1 (37) Data Sheet SCA3300-D01 3-axis industrial accelerometer with digital SPI interface Features 3-axis (XYZ) accelerometer User selectable measurement modes: 1.5g, 3g , 6g with 70 Hz LPF 1.5g with 10 Hz LPF -40C...+125C operating range 3.0V...3.6V supply voltage SPI digital interface Extensive self-diagnostics features Ultra-low 37 g/Hz noise density Excellent offset stability Size 8.6 x 7.6 x 3.3 mm (l x w x h) RoHS compliant robust DFL plastic package suitable for lead free soldering process and SMD mounting Proven capacitive 3D-MEMS technology Applications SCA3300-D01 is targeted at applications demanding high stability with tough environmental requirements. Typical applications include: Leveling Angle measurement Tilt Compensation Inertial Measurement Units (IMUs) Motion analysis and control Navigation systems Overview The SCA3300-D01 is a high performance accelerometer sensor component. It is a three-axis accelerometer sensor based on Murata's proven capacitive 3D-MEMS technology. Signal processing is done in mixed signal ASIC with flexible SPI digital interface. Sensor element and ASIC are packaged into 12 pin pre-molded plastic housing that guarantees reliable operation over product's lifetime. The SCA3300-D01 is designed, manufactured and tested for high stability, reliability and quality requirements. The component has extremely stable output over wide range of temperature and vibration. The component has several advanced self-diagnostics features, is suitable for SMD mounting and is compatible with RoHS and ELV directives. Murata Electronics Oy www.murata.com SCA3300-D01 Doc.No. 3165 Rev. 2 2 (37) TABLE OF CONTENTS 1 Introduction .................................................................................................................................4 2 Specifications .............................................................................................................................4 2.1 Abbreviations .........................................................................................................................4 2.2 General Specifications ...........................................................................................................4 2.3 Accelerometer Performance Specifications ............................................................................5 2.4 Temperature Sensor Performance Specification ....................................................................6 2.5 Absolute Maximum Ratings ...................................................................................................6 2.6 Pin Description.......................................................................................................................7 2.7 Typical Performance Characteristics ......................................................................................8 2.8 Digital I/O Specification ........................................................................................................12 2.8.1 DC Characteristics ..........................................................................................................12 2.8.2 SPI AC Characteristics ...................................................................................................13 2.9 Measurement Axis and Directions........................................................................................14 2.10 Package Characteristics ......................................................................................................15 2.10.1 2.11 3 5 Factory Calibration ...............................................................................................................17 Component Operation and Reset ............................................................................................17 4.1 Component Operation..........................................................................................................17 4.2 Start-up Sequence ...............................................................................................................18 4.3 Operation Modes .................................................................................................................19 Component Interfacing .............................................................................................................19 5.1.1 General...........................................................................................................................19 5.1.2 Protocol ..........................................................................................................................19 5.1.3 SPI Frame ......................................................................................................................20 5.1.4 Operations ......................................................................................................................21 5.1.5 Return Status..................................................................................................................22 5.2 6 PCB Footprint ......................................................................................................................16 General Product Description....................................................................................................16 3.1 4 Package Outline Drawing ............................................................................................15 Checksum (CRC).................................................................................................................22 Register Definition ....................................................................................................................24 6.1 Sensor Data Block ...............................................................................................................25 6.1.1 Example of Acceleration Data Conversion ......................................................................25 6.1.2 Example of Temperature Data Conversion .....................................................................26 6.2 STO .....................................................................................................................................27 6.2.1 6.3 Example of Self-Test Analysis ........................................................................................28 STATUS ..............................................................................................................................28 6.3.1 Example of STATUS summary reset ..............................................................................30 Murata Electronics Oy www.murata.com SCA3300-D01 Doc.No. 3165 Rev. 2 3 (37) 6.4 CMD ....................................................................................................................................30 6.5 WHOAMI .............................................................................................................................31 6.6 Serial Block ..........................................................................................................................32 6.6.1 6.7 7 Example of Resolving Serial Number..............................................................................33 SELBANK ............................................................................................................................33 Application Information ............................................................................................................34 7.1 Application Circuitry and External Component Characteristics .............................................34 7.2 Assembly Instructions ..........................................................................................................36 8 Frequently Asked Questions....................................................................................................36 9 Order Information .....................................................................................................................37 Murata Electronics Oy www.murata.com SCA3300-D01 Doc.No. 3165 Rev. 2 4 (37) 1 Introduction This document contains essential technical information about the SCA3300-D01 sensor including specifications, SPI interface descriptions, user accessible register details, electrical properties and application information. This document should be used as a reference when designing in SCA3300-D01 component. 2 2.1 2.2 Specifications Abbreviations ASIC Application Specific Integrated Circuit SPI Serial Peripheral Interface RT Room Temperature, +23 C FS Full Scale CSB Chip Select SCK Serial Clock MOSI Master Out Slave In MISO Master In Slave Out MCU Microcontroller STO Self-test Output EMI Electromagnetic Interference ODR Output Data Rate General Specifications General specifications for SCA3300-D01 component are presented in Table 1. All analog voltages are related to the potential at AVSS and all digital voltages are related to the potential at DVSS. Table 1 General specifications Parameter Condition Supply voltage: VDD SPI supply voltage: DVIO Must never be higher than VDD Current consumption: I_VDD Temperature range -40 ... +125 C Standard operation Murata Electronics Oy www.murata.com SCA3300-D01 Min Nom Max Units 3.0 3.3 3.6 V 3.0 3.3 3.6 V 1.2 Doc.No. 3165 Rev. 2 mA 5 (37) 2.3 Accelerometer Performance Specifications Table 2 Accelerometer performance specifications. Supply voltage VDD = 3.3 V and room temperature (RT) +23 C unless otherwise specified. Definition of gravitational acceleration: 2 g = 9.819 m/s Parameter Condition Measurement range Measurement axes XYZ Min -6 Offset (zero acceleration output) Offset error Sensitivity error (A Sensitivity temperature (B dependency Linearity error (C Integrated noise (RMS) Noise density (E (E Cross axis sensitivity (B +20 +1.15 mg -40C ... +125C X and Y axes -10 -0.57 +10 +0.57 mg -40C ... +125C Z axis -15 -0.86 +15 +0.86 mg Power on start-up time Output settling time 2700 1350 5400 LSB/g -40C ... +125C Mode 1 (3g 70 Hz) -0.7 +0.7 % -40C ... +125C Mode 1(3g 70 Hz) -0.3 +0.3 % -1g ... +1g range -6g ... +6g range -1 -15 +1 +15 mg mg Mode 1 per axis, Mode 1 Amplitude response, -3dB frequency g LSB -20 -1.15 0.44 Mode 1 (D 6 Unit -40C ... +125C 3g Mode 1 6g Mode 2 1.5g Mode 3 and Mode 4 Sensitivity Max 0 (A Offset temperature dependency Nom mgRMS g/Hz 37 -1 +1 % Mode 1, 2, 3 70 Hz Mode 4 10 Hz 1 ms Mode 1, 2, 3 15 ms Mode 4 100 ms (F ODR 2000 Hz Min and Max values are validation 3 sigma variation limits from test population at the minimum. Min and Max values are not guaranteed. Nominal values are mean values from validation test population. A) Includes calibration error, temperature, supply voltage and drift over lifetime. B) Deviation from value at room temperature (RT). C) Straight line through specified measurement range end points. D) Cross axis sensitivity is the effect of a signal from orthogonal axes to the measured axis. E) SPI communication and EMI may affect the noise level. Used SPI clock and EMI conditions should be carefully validated. Recommended SPI clock is 2 MHz - 4 MHz to achieve the best performance; see section 2.8.2 SPI AC Characteristics for details. F) Power on start-up time does not include output settling time Murata Electronics Oy www.murata.com SCA3300-D01 Doc.No. 3165 Rev. 2 6 (37) 2.4 Temperature Sensor Performance Specification Table 3 Temperature sensor performance specifications Parameter Condition Min. Temperature signal range Typ -50 Temperature signal sensitivity Direct 16-bit word Temperature signal offset C output Max. Unit +150 C 18.9 LSB/C -10 10 C Temperature is converted to C with following equation: Temperature [C] = -273 + (TEMP / 18.9), where TEMP is temperature sensor output register content in decimal format. 2.5 Absolute Maximum Ratings Within the maximum ratings (Table 4), no damage to the component shall occur. Parametric values may deviate from specification, yet no functional failure shall occur. Table 4 Absolute maximum ratings Symbol Description Min. VDD Supply voltage analog circuitry DIN/DOUT Maximum voltage at digital input and output pins Topr Max. Unit -0.3 4.3 V -0.3 DVIO+0.3 V Operating temperature range -40 +125 C Tstg Storage temperature range -40 +150 C ESD_HBM ESD according Human Body Model (HBM) Q100-002 -2000 2000 ESD_CDM ESD according Charged Device Model (CDM) Q100-011 -1000 1000 US Ultrasonic agitation (cleaning, welding, etc.) Murata Electronics Oy www.murata.com SCA3300-D01 Typ Prohibited Doc.No. 3165 Rev. 2 V V 7 (37) 2.6 Pin Description The pinout for SCA3300-D01 is presented in Figure 1. Figure 1 Pinout for SCA3300-D01 Table 5 SCA3300-D01 pin descriptions Pin# Name Type Description 1 AVSS GND Analog reference ground, connect externally to GND 2 A_EXTC AOUT External capacitor connection for analog core 3 RESERVED - Factory use only, connect externally to GND 4 VDD SUPPLY Analog Supply voltage 5 CSB DIN Chip Select of SPI Interface, 3.3V logic compatible Schmitt-trigger input 6 MISO DOUT Data Out of SPI Interface 7 MOSI DIN Data In of SPI Interface, 3.3V logic compatible Schmitt-trigger input 8 SCK DIN CLK signal of SPI Interface 9 DVIO SUPPLY SPI interface Supply Voltage 10 D_EXTC AOUT External capacitor connection for digital core 11 DVSS GND Digital reference ground, connect externally to GND. Must never be left floating when component is powered. 12 EMC_GND EMC GND EMC ground pin, connect externally to GND Murata Electronics Oy www.murata.com SCA3300-D01 Doc.No. 3165 Rev. 2 8 (37) 2.7 Typical Performance Characteristics Figure 2 Accelerometer typical offset temperature behavior Murata Electronics Oy www.murata.com SCA3300-D01 Doc.No. 3165 Rev. 2 9 (37) Figure 3 Example of accelerometer long term stability during 1000h HTOL. Test condition = +125 C, Vsupply=3.6 V. Data measurement condition = +25 C. Murata Electronics Oy www.murata.com SCA3300-D01 Doc.No. 3165 Rev. 2 10 (37) Figure 4 Accelerometer typical sensitivity temperature error in % Figure 5 Left: Vibration rectification error; Sine sweep 500...5 KHz with 4 g amplitude and 5 kHz...25 kHz with 2 g amplitude. Right: Accelerometer typical linearity behavior Murata Electronics Oy www.murata.com SCA3300-D01 Doc.No. 3165 Rev. 2 11 (37) Figure 6 Left: Accelerometer typical noise density. Right: Typical Allan deviation Murata Electronics Oy www.murata.com SCA3300-D01 Doc.No. 3165 Rev. 2 12 (37) 2.8 2.8.1 Digital I/O Specification DC Characteristics Table 6 describes the DC characteristics of SCA3300-D01 sensor SPI I/O pins. Supply voltage is 3.3 V unless otherwise specified. Current flowing into the circuit has a positive value. Table 6 SPI DC Characteristics Symbol Remark Min. Typ Max. Unit 7.5 16.5 36 uA Serial Clock SCK (Pull Down) IPD Pull-down current Vin = 3.0 - 3.6 V VIH Input voltage '1' 0.67*DVIO DVIO V VIL Input voltage '0' 0 0.33*DVIO V 36 uA Chip Select CSB (Pull Up), low active IPU Pull-up current Vin = 0 7.5 16.5 VIH Input voltage '1' 0.67*DVIO DVIO V VIL Input voltage '0' 0 0.33*DVIO V 36 uA Serial Data Input MOSI (Pull Down) IPD Pull-down current Vin = 3.0 - 3.6 V 7.5 16.5 VIH Input voltage '1' 0.67*DVIO DVIO V VIL Input voltage '0' 0 0.33*DVIO V Serial Data Output MISO (Tri State) VOH Output high voltage I > -1 mA VOL Output low voltage I < 1 mA ILEAK Tri-state leakage 0 < VMISO < 3.3 V DVIO-0.5V -1 V 0 Maximum Capacitive load Murata Electronics Oy www.murata.com SCA3300-D01 Doc.No. 3165 Rev. 2 0.5 V 1 uA 50 pF 13 (37) 2.8.2 SPI AC Characteristics The AC characteristics of SCA3300-D01 are defined in Figure 7 and Table 7. Figure 7 Timing diagram of SPI communication Table 7 SPI AC electrical characteristics Symbol Description Min. TLS1 Time from CSB (10%) to SCK (90%) Tper/2 ns TLS2 Time from SCK (10%) to CSB (90%) Tper/2 ns TCL SCK low time Tper/2 ns TCH SCK high time Tper/2 ns fSCK = 1/Tper SCK Frequency * 0.1 Typ 2 Max. 8 Unit MHz TSET Time from changing MOSI (10%, 90%) to SCK (50%). Data setup time Tper/4 ns THOL Time from SCK (50%) to changing MOSI (10%, 90%). Data hold time Tper/4 ns TVAL1 Time from CSB (50%) to stable MISO (10%, 90%) 10 ns TLZ Time from CSB (50%) to high impedance state of MISO 10 ns TVAL2 Time from SCK (50%) to stable MISO (10%, 90%) 10 ns TLH Time between SPI cycles, CSB at high level (90%) 10 us * SPI communication may affect the noise level. Used SPI clock should be carefully validated. Recommended SPI clock is 2 MHz - 4 MHz to achieve the best performance. Murata Electronics Oy www.murata.com SCA3300-D01 Doc.No. 3165 Rev. 2 14 (37) 2.9 Measurement Axis and Directions Figure 8 SCA3300-D01 measurement directions Table 8 SCA3300-D01 accelerometer measurement directions x: +1g y: 0g z: 0g x: 0g y: +1g z: 0g x: 0g y: 0g z: +1g x: -1g y: 0g z: 0g x: 0g y: -1g z: 0g x: 0g y: 0g z: -1g Murata Electronics Oy www.murata.com SCA3300-D01 Doc.No. 3165 Rev. 2 15 (37) 2.10 Package Characteristics 2.10.1 Package Outline Drawing Figure 9 Package outline. The tolerances are according to ISO2768-f (see Table 9) Table 9 Limits for linear measures (ISO2768-f) Limits in mm for nominal size in mm Tolerance class f (fine) Murata Electronics Oy www.murata.com 0.5 to 3 Above 3 to 6 Above 6 to 30 0.05 0.05 0.1 SCA3300-D01 Doc.No. 3165 Rev. 2 16 (37) 2.11 PCB Footprint Figure 10 Recommended PWB pad layout for SCA3300-D01. All dimensions are in mm. The tolerances are according to ISO2768-f (see Table 9) 3 General Product Description The SCA3300-D01 sensor includes acceleration sensing element and ApplicationSpecific Integrated Circuit (ASIC). Figure 11 contains an upper level block diagram of the component. Figure 11 SCA3300-D01 component block diagram The sensing elements are manufactured using Murata proprietary High Aspect Ratio (HAR) 3D-MEMS process, which enables making robust, extremely stable and low noise capacitive sensors. Murata Electronics Oy www.murata.com SCA3300-D01 Doc.No. 3165 Rev. 2 17 (37) The acceleration sensing element consists of four acceleration sensitive masses. Acceleration causes capacitance change that is converted into a voltage change in the signal conditioning ASIC. 3.1 Factory Calibration SCA3300-D01 sensors are factory calibrated. No separate calibration is required in the application. Calibration parameters are stored to non-volatile memory during manufacturing. The parameters are read automatically from the internal non-volatile memory during the start-up. Assembly can cause offset/bias errors to the sensor output. If best possible accuracy is required, system level offset/bias calibration (zeroing) after assembly is recommended. Offset calibration is recommended to be performed not earlier than 12 hours after reflow. It should be noted that accuracy can be improved with longer stabilization time. 4 4.1 Component Operation and Reset Component Operation Sensor ODR in normal operation mode is 2000 Hz. Registers are updated in every 0.5 ms and if all data is not read the full noise performance of sensor is not met. In order to achieve optimal performance, it is recommended that during normal operation acceleration outputs ACCX, ACCY, ACCZ are read in every cycle using sensor ODR. It is necessary to read STATUS register only if return status (RS) indicates error. Murata Electronics Oy www.murata.com SCA3300-D01 Doc.No. 3165 Rev. 2 18 (37) 4.2 Start-up Sequence Table 10 Start-Up Sequence Step Procedure RS* Function Set 1 VDD DVIO 3.0 - 3.6 V 3.0 - 3.6 V -- Startup the device Note VDD and DVIO don't need to rise at the same time, but DVIO must never be higher than VDD Supply voltages must be settled until proceeding to the next step 2 Write SW Reset command -- Software reset the device 3 Wait 1 ms -- Memory reading Settling of signal path See Table 14 Operations and their equivalent SPI frames Mode1 (default) 4 Set Measurement mode** `11' -- Settling of signal path, Mode 1, 2, and 3 OR Wait 100 ms -- Settling of signal path, Mode 4 `11' Clear status summary 5 6 Read STATUS 70 Hz 1st order low pass filter Mode2 6g full-scale 70 Hz 1st order low pass filter Mode3 1.5g full-scale 70 Hz 1st order low pass filter Mode4 1.5g full-scale 10 Hz 1st order low pass filter. Select operation mode Wait 15 ms 3g full-scale Reset status summary SPI response to step 5 7 Read STATUS `11' Read status summary Read status summary. Due to SPI offframe protocol response is before STATUS has been cleared. SPI response to step 6. First response where STATUS has been cleared. RS bits should be `01' to indicate proper start-up. Otherwise start-up has not been done correctly. See 6.3 STATUS for more information. * RS bits in returned SPI response during normal start-up. See 5.1.5 Return Status for more information. 8 Read STATUS (or any other valid SPI command) `01' Ensure successful start-up ** if not set, mode1 is used. Murata Electronics Oy www.murata.com SCA3300-D01 Doc.No. 3165 Rev. 2 19 (37) 4.3 Operation Modes SCA3300-D01 provides four user selectable operation modes. Default operation mode is mode 1: 3 g full-scale with 70 Hz 1st order low pass filter. After power-off, reset (SW or HW) or unintentional power-off, operation mode will be set to mode1. Current operation mode can be read with "read CMD" SPI command, see sections 5.1.4 Operations and 6.4 CMD. Table 11 Operation mode description Mode 5 st Full-scale Sensitivity LSB/g 1 order low pass filter 1 3g 2700 70 Hz 2 6g 1350 70 Hz 3 1.5 g 5400 70 Hz 4 1.5 g 5400 10 Hz Component Interfacing 5.1.1 General SPI communication transfers data between the SPI master and registers of the SCA3300-D01 ASIC. The SCA3300-D01 always operates as a slave device in masterslave operation mode. 3-wire SPI connection is not supported. Table 12 SPI interface pins 5.1.2 Pin Pin Name Communication CSB Chip Select (active low) MCU SCA3300 SCK Serial Clock MCU SCA3300 MOSI Master Out Slave In MCU SCA3300 MISO Master In Slave Out SCA3300 MCU Protocol The SPI is a 32-bit 4-wire slave configured bus. Off-frame protocol is used so each transfer consists of two phases. A response to the request is sent within next request frame. The response concurrent to the request contains the data requested by the previous command. The first bit in a sequence is an MSB. The SPI transmission is always started with the falling edge of chip select, CSB. The data bits are sampled at the rising edge of the SCK signal. The data is captured on the rising edge (MOSI line) of the SCK and it is propagated on the falling edge (MISO line) of the SCK. This equals to SPI Mode 0 (CPOL = 0 and CPHA = 0). NOTE: For sensor operation, time between consecutive SPI requests (i.e. CSB high) must be at least 10 s. If less than 10 s is used, output data will be corrupted. Murata Electronics Oy www.murata.com SCA3300-D01 Doc.No. 3165 Rev. 2 20 (37) CSB SCK MOSI Request 1 Request 2 Request 3 * Undefined Response 1 Response 2 MISO * The first response after reset is undefined and shall be discarded Figure 12 SPI Protocol 5.1.3 SPI Frame The SPI Frame is divided into four parts: 1. Operation Code (OP), consisting of Read/Write (RW) and Address (ADDR) 2. Return Status (RS, in MISO) 3. Data (D) 4. Checksum (CRC) See Figure 13 and Table 13 Table 13 SPI Frame Specification for more details. For allowed SPI operating commands see Table 14. Figure 13 SPI Frame Murata Electronics Oy www.murata.com SCA3300-D01 Doc.No. 3165 Rev. 2 21 (37) Table 13 SPI Frame Specification Name Bits Description MISO / MOSI OP [31:26] Operation code RW + ADDR OP [5] = RW OP [4:0] = ADDR Read = 0 / Write = 1 Register address RS [25:24] Return status MISO '00' - Startup in progress '01' - Normal operation, no flags '10' - (Not in use) '11' - Error D [23:8] Data Returned data / data to write CRC [7:0] Checksum See section 5.2 MOSI `00' - Always Return Status (RS) shows error (i.e. '11') when an error flag (or flags) is active in, or if previous MOSI-command had incorrect CRC. 5.1.4 Operations Allowed operation commands are shown in Table 14. No other commands are allowed. Table 14 Operations and their equivalent SPI frames Operation Bank SPI Frame SPI Frame Hex Read ACC_X 0 1 0000 0100 0000 0000 0000 0000 1111 0111 040000F7h Read ACC_Y 0 1 0000 1000 0000 0000 0000 0000 1111 1101 080000FDh Read ACC_Z 0 1 0000 1100 0000 0000 0000 0000 1111 1011 0C0000FBh Read STO (self-test output) 0 1 0001 0000 0000 0000 0000 0000 1110 1001 100000E9h Read Temperature 0 1 0001 0100 0000 0000 0000 0000 1110 1111 140000EFh Read Status Summary 0 1 0001 1000 0000 0000 0000 0000 1110 0101 180000E5h Read CMD 0 0011 0100 0000 0000 0000 0000 1101 1111 340000DFh Change to mode1 0 1011 0100 0000 0000 0000 0000 0001 1111 B400001Fh Change to mode2 0 1011 0100 0000 0000 0000 0001 0000 0010 B4000102h Change to mode3 0 1011 0100 0000 0000 0000 0010 0010 0101 B4000225h Change to mode4 0 1011 0100 0000 0000 0000 0011 0011 1000 B4000338h Set power down mode 0 1011 0100 0000 0000 0000 0100 0110 1011 B400046Bh Wake up from power down mode 0 1011 0100 0000 0000 0000 0000 0001 1111 B400001Fh SW Reset 0 1011 0100 0000 0000 0010 0000 1001 1000 B4002098h Read WHOAMI 0 0100 0000 0000 0000 0000 0000 1001 0001 40000091h Read SERIAL1 1 0110 0100 0000 0000 0000 0000 1010 0111 640000A7h Read SERIAL2 1 0110 1000 0000 0000 0000 0000 1010 1101 680000ADh Read current bank 0 1 0111 1100 0000 0000 0000 0000 1011 0011 7C0000B3h Switch to bank #0 0 1 1111 1100 0000 0000 0000 0000 0111 0011 FC000073h Switch to bank #1 0 1 1111 1100 0000 0000 0000 0001 0110 1110 FC00016Eh Murata Electronics Oy www.murata.com SCA3300-D01 Doc.No. 3165 Rev. 2 22 (37) 5.1.5 Return Status SPI frame Return Status bits (RS bits) indicate the functional status of the sensor. See Table 15 for RS definitions. Table 15 Return Status definitions RS [1] RS [0] Description 0 0 Startup in progress 0 1 Normal operation, no flags 1 0 Reserved 1 1 Error The priority of the return status states is from high to low: 00 11 01 Return Status (RS) shows error (i.e. '11') when an error flag (or flags) is active in Status Summary register, or if previous MOSI-command had incorrect frame CRC. See 6.3 STATUS for more information. 5.2 Checksum (CRC) For SPI transmission error detection a Cyclic Redundancy Check (CRC) is implemented, for details see Table 16. Table 16 SPI CRC definition Parameter Value Name CRC-8 Width 8 bit Poly 1Dh (generator polynom: X8+X4+X3+X2+1) Init FFh (initialization value) XOR out FFh (inversion of CRC result) The CRC value used in system level software has to be initialized with FFh to ensure a CRC failure in case of stuck-at-0 and stuck-at-1 error on the SPI bus. C-programming language example for CRC calculation is presented in Figure 14. It can be used as is in an appropriate programming context. Murata Electronics Oy www.murata.com SCA3300-D01 Doc.No. 3165 Rev. 2 23 (37) // Calculate CRC for 24 MSB's of the 32 bit dword // (8 LSB's are the CRC field and are not included in CRC calculation) uint8_t CalculateCRC(uint32_t Data) { uint8_t BitIndex; uint8_t BitValue; uint8_t CRC; CRC = 0xFF; for (BitIndex = 31; BitIndex > 7; BitIndex--) { BitValue = (uint8_t)((Data >> BitIndex) & 0x01); CRC = CRC8(BitValue, CRC); } CRC = (uint8_t)~CRC; return CRC; } static uint8_t CRC8(uint8_t BitValue, uint8_t CRC) { uint8_t Temp; Temp = (uint8_t)(CRC & 0x80); if (BitValue == 0x01) { Temp ^= 0x80; } CRC <<= 1; if (Temp > 0) { CRC ^= 0x1D; } return CRC; } Figure 14 C-programming language example for CRC calculation In case of wrong CRC in MOSI write/read, RS bits "11" are set in the next SPI response, STATUS register is not changed, and write command is discarded. If CRC in MISO SPI response is incorrect, communication failure occurred. CRC calculation example: Read ACC_X SPI [31:8] SPI [7:0] SPI frame Murata Electronics Oy www.murata.com register (04h) = 040000h CRC = F7h = F7h = 040000F7h SCA3300-D01 Doc.No. 3165 Rev. 2 24 (37) 6 Register Definition SCA3300-D01 contains two user switchable register banks. Default register bank is #0. One should have register bank #0 always active, unless data from bank #1 is required. After reading data from bank #1 is finished, one should switch back to bank #0 to ensure no accidental read / writes in unwanted registers. See 6.7 SELBANK for more information for selecting active register bank. Table 17 shows overview of register banks and register addresses. Table 17 Register address space overview Register Bank Addr Read/ (hex) Write #0 #1 Description 01h R ACC_X ACC_X X-axis acceleration output in 2's complement format 02h R ACC_Y ACC_Y Y-axis acceleration output in 2's complement format 03h R ACC_Z ACC_Z Z-axis acceleration output in 2's complement format 04h R STO STO 05h R TEMPERATURE 06h R STATUS STATUS Status Summary 07h - reserved reserved - 08h - reserved reserved - 09h - reserved reserved - 0Ah - reserved reserved - 0Bh - reserved reserved - 0Ch - reserved reserved - 0Dh R/W MODE reserved Sets operation mode, SW Reset and Power down mode 0Eh - reserved reserved - 0Fh - reserved reserved - 10h R WHOAMI reserved 8-bit register for component identification 11h - reserved reserved - 12h - reserved reserved - 13h - reserved reserved - 14h - reserved reserved - 15h - reserved reserved - 16h - reserved reserved - 17h - reserved reserved - 18h - reserved reserved - 19h R reserved SERIAL1 Component serial part 1 1Ah R reserved SERIAL2 Component serial part 2 1Bh - reserved Factory Use - 1Ch - reserved Factory Use - 1Dh - reserved Factory Use - 1Eh - reserved reserved - 1Fh R/W SELBANK SELBANK Murata Electronics Oy www.murata.com Self-test output in 2's complement format TEMPERATURE Temperature sensor output in 2's complement format Switch between active register banks SCA3300-D01 Doc.No. 3165 Rev. 2 25 (37) User should not access reserved registers. Power-cycle and reset will reset all written settings. 6.1 Sensor Data Block Table 18 Sensor data block description Name No. of bits Read / Write Description 01h ACC_X 16 R X-axis acceleration output in 2's complement format 02h ACC_Y 16 R Y-axis acceleration output in 2's complement format 03h ACC_Z 16 R Z-axis acceleration output in 2's complement format 05h TEMPERATURE 16 R Temperature sensor output in 2's complement format. See section 2.4 for conversion equation. Addr Table 19 Sensor data block operations Operation 6.1.1 SPI Frame SPI Frame Hex Read ACC_X 0000 0100 0000 0000 0000 0000 1111 0111 040000F7h Read ACC_Y 0000 1000 0000 0000 0000 0000 1111 1101 080000FDh Read ACC_Z 0000 1100 0000 0000 0000 0000 1111 1011 0C0000FBh Read Temperature 0001 0100 0000 0000 0000 0000 1110 1111 140000EFh Example of Acceleration Data Conversion For example, if ACC_X register read results: ACC_X = 0500DC1Ch, the register content is converted to acceleration rate as follows: OP[31:26] + Data[23:8] RS[25:24] 0 5 0 0 CRC[7:0] D C 1 C OP + RS 05h = 0000 0101b 0000 01b 01b = OP code = Read ACC_X = return status (RS bits) = no error Data = ACC_X register content 00DCh 00DCh 220d = in 2's complement format Acceleration: = 220 LSB / sensitivity(mode1) = 220 LSB / 2700 LSB/g = 0.081 g CRC 1Ch CRC of 0500DCh, see section 5.2 Murata Electronics Oy www.murata.com SCA3300-D01 Doc.No. 3165 Rev. 2 26 (37) 6.1.2 Example of Temperature Data Conversion For example, if TEMPERATURE register read results: TEMPERATURE = 15161E0Ah, the register content is converted to temperature as follows: OP[31:26] + Data[23:8] RS[25:24] 1 5 1 6 CRC[7:0] 1 E 0 A OP + RS 15h = 0001 0101b 0001 01b 01b = OP code = Read TEMP = return status (RS bits) = no error Data = TEMPERATURE register content 161Eh 161Eh 5662d = in 2's complement format Temperature: = -273 + (5662 / 18.9) = +26.6C CRC 0Ah CRC of 15161Eh, see section 5.2 Murata Electronics Oy www.murata.com SCA3300-D01 Doc.No. 3165 Rev. 2 27 (37) 6.2 STO Table 20 STO (self-test output) description Addr 04h Name No. of bits Read / Write Description STO 16 R Self-test output in 2's complement format Table 21 STO operation Operation SPI Frame Read STO (self-test output) SPI Frame Hex 0001 0000 0000 0000 0000 0000 1110 1001 100000E9h If self-test option is desired in application, following guidelines should be taken into account. STO is used to monitor if accelerometer is functioning correctly. It provides information on signal saturation during vibration and shock events. STO should be read continuously in the normal operation sequence after XYZ acceleration readings. STO threshold monitoring should be implemented on application software. Failure thresholds and failure tolerant time of the system are application specific and should be carefully validated. Monitoring can be implemented by counting the subsequent "STO signal exceeding threshold" -events. Examples for STO thresholds are shown in Table 22. STO threshold Failure-tolerant time, e.g. event counter how many times threshold is exceeded Component failure can be suspected if the STO signal exceeds the threshold level continuously after performing component hard reset in static (no vibration) condition. Table 22 Examples for STO Thresholds Mode Full-scale Examples for STO thresholds 1 3g 800 LSB 2 6g 400 LSB 3 1.5 g 1600 LSB 4 1.5 g 1600 LSB Murata Electronics Oy www.murata.com SCA3300-D01 Doc.No. 3165 Rev. 2 28 (37) 6.2.1 Example of Self-Test Analysis For example, if STO register read results: STO = 1100017Bh, the register value can be converted as follows: OP[31:26] + Data[23:8] RS[25:24] 1 1 0 0 CRC[7:0] 0 1 7 B OP + RS 11h = 0001 0001b 0001 00b 01b = OP code = Read STO = return status (RS bits) = no error Data = STO register content 0001h 0001h 1d = in 2's complement format Self-test reading: = 1 See Table 11 for recommended STO threshold values CRC 7Bh CRC of 110001h, see section 5.2 6.3 STATUS Table 23 STATUS description Addr 06h Name No. of bits Read / Write Description STATUS 16 R Status Summary Table 24 STATUS operation Operation SPI Frame Read Status Summary SPI Frame Hex 0001 1000 0000 0000 0000 0000 1110 0101 180000E5h Table 25 STATUS register D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 DIGI2 CLK SAT TEMP_SAT PWR MEM PD MODE_CHANGE PIN_CONTINUITY D14 D13 D12 D11 D10 DIGI1 D15 Reserved Murata Electronics Oy www.murata.com SCA3300-D01 Doc.No. 3165 Rev. 2 Bit Read 29 (37) Table 26 STATUS register bit description Bit Name Description Required action/explanation 9 DIGI1 Digital block error type 1 SW or HW reset needed 8 DIGI2 Digital block error type 2 SW or HW reset needed 7 CLK Clock error SW or HW reset needed Signal saturated in signal path Acceleration too high and acceleration reading not usable. Component failure possible. All acceleration and STO output data is invalid. Temperature signal path saturated External temperature too high or low. Component failure possible 6 SAT 5 TEMP_SAT [After star-up or reset] This flag is set high. No actions needed. 4 PWR Start-up indication or Voltage level failure [During normal operation] External voltages too high or low. Component failure possible. SW or HW reset needed. 3 MEM Error in non-volatile memory Memory check failed. Possible component failure SW or HW reset needed. If power down is not requested. 2 PD Device in power down mode SW or HW reset needed Bit is set high if operation mode has been changed 1 MODE_CHANGE Operation mode changed If mode change is not requested SW or HW reset needed 0 PIN_CONTINUITY Component internal connection error Possible component failure Software (SW) reset is done with SPI operation (see 5.1.4). Hardware (HW) reset is done by power cycling the sensor. If these do not reset the error, then possible component error has occurred and system needs to be shut down and part returned to supplier. Murata Electronics Oy www.murata.com SCA3300-D01 Doc.No. 3165 Rev. 2 30 (37) 6.3.1 Example of STATUS summary reset STATUS summary is reset by reading it. Below is an example of MOSI commands and corresponding MISO responses for command Read STATUS summary when there is SAT bit high in STATUS summary (Data = 0x0040). Due to off-frame protocol of SPI the first response to MOSI command is a response to earlier MOSI command and is thus not applicable in this example. The Return Status bits show an error (b'11) even with the first MOSI command and are reset after the second command (b'01). Return Status bits are defined in Chapter 5.1.5. 6.4 # MOSI command MISO response Return Status Data bits (RS) 1 0x180000E5 don't care b'11 don't care 2 0x180000E5 0x1b00407a b'11 0x0040 3 0x180000E5 0x19004079 b'01 0x0040 4 0x180000E5 0x1900006a b'01 0x0000 CMD Table 27 CMD description Addr 0Dh Register Name No. of bits Read / Write Description CMD 16 R/W Sets operation mode, SW Reset and Power down mode Table 28 CMD operations Command SPI Frame SPI Frame hex Read CMD 0011 0100 0000 0000 0000 0000 1101 1111 340000DFh Change to mode1 1011 0100 0000 0000 0000 0000 0001 1111 B400001Fh Change to mode2 1011 0100 0000 0000 0000 0001 0000 0010 B4000102h Change to mode3 1011 0100 0000 0000 0000 0010 0010 0101 B4000225h Change to mode4 1011 0100 0000 0000 0000 0011 0011 1000 B4000338h Set power down mode 1011 0100 0000 0000 0000 0100 0110 1011 B400046Bh Wake up from power down mode 1011 0100 0000 0000 0000 0000 0001 1111 B400001Fh SW Reset 1011 0100 0000 0000 0010 0000 1001 1000 B4002098h Table 29 CMD register D5 D4 D3 D2 Factory use Factory use PD Murata Electronics Oy www.murata.com SCA3300-D01 Doc.No. 3165 Rev. 2 D1 D0 Bit MODE D6 Reserved D7 SW_RST D8 Factory use D14 D13 D12 D11 D10 D9 Factory use D15 Read 31 (37) Table 30 CMD register bit description Bit Name Description Reserved Reserved 7 Factory use Factory use 6 Factory use Factory use 5 SW_RST Software (SW) Reset 4 Factory use Factory use 3 Factory use Factory use 2 PD Power Down MODE Operation Mode 15:8 1:0 Sets operation mode of the SCA3300-D01. After power-off, reset (SW or HW) or unintentional power-off, normal start-up sequence must be followed. Note: mode will be set to default mode1. Operation modes are described in section 4.3. Changing mode will set Status Summary bit 1 to high. Thus RS bits will show `11' (see 5.1.5.) Note: User must not configure other than given valid commands, otherwise power-off or reset is required. 6.5 WHOAMI Table 31 WHOAMI description Addr 10h Register Name No. of bits Read / Write Description WHOAMI 8 R 8-bit register for component identification Table 32 WHOAMI operations Operation Read WHOAMI SPI Frame SPI Frame Hex 0100 0000 0000 0000 0000 0000 1001 0001 40000091h Table 33 WHOAMI register D15 D14 D13 D12 D11 D10 D9 Not Used [15:8] D8 D7 D6 D5 D4 D3 D2 D1 D0 Bit - - - - - - - - Write Component ID [7:0] = 51h Read WHOAMI is an 8-bit register for component identification. Returned value is 51h. Note: as returned value is fixed, this can be used to ensure SPI communication is working correctly. Murata Electronics Oy www.murata.com SCA3300-D01 Doc.No. 3165 Rev. 2 32 (37) 6.6 Serial Block Table 34 Serial block description Bank Addr Register Name No. of bits Read / Description Write 1 19h SERIAL1 16 R Component serial part 1 1 1Ah SERIAL2 16 R Component serial part 2 Table 35 Serial block operations Operation SPI Frame SPI Frame Hex Read SERIAL1 0110 0100 0000 0000 0000 0000 1010 0111 640000A7h Read SERIAL2 0110 1000 0000 0000 0000 0000 1010 1101 680000ADh Serial Block contains sensor serial number in two 16 bit registers in register bank #1, see 6.7 SELBANK for information how to switch register banks. The same serial number is also written on top of the sensor. The following procedure is recommended when reading serial number: 1. Change active register bank to #1 2. Read registers 19h and 1Ah 3. Change active register back to bank #0 4. Resolve serial number: 1. Combine result data from 1Ah[16:31] and 19h[0:15] 2. Convert HEX to DEC 3. Add letters "B33" to end Murata Electronics Oy www.murata.com SCA3300-D01 Doc.No. 3165 Rev. 2 33 (37) 6.6.1 Example of Resolving Serial Number 1 Change active register bank to #1 SPI Request SWITCH_TO_BANK_1 Request: FC00016E Response: XXXXXXXX, response to previous command 2. Read registers 19h and 1Ah SPI Request READ_SERIAL1: Request: 640000A7 Response: FD0001E1, response to switch command SPI Request READ_SERIAL2: Request: 680000AD Response: 65F7DA19, response to serial1, data: F7DA 3. Change active register back to bank #0 SPI Request SWITCH_TO_BANK_0 Request: FC000073 Response: 693CE54F, response to serial2, data: 3CE5 4. Resolve serial number 1. Combined Serial number: 3CE5F7DA 2. HEX to DEC: 1021704154 3. Add "B33": 1021704154B33 Full Serial number: 1021704154B33 6.7 SELBANK Table 36 SELBANK description Bank Addr 0 1 Register Name No. of bits SELBANK 16 1Fh Read / Description Write R Switch between active register banks Table 37 SELBANK operations Command SPI Frame SPI Frame hex Read current bank 0111 1100 0000 0000 0000 0000 1011 0011 7C0000B3h Switch to bank #0 1111 1100 0000 0000 0000 0000 0111 0011 FC000073h Switch to bank #1 1111 1100 0000 0000 0000 0001 0110 1110 FC00016Eh SELBANK is used to switch between memory banks #0 and #1. It's recommended to keep memory bank #0 selected unless register from bank #1 is required, for example, reading serial number of sensor. After using bank #1 user should switch back to bank #0. Murata Electronics Oy www.murata.com SCA3300-D01 Doc.No. 3165 Rev. 2 34 (37) 7 7.1 Application Information Application Circuitry and External Component Characteristics See Figure 15 and Table 38 for specification of the external components. The PCB layout example is shown in Figure 16. VDD DVIO 1 2 3 4 CSB MISO C1 100 nF 5 6 AVSS EMC_GND A_EXTC RESERVED DVSS D_EXTC VDD DVIO CSB SCK MISO MOSI 12 11 10 9 8 7 SCK MOSI C3 100 nF C2 100 nF Figure 15 Application schematic Murata Electronics Oy www.murata.com SCA3300-D01 Doc.No. 3165 Rev. 2 C4 100 nF 35 (37) Table 38. External component description for SCA3300-D01 Symbol Description Min. Nom. Max. Unit 70 100 130 100 nF m 70 100 130 100 nF m 70 100 130 100 nF m 70 100 130 100 nF m Decoupling capacitor between VDD and GND C1 Recommended component: Murata GCM155R71C104KA55, 0402, 16V, X7R Capacitor availability should be confirmed from www.murata.com ESR Decoupling capacitor between A_EXTC and GND C2 Recommended component: Murata GCM155R71C104KA55, 0402, 16V, X7R Capacitor availability should be confirmed from www.murata.com ESR Decoupling capacitor between D_EXTC and GND C3 Recommended component: Murata GCM155R71C104KA55, 0402, 16V, X7R Capacitor availability should be confirmed from www.murata.com ESR Decoupling capacitor between DVIO and GND C4 Recommended component: Murata GCM155R71C104KA55, 0402, 16V, X7R Capacitor availability should be confirmed from www.murata.com ESR Figure 16 Application PCB layout General circuit diagram and PCB layout recommendations for SCA3300-D01: 1. Connect decoupling SMD capacitors (C1 - C4) right next to respective component pins. 2. Place ground plate under component. 3. Do not route signals or power supplies under the component on top layer. 4. Ensure good ground connection of DVSS, AVSS, and EMC_GND pins Murata Electronics Oy www.murata.com SCA3300-D01 Doc.No. 3165 Rev. 2 36 (37) 7.2 Assembly Instructions The Moisture Sensitivity Level of the component is Level 3 according to the IPC/JEDEC JSTD-020C. The part is delivered in a dry pack. The manufacturing floor time (out of bag) at the customer's end is 168 hours. Usage of PCB coating materials may penetrate component lid and affect component performance. PCB coating is not allowed. Sensor components shall not be exposed to chemicals which are known to react with silicones, such as solvents. Sensor components shall not be exposed to chemicals with high impurity levels, such as Cl-, Na+, NO3-, SO4-, NH4+ in excess of >10 ppm. Flame retardants such as Br or P containing materials shall be avoided in close vicinity of sensor component. Materials with high amount of volatile content should also be avoided. If heat stabilized polymers are used in application, user should check that no iodine, or other halogen, containing additives are used. For additional assembly related details please refer to technical note Assembly instructions of Dual Flat Lead Package (DFL). APP 2702 Assembly_Instructions_for_DFL_Package 8 Frequently Asked Questions How can I be sure SPI communication is working? o Read register WHOAMI (10h), the response should be 51h. Why do I get wrong results when I read data? o SCA3300-D01 uses off-frame protocol (see 5.1.2 Protocol), make sure to utilize this correctly. o Confirm that the SPI frame is according to frame specified in (see 5.1.3 SPI Frame). Note that all 32 bits must be included in to the frame. o Confirm time between SPI requests (CSB high) is at least 10 s. o Ensure SCA3300-D01 is correctly started (see 4.2 Start-up Sequence). o Read RS bits (see 5.1.5 Return Status), if error is shown read Status Summary (see 6.3 STATUS for further information). o Confirm correct sensitivity is used for current operation mode (see 4.3 Operation Modes) Murata Electronics Oy www.murata.com SCA3300-D01 Doc.No. 3165 Rev. 2 37 (37) 9 Order Information Order Code Description Measurement Range (g) SCA3300-D01-004 3-axis industrial accelerometer with digital SPI interface 1.5g, 3g, 6g Bulk 4pcs SCA3300-D01-1 3-axis industrial accelerometer with digital SPI interface 1.5g, 3g, 6g T&R 100pcs SCA3300-D01-10 3-axis industrial accelerometer with digital SPI interface 1.5g, 3g, 6g T&R 1000pcs Murata Electronics Oy www.murata.com SCA3300-D01 Doc.No. 3165 Rev. 2 Packing Qty