aslongasthecurvesontheSOAgrapharenotexceeded,please
PA343
PA343U 7
refertosection3.4forinformationontheSOAgraph).Asanexample,supposethedesiredloadcurrentfortheap-
plicationis20mA.Inthiscasewemaysetacurrentlimitof30mA.StartingwiththesmallerVBE
of0.6wehave:

RCL==20Ω
0.6
1.03
ForthelargerVBE
+thisRCLresistorwillallowforamaximumcurrentof:

ILIMIT = = 35mA
0.7
20
Thisvalueisstillacceptablebecauseitislessthan60mA.Forthecaseofcontinuousloadcurrents,checkthatthe
currentlimitdoesnotexceed60mA.
TheVBEvaluesusedaboveareapproximateandcanvarywithprocess.Toallowforthispossibilitytheusercan
reducetheVBE=0.6valueby20%.ThisresultsinaRCLvalueof16Ω.UsingthissameRCLvalueandallowingfor
a20%increaseintheotherVBE,thecurrentlimitmaximumis52mA.
The absolute minimum value of the current limiting resistor is bounded by the largest current and the largest
VBEintheapplication.ThelargestVBEisdeterminedbythecoldesttemperatureintheapplication.Ingeneralthe
largestVBEisVBE+=0.78,whichoccursatT=−40°C.Thelargestallowedcurrentoccursinpulsedapplications
where,fromtheSOAgraph,wecanseecurrentpulsesof120mA.ThisgivesusanabsoluteminimumRCLvalueof
0.78/0.12=6.5Ω.
3.4 SAFEOPERATINGAREA
TheMOSFEToutputstageofthePA343isnotlimitedbysecond
breakdownconsiderationsasinbipolaroutputstages.However
therearestillthreedistinctlimitations:
1. Voltagewithstandcapabilityofthetransistors.
2. Currenthandlingcapabilityofthediemetalization.
3. TemperatureoftheoutputMOSFETS.
Theselimitationscanbeseenin the SOA(seeSafeOperating
Areagraphs).Notethateachpulsecapabilitylineshowsacon-
stant power level (unlike second breakdown limitations where
power varies with voltage stress). These lines are shown for a
casetemperatureof25°Candcorrespondtothermalresistances
of5.2°C/W forthePA343DF.Pulse stresslevelsfor othercase
temperaturescanbecalculatedinthesamemannerasDCpow-
erlevelsatdifferenttemperatures.Theoutputstageisprotected
against transient yback by the parasitic diodes of the output
stage MOSFET structure. However, for protection against sus-
tainedhighenergyybackexternalfast-recoverydiodesmustbe
used.
3.5 HEATSINKING
ThePA343DFpackagehasalargeexposedintegratedcopperheatslugtowhichthemonolithicamplierisdirectly
attached.Thesolderconnectionoftheheatslugtoaminimumof1squareinchfoilareaontheprintedcircuitboard
willresultinthermalperformanceof25°C/WjunctiontoairratingofthePA343DF.Solderconnectiontoanareaof1
to2squareinchesisrecommended.Thismaybeadequateheatsinkingbutthelargenumberofvariablesinvolved
suggesttemperaturemeasurementsbemadeonthetopofthepackage.Donotallowthetemperaturetoexceed
85°C.
PA343 SOA
OUTPUT CURRENT FROM +V
S
or -V
S
, (mA)
SUPPLY TO OUTPUT DIFFERENTIAL, V
S
- V
O
(V)
10
2
PULSE CURVES @
10% DUTY CYCLE MAX.
200mS
3
200
120
100
50
40
30
20
10
5
4
20 500 300 200 100 50 30
300mS
DC
DC, T
C
= 85°C
DC, T
C
= 125°C
FIGURE4.SafeOperatingArea
PA343
8 PA343U
3.6 OVERVOLTAGEPROTECTION
Although the PA241 can withstand differential input voltages up to 16V,
in some applications additional external protection may be needed. Dif-
ferentialinputs exceeding16Vwillbeclippedbytheprotectioncircuitry.
However, if more than a few milliamps of current is available from the
overloadsource,theprotectioncircuitrycouldbedestroyed.Fordifferen-
tialsourcesabove16V,addingseriesresistancelimitinginputcurrentto
1mAwillpreventdamage.Alternatively,1N4148signaldiodesconnected
anti-parallelacrosstheinputpinsisusuallysufcient.Inmoredemanding
applicationswherebiascurrentisimportant,diodeconnectedJFETssuch
as2N4416willberequired.SeeQ1andQ2inFigure5.Ineithercasethe
differentialinputvoltagewillbeclampedto0.7V.Thisissufcientoverdrive
toproducethemaximumpowerbandwidth.
Inthecaseofinvertingcircuitswherethe+INpinisgrounded,thediodes
mentionedabovewillalsoaffordprotectionfromexcessivecommonmode
voltage.Inthecaseofnon-invertingcircuits,clampdiodesfromeachinputtoeachsupplywillprovideprotection.
Notethatthesediodeswillhavesubstantialreversebiasvoltageundernormaloperationanddiodeleakagewill
produceerrors.
Someapplicationswillalsoneedover-voltageprotectiondevicesconnectedtothepowersupplyrails.Unidirectional
zenerdiodetransientsuppressorsarerecommended.Thezenersclamptransientstovoltageswithinthepower
supplyratingandalsoclamppowersupplyreversalstoground.Whetherthezenersareusedornotthesystem
powersupplyshouldbeevaluatedfortransientperformanceincludingpower-onovershootandpower-offpolarity
reversalsaswellaslineregulation.SeeZ1andZ2inFigure5.
+Vs
-Vs
OUT
+Vs
-Vs
Z1
Z2
-IN
+IN
Q1 Q2
FIGURE5.OvervoltageProtection
NEEDTECHNICALHELP?CONTACTAPEXSUPPORT!
ForallApexMicrotechnologyproductquestionsandinquiries,calltollfree800-546-2739inNorthAmerica.
Forinquiriesviaemail,pleasecontactapex.support@apexanalog.com.
InternationalcustomerscanalsorequestsupportbycontactingtheirlocalApexMicrotechnologySalesRepresentative.
Tondtheonenearesttoyou,gotowww.apexanalog.com
IMPORTANTNOTICE
ApexMicrotechnology,Inc.hasmadeeveryefforttoinsuretheaccuracyofthecontentcontainedinthisdocument.However,theinformationissubjecttochange
withoutnoticeandisprovided"ASIS"withoutwarrantyofanykind(expressedorimplied).ApexMicrotechnologyreservestherighttomakechangeswithoutfurther
noticetoanyspecicationsorproductsmentionedhereintoimprovereliability.ThisdocumentisthepropertyofApexMicrotechnologyandbyfurnishingthisinforma-
tion,ApexMicrotechnologygrantsnolicense,expressedorimpliedunderanypatents,maskworkrights,copyrights,trademarks,tradesecretsorotherintellectual
propertyrights.ApexMicrotechnologyownsthecopyrightsassociatedwiththeinformationcontainedhereinandgivesconsentforcopiestobemadeoftheinforma-
tiononlyforusewithinyourorganizationwithrespecttoApexMicrotechnologyintegratedcircuitsorotherproductsofApexMicrotechnology.Thisconsentdoesnot
extendtoothercopyingsuchascopyingforgeneraldistribution,advertisingorpromotionalpurposes,orforcreatinganyworkforresale.
APEXMICROTECHNOLOGYPRODUCTSARENOTDESIGNED,AUTHORIZEDORWARRANTEDTOBESUITABLEFORUSEINPRODUCTSUSEDFOR
LIFESUPPORT,AUTOMOTIVESAFETY,SECURITYDEVICES,OROTHERCRITICALAPPLICATIONS.PRODUCTSINSUCHAPPLICATIONSAREUNDER-
STOODTOBEFULLYATTHECUSTOMERORTHECUSTOMER’SRISK.
ApexMicrotechnology,ApexandApexPrecisionPoweraretrademarksofApexMicrotechnolgy,Inc.Allothercorporatenamesnotedhereinmaybetrademarks
oftheirrespectiveholders.
Copyright © Apex Microtechnology, Inc. 2012
(All Rights Reserved)
www.apexanalog.com OCT2012
PA343UREVB