Advanced Power N-CHANNEL ENHANCEMENT MODE
Electronics Corp. POWER MOSFET
100% Avalanche Test BVDSS 700V
Fast Switching Characteristic RDS(ON) 2.4
Simple Drive Requirement ID4A
RoHS Compliant & Halogen-Free
Description
Absolute Maximum Ratings
Symbol Units
VDS Drain-Source Voltage V
VGS Gate-Source Voltage V
ID@TC=25Continuous Drain Current, VGS @ 10V A
ID@TC=100Continuous Drain Current, VGS @ 10V A
IDM Pulsed Drain Current1A
PD@TC=25Total Power Dissipation W
W/
EAS Single Pulse Avalanche Energy2mJ
IAR Avalanche Current A
TSTG
TJOperating Junction Temperature Range
Thermal Data
Symbol Value Units
Rthj-c Maximum Thermal Resistance, Junction-case 3.8 /W
Rthj-a Maximum Thermal Resistance, Junction-ambient 65 /W
Data & specifications subject to change without notice
-55 to 150
Parameter
AP04N70BI-H-HF
8
Rating
700
Halogen-Free Product
1
+30
4
2.5
Storage Temperature Range -55 to 150
4
201008184
Parameter
15
33
Linear Derating Factor 0.26
G
D
S
A
dvanced Power MOSFETs from APEC provide the
designer with the best combination of fast switching,
ruggedized device design, low on-resistance and cost-effectiveness.
GDSTO-220CFM(I)
The TO-220CFM package is widely preferred for commercial-industrial
applications. The device is suited for switch mode power supplies, DC-
A
C converters and high current high speed switching circuits.
Electrical Characteristics@Tj=25oC(unless otherwise specified)
Symbol Parameter Test Conditions Min. Typ. Max. Units
BVDSS Drain-Source Breakdown Voltage VGS=0V, ID=1mA 700 - - V
BVDSS/TjBreakdown Voltage Temperature Coefficient Reference to 25, ID=1mA - 0.6 - V/
RDS(ON) Static Drain-Source On-Resistance3VGS=10V, ID=2A - - 2.4
VGS(th) Gate Threshold Voltage VDS=VGS, ID=250uA 2 - 4 V
gfs Forward Transconductance VDS=10V, ID=2A - 2.5 - S
IDSS Drain-Source Leakage Current VDS=600V, VGS=0V - - 10 uA
Drain-Source Leakage Current (Tj=125oC) VDS=480V,VGS=0V - - 500 uA
IGSS Gate-Source Leakage VGS=+30V, VDS=0V - - +100 nA
QgTotal Gate Charge3ID=4A - 16.7 - nC
Qgs Gate-Source Charge VDS=480V - 4.1 - nC
Qgd Gate-Drain ("Miller") Charge VGS=10V - 4.9 - nC
td(on) Turn-on Delay Time3VDD=300V - 11 - ns
trRise Time ID=4A - 8.3 - ns
td(off) Turn-off Delay Time RG=10,VGS=10V - 23.8 - ns
tfFall Time RD=75- 8.2 - ns
Ciss Input Capacitance VGS=0V - 950 - pF
Coss Output Capacitance VDS=25V - 65 - pF
Crss Reverse Transfer Capacitance f=1.0MHz - 6 - pF
Source-Drain Diode
Symbol Parameter Test Conditions Min. Typ. Max. Units
ISContinuous Source Current ( Body Diode ) VD=VG=0V , VS=1.5V - - 4 A
ISM Pulsed Source Current ( Body Diode )1--15
A
VSD Forward On Voltage3Tj=25, IS=4A, VGS=0V - - 1.5 V
Notes:
1.Pulse width limited by max. junction temperature
2.Starting Tj=25oC , VDD=50V , L=1mH , RG=25 , IAS=4A.
3.Pulse test
THIS PRODUCT IS SENSITIVE TO ELECTROSTATIC DISCHARGE, PLEASE HANDLE WITH CAUTION.
USE OF THIS PRODUCT AS A CRITICAL COMPONENT IN LIFE SUPPORT OR OTHER SIMILAR SYSTEMS IS NOT AUTHORIZED.
APEC DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED
HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
APEC RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE
RELIABILITY, FUNCTION OR DESIGN.
AP04N70BI-H-HF
2
A
P04N70BI-H-HF
Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics
Fig 3. Normalized BVDSS v.s. Junction Fig 4. Normalized On-Resistance
Temperature v.s. Junction Temperature
3
0.8
0.9
1
1.1
1.2
-50 0 50 100 150
Tj , Junction Temperature ( oC)
Normal ized BVDSS (V)
0
0.4
0.8
1.2
1.6
2
2.4
2.8
-50 0 50 100 150
Tj , Junction Temperature ( oC )
Normal ized RDS(ON)
VG=10V
I
D=2A
0
0.5
1
1.5
2
024681012
VDS , Drain-to-Source Voltage (V)
ID , Drain Curre nt (A)
TC=150 oC
VG=4.0V
VG=3.5V
VG=4.5V
VG=5.0V
VG=6.0V
VG=10V
0
0.5
1
1.5
2
2.5
01234567
VDS , Drain-to-Source Voltage (V)
ID , Drain Curre nt (A)
TC=25oC
VG=10V
VG=6.0V
VG=5.0V
VG=4.5V
VG=4.0V
AP04N70BI-H-HF
Fig 5. Maximum Drain Current v.s. Fig 6. Typical Power Dissipation
Case Temperature
Fig 7. Maximum Safe Operating Area Fig 8. Effective Transient Thermal Impedance
4
0
10
20
30
40
0 50 100 150
Tc , Case Temperature ( oC )
PD (W)
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
25 50 75 100 125 150
Tc , Case Temperature ( oC )
ID , Drain Curre nt (A)
0.01
0.1
1
10
100
1 10 100 1000 10000
VDS (V)
ID (A)
Tc=25oC
S
in
g
le Pulse
100us
1ms
10ms
100ms
1s
DC
0.001
0.01
0.1
1
0.00001 0.0001 0.001 0.01 0.1 1 10
t , Pulse Width (s)
Normalized Thermal Response (R thjc)
PDM
Duty factor = t/T
Peak Tj = PDM x Rthjc + TC
t
T
0.02
0.01
0.05
0.1
0.2
DUTY=0.5
SINGLE PULSE
A
P04N70BI-H-HF
Fig 9. Gate Charge Characteristics Fig 10. Typical Capacitance Characteristics
Fig 11. Forward Characteristic of Fig 12. Gate Threshold Voltage v.s.
Reverse Diode Junction Temperature
5
0
1
2
3
4
5
-50 0 50 100 150
Tj , Junction Temperature ( o C )
VGS(th) (V)
0
2
4
6
8
10
12
14
16
0 5 10 15 20 25
QG , Total Gate Charge (nC)
VGS , Gate to Source Voltage (V)
I
D=4A
VDS
=480V
VDS
=400V
VDS
=320V
0
2
4
6
8
10
12
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
VSD (V)
IS (A)
Tj = 25 oCTj =150oC
1
100
10000
1 6 11 16 21 26 31
VDS (V)
C (pF)
f
=1.0MHz
Ciss
Coss
Crss
AP04N70BI-H-HF
Fig 13. Switching Time Circuit Fig 14. Switching Time Waveform
Fig 15. Gate Charge Circuit Fig 16. Gate Charge Waveform
6
td(on) trtd(off) tf
VDS
VGS
10%
90%
Q
VG
10V
QGS QGD
QG
Charge
0.5x RATED VDS
TO THE
OSCILLOSCOPE
-
+10 V
D
G
S
VDS
VGS
RG
RD
0.8 x RATED VDS
TO THE
OSCILLOSCOPE
-
+
D
G
S
VDS
VGS
ID
IG
1~ 3 m
A