16-Channel High Performance
Differential Output, 192 kHz, 24-Bit DAC
Data Sheet ADAU1966
Rev. E Document Feedbac
k
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700 ©2011–2016 Analog Devices, Inc. All rights reserved.
Technical Suppor t www.analog.com
FEATURES
118 dB DAC dynamic range and SNR
−98 dB THD + N
Differential voltage DAC output
2.5 V digital, 5 V analog and 3.3 V or 5 V I/O supplies
521 mW total (32.6 mW/channel) quiescent power
PLL generated or direct MCLK master clock
Low EMI design
Linear regulator driver to generate digital supply
Supports 24-bit and 32 kHz to 192 kHz sample rates
Low propagation 192 kHz sample rate mode
Log volume control with autoramp function
Temperature sensor with digital readout ±3°C accuracy
SPI and I2C controllable for flexibility
Software-controllable clickless mute
Software power-down
Right-justified, left-justified, I2S, and TDM modes
Master and slave modes with up to 16-channel input/output
80-lead LQFP package
Qualified for automotive applications
APPLICATIONS
Automotive audio systems
Home theater systems
Digital audio effects processors
GENERAL DESCRIPTION
The ADAU1966 is a high performance, single-chip DAC that
provides 16 digital-to-analog converters (DACs) with differen-
tial output using the Analog Devices, Inc., patented multibit
sigma-delta (Σ-) architecture. An SPI/I2C port is included,
allowing a microcontroller to adjust volume and many other
parameters. The ADAU1966 operates from 2.5 V digital, 5 V
analog and 3.3 V or 5 V input/output supplies. A linear regulator
is included to generate the digital supply voltage from the analog
supply voltage. The ADAU1966 is available in an 80-lead LQFP
package.
The ADAU1966 is designed for low EMI. This consideration is
apparent in both the system and circuit design architectures.
By using the on-board PLL to derive the internal master clock
from an external LRCLK, the ADAU1966 can eliminate the
need for a separate high frequency master clock and can be
used with or without a bit clock. The DACs are designed using
the latest Analog Devices continuous time architectures to
further minimize EMI. By using 2.5 V digital supplies, power
consumption is minimized, and the digital waveforms are a
smaller amplitude, further reducing emissions.
FUNCTIONAL BLOCK DIAGRAM
SERIAL DATA PORT
DIGITAL AUDI
O
INPUT
PRECISION
VOLTAGE
REFERENCE
INTERNAL
TEMP
SENSOR
TIMING MANAGEMENT
AND CONTROL
(CLOCK AND PLL)
SPI/I
2
C
CONTROL PORT
CONTROL DATA
INPUT/OUTPUT
ADAU1966
DIFFERENTIAL
ANALOG
AUDIO
OUTPUTS
DIFFERENTIAL
ANALOG
AUDIO
OUTPUTS
DAC
DAC
DAC
DAC
DAC
DAC
DAC
DAC
DAC
DAC
DAC
DAC
DAC
DAC
DAC
DAC
DIGITAL
FILTER
AND
VOLUME
CONTROL
DIGITAL
FILTER
AND
VOLUME
CONTROL
SDATA
IN
SDATA
IN
CLOCKS
09434-001
Figure 1.
ADAU1966 Data Sheet
Rev. E | Page 2 of 52
TABLE OF CONTENTS
Features .............................................................................................. 1
Applications ....................................................................................... 1
General Description ......................................................................... 1
Functional Block Diagram .............................................................. 1
Revision History ............................................................................... 3
Specifications ..................................................................................... 4
Analog Performance Specifications ........................................... 4
Crystal Oscillator Specifications................................................. 5
Digital Input/Output Specifications........................................... 5
Power Supply Specifications........................................................ 6
Digital Filters ................................................................................. 6
Timing Specifications .................................................................. 7
Absolute Maximum Ratings ............................................................ 9
Thermal Resistance ...................................................................... 9
ESD Caution .................................................................................. 9
Pin Configuration and Function Descriptions ........................... 10
Typical Performance Characteristics ........................................... 13
Application Circuits ....................................................................... 14
Theory of Operation ...................................................................... 15
Digital-to-Analog Converters (DACs) .................................... 15
Clock Signals ............................................................................... 15
Power-Up and RST ..................................................................... 16
Standalone Mode ........................................................................ 17
I2C Control Port .......................................................................... 17
Serial Control Port: SPI Control Mode ................................... 19
Power Supply and Voltage Reference ....................................... 20
Serial Data Ports—Data Format ............................................... 20
Time-Division Multiplexed (TDM) Modes ............................ 20
Temperature Sensor ................................................................... 20
Additional Modes ....................................................................... 22
Register Summary .......................................................................... 24
Register Details ............................................................................... 25
PLL and Clock Control 0 Register ........................................... 25
PLL and Clock Control 1 Register ........................................... 26
Block Power-Down and Thermal Sensor Control 1 Register27
Power-Down Control 2 Register .............................................. 28
Power-Down Control 3 Register .............................................. 29
Thermal Sensor Temperature Readout Register .................... 30
DAC Control 0 Register ............................................................ 31
DAC Control 1 Register ............................................................ 32
DAC Control 2 Register ............................................................ 33
DAC Individual Channel Mutes 1 Register ............................ 34
DAC Individual Channel Mutes 2 Register ............................ 35
Master Volume Control Register .............................................. 36
DAC 1 Volume Control Register .............................................. 36
DAC 2 Volume Control Register .............................................. 37
DAC 3 Volume Control Register .............................................. 37
DAC 4 Volume Control Register .............................................. 38
DAC 5 Volume Control Register .............................................. 38
DAC 6 Volume Control Register .............................................. 39
DAC 7 Volume Control Register .............................................. 39
DAC 8 Volume Control Register .............................................. 40
DAC 9 Volume Control Register .............................................. 40
DAC 10 Volume Control Register ............................................ 41
DAC 11 Volume Control Register ............................................ 41
DAC 12 Volume Control Register ............................................ 42
DAC 13 Volume Control Register ............................................ 42
DAC 14 Volume Control Register ............................................ 43
DAC 15 Volume Control Register ............................................ 43
DAC 16 Volume Control Register ............................................ 44
Common Mode and Pad Strength Register ............................ 44
DAC Power Adjust 1 Register ................................................... 45
DAC Power Adjust 2 Register ................................................... 46
DAC Power Adjust 3 Register ................................................... 47
DAC Power Adjust 4 Register ................................................... 48
Outline Dimensions ....................................................................... 52
Ordering Guide .......................................................................... 52
Automotive Products ................................................................. 52
Data Sheet ADAU1966
Rev. E | Page 3 of 52
REVISION HISTORY
3/16—Rev. D to Rev. E
Changes to Table 4 ............................................................................ 5
12/13—Rev. C to Rev. D
Changes to Features Section ............................................................ 1
Changes to General Description ..................................................... 1
Changes to Specifications Section ................................................... 4
Deleted Table 3 and Table 4; Renumbered Sequentially .............. 5
Changes to Table 5 ............................................................................ 6
Changes to Theory of Operation Section .................................... 15
Changes to Table 11 ........................................................................ 15
Changes to Table 13 ........................................................................ 17
Changes to Serial Control Port: SPI Control Mode Section ...... 19
Added Figure 14, Figure 15, and Figure 16; Renumbered
Sequentially ...................................................................................... 19
Moved, Changes to Figure 17 ........................................................ 20
Changes to Power Supply and Voltage Reference Section and
Serial Data Ports—Data Format Section ...................................... 20
Changes to Figure 18 ...................................................................... 21
Change to Address 0x01C, Table 23 ............................................. 24
Changes to Table 52, Common Mode and Pad Strength
Register ............................................................................................. 44
3/13—Rev. B to Rev. C
Changes to Table 2 and Table 3 ....................................................... 5
Changes to Table 4 ............................................................................ 6
Changes to I2C Control Port Section ............................................ 18
Changes to Figure 13, Table 19, Table 20, Table 21, and
Table 22 ............................................................................................. 19
Changes to Serial Control Port: SPI Control Mode Section ..... 20
8/12—Rev. A to Rev. B
Change to Table 10 .......................................................................... 10
7/12—Rev. 0 to Rev. A
Changed Output Resistance at Each Pin Parameter from 100 Ω
to 33 Ω ................................................................................................ 4
Changes to Figure 13 ...................................................................... 19
Added Figure 14 .............................................................................. 20
Updated Outline Dimensions ........................................................ 52
9/11—Revision 0: Initial Version
ADAU1966 Data Sheet
Rev. E | Page 4 of 52
SPECIFICATIONS
Performance of all channels is identical, exclusive of the interchannel gain mismatch and interchannel phase deviation specifications.
Master clock = 12.288 MHz (48 kHz fS, 256 × fS mode), input sample rate = 48 kHz, measurement bandwidth = 20 Hz to 20 kHz, word
width = 24 bits, load capacitance (digital output) = 20 pF, load current (digital output) = ±1 mA or 1.5 kΩ to ½ DVDD supply, input
voltage high = 2.0 V, input voltage low = 0.8 V, analog audio output resistive load = 3100  per pin, unless otherwise noted.
ANALOG PERFORMANCE SPECIFICATIONS
Specifications guaranteed at AVDDx = 5 V and an ambient temperature of 25°C. Supply voltages = AVDDx = 5 V, DVDD = 2.5 V,
ambient temperature1 (TA) = 25°C, unless otherwise noted.
Table 1.
Parameter Test Conditions/Comments Min Typ Max Unit
DIGITAL-TO-ANALOG CONVERTERS
Dynamic Range 20 Hz to 20 kHz, −60 dB input
No Filter (RMS) 105 115.5 dB
With A-Weighted Filter (RMS) 108 118 dB
Total Harmonic Distortion + Noise 0 dBFS −90 dB
Two channels running, −1 dBFS −98 dB
16 channels running, −1 dBFS −98 −85 dB
Full-Scale Differential Output Voltage 3.00 (±8.49) V rms (V p-p)
Gain Error −10 +10 %
Offset Error −25 −6 +25 mV
Gain Drift −30 +30 ppm/°C
Interchannel Isolation 100 dB
Interchannel Phase Deviation 0 Degrees
Volume Control Step 0.375 dB
Volume Control Range 95.25 dB
De-emphasis Gain Error ±0.6 dB
Output Resistance at Each Pin 33 Ω
REFERENCE VOLTAGES
Temperature Sensor Reference Voltage TS_REF pin 1.50 V
Common-Mode Reference Output CM pin 2.14 2.25 2.29 V
External Reference Voltage Source CM pin 2.25 V
TEMPERATURE SENSOR
Temperature Accuracy −3 +3 °C
Temperature Readout Range −60 +140 °C
Temperature Readout Step Size 1 °C
Temperature Sample Rate 0.25 6 Hz
REGULATOR
Input Supply Voltage VSUPPLY pin 3.0 5 5.5 V
Regulated Output Voltage VSENSE pin 2.26 2.50 2.59 V
1 Functionally guaranteed at −40°C to +125°C case temperature.
Data Sheet ADAU1966
Rev. E | Page 5 of 52
Specifications guaranteed at AVDDx = 5 V and an ambient temperature of 105°C. Supply voltages = AVDDx = 5 V, DVDD = 2.5 V,
ambient temperature1 (TA) = 105°C, unless otherwise noted.
Table 2.
Parameter Test Conditions/Comments Min Typ Max Unit
DIGITAL-TO-ANALOG CONVERTERS
Dynamic Range 20 Hz to 20 kHz, −60 dB input
No Filter (RMS) 109 113.5 dB
With A-Weighted Filter (RMS) 110.5 116 dB
Total Harmonic Distortion + Noise 0 dBFS −85 dB
Two channels running −1 dBFS −92.5 dB
Eight channels running −1 dBFS −92.5 −85 dB
Full-Scale Differential Output Voltage 3.00 (±8.49) V rms (V p-p)
Gain Error −10 +10 %
Offset Error −25 −6 +25 mV
Gain Drift −30 +30 ppm/°C
Interchannel Isolation 100 dB
Interchannel Phase Deviation 0 Degrees
Volume Control Step 0.375 dB
Volume Control Range 95.25 dB
De-emphasis Gain Error ±0.6 dB
Output Resistance at Each Pin 33 Ω
REFERENCE
Temperature Sensor Reference Voltage TS_REF pin 1.50 V
Common-Mode Reference Output CM pin 2.14 2.25 2.29 V
External Reference Voltage Source CM pin 2.25 V
REGULATOR
Input Supply Voltage VSUPPLY pin 3.0 5 5.5 V
Regulated Output Voltage VSENSE pin 2.25 2.50 2.55 V
1 Functionally guaranteed at −40°C to +125°C case temperature.
CRYSTAL OSCILLATOR SPECIFICATIONS
Table 3.
Parameter Min Typ Max Unit
Transconductance, TA = 25°C 6.4 7 to 10 14 mmhos
Transconductance, TA = 105°C 5.2 7.5 to 8.5 12 mmhos
DIGITAL INPUT/OUTPUT SPECIFICATIONS
−40°C < TA < +105°C, IOVDD = 5.0 V and 3.3 V ± 10%.
Table 4.
Parameter Test Conditions/Comments Min Typ Max Unit
High Level Input Voltage (VIH) 0.7 × IOVDD V
Low Level Input Voltage (VIL) IOVDD = 5.0 V 0.3 × IOVDD V
Input Leakage IIH at VIH = 3.3 V 10 μA
I
IL at VIL = 0 V 10 μA
High Level Output Voltage (VOH) IOH = 1 mA 0.8 × IOVDD V
Low Level Output Voltage (VOL) IOL = 1 mA 0.1 × IOVDD V
Input Capacitance 5 pF
ADAU1966 Data Sheet
Rev. E | Page 6 of 52
POWER SUPPLY SPECIFICATIONS
Table 5.
Parameter Test Conditions/Comments Min Typ Max Unit
SUPPLIES
Voltage AVDD 4.5 5.0 5.5 V
DVDD 2.25 2.5 3.6 V
PLLVDD 2.25 2.5 3.6 V
IOVDD 3.0 5.0 5.5 V
VSUPPLY 3.0 5.0 5.5 V
Analog Current—AVDD = 5.0 V
Normal Operation 84 mA
Power-Down 1 μA
Digital Current—DVDD = 2.5 V
Normal Operation fS = 48 kHz to 192 kHz 30 mA
Power-Down No MCLK or I2S 4 μA
PLL Current—PLLVDD = 2.5 V
Normal Operation fS = 48 kHz to 192 kHz 5 mA
Power-Down 1 μA
IO Current—IOVDD = 3.3 V
Normal Operation 4 mA
Power-Down 1 μA
QUIESCENT DISSIPATION—DITHER INPUT
Operation MCLK = 256 × fS, 48 kHz
All Supplies AVDDx = 5.0 V, DVDD/PLLVDD = 2.5 V, IOVDD = 3.3 V 521 mW
Analog Supply AVDDx = 5.0 V 420 mW
Digital Supply DVDD = 2.5 V 75 mW
PLL Supply PLLVDD= 2.5 V 13 mW
I/O Supply IOVDD = 3.3 V 13 mW
Power-Down, All Supplies 0 mW
POWER SUPPLY REJECTION RATIO
Signal at Analog Supply Pins 1 kHz, 200 mV p-p 85 dB
20 kHz, 200 mV p-p 85 dB
DIGITAL FILTERS
Table 6.
Parameter Mode Factor Min Typ Max Unit
DAC INTERPOLATION FILTER
Pass Band 48 kHz mode, typical at 48 kHz 0.4535 × fS 22 kHz
96 kHz mode, typical at 96 kHz 0.3646 × fS 35 kHz
192 kHz mode, typical at 192 kHz 0.3646 × fS 70 kHz
Pass-Band Ripple 48 kHz mode, typical at 48 kHz ±0.01 dB
96 kHz mode, typical at 96 kHz ±0.05 dB
192 kHz mode, typical at 192 kHz ±0.1 dB
Transition Band 48 kHz mode, typical at 48 kHz 0.5 × fS 24 kHz
96 kHz mode, typical at 96 kHz 0.5 × fS 48 kHz
192 kHz mode, typical at 192 kHz 0.5 × fS 96 kHz
Stop Band 48 kHz mode, typical at 48 kHz 0.5465 × fS 26 kHz
96 kHz mode, typical at 96 kHz 0.6354 × fS 61 kHz
192 kHz mode, typical at 192 kHz 0.6354 × fS 122 kHz
Stop-Band Attenuation 48 kHz mode, typical at 48 kHz 68 dB
96 kHz mode, typical at 96 kHz 68 dB
192 kHz mode, typical at 192 kHz 68 dB
Data Sheet ADAU1966
Rev. E | Page 7 of 52
Parameter Mode Factor Min Typ Max Unit
Propagation Delay 48 kHz mode, typical at 48 kHz 25/fS 521 μs
96 kHz mode, typical at 96 kHz 11/fS 115 μs
192 kHz mode, typical at 192 kHz 8/fS 42 μs
192 kHz low delay mode, typical at 192 kHz 2/fS 10 μs
TIMING SPECIFICATIONS
−40°C < TA < +105°C, DVDD = 2.5 V ± 10%.
Table 7.
Parameter Description Min Typ Max Unit
INPUT MASTER CLOCK (MCLK) AND RESET
tMH MCLK duty cycle, DAC clock source = PLL clock at
256 × fS, 384 × fS, 512 × fS, and 768 × fS
40 60 %
tMH DAC clock source = direct MCLK at 512 × fS (bypass
on-chip PLL)
40 60 %
fMCLK MCLKI frequency, PLL mode 6.9 40.5 MHz
fMCLK Direct MCLK 512 × fS mode 27.1 MHz
fBCLK DBCLK frequency, PLL mode 27.0 MHz
tPDR Low 15 ns
tPDRR Recovery, reset to active output 300 ms
PLL
Lock Time MCLK input 10 ms
Lock Time DLRCLK input 50 ms
256 × fS VCO Clock, Output Duty Cycle, MCLKO Pin 40 60 %
SPI PORT See Figure 17
tCCH CCLK high 35 ns
tCCL CCLK low 35 ns
fCCLK CCLK frequency, fCCLK = 1/tCCP; only tCCP shown in Figure 17 10 MHz
tCDS CDATA setup, time to CCLK rising 10 ns
tCDH CDATA hold, time from CCLK rising 10 ns
tCLS CLATCH setup, time to CCLK rising 10 ns
tCLH CLATCH hold, time from CCLK falling 10 ns
tCLHIGH CLATCH high, not shown in Figure 17 10 ns
tCOE COUT enable from CCLK falling 30 ns
tCOD COUT delay from CCLK falling 30 ns
tCOH COUT hold from CCLK falling, not shown in Figure 17 30 ns
tCOTS COUT tristate from CCLK falling 30 ns
I2C See Figure 2 and Figure 13
fSCL SCL clock frequency 400 kHz
tSCLL SCL low 1.3 μs
tSCLH SCL high 0.6 μs
tSCS Setup time (start condition), relevant for repeated start
condition
0.6 μs
tSCH Hold time (start condition), first clock generated after
this period
0.6 μs
tSSH Setup time (stop condition) 0.6 μs
tDS Data setup time 100 ns
tSR SDA and SCL rise time 300 ns
tSF SDA and SCL fall time 300 ns
tBFT Bus-free time between stop and start 1.3 μs
ADAU1966 Data Sheet
Rev. E | Page 8 of 52
Parameter Description Min Typ Max Unit
DAC SERIAL PORT See Figure 19
tDBH DBCLK high, slave mode 10 ns
tDBL DBCLK low, slave mode 10 ns
tDLS DLRCLK setup, time to DBCLK rising, slave mode 10 ns
tDLH DLRCLK hold from DBCLK rising, slave mode 5 ns
tDLS DLRCLK skew from DBCLK falling, master mode −8 +8 ns
tDDS DSDATAx setup to DBCLK rising 10 ns
tDDH DSDATAx hold from DBCLK rising 5 ns
09434-002
t
SCH
t
SCLH
t
SR
t
SCLL
t
SF
t
BFT
t
DS
SD
A
SCL
t
SCH
t
SSH
t
SCS
Figure 2. I2C Timing Diagram
Data Sheet ADAU1966
Rev. E | Page 9 of 52
ABSOLUTE MAXIMUM RATINGS
Table 8.
Parameter Rating
Analog (AVDD) −0.3 V to +5.5 V
Input/Output (IOVDD) −0.3 V to +5.5 V
Digital (DVDD) −0.3 V to +3.6 V
PLL (PLLVDD) −0.3 V to +3.6 V
VSUPPLY −0.3 V to +6.0 V
Input Current (Except Supply Pins) ±20 mA
Analog Input Voltage (Signal Pins) –0.3 V to AVDD + 0.3 V
Digital Input Voltage (Signal Pins) −0.3 V to IOVDD + 0.3 V
Operating Temperature Range (Case) −40°C to +125°C
Storage Temperature Range −65°C to +150°C
Stresses at or above those listed under Absolute Maximum
Ratings may cause permanent damage to the product. This is a
stress rating only; functional operation of the product at these
or any other conditions above those indicated in the operational
section of this specification is not implied. Operation beyond
the maximum operating conditions for extended periods may
affect product reliability.
THERMAL RESISTANCE
θJA represents junction-to-ambient thermal resistance; θJC repre-
sents the junction-to-case thermal resistance. All characteristics
are for a 4-layer board with a solid ground plane.
Table 9. Thermal Resistance
Package Type θJA θJC Unit
80-Lead LQFP 42.3 10.0 °C/W
ESD CAUTION
ADAU1966 Data Sheet
Rev. E | Page 10 of 52
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
11298-003
1
2
3
4
5
6
7
8
9
10
11
13
12
14
15
16
17
18
20
19
60
59
58
57
56
55
54
53
52
51
50
49
48
AGND3
DAC12N
DAC12P
DAC11N
DAC11P
DAC10N
DAC10P
DAC9N
DAC9P
DAC8N
DAC8P
DAC7N
DAC7P
PIN 1
INDICATOR
47
46
45
44
43
42
41
DAC_BIAS2
DAC_BIAS1
DAC4N
AVDD2
DAC4P
DAC3N
DAC3P
DAC2N
DAC2P
DAC1N
DAC1P
AVDD1
AGND1
PU/RST
SA_MODE
SS/ADDR0/SA
SCLK/SCL
MISO/SDA/SA
MOSI/ADDR1/SA
DVDD
6162636465666768697071727374757677787980
4039383736353433323130292827262524232221
DGND
IOVDD
VSENSE
VDRIVE
VSUPPLY
DGND
DBCLK
DLRCLK
DVDD
DGND
SA1
SA2
DSDATA6
DSDATA5
DSDATA4
DSDATA3
DSDATA2
DSDATA1
IOVDD
DGND
DAC6N
DAC6P
DAC5N
DAC5P
TS_REF
CM
AGND2
DAC_BIAS3
DAC16P
DAC16N
AVDD4
AGND4
PLLGND
LF
PLLVDD
MCLKI/XTALI
XTALO
MCLKO
DVDD
DAC_BIAS4
AVDD3
DAC13P
DAC13N
DAC14P
DAC14N
DAC15P
DAC15N
ADAU1966A
TOP VIEW
(Not to Scale)
NOTES
1. SEE THE STANDALONE MODE SECTION (TABLE 13 AND TABLE 14) FOR THE SA_MODE SETTINGS
FOR PIN 31, PIN 32, PIN 42, PIN 43, AND PIN 45.
Figure 3. Pin Configuration
Table 10. Pin Function Descriptions
Pin No. Type1 Mnemonic Description
1 I DAC_BIAS3 DAC Bias 3. AC couple with 470 nF to AGND3.
2 I DAC_BIAS4 DAC Bias 4. AC couple with 470 nF to AVDD3.
3 PWR AVDD3 Analog Power.
4 O DAC13P DAC13 Positive Output.
5 O DAC13N DAC13 Negative Output.
6 O DAC14P DAC14 Positive Output.
7 O DAC14N DAC14 Negative Output.
8 O DAC15P DAC15 Positive Output.
9 O DAC15N DAC15 Negative Output.
10 O DAC16P DAC16 Positive Output.
11 O DAC16N DAC16 Negative Output.
12 PWR AVDD4 Analog Power.
13 GND AGND4 Analog Ground.
14 GND PLLGND PLL Ground.
15 O LF PLL Loop Filter, Reference to PLLVDD.
16 PWR PLLVDD Apply 2.5 V to Power PLL.
17 I MCLKI/XTALI Master Clock Input, Input to Crystal Inverter.
18 O XTALO Output from Crystal Inverter.
19 O MCLKO Master Clock Output.
Data Sheet ADAU1966
Rev. E | Page 11 of 52
Pin No. Type1 Mnemonic Description
20, 29, 41 PWR DVDD Digital Power, 2.5 V.
21, 26, 30, 40 GND DGND Digital Ground.
22, 39 PWR IOVDD Power for Digital Input and Output Pins, 3.3 V to 5 V.
23 I VSENSE 2.5 V Output of Regulator, Collector of Pass Transistor. Bypass with 10 μF in parallel
with 100 nF.
24 O VDRIVE Drive for Base of Pass Transistor.
25 I VSUPPLY 5 V Input to Voltage Regulator, Emitter of Pass Transistor. Bypass with 10 μF in parallel
with 100 nF.
27 I/O DBCLK Bit Clock for DACs.
28 I/O DLRCLK Frame Clock for DACs.
31 I DSDATA8/SA DAC15 and DAC 16 Serial Data Input/SA_MODE TDM State (see the Standalone Mode
section, Table 13, and Table 14).
32 I DSDATA7/SA DAC13 and DAC 14 Serial Data Input/SA_MODE TDM State (see the Standalone Mode
section, Table 13, and Table 14).
33 I DSDATA6 DAC11 and DAC 12 Serial Data Input.
34 I DSDATA5 DAC9 and DAC 10 Serial Data Input.
35 I DSDATA4 DAC7 and DAC 8 Serial Data Input.
36 I DSDATA3 DAC5 and DAC 6 Serial Data Input.
37 I DSDATA2 DAC3 and DAC 4 Serial Data Input.
38 I DSDATA1 DAC1 and DAC 2 Serial Data Input.
42 I CDATA/ADDR1/SA
Control Data Input (SPI)/Address 1 (I2C)/SA_MODE State (see the Standalone Mode
section and Table 13).
43 I/O COUT/SDA/SA
Control Data Output (SPI)/Control Data Input (I2C)/SA_MODE State (see the
Standalone Mode section and Table 13).
44 I CCLK/SCL/SA Control Clock Input (SPI)/Control Clock Input (I2C)/SA_MODE State (see the Standalone
Mode section and Table 13).
45 I
CLATCH/ADDR0/SA Control Chip Select (SPI) (Low Active)/Address 0 (I2C)/SA_MODE State (see the
Standalone Mode section and Table 13).
46 I SA_MODE Standalone Mode. This pin allows mode control of ADAU1966 using Pin 42 to Pin 45,
Pin 31, and Pin 32 (high active, see Table 13 and Table 14).
47 I
PU/RST Power-Up/Reset (Low Active).
48 GND AGND1 Analog Ground.
49 PWR AVDD1 Analog Power.
50 O DAC1P DAC1 Positive Output.
51 O DAC1N DAC1 Negative Output.
52 O DAC2P DAC2 Positive Output.
53 O DAC2N DAC2 Negative Output.
54 O DAC3P DAC3 Positive Output.
55 O DAC3N DAC3 Negative Output.
56 O DAC4P DAC4 Positive Output.
57 O DAC4N DAC4 Negative Output.
58 PWR AVDD2 Analog Power.
59 I DAC_BIAS1 DAC Bias 1. AC couple with 470 nF to AVDD2.
60 I DAC_BIAS2 DAC Bias 2. AC couple with 470 nF to AGND2.
61 GND AGND2 Analog Ground.
62 O CM Common-Mode Reference Filter Capacitor Connection. Bypass with 10 μF in parallel
with 100 nF to AGND2. This reference can be shut off in the PLL_CLK_CTRL1 register
and the pin can be driven with an outside voltage source.
63 O TS_REF Voltage Reference Filter Capacitor Connection. Bypass with 10 μF in parallel with
100 nF to AGND2.
64 O DAC5P DAC5 Positive Output.
65 O DAC5N DAC5 Negative Output.
66 O DAC6P DAC6 Positive Output.
67 O DAC6N DAC6 Negative Output.
ADAU1966 Data Sheet
Rev. E | Page 12 of 52
Pin No. Type1 Mnemonic Description
68 O DAC7P DAC7 Positive Output.
69 O DAC7N DAC7 Negative Output.
70 O DAC8P DAC8 Positive Output.
71 O DAC8N DAC8 Negative Output.
72 O DAC9P DAC9 Positive Output.
73 O DAC9N DAC9 Negative Output.
74 O DAC10P DAC10 Positive Output.
75 O DAC10N DAC10 Negative Output.
76 O DAC11P DAC11 Positive Output.
77 O DAC11N DAC11 Negative Output.
78 O DAC12P DAC12 Positive Output.
79 O DAC12N DAC12 Negative Output.
80 GND AGND3 Analog Ground.
1 I = input, O = output, I/O = input/output, PWR = power, GND = ground.
Data Sheet ADAU1966
Rev. E | Page 13 of 52
TYPICAL PERFORMANCE CHARACTERISTICS
0.05
–0.05
–0.04
–0.03
–0.02
–0.01
0
0.01
0.02
0.03
0.04
0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
MAGNITUDE (dB)
FREQUENCY (FACTORED TO
f
S
)
09434-004
Figure 4. DAC Pass-Band Filter Response, 48 kHz
0
–100
–90
–80
–70
–60
–50
–40
–30
–20
–10
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
MAGNITUDE (dB)
FREQUENCY (FACTORED TO
f
S
)
09434-005
Figure 5. DAC Stop-Band Filter Response, 48 kHz
0.20
–0.20
–0.15
–0.10
–0.05
0
0.05
0.10
0.15
0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
MAGNITUDE (dB)
FREQUENCY (FACTORED TO
f
S
)
09434-006
Figure 6. DAC Pass-Band Filter Response, 96 kHz
0
–100
–90
–80
–70
–60
–50
–40
–30
–20
–10
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
MAGNITUDE (dB)
FREQUENCY (FACTORED TO
f
S
)
09434-007
Figure 7. DAC Stop-Band Filter Response, 96 kHz
ADAU1966 Data Sheet
Rev. E | Page 14 of 52
APPLICATION CIRCUITS
Typical application circuits are shown in Figure 8 to Figure 11. Recommended loop filters for DLRCLK and MCLKI/XTALI modes of the
PLL reference are shown in Figure 8. Output filters for the DAC outputs are shown in Figure 9 and Figure 10, and an external regulator
circuit is shown in Figure 11.
39nF
2.2nF
LF
DLRCLK
PLLVDD
3.32k
5.6nF
390pF
LF
MCLKI/XTALI
PLLVDD
562
09434-008
Figure 8. Recommended Loop Filters for DLRCLK or MCLKI/XTALI PLL Reference Modes
2.7nF
DACP OUTP
23710µF
+
DACN OUTN
23710µF
+
49.9k49.9k
09434-009
Figure 9. Typical DAC Output Passive Filter Circuit (Differential)
DAC1P
OUTPUT1P
1.50k1.54k
422
5
6
7
AD8672ARZ
1.1n
F
4.7µF
+
100
2.49k
1nF 4.7µF +
DAC1N
OUTPUT1N
1.50k1.54k
422
3
2
1
AD8672ARZ
1.1nF
4.7µF
+
100
2.49k
1nF 4.7µF +
100k
100k
4.7µF +
4.7µF +
0.1µF
0.1µF
+12V DC
V+
V–
8
4
–12V DC
09434-010
Figure 10. Typical DAC Output Active Filter Circuit (Differential)
10µF
+
E
C
B
VSUPPLY 5V
VSENSE 2.5V
FZT953
VDRIVE
1k
100nF
10µF
+
100nF
09434-011
Figure 11. Recommended 2.5 V Regulator Circuit
Data Sheet ADAU1966
Rev. E | Page 15 of 52
THEORY OF OPERATION
DIGITAL-TO-ANALOG CONVERTERS (DACS)
The 16 ADAU1966 digital-to-analog converter (DAC) channels
are differential for improved noise and distortion performance
and are voltage output for simplified connection. The DACs
include on-chip digital interpolation filters with 68 dB stop-band
attenuation and linear phase response, operating at an over-
sampling ratio of 256× (48 kHz range), 128× (96 kHz range), or
64× (192 kHz range). Each channel has its own independently
programmable attenuator, adjustable in 255 steps in increments
of 0.375 dB. Digital inputs are supplied through eight serial data
input pins (two channels on each pin), a common frame clock
(DLRCLK), and a bit clock (DBCLK). Alternatively, any one of the
TDM modes can be used to access up to 16 channels on a single
TDM data line.
The ADAU1966 has a low propagation delay mode; this mode
is an option for an fS of 192 kHz and is enabled in Register DAC_
CTRL0[2:1]. By setting these bits to b11, the propagation delay
is reduced by the amount shown in Table 6. The shorter delay is
achieved by reducing the amount of digital filtering; the negative
impact of selecting this mode is reduced audio frequency response
and increased out-of-band energy.
When AVDD is supplied with 5 V, each analog output pin has a
nominal common-mode (CM) dc level of 2.25 V and swings
±2.12 V above and below the 2.25 V for a for a 1.5 V rms signal
on each pin. Differentially, the signal is 3 V rms, 8.48 V p-p,
from a 0 dBFS digital input signal.
The differential analog outputs require only a single-order
passive differential RC filter to provide the specified DNR
performance; see Figure 9 for an example filter. The outputs can
easily drive differential inputs on a separate PCB through
cabling as well as differential inputs on the same PCB.
If more signal level is required or if a more robust filter is needed, a
single op amp gain stage designed as a second-order, low-pass
Bessel filter can be used to remove the high frequency out-of-
band noise present on each pin of the differential outputs. The
choice of components and design of this circuit is critical to yield
the full DNR of the DACs (see the recommended passive and
active circuits in Figure 9 and Figure 10). This filter can be built
into an active difference amplifier to provide a single-ended output
with gain, if necessary. Note that the use of op amps with low
slew rate or low bandwidth can cause high frequency noise and
tones to fold down into the audio band; exercise care when
selecting these components.
The ADAU1966 offers control over the analog performance
of the DACs; it is possible to program the registers to reduce
the power consumption with the trade-off of lower SNR and
THD + N. The reduced power consumption is the result of
changing the internal bias current to the analog output
amplifiers.
Register DAC_POWER1 to Register DAC_POWER4 present
four basic settings for the DAC power vs. performance in each
of the 16 channels: best performance, good performance, low
power, and lowest power. Alternatively, in Register PLL_CLK_
CTRL1[7:6], the LOPWR_MODE bits offer global control over
the power and performance for all 16 channels. The default
setting is b00. This setting allows the channels to be controlled
individually using the DAC_POWERx registers. Setting b10
and Setting b11 select the low power and lowest power settings.
The data presented in Table 11 shows the result of setting all
16 channels to each of the four settings. The SNR and THD + N
specifications are shown in relation to the measured perfor-
mance of a device at the best performance setting.
The voltage at CM, the common-mode reference pin, can be
used to bias the external op amps that buffer the output signals
(see the Power Supply and Voltage Reference section).
CLOCK SIGNALS
Upon powering the ADAU1966 and asserting the PU/RST pin
high, the device starts in either standalone mode (SA_MODE)
or program mode, depending on the state of SA_MODE (Pin 46).
The clock functionality of SA_MODE is described in the
Standalone Mode section. In program mode, the default for the
ADAU1966 is for the MCLKO pin to feed a buffered output of
the MCLKI signal. The default for the DLRCLK and DBCLK
ports is slave mode; the DAC must be driven with a coherent set
of MCLK, LRCLK, and BCLK signals to function.
The MCLKO pin can be programmed to provide different clock
signals using Register Bits PLL_CLK_CTRL1[5:4]. The default,
b10, provides a buffered copy of the clock signal that is driving
the MCLKI pin. Two modes, b00 and b01, provide low jitter
clock signals. The b00 setting yields a clock rate between 4 MHz
and 6 MHz, and b01 yields a clock rate between 8 MHz and
12 MHz. Both of these clock frequencies are scaled as ratios of
MCLK automatically inside the ADAU1966. As an example, an
MCLK of 8.192 MHz and a setting of b00 yield an MCLKO of
(8.192/2) = 4.096 MHz. Alternatively, an MCLK of 36.864 MHz
and a setting of b01 yield an MCLKO frequency of (36.864/3) =
12.288 MHz. The setting b11 shuts off the MCLKO pin.
Table 11. DAC Power vs. Performance
Register Setting Best Performance Good Performance Low Power Lowest Power
Total AVDD Current 84 mA 75 mA 66 mA 56 mA
SNR Reference −0.2 dB −1.5 dB −14.2 dB
THD + N (−1 dBFS signal) Reference −1.8 dB −3.0 dB −5.8 dB
ADAU1966 Data Sheet
Rev. E | Page 16 of 52
After the PU/RST pin has been asserted high, the PLL_CLK_
CTRLx registers (Register 0x00 and Register 0x01) can be
programmed. The on-chip phase-locked loop (PLL) can be
selected to use the clock appearing at the MCLKI/XTALI pin at
a frequency of 256, 384, 512, or 768 times the sample rate (fS),
referenced to the 48 kHz mode from the master clock select
(MCS) setting, as described in Table 12. In 96 kHz mode, the
master clock frequency stays at the same absolute frequency;
therefore, the actual multiplication rate is divided by 2. In
192 kHz mode, the actual multiplication rate is divided by 4.
For example, if the ADAU1966 is programmed in 256 × fS mode,
the frequency of the master clock input is 256 × 48 kHz =
12.288 MHz. If the ADAU1966 is then switched to 96 kHz
operation (by writing to DAC_CTRL0 [2:1]), the frequency of
the master clock remains at 12.288 MHz, which is 128 × fS in this
example. In 192 kHz mode, MCS becomes 64 × fS.
The internal clock for the digital core varies by mode: 512 × fS
(48 kHz mode), 256 × fS (96 kHz mode), or 128 × fS (192 kHz
mode). By default, the on-board PLL generates this internal
master clock from an external clock.
The PLL must be powered and stable before the ADAU1966 is
used as a source for quality audio. The PLL is enabled by reset
and does not require writing to the I2C or SPI port for normal
operation.
With the PLL enabled, the performance of the ADAU1966 is not
affected by jitter as high as a 300 ps rms time interval error
(TIE). If the internal PLL is not used, it is best to use an independ-
ent crystal oscillator to generate the master clock.
If the ADAU1966 is to be used in direct MCLK mode, the PLL can
be powered down in the PDN_THRMSENS_CTRL_1 register.
For direct MCLK mode, a 512 × fS (referenced to 48 kHz mode)
master clock must be used as MCLK, and the CLK_SEL bit in
the PLL_CLK_CTRL1 register must be set to b1.
The ADAU1966 PLL can also be programmed to run from an
external LRCLK. When the PLLIN bits in the PLL_CLK_CTRL0
register are set to 01 and the appropriate loop filter is connected
to the LF pin (see Figure 8), the ADAU1966 PLL generates all
of the necessary internal clocks for operation with no external
MCLK. This mode reduces the number of high frequency
signals in the design, reducing EMI emissions.
It is possible to further reduce EMI emissions of the circuit by
using the internal DBCLK generation setting of the BCLK_GEN
bit in the DAC_CTRL1 register. With the BCLK_GEN bit set to
b1 (internal) and the SAI_MS bit set to b0 (slave), the ADAU1966
generate its own DBCLK; this works with the PLL input set to
either MCLKI/XTALI or DLRCLK. DLRCLK is the only required
clock in DLRCLK PLL mode.
POWER-UP AND RST
Power sequencing for the ADAU1966 starts with AVDD and
IOVDD, followed by DVDD. It is very important that AVDD be
settled at a regulated voltage and that IOVDD be within 10% of
regulated voltage before applying DVDD. When using the
ADAU1966 internal regulator, this timing occurs by default.
To guarantee proper startup, the PU/RST pin must be pulled
low by an external resistor and then driven high after the power
supplies stabilize. The PU/RST can also be pulled high using a
simple RC network.
Driving the PU/RST pin low puts the device into a very low power
state (<3 µA). All functionality of the ADAU1966 is disabled until
the PU/RST pin is asserted high. Once this pin is asserted high,
the ADAU1966 requires 300 ms to stabilize. The MMUTE bit in
the DAC_CTRL0 register must be toggled for operation.
The PUP bit in the PLL_CLK_CTRL0 register can be used to
power down the ADAU1966. Engaging the master power-down
puts the ADAU1966 in an idle state while maintaining the set-
tings of all registers. Additionally, the power-down bits in the
PDN_THRMSENS_CTRL1 register (TS_PDN, PLL_PDN, and
VREG_PDN) can be used to power down individual sections of
the ADAU1966.
The SOFT_RST bit in the PLL_CLK_CTRL0 register sets all of
the control registers to their default settings while maintaining
the internal clocks in default mode. The SOFT_RST bit does
not power down the analog outputs; toggling this bit does not
cause audible popping sounds at the differential analog outputs.
Proper startup of the ADAU1966 proceeds as follows:
1. Apply power to the ADAU1966 as described previously.
2. Assert the PU/RST pin high after power supplies have
stabilized.
3. Set the PUP bit to b1.
4. Program all necessary registers for the desired settings.
5. Set the MMUTE bit to b0 to unmute all channels.
Data Sheet ADAU1966
Rev. E | Page 17 of 52
Table 12. MCS and fS Modes
Master Clock Select (MCS), PLL_CLK_CTRL0[2:1]
Sample Rate Select (FS) Setting 0, b00 Setting 1, b01 Setting 2, b10 Setting 3, b11
DAC_CTRL0[2:1] Ratio MCLK (MHz) Ratio MCLK Ratio MCLK Ratio MCLK
32 kHz, b00 256 × fS 8.192 384 × fS 12.288 512 × fS 16.384 768 × fS 24.576
44.1 kHz, b00 256 × fS 11.2896 384 × fS 16.9344 512 × fS 22.5792 768 × fS 33.8688
48 kHz, b00 256 × fS 12.288 384 × fS 18.432 512 × fS 24.576 768 × fS 36.864
64 kHz, b01 128 × fS 8.192 192 × fS 12.288 256 × fS 16.384 384 × fS 24.576
88.2 kHz, b01 128 × fS 11.2896 192 × fS 16.9344 256 × fS 22.5792 384 × fS 33.8688
96 kHz, b01 128 × fS 12.288 192 × fS 18.432 256 × fS 24.576 384 × fS 36.864
128 kHz, b10 or b11 64 × fS 8.192 96 × fS 12.288 128 × fS 16.384 192 × fS 24.576
176.4 kHz, b10 or b11 64 × fS 11.2896 96 × fS 16.9344 128 × fS 22.5792 192 × fS 33.8688
192 kHz, b10 or b11 64 × fS 12.288 96 × fS 18.432 128 × fS 24.576 192 × fS 36.864
STANDALONE MODE
The ADAU1966 can operate without a typical I2C or SPI
connection to a microcontroller. This standalone mode is
made available by setting the SA_MODE (Pin 46) to high
(IOVDD). All registers are set to default except the options
shown in Table 13.
Table 13. SA_MODE Settings
Pin No. Setting Function
42 0 Master mode serial audio interface (SAI)
1 Slave mode SAI
43 0 MCLK = 256 × fS, PLL on
1 MCLK = 384 × fS, PLL on
44 0 Must be set to 0
45 0 I2S SAI format
1 TDM modes, determined by Pin 31 and Pin 32
When both SA_MODE and Pin 45 are set high, TDM mode is
selected. Table 14 shows the available TDM modes; these modes
are set by connecting Pin 31 (DSDATA8) and Pin 32 (DSDATA7)
to GND or IOVDD.
Table 14. TDM Modes
Pin No. Setting Function
32:31 00 TDM4—DLRCLK pulse
01 TDM8—DLRCLK pulse
10 TDM16—DLRCLK pulse
11 TDM8—DLRCLK 50% duty cycle
When the ADAU1966 is powered up in SA_MODE and the
PU/RST pin is asserted high, the MCLKO pin provides a buff-
ered version of the MCLKI pin, whether the source is a crystal
or an active oscillator.
I2C CONTROL PORT
The ADAU1966 has an I2C-compatible control port that permits
programming and reading back of the internal control registers for
the DACs and clock system. The I2C interface of the ADAU1966 is
a 2-wire interface consisting of a clock line, SCL, and a data line,
SDA. SDA is bidirectional, and the ADAU1966 drives SDA
either to acknowledge the master (ACK) or to send data during
a read operation. The SDA pin for the I2C port is an open-drain
collector and requires a 2 k pull-up resistor. A write or read
access occurs when the SDA line is pulled low while the SCL
line is high, indicated by a start in Figure 12 and Figure 13. SDA
is only allowed to change when SCL is low except when a start or
stop condition occurs, as shown in Figure 12 and Figure 13. The
first eight bits of the data-word consist of the device address and
the R/W bit. The device address consists of an internal built-in
address (0x04) and two address pins, ADDR1 and ADDR0. The
two address bits allow four ADAU1966 devices to be used in a
system. Initiating a write operation to the ADAU1966 involves
sending a start condition and then sending the device address
with the R/W bit set low. The ADAU1966 responds by issuing
an acknowledge to indicate that it has been addressed. The user
then sends a second frame telling the ADAU1966 which register
is required to be written. Another acknowledge is issued by the
ADAU1966. Finally, the user can send another frame with the
eight data bits required to be written to the register. A third
acknowledge is issued by the ADAU1966 after which the user
can send a stop condition to complete the data transfer.
A read operation requires that the user first write to the
ADAU1966 to point to the correct register and then read the
data. This is achieved by sending a start condition followed by
the device address frame, with the R/W bit low, and then the
register address frame. Following the acknowledge from the
ADAU1966, the user must issue a repeated start condition. The
next frame is the device address with the R/W bit set high. On
the next frame, the ADAU1966 outputs the register data on the
SDA line. A stop condition completes the read operation.
Table 15. I2C Addresses
ADDR1 ADDR0 Slave Address
0 0 0x04
0 1 0x24
1 0 0x44
1 1 0x64
ADAU1966 Data Sheet
Rev. E | Page 18 of 52
AD0AD1 00100R/W 00000 011
SCL
SD
A
SCL
(CONTINUED)
SDA
(CONTINUED)
START BY
MASTER (S)
ACK. BY
ADAU1966 (AS)
ACK. BY
ADAU1966 (AS)
ACK. BY
ADAU1966 (AS)
STOP BY
MASTER (P)
FRAME 1
CHIP ADDRESS BYTE
FRAME 2
REGISTER ADDRESS BYTE
FRAME 3
DATA BYTE TO ADAU1966
D7 D6 D5 D4 D3 D2 D1 D0
09434-012
Figure 12. I2C Write Format
SCL
FRAME 4
REGISTER DATA
FRAME 3
CHIP ADDRESS BYTE
ACK. BY
MASTER (AM)
ACK. BY
ADAU1966 (AS)
REPEATED START
BY MASTER (S)
STOP BY
MASTER (P)
SCL
(CONTINUED)
SDA
(CONTINUED)
START BY
MASTER (S)
ACK. BY
ADAU1966 (AS)
ACK. BY
ADAU1966 (AS)
FRAME 1
CHIP ADDRESS BYTE
FRAME 2
REGISTER ADDRESS BYTE
00100R/W 00000 011
AD0AD1
AD0AD1
SDA
D701000 D6 D5 D4 D3 D2 D1 D0R/W
09434-013
Figure 13. I2C Read Format
Table 16. I2C Abbreviations
Abbreviation Condition
S Start bit
P Stop bit
AM Acknowledge by master
AS Acknowledge by slave
Table 17. Single Word I2C Write
S Chip Address, R/W = 0 AS Register Address AS Data-Word AS P
Table 18. Burst Mode I2C Write
S Chip Address, R/W = 0 AS Register Address AS Data-Word 1 AS Data-Word 2 AS Data-Word N AS P
Table 19. Single Word I2C Read
S Chip Address, R/W = 0 AS Register Address AS S
Chip Address, R/W = 1 AS Data-Word AM P
Table 20. Burst Mode I2C Read
S Chip Address,
R/W = 0
AS Register
Address
AS S Chip Address,
R/W = 1
AS Data-
Word 1
AM Data-
Word 2
AM Data-
Word N
AM P
Data Sheet ADAU1966
Rev. E | Page 19 of 52
SERIAL CONTROL PORT: SPI CONTROL MODE
The ADAU1966 has an SPI control port that permits program-
ming and readback of the internal control registers for the
DACs and clock system. A standalone mode is also available for
operation without serial control; it is configured at reset using the
SA_MODE pin. See the Standalone Mode section for details
about SA_MODE.
By default, the ADAU1966 is in I2C mode; however, SPI control
mode can be entered by pulling CLATCH low three times. To
enter SPI control mode, perform three dummy writes to the SPI
port (the ADAU1966 does not acknowledge these three writes).
Beginning with the fourth SPI write, data can be written to or
read from the IC. The ADAU1966 can exit SPI control mode
only by a full reset initiated by power cycling the device.
The SPI control port of the ADAU1966 is a 4-wire serial control
port. The format is a 24-bit wide data-word. The serial bit clock
and latch can be completely asynchronous to the sample rate of
the DACs. Table 21 shows the format of the SPI address byte.
The first byte is the global address with a read/write bit. For the
ADAU1966, the address is Address 0x06, shifted left one bit due
to the R/W bit. The second byte is the ADAU1966 register
address, and the third byte is the data, as shown in Figure 15
and Figure 16.
Table 21. SPI Address and R/W Byte Format
Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7
0 0 0 0 1 1 0 R/W
When reading data from the ADAU1966, the COUT pin is
tristated until the third byte, at which point it drives the data
out (see Figure 16). The COUT pin is tristated at all other times,
allowing the pin to be bussed with other devices, see Figure 17
for the timing requirements.
Chip Address R/W
The LSB of the first byte of a SPI transaction is an R/W bit. This
bit determines whether the communication is a read (Logic
Level 1) or a write (Logic Level 0); see Table 21 for this format.
SPI Burst Read/Write
The SPI port is capable of performing burst reads or writes.
This is accomplished by sending the chip address byte with the
R/W bit, followed by the first register address that needs to be
read or written to. Then, as long as the CLATCH pin is held
low, registers can be sequentially read or written by continuing
to send out clock pulses into the CCLK pin. A very efficient
procedure to initialize the ADAU1966 is accomplished by
1. Sending out the address byte with the R/W bit low (write).
2. Sending out the address of the first register.
3. Sending out all the register byte values.
4. Toggling the CLATCH pin.
5. Performing a burst read to verify the register writes.
0123456789101112131415161718192021222324252627
C
LATCH
CCLK
CDATA
09434-114
Figure 14. SPI Mode Initial Sequence
012345678 910111213
14 15 16 17 18 19 20 21 22 23 24 25
CLATCH
CCLK
CDATA REGISTER ADDRESS BYTE
DEVICE ADDRESS (7 BITS) R/W
DATA BYTE
09434-115
Figure 15. SPI Write to ADAU1966 Clocking
012345678 910111213
14 15 16 17 18 19 20 21 22 23 24 25
CLATCH
CCLK
CDATA
COUT
REGISTER ADDRESS BYTE
DEVICE ADDRESS (7 BITS)
R/W
DATA BYTE
DATA BYTE FROM ADAU1966
09434-116
Figure 16. SPI Read from the ADAU1966 Clocking
ADAU1966 Data Sheet
Rev. E | Page 20 of 52
D0
D0
D8
D8
D22D23 D9
D9
C
LATCH
CCLK
CDATA
COUT
t
CCH
t
CCL
t
CDS
t
CDH
t
CLS
t
CCP
t
CLH
t
COTS
t
COD
t
COE
09434-117
Figure 17. Format of the SPI Signal
POWER SUPPLY AND VOLTAGE REFERENCE
The ADAU1966 is designed for 5 V analog and 2.5 V digital
supplies. To minimize noise pickup, bypass the power supply
pins with 100 nF ceramic chip capacitors placed as close to the
pins as possible. Also, provide a bulk aluminum electrolytic
capacitor of at least 22 F for each rail on the same PC board as
the codec. It is important that the analog supply be as clean as
possible.
The ADAU1966 includes a 2.5 V regulator driver that requires
only an external pass transistor and bypass capacitors to make a
2.5 V regulator from a 5 V supply. The VSUPPLY and VSENSE
pins must be decoupled with no more than 10 µF, in parallel
with 100 nF high frequency bypassing. If the regulator driver is
not used, connect VSUPPLY and VDRIVE to GND and leave
VSENSE unconnected.
All digital inputs are compatible with TTL and CMOS levels.
All outputs are driven from the 3.3 V or 5 V IOVDD supply and
are compatible with TTL and 3.3 V CMOS levels.
The temperature sensor internal voltage reference (VTS_REF) is
brought out on the TS_REF pin and must be bypassed as close
as possible to the chip with a parallel combination of 10 F and
100 nF.
The internal band gap reference can be disabled in the
PLL_CLK_CTRL1 register by setting VREF_EN to 0; the CM
pin can be then be driven from an external source. This can be
used to scale the DAC output to the clipping level of a power
amplifier based on its power supply voltage.
The CM pin is the internal common-mode reference. It must
be bypassed as close as possible to the chip, with a parallel
combination of 10 F and 100 nF. This voltage can be used to
bias external op amps to the common-mode voltage of the analog
input and output signal pins. It is recommended that the CM
pin be isolated from the external circuitry by using a high quality
buffer to provide a quiet, low impedance source for the external
circuitry. Use of a quiet op amp is critical, because any noise
added to the reference voltage is injected into the signal path.
SERIAL DATA PORTS—DATA FORMAT
The 16 DAC channels use a common serial bit clock (DBCLK)
and a common left-right framing clock (DLRCLK) in the serial
data port. The clock signals are all synchronous with the sample
rate. The normal stereo serial modes are shown in Figure 18.
The DAC serial data mode defaults to I2S (1 BCLK delay) upon
power-up and reset. The ports can also be programmed for left-
justified and right-justified (24-bit and 16-bit) operation using
DAC_CTRL0[7:6]. Stereo and TDM modes can be selected using
DAC_CTRL0[5:3]. The polarity of the DLRCLK pin is pro-
grammable according to the DAC_CTRL1[5] bit, allowing
for easy channel swapping.
The DBCLK pin can latch on the rising or falling edge of the
clock signal. DAC_CTRL1[1] selects the active edge.
The serial ports are programmable as the clock masters according
to the DAC_CTRL1[0] bit. By default, the serial port is in slave
mode.
TIME-DIVISION MULTIPLEXED (TDM) MODES
The ADAU1966 serial ports also have several different TDM
serial data modes. The ADAU1966 can support a single data line
TDM16, a dual data line (TDM8), a quad data line (TDM4), or
eight data lines (TDM2). The DLRCLK can be operated in both
single-cycle pulse mode and a 50% duty cycle mode. Both
16 DBCLKs or 32 DBCLKs per channel are selectable for
each mode.
The I/O pins of the serial ports are defined according to the
serial mode that is selected. For a detailed description of the
function of each pin in TDM and stereo modes, see Table 22.
TEMPERATURE SENSOR
The ADAU1966 has an on-board temperature sensor that allows
the user to read the temperature of the silicon inside the device.
The temperature sensor readout has a range of −60°C to +140°C
in 1°C steps. The PDN_THRMSENS_CTRL_1 register controls
the settings of the sensor. The temperature sensor is powered on
by default and can be shut off by setting the TS_PDN[2] bit to
b1 in PDN_THRMSENS_CTRL_1. The temperature sensor can
be run in either continuous operation or one-shot mode. The
temperature sensor conversion mode is modified using Bit 5,
THRM_MODE; the default is THRM_MODE = 1, one-shot
Data Sheet ADAU1966
Rev. E | Page 21 of 52
mode. In one-shot mode, writing a 0 followed by writing a 1 to
Bit 4, THRM_GO, results in a single reset and temperature
conversion, placing the resulting temperature data in the
THRM_TEMP_STAT register. In continuous operation mode,
the data conversion takes place at a rate set by Bits[7:6], THRM_
RATE, with a range of 0.5 sec to 4 sec between samples. Faster
rates are possible using the one-shot mode.
Once a temperature conversion is placed in the
THRM_TEMP_STAT register, the data can be translated into
degrees Celsius (°C) using the following steps:
1. Convert the binary or hexadecimal data read from
THRM_TEMP_STAT into decimal form.
2. Subtract 60 from the converted THRM_TEMP_STAT data;
this is the temperature of the silicon in °C.
DLRCLK
BCLK
DSDATAx
DLRCLK
DBCLK
DSDATAx
DLRCLK
DBCLK
DSDATAx LSB LSB
LSB
LSB
LSB LSB
LEFT CHANNEL RIGHT CHANNEL
RIGHT CHANNEL
LEFT CHANNEL
LEFT CHANNEL RIGHT CHANNEL
MSB MSB
MSB
MSB
MSB MSB
RIGHT-JUSTIFIED MODE—SELECT NUMBER OF BITS PER CHANNEL: SAI = 0, SDATA_FMT = 2 OR 3
TDM MODE—16 BITS TO 24 BITS PER CHANNEL: SAI = 1, 2, 3, OR 4
I
2
S-JUSTIFIED MODE—16 BITS TO 24 BITS PER CHANNEL: SAI = 0, SDATA_FMT = 0
LEFT-JUSTIFIED MODE—16 BITS TO 24 BITS PER CHANNEL: SAI = 0, SDATA_FMT = 1
DLRCLK
DBCLK
DSDATAx LSB LSB
MSB MSB
1/
f
S
09434-118
Figure 18. Stereo and TDM Serial Audio Modes
DBCLK
DLRCLK
DSDATAx
LEFT-JUSTIFIED
MODE
DSDATAx
RIGHT-JUSTIFIED
MODE
DSDATAx
I2S-JUSTIFIED
MODE
tDLH
tDBH
tDBL
tDLS
tDDS
MSB
MSB
MSB LSB
MSB – 1
tDDH
tDDS
tDDH
tDDS
tDDH tDDH
tDDS
09434-016
Figure 19. DAC Serial Timing
ADAU1966 Data Sheet
Rev. E | Page 22 of 52
Table 22. Pin Function Changes in Different Serial Audio Interface Modes
Signal
Stereo Modes
(SAI = 0 or 1)
TDM4 Mode
(SAI = 2)
TDM8 Mode
(SAI = 3)
TDM16 Mode
(SAI = 4)
DSDATA1 Channel 1/Channel 2
data in
Channel 1 to Channel 4
data in
Channel 1 to Channel 8
data in
Channel 1 to Channel 16
data in
DSDATA2 Channel 3/Channel 4
data in
Channel 5 to Channel 8
data in
Channel 9 to Channel 16
data in
Not used
DSDATA3 Channel 5/Channel 6
data in
Channel 9 to Channel 12
data in
Not used Not used
DSDATA4 Channel 7/Channel 8
data in
Channel 13 to Channel 16
data in
Not used Not used
DSDATA5 Channel 9/Channel 10
data in
Not used Not used Not used
DSDATA6 Channel 11/Channel 12
data in
Not used Not Used Not used
DSDATA7 Channel 13/Channel 14
data in
Not used Not used Not used
DSDATA8 Channel 15/Channel 16
data in
Not used Not used Not used
DLRCLK DLRCLK in/DLRCLK out TDM frame sync in/
TDM frame sync out
TDM frame sync in/
TDM frame sync out
TDM frame sync in/
TDM frame sync out
DBCLK DBCLK in/DBCLK out TDM DBCLK in/TDM
DBCLK out
TDM DBCLK in/TDM
DBCLK out
TDM DBCLK in/
TDM DBCLK out
Maximum Sample Rate 192 kHz 192 kHz 96 kHz 48 kHz
ADDITIONAL MODES
The ADAU1966 offers several additional modes for board level
design enhancements. To reduce the EMI in board level design,
serial data can be transmitted without an explicit DBCLK. See
Figure 20 for an example of a DAC TDM data transmission mode
that does not require a high speed DBCLK or an external MCLK.
This configuration is applicable when the ADAU1966 master
clock is generated by the PLL with the DLRCLK as the PLL
reference frequency.
To relax the requirement for the setup time of the ADAU1966 in
cases of high speed TDM data transmission, the ADAU1966 can
latch in the data using the falling edge of DBCLK; see the
BCLK_EDGE bit in the DAC_CTRL1 register. This effectively
dedicates the entire BCLK period to the setup time. This mode
is useful in cases where the source has a large delay time in the
serial data driver. Figure 21 shows this inverted DBCLK mode
of data transmission.
Data Sheet ADAU1966
Rev. E | Page 23 of 52
DLRCLK
INTERNAL
DBCLK
DSDATAx
DLRCLK
INTERNAL
DBCLK
T
DM-DSDATAx
32 BITS
09434-017
Figure 20. Serial DAC Data Transmission in TDM Format Without DBCLK
(Applicable Only If PLL Locks to DLRCLK)
DLRCLK
DBCLK
DSDATAx
DATA MUST BE VALID
AT THIS BCLK EDGE
MSB
09434-018
Figure 21. Inverted DBCLK Mode in DAC Serial Data Transmission
(Applicable in Stereo and TDM, Useful for High Frequency TDM Transmission)
ADAU1966 Data Sheet
Rev. E | Page 24 of 52
REGISTER SUMMARY
Table 23. ADAU1966 Register Summary
Reg Name Bits Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Reset RW
0x00 PLL_CLK_CTRL0 [7:0] PLLIN XTAL_SET SOFT_RST MCS PUP 0x00 RW
0x01 PLL_CLK_CTRL1 [7:0] LOPWR_MODE MCLKO_SEL PLL_MUTE PLL_LOCK VREF_EN CLK_SEL 0x2A RW
0x02 PDN_THRMSENS_CTRL_1 [7:0] THRM_RATE THRM_MODE THRM_GO RESERVED TS_PDN PLL_PDN VREG_PDN 0xA0 RW
0x03 PDN_CTRL2 [7:0] DAC08_PDN DAC07_PDN DAC06_PDN DAC05_PDN DAC04_PDN DAC03_PDN DAC02_PDN DAC01_PDN 0x00 RW
0x04 PDN_CTRL3 [7:0] DAC16_PDN DAC15_PDN DAC14_PDN DAC13_PDN DAC12_PDN DAC11_PDN DAC10_PDN DAC09_PDN 0x00 RW
0x05 THRM_TEMP_STAT [7:0] TEMP 0x00 R
0x06 DAC_CTRL0 [7:0] SDATA_FMT SAI FS MMUTE 0x01 RW
0x07 DAC_CTRL1 [7:0] BCLK_GEN LRCLK_MODE LRCLK_POL SAI_MSB RESERVED BCLK_RATE BCLK_EDGE SAI_MS 0x00 RW
0x08 DAC_CTRL2 [7:0] RESERVED VREG_CTRL BCLK_TDMC DAC_POL AUTO_MUTE_EN DAC_OSR DE_EMP_EN 0x06 RW
0x09 DAC_MUTE1 [7:0] DAC08_MUTE DAC07_MUTE DAC06_MUTE DAC05_MUTE DAC04_MUTE DAC03_MUTE DAC02_MUTE DAC01_MUTE 0x00 RW
0x0A DAC_MUTE2 [7:0] DAC16_MUTE DAC15_MUTE DAC14_MUTE DAC13_MUTE DAC12_MUTE DAC11_MUTE DAC10_MUTE DAC09_MUTE 0x00 RW
0x0B DACMSTR_VOL [7:0] DACMSTR_VOL 0x00 RW
0x0C DAC01_VOL [7:0] DAC01_VOL 0x00 RW
0x0D DAC02_VOL [7:0] DAC02_VOL 0x00 RW
0x0E DAC03_VOL [7:0] DAC03_VOL 0x00 RW
0x0F DAC04_VOL [7:0] DAC04_VOL 0x00 RW
0x10 DAC05_VOL [7:0] DAC05_VOL 0x00 RW
0x11 DAC06_VOL [7:0] DAC06_VOL 0x00 RW
0x12 DAC07_VOL [7:0] DAC07_VOL 0x00 RW
0x13 DAC08_VOL [7:0] DAC08_VOL 0x00 RW
0x14 DAC09_VOL [7:0] DAC09_VOL 0x00 RW
0x15 DAC10_VOL [7:0] DAC10_VOL 0x00 RW
0x16 DAC11_VOL [7:0] DAC11_VOL 0x00 RW
0x17 DAC12_VOL [7:0] DAC12_VOL 0x00 RW
0x18 DAC13_VOL [7:0] DAC13_VOL 0x00 RW
0x19 DAC14_VOL [7:0] DAC14_VOL 0x00 RW
0x1A DAC15_VOL [7:0] DAC15_VOL 0x00 RW
0x1B DAC16_VOL [7:0] DAC16_VOL 0x00 RW
0x1C CM_SEL_PAD_STRGTH [7:0] RESERVED RESERVED PAD_DRV RESERVED RESERVED RESERVED RESERVED RESERVED 0x02 RW
0x1D DAC_POWER1 [7:0] DAC04_POWER DAC03_POWER DAC02_POWER DAC01_POWER 0xAA RW
0x1E DAC_POWER2 [7:0] DAC08_POWER DAC07_POWER DAC06_POWER DAC05_POWER 0xAA RW
0x1F DAC_POWER3 [7:0] DAC12_POWER DAC11_POWER DAC10_POWER DAC09_POWER 0xAA RW
0x20 DAC_POWER4 [7:0] DAC16_POWER DAC15_POWER DAC14_POWER DAC13_POWER 0xAA RW
Data Sheet ADAU1966
Rev. E | Page 25 of 52
REGISTER DETAILS
PLL AND CLOCK CONTROL 0 REGISTER
Address: 0x00, Reset: 0x00, Name: PLL_CLK_CTRL0
Table 24. Bit Descriptions for PLL_CLK_CTRL0
Bits Bit Name Settings Description Reset Access
[7:6] PLLIN PLL Input Select. Selects between MCLKI/XTALI or DLRCLK as the input to
the PLL.
0x0 RW
00 MCLKI or XTALI
01 DLRCLK
10 Reserved
11 Reserved
[5:4] XTAL_SET XTAL Oscillator Setting. XTALO pin status. 0x0 RW
00 XTAL Oscillator Enabled
01 Reserved
10 Reserved
11 XTALO Off
3 SOFT_RST Software Reset Control. This bit resets all circuitry inside the IC, except
I2C/SPI communications. All control registers are reset to default values,
except Register 0x00 and Register 0x01. The PLL_CLK_CTRLx registers do
not change state.
0x0 RW
0 Normal Operation
1 Device in Reset
[2:1] MCS Master Clock Select. MCLKI/XTALI pin functionality (PLL active), master
clock rate setting. The following values are for the fS rate window from
32 kHz to 48 kHz. See Table 12 for details when using other fS selections.
0x0 RW
00 256 × fS MCLK (44.1 kHz or 48 kHz)
01 384 × fS MCLK (44.1 kHz or 48 kHz)
10 512 × fS MCLK (44.1 kHz or 48 kHz)
11 768 × fS MCLK (44.1 kHz or 48 kHz)
0 PUP Master Power-Up Control. This bit must be set to 1 as the first register
write to power up the IC.
0x0 RW
0 Master Power-Down
1 Master Power-Up
ADAU1966 Data Sheet
Rev. E | Page 26 of 52
PLL AND CLOCK CONTROL 1 REGISTER
Address: 0x01, Reset: 0x2A, Name: PLL_CLK_CTRL1
0
B7
0
B6
1
B5
0
B4
1
B3
0
B2
1
B1
0
B0
[0] CLK_SEL
DAC Clock Select
0: MCLK from PLL
1: MCLK from MCLKI or XTALI
[1] VREF_EN
Internal Voltage Reference Enable
0: Disabled
1: Enabled
[2] PLL_LOCK
PLL Lock Indicator
0: PLL Not Locked
1: PLL Locked
[3] PLL_MUTE
PLL Automute Enable/Lock
0: No DAC Automute
1: DAC Automute on PLL Unlock
[7:6] LOPWR_MODE
Global Power/Performance Adjust
00: I
2
C Register Settings
01: Reserved
10: Lower Power
11: Lowest Power
[5:4] MCLKO_SEL
MCLK Output Frequency
00: MCLKO = 4 MHz to 6 MHz scaled by f
s
01: MCLKO = 8 MHz to 12 MHz scaled by f
s
10: MCLKO = Buffered MCLKI
11: MCLKO Pin Disabled
Table 25. Bit Descriptions for PLL_CLK_CTRL1
Bits Bit Name Settings Description Reset Access
[7:6] LOPWR_MODE Global Power/Performance Adjust. These bits adjust the power
consumption and performance level for all 16 DAC channels at once. See
the Digital-to-Analog Converters (DACs) section for more details.
0x0 RW
00 I2C Register Settings
01 Reserved
10 Low Power
11 Lowest Power
[5:4] MCLKO_SEL MCLK Output Frequency. Frequency selection for MCLKO pin. See the
Clock Signals section for more details.
0x2 RW
00 MCLKO = 4 MHz to 6 MHz scaled by fS
01 MCLKO = 8 MHz to 12 MHz scaled by fS
10 MCLKO = Buffered MCLKI
11 MCLKO Pin Disabled
3 PLL_MUTE PLL Automute Enable/Lock. This bit enables the PLL lock automute
function.
0x1 RW
0 No DAC Automute
1 DAC Automute on PLL Unlock
2 PLL_LOCK PLL Lock Indicator. 0x0 R
0 PLL Not Locked
1 PLL Locked
1 VREF_EN Internal Voltage Reference Enable. The internal voltage reference powers
the common mode for the ADAU1966. Disabling this bit allows the user to
drive the CM pin with an outside voltage source.
0x1 RW
0 Disabled
1 Enabled
0 CLK_SEL DAC Clock Select. Selects between PLL or Direct MCLK mode. 0x0 RW
0 MCLK from PLL
1 MCLK from MCLKI or XTALI
Data Sheet ADAU1966
Rev. E | Page 27 of 52
BLOCK POWER-DOWN AND THERMAL SENSOR CONTROL 1 REGISTER
Address: 0x02, Reset: 0xA0, Name: PDN_THRMSENS_CTRL_1
Table 26. Bit Descriptions for PDN_THRMSENS_CTRL_1
Bits Bit Name Settings Description Reset Access
[7:6] THRM_RATE Conversion Time Interval. When THERM_MODE = 0, the THERM_RATE bits
control the time interval between temperature conversions.
0x2 RW
00 4 sec/Conversion
01 0.5 sec/Conversion
10 1 sec/Conversion
11 2 sec/Conversion
5 THRM_MODE Continuous vs. One-Shot. Determines whether the temperature
conversions occur continuously or only when commanded. To perform
one-shot temperature conversions, set this bit to 1.
0x1 RW
0 Continuous Operation
1 One-Shot Mode
4 THRM_GO One-Shot Conversion Mode. When in one-shot conversion mode,
THERM_MODE = 1, the THERM_GO bit must be set to 0 followed by a
write of 1. This sequence results in a single temperature conversion. The
temperature data is available 120 ms after writing a 1 to this bit.
0x0 RW
0 Reset
1 Convert temperature
2 TS_PDN Temperature Sensor Power-Down. 0x0 RW
0 Temperature Sensor On
1 Temperature Sensor Power-Down
1 PLL_PDN PLL Power-Down. 0x0 RW
0 PLL Normal Operation
1 PLL Power-Down
0 VREG_PDN Voltage Regulator Power-Down. 0x0 RW
0 Voltage Regulator Normal Operation
1 Voltage Regulator Power-Down
ADAU1966 Data Sheet
Rev. E | Page 28 of 52
POWER-DOWN CONTROL 2 REGISTER
Address: 0x03, Reset: 0x00, Name: PDN_CTRL2
Table 27. Bit Descriptions for PDN_CTRL2
Bits Bit Name Settings Description Reset Access
7 DAC08_PDN Channel 8 Power-Down. 0x0 RW
0 Normal Operation
1 Power-Down Channel 8
6 DAC07_PDN Channel 7 Power-Down. 0x0 RW
0 Normal Operation
1 Power-Down Channel 7
5 DAC06_PDN Channel 6 Power-Down. 0x0 RW
0 Normal Operation
1 Power-Down Channel 6
4 DAC05_PDN Channel 5 Power-Down. 0x0 RW
0 Normal Operation
1 Power-Down Channel 5
3 DAC04_PDN Channel 4 Power-Down. 0x0 RW
0 Normal Operation
1 Power-Down Channel 4
2 DAC03_PDN Channel 3 Power-Down. 0x0 RW
0 Normal Operation
1 Power-Down Channel 2
1 DAC02_PDN Channel 2 Power-Down. 0x0 RW
0 Normal Operation
1 Power-Down Channel 2
0 DAC01_PDN Channel 1 Power-Down. 0x0 RW
0 Normal Operation
1 Power-Down Channel 1
Data Sheet ADAU1966
Rev. E | Page 29 of 52
POWER-DOWN CONTROL 3 REGISTER
Address: 0x04, Reset: 0x00, Name: PDN_CTRL3
Table 28. Bit Descriptions for PDN_CTRL3
Bits Bit Name Settings Description Reset Access
7 DAC16_PDN Channel 16 Power-Down. 0x0 RW
0 Normal Operation
1 Power-Down Channel 16
6 DAC15_PDN Channel 15 Power-Down. 0x0 RW
0 Normal Operation
1 Power-Down Channel 15
5 DAC14_PDN Channel 14 Power-Down. 0x0 RW
0 Normal Operation
1 Power-Down Channel 14
4 DAC13_PDN Channel 13 Power-Down. 0x0 RW
0 Normal Operation
1 Power-Down Channel 13
3 DAC12_PDN Channel 12 Power-Down. 0x0 RW
0 Normal Operation
1 Power-Down Channel 12
2 DAC11_PDN Channel 11 Power-Down. 0x0 RW
0 Normal Operation
1 Power-Down Channel 11
1 DAC10_PDN Channel 10 Power-Down. 0x0 RW
0 Normal Operation
1 Power-Down Channel 10
0 DAC09_PDN Channel 9 Power-Down. 0x0 RW
0 Normal Operation
1 Power-Down Channel 9
ADAU1966 Data Sheet
Rev. E | Page 30 of 52
THERMAL SENSOR TEMPERATURE READOUT REGISTER
Address: 0x05, Reset: 0x00, Name: THRM_TEMP_STAT
Thermal Sensor Temperature Readout. −60°C to +140°C range, 1°C step size. Read this register and convert the hexadecimal or binary
TEMP value into decimal form; then subtract 60 from this decimal conversion. The result is the temperature in degrees Celsius.
Table 29. Bit Descriptions for THRM_TEMP_STAT
Bits Bit Name Settings Description Reset Access
[7:0] TEMP Thermal Sensor Temperature Readout. −60°C to +140°C range, 1°C step
size. To convert TEMP code to temperature, use the equation (TEMP − 60).
0x00 R
Data Sheet ADAU1966
Rev. E | Page 31 of 52
DAC CONTROL 0 REGISTER
Address: 0x06, Reset: 0x01, Name: DAC_CTRL0
0
B7
0
B6
0
B5
0
B4
0
B3
0
B2
0
B1
1
B0
[7:6] SDATA_FMT
SDATA Format
00: I
2
S—1-BCLK Cycle Delay
01: Left-Justified—0-BCLK Cycle Delay
10: Right-Justified 24-bit Data
8-BCLK Cycle Delay
11: Right-Justified 16-bit Data
16-BCLK Cycle Delay
[5:3] SAI
Serial Audio Interface
000: Stereo (I
2
S, LJ, RJ)
001: TDM2—Octal Line
010: TDM4—Quad Line
011: TDM8—Dual Line
100: TDM16—Single Line (48 kHz)
101: Reserved
110: Reserved
111: Reserved
[0] MMUTE
DAC Master Mute
0: Normal Operation
1: All Channels Muted
[2:1] FS
Sample Rate Select
00: 32 kHz/44.1kHz/48kHz
01: 64 kHz/88.2kHz/96kHz
10: 128 kHz/176.4kHz/192kHz
11: 128 kHz/176.4kHz/192kHz Low Propagation Delay
Table 30. Bit Descriptions for DAC_CTRL0
Bits Bit Name Settings Description Reset Access
[7:6] SDATA_FMT SDATA Format. Only used when SAI = 000. 0x0 RW
00 I2S—1-BCLK Cycle Delay
01 Left-Justified—0-BCLK Cycle Delay
10 Right-Justified 24-bit Data—8-BCLK Cycle Delay
11 Right-Justified 16-bit Data—16-BCLK Cycle Delay
[5:3] SAI Serial Audio Interface. When SAI = 000, the SDATA_FMT bits control stereo
SDATA format.
0x0 RW
000 Stereo (I2S, LJ, RJ)
001 TDM2—Octal Line
010 TDM4—Quad Line
011 TDM8—Dual Line
100 TDM16—Single Line (48 kHz)
101 Reserved
110 Reserved
111 Reserved
[2:1] FS Sample Rate Select. 0x0 RW
00 32 kHz/44.1 kHz/48 kHz
01 64 kHz/88.2 kHz/96 kHz
10 128 kHz/176.4 kHz/192 kHz
11 128 kHz/176.4 kHz/192 kHz Low Propagation Delay
0 MMUTE DAC Master Mute. 0x1 RW
0 Normal Operation
1 All Channels Muted
ADAU1966 Data Sheet
Rev. E | Page 32 of 52
DAC CONTROL 1 REGISTER
Address: 0x07, Reset: 0x00, Name: DAC_CTRL1
Table 31. Bit Descriptions for DAC_CTRL1
Bits Bit Name Settings Description Reset Access
7 BCLK_GEN DBCLK Generation. When the PLL is locked to DLRCLK, it is possible to run
the ADAU1966 without an external DBCLK.
0x0 RW
0 Normal Operation—DBCLK
1 Internal DBCLK Generation
6 LRCLK_MODE DLRCLK Mode Select. Only Valid for TDM modes. 0x0 RW
0 50% Duty Cycle DLRCLK
1 Pulse Mode
5 LRCLK_POL DLRCLK Polarity. Allows the swapping of data between channels. 0x0 RW
0 Left/Odd channels are DLRCLK Low (Normal)
1 Left/Odd channels are DLRCLK High (Inverted)
4 SAI_MSB MSB Position. 0x0 RW
0 MSB First DSDATA
1 LSB First DSDATA
2 BCLK_RATE DBCLK Rate. Number of DBCLK cycles per DLRCLK Frame. Used only for
generating DBCLK in Master Mode operation (SAI_MS = 1).
0x0 RW
0 32 Cycles per Frame
1 16 Cycles per Frame
1 BCLK_EDGE DBCLK Active Edge. Adjust the polarity of the DBCLK leading edge. 0x0 RW
0 Latch in Rising Edge
1 Latch in Falling Edge
0 SAI_MS Serial Interface Master. Both DLRCLK and DBCLK become master when
enabled.
0x0 RW
0 DLRCLK/DBCLK Slave
1 DLRCLK/DBCLK Master
Data Sheet ADAU1966
Rev. E | Page 33 of 52
DAC CONTROL 2 REGISTER
Address: 0x08, Reset: 0x06, Name: DAC_CTRL2
Table 32. Bit Descriptions for DAC_CTRL2
Bits Bit Name Settings Description Reset Access
[6:5] VREG_CTRL Voltage Regulator Control. Select the Regulator Output Voltage. 0x0 RW
00 Regulator Out = 2.5 V
01 Regulator Out = 2.75 V
10 Regulator Out = 3.0 V
11 Regulator Out = 3.3 V
4 BCLK_TDMC DBCLK Rate in TDM Mode. Number of DBCLK cycles per channel slot when
in TDM mode.
0x0 RW
0 32 BCLK cycles/channel slot
1 16 BCLK cycles/channel slot
3 DAC_POL DAC Output Polarity. This is a global switch of DAC polarity. 0x0 RW
0 Noninverted DAC Output
1 Inverted DAC Output
2 AUTO_MUTE_EN Automute Enable. Automatically mutes the DACs when 1024 consecutive
zero input samples are received. This is independent per channel.
0x1 RW
0 Auto-Zero Input Mute Disabled
1 Auto-Zero Input Mute Enabled
1 DAC_OSR DAC Oversampling Rate. OSR Selection. 0x1 RW
0 256 × fS DAC Oversampling
1 128 × fS DAC Oversampling
0 DE_EMP_EN De-Emphasis Enable. 0x0 RW
0 No De-Emphasis/Flat
1 De-Emphasis Enabled
ADAU1966 Data Sheet
Rev. E | Page 34 of 52
DAC INDIVIDUAL CHANNEL MUTES 1 REGISTER
Address: 0x09, Reset: 0x00, Name: DAC_MUTE1
Table 33. Bit Descriptions for DAC_MUTE1
Bits Bit Name Settings Description Reset Access
7 DAC08_MUTE DAC8 Soft Mute. 0x0 RW
0 DAC8 Normal Operation
1 DAC8 Mute
6 DAC07_MUTE DAC7 Soft Mute. 0x0 RW
0 DAC7 Normal Operation
1 DAC7 Mute
5 DAC06_MUTE DAC6 Soft Mute. 0x0 RW
0 DAC6 Normal Operation
1 DAC6 Mute
4 DAC05_MUTE DAC5 Soft Mute. 0x0 RW
0 DAC5 Normal Operation
1 DAC5 Mute
3 DAC04_MUTE DAC4 Soft Mute. 0x0 RW
0 DAC4 Normal Operation
1 DAC4 Mute
2 DAC03_MUTE DAC3 Soft Mute. 0x0 RW
0 DAC3 Normal Operation
1 DAC3 Mute
1 DAC02_MUTE DAC2 Soft Mute. 0x0 RW
0 DAC2 Normal Operation
1 DAC2 Mute
0 DAC01_MUTE DAC1 Soft Mute. 0x0 RW
0 DAC1 Normal Operation
1 DAC1 Mute
Data Sheet ADAU1966
Rev. E | Page 35 of 52
DAC INDIVIDUAL CHANNEL MUTES 2 REGISTER
Address: 0x0A, Reset: 0x00, Name: DAC_MUTE2
Table 34. Bit Descriptions for DAC_MUTE2
Bits Bit Name Settings Description Reset Access
7 DAC16_MUTE DAC16 Soft Mute. 0x0 RW
0 DAC16 Normal Operation
1 DAC16 Mute
6 DAC15_MUTE DAC15 Soft Mute. 0x0 RW
0 DAC15 Normal Operation
1 DAC15 Mute
5 DAC14_MUTE DAC14 Soft Mute. 0x0 RW
0 DAC14 Normal Operation
1 DAC14 Mute
4 DAC13_MUTE DAC13 Soft Mute. 0x0 RW
0 DAC13 Normal Operation
1 DAC13 Mute
3 DAC12_MUTE DAC12 Soft Mute. 0x0 RW
0 DAC12 Normal Operation
1 DAC12 Mute
2 DAC11_MUTE DAC11 Soft Mute. 0x0 RW
0 DAC11 Normal Operation
1 DAC11 Mute
1 DAC10_MUTE DAC10 Soft Mute. 0x0 RW
0 DAC10 Normal Operation
1 DAC10 Mute
0 DAC09_MUTE DAC9 Soft Mute. 0x0 RW
0 DAC9 Normal Operation
1 DAC9 Mute
ADAU1966 Data Sheet
Rev. E | Page 36 of 52
MASTER VOLUME CONTROL REGISTER
Address: 0x0B, Reset: 0x00, Name: DACMSTR_VOL
Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 57 for a complete list of the volume settings.
Table 35. Bit Descriptions for DACMSTR_VOL
Bits Bit Name Settings Description Reset Access
[7:0] DACMSTR_VOL Master Volume Control. 0x00 RW
00000000 0 dB (default)
00000001 −0.375 dB
00000010 −0.750 dB
11111110 −95.250 dB
11111111 −95.625 dB
DAC 1 VOLUME CONTROL REGISTER
Address: 0x0C, Reset: 0x00, Name: DAC01_VOL
Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 57 for a complete list of the volume settings.
Table 36. Bit Descriptions for DAC01_VOL
Bits Bit Name Settings Description Reset Access
[7:0] DAC01_VOL DAC Volume Control Channel 1. 0x00 RW
00000000 0 dB (default)
00000001 −0.375 dB
00000010 −0.750 dB
11111110 −95.250 dB
11111111 −95.625 dB
Data Sheet ADAU1966
Rev. E | Page 37 of 52
DAC 2 VOLUME CONTROL REGISTER
Address: 0x0D, Reset: 0x00, Name: DAC02_VOL
Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 57 for a complete list of the volume settings.
Table 37. Bit Descriptions for DAC02_VOL
Bits Bit Name Settings Description Reset Access
[7:0] DAC02_VOL DAC Volume Control Channel 2. 0x00 RW
00000000 0 dB (default)
00000001 −0.375 dB
00000010 −0.750 dB
11111110 −95.250 dB
11111111 −95.625 dB
DAC 3 VOLUME CONTROL REGISTER
Address: 0x0E, Reset: 0x00, Name: DAC03_VOL
Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 57 for a complete list of the volume settings.
Table 38. Bit Descriptions for DAC03_VOL
Bits Bit Name Settings Description Reset Access
[7:0] DAC03_VOL DAC Volume Control Channel 3. 0x00 RW
00000000 0 dB (default)
00000001 −0.375 dB
00000010 −0.750 dB
11111110 −95.250 dB
11111111 −95.625 dB
ADAU1966 Data Sheet
Rev. E | Page 38 of 52
DAC 4 VOLUME CONTROL REGISTER
Address: 0x0F, Reset: 0x00, Name: DAC04_VOL
Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 57 for a complete list of the volume settings.
Table 39. Bit Descriptions for DAC04_VOL
Bits Bit Name Settings Description Reset Access
[7:0] DAC04_VOL DAC Volume Control Channel 4. 0x00 RW
00000000 0 dB (default)
00000001 −0.375 dB
00000010 −0.750 dB
11111110 −95.250 dB
11111111 −95.625 dB
DAC 5 VOLUME CONTROL REGISTER
Address: 0x10, Reset: 0x00, Name: DAC05_VOL
Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 57 for a complete list of the volume settings.
Table 40. Bit Descriptions for DAC05_VOL
Bits Bit Name Settings Description Reset Access
[7:0] DAC05_VOL DAC Volume Control Channel 5. 0x00 RW
00000000 0 dB (default)
00000001 −0.375 dB
00000010 −0.750 dB
11111110 −95.250 dB
11111111 −95.625 dB
Data Sheet ADAU1966
Rev. E | Page 39 of 52
DAC 6 VOLUME CONTROL REGISTER
Address: 0x11, Reset: 0x00, Name: DAC06_VOL
Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 57 for a complete list of the volume settings.
Table 41. Bit Descriptions for DAC06_VOL
Bits Bit Name Settings Description Reset Access
[7:0] DAC06_VOL DAC Volume Control Channel 6. 0x00 RW
00000000 0 dB (default)
00000001 −0.375 dB
00000010 −0.750 dB
11111110 −95.250 dB
11111111 −95.625 dB
DAC 7 VOLUME CONTROL REGISTER
Address: 0x12, Reset: 0x00, Name: DAC07_VOL
Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 57 for a complete list of the volume settings.
Table 42. Bit Descriptions for DAC07_VOL
Bits Bit Name Settings Description Reset Access
[7:0] DAC07_VOL DAC Volume Control Channel 7. 0x00 RW
00000000 0 dB (default)
00000001 −0.375 dB
00000010 −0.750 dB
11111110 −95.250 dB
11111111 −95.625 dB
ADAU1966 Data Sheet
Rev. E | Page 40 of 52
DAC 8 VOLUME CONTROL REGISTER
Address: 0x13, Reset: 0x00, Name: DAC08_VOL
Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 57 for a complete list of the volume settings.
Table 43. Bit Descriptions for DAC08_VOL
Bits Bit Name Settings Description Reset Access
[7:0] DAC08_VOL DAC Volume Control Channel 8. 0x00 RW
00000000 0 dB (default)
00000001 −0.375 dB
00000010 −0.750 dB
11111110 −95.250 dB
11111111 −95.625 dB
DAC 9 VOLUME CONTROL REGISTER
Address: 0x14, Reset: 0x00, Name: DAC09_VOL
Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 57 for a complete list of the volume settings.
Table 44. Bit Descriptions for DAC09_VOL
Bits Bit Name Settings Description Reset Access
[7:0] DAC09_VOL DAC Volume Control Channel 9. 0x00 RW
00000000 0 dB (default)
00000001 −0.375 dB
00000010 −0.750 dB
11111110 −95.250 dB
11111111 −95.625 dB
Data Sheet ADAU1966
Rev. E | Page 41 of 52
DAC 10 VOLUME CONTROL REGISTER
Address: 0x15, Reset: 0x00, Name: DAC10_VOL
Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 57 for a complete list of the volume settings.
Table 45. Bit Descriptions for DAC10_VOL
Bits Bit Name Settings Description Reset Access
[7:0] DAC10_VOL DAC Volume Control Channel 10. 0x00 RW
00000000 0 dB (default)
00000001 −0.375 dB
00000010 −0.750 dB
11111110 −95.250 dB
11111111 −95.625 dB
DAC 11 VOLUME CONTROL REGISTER
Address: 0x16, Reset: 0x00, Name: DAC11_VOL
Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 57 for a complete list of the volume settings.
Table 46. Bit Descriptions for DAC11_VOL
Bits Bit Name Settings Description Reset Access
[7:0] DAC11_VOL DAC Volume Control Channel 11. 0x00 RW
00000000 0 dB (default)
00000001 −0.375 dB
00000010 −0.750 dB
11111110 −95.250 dB
11111111 −95.625 dB
ADAU1966 Data Sheet
Rev. E | Page 42 of 52
DAC 12 VOLUME CONTROL REGISTER
Address: 0x17, Reset: 0x00, Name: DAC12_VOL
Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 57 for a complete list of the volume settings.
Table 47. Bit Descriptions for DAC12_VOL
Bits Bit Name Settings Description Reset Access
[7:0] DAC12_VOL DAC Volume Control Channel 12. 0x00 RW
00000000 0 dB (default)
00000001 −0.375 dB
00000010 −0.750 dB
11111110 −95.250 dB
11111111 −95.625 dB
DAC 13 VOLUME CONTROL REGISTER
Address: 0x18, Reset: 0x00, Name: DAC13_VOL
Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 57 for a complete list of the volume settings.
Table 48. Bit Descriptions for DAC13_VOL
Bits Bit Name Settings Description Reset Access
[7:0] DAC13_VOL DAC Volume Control Channel 13. 0x00 RW
00000000 0 dB (default)
00000001 −0.375 dB
00000010 −0.750 dB
11111110 −95.250 dB
11111111 −95.625 dB
Data Sheet ADAU1966
Rev. E | Page 43 of 52
DAC 14 VOLUME CONTROL REGISTER
Address: 0x19, Reset: 0x00, Name: DAC14_VOL
Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 57 for a complete list of the volume settings.
Table 49. Bit Descriptions for DAC14_VOL
Bits Bit Name Settings Description Reset Access
[7:0] DAC14_VOL DAC Volume Control Channel 14. 0x00 RW
00000000 0 dB (default)
00000001 −0.375 dB
00000010 −0.750 dB
11111110 −95.250 dB
11111111 −95.625 dB
DAC 15 VOLUME CONTROL REGISTER
Address: 0x1A, Reset: 0x00, Name: DAC15_VOL
Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 57 for a complete list of the volume settings.
Table 50. Bit Descriptions for DAC15_VOL
Bits Bit Name Settings Description Reset Access
[7:0] DAC15_VOL DAC Volume Control Channel 15. 0x00 RW
00000000 0 dB (default)
00000001 −0.375 dB
00000010 −0.750 dB
11111110 −95.250 dB
11111111 −95.625 dB
ADAU1966 Data Sheet
Rev. E | Page 44 of 52
DAC 16 VOLUME CONTROL REGISTER
Address: 0x1B, Reset: 0x00, Name: DAC16_VOL
Each 1-bit step corresponds to a 0.375 dB change in volume. See Table 57 for a complete list of the volume settings.
Table 51. Bit Descriptions for DAC16_VOL
Bits Bit Name Settings Description Reset Access
[7:0] DAC16_VOL DAC Volume Control Channel 16. 0x00 RW
00000000 0 dB (default)
00000001 −0.375 dB
00000010 −0.750 dB
11111110 −95.250 dB
11111111 −95.625 dB
COMMON MODE AND PAD STRENGTH REGISTER
Address: 0x1C, Reset: 0x02, Name: CM_SEL_PAD_STRGTH
Table 52. Bit Descriptions for CM_SEL_PAD_STRGTH
Bits Bit Name Settings Description Reset Access
5 PAD_DRV Output Pad Drive Strength Control. Pad strength is stated for IOVDD = 5 V. 0x0 RW
0 4 mA Drive for All Pads
1 8 mA Drive for All Pads
Data Sheet ADAU1966
Rev. E | Page 45 of 52
DAC POWER ADJUST 1 REGISTER
Address: 0x1D, Reset: 0xAA, Name: DAC_POWER1
Table 53. Bit Descriptions for DAC_POWER1
Bits Bit Name Settings Description Reset Access
[7:6] DAC04_POWER DAC Power Control Channel 4. 0x2 RW
00 Low Power
01 Lowest Power
10 Best Performance
11 Good Performance
[5:4] DAC03_POWER DAC Power Control Channel 3. 0x2 RW
00 Low Power
01 Lowest Power
10 Best Performance
11 Good Performance
[3:2] DAC02_POWER DAC Power Control Channel 2. 0x2 RW
00 Low Power
01 Lowest Power
10 Best Performance
11 Good Performance
[1:0] DAC01_POWER DAC Power Control Channel 1. 0x2 RW
00 Low Power
01 Lowest Power
10 Best Performance
11 Good Performance
ADAU1966 Data Sheet
Rev. E | Page 46 of 52
DAC POWER ADJUST 2 REGISTER
Address: 0x1E, Reset: 0xAA, Name: DAC_POWER2
Table 54. Bit Descriptions for DAC_POWER2
Bits Bit Name Settings Description Reset Access
[7:6] DAC08_POWER DAC Power Control Channel 8. 0x2 RW
00 Low Power
01 Lowest Power
10 Best Performance
11 Good Performance
[5:4] DAC07_POWER DAC Power Control Channel 7. 0x2 RW
00 Low Power
01 Lowest Power
10 Best Performance
11 Good Performance
[3:2] DAC06_POWER DAC Power Control Channel 6. 0x2 RW
00 Low Power
01 Lowest Power
10 Best Performance
11 Good Performance
[1:0] DAC05_POWER DAC Power Control Channel 5. 0x2 RW
00 Low Power
01 Lowest Power
10 Best Performance
11 Good Performance
Data Sheet ADAU1966
Rev. E | Page 47 of 52
DAC POWER ADJUST 3 REGISTER
Address: 0x1F, Reset: 0xAA, Name: DAC_POWER3
Table 55. Bit Descriptions for DAC_POWER3
Bits Bit Name Settings Description Reset Access
[7:6] DAC12_POWER DAC Power Control Channel 12. 0x2 RW
00 Low Power
01 Lowest Power
10 Best Performance
11 Good Performance
[5:4] DAC11_POWER DAC Power Control Channel 11. 0x2 RW
00 Low Power
01 Lowest Power
10 Best Performance
11 Good Performance
[3:2] DAC10_POWER DAC Power Control Channel 10. 0x2 RW
00 Low Power
01 Lowest Power
10 Best Performance
11 Good Performance
[1:0] DAC09_POWER DAC Power Control Channel 9. 0x2 RW
00 Low Power
01 Lowest Power
10 Best Performance
11 Good Performance
ADAU1966 Data Sheet
Rev. E | Page 48 of 52
DAC POWER ADJUST 4 REGISTER
Address: 0x20, Reset: 0xAA, Name: DAC_POWER4
Table 56. Bit Descriptions for DAC_POWER4
Bits Bit Name Settings Description Reset Access
[7:6] DAC16_POWER DAC Power Control Channel 16. 0x2 RW
00 Low Power
01 Lowest Power
10 Best Performance
11 Good Performance
[5:4] DAC15_POWER DAC Power Control Channel 15. 0x2 RW
00 Low Power
01 Lowest Power
10 Best Performance
11 Good Performance
[3:2] DAC14_POWER DAC Power Control Channel 14. 0x2 RW
00 Low Power
01 Lowest Power
10 Best Performance
11 Good Performance
[1:0] DAC13_POWER DAC Power Control Channel 13. 0x2 RW
00 Low Power
01 Lowest Power
10 Best Performance
11 Good Performance
Data Sheet ADAU1966
Rev. E | Page 49 of 52
Table 57. Volume Table
Binary Value Volume Attenuation (dB)
00000000 0
00000001 −0.375
00000010 −0.75
00000011 −1.125
00000100 −1.5
00000101 −1.875
00000110 −2.25
00000111 −2.625
00001000 −3
00001001 −3.375
00001010 −3.75
00001011 −4.125
00001100 −4.5
00001101 −4.875
00001110 −5.25
00001111 −5.625
00010000 −6
00010001 −6.375
00010010 −6.75
00010011 −7.125
00010100 −7.5
00010101 −7.875
00010110 −8.25
00010111 −8.625
00011000 −9
00011001 −9.375
00011010 −9.75
00011011 −10.125
00011100 −10.5
00011101 −10.875
00011110 −11.25
00011111 −11.625
00100000 −12
00100001 −12.375
00100010 −12.75
00100011 −13.125
00100100 −13.5
00100101 −13.875
00100110 −14.25
00100111 −14.625
00101000 −15
00101001 −15.375
00101010 −15.75
00101011 −16.125
00101100 −16.5
00101101 −16.875
Binary Value Volume Attenuation (dB)
00101110 −17.25
00101111 −17.625
00110000 −18
00110001 −18.375
00110010 −18.75
00110011 −19.125
00110100 −19.5
00110101 −19.875
00110110 −20.25
00110111 −20.625
00111000 −21
00111001 −21.375
00111010 −21.75
00111011 −22.125
00111100 −22.5
00111101 −22.875
00111110 −23.25
00111111 −23.625
01000000 −24
01000001 −24.375
01000010 −24.75
01000011 −25.125
01000100 −25.5
01000101 −25.875
01000110 −26.25
01000111 −26.625
01001000 −27
01001001 −27.375
01001010 −27.75
01001011 −28.125
01001100 −28.5
01001101 −28.875
01001110 −29.25
01001111 −29.625
01010000 −30
01010001 −30.375
01010010 −30.75
01010011 −31.125
01010100 −31.5
01010101 −31.875
01010110 −32.25
01010111 −32.625
01011000 −33
01011001 −33.375
01011010 −33.75
01011011 −34.125
ADAU1966 Data Sheet
Rev. E | Page 50 of 52
Binary Value Volume Attenuation (dB)
01011100 −34.5
01011101 −34.875
01011110 −35.25
01011111 −35.625
01100000 −36
01100001 −36.375
01100010 −36.75
01100011 −37.125
01100100 −37.5
01100101 −37.875
01100110 −38.25
01100111 −38.625
01101000 −39
01101001 −39.375
01101010 −39.75
01101011 −40.125
01101100 −40.5
01101101 −40.875
01101110 −41.25
01101111 −41.625
01110000 −42
01110001 −42.375
01110010 −42.75
01110011 −43.125
01110100 −43.5
01110101 −43.875
01110110 −44.25
01110111 −44.625
01111000 −45
01111001 −45.375
01111010 −45.75
01111011 −46.125
01111100 −46.5
01111101 −46.875
01111110 −47.25
01111111 −47.625
10000000 −48
10000001 −48.375
10000010 −48.75
10000011 −49.125
10000100 −49.5
10000101 −49.875
10000110 −50.25
10000111 −50.625
10001000 −51
10001001 −51.375
10001010 −51.75
Binary Value Volume Attenuation (dB)
10001011 −52.125
10001100 −52.5
10001101 −52.875
10001110 −53.25
10001111 −53.625
10010000 −54
10010001 −54.375
10010010 −54.75
10010011 −55.125
10010100 −55.5
10010101 −55.875
10010110 −56.25
10010111 −56.625
10011000 −57
10011001 −57.375
10011010 −57.75
10011011 −58.125
10011100 −58.5
10011101 −58.875
10011110 −59.25
10011111 −59.625
10100000 −60
10100001 −60.375
10100010 −60.75
10100011 −61.125
10100100 −61.5
10100101 −61.875
10100110 −62.25
10100111 −62.625
10101000 −63
10101001 −63.375
10101010 −63.75
10101011 −64.125
10101100 −64.5
10101101 −64.875
10101110 −65.25
10101111 −65.625
10110000 −66
10110001 −66.375
10110010 −66.75
10110011 −67.125
10110100 −67.5
10110101 −67.875
10110110 −68.25
10110111 −68.625
10111000 −69
10111001 −69.375
Data Sheet ADAU1966
Rev. E | Page 51 of 52
Binary Value Volume Attenuation (dB)
10111010 −69.75
10111011 −70.125
10111100 −70.5
10111101 −70.875
10111110 −71.25
10111111 −71.625
11000000 −72
11000001 −72.375
11000010 −72.75
11000011 −73.125
11000100 −73.5
11000101 −73.875
11000110 −74.25
11000111 −74.625
11001000 −75
11001001 −75.375
11001010 −75.75
11001011 −76.125
11001100 −76.5
11001101 −76.875
11001110 −77.25
11001111 −77.625
11010000 −78
11010001 −78.375
11010010 −78.75
11010011 −79.125
11010100 −79.5
11010101 −79.875
11010110 −80.25
11010111 −80.625
11011000 −81
11011001 −81.375
11011010 −81.75
11011011 −82.125
11011100 −82.5
Binary Value Volume Attenuation (dB)
11011101 −82.875
11011110 −83.25
11011111 −83.625
11100000 −84
11100001 −84.375
11100010 −84.75
11100011 −85.125
11100100 −85.5
11100101 −85.875
11100110 −86.25
11100111 −86.625
11101000 −87
11101001 −87.375
11101010 −87.75
11101011 −88.125
11101100 −88.5
11101101 −88.875
11101110 −89.25
11101111 −89.625
11110000 −90
11110001 −90.375
11110010 −90.75
11110011 −91.125
11110100 −91.5
11110101 −91.875
11110110 −92.25
11110111 −92.625
11111000 −93
11111001 −93.375
11111010 −93.75
11111011 −94.125
11111100 −94.5
11111101 −94.875
11111110 −95.25
11111111 −95.625
ADAU1966 Data Sheet
Rev. E | Page 52 of 52
OUTLINE DIMENSIONS
COMPLIANT TO JEDEC STANDARDS MS-026-BEC
1.45
1.40
1.35
0.15
0.05
0.20
0.09
0.10
COPLANARITY
VIEW A
ROTATED 90° CCW
SEATING
PLANE
3.5°
61
60
1
80
20 41
21 40
VIEW A
1.60
MAX
0.75
0.60
0.45
16.20
16.00 SQ
15.80
14.20
14.00 SQ
13.80
0.65
BSC
LEAD PITCH
0.38
0.32
0.22
TOP VIEW
(PINS DOWN)
PIN 1
051706-A
Figure 22. 80-Lead Low Profile Quad Flat Package [LQFP]
(ST-80-2)
Dimensions shown in millimeters
ORDERING GUIDE
Model1, 2 Temperature Range Package Description Package Option
ADAU1966WBSTZ −40°C to +105°C 80-Lead LQFP ST-80-2
ADAU1966WBSTZRL −40°C to +105°C 80-Lead LQFP, 13” Tape and Reel ST-80-2
EVAL-ADAU1966Z Evaluation Board
1 Z = RoHS Compliant Part.
2 W = Qualified for Automotive Applications.
AUTOMOTIVE PRODUCTS
The ADAU1966W models are available with controlled manufacturing to support the quality and reliability requirements of automotive
applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers
should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in
automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to
obtain the specific Automotive Reliability reports for these models.
I2C refers to a communications protocol originally developed by Philips Semiconductors (now NXP Semiconductors).
©2011–2016 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D09434-0-3/16(E)