1 (37)
Murata Electronics Oy
SCA3300-D01
Doc.No. 3165
www.murata.com
Rev. 2
Data Sheet
Overview
The SCA3300-D01 is a high performance accelerometer sensor component. It is a three-axis accelerometer sensor
based on Murata's proven capacitive 3D-MEMS technology. Signal processing is done in mixed signal ASIC with
flexible SPI digital interface. Sensor element and ASIC are packaged into 12 pin pre-molded plastic housing that
guarantees reliable operation over product's lifetime.
The SCA3300-D01 is designed, manufactured and tested for high stability, reliability and quality requirements. The
component has extremely stable output over wide range of temperature and vibration. The component has several
advanced self-diagnostics features, is suitable for SMD mounting and is compatible with RoHS and ELV directives.
2 (37)
Murata Electronics Oy
SCA3300-D01
Doc.No. 3165
www.murata.com
Rev. 2
TABLE OF CONTENTS
1 Introduction ................................................................................................................................. 4
2 Specifications ............................................................................................................................. 4
2.1 Abbreviations ......................................................................................................................... 4
2.2 General Specifications ........................................................................................................... 4
2.3 Accelerometer Performance Specifications ............................................................................ 5
2.4 Temperature Sensor Performance Specification .................................................................... 6
2.5 Absolute Maximum Ratings ................................................................................................... 6
2.6 Pin Description....................................................................................................................... 7
2.7 Typical Performance Characteristics ...................................................................................... 8
2.8 Digital I/O Specification ........................................................................................................ 12
2.8.1 DC Characteristics .......................................................................................................... 12
2.8.2 SPI AC Characteristics ................................................................................................... 13
2.9 Measurement Axis and Directions........................................................................................ 14
2.10 Package Characteristics ...................................................................................................... 15
2.10.1 Package Outline Drawing ............................................................................................ 15
2.11 PCB Footprint ...................................................................................................................... 16
3 General Product Description.................................................................................................... 16
3.1 Factory Calibration ............................................................................................................... 17
4 Component Operation and Reset ............................................................................................ 17
4.1 Component Operation .......................................................................................................... 17
4.2 Start-up Sequence ............................................................................................................... 18
4.3 Operation Modes ................................................................................................................. 19
5 Component Interfacing ............................................................................................................. 19
5.1.1 General ........................................................................................................................... 19
5.1.2 Protocol .......................................................................................................................... 19
5.1.3 SPI Frame ...................................................................................................................... 20
5.1.4 Operations ...................................................................................................................... 21
5.1.5 Return Status .................................................................................................................. 22
5.2 Checksum (CRC) ................................................................................................................. 22
6 Register Definition .................................................................................................................... 24
6.1 Sensor Data Block ............................................................................................................... 25
6.1.1 Example of Acceleration Data Conversion ...................................................................... 25
6.1.2 Example of Temperature Data Conversion ..................................................................... 26
6.2 STO ..................................................................................................................................... 27
6.2.1 Example of Self-Test Analysis ........................................................................................ 28
6.3 STATUS .............................................................................................................................. 28
6.3.1 Example of STATUS summary reset .............................................................................. 30
3 (37)
Murata Electronics Oy
SCA3300-D01
Doc.No. 3165
www.murata.com
Rev. 2
6.4 CMD .................................................................................................................................... 30
6.5 WHOAMI ............................................................................................................................. 31
6.6 Serial Block .......................................................................................................................... 32
6.6.1 Example of Resolving Serial Number.............................................................................. 33
6.7 SELBANK ............................................................................................................................ 33
7 Application Information ............................................................................................................ 34
7.1 Application Circuitry and External Component Characteristics ............................................. 34
7.2 Assembly Instructions .......................................................................................................... 36
8 Frequently Asked Questions.................................................................................................... 36
9 Order Information ..................................................................................................................... 37
4 (37)
Murata Electronics Oy
SCA3300-D01
Doc.No. 3165
www.murata.com
Rev. 2
1 Introduction
This document contains essential technical information about the SCA3300-D01 sensor
including specifications, SPI interface descriptions, user accessible register details,
electrical properties and application information. This document should be used as a
reference when designing in SCA3300-D01 component.
2 Specifications
2.1 Abbreviations
ASIC Application Specific Integrated Circuit
SPI Serial Peripheral Interface
RT Room Temperature, +23 °C
FS Full Scale
CSB Chip Select
SCK Serial Clock
MOSI Master Out Slave In
MISO Master In Slave Out
MCU Microcontroller
STO Self-test Output
EMI Electromagnetic Interference
ODR Output Data Rate
2.2 General Specifications
General specifications for SCA3300-D01 component are presented in Table 1. All
analog voltages are related to the potential at AVSS and all digital voltages are related
to the potential at DVSS.
Table 1 General specifications
Parameter
Condition
Min
Nom
Max
Units
Supply voltage: VDD
3.0
3.3
3.6
V
SPI supply voltage: DVIO
Must never be higher than VDD
3.0
3.3
3.6
V
Current consumption: I_VDD
Temperature range -40 ... +125 °C
Standard operation
1.2
mA
5 (37)
Murata Electronics Oy
SCA3300-D01
Doc.No. 3165
www.murata.com
Rev. 2
2.3 Accelerometer Performance Specifications
Table 2 Accelerometer performance specifications. Supply voltage VDD = 3.3 V and room
temperature (RT) +23 °C unless otherwise specified. Definition of gravitational acceleration:
g = 9.819 m/s2
Parameter
Condition
Min
Nom
Max
Unit
Measurement range
Measurement axes XYZ
-6
6
g
Offset (zero acceleration output)
0
LSB
Offset error (A
-40°C ... +125°C
-20
-1.15
+20
+1.15
mg
°
Offset temperature dependency (B
-40°C ... +125°C
X and Y axes
-10
-0.57
+10
+0.57
mg
°
-40°C ... +125°C
Z axis
-15
-0.86
+15
+0.86
mg
°
Sensitivity
±3g Mode 1
±6g Mode 2
±1.5g Mode 3 and Mode 4
2700
1350
5400
LSB/g
Sensitivity error (A
-40°C ... +125°C
Mode 1 (±3g 70 Hz)
-0.7
+0.7
%
Sensitivity temperature
dependency (B
-40°C ... +125°C
Mode 1(±3g 70 Hz)
-0.3
+0.3
%
Linearity error (C
-1g ... +1g range
-6g ... +6g range
-1
-15
+1
+15
mg
mg
Integrated noise (RMS) (E
Mode 1
0.44
mgRMS
Noise density (E
Mode 1
37
µg/Hz
Cross axis sensitivity (D
per axis, Mode 1
-1
+1
%
Amplitude response,
-3dB frequency
Mode 1, 2, 3
70
Hz
Mode 4
10
Hz
Power on start-up time (F
1
ms
Output settling time
Mode 1, 2, 3
15
ms
Mode 4
100
ms
ODR
2000
Hz
Min and Max values are validation ±3 sigma variation limits from test population at the minimum. Min and
Max values are not guaranteed. Nominal values are mean values from validation test population.
A) Includes calibration error, temperature, supply voltage and drift over lifetime.
B) Deviation from value at room temperature (RT).
C) Straight line through specified measurement range end points.
D) Cross axis sensitivity is the effect of a signal from orthogonal axes to the measured axis.
E) SPI communication and EMI may affect the noise level. Used SPI clock and EMI conditions should be
carefully validated. Recommended SPI clock is 2 MHz - 4 MHz to achieve the best performance; see
section 2.8.2 SPI AC Characteristics for details.
F) Power on start-up time does not include output settling time
6 (37)
Murata Electronics Oy
SCA3300-D01
Doc.No. 3165
www.murata.com
Rev. 2
2.4 Temperature Sensor Performance Specification
Table 3 Temperature sensor performance specifications
Parameter
Condition
Min.
Typ
Max.
Unit
Temperature signal range
-50
+150
°C
Temperature signal sensitivity
Direct 16-bit word
18.9
LSB/°C
Temperature signal offset
°C output
-10
10
°C
Temperature is converted to °C with following equation:
Temperature [°C] = -273 + (TEMP / 18.9),
where TEMP is temperature sensor output register content in decimal format.
2.5 Absolute Maximum Ratings
Within the maximum ratings (Table 4), no damage to the component shall occur.
Parametric values may deviate from specification, yet no functional failure shall occur.
Table 4 Absolute maximum ratings
Symbol
Description
Min.
Typ
Max.
Unit
VDD
Supply voltage analog circuitry
-0.3
4.3
V
DIN/DOUT
Maximum voltage at digital input and output pins
-0.3
DVIO+0.3
V
Topr
Operating temperature range
-40
+125
°C
Tstg
Storage temperature range
-40
+150
°C
ESD_HBM
ESD according Human Body Model (HBM)
Q100-002
-2000
2000
V
ESD_CDM
ESD according Charged Device Model (CDM)
Q100-011
-1000
1000
V
US
Ultrasonic agitation (cleaning, welding, etc.)
Prohibited
7 (37)
Murata Electronics Oy
SCA3300-D01
Doc.No. 3165
www.murata.com
Rev. 2
2.6 Pin Description
The pinout for SCA3300-D01 is presented in Figure 1.
Figure 1 Pinout for SCA3300-D01
Table 5 SCA3300-D01 pin descriptions
Pin#
Name
Type
Description
1
AVSS
GND
Analog reference ground, connect externally to GND
2
A_EXTC
AOUT
External capacitor connection for analog core
3
RESERVED
-
Factory use only, connect externally to GND
4
VDD
SUPPLY
Analog Supply voltage
5
CSB
DIN
Chip Select of SPI Interface, 3.3V logic compatible Schmitt-trigger input
6
MISO
DOUT
Data Out of SPI Interface
7
MOSI
DIN
Data In of SPI Interface, 3.3V logic compatible Schmitt-trigger input
8
SCK
DIN
CLK signal of SPI Interface
9
DVIO
SUPPLY
SPI interface Supply Voltage
10
D_EXTC
AOUT
External capacitor connection for digital core
11
DVSS
GND
Digital reference ground, connect externally to GND. Must never be left
floating when component is powered.
12
EMC_GND
EMC GND
EMC ground pin, connect externally to GND
8 (37)
Murata Electronics Oy
SCA3300-D01
Doc.No. 3165
www.murata.com
Rev. 2
2.7 Typical Performance Characteristics
Figure 2 Accelerometer typical offset temperature behavior
9 (37)
Murata Electronics Oy
SCA3300-D01
Doc.No. 3165
www.murata.com
Rev. 2
Figure 3 Example of accelerometer long term stability during 1000h HTOL.
Test condition = +125 °C, Vsupply=3.6 V. Data measurement condition = +25 °C.
10 (37)
Murata Electronics Oy
SCA3300-D01
Doc.No. 3165
www.murata.com
Rev. 2
Figure 4 Accelerometer typical sensitivity temperature error in %
Figure 5 Left: Vibration rectification error; Sine sweep 500...5 KHz with 4 g amplitude and
5 kHz...25 kHz with 2 g amplitude. Right: Accelerometer typical linearity behavior
11 (37)
Murata Electronics Oy
SCA3300-D01
Doc.No. 3165
www.murata.com
Rev. 2
Figure 6 Left: Accelerometer typical noise density. Right: Typical Allan deviation
12 (37)
Murata Electronics Oy
SCA3300-D01
Doc.No. 3165
www.murata.com
Rev. 2
2.8 Digital I/O Specification
2.8.1 DC Characteristics
Table 6 describes the DC characteristics of SCA3300-D01 sensor SPI I/O pins. Supply
voltage is 3.3 V unless otherwise specified. Current flowing into the circuit has a positive
value.
Table 6 SPI DC Characteristics
Symbol
Remark
Min.
Typ
Max.
Unit
Serial Clock SCK (Pull Down)
IPD
Pull-down current
Vin = 3.0 - 3.6 V
7.5
16.5
36
uA
VIH
Input voltage '1'
0.67*DVIO
DVIO
V
VIL
Input voltage '0'
0
0.33*DVIO
V
Chip Select CSB (Pull Up), low active
IPU
Pull-up current
Vin = 0
7.5
16.5
36
uA
VIH
Input voltage '1'
0.67*DVIO
DVIO
V
VIL
Input voltage '0'
0
0.33*DVIO
V
Serial Data Input MOSI (Pull Down)
IPD
Pull-down current
Vin = 3.0 - 3.6 V
7.5
16.5
36
uA
VIH
Input voltage '1'
0.67*DVIO
DVIO
V
VIL
Input voltage '0'
0
0.33*DVIO
V
Serial Data Output MISO (Tri State)
VOH
Output high voltage
I > -1 mA
DVIO-0.5V
V
VOL
Output low voltage
I < 1 mA
0.5
V
ILEAK
Tri-state leakage
0 < VMISO < 3.3 V
-1
0
1
uA
Maximum Capacitive load
50
pF
13 (37)
Murata Electronics Oy
SCA3300-D01
Doc.No. 3165
www.murata.com
Rev. 2
2.8.2 SPI AC Characteristics
The AC characteristics of SCA3300-D01 are defined in Figure 7 and Table 7.
Figure 7 Timing diagram of SPI communication
Table 7 SPI AC electrical characteristics
Symbol
Description
Min.
Typ
Max.
Unit
TLS1
Time from CSB (10%) to SCK (90%)
Tper/2
ns
TLS2
Time from SCK (10%) to CSB (90%)
Tper/2
ns
TCL
SCK low time
Tper/2
ns
TCH
SCK high time
Tper/2
ns
fSCK = 1/Tper
SCK Frequency *
0.1
2
8
MHz
TSET
Time from changing MOSI (10%, 90%) to SCK
(50%). Data setup time
Tper/4
ns
THOL
Time from SCK (50%) to changing MOSI (10%,
90%). Data hold time
Tper/4
ns
TVAL1
Time from CSB (50%) to stable MISO (10%, 90%)
10
ns
TLZ
Time from CSB (50%) to high impedance state of
MISO
10
ns
TVAL2
Time from SCK (50%) to stable MISO (10%, 90%)
10
ns
TLH
Time between SPI cycles, CSB at high level (90%)
10
us
* SPI communication may affect the noise level. Used SPI clock should be carefully validated.
Recommended SPI clock is 2 MHz - 4 MHz to achieve the best performance.
14 (37)
Murata Electronics Oy
SCA3300-D01
Doc.No. 3165
www.murata.com
Rev. 2
2.9 Measurement Axis and Directions
Figure 8 SCA3300-D01 measurement directions
Table 8 SCA3300-D01 accelerometer measurement directions
x: +1g
y: 0g
z: 0g
x: 0g
y: +1g
z: 0g
x: 0g
y: 0g
z: +1g
x: -1g
y: 0g
z: 0g
x: 0g
y: -1g
z: 0g
x: 0g
y: 0g
z: -1g
15 (37)
Murata Electronics Oy
SCA3300-D01
Doc.No. 3165
www.murata.com
Rev. 2
2.10 Package Characteristics
2.10.1 Package Outline Drawing
Figure 9 Package outline. The tolerances are according to ISO2768-f (see Table 9)
Table 9 Limits for linear measures (ISO2768-f)
Tolerance class
Limits in mm for nominal size in mm
0.5 to 3
Above 3 to 6
Above 6 to 30
f (fine)
±0.05
±0.05
±0.1
16 (37)
Murata Electronics Oy
SCA3300-D01
Doc.No. 3165
www.murata.com
Rev. 2
2.11 PCB Footprint
Figure 10 Recommended PWB pad layout for SCA3300-D01. All dimensions are in mm. The
tolerances are according to ISO2768-f (see Table 9)
3 General Product Description
The SCA3300-D01 sensor includes acceleration sensing element and Application-
Specific Integrated Circuit (ASIC). Figure 11 contains an upper level block diagram of
the component.
Figure 11 SCA3300-D01 component block diagram
The sensing elements are manufactured using Murata proprietary High Aspect Ratio
(HAR) 3D-MEMS process, which enables making robust, extremely stable and low noise
capacitive sensors.
17 (37)
Murata Electronics Oy
SCA3300-D01
Doc.No. 3165
www.murata.com
Rev. 2
The acceleration sensing element consists of four acceleration sensitive masses.
Acceleration causes capacitance change that is converted into a voltage change in the
signal conditioning ASIC.
3.1 Factory Calibration
SCA3300-D01 sensors are factory calibrated. No separate calibration is required in the
application. Calibration parameters are stored to non-volatile memory during
manufacturing. The parameters are read automatically from the internal non-volatile
memory during the start-up.
Assembly can cause offset/bias errors to the sensor output. If best possible accuracy is
required, system level offset/bias calibration (zeroing) after assembly is recommended.
Offset calibration is recommended to be performed not earlier than 12 hours after reflow.
It should be noted that accuracy can be improved with longer stabilization time.
4 Component Operation and Reset
4.1 Component Operation
Sensor ODR in normal operation mode is 2000 Hz. Registers are updated in every
0.5 ms and if all data is not read the full noise performance of sensor is not met.
In order to achieve optimal performance, it is recommended that during normal
operation acceleration outputs ACCX, ACCY, ACCZ are read in every cycle using
sensor ODR. It is necessary to read STATUS register only if return status (RS) indicates
error.
18 (37)
Murata Electronics Oy
SCA3300-D01
Doc.No. 3165
www.murata.com
Rev. 2
4.2 Start-up Sequence
Table 10 Start-Up Sequence
Step
Procedure
RS*
Function
Note
1
Set
- -
Startup the device
VDD and DVIO don't need to rise at the
same time, but DVIO must never be
higher than VDD
Supply voltages must be settled until
proceeding to the next step
VDD
DVIO
3.0 - 3.6 V
3.0 - 3.6 V
2
Write SW Reset
command
- -
Software reset the device
See Table 14 Operations and their
equivalent SPI frames
3
Wait 1 ms
- -
Memory reading
Settling of signal path
4
Set Measurement
mode**
‘11’
Select operation mode
Mode1
(default)
3g full-scale
70 Hz 1st order low
pass filter
Mode2
6g full-scale
70 Hz 1st order low
pass filter
Mode3
1.5g full-scale
70 Hz 1st order low
pass filter
Mode4
1.5g full-scale
10 Hz 1st order low
pass filter.
5
Wait 15 ms
- -
Settling of signal path,
Mode 1, 2, and 3
OR Wait 100 ms
- -
Settling of signal path,
Mode 4
6
Read STATUS
‘11’
Clear status summary
Reset status summary
7
Read STATUS
‘11’
Read status summary
SPI response to step 5
Read status summary. Due to SPI off-
frame protocol response is before
STATUS has been cleared.
8
Read STATUS
(or any other valid
SPI command)
‘01’
Ensure successful start-up
SPI response to step 6.
First response where STATUS has been
cleared. RS bits should be ‘01’ to indicate
proper start-up. Otherwise start-up has
not been done correctly. See 6.3
STATUS for more information.
* RS bits in returned SPI response during normal start-up. See 5.1.5 Return Status for more information.
** if not set, mode1 is used.
19 (37)
Murata Electronics Oy
SCA3300-D01
Doc.No. 3165
www.murata.com
Rev. 2
4.3 Operation Modes
SCA3300-D01 provides four user selectable operation modes. Default operation mode
is mode 1: ± 3 g full-scale with 70 Hz 1st order low pass filter. After power-off, reset (SW
or HW) or unintentional power-off, operation mode will be set to mode1. Current
operation mode can be read with “read CMD” SPI command, see sections 5.1.4
Operations and 6.4 CMD.
Table 11 Operation mode description
Mode
Full-scale
Sensitivity LSB/g
1st order low pass filter
1
± 3 g
2700
70 Hz
2
± 6 g
1350
70 Hz
3
± 1.5 g
5400
70 Hz
4
± 1.5 g
5400
10 Hz
5 Component Interfacing
5.1.1 General
SPI communication transfers data between the SPI master and registers of the
SCA3300-D01 ASIC. The SCA3300-D01 always operates as a slave device in master-
slave operation mode. 3-wire SPI connection is not supported.
Table 12 SPI interface pins
Pin
Pin Name
Communication
CSB
Chip Select (active low)
MCU
SCA3300
SCK
Serial Clock
MCU
SCA3300
MOSI
Master Out Slave In
MCU
SCA3300
MISO
Master In Slave Out
SCA3300
MCU
5.1.2 Protocol
The SPI is a 32-bit 4-wire slave configured bus. Off-frame protocol is used so each
transfer consists of two phases. A response to the request is sent within next request
frame. The response concurrent to the request contains the data requested by the
previous command. The first bit in a sequence is an MSB.
The SPI transmission is always started with the falling edge of chip select, CSB. The
data bits are sampled at the rising edge of the SCK signal. The data is captured on the
rising edge (MOSI line) of the SCK and it is propagated on the falling edge (MISO line)
of the SCK. This equals to SPI Mode 0 (CPOL = 0 and CPHA = 0).
NOTE: For sensor operation, time between consecutive SPI requests (i.e. CSB high)
must be at least 10 µs. If less than 10 µs is used, output data will be corrupted.
20 (37)
Murata Electronics Oy
SCA3300-D01
Doc.No. 3165
www.murata.com
Rev. 2
Request 1
CSB
SCK
MOSI
* Undefined
MISO
Request 2
Response 1
Request 3
Response 2
* The first response after reset is
undefined and shall be discarded
Figure 12 SPI Protocol
5.1.3 SPI Frame
The SPI Frame is divided into four parts:
1. Operation Code (OP), consisting of Read/Write (RW) and Address (ADDR)
2. Return Status (RS, in MISO)
3. Data (D)
4. Checksum (CRC)
See Figure 13 and Table 13 Table 13 SPI Frame Specification for more details. For
allowed SPI operating commands see Table 14.
Figure 13 SPI Frame
21 (37)
Murata Electronics Oy
SCA3300-D01
Doc.No. 3165
www.murata.com
Rev. 2
Table 13 SPI Frame Specification
Name
Bits
Description
MISO / MOSI
OP
[31:26]
Operation code
RW + ADDR
OP [5] = RW
OP [4:0] = ADDR
Read = 0 / Write = 1
Register address
RS
[25:24]
Return status
MISO
'00' - Startup in progress
'01' - Normal operation, no flags
'10' - (Not in use)
'11' - Error
MOSI
00 Always
D
[23:8]
Data
Returned data / data to write
CRC
[7:0]
Checksum
See section 5.2
Return Status (RS) shows error (i.e. '11') when an error flag (or flags) is active in, or if
previous MOSI-command had incorrect CRC.
5.1.4 Operations
Allowed operation commands are shown in Table 14. No other commands are allowed.
Table 14 Operations and their equivalent SPI frames
Operation
Bank
SPI Frame
SPI Frame Hex
Read ACC_X
0 1
0000 0100 0000 0000 0000 0000 1111 0111
040000F7h
Read ACC_Y
0 1
0000 1000 0000 0000 0000 0000 1111 1101
080000FDh
Read ACC_Z
0 1
0000 1100 0000 0000 0000 0000 1111 1011
0C0000FBh
Read STO (self-test output)
0 1
0001 0000 0000 0000 0000 0000 1110 1001
100000E9h
Read Temperature
0 1
0001 0100 0000 0000 0000 0000 1110 1111
140000EFh
Read Status Summary
0 1
0001 1000 0000 0000 0000 0000 1110 0101
180000E5h
Read CMD
0
0011 0100 0000 0000 0000 0000 1101 1111
340000DFh
Change to mode1
0
1011 0100 0000 0000 0000 0000 0001 1111
B400001Fh
Change to mode2
0
1011 0100 0000 0000 0000 0001 0000 0010
B4000102h
Change to mode3
0
1011 0100 0000 0000 0000 0010 0010 0101
B4000225h
Change to mode4
0
1011 0100 0000 0000 0000 0011 0011 1000
B4000338h
Set power down mode
0
1011 0100 0000 0000 0000 0100 0110 1011
B400046Bh
Wake up from power down
mode
0
1011 0100 0000 0000 0000 0000 0001 1111
B400001Fh
SW Reset
0
1011 0100 0000 0000 0010 0000 1001 1000
B4002098h
Read WHOAMI
0
0100 0000 0000 0000 0000 0000 1001 0001
40000091h
Read SERIAL1
1
0110 0100 0000 0000 0000 0000 1010 0111
640000A7h
Read SERIAL2
1
0110 1000 0000 0000 0000 0000 1010 1101
680000ADh
Read current bank
0 1
0111 1100 0000 0000 0000 0000 1011 0011
7C0000B3h
Switch to bank #0
0 1
1111 1100 0000 0000 0000 0000 0111 0011
FC000073h
Switch to bank #1
0 1
1111 1100 0000 0000 0000 0001 0110 1110
FC00016Eh
22 (37)
Murata Electronics Oy
SCA3300-D01
Doc.No. 3165
www.murata.com
Rev. 2
5.1.5 Return Status
SPI frame Return Status bits (RS bits) indicate the functional status of the sensor. See
Table 15 for RS definitions.
Table 15 Return Status definitions
RS [1]
RS [0]
Description
0
0
Startup in progress
0
1
Normal operation, no flags
1
0
Reserved
1
1
Error
The priority of the return status states is from high to low: 00 11 01
Return Status (RS) shows error (i.e. '11') when an error flag (or flags) is active in Status
Summary register, or if previous MOSI-command had incorrect frame CRC. See 6.3
STATUS for more information.
5.2 Checksum (CRC)
For SPI transmission error detection a Cyclic Redundancy Check (CRC) is
implemented, for details see Table 16.
Table 16 SPI CRC definition
Parameter
Value
Name
CRC-8
Width
8 bit
Poly
1Dh (generator polynom: X8+X4+X3+X2+1)
Init
FFh (initialization value)
XOR out
FFh (inversion of CRC result)
The CRC value used in system level software has to be initialized with FFh to ensure a
CRC failure in case of stuck-at-0 and stuck-at-1 error on the SPI bus. C-programming
language example for CRC calculation is presented in Figure 14. It can be used as is in
an appropriate programming context.
23 (37)
Murata Electronics Oy
SCA3300-D01
Doc.No. 3165
www.murata.com
Rev. 2
// Calculate CRC for 24 MSB's of the 32 bit dword
// (8 LSB's are the CRC field and are not included in CRC calculation)
uint8_t CalculateCRC(uint32_t Data)
{
uint8_t BitIndex;
uint8_t BitValue;
uint8_t CRC;
CRC = 0xFF;
for (BitIndex = 31; BitIndex > 7; BitIndex--)
{
BitValue = (uint8_t)((Data >> BitIndex) & 0x01);
CRC = CRC8(BitValue, CRC);
}
CRC = (uint8_t)~CRC;
return CRC;
}
static uint8_t CRC8(uint8_t BitValue, uint8_t CRC)
{
uint8_t Temp;
Temp = (uint8_t)(CRC & 0x80);
if (BitValue == 0x01)
{
Temp ^= 0x80;
}
CRC <<= 1;
if (Temp > 0)
{
CRC ^= 0x1D;
}
return CRC;
}
Figure 14 C-programming language example for CRC calculation
In case of wrong CRC in MOSI write/read, RS bits “11” are set in the next SPI response,
STATUS register is not changed, and write command is discarded. If CRC in MISO SPI
response is incorrect, communication failure occurred.
CRC calculation example:
Read ACC_X register (04h)
SPI [31:8] = 040000h CRC = F7h
SPI [7:0] = F7h
SPI frame = 040000F7h
24 (37)
Murata Electronics Oy
SCA3300-D01
Doc.No. 3165
www.murata.com
Rev. 2
6 Register Definition
SCA3300-D01 contains two user switchable register banks. Default register bank is #0.
One should have register bank #0 always active, unless data from bank #1 is required.
After reading data from bank #1 is finished, one should switch back to bank #0 to ensure
no accidental read / writes in unwanted registers. See 6.7 SELBANK for more
information for selecting active register bank. Table 17 shows overview of register banks
and register addresses.
Table 17 Register address space overview
Addr
(hex)
Read/
Write
Register Bank
Description
#0
#1
01h
R
ACC_X
ACC_X
X-axis acceleration output in 2’s complement format
02h
R
ACC_Y
ACC_Y
Y-axis acceleration output in 2’s complement format
03h
R
ACC_Z
ACC_Z
Z-axis acceleration output in 2’s complement format
04h
R
STO
STO
Self-test output in 2’s complement format
05h
R
TEMPERATURE
TEMPERATURE
Temperature sensor output in 2’s complement format
06h
R
STATUS
STATUS
Status Summary
07h
-
reserved
reserved
-
08h
-
reserved
reserved
-
09h
-
reserved
reserved
-
0Ah
-
reserved
reserved
-
0Bh
-
reserved
reserved
-
0Ch
-
reserved
reserved
-
0Dh
R / W
MODE
reserved
Sets operation mode, SW Reset and Power down mode
0Eh
-
reserved
reserved
-
0Fh
-
reserved
reserved
-
10h
R
WHOAMI
reserved
8-bit register for component identification
11h
-
reserved
reserved
-
12h
-
reserved
reserved
-
13h
-
reserved
reserved
-
14h
-
reserved
reserved
-
15h
-
reserved
reserved
-
16h
-
reserved
reserved
-
17h
-
reserved
reserved
-
18h
-
reserved
reserved
-
19h
R
reserved
SERIAL1
Component serial part 1
1Ah
R
reserved
SERIAL2
Component serial part 2
1Bh
-
reserved
Factory Use
-
1Ch
-
reserved
Factory Use
-
1Dh
-
reserved
Factory Use
-
1Eh
-
reserved
reserved
-
1Fh
R / W
SELBANK
SELBANK
Switch between active register banks
25 (37)
Murata Electronics Oy
SCA3300-D01
Doc.No. 3165
www.murata.com
Rev. 2
User should not access reserved registers. Power-cycle and reset will reset all written
settings.
6.1 Sensor Data Block
Table 18 Sensor data block description
Addr
Name
No. of
bits
Read /
Write
Description
01h
ACC_X
16
R
X-axis acceleration output in 2’s complement format
02h
ACC_Y
16
R
Y-axis acceleration output in 2’s complement format
03h
ACC_Z
16
R
Z-axis acceleration output in 2’s complement format
05h
TEMPERATURE
16
R
Temperature sensor output in 2’s complement format. See
section 2.4 for conversion equation.
Table 19 Sensor data block operations
Operation
SPI Frame
SPI Frame Hex
Read ACC_X
0000 0100 0000 0000 0000 0000 1111 0111
040000F7h
Read ACC_Y
0000 1000 0000 0000 0000 0000 1111 1101
080000FDh
Read ACC_Z
0000 1100 0000 0000 0000 0000 1111 1011
0C0000FBh
Read Temperature
0001 0100 0000 0000 0000 0000 1110 1111
140000EFh
6.1.1 Example of Acceleration Data Conversion
For example, if ACC_X register read results: ACC_X = 0500DC1Ch, the register content
is converted to acceleration rate as follows:
OP[31:26] +
RS[25:24]
Data[23:8]
CRC[7:0]
0
5
0
0
D
C
1
C
OP + RS
05h = 0000 0101b
0000 01b = OP code = Read ACC_X
01b = return status (RS bits) = no error
Data = ACC_X register content
00DCh
00DCh 220d = in 2's complement format
Acceleration:
= 220 LSB / sensitivity(mode1)
= 220 LSB / 2700 LSB/g
= 0.081 g
CRC
1Ch
CRC of 0500DCh, see section 5.2
26 (37)
Murata Electronics Oy
SCA3300-D01
Doc.No. 3165
www.murata.com
Rev. 2
6.1.2 Example of Temperature Data Conversion
For example, if TEMPERATURE register read results: TEMPERATURE = 15161E0Ah,
the register content is converted to temperature as follows:
OP[31:26] +
RS[25:24]
Data[23:8]
CRC[7:0]
1
5
1
6
1
E
0
A
OP + RS
15h = 0001 0101b
0001 01b = OP code = Read TEMP
01b = return status (RS bits) = no error
Data = TEMPERATURE register content
161Eh
161Eh 5662d = in 2's complement format
Temperature:
= -273 + (5662 / 18.9)
= +26.6°C
CRC
0Ah
CRC of 15161Eh, see section 5.2
27 (37)
Murata Electronics Oy
SCA3300-D01
Doc.No. 3165
www.murata.com
Rev. 2
6.2 STO
Table 20 STO (self-test output) description
Addr
Name
No. of
bits
Read /
Write
Description
04h
STO
16
R
Self-test output in 2’s complement format
Table 21 STO operation
Operation
SPI Frame
SPI Frame Hex
Read STO (self-test output)
0001 0000 0000 0000 0000 0000 1110 1001
100000E9h
If self-test option is desired in application, following guidelines should be taken into
account. STO is used to monitor if accelerometer is functioning correctly. It provides
information on signal saturation during vibration and shock events. STO should be read
continuously in the normal operation sequence after XYZ acceleration readings.
STO threshold monitoring should be implemented on application software. Failure
thresholds and failure tolerant time of the system are application specific and should be
carefully validated. Monitoring can be implemented by counting the subsequent “STO
signal exceeding threshold” events. Examples for STO thresholds are shown in Table
22.
Component failure can be suspected if the STO signal exceeds the threshold level
continuously after performing component hard reset in static (no vibration) condition.
Table 22 Examples for STO Thresholds
Mode
Full-scale
Examples for STO thresholds
1
± 3 g
±800 LSB
2
± 6 g
±400 LSB
3
± 1.5 g
±1600 LSB
4
± 1.5 g
±1600 LSB
Failure-tolerant time, e.g. event counter
how many times threshold is exceeded
STO
threshold
28 (37)
Murata Electronics Oy
SCA3300-D01
Doc.No. 3165
www.murata.com
Rev. 2
6.2.1 Example of Self-Test Analysis
For example, if STO register read results: STO = 1100017Bh, the register value can be
converted as follows:
OP[31:26] +
RS[25:24]
Data[23:8]
CRC[7:0]
1
1
0
0
0
1
7
B
OP + RS
11h = 0001 0001b
0001 00b = OP code = Read STO
01b = return status (RS bits) = no error
Data = STO register content
0001h
0001h 1d = in 2's complement format
Self-test reading:
= 1
See Table 11 for recommended STO threshold values
CRC
7Bh
CRC of 110001h, see section 5.2
6.3 STATUS
Table 23 STATUS description
Addr
Name
No. of
bits
Read /
Write
Description
06h
STATUS
16
R
Status Summary
Table 24 STATUS operation
Operation
SPI Frame
SPI Frame Hex
Read Status Summary
0001 1000 0000 0000 0000 0000 1110 0101
180000E5h
Table 25 STATUS register
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
Bit
Reserved
DIGI1
DIGI2
CLK
SAT
TEMP_SAT
PWR
MEM
PD
MODE_CHANGE
PIN_CONTINUITY
Read
29 (37)
Murata Electronics Oy
SCA3300-D01
Doc.No. 3165
www.murata.com
Rev. 2
Table 26 STATUS register bit description
Bit
Name
Description
Required action/explanation
9
DIGI1
Digital block error type 1
SW or HW reset needed
8
DIGI2
Digital block error type 2
SW or HW reset needed
7
CLK
Clock error
SW or HW reset needed
6
SAT
Signal saturated in signal path
Acceleration too high and
acceleration reading not usable.
Component failure possible. All
acceleration and STO output data
is invalid.
5
TEMP_SAT
Temperature signal path saturated
External temperature too high or
low. Component failure possible
4
PWR
Start-up indication or Voltage level
failure
[After star-up or reset]
This flag is set high. No actions
needed.
[During normal operation]
External voltages too high or low.
Component failure possible.
SW or HW reset needed.
3
MEM
Error in non-volatile memory
Memory check failed. Possible
component failure
SW or HW reset needed.
2
PD
Device in power down mode
If power down is not requested.
SW or HW reset needed
1
MODE_CHANGE
Operation mode changed
Bit is set high if operation mode
has been changed
If mode change is not requested
SW or HW reset needed
0
PIN_CONTINUITY
Component internal connection error
Possible component failure
Software (SW) reset is done with SPI operation (see 5.1.4). Hardware (HW) reset is
done by power cycling the sensor. If these do not reset the error, then possible
component error has occurred and system needs to be shut down and part returned to
supplier.
30 (37)
Murata Electronics Oy
SCA3300-D01
Doc.No. 3165
www.murata.com
Rev. 2
6.3.1 Example of STATUS summary reset
STATUS summary is reset by reading it. Below is an example of MOSI commands and
corresponding MISO responses for command Read STATUS summary when there is
SAT bit high in STATUS summary (Data = 0x0040).
Due to off-frame protocol of SPI the first response to MOSI command is a response to
earlier MOSI command and is thus not applicable in this example.
The Return Status bits show an error (b'11) even with the first MOSI command and are
reset after the second command (b'01). Return Status bits are defined in Chapter 5.1.5.
#
MOSI command
MISO response
Return Status
bits (RS)
Data
1
0x180000E5
don't care
b'11
don't care
2
0x180000E5
0x1b00407a
b'11
0x0040
3
0x180000E5
0x19004079
b'01
0x0040
4
0x180000E5
0x1900006a
b'01
0x0000
6.4 CMD
Table 27 CMD description
Addr
Register Name
No. of
bits
Read /
Write
Description
0Dh
CMD
16
R / W
Sets operation mode, SW Reset and Power down mode
Table 28 CMD operations
Command
SPI Frame
SPI Frame hex
Read CMD
0011 0100 0000 0000 0000 0000 1101 1111
340000DFh
Change to mode1
1011 0100 0000 0000 0000 0000 0001 1111
B400001Fh
Change to mode2
1011 0100 0000 0000 0000 0001 0000 0010
B4000102h
Change to mode3
1011 0100 0000 0000 0000 0010 0010 0101
B4000225h
Change to mode4
1011 0100 0000 0000 0000 0011 0011 1000
B4000338h
Set power down mode
1011 0100 0000 0000 0000 0100 0110 1011
B400046Bh
Wake up from power down mode
1011 0100 0000 0000 0000 0000 0001 1111
B400001Fh
SW Reset
1011 0100 0000 0000 0010 0000 1001 1000
B4002098h
Table 29 CMD register
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
Bit
Reserved
Factory use
Factory use
SW_RST
Factory use
Factory use
PD
MODE
Read
31 (37)
Murata Electronics Oy
SCA3300-D01
Doc.No. 3165
www.murata.com
Rev. 2
Table 30 CMD register bit description
Bit
Name
Description
15:8
Reserved
Reserved
7
Factory use
Factory use
6
Factory use
Factory use
5
SW_RST
Software (SW) Reset
4
Factory use
Factory use
3
Factory use
Factory use
2
PD
Power Down
1:0
MODE
Operation Mode
Sets operation mode of the SCA3300-D01. After power-off, reset (SW or HW) or
unintentional power-off, normal start-up sequence must be followed. Note: mode will be
set to default mode1.
Operation modes are described in section 4.3.
Changing mode will set Status Summary bit 1 to high. Thus RS bits will show 11(see
5.1.5.)
Note: User must not configure other than given valid commands, otherwise power-off or
reset is required.
6.5 WHOAMI
Table 31 WHOAMI description
Addr
Register Name
No. of
bits
Read /
Write
Description
10h
WHOAMI
8
R
8-bit register for component identification
Table 32 WHOAMI operations
Operation
SPI Frame
SPI Frame Hex
Read WHOAMI
0100 0000 0000 0000 0000 0000 1001 0001
40000091h
Table 33 WHOAMI register
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
Bit
-
-
-
-
-
-
-
-
Write
Not Used [15:8]
Component ID [7:0] = 51h
Read
WHOAMI is an 8-bit register for component identification. Returned value is 51h.
Note: as returned value is fixed, this can be used to ensure SPI communication is
working correctly.
32 (37)
Murata Electronics Oy
SCA3300-D01
Doc.No. 3165
www.murata.com
Rev. 2
6.6 Serial Block
Table 34 Serial block description
Bank
Addr
Register Name
No. of
bits
Read /
Write
Description
1
19h
SERIAL1
16
R
Component serial part 1
1
1Ah
SERIAL2
16
R
Component serial part 2
Table 35 Serial block operations
Operation
SPI Frame
SPI Frame Hex
Read SERIAL1
0110 0100 0000 0000 0000 0000 1010 0111
640000A7h
Read SERIAL2
0110 1000 0000 0000 0000 0000 1010 1101
680000ADh
Serial Block contains sensor serial number in two 16 bit registers in register bank #1,
see 6.7 SELBANK for information how to switch register banks. The same serial number
is also written on top of the sensor.
The following procedure is recommended when reading serial number:
1. Change active register bank to #1
2. Read registers 19h and 1Ah
3. Change active register back to bank #0
4. Resolve serial number:
1. Combine result data from 1Ah[16:31] and 19h[0:15]
2. Convert HEX to DEC
3. Add letters “B33” to end
33 (37)
Murata Electronics Oy
SCA3300-D01
Doc.No. 3165
www.murata.com
Rev. 2
6.6.1 Example of Resolving Serial Number
1 Change active register bank to #1
SPI Request SWITCH_TO_BANK_1
Request: FC00016E
Response: XXXXXXXX, response to previous command
2. Read registers 19h and 1Ah
SPI Request READ_SERIAL1:
Request: 640000A7
Response: FD0001E1, response to switch command
SPI Request READ_SERIAL2:
Request: 680000AD
Response: 65F7DA19, response to serial1, data: F7DA
3. Change active register back to bank #0
SPI Request SWITCH_TO_BANK_0
Request: FC000073
Response: 693CE54F, response to serial2, data: 3CE5
4. Resolve serial number
1. Combined Serial number: 3CE5F7DA
2. HEX to DEC: 1021704154
3. Add “B33”: 1021704154B33
Full Serial number: 1021704154B33
6.7 SELBANK
Table 36 SELBANK description
Bank
Addr
Register Name
No. of
bits
Read /
Write
Description
0 1
1Fh
SELBANK
16
R
Switch between active register banks
Table 37 SELBANK operations
Command
SPI Frame
SPI Frame hex
Read current bank
0111 1100 0000 0000 0000 0000 1011 0011
7C0000B3h
Switch to bank #0
1111 1100 0000 0000 0000 0000 0111 0011
FC000073h
Switch to bank #1
1111 1100 0000 0000 0000 0001 0110 1110
FC00016Eh
SELBANK is used to switch between memory banks #0 and #1. It’s recommended to
keep memory bank #0 selected unless register from bank #1 is required, for example,
reading serial number of sensor. After using bank #1 user should switch back to bank
#0.
34 (37)
Murata Electronics Oy
SCA3300-D01
Doc.No. 3165
www.murata.com
Rev. 2
7 Application Information
7.1 Application Circuitry and External Component Characteristics
See Figure 15 and Table 38 for specification of the external components. The PCB
layout example is shown in Figure 16.
CSB
MISO
SCK
C2
100 nF
C1
100 nF
1
2
3
4
6
5
AVSS
A_EXTC
RESERVED
VDD
CSB
MISO
EMC_GND
DVSS
D_EXTC
DVIO
SCK
MOSI MOSI
C3
100 nF
C4
100 nF
12
11
10
9
8
7
VDD DVIO
Figure 15 Application schematic
35 (37)
Murata Electronics Oy
SCA3300-D01
Doc.No. 3165
www.murata.com
Rev. 2
Table 38. External component description for SCA3300-D01
Symbol
Description
Min.
Nom.
Max.
Unit
C1
Decoupling capacitor between VDD and GND
Recommended component:
Murata GCM155R71C104KA55, 0402, 16V, X7R
Capacitor availability should be confirmed from
www.murata.com
ESR
70
100
130
100
nF
m
C2
Decoupling capacitor between A_EXTC and GND
Recommended component:
Murata GCM155R71C104KA55, 0402, 16V, X7R
Capacitor availability should be confirmed from
www.murata.com
ESR
70
100
130
100
nF
m
C3
Decoupling capacitor between D_EXTC and GND
Recommended component:
Murata GCM155R71C104KA55, 0402, 16V, X7R
Capacitor availability should be confirmed from
www.murata.com
ESR
70
100
130
100
nF
m
C4
Decoupling capacitor between DVIO and GND
Recommended component:
Murata GCM155R71C104KA55, 0402, 16V, X7R
Capacitor availability should be confirmed from
www.murata.com
ESR
70
100
130
100
nF
m
Figure 16 Application PCB layout
General circuit diagram and PCB layout recommendations for SCA3300-D01:
1. Connect decoupling SMD capacitors (C1 - C4) right next to respective component
pins.
2. Place ground plate under component.
3. Do not route signals or power supplies under the component on top layer.
4. Ensure good ground connection of DVSS, AVSS, and EMC_GND pins
36 (37)
Murata Electronics Oy
SCA3300-D01
Doc.No. 3165
www.murata.com
Rev. 2
7.2 Assembly Instructions
The Moisture Sensitivity Level of the component is Level 3 according to the IPC/JEDEC
JSTD-020C. The part is delivered in a dry pack. The manufacturing floor time (out of
bag) at the customer’s end is 168 hours.
Usage of PCB coating materials may penetrate component lid and affect component
performance. PCB coating is not allowed.
Sensor components shall not be exposed to chemicals which are known to react with
silicones, such as solvents. Sensor components shall not be exposed to chemicals with
high impurity levels, such as Cl-, Na+, NO3-, SO4-, NH4+ in excess of >10 ppm. Flame
retardants such as Br or P containing materials shall be avoided in close vicinity of
sensor component. Materials with high amount of volatile content should also be
avoided.
If heat stabilized polymers are used in application, user should check that no iodine, or
other halogen, containing additives are used.
For additional assembly related details please refer to technical note Assembly
instructions of Dual Flat Lead Package (DFL).
APP 2702 Assembly_Instructions_for_DFL_Package
8 Frequently Asked Questions
How can I be sure SPI communication is working?
o Read register WHOAMI (10h), the response should be 51h.
Why do I get wrong results when I read data?
o SCA3300-D01 uses off-frame protocol (see 5.1.2 Protocol), make sure to
utilize this correctly.
o Confirm that the SPI frame is according to frame specified in (see 5.1.3
SPI Frame). Note that all 32 bits must be included in to the frame.
o Confirm time between SPI requests (CSB high) is at least 10 µs.
o Ensure SCA3300-D01 is correctly started (see 4.2 Start-up Sequence).
o Read RS bits (see 5.1.5 Return Status), if error is shown read Status
Summary (see 6.3 STATUS for further information).
o Confirm correct sensitivity is used for current operation mode (see 4.3
Operation Modes)
37 (37)
Murata Electronics Oy
SCA3300-D01
Doc.No. 3165
www.murata.com
Rev. 2
9 Order Information
Order Code
Description
Measurement
Range (g)
Packing
Qty
SCA3300-D01-004
3-axis industrial accelerometer with digital SPI
interface
±1.5g, ±3g, ±6g
Bulk
4pcs
SCA3300-D01-1
3-axis industrial accelerometer with digital SPI
interface
±1.5g, ±3g, ±6g
T&R
100pcs
SCA3300-D01-10
3-axis industrial accelerometer with digital SPI
interface
±1.5g, ±3g, ±6g
T&R
1000pcs