For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood,
MA 02062-9106
Phone: 781-329-4700 • Order online at www.analog.com
Application Support: Phone: 1-800-ANALOG-D
A / D CONVERTERS - SMT
0
0 - 28
HMCAD1511
v04.1015
HIGH SPEED MULTI-MODE 8-BIT
30 MSPS to 1 GSPS A/D CONVERTER
If the input signal is traveling a long physical distance
from the signal source to the transformer (for example
a long cable), kick-backs from the ADC will also travel
along this distance. If these kick-backs are not termi-
nated properly at the source side, they are reected
and will add to the input signal at the ADC input. This
could reduce the ADC performance. To avoid this
effect, the source must effectively terminate the ADC
kick-backs, or the traveling distance should be very
short.
Figure 14: AC coupled input
Figure 15 shows AC-coupling using capacitors. Resis-
tors from the CM_EXT output, RCM, should be used
to bias the differential input signals to the correct volt-
age. The series capacitor, CI, form the high-pass pole
with these resistors, and the values must therefore be
determined based on the requirement to the high-pass
cut-off frequency.
Note that Start Up Time from Sleep Mode and Power
Down Mode will be affected by this lter as the time
required to charge the series capacitors is dependent
on the lter cut-off frequency.
Clock Input and Jitter Considerations
Typically high-speed ADCs use both clock edges to
generate internal timing signals. In HMCAD1511 only
the rising edge of the clock is used.
The input clock can be supplied in a variety of for-
mats. The clock pins are AC-coupled internally, hence
a wide common mode voltage range is accepted.
Differential clock sources such as LVDS, LVPECL or
differential sine wave can be utilized. LVDS/LVPECL
clock signals must be appropriately terminated as
close to the ADC clock pins as possible. For CMOS
inputs, the CLKN pin should be connected to ground,
and the CMOS clock signal should be connected to
CLKP. CMOS input clock is not recommended above
200 MHz clock frequency. For differential sine wave
clock input the amplitude must be at least ± 0.8 Vpp.
No additional conguration is needed to set up the
clock source format.
The quality of the input clock is extremely important
for high-speed, high-resolution ADCs. The contribu-
tion to SNR from clock jitter with a full scale signal at a
given frequency is shown in equation 1.
SNRjitter = 20 · log (2 · π · ƒIN · єt) (1)
where fIN is the signal frequency, and εt is the total
rms jitter measured in seconds. The rms jitter is the
total of all jitter sources including the clock generation
circuitry, clock distribution and internal ADC circuitry.
For applications where jitter may limit the obtainable
performance, it is of utmost importance to limit the
clock jitter. This can be obtained by using precise and
stable clock references (e.g. crystal oscillators with
good jitter specications) and make sure the clock dis-
tribution is well controlled. It might be advantageous
to use analog power and ground planes to ensure
low noise on the supplies to all circuitry in the clock
distribution. It is of utmost importance to avoid cross-
talk between the ADC output bits and the clock and
between the analog input signal and the clock since
such crosstalk often results in harmonic distortion.
The jitter performance is improved with reduced rise
and fall times of the input clock. Hence, optimum jitter
performance is obtained with LVDS or LVPECL clock
with fast edges. CMOS and sine wave clock inputs will
result in slightly degraded jitter performance.
If the clock is generated by other circuitry, it should
be re-timed with a low jitter master clock as the last
operation before it is applied to the ADC clock input.
Application Usage Example
This section gives an overview on how HMCAD1511
can be used in an application utilizing all active modes
with a single clock source. The example assumes that
a 1 GHz clock source is applied. A differential clock
should be used, and can be generated from a single
ended crystal oscillator, using a transformer or balun
in conjunction with ac-coupling to convert from single
ended to differential signal.
Start-up Initialization
The start-up sequence will be as follows:
• Applypower
• Applyreset(RESETNlow,thenhigh,orSPIcom-
mand 0x00 0x0001)
• Setpowerdown(PDpinhighorSPIcommand
0x0F 0x0200)
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
For price, delivery, and to place orders: Analog Devices, Inc.,
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106
Phone: 781-329-4700 • Order online at www.analog.com
Application Support: Phone: 1-800-ANALOG-D