HCPL-2503
Single Channel, High Speed Logic Interface Optocoupler
Data Sheet
Features
Data rates to 250 kb/s NRZ
LSTTL compatible
High common mode transient immunity:
> 1000 V/µs
3750 Vdc withstand test voltage
Open collector output
Guaranteed performance from temperature: 0°C to
70°C
Safety approval
- UL Recognized - 3750Vrms for 1min (5000Vrms for
1 min Option 020 devices) per UL1577.
- IEC/EN/DIN EN 60747-5-2 Approved
- VIORM = 630 Vpeak for option 060
Applications
High speed logic ground isolation
– LSTTL-to-LSTTL and TTL-to-LSTTL
High voltage isolation
Analog signal ground isolation
Description
The HCPL-2503 optocoupler is specied for use in LSTTL-
to-LSTTL and TTL-to-LSTTL logic interfaces. A nominal
8 mA sink current through the input LED will provide
enough output current for proper operation of 1 LSTTL
gate under worst-case conditions when used in the rec-
ommended circuits. The CTR of the HCPL-2503 is 15%
minimum at IF = 8 mA.
The HCPL-2503 contains a light emitting diode and an in-
tegrated photon detector with a 3000 Vdc withstand test
between input and output. Separate connection for the
photodiode bias and output transistor collector reduce
the base-collector capacitance, giving improved speed
compared with conventional phototransistor couplers.
Lead (Pb) Free
RoHS 6 fully
compliant
RoHS 6 fully compliant options available;
-xxxE denotes a lead-free product
CAUTION: It is advised that normal static precautions be taken in handling and assembly
of this component to prevent damage and/or degradation which may be induced by ESD.
Schematic
- A 0.1uF bypass capacitor must be connected between 5 and 8.
I
F
SHIELD
8
6
5GND
V
CC
2
3
V
O
I
CC
V
F
I
O
ANODE
CATHODE
+
-
7
V
B
I
B
*
2
Outline Drawing
1.080 ± 0.320
(0.043 ± 0.013) 2.54 ± 0.25
(0.100 ± 0.010)
0.51 (0.020) MIN.
0.65 (0.025) MAX.
4.70 (0.185) MAX.
2.92 (0.115) MIN.
TYP. 0.254 + 0.076
- 0.051
(0.010+ 0.003)
- 0.002)
7.62 ± 0.25
(0.300 ± 0.010)
6.35 ± 0.25
(0.250 ± 0.010)
9.65 ± 0.25
(0.380 ± 0.010)
1.78 (0.070) MAX.
1.19 (0.047) MAX.
A XXXXZ
YYWW
DATE CODE
DIMENSIONS IN MILLIMETERS AND (INCHES).
5678
4321
OPTION CODE*
UL
RECOGNITION
UR
TYPE NUMBER
*MARKING CODE LETTER FOR OPTION NUMBERS
"L" = OPTION 020
"V" = OPTION 060
OPTION NUMBERS 300 AND 500 NOT MARKED.
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.
3.56 ± 0.13
(0.140 ± 0.005)
0.635 ± 0.25
(0.025 ± 0.010) 12¡ NOM.
9.65 ± 0.25
(0.380 ± 0.010)
0.635 ± 0.130
(0.025 ± 0.005)
7.62 ± 0.25
(0.300 ± 0.010)
5
6
7
8
4
3
2
1
9.65 ± 0.25
(0.380 ± 0.010)
6.350 ± 0.25
(0.250 ± 0.010)
1.016 (0.040)
1.27 (0.050)
10.9 (0.430)
2.0 (0.080)
LAND PATTERN RECOMMENDATION
1.080 ± 0.320
(0.043 ± 0.013)
3.56 ± 0.13
(0.140 ± 0.005)
1.780
(0.070)
MAX.
1.19
(0.047)
MAX.
2.54
(0.100)
BSC
DIMENSIONS IN MILLIMETERS (INCHES).
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.
0.254 + 0.076
- 0.051
(0.010+ 0.003)
- 0.002)
8-Pin DIP Package
8-Pin DIP Package with Gull Wing Surface Mount Option 300
3
Absolute Maximum Ratings
Storage Temperature ...........................................................................................................................................................–55°C to +125°C
Operating Temperature .....................................................................................................................................................–55°C to +100°C
Lead Solder Temperature (1.6 mm below seating plane) ............................................................................................260°C for 10 s
Average Input Current – IF ................................................................................................................................................................ 25 mA[1]
Peak Input Current – IF (50% duty cycle, 1 ms pulse width) ................................................................................................ 50 mA[2]
Peak Transient Input Current – IF (≤1 µs pulse width, 300 pps) ....................................................................................................1.0 A
Reverse Input Voltage – VR (Pin 3-2) .......................................................................................................................................................... 5 V
Input Power Dissipation ..................................................................................................................................................................... 45 mW[3]
Average Output Current – IO (Pin 6) ......................................................................................................................................................8 mA
Peak Output Current – IO ....................................................................................................................................................................... 16 mA
Emitter-Base Reverse Voltage (Pin 5-7) ..................................................................................................................................................... 5 V
Supply and Output Voltage – VCC (Pin 8-5), VO (Pin 6-5) .................................................................................................. –0.5 V to 7 V
Base Current – IB (Pin 7) ..............................................................................................................................................................................5 mA
Output Power Dissipation ..............................................................................................................................................................100 mW[4]
Notes:
1. Derate linearly above +70˚C free-air temperature at a rate of 0.8 mA/˚C.
2. Derate linearly above +70˚C free-air temperature at a rate of 1.6 mA/˚C.
3. Derate linearly above +70˚C free-air temperature at a rate of 0.9 mW/˚C.
4. Derate linearly above +70˚C free-air temperature at a rate of 2.0 mW/˚C.
Ordering Information
HCPL-2503 is UL Recognized with 3750 Vrms and 5000 Vrms (option 020) for 1 minute per UL1577. All devices above
listed are approved under CSA Component Acceptance Notice #5, File CA 88324.
Part
number
Option
Package
Surface
Mount
Gull
Wing
Tape
& Reel
UL 5000
Vrms/1
Minute rating
IEC/EN/DIN EN
60747-5-2 Quantity
RoHS
Compliant
Non RoHS
Compliant
HCPL-2503
-000E No option
300mil
DIP-8
50 per tube
-300E -300 X X 50 per tube
-500E -500 X X X 1000 per reel
-020E -020 X 50 per tube
-320E -320 X X X 50 per tube
-520E -520 X X X X 1000 per reel
-060E -060 X 50 per tube
-360E -360 X X X 50 per tube
-560E -560 X X X X 1000 per reel
To order, choose a part number from the part number column and combine with the desired option from the option
column to form an order entry.
Example 1:
HCPL-2503-000E to order product of 300mil DIP package with RoHS compliant.
Example 2:
HCPL-2503 to order product of 300mil DIP package in tube packaging and non RoHS compliant.
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.
Remarks: The notation ‘#XXX’ is used for existing products, while (new) products launched since 15th July 2001 and
RoHS compliant option will use ‘-XXXE‘.
4
Recommended Pb-Free IR Prole
Solder Reow Temperature Prole
0
TIME (SECONDS)
TEMPERATURE (
°
C)
200
100
50 150100 200 250
300
0
30
SEC.
50 SEC.
30
SEC.
160
°
C
140
°
C
150
°
C
PEAK
TEMP.
245
°
C
PEAK
TEMP.
240
°
C
PEAK
TEMP.
230
°
C
SOLDERING
TIME
200
°
C
PREHEATING TIME
150
°
C, 90 + 30 SEC.
2.5
°
C ± 0.5
°
C/SEC.
3
°
C + 1
°
C/- 0.5
°
C
TIGHT
TYPICAL
LOOSE
ROOM
TEMPERATURE
PREHEATING RATE 3
°
C + 1
°
C/- 0.5
°
C/SEC.
REFLOW HEATING RATE 2.5
°
C ± 0.5
°
C/SEC.
Note: Non-halide flux should be used.
217
°
C
RAMP-DOWN
6
°
C/SEC. MAX.
RAMP-UP
3
°
C/SEC. MAX.
150 - 200
°
C
260 +0/-5
°
C
t 25
°
C to PEAK
60 to 150 SEC.
20-40 SEC.
TIME WITHIN 5
°
C of ACTUAL
PEAK TEMPERATURE
t
p
t
s
PREHEAT
60 to 180 SEC.
t
L
T
L
T
smax
T
smin
25
T
p
TIME
TEMPERATURE
NOTES:
THE TIME FROM 25
°
C to PEAK TEMPERATURE = 8 MINUTES MAX.
T
smax
= 200
°
C, T
smin
= 150
°
C
Note: Non-halide flux should be used.
5
Regulatory Information
The devices contained in this data sheet have been approved by the following organizations:
UL
Recognized under UL 1577, Component Recognition
Program, File E55361.
CSA
Approved under CSA Component Acceptance Notice
#5, File CA 88324.
IEC/EN/DIN EN 60747-5-2
Approved under
IEC 60747-5-2:1997 + A1:2002
EN 60747-5-2:2001 + A1:2002
DIN EN 60747-5-2 (VDE 0884
Teil 2):2003-01
(HCNW and Option 060 only)
Insulation and Safety Related Specications
8-Pin DIP Widebody
(300 Mil) SO-8 (400 Mil)
Parameter Symbol Value Value Value Units Conditions
Minimum External L(101) 7.1 4.9 9.6 mm Measured from input terminals
Air Gap (External to output terminals, shortest
Clearance) distance through air.
Minimum External L(102) 7.4 4.8 10.0 mm Measured from input terminals
Tracking (External to output terminals, shortest
Creepage) distance path along body.
Minimum Internal 0.08 0.08 1.0 mm Through insulation distance,
Plastic Gap conductor to conductor, usually
(Internal Clearance) the direct distance between the
photoemitter and photodetector
inside the optocoupler cavity.
Minimum Internal NA NA 4.0 mm Measured from input terminals
Tracking (Internal to output terminals, along
Creepage) internal cavity.
Tracking Resistance CTI 200 200 200 Volts DIN IEC 112/VDE 0303 Part 1
(Comparative
Tracking Index)
Isolation Group IIIa IIIa IIIa Material Group
(DIN VDE 0110, 1/89, Table 1)
Option 300 - surface mount classication is Class A in accordance with CECC 00802.
6
IEC/EN/DIN EN 60747-5-2 Insulation Related Characteristics (HCPL-2503 OPTION 060 ONLY)
Description Symbol Characteristic Units
Installation classication per DIN VDE 0110/1.89, Table 1
for rated mains voltage ≤300 V rms I-IV
for rated mains voltage ≤450 V rms I-III
Climatic Classication 55/100/21
Pollution Degree (DIN VDE 0110/1.89) 2
Maximum Working Insulation Voltage VIORM 630 V peak
Input to Output Test Voltage, Method b*
VIORM x 1.875 = VPR, 100% Production Test with tm = 1 sec, VPR 1181 V peak
Partial Discharge < 5 pC
Input to Output Test Voltage, Method a*
VIORM x 1.5 = VPR, Type and sample test, VPR 945 V peak
tm = 60 sec, Partial Discharge < 5 pC
Highest Allowable Overvoltage*
(Transient Overvoltage, tini = 10 sec) VIOTM 6000 V peak
Safety Limiting Values
(Maximum values allowed in the event of a failure,
also see Figure 9, Thermal Derating curve.)
Case Temperature TS 175 °C
Input Current IS,INPUT 230 mA
Output Power PS,OUTPUT 600 mW
Insulation Resistance at TS, VIO = 500 V RS ≥109 Ω
7
Switching Specications at TA = 25°C
VCC = 5 V, IF = 8 mA, RL = 7.5 k unless otherwise specied.
Parameter Symbol Min. Typ. Max. Units Test Conditions Fig. Note
Propagation Delay tPHL 1.0 1.5 µs 4,6 8
Time to Logic Low
at Output
Propagation Delay tPLH 1.5 2.5 µs 4,6 8
Time to Logic High
at Output
Common Mode CMH 1000 V/µs IF = 0 mA, VCM = 10 VP–P 7 7,8
Transient Immunity at
Logic High Level
Output
Common Mode CML –1000 V/µs VCM = 10 VP–P 7 7,8
Transient Immunity at
Logic Low Level Output
*All typicals at 25˚C.
Electrical Specications, LSTTL-to-LSTTL
Over recommended temperature (TA = 0˚C to +70˚C) unless otherwise specied.
Parameter Symbol Min. Typ.* Max. Units Test Conditions Fig. Note
Current Transfer Ratio CTR 15 22 % IF = 8 mA, VO = 0.5 V, 1 5
VCC = 4.5 V, TA = 25°C
11 15 % IF = 8 mA, VO = 0.5 V,
VCC = 4.5 V
Logic Low Output VOL 0.2 0.5 V IF = 8 mA, IO = 0.7 mA,
Voltage VCC = 4.5 V
Logic Low Supply ICCL 20 µA IF = 8 mA
Current VO = Open, VCC = 5.5 V
Input Forward Voltage VF 1.5 1.7 V IF = 8 mA, TA = 25°C 2
Temperature Coecient VF –1.6 mV/˚C IF = 8 mA
of Forward Voltage TA
8
Switching Specications at TA = 25°C
VCC = 5 V, IF = 16 mA, RL = 4.7 k unless otherwise specied.
Parameter Symbol Min. Typ. Max. Units Test Conditions Fig. Note
Propagation Delay tPHL 0.4 1.5 µs 4,6 9
Time to Logic Low
at Output
Propagation Delay tPLH 1.5 2.5 µs 4,6 9
Time to Logic High
at Output
Common Mode CMH 1000 V/µs IF = 0 mA, VCM = 10 VP–P 7 7,9
Transient Immunity at
Logic High Level
Output
Common Mode CML –1000 V/µs VCM = 10 VP–P 7 7,9
Transient Immunity at
Logic Low Level Output
*All typicals at 25˚C.
Electrical Specications, TTL-to-LSTTL
Over recommended temperature (TA = 0˚C to +70˚C) unless otherwise specied.
Parameter Symbol Min. Typ.* Max. Units Test Conditions Fig. Note
Current Transfer Ratio CTR 12 18 % IF = 16 mA, VO = 0.5 V, 1 5
VCC = 4.5 V, TA = 25°C
9 13 % IF = 16 mA, VO = 0.5 V,
VCC = 4.5 V
Logic Low Output VOL 0.2 0.5 V IF = 16 mA, IO = 1.1 mA,
Voltage VCC = 4.5 V
Logic Low Supply ICCL 40 µA IF = 16 mA
Current VO = Open, VCC = 5.5 V
Input Forward VF 1.5 1.7 V IF = 16 mA, TA = 25°C 2
Voltage
Temperature VF –1.6 mV/˚C IF = 16 mA
Coecient of Forward TA
Voltage
9
Electrical Specications
Over recommended temperature (TA = 0˚C to +70˚C) unless otherwise specied.
Parameter Symbol Min. Typ.* Max. Units Test Conditions Fig. Note
Logic High IOH 0.5 nA TA = 25°C, IF = 0 mA 5
Output Current VO = VCC = 5.5 V
50 µA IF = 0 mA
VO = VCC = 5.5 V
Logic High ICCH 0.05 4 µA IF = 0 mA
Supply Current VO = Open, VCC = 5.5 V
Input Reverse VR 5 V IF = 10 µA, TA = 25°C
Breakdown Voltage
Input Capacitance CIN 60 pF f = 1 MHz, VF = 0 V
Input-Output II–O 1.0 µA 45% Relative Humidity, 6
Insulation Leakage t = 5s, VI–O = 3000 Vdc,
Current TA = 25°C
Resistance RI–O 1012 VI–O = 500 Vdc 6
(Input–Output)
Capacitance CI–O 0.6 pF f = 1 MHz 6
(Input–Output)
*All typicals at 25˚C.
Notes:
5. Current Transfer Ratio is dened as the ratio of output collector current, I/O, to the forward LED input current, IF, times 100%.
6. Device considered a two-terminal device: Pins 1, 2, 3, and 4 shorted together and Pins 5, 6, 7, and 8 shorted together.
7. Common mode transient immunity in Logic High level is the maximum tolerable (positive) dVCM/dt on the leading edge of the common mode
pulse VCM, to assure that the output will remain in a Logic High state (i.e., VO > 2.0 V). Common mode transient immunity in Logic Low level is
the maximum tolerable (negative) dVCM/dt on the trailing edge of the common mode pulse signal, VCM, to assure that the output will remain
in a Logic Low state (i.e., VO < 0.8 V).
8. The 7.5 k load represents 1 LSTTL until load of 0.36 mA and a 20 kΩ pull-up resistor.
9. The 4.7 k load represents 1 LSTTL unit load of 0.36 mA and an 8.2 kΩ pull-up resistor.
10
Figure 2. Input current vs. forward voltageFigure 1. Current transfer ratio vs. input current Figure 3. Current transfer ratio vs. temperature
Figure 5. Logic high output current vs. temperatureFigure 4. Propagation delay vs. temperature
Figure 6. Switching test circuit
HCPL-2503 fig 2
V
F
– FORWARD VOLTAGE – VOLTS
100
10
0.1
0.01
1.10 1.20 1.30 1.40
I
F
– FORWARD CURRENT – mA
1.50
1.0
0.001
1000
I
F
V
F
+T
A
= 25°C
HCPL-2503 fig 3
1.2
0.8
0.6
0.2
0
-60 -20
NORMALIZED CURRENT TRANSFER RATIO
T
A
– TEMPERATURE – °C
-40 20 40 80 100
V
O
= 0.5 V
V
CC
= 5.0 V
1.0
0.4
I
F
= 8 mA
I
F
= 16 mA
NORMALIZED TO T
A
= 25°C
0 60
HCPL-2503 fig 4
2.0
1.0
0
-60 -20
t
P
– PROPAGATION DELAY – µs
T
A
– TEMPERATURE – °C
-40 20 40 80 100
I
F
= 8 mA
R
L
= 7.5 k
1.5
0.5
0 60
I
F
= 16 mA
R
L
= 4.7 k
V
CC
= 5.0 V
t
PHL
t
PLH
HCPL-2503 fig 6
VO
HP 8007
PULSE
GEN.
ZO = 50
tr = 5 ns
IF MONITOR
IF
RL
CL = 15 pF
100
0
tPHL tPLH
VO
IF
VOL
1.3 V 1.3 V
5 V
+5 V
10% DUTY CYCLE
1/f 500 µs
81
72
63
54
HCPL-2503 fig 1
1.4
1.2
0.8
0.6
0.2
00 8
NORMALIZED CURRENT TRANSFER RATIO
I
F
– INPUT CURRENT – mA
4 12 16 20 24
V
O
= 0.5 V
V
CC
= 5.0 V
T
A
= 25°C
NORMALIZED TO
I
F
= 8 mA
I
F
= 16 mA
1.0
0.4
Figure 7. Test circuit for transient immunity and typical waveforms
Figure 8. Recommended circuits
Recommended Operation
The HCPL-2503 optocoupler is specied for use in LSTTL-
to-LSTTL and TTL-to-LSTTL interfaces. The recommended
circuits show the interface design and give suggested
component values. The input current IF is given as both
a nominal value and a range. The range in IF results
from the tolerances in VCC and the input resistor RIN.
The CTR of the optocoupler is given as the minimum
HCPL-2503 fig 8
I
O
R
IN
R
L
81
72
63
54
V
CC2
V
CC1
I
F
HCPL-2503
7404
74LS04
7405
74LS05
74LS04
74LS05
A B
A) TYPICAL NON-INVERTING CIRCUIT
I
O
R
IN
R
L
81
72
63
54
V
CC2
V
CC1
I
F
HCPL-2503
7405
74LS05
74LS04
74LS05
A
B
B) TYPICAL INVERTING CIRCUIT
(SEE NOTE 10)
HCPL-2503 fig 7
V
O
I
F
R
L
A
HP 8007
PULSE GEN.
V
CM
+
V
FF
V
O
V
OL
V
O
0 V 10%
90% 10%
90%
SWITCH AT A: I = 0 mA
F
SWITCH AT B: I = 16 mA
F
V
CM
t
r
t
f
5 V
+5 V
10 V t
r
, t
f
= 8 ns
81
72
63
54
B
initial value over temperature, taken directly from the
Electrical Specications. The value given for IOL (min) is
based on the minimum CTR and the minimum IF using
worst case values for RL and VCC. The resulting IOL (min)
has ample design margin, allowing more than 20% for
CTR degradation even under these worst case condi-
tions. For additional information on CTR degradation
see Application Note 1002.
Recommended Circuit Design Parameters
LSTTL-to- TTL-to-
Parameter Symbol LSTTL LSTTL Units Comments Fig. Note
Input
Logic Low Output VOL (A) 0.5 0.4 V Maximum
Voltage – Input Gate
Supply Voltage – Input VCC1 5.0 5.0 V ± 5%
Input Resistor RIN 360 180 ± 5% 8a
430 200 8b
Input Current IF 8 16 mA Nominal
Input Current Range IF 6.75–10 14.0–20 mA 8a
14.5–20 8b
Output
Logic Low Output VOL (B) 0.5 0.5 V Maximum
Voltage – HCPL-2503
Supply Voltage – Output VCC2 5.0 5.0 V ± 5%
Pull-Up Resistor RL 20 8.2 k ± 5% 11
Required Current Sink IOL 0.61 1.0 mA Worst Case VCC, 12
for Logic Low (max) RL, IIL (B)
HCPL-2503 Current CTR 11 9 % Minimum TA = 0˚C to
Transfer Ratio +70°C
Logic Low Output IOL 0.74 1.26 mA Worst Case VCC, CTR, IF 8a 13
Current – HCPL-2503 (min) 1.30 TA = 0°C to +70°C 8b
Data Rate fD 250 250 kb/s NRZ, TA = 25°C 14
For product information and a complete list of distributors, please go to our website: www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies Limited in the United States and other countries.
Data subject to change. Copyright © 2007 Avago Technologies Limited. All rights reserved.
AV02-0520EN - June 15, 2007
Notes:
10. The inverting circuit has higher power consumption and must use open collector gates on the input.
11. The load resistor RL must be large enough to guarantee logic LOW and small enough to guarantee logic HIGH under worst case conditions:
VCC (max) – VOL VCC (min) – VIH (B)
IOL (2503) – IIL (B) IOH (2503) – IIH (B)
The selection of RL is the same for both inverting and non-inverting circuits.
12. The maximum current sink required for logic LOW is:
IOL (max) = IIL (B) (max) + IR (max)
where IR is the current through RL.
13. The ratio of IOL (min) to IOL (max) gives the design margin for CTR degradation. See Application Note 1002.
14. The maximum data rate is dened as:
1
fD = bits/second NRZ
tPHL + tPLH
≤ RL