AMD RS690
Databook
Technical Reference Manual
Rev. 3.03
P/N: 41977_rs690_ds_nda_3.03
© 2007 Advanced Micro Devices, Inc
Please note that in this databook, references to "DVI" and "HDMI" may refer to: (1) the function of the integrated DVI/HDMI interface described in details in section 2.2.1 and
3.7, as well as in other sections; or (2) the capability of the TMDS interface, multiplexed on the PCI-E external graphics interface, to enable DVI or HDMI through passive
enabling circuitries. Any statement in this databook on any DVI or HDMI-related functionality must be understood to apply to (1), (2), or both, according to the immediate
context of the reference.
Advanced Micro Devices, Inc., will not provide any indemnity, pay any royalty, nor provide any license/subli cens e to any:
(a) Intellectual property rights relating to any of the following: (i) Macrovision for its Analog Protection System ("APS") technologies; (ii) Advanced Television Systems
Committee (ATSC) standard and related technologies; or (iii) the High Definition Multimedia Interface (HDMI) standard and related technologies; or
(b) Audio and/or video codecs or any industry standard technology (e.g., technology or specifications promulgated by any standards development organization, consortium,
trade association, special interest group or like entity).
This device is protected by U.S. patent numbers 4,631,603, 4,577,216 and 4,819,098 and other intellectual property rights. The use of Macrovision's copy protection technology
in the device must be authorized by Macrovision and is intended for home and other limited pay-per-view uses only, unless otherwise authorized in writing by Macrovision.
Reverse engineering or disassembly is prohibited.
This device may only be sold or distributed to: (i) a Macrovision Authorized Buyer, (ii) a customer (PMA Customer) who has executed a Proprietary Materials Agreement
(PMA) with Macrovision that is still in effect, (iii) a contract manufacturer approved by Macrovision to purchase this device on behalf of a Macrovision Authorized Buyer or
a PMA Customer, or (iv) a distributor who has executed a Macrovision-specified distribution agreement with ATI.
Trademarks
AMD, the AMD Arrow logo, Athlon, and combinations thereof, ATI, ATI logo, and Radeon are trademarks of Advanced Micro Devices, Inc.
HyperTransport is a licensed trademark of the HyperTransport Technology Consortium.
Microsoft and Windows are registered trademarks of Microsoft Corporation.
Other product names used in this publication are for identification purposes only and may be trademarks of their respective companies.
Disclaimer
The contents of this document are provided in connection with Advanced Micro Devices, Inc. ("AMD") products. AMD makes no representations or warranties with respect
to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice.
No license, whethe r express, implied, arising by estoppel, or otherwise, to any intellectual property rights are granted by this publication. Except as set forth in AMD's Standard
Terms and Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the
implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right.
AMD's products are not designed, intended, authorized or warranted for use as components in sy st ems in tend ed for surgical impla nt into the body, or in other applications
intended to support or sustain life, or in any other application in which the failure of AMD's product could create a situation where per sonal injur y, dea th, or severe property or
environmental damage may occur. AMD reserves the right to discontinue or make changes to its products at any time without notice.
© 2007 Advanced Micro Devices, Inc. All right s re served.
© 2007 Advanced Micro Devices, Inc. 41977 AMD RS690 Databook 3.03
Proprietary and Confidential Table of Contents-1
Table of Contents
Chapter 1: Overview
1.1 Introducing the RS690 ........................................................................................................................................................1-1
1.2 RS690C...............................................................................................................................................................................1-2
1.3 RS690 Features ...................................................................................................................................................................1-2
1.3.1 CPU HyperTransport Interface.............................................................................................................................1-2
1.3.2 ATI HyperMemory™...........................................................................................................................................1-2
1.3.3 PCI Express Interface...........................................................................................................................................1-2
1.3.4 A-Link Express II Interface..................................................................................................................................1-2
1.3.5 2D Acceleration Features.....................................................................................................................................1-2
1.3.6 3D Acceleration Features.....................................................................................................................................1-3
1.3.7 Motion Video Acceleration Features....................................................................................................................1-4
1.3.8 Multiple Display Features ....................................................................................................................................1-4
1.3.9 DVI/HDMI (Not applicable to the RS6 90C)........................................................................................................1-5
1.3.10 Power Management Features ...............................................................................................................................1-6
1.3.11 PC Design Guide Compliance..............................................................................................................................1-6
1.3.12 Test Capability Features.......................................................................................................................................1-6
1.3.13 Packaging .............................................................................................................................................................1-6
1.4 Software Features................................................................................................................................................................1-6
1.5 Branding Diagrams .............................................................................................................................................................1-7
1.5.1 Branding Diagrams for ASIC Revision A11........................................................................................................1-7
1.5.2 Branding Diagrams for ASIC Revision A12 and After........................................................................................1-8
1.6 Part Number Legend...........................................................................................................................................................1-9
1.7 Conventions and Notations...............................................................................................................................................1-10
1.7.1 Pin Names...........................................................................................................................................................1-10
1.7.2 Pin Types............................................................................................................................................................1-10
1.7.3 Numeric Representation.....................................................................................................................................1-10
1.7.4 Register Field......................................................................................................................................................1-11
1.7.5 Hyperlinks ..........................................................................................................................................................1-11
1.7.6 Acronyms and Abbreviations.............................................................................................................................1-11
Chapter 2: Functional Descriptions
2.1 Host Interface......................................................................................................................................................................2-2
2.2 DVI/HDMI (Not Applicable to the RS690C).....................................................................................................................2-4
2.2.1 DVI/HDMI Data Transmission Order an d Signal Mapping ................................................................................2-4
2.2.2 Support for HDMI Packet Types..........................................................................................................................2-7
2.3 VGA DAC Characteristics..................................................................................................................................................2-8
2.4 External Clock Chip............................................................................................................................................................2-8
Chapter 3: Pin Descriptions and Strap Options
3.1 Pin Assignment Top View..................................................................................................................................................3-2
41977 AMD RS690 Databook 3.03 © 2007 Advanced Micro Devices, Inc.
Table of Contents-2 Proprietary and Confidential
3.2 Interface Block Diagram.................................................................................................................................................... 3-4
3.3 CPU HyperTransport Interface ........................................................................................................................................ 3-5
3.4 PCI Express Interfaces ....................................................................................................................................................... 3-5
3.4.1 1 x 16 Lane Interface for External Graphics ....................................................................................................... 3-5
3.4.2 A-Link Express II to Southbridge........................................................................................................................ 3-5
3.4.3 4 x 1 Lane Interface for General Purpose External Devices .............................................................................. 3-6
3.4.4 Miscellaneous PCI Express Si gnals..................................................................................................................... 3-6
3.5 Clock Interface................................................................................................................................................................... 3-6
3.6 CRT and TV Interface........................................................................................................................................................ 3-6
3.7 Integrated DVI/HDMI Interface......................................................................................................................................... 3-7
3.8 TMDS Interface Multiplexed on the PCI-E Graphics Lanes (Not Applicable to the RS690C) ........................................ 3-8
3.9 Power Management Pins................................................................................................................................................... 3-9
3.10 Miscellaneous Pins........................................................................................................................................................... 3-9
3.11 Power Pins...................................................................................................................................................................... 3-10
3.12 Ground Pins.....................................................................................................................................................................3-11
3.13 Debug Port Signals..........................................................................................................................................................3-11
3.14 Strapping Options........................................................................................................................................................... 3-12
Chapter 4: Timing Specifications
4.1 HyperTransport Bus Timing .............................................................................................................................................. 4-1
4.2 HyperTransport Reference Clock Timing Parameters....................................................................................................... 4-1
4.3 PCI-E Differential Clock AC Specifications ..................................................................................................................... 4-1
4.4 OSCIN Timing................................................................................................................................................................... 4-1
4.5 Power Rail Power Up Sequence......................................................................................................................................... 4-3
Chapter 5: Electrical Characteristics and Physical Data
5.1 Electrical Characteristics.................................................................................................................................................... 5-1
5.1.1 Maximum and Minimum Ratings ........................................................................................................................ 5-1
5.1.2 DC Characteristics............................................................................................................................................... 5-2
5.2 RS690 Thermal Characteristics.......................................................................................................................................... 5-5
5.2.1 RS690 Thermal Limits ........................................................................................................................................ 5-5
5.2.2 Other Thermal Parameters................................................................................................................................... 5-5
5.3 Package Information .......................................................................................................................................................... 5-6
5.3.1 Physical Dimensions............................................................................................................................................ 5-6
5.3.2 Pressure Specification.......................................................................................................................................... 5-8
5.3.3 Board Solder Reflow Process Recommendations ............................................................................................... 5-8
5.4 Thermal Diode Characteristics......................................................................................................................................... 5-10
Chapter 6: Power Management and ACPI
6.1 ACPI Power Management Implementation ....................................................................................................................... 6-1
6.2 Power Management for the Graphics Controller ............................................................................................................... 6-2
6.2.1 PCI Function Power States.................................................................................................................................. 6-2
6.2.2 PCI Power Management Interface....................................................................................................................... 6-2
© 2007 Advanced Micro Devices, Inc. 41977 AMD RS690 Databook 3.03
Proprietary and Confidential Table of Contents-3
6.2.3 Capabilities List Data Structure in PCI Configuration Space..............................................................................6-2
6.2.4 Register Block Definition.....................................................................................................................................6-3
6.2.5 Capability Identifier: Cap_ID (Offset = 0)...........................................................................................................6-4
6.2.6 Next Item Pointer .................................................................................................................................................6-5
6.2.7 PMC - Power Management Capabilities (Offset = 2) ..........................................................................................6-5
Chapter 7: Testability
7.1 Test Capability Features ......................................................................................................................................................7-1
7.2 Test Interface.......................................................................................................................................................................7-1
7.3 XOR Tree............................................................................................................................................................................7-1
7.3.1 Brief Description of an XOR Tree .......................................................................................................................7-1
7.3.2 Description of the XOR Tree for the RS690........................................................................................................7-2
7.3.3 XOR Tree Activation ...........................................................................................................................................7-2
7.3.4 XOR Chain for the RS690....................................................................................................................................7-2
7.3.5 Unused Pins..........................................................................................................................................................7-4
7.4 VOH/VOL Test...................................................................................................................................................................7-4
7.4.1 Brief Description of a VOH/VOL Tree................................................................................................................7-4
7.4.2 VOH/VOL Tree Activation..................................................................................................................................7-4
7.4.3 VOH/VOL pin list................................................................................................................................................7-5
Appendix A: Pin Listings
A.1 RS690 Pin List Sorted by Ball Reference......................................................................................................................... 1-2
A.2 RS690 Pin List Sorted by Pin Name................................................................................................................................. 1-6
Appendix B: Revision History
41977 AMD RS690 Databook 3.03 © 2007 Advanced Micro Devices, Inc.
Table of Contents-4 Proprietary and Confidential
This page intentionally left blank .
41977 AMD RS690 Databook 3.03 © 2007 Advanced Micro Devices, Inc.
List of Figures-1 Proprietary and Confidential
List of Figures
Figure 1-1: RS690-variant Branding Diagrams for ASIC Revision A11 ........................................................................................1-8
Figure 1-2: RS690-variant Branding Diagrams for ASIC Revision A12 ........................................................................................1-9
Figure 1-3: The RS690-Family ASIC Part Number Legend ...........................................................................................................1-9
Figure 2-1: RS690 Internal Block Diagram .....................................................................................................................................2-1
Figure 2-2: Host Interface Block Diagram ......................................................................................................................................2-2
Figure 2-3: RS690 Host Bus Interface Signals ...............................................................................................................................2-3
Figure 2-4: Data Transmission Ordering for the Integrated DVI/HDMI and TMDS Interfaces ..................................................... 2-4
Figure 3-1: RS690 Pin Assignment Top View (Left) ......................................................................................................................3-2
Figure 3-2: RS690 Pin Assignment Top View (Right) ....................................................................................................................3-3
Figure 3-3: RS690 Interface Block Diagram ...................................................................................................................................3-4
Figure 4-1: Power Rail Power Up Sequence for the RS690 ........................................................................................................... 4-3
Figure 5-1: DC Characteristics of the Integrated DVI/HDMI and the TMDS Interface .................................................................5-4
Figure 5-2: RS690 Package Outline ................................................................................................................................................5-6
Figure 5-3: RS690 Ball Arrangement ..............................................................................................................................................5-7
Figure 5-2: Stencil Opening Recommendations .............................................................................................................................. 5-9
Figure 5-4: RoHS/Lead-Free Solder (SAC305/405 Tin-Silver-Copper) Reflow Profile ..............................................................5-10
Figure 6-1: Linked List for Capabilities ..........................................................................................................................................6-5
Figure 7-1: An Example of a Generic XOR Tree ............................................................................................................................7-2
Figure 7-2: Sample of a Generic VOH/VOL Tree ...........................................................................................................................7-4
41977 AMD RS690 Databook 3.03 © 2007 Advanced Micro Devices, Inc.
List of Figures-2 Proprietary and Confidential
This page is left blank intenti onall y.
41977 AMD RS690 Databook 3.03 © 2007 Advanced Micro Devices, Inc.
List of Tables-1 Proprietary and Confidential
List of Tables
Table 1-1: RS690-Family ASIC Part Numbers ............................................................................................................................1-10
Table 1-2: Pin Type Code s ...........................................................................................................................................................1-10
Table 1-3: Acronyms and Abbreviations ......................................................................................................................................1-11
Table 2-1: Single Link Signal Mapping for DVI/HDMI ...............................................................................................................2-5
Table 2-2: Dual-Link Signal Mapping for DVI ..............................................................................................................................2-6
Table 2-3: Support for HDMI Packet Type ....................................................................................................................................2-7
Table 2-4: VGA DAC Characteristics ............................................................................................................................................2-8
Table 3-1: CPU HyperTransport Interface .....................................................................................................................................3-5
Table 3-2: 1 x 16 Lane PCI Express Interface for External Graphics ............................................................................................3-5
Table 3-3: 1 x 4 Lane A-Link Express II Interface for Southbridge ..............................................................................................3-5
Table 3-4: 4 x 1 Lane PCI Express Interface for General Purpose External Devices .................................................................... 3-6
Table 3-5: PCI Express Interface for Miscellaneous PCI Express Signals ....................................................................................3-6
Table 3-6: Clock Interface ..............................................................................................................................................................3-6
Table 3-7: CRT and TV Interface ...................................................................................................................................................3-6
Table 3-8: Integrated DVI/HDMI Interface ....................................................................................................................................3-7
Table 3-9: TMDS Interface Multiplexed on the PCI-E Graphics Interface ....................................................................................3-8
Table 3-10: Power Management Pins .............................................................................................................................................3-9
Table 3-11: Miscellaneous Pins ......................................................................................................................................................3-9
Table 3-12: Power Pins .................................................................................................................................................................3-10
Table 3-13: Ground Pins ...............................................................................................................................................................3-11
Table 3-14: RS690 Debug Po rt Signals ........................................................................................................................................3-11
Table 3-15: Strap Definitions for the RS690 ................................................................................................................................3-12
Table 3-16: Strap Definition for GPPSB_LINK_CONFIG ..........................................................................................................3-13
Table 4-1: HTREFCLK Pad (66.66MHz) Timing Parameters .......................................................................................................4-1
Table 4-2: PCI-E Differential Clock (GFX_CLK, SB_CLK) AC Characteristics .........................................................................4-1
Table 4-3: Timing Requirements for the OSCIN Pad ....................................................................................................................4-1
Table 4-4: RS690 Power Rail Power Up Sequence Requirements .................................................................................................4-3
Table 5-1: Maximum and Minimum Ratings .................................................................................................................................5-1
Table 5-2: DC Characteristics for 3.3V TTL Signals .....................................................................................................................5-2
Table 5-3: DC Characteristics for 1.8V TTL Signals .....................................................................................................................5-2
Table 5-4: DC Characteristics for the HTREFCLK Pad (66.66MHz) ............................................................................................5-2
Table 5-5: DC Characteristics for the OSCIN Pad (14.3181818 MHz) ..........................................................................................5-2
Table 5-6: DC Characteristics for the Integrated DVI/H DMI (Not Appli cable to the RS690C) ...................................................5-3
Table 5-7: DC Characteristics for the TMDS Int erface Multiplexed on the PCI-E Gfx Lanes (Not App licable to the RS690C) .5-3
Table 5-8: RS690 Thermal Limits .................................................................................................................................................. 5-5
Table 5-9: Thermal Parameters for the RS690 ...............................................................................................................................5-5
Table 5-10: RS690 465-Pin FCBGA Package Physical Dimensi ons .............................................................................................5-6
Table 6-1: ACPI States Supported by the RS690 ...........................................................................................................................6-1
Table 6-2: ACPI Signal Definitions ................................................................................................................................................6-1
Table 6-3: Standard PCI Configuration Space Header Type 0 .......................................................................................................6-2
Table 6-4: PCI Status Register ........................................................................................................................................................6-3
Table 6-5: Capabilities Pointer (CAP_PTR) ...................................................................................................................................6-3
Table 6-6: Power Management Register Block ..............................................................................................................................6-3
Table 6-7: Power Management Control/Status Register (PMCSR) ...............................................................................................6-4
Table 6-8: Capability Identifier (Cap_ID) ......................................................................................................................................6-4
Table 6-9: Next It em Pointer (NEXT_ ITEM_PTR) .......................................................................................................................6-5
Table 6-10: Power Management Capabilities – PMC ....................................................................................................................6-5
Table 7-1: Pins on the Test Interface ..............................................................................................................................................7-1
Table 7-2: Example of an XOR Tree .............................................................................................................................................. 7-2
41977 AMD RS690 Databook 3.03 © 2007 Advanced Micro Devices, Inc.
List of Tables-2 Proprietary and Confidential
Table 7-3: RS690 XOR Tree .......................................................................................................................................................... 7-2
Table 7-4: Trut h Table for the VOH/VOL Tree Outputs ............................................................................................................... 7-4
Table 7-5: RS690 VOH/VOL Tree ................................................................................................................................................ 7-5
© 2007 Advanced Micro Devices, Inc. 41977 AMD RS690 Databook 3.03
Proprietary and Confidential 1-1
Chapter 1
Overview
1.1 Introducing the RS690
The RS690 is a seventh generation Integrated Graphics Processor (IGP) that integrates a DirectX 9.0 compliant 2D/3D
graphics core and a system controller in a single chip. It supports the AMD Athlon 64, Athlon 64 FX, Athlon 64 X2, and
Sempron processors, including AM2 socket CPUs. All CPUs are supported on bo th high performance and value
platforms.
The RS690 integrates an ATI Radeon™ X700-based graphics engine, dual display, a TV encoder, an integrated
DVI/HDMI interface, an integrated TMDS controller, and Northbridge functionality in a single BGA package. This high
level of integration and scalability enables manufacturers to offer enthusiast level capabilities and performance while
minimizing board space and system cost.
The RS690 is pin-compatible with AMD's RS485, allowing existing RS485 platforms to easily migrate to the RS690.
Comparing with the RS485, th e RS690 provides additional features with reduced overall system power.
Robust and Flexible Core Logic Features
The RS690 combines graphics and system logic functions in a single chip using a 21mm-body FCBGA package, reducing
overall solution area. For optimal system and graphics performance, the RS690 supp orts a high speed Hyp erTransport
interface to the AMD processor , running at a data rate of up to 2GT/s and supporting the new generation of AM2 socket
processors. The RS690 is ideally suited to 64-bit operating system s, and supports platform config urat ions with greater
than 4GB of system memory. The rich PCI Express expansion capabilities of RS690, including support for PCI Express
external graphics and up to four other PCI Express pe ripherals (or five, when using only 8 lanes for external graphics), are
complemented by the advanced I/O features of AMD's SB600 Southb ridge.
Best for Windows Vista
The RS690 delivers the best Windo ws Vista experience of any integrated graphics and core logic product for the AMD
platform. It incorporates an ATI Radeon™ X700-based graphics core, which provides the 3D rendering power needed to
generate the Windows Vista desktop even under the most demanding circumstances. In addition, dedicated hardware
acceleration is provided for key new Windows Vista features such as ClearType. This ATI Radeon X700-based graphics
technology also enables great 3D application perfor mance through technologies such as SmartShader™ HD,
SmoothVision™ HD, and 3Dc.
Leading Multimedia Capabilities
The RS690 incorporates the innovat ive ATI Avivo™* display architecture, prov idi ng users with visual quality which is
second to none. Advanced scaling and color correction capabilities, along wi th increased precision through the entire
display pipeline, ensure an optimal image on CRT monitors, LCD panel s, and any other display devices. A new TV
encoder , based on designs used in ATI's Xilleon™ products, provides unequalled quality, and fully integrated DVI/HDMI
and HDCP support allows compatibility with even the most modern high definition televisions without the additional cost
of external components.
*Note: ATI Avivo™ is a technology platform that includ es a bro a d set of capabil ities offered by certain ATI Radeon
products. Full enablement of som e ATI Avivo™ capabilities may require complementary products.
Low Power Consumption and Industry Leading Power Management
The RS690 is manufactured using a power efficient 80nm technology, and it supports a whole range of industry standards
and all new proprietary power management features. It provides comprehensive support fo r the ACPI specificati on and
AMD power management features such as PowerNow. The RS690 family inclu des va ri ants with support for dedicated
local display cache memory, which further reduces system power consumption.
Software Compatibility
The graphics driver for the RS690 is fully compatible with all other ATI Radeon class graphics controllers from AMD. A
single driver can support mult ipl e graphics config urations across AMD's product lines, including the ATI Radeon family
41977 AMD RS690 Databook 3.03 © 2007 Advanced Micro Devices, Inc.
1-2 Proprietary and Confidential
RS690C
and the AMD chipset family. In addition, this driver compatibility allows the RS690 to benefit immediately fr om AMD's
software optimization and from the advanced Windows XP and Windows Vista support available in the ATI Radeon
family drivers.
1.2 RS690C
The RS690C is a special variant of the RS690 that supports neither a DVI/HDMI interface nor a TMDS interface that
enables DVI/HDMI. Beyond the difference, all other in format ion in this document applies to both the RS690 and
RS690C, unless otherwise specified.
1.3 RS690 Features
1.3.1 CPU HyperTransport Interface
Supports the mobile and desktop Athlo n 64/Athlon 64 FX/Athlon X2/Sem pron processors, including AM2 socket
CPUs.
Supports 200, 400, 600, 800, and 1000MHz HyperTransport (HT) interface speeds.
Supports LDTSTP interface, CPU throttling, and stutter mode.
1.3.2 ATI HyperMemory
Supports ATI HyperMemory™*.
* Note: The amount of HyperMemory available includes both dedicated and shared memory and is determined by various
factors. For details, please refer to the product advisory numbered PA_IGPGenC5, availa ble on AMD s OEM Resource
Center or from you AMD CSS representative.
1.3.3 PCI Express Interface
Compliant with the PCI Express 1.1a Specifications.
Highly flexible PCI Express implementation to suit a variety of platform needs
A dual-port, x16 graphics interface, configurable to any of the following modes of support:
An external graphics device utilizing all 16 lanes.
[Not applicable to the RS690C] An external graphics device on 8 lane s, and utilizing simultaneously the
remaining 8 lanes to support a TMDS interface, enabling DVI/HDMI (see section 1.3.9, “DVI/HDMI (Not
applicable to the RS690C)” below for details).
An external graphics device on 8 lanes, and utilizing simultaneously the remaining lanes as a single x1, x2, or x4
general purpose PCI-E link.
A four-port, x4 PCI Express general purpose interface, configurable to one of the following modes of support:
Four x1 links.
Two x2 links.
One x2 and two x1 links.
One x4 link.
1.3.4 A-Link Express II Interface
One x4 A-Link Express II interface (PCI Express 1.1 compliant) for connection to an AMD Southbridge, providing
more bandwidth than the older A-Link Express interface.
1.3.5 2D Acceleration Features
Highly-optimized 128-bi t engine, capable of processing multiple pixels per clock.
Hardware acceleration of Bitblt, Line Draw, Polygon / Rectangle Fill, Bit Masking, Monochrome Expansion,
RS690 Features
© 2007 Advanced Micro Devices, Inc. 41977 AMD RS690 Databook 3.03
Proprietary and Confidential 1-3
Panning/Scrolling, Scissoring, and full ROP support (including R OP3).
Optimized handling of fonts and text using AMD proprietary techniqu es.
Hardware acceleration for ClearType font rendering.
Game acceleration including support for Microsoft's DirectDraw: Double Buffering, Virtual Sprites, T ransparent Blit,
and Masked Blit.
Supports a maximum resol ution of 2048x1536 @ 32bp p for a maximum pixel clock speed of 400MHz
(driver-limited).
Acceleration in 1/8/15/16/32 bpp modes:
ClearType mode for 1bpp
Pseudocolor mode for 8bp p
ARGB1555 and RGB565 modes for 16bpp
ARGB8888 mode for 32bpp
Significant increase in the High-End Graphi cs WinBench score due to capability for C18 color expansion.
Setup of 2D polygons and lines.
Support for new GDI extensions in Windows 2000 and Windows XP: Alpha BLT, Transparent BLT, Gradient Fill.
Hardware cursor (up to 64x64x32bpp), with alpha channel for direct support of Windows 2000 and Windows XP
alpha cursor.
1.3.6 3D Acceleration Features
Multi-texturing via one texture blending unit per pixel pipes, allowing up to 512 texel reads per pixel in a single pass.
3D Texture support, including projective 3D textures.
Comprehensive support for bump mapping: emboss, dot-produ ct, and environment bump maps.
Improved precision in anisotropic filtering and bilinear filtering.
Supports a maximum resol ution of 2048x1536 @ 32bp p for a maximum pixel clock speed of 400MHz
(driver-limited).
Complete 3D primitive supp ort: points, lines, triangles, lists, strips and quadrilaterals and BLTs with Z compare.
Improved texture compositing.
Hidden surface removal using 16, 24, or 32-bit Z-buffering (maximum Z-buffer depth is 24 bits when stencil buffer
enabled) and Early Z hardware.
8-bit stencil buffer.
Bilinear and trilinear texture filtering.
Full support of Direct3D texture ligh ting.
Dithering support in 16 bpp for near 24 bpp quality in less memory.
Extensive 3D mode support.
Anti-aliasing using multi-sampling algorithm with supp ort for 2, 4, and 6 sam ples.
Optimized for full performance in true color triple buffered 32bpp acceleration modes.
New generation rendering engine provides top 3D performance.
Support for OpenGL format for Indirect Vertices in Vertex Walker.
Full DirectX 9.0 support (Vertex Shader version 2.0 and Pi xel Shader version 2.0):
Full precision floating point pixel pipeline.
Support for up to 4 MRTs (Multiple-Render-Targets).
Support for writing all texture formats from render pipe in floating points (including cube mapes and 3D
textures).
41977 AMD RS690 Databook 3.03 © 2007 Advanced Micro Devices, Inc.
1-4 Proprietary and Confidential
RS690 Features
Support for up to 512b per pixel form ats (4 color case).
Advanced setup engine, capable of processing 1 pol ygon (lit and textured) per cycle
1.3.7 Motion Video Acceleration Features
Enhanced MPEG-2 hardware decode acceleration, including support for:
Integrated general purpose iDCT engine for MPEG2 and DV decode acceleration.
Integrated MPEG motion comp ensation engine for decode acceleration.
Parallel operation of the iDCT and MC and high pro cessing rates with minimal soft ware overhead.
Provides dramatically reduced CPU utilization without incurring the cost of a full MPEG-2 decod er.
MPEG-4 simple profile support.
Hardware acceleration for WMV9 playback.
Supports top quality DVD with low CPU usage.
Hardware-based adaptive de-interlacing filter and scaler provide high quality full-screen and full-speed video
playback. Minimizes the aliasing artifacts along edges usually caused by a conventional deinterlacer/scaler.
1.3.8 Multiple Display Features
General
[Not applicable to the RS690C] Dual independe nt displays. Possible configurations include:
CRT and DVI/HDMI
TV (component, composite, or S-Video) and DVI/HDMI
DVI and DVI*
DVI and HDMI*
Note: * The options require implementation of th e TMDS interface that is multiplexed on the PCI-E external
graphics interface; see section 1.3.9, “DVI/HDMI (Not applicable to the RS690C),” on page 5.
[Not applicable to the RS690C] Resolution, refresh rates, and display data can be completely independent for the two
display paths.
Each display controller supports true 30 b its per pixel throughout the display pipe .
Each display path supports VGA and accelerated modes, video overlay, hardware cursor, hardware icon, and palette
gamma correction.
Supports both interlaced and non-interlaced displays.
Support for display modes up to 2880 pixels/line per display.
Full ratiometric expansion ability is supported for source desktop modes up to 1920 pixels/line.
HD TV support (with underscan) for display modes of 1920 or less pixels/line.
SD TV support (with underscan) for display modes of 1024 or less pixels/ line.
Maximum DAC frequency of 400 MHz.
Supports 8, 16, 32 & 64-bpp depths for the main graphics layer:
For 32-bpp depth, supports xRGB 8:8:8:8, xRGB 2:10:1 0:10, sCrYCb 8:8:8:8, and xCrYCb 2:10:10:10 data
formats.
For 64-bpp depth, supports xRGB 16:16:16:16 data format.
Independent gamma, color conversion and corr ecti on controls for main graphics layer.
Supports display resolutions beyond 2560x1600.
Support for DDC1 and DDC2B+ for plug and play moni tors.
8-bit alpha blending of graphics and video overlay.
RS690 Features
© 2007 Advanced Micro Devices, Inc. 41977 AMD RS690 Databook 3.03
Proprietary and Confidential 1-5
Hardware cursor up to 64x64 pixels in 2bpp, full color AND/XOR mix, and full col or 8-bit alpha blend.
Hardware icon up to 128x128 pixels in 2bpp, with two colors, transparent, and inverse transparent. AND/XOR
mixing. Supports 2x2 icon magnification.
Virtu a l desktop support.
Support for flat panel di splays via VGA, DVI (not appl icable to the RS690C), or HDMI (not applicable to the
RS690C).
[Not applicable to the RS690C] Integrated HD Audi o Cont roller for HDMI audio data.
Support for stereoscopic monitors.
TV Out
An integrated TV encoder from AMD’s Xilleon™ products, with an on-chip DAC (shared with the CRT analog
output) (Note: Simultaneous output for TV and CRT is not supported).
10-bit DAC with 10-tap filter producing scaled, flicker removed, artifact suppressed display on a PAL or NTSC TV
with composite, S-Video, component, and RGB output.
W ith the proper BIOS implementation, supports different TV standards including NTSC, NTSC-J, PAL-M, PAL-CN,
PAL-B, PAL-G, PAL-D, PAL-H, PAL-I, PAL-K, and PAL- N.
Supports Macrovision 7.1 copy protection standard (required by DVD players).
Supports a maximum resol ution of 1024x768.
Supports the following formats of YPbPr component output: 480i, 480p, 576i, 576p, 720p, and 1080 i.
Internal adaptive flicker filtering available on both display paths for interlaced TV outputs.
Supports fully-programmabl e 2D, adaptive comb filter for composite output.
TV-out power management support.
Line 21 Closed Caption and Extended Data Service support for encoding in Vertical Blanking Interval (VBI) of TV
signal.
CGMS copy management support in VBI through Line-20 and/or Extended Data Service (Line-21 Field 2) for
NTSC, and through Wide Screen Signaling data (WSS) for PA L.
SURROUNDVIEW
RS690’s SURROUNDVIEW™ feature allows support for up to three independent monitors for systems equipped
with an additional ATI discrete graphics card (require s special BIOS and displa y driver support).
1.3.9 DVI/HDMI (Not applicable to the RS690C)
Integrated DVI or HDMI interface: single-link support only for HDMI‡, 30-bit dual-link support for DVI.
Also supports a TMDS interface, enabling DVI or HDMI, which is multiplexed on the PCI-E external graphics
interface (only available if no external graphics card, or only a x8 one, is attached to the PCI-E external graphics
interface).‡
1650 Mbps/channel† with 165 MHz† pi xel clock rate per link.
Supports industry standard EVA-861B video modes incl uding 480p, 720p, and 1080i. For a full list of currently
supported modes, contact your AMD CSS representative.
HDMI basic audio support at 32, 44.1, and 48 kHz. Supports two-channel uncom presse d audio and multi-channel
audio compressed to two channels like 5.1 AC3 and DTS. HD Au dio device compatible with Microsoft HD audio
drivers.
HDCP support on data stream for single-link transmission, with on-chip key storage (available only on either one of
the integrated DVI/HDMI interface or the TMDS interface (multiplexed on the PCI-E graphics lanes) at any time).**
Notes: * CEC is not supported.
To be qualified.
41977 AMD RS690 Databook 3.03 © 2007 Advanced Micro Devices, Inc.
1-6 Proprietary and Confidential
Software Features
** HDCP content protection is only available to licensed buyers of the technology and can only be enabled when
connected to an HDCP-capable receiver.
‡ The TMDS interface multiplexed on the PCI-E graphics lanes cannot enable HDMI when the integrated
DVI/HDMI interface is supporting HDMI, and vice versa.
1.3.10 Power Management Features
Fully supports ACPI states S1, S3, S4, and S5.
The Chip Power Management Support logic supports four device power states defined for the OnNow Architecture—
On, Standby, Susp end, and Off. Each power state can be achieved by software control bits.
Hardware control led int e lli gent clock gating enables clocks only to active functional blocks, and is complet e ly
transparent to software.
Support for Cool'n'Quiet™ via FID/VID change.
Support for PowerNow™.
Clocks to every major functional bl ock are cont rolled by a unique dynamic clock switching technique that is
completely transparent to the software. By turning off the clock to the block that is idle or not used at that point, the
power consumption is significantly reduced during normal operati on.
Supports .
Support dynamic lane reduction for the PCI-E interfaces, adjusting lane width according to required bandwidth.
1.3.11 PC Design Guide Compliance
The RS690 complies with all relevan t Win dows Logo Program (WLP) requirements from Microsoft for WHQL
certification.
1.3.12 Test Capa bility Features
The RS690 has a variety of test modes and capabilities that provide a very high fault coverage and low DPM (Defect Per
Million) ratio:
Full scan implementation on the di gital core logic through ATPG (Automatic Test Pattern Generation Vectors).
Dedicated test logic for the on-chip custom memory macros to provide complete coverage on these modules.
A JTAG test mode to allow board level testing of neighboring devices.
An EXOR tree test mode on all the digital I/O's to allow for proper soldering verification at the board level.
A VOH/VOL test mode on all digital I/O’s to allow for proper verification of output high and output low values at the
board level.
Improved access to the analog modules to allow full evaluation and characterization.
Improved IDDQ mode support to allow chip evaluati on through current leakage measurements.
These test modes can be accessed through the settings on the instruction register of the JTAG circuitry.
1.3.13 Packaging
Single chip solution in 80nm , 1.2V low power CMOS technology.
465-FCBGA package, 21mm x21mm.
1.4 Software Features
Supports Microsoft Windows 2000, XP, and Vista.
BIOS ability to read EDID 1.1, 1.2, and 1.3.
Ability to selectively enable and disab le several devices including CRT, LCD, TV, and DFP.
Register-compatible with VGA standards, BIOS-compatible with VESA VBE2.0.
Branding Diagram s
© 2007 Advanced Micro Devices, Inc. 41977 AMD RS690 Databook 3.03
Proprietary and Confidential 1-7
Supports corporate manageability requirements such as DMI.
ACPI support.
Full Writ e Combining support for maximum performance of the CPU.
Full-featured, yet simple Windows utilities:
Calibration utility fo r WYSIWYG color
Independent brightness control of desktop and overlay
End user diagnostics
Drivers meet Microsoft's rigorous WHQL criteria and are suitable for systems with the "Designed for Windows"
logos.
Comprehensive OS and API support.
Hot-key support (Windows ACPI 1.0b or AMD Event Handler Utility where appropriate).
Extensive power management support.
Rotation mode support in software.
Dual CRTC, simultaneous view, extended desktop support (Win98, Win XP)
DirectX 9.0 support.
Switchable overlay support.
H.264 playback support.
1.5 Branding Diagrams
1.5.1 Branding Diagrams for ASIC Revision A11
o
GGGGG
YYWWXXV
215RQA6AVA11FG
TAIWAN
RS690
* YY - Assembly Star t Year
WW - Assembly Start Week
XX - Assembly Location
V - Substrate Vendor Code
Part Number (for ASIC revision A11)
Country of Origin
Date and Other Codes*
Wafer Foundry’s Lot Number
AMD Code Name
Artwork
41977 AMD RS690 Databook 3.03 © 2007 Advanced Micro Devices, Inc.
1-8 Proprietary and Confidential
Branding Diagrams
Figure 1-1 RS690-variant Branding Diagrams for ASIC Revision A11
1.5.2 Branding Diagrams for ASIC Revision A12 and After
o
GGGGG
YYWWXXV
215CQA6AVA11FG
TAIWAN
RS690C
* YY - Assembly Start Year
WW - Assembly Start Week
XX - Assembly Location
V - Substrate Vendor Code
Part Number (for ASIC revision A11)
Country of Origin
Date and Other Codes*
Wafer Foundry’s Lot Number
AMD Code Name
Artwork
RS690
215RQA6AVA12FG
XXXXXX.XX.XXX
YYWWSSV
TAIWAN
* YY - Assembly S ta rt Ye ar
WW - Assembly Start Week
SS - Assembly Loc ation
V - Substrate Vendor Code
Part Number (for ASIC revision A12)
Country of Origin
Date and Other Codes*
Wafer Foundry’s Lot Number
AMD Code Name
AMD Logo
Part Number Legend
© 2007 Advanced Micro Devices, Inc. 41977 AMD RS690 Databook 3.03
Proprietary and Confidential 1-9
Note: The branding diagrams above do not necessarily contain the latest ASCI revision numbers for the IGPs. Unless specified otherwise, no
information in this databook is specific to the ASIC revision numbers given in the diagrams.
Figure 1-2 RS690-variant Branding Diagrams for ASIC Revision A12
1.6 Part Number Legend
Figure 1-3 The RS690-Family ASIC Part Number Legend
RS690C
215CQA6AVA12FG
XXXXXX.XX.XXX
YYWWSSV
TAIWAN
* YY - Assembly Start Year
WW - Assembly Start Week
SS - Assembly Location
V - Substrate Vendor Code
Part Number (for ASIC revision A12)
Country of Origin
Date and Other Codes*
Wafer Foundry’s Lot Number
AMD Code Name
AMD Logo
TSMC Fab
215 RQA6 AVA12 FG
215 – Desktop
216 – Mobile
Product Type
TQA6 -RS690T
Marketing
Brand Name
Substrate
Revision
N UMC Fab 8F
M – IBM
C 3
S TSMC Fab 4
F TSMC Fab5
G TSMC Fab6
K TSMC Fab12
L TSMC Fab14
W TSMC WSMC
Q TSMC WSMC ( 8B)
T TSMC Wafer Tech
Foundry Code
ASIC
Revision
Blank No
F Yes
Flip Chip
K High Temp
G Lead Free
Package BOM
NQA6 -RX690
LQA6 -RS690MC
RQA6 -RS690
V
UMC Fab 12A
MQA6 -RS690M
CQA6 -RS690C
41977 AMD RS690 Databook 3.03 © 2007 Advanced Micro Devices, Inc.
1-10 Proprietary and Confidential
Conventions and Notations
1.7 Conventions and Notations
The following conventions are used throughout this manual.
1.7.1 Pin Names
Pins are identified by their pin names or ball references. Multiplexed pins assume alternate “functional names” when they
perform their alternate functions, and these “functional names” are given in Chapter 3, “Pin Descri ptions and Strap
Options.”
All active-low signal s are identified by the suffix ‘# ’ in their names (e.g., MEM_RAS#).
1.7.2 Pin Types
The pins are assigned different codes according to their operational characteristics. These codes are listed in Table 1-2.
1.7.3 Numeric Representation
Hexadecimal numbers are appended with “h” (Intel assembly-style notation) whenever there is a risk of ambiguity. Other
numbers are in decimal.
Pins of identical functions but different trailing integers (e.g., “CPU_D0, CPU_D1,... CPU_D7”) are referred to
collectively by specifying their integers in square brackets and with colons (i.e., “CPU_D[7:0]”). A similar short-hand
notation is used to indicate bi t occupat ion in a register. For example, NB_COMMAND[15:10 ] refers to the bit positions
10 through 15 of the NB_COMMAND register.
Table 1-1 RS690-Family ASIC Part Numbers
Code Name Part Number
RS690 215RQA6AVA12FG
RS690C 215CQA6AVA12FG
RS690M 216MQA6AVA12FG
RS690MC 216LQA6AVA12FG
RS690T 216TQA6AVA12FG
RX690 215NQA6AVA12FG
Table 1-2 Pin Type Codes
Code Pin Type
I Digital Input
O Digital Output
OD Open Drain
I/O Bi-Directional Digital Input or Output
M Multifunctional
Pwr Power
Gnd Ground
A-O Analog Output
A-I Analog Input
A-I/O Analog Bi-Directional Input/Output
A-Pwr Analog Power
A-Gnd Analog Ground
Other Pin types not included in any of the categories above
Conventions and Notations
© 2007 Advanced Micro Devices, Inc. 41977 AMD RS690 Databook 3.03
Proprietary and Confidential 1-11
1.7.4 Register Field
A field of a register is referred to by the f orm at of [Register Name].[Register.Field]. For example,
“NB_MC_CNTL.DISABLE_BYPASS” is the “DISABLE_BYPASS” field of the register “NB_MC_CNTL.”
1.7.5 Hyperlinks
Phrases or sentences in blue italic font are hyperlinks to other parts of the manual. Users of the PDF version of this manual
can click on the links to go directly to the referenced sections, tables, or figures.
1.7.6 Acronyms and Abbreviations
The following is a list of the acronyms and abbreviations used in this manual.
Table 1-3 Acronyms and Abbreviations
Acronym Full Expression
ACPI Advanced Configuration and Power Interface
A-Link-E II A-Link Express II interface between the IGP and the Southbridge.
BGA Ball Grid Array
BIOS Basic Input Output System. Initialization code stored in a ROM or Flash RAM used to start up a
system or expansion card.
BIST Built In Self Test.
BLT Blit
bpp bits per pixel
CEC Consumer Electronic Control
CPIS Common Panel Interface Specification
CRT Cathode Ray Tube
CSP Chip Scale Package
DAC Digital to Analog Converter
DBI Dynamic Bus Inversion
DDC Display Data Channel. A VESA standard for communicating between a computer system and
attached display devices.
DDR Double Data Rate
DFP Digital Flat Panel. Monitor connection standard from VESA.
DPM Defects per Million
DTV Digital TV
DVD Digital Video Disc
DVI Digital Video Interface. Monitor connection standard from the DDWG (Digital Display Work
Group).
DVS Digital Video Stream
EPROM Erasable Programmable Read Only Memory
FIFO First In, First Out
FPDI Flat Panel Display Interface
GDI Graphics Device Interface
GND Ground
GPIO General Purpose Input/Output
GTL+ Gunning Transceiver Logic
HDCP High-Bandwidth Digital Content Protection
HDMI High Definition Multimedia Interface
HDTV High Definition TV. The 1920x1080 and the 1280x720 modes defined by ATSC.
HPD Hot Plug Detect
iDCT inverse Discrete Cosine Transform
IDDQ Direct Drain Quiescent Current
41977 AMD RS690 Databook 3.03 © 2007 Advanced Micro Devices, Inc.
1-12 Proprietary and Confidential
Conventions and Notations
IGP Integrated Graphics Processor. A single device that integrates a graphics processor and a
system controller.
JTAG Joint Test Access Group. An IEEE standard.
MB Mega Byte
MPEG Motion Pictures Experts Group. Refers to compressed video image streams in either MPEG-1
or MPEG-2 formats.
NTSC National Television Standards Committee. The standard definition TV system used in North
America and other areas.
PAL Phase Alternate Line. The standard definition TV system used in Europe and other areas.
PCI Peripheral Component Interface
PCI-E PCI Express
PCMCIA Personal Computer Memory Card International Association. It is also the name of a standard
for PC peripherals promoted by the Association.
PLL Phase Locked Loop
POST Power On Self Test
PD Pull-down Resistor
PU Pull-up Resistor
ROP Raster Operation
SDRAM Synchronous Dynamic RAM
TMDS Transition Minimized Differential Signaling
UMA Unified Memory Architecture
UV Chrominance (also CrCb). Corresponds to the color of a pixel.
UXGA Ultra Extended Graphics Array
VBI Vertical Blank Interval
VESA Video Electronics Standards Association
VGA Video Graphics Adapter
VRM Voltage Regulation Module
Table 1-3 Acronyms and Abbreviations (Continued)
Acronym Full Expression
© 2007 Advanced Micro Devices, Inc. 41977 AMD RS690 Databook 3.03
Proprietary and Confidential 2-1
Chapter 2
Functional Descriptions
This chapter describes the functional operation of the major interfaces of the RS690 system logic chip. Figure 2-1,
“RS690 Internal Block Diagram,” illustrates the RS690 internal bl ocks and interfaces.
Figure 2-1 RS690 Internal Block Diagram
Hyper-
Transport
Unit
CPU
Interface
Register Interface
iDCT Setup
Engine 2D
Engine
3D
Engine
Overlay
Root
MUX
Display 1& 2
Integrated DVI/HDMI*
TV-Out
TMDS, enabling DVI/HDMI
CRT
Memory Controller
CPU
BIF
SB
External
Graphics Complex
A-Link-E II Gfx Interf ace
PCI-E
Interface
(1 x 16 Lanes)
GPP Interface
PCI-E
(4 x 1 Lanes)
Expansion
Slots or
On-board
Devices
(1 x 4 Lanes)
(Multiplexed on PCI-E Gfx Lanes)*
* Not applicable to the RS690C.
41977 AMD RS690 Databook 3.03 © 2007 Advanced Micro Devices, Inc.
2-2 Proprietary and Confidential
Host Interface
2.1 Host Interface
The RS690 is optimized to interface with the AMD Athlon 64/Athlon 64 FX/Athlon X2/Sempron processors, including
AM2 socket CPUs. This section presents an overview of the HyperTransport interface. For a detailed description of the
interface, please refer to the HyperTransport I/O Link Specification from the HyperTransport Consortium. Figure 2-2,
“Host Interface Block Diagram,” illustrates the basic blocks of the host bus interface of the RS690.
Figure 2-2 Host Interface Block Diagram
The HyperTransport (HT) Interface, formerly known as the LDT (Lightning Data Transport) interface, is a high speed,
packet-based link implemented on two unidirectional buses. It is a point-to-point interface where data can flow both
upstream and downstream at the same time. The commands, addresses, and data travel in packets on the Hy perTran s port
link. Lengths of packets are in mult ipl e s of four bytes. The HT li nk consist s of three parts: the physical layer (PHY), th e
data link layer, and the protocol/transaction layer. The PHY is the physical interface between the RS690 and the CPU.
The data link layer includes the initialization and configuration sequences, periodic redundancy checks,
connect/disconnect sequences, and information packet flow controls. The protocol layer is responsible for maintain ing
strict ordering rules defined by the HT protocol.
The RS690 HyperTransport bus interface consists of seventeen unidirectional differential data/control pairs and two
differential clock pairs in each of the upstream and downstream direction. On power up, the HT link is 8-bit wide and runs
at a default speed of 200MT/s. After negotiation, carried out by the HW and SW together, the link wid th can be bro ught
up to 16-bit and the interface can run up to 2GT/s. The interface is illustrated below in Figure 2-3, “RS690 Host Bus
Interface Signals.” The signal name and direction for each signal is shown with respect to the processor. Please note that
the signal names may be different from those used in the pin listing of the RS690. Detailed descriptions of the signals are
given in section 3.3, “CPU HyperTransport Interface‚’ on page 3-5.
HT Interface to CPU (PHY)
Configuration
Registers
Root Complex Memory Controller
LTA LRA
SCH
Data Link La ye r
Protoco l/ T r a nsaction Laye r
Host Interface
© 2007 Advanced Micro Devices, Inc. 41977 AMD RS690 Databook 3.03
Proprietary and Confidential 2-3
Figure 2-3 RS690 Host Bus Interface Signals
HT_RXCADN
2
2
RS690
AMD CPU
HT_TXCALP
HT_RXCALN
HT_RXCALP
VDD_HT
HT_TXCALN
HT_RXCADP
HT_RXCTLN
HT_RXCTLP
HT_RXCLKN
HT_RXCLKP
16
16
HT_TXCADN
2
2
HT_TXCADP
HT_TXCTLN
HT_TXCTLP
HT_TXCLKN
HT_TXCLKP
16
16
41977 AMD RS690 Databook 3.03 © 2007 Advanced Micro Devices, Inc.
2-4 Proprietary and Confidential
DVI/HDMI (Not Applicable to the RS690C)
2.2 DVI/HDMI (Not Applicable to the RS690C)
2.2.1 DVI/HDMI Data Transmission Order and Signal Mapping
The RS690 contains an integrated DVI/HDMI interface and a TMDS interface (multiplexed on the PCI-E graphics lanes),
both supporting clock frequencies of up to 165 MHz for each signal link. Figure 2-4 below shows the transmission
ordering of the signals on both interfaces in single-link mode.
Figure 2-4 Data Transmission Ordering for the Integrated DVI/HDMI and TMDS Interfaces
For dual-link mode, which is for DVI only, the same transmissio n order applies to data channels on the second link, with
the first link transmitting data for even pixels and the second lin k for odd pi xels. See Table 2-2 below for details.
The signal mapping for the transmission is shown in Table 2-1 (single link) and Table 2-2 (dual-link DVI) below.
TX0P
TX0M
TX1P
TX1M
TX2P
TX2M
TXCP
TXCM
TG9TG8TG7TG6TG5TG4TG3TG2TG1TG0
Depending upon state of HSYNC and VSYNC
Depending upon encoded Green channel pixel dataDepending upon state of PLL_SYNC and CTL1
Depending upon sta te of CTL2 a nd CTL3
TR1TR0 TR2 TR3 TR4 TR5 TR6 TR7 TR8 TR9
Depending upon encoded Red channel p ixel data
TB0 TB1 TB2 TB3 TB4 TB5 TB6 TB7 TB8 TB9
Depending upon encoded Blue channel pixel data
Various control and audio (for HDMI only) signals
Various control and audio (for HDMI only) signals
Various control and audio (for HDMI only) s ignals
Encoded Red Channel Pixel Data
Encoded Green Channel Pixel Data
Encoded Blue Chan ne l Pi xel Da ta
DVI/HDMI (Not Applicable to the RS690C)
© 2007 Advanced Micro Devices, Inc. 41977 AMD RS690 Databook 3.03
Proprietary and Confidential 2-5
Table 2-1 Single Link Signal Mapping for DVI/ HDMI
DVI/HDMI
Functional Name Data Phase Signal
TX0M/P Phase 1 B0
Phase 2 B1
Phase 3 B2
Phase 4 B3
Phase 5 B4
Phase 6 B5
Phase 7 B6
Phase 8 B7
Phase 9 B8
Phase 10 B9
TX1M/P Phase 1 G0
Phase 2 G1
Phase 3 G2
Phase 4 G3
Phase 5 G4
Phase 6 G5
Phase 7 G6
Phase 8 G7
Phase 9 G8
Phase 10 G9
TX2M/P Phase 1 R0
Phase 2 R1
Phase 3 R2
Phase 4 R3
Phase 5 R4
Phase 6 R5
Phase 7 R6
Phase 8 R7
Phase 9 R8
Phase 10 R9
Note: H/VSYNC are transmitte d on TX0M /P(Blue) cha nnel d urin g blan k.
41977 AMD RS690 Databook 3.03 © 2007 Advanced Micro Devices, Inc.
2-6 Proprietary and Confidential
DVI/HDMI (Not Applicable to the RS690C)
Table 2-2 Dual-Link Signal Mapping for DVI
Link 1 Link 2
DVI Functional
Name Data Phase Signal DVI Functional
Name Data Phase Signal
TX0M/P Phase 1 EVEN_B0 TX3M/P Phase 1 ODD_B0
Phase 2 EVEN_B1 Phase 2 ODD_B1
Phase 3 EVEN_B2 Phase 3 ODD_B2
Phase 4 EVEN_B3 Phase 4 ODD_B3
Phase 5 EVEN_B4 Phase 5 ODD_B4
Phase 6 EVEN_B5 Phase 6 ODD_B5
Phase 7 EVEN_B6 Phase 7 ODD_B6
Phase 8 EVEN_B7 Phase 8 ODD_B7
Phase 9 EVEN_B8 Phase 9 ODD_B8
Phase 10 EVEN_B9 Phase 10 ODD_B9
TX1M/P Phase 1 EVEN_G0 TX4M/P Phase 1 ODD_G0
Phase 2 EVEN_G1 Phase 2 ODD_G1
Phase 3 EVEN_G2 Phase 3 ODD_G2
Phase 4 EVEN_G3 Phase 4 ODD_G3
Phase 5 EVEN_G4 Phase 5 ODD_G4
Phase 6 EVEN_G5 Phase 6 ODD_G5
Phase 7 EVEN_G6 Phase 7 ODD_G6
Phase 8 EVEN_G7 Phase 8 ODD_G7
Phase 9 EVEN_G8 Phase 9 ODD_G8
Phase 10 EVEN_G9 Phase 10 ODD_G9
TX2M/P Phase 1 EVEN_R0 TX5M/P Phase 1 ODD_R0
Phase 2 EVEN_R1 Phase 2 ODD_R1
Phase 3 EVEN_R2 Phase 3 ODD_R2
Phase 4 EVEN_R3 Phase 4 ODD_R3
Phase 5 EVEN_R4 Phase 5 ODD_R4
Phase 6 EVEN_R5 Phase 6 ODD_R5
Phase 7 EVEN_R6 Phase 7 ODD_R6
Phase 8 EVEN_R7 Phase 8 ODD_R7
Phase 9 EVEN_R8 Phase 9 ODD_R8
Phase 10 EVEN_R9 Phase 10 ODD_R9
Notes:
- H/VSYNC are transmitt ed o n TX0 M/P(Blue) ch annel d uring b la nk.
- For DVI dual-link mode, the first active d ata pixel is defined as pixel#0 (an even pixel), as op posed t o t he DVI spe cifications.
DVI/HDMI (Not Applicable to the RS690C)
© 2007 Advanced Micro Devices, Inc. 41977 AMD RS690 Databook 3.03
Proprietary and Confidential 2-7
2.2.2 Support for HDMI Packet Types
Table 2-3 Support for HDMI Packet Type
Packet
Value Packet Type Supported
or Not Source Comment
0x00 Null Yes Inserted by hardware if no packets in
horizontal active on line 2 (can be disabled
by software).
Sent when required to m eet
maximum time between data island
specification.
0x01 Audio Clock
Regeneration Yes
Inserted by hardware or video driver.
Contents from re gist er bits or combination
of register bits a nd h ardware contro l.
Inserted in horizont al b lank.
0x02 Audio Sample Yes
Audio samples come from HD audio DMA.
Channel status from HD a udio a nd video
registers.
Inserted in horizont al blank whenever audio
FIFO contains dat a.
0x03 General Control No
Sending and contents controlled by video
driver.
Inserted (on even frames only in inte rla ced
mode) when requested by software or
whenever AVMUTE st atus cha nges.
Inserted in horizont al active on line selected
by software.
0x04 ACP Packet Yes* Audio content protection information.
0x05 ISRC1 Packet Yes Controlled by video driver.
Inserted in horizont al active on line selected
by software. For transmitting UPC or ISRC cod es.
0x06 ISRC2 Packet Yes Software controlled.
Inserted in horizont al active on line selected
by software. Implement if ISRC1 is used.
0x07 Reserved N/A N/A N/A
InfoFrame Packet Type
HDMI ID EIA-861B
ID
0x80 0x00 Vendor-Specific Yes*
0x81 0x01 AVI Yes Controlled by video driver.
Inserted in horizont al active on line selected
by software.
For colorimetry, repetit io n coun t,
video format, picture form atting .
0x82 0x02 Source Product
Descriptor Yes*
0x83 0x03 Audio Yes
Inserted in horizont al active on line selected
by software.
Contents from re gist ers written by video
and HD audio drivers.
Sent only when HD au dio en ables au dio
(video driver can also disable).
For channel counts, sampling
frequency, etc.
0x84 0x04 MPEG Source Yes Software controlled.
Inserted in horizont al active on line selected
by software. For bit rate, field repeat, f rame type
* Note: These packet type s are sup porte d using g eneric packet types. A maximum of two of the m can be sup ported simultaneously.
41977 AMD RS690 Databook 3.03 © 2007 Advanced Micro Devices, Inc.
2-8 Proprietary and Confidential
VGA DAC Characteristics
2.3 VGA DAC Characteristics
Notes:
1 - Tested over the operating temperature range at nominal supply voltage, with an Iref of -1.50mA (Iref is the level of the current flowing
out of the RSET resistor).
2 - Tested over the operating temperature range at reduced supply voltage, with an Iref of -1.50mA (Iref is the level of the current flowing
out of the Rset resistor).
3 - Full scale error from the value predicted by the design equations.
4 - About the mid-point of the distribution of the three DACs measured at full scale deflection.
5 - Linearity measured from the best fit line through the DAC characteristics. Monotonicity guaranteed.
6 - Load = 37.5 + 20 pF with Iref = -1.50 mA (Iref is the current flowing out of the Rset resistor).
7 - Measured from the end of the overshoot to the point where the amplitude of the video ringing is down to +/-5% of the final steady state
value.
8 - This parameter is sampled, not 100% tested.
9 - Monotonicity is guaranteed.
10 - Levels are 7.8% higher with setup pedestal enabled.
2.4 External Clock Chip
On the RS690 platform, an external cloc k chip provi des the reference clock to the CPU (for generatin g the CPU internal
clocks) and a reference clock to the RS690 (for generating the HyperTransport, PC I Express, and A-Link Express II
clocks). For more information abo ut supported clock chips, please consul t you r AMD CSS representative.
Table 2-4 VGA DAC Characteristics
Parameter Min Typ Max Notes
Resolution 10 bits - - 1
Maximum PS/2 setting Output Voltage - 0.7V - 1, 10
Maximum PS/2 setting Output Current - 18.7mA - 1, 10
Full Scale Error +8% / -3% - +10% 2, 3
DAC to DAC Correlation -2% - +2% 1, 4
Differential Linearity -2 LSB - +2 LSB 1, 5
Integral Linearity -2 LSB - +2 LSB 1, 5
Rise Time (10% to 90%) 0.58ns - 1.7ns 1, 6
Full Scale Settling Time - TBA - 1, 7, 8
Glitch Energy - TBA - 1, 8
Monotonicity - - - 9
© 2007 Advanced Micro Devices, Inc. 41977 AMD RS690 Databook 3.03
Proprietary and Confidential 3-1
Chapter 3
Pin Descriptions and Strap Options
This chapter gives the pin descriptions and the strap options for the RS690. To jump to a to pic of interest, use the
following list of hyperlinked cross references:
“Pin Assignment Top View” on page 3-2
“Interface Block Diagram” on page 3-4
“CPU HyperTransport Interface” on page 3-5
“PCI Express Interfaces” on page 3-5:
“1 x 16 Lane Interface for External Graphics” on page 3-5
“A-Link Express II to Southbridge” on page 3-5
“4 x 1 Lane Interface for General Purpose External Devices” on page 3-6
“Miscellaneous PCI Express Signals” on page 3-6
“Clock Interface” on page 3-6
“CRT and TV Interface” on page 3-6
“Integrated DVI/HDMI Interface” on page 3-7
“TMDS Interface Multiplexed on the PCI-E Graphics La nes (Not Applicab le to the RS690C)” on page 3-8
“Power Management Pins” on pa ge 3-9
“Miscellaneous Pins” on page 3-9
“Power Pins” on page 3-10
“Ground Pins” on page 3-11
“Debug Port Signals” on page 3-1 1
“Strapping Options” on page 3-12
41977 AMD RS690 Databook 3.03 © 2007 Advanced Micro Devices, Inc.
3-2 Proprietary and Confidential
Pin Assignment Top View
3.1 Pin Assignment Top V iew
The figures below only represent the relative ball posi tions. For the actual physical layout of the balls, please refer to
Figure 5-3, “RS690 Ball Arrangement,” on page 5- 7.
Figure 3-1 RS690 Pin Assignment Top View (Left)
12345678910111213
AVSSA I2C_CLK STRP_DATA VDD_CORE DACHSYNC DACSDA VDD_CORE DFT_GPIO5 VDD_CORE PLLVDD18 PLLVDD12 LVDDR18D TXOUT_L1N
BVDDA_12 BMREQ# DDC_DATA I2C_DATA ALLOW_LDTSTOP DACSCL VSS DFT_GPIO4 VDD_CORE PLLVSS OSCIN LVDDR18D TXOUT_L1P
CVDDA_12 TVCLKIN TESTMODE VSS LDTSTOP# DACVSYNC DFT_GPIO3 DFT_GPIO2 VDD_CORE SYSRESET# POWERGOOD LVDDR33 LVDDR33
DVDDA_12 VDDA_12 VDDA_12 VSS DFT_GPIO0 DFT_GPIO1 VDD_CORE VDDR3 LVSSR
EGFX_CLKN VDDA_12 VDDA_12 VDDA_12 VDD_PLL VSS VDDR3 GPIO3
FVSSA GFX_CLKP VSSA VDDA_12 VDD_PLL VSS_PLL VSS GPIO4
GSB_CLKP SB_CLKN VSSA GFX_RX0N GFX_RX0P VSSA VDDA_12 VSS_PLL VSS GPIO2
HVSSA GFX_TX0N VSSA VDD_CORE VSS
JGFX_TX0P VSSA VSSA GFX_RX2P GFX_RX2N VSSA GFX_RX1N GFX_RX1P VDD_CORE VSS
KGFX_TX1N GFX_TX1P GFX_TX2P
LGFX_TX3P GFX_TX3N GFX_TX2N GFX_RX4P GFX_RX4N VSSA GFX_RX3N GFX_RX3P VDDA_12 VDD_CORE VSS VDD_CORE
MVDDA_12_PKG VSSA VSSA GFX_RX6P GFX_RX6N VSSA GFX_RX5N GFX_RX5P VDDA_12 VSS VDD_CORE VSS
NGFX_TX4N GFX_TX4P VSSA VDD_CORE VSS VDD_CORE
PGFX_TX5N GFX_TX5P GFX_TX6P GFX_RX8P GFX_RX8N VSSA GFX_RX7N GFX_RX7P VSSA VSS VDD_CORE VSS
RGFX_TX7P GFX_TX7N GFX_TX6N GFX_RX9P GFX_RX9N VSSA GFX_RX10P GFX_RX10N VSSA VDD_CORE VSS VDD_CORE
TVSSA GFX_TX8P VSSA
UGFX_TX8N VSSA VSSA GFX_RX11P GFX_RX11N VSSA VDDA_12 VDD_CORE VDD_CORE
VGFX_TX9N GFX_TX9P GFX_TX10P GFX_RX14P VSSA VSSA
WGFX_TX11P GFX_TX11N GFX_TX10N GFX_RX12P GFX_RX12N VSSA VDDA_12 GFX_RX14N SB_RX2P SB_RX2N
YVSSA GFX_TX12P VSSA GFX_RX13P GFX_RX13N GPP_RX2P VSSA VSSA VSSA
AA GFX_TX12N GFX_TX13P VSSA GPP_RX2N GPP_RX3N SB_RX3P SB_RX1N
AB GFX_TX14P GFX_TX13N VDDA_12 VDDA_12 GFX_RX15N GFX_RX15P GPP_RX3P SB_RX3N SB_RX1P
AC GFX_TX14N VSSA VDDA_12 VSSA VSSA VSSA VSSA SB_TX1P VSSA VSSA VDDA_12_PKG VDDR DEBUG2
AD VSSA VDDA_12 VSSA GPP_TX2P GPP_TX3P GPP_TX3N SB_TX3P SB_TX2P SB_TX1N SB_TX0N PCE_CALRP VDDR DEBUG0
AE VDDA_12 VDDA_12 GFX_TX15P GFX_TX15N GPP_TX2N VSSA SB_TX3N SB_TX2N SB_TX0P VSSA PCE_CALRN VDDR DEBUG1
12345678910111213
CPU Interface
A-Link Express II interface
Clock Interface
CRT and TV Int er face
External grap hics In te rfa c e
Integrated DVI/HDMI Int er face
General Purpose Exte r nal De vice In terfa c e
Power Management Interface
Powers
Grounds
Others
Pin Assignment Top View
© 2007 Advanced Micro Devices, Inc. 41977 AMD RS690 Databook 3.03
Proprietary and Confidential 3-3
Figure 3-2 RS690 Pin Assignment Top View (Right)
14 15 16 17 18 19 20 21 22 23 24 25
LVSSR TXOUT_U0P LVSSR TXOUT_U2N TXOUT_U3P VDD_CORE AVDDDI AVDDQ AVSSQ VSS HT_RXCALP VSS A
TXOUT_L0P TXOUT_L0N TXOUT_U0N TXOUT_U2P TXOUT_U3N VDD_CORE AVSSDI RSET AVDD HTREFCLK HTPVDD HTPVSS B
TMDS_HPD LVSSR LVSSR TXOUT_U1P TXOUT_U1N LVSSR Y C AVDD HTTSTCLK HT_RXCALN HT_TXCALP C
LPVDD TXCLK_LN TXOUT_L3P COMP VDD_CORE VDD_HT_PKG VSS HT_TXCALN VSS D
LPVSS TXCLK_LP TXOUT_L3N RED HT_TXCAD1P HT_TXCAD0P HT_TXCAD0N E
LVSSR LVSSR VSS GREEN HT_TXCAD8P HT_TXCAD8N HT_TXCAD1N HT_TXCAD2N HT_TXCAD2P F
TXOUT_L2N TXCLK_UN AVSSN BLUE VDD_CORE HT_TXCAD10N HT_TXCAD10P VSS VSS HT_TXCAD3P G
TXOUT_L2P TXCLK_UP AVSSN VSS HT_TXCAD3N VSS H
VDD_18 VDD_18 VDD_CORE HT_TXCAD9P HT_TXCAD9N VSS HT_TXCAD4P HT_TXCLK0P HT_TXCLK0N J
HT_TXCAD4N HT_TXCAD5N HT_TXCAD5P K
VSS VDD_CORE VDD_CORE HT_TXCAD11P HT_TXCAD11N VSS HT_TXCLK1P HT_TXCLK1N VSS VSS HT_TXCAD6P L
VDD_CORE VSS VSS HT_TXCAD12P HT_TXCAD12N VSS HT_TXCAD13N HT_TXCAD13P VSS HT_TXCAD6N VSS M
VSS VDD_CORE HT_TXCTLP HT_TXCAD7P HT_TXCAD7N N
VDD_CORE VSS VDD_CORE HT_TXCAD14P HT_TXCAD14N VSS HT_TXCAD15P HT_TXCAD15N HT_TXCTLN HT_RXCTLP HT_RXCTLN P
VSS VDD_CORE VSS HT_RXCAD15N HT_RXCAD15P VSS HT_RXCAD14P HT_RXCAD14N VSS VSS HT_RXCAD7N R
VSS HT_RXCAD7P VSS T
VDD_CORE VDD_CORE HT_RXCAD12P HT_RXCAD12N VSS HT_RXCAD13N HT_RXCAD13P HT_RXCAD5N HT_RXCAD6N HT_RXCAD6P U
VSSA VSSA HT_RXCAD5P HT_RXCAD4P HT_RXCAD4N V
SB_RX0P SB_RX0N VDD_HT HT_RXCAD11P HT_RXCAD11N HT_RXCLK1P HT_RXCLK1N VSS VSS HT_RXCLK0N W
VSSA VSSA VDD_HT HT_RXCAD8N VSS VSS HT_RXCLK0P VSS Y
NC THERMALDIODE_
PVDD_HT HT_RXCAD8P HT_RXCAD9N HT_RXCAD2N HT_RXCAD3N HT_RXCAD3P AA
NC THERMALDIODE_
NVDD_HT VDD_HT HT_RXCAD9P HT_RXCAD10N HT_RXCAD2P HT_RXCAD1P HT_RXCAD1N AB
VSS VSS VSS DEBUG9 VDD_HT VDD_HT VDD_HT HT_RXCAD10P VSS VSS HT_RXCAD0P HT_RXCAD0N AC
GPP_TX0P GPP_TX0N GPP_RX0P DEBUG13 DEBUG10 GPP_TX1P GPP_RX1P VDD_HT VDD_HT VDD_HT VDD_HT VSS AD
VSS DEBUG6 GPP_RX0N DEBUG14 VSS GPP_TX1N GPP_RX1N DEBUG15 VSS VDD_HT VDD_HT VDD_HT AE
14 15 16 17 18 19 20 21 22 23 24 25
CPU Interface
A-Link Express interface
Clock Interface
CRT and TV Interface
External graphics Interface
Integrated DVI/HDMI I nte rface
General Purpose Extern al Device Int erface
Power Manage ment Inte rface
Powers
Grounds
Others
41977 AMD RS690 Databook 3.03 © 2007 Advanced Micro Devices, Inc.
3-4 Proprietary and Confidential
Interface Block Diagram
3.2 Interface Block Diagram
The figure below shows the different interfaces on the RS690. Interface names in blue are hyperlinks to the corresponding
sections in this chapter.
Figure 3-3 RS690 Interface Block Diagram
HT_RXCAD[15:0]P, HT_RXCAD[15:0]N
HT_RXCLK[1:0]P, HT_RXCLK[1:0]N
HT_RXCTLP, HT_RXCTLN
HT_TXCTLP, HT_TXCTLN
HT_RXCALP, HT_RXCALN
HT_TXCALP , HT_TXCALN
HT_TXCLK[1:0]P, HT_TXCLK[1:0]N
HT_TXCAD[15:0]P, HT_TXCAD[15:0]N
SB_TX[3:0]P, SB_TX[3:0]N
SB_RX[3:0]P, SB_RX[3:0]N
SB_CLKP, SB_CLKN
TXOUT_U0 N, TXOUT_U0P
TXOUT_U1 N, TXOUT_U1P
TXOUT_U2 N, TXOUT_U2P
TXCLK_LN, TXCLK _ LP
TXOUT_L0 N, TXOUT_L0P
TXCLK_UN, TXCLK_UP
TXOUT_L1 N, TXOUT_L1P
TXOUT_L2 N, TXOUT_L2P
GFX_TX[15:0]P, GFX_TX[15:0]N
GFX_RX[15:0]P, GFX_RX[15:0]N
GFX_CLKP, GFX_CLKN
VSSA
AVSSN
LPVSS
LVSSR
AVSSQ
TESTMODE
THERMALDIDOE_N,
TVCLKIN
OSCIN
SYSRESET#
POWERGOOD
VDD_18
VDDR3
PLLVDD18
VDD_CORE
VDDA_12
PLLVSS
C
Y
COMP
RSET
RED
GREEN
DACSCL
DACSDA
DACHSYNC
DACVSYNC
BLUE
THERMALDIODE_P
HyperTransport
Interface
Integrated
DVI/HDMI
Interface
A-Link Express
II Interface
Power
Management
Interface
Misc. Signals
PCI-E
External
Graphics or
TMDS
[RS690 only]
Interface
CRT and
TV-out
Interface
Clock
Interface
Power
Grounds VDD_HT
AVSSDI
PCI-E
Interface
for General
Purpose
External
Devices
GPP_TX[3:0]P, GPP_TX[3:0]N
GPP_RX[3:0]P, GFX_RX[3:0]N
PCE_CALRP
Misc. PCI-E
Signals PCE_CALRN
VSS
HTREFCLK
LDTSTOP#
ALLOW_LDTSTOP
I2C_CLK
BMREQ#
DDC_DATA
I2C_DATA
STRP_DATA
DFT_GPIO[5:0]
TMDS_HPD
HTTSTCLK
PLLVDD12
VDD_PLL
VSS_PLL
HTPVSS
AVDD
AVDDDI
LVDDR33
LPVDD
HTPVDD
LVDDR18D
AVDDQ
VDD_HT_PKG
VDDA_12_PKG
VDDR
GPIO[4:2]
CPU HyperTransport Interface
© 2007 Advanced Micro Devices, Inc. 41977 AMD RS690 Databook 3.03
Proprietary and Confidential 3-5
3.3 CPU HyperTransport Interface
3.4 PCI Express Interfaces
3.4.1 1 x 16 Lane Interface for External Graphics
3.4.2 A-Link Express II to Southbridge
Table 3-1 CPU HyperT ransport Interface
Pin Name Type Power
Domain Ground
Domain Functional Description
HT_RXCAD[15:0]P,
HT_RXCAD[15:0]N I VDDHT VSS Receiver Command, Address, and Da ta Differential Pairs
HT_RXCLK[1:0]P,
HT_RXCLK[1:0]N I VDDHT VSS Receiver Clock Signal Differential Pair. Forwarded clock signal. Ea ch byte of
RXCAD uses a dif feren t clock signa l. Data is transferred on each clock ed ge.
HT_RXCTLP,
HT_RXCTLN I VDDHT VSS Receiver Control Differential Pa ir. For d istinguishing con trol p ackets from data
packets.
HT_TXCAD[15:0]P,
HT_TXCAD[15:0]N O VDDHT VSS Transmitter Command, Address, and Data Differential Pairs
HT_TXCLK[1:0]P,
HT_TXCLK[1:0]N O VDDHT VSS Transmitte r Clock Signal Different ial Pair . Each byte of TXCAD uses a different
clock signal. Data is transferred on each clock edge.
HT_TXCTLP,
HT_TXCTLN O VDDHT VSS Transmitter Control Differential Pair. Forwarded clock signal. For
distinguishing control p ackets from data packets.
HT_RXCALN Other VDDHT VSS Receiver Calibration Resistor to VDD_HT power rail.
HT_RXCALP Other VDDHT VSS Receiver Calibration Resistor to Ground
HT_TXCALP Other VDDHT VSS Transmitter Calibration Resistor to HTTX_CALN
HT_TXCALN Other VDDHT VSS Transmitter Calibration Resistor to HTTX_CALP
HTREFCLK I HTPVDD HTPVSS HyperTransport 66 MHz reference clock from extern al clock source
HTTSTCLK I HTPVDD HTPVSS HyperTransport Bus Test Clock. Drives test clock in test mo de. Con nect t o
ground in functional mode .
Table 3-2 1 x 16 Lane PCI Express Interface for External Graphic s
Pin Name Type Power
Domain Ground
Domain Integrated
Termination Functional Description
GFX_TX[15:0]P,
GFX_TX[15:0]N O VDD_PCIE VSS_PCIE 50 between
complements Transmit Dat a D ifferential Pairs. Connect to external conne ct or fo r
an external graphics card on the motherboard (if implemented).
GFX_RX[15:0]P,
GFX_RX[15:0]N I VDD_PCIE VSS_PCIE 50 between
complements Receive Data Differential Pairs. Connect to external conne ctor for an
external graphics card on the m othe rboard (if implem ente d).
GFX_REFCLKP,
GFX_REFCLKN I VDD_PCIE VSS_PCIE 50 between
complements Clock Differential Pairs. Con nect t o exte rnal clock g enera tor w hen
an external graphics card is implemented.
Table 3-3 1 x 4 Lane A-Link Express II Interface for Southbridge
Pin Name Type Power
Domain Ground
Domain In tegrated
Termination Functional Description
SB_TX[3:0]P,
SB_TX[3:0]N O VDD_PCIE VSS_PCIE 50 between
complements Transmit Dat a Differential Pairs. Connect to the corre spo nding
Receive Data Differential pairs on the Southbridge.
SB_RX[3:0]P,
SB_RX[3:0]N I VDD_PCIE VSS_PCIE 50 between
complements Receive Data Differential Pa ir s. Conne ct to the correspondin g
Transmit Data Differ ential pairs on the Southbridge.
SB_CLKP,
SB_CLKN I VDD_PCIE VSS_PCIE 50 between
complements Clock Differential Pair. Connect to an external clo ck ge nerat or on
the motherboard.
41977 AMD RS690 Databook 3.03 © 2007 Advanced Micro Devices, Inc.
3-6 Proprietary and Confidential
Clock Interface
3.4.3 4 x 1 Lane Interface for General Purpose External Devices
3.4.4 Miscellaneous PCI Express Signals
3.5 Clock Interface
3.6 CRT and TV Interface
Table 3-4 4 x 1 Lane PCI Express Interface for General Purpose External Devices
Pin Name Type Power
Domain Ground
Domain Integrated
Termination Functional Descripti on
GPP_TX[3:0]P,
GPP_TX[3:0]N O VDD_PCIE VSS_PCIE 50 between
complements T ransmit Data Dif ferential Pairs. Connect to external connectors on
the motherboard for a dd-in card or E xpr essCa rd suppo rt.
GPP_RX[3:0]P,
GPP_RX[3:0]N I VDD_PCIE VSS_PCIE 50 between
complements Receive Data Dif ferential Pairs. Connect to external connectors on
the motherboard for a dd-in card or E xpr essCa rd suppo rt.
Table 3-5 PCI Express Interface for Miscellaneous PCI Express Signals
Pin Name Type Power
Domain Ground
Domain Functional Descript ion
PCE_CALRN Other VDD_PCIE VSS_PCIE RX Imped ance Ca libra tion. Conne ct to VDD_ PCIE on the mo therb oard w ith an
external resistor of an appropriate value.
PCE_CALRP Other VDD_PCIE VSS_PCIE TX Impeda nce Calibrat ion. Co nnect to GND on t he m oth erboard with an e xt ernal
resistor of an appropriate value.
Table 3-6 Clock Interface
Pin Name Type Power
Domain Ground
Domain Integrated
Termination Functional Description
TVCLKIN I VDDR3 VSS Input pin for reference clock for external TV-out support (3.3V
signaling).
OSCIN I VDDR3 VSS Disabled 14.3181818 MHz Reference clock input from the External Clock chip
(3.3 volt signaling).
Table 3-7 CRT and TV Inter fa ce
Pin Name Type Power
Domain Ground
Domain Integrated
Termination Fu nctional Desc ription
RED A-O AVDD AVSSN Red for CRT monito r out put, or Pr fo r compo nent vid eo TV ou tput
GREEN A-O AVDD AVSSN Green for CR T monitor output, or Y for component video TV out put
BLUE A-O AVDD AVSSN Blue fo r CRT monitor output, or Pb for com pone nt video TV o utpu t
Y A-O AVDD A VSSN SVID luminance output for TV out, or Y for comp onent video TV output
CA-OAVDDAVSSN
SVID chrominance out put for TV ou t, o r Pr for com pone nt video TV
output
COMP A-O AVDD AVSSN Composite video TV outp ut, or P b fo r compo nent vid eo TV ou tput
DACHSYNC A-O VDDR3 VSS 50k
programmable:
PU/PD/none Display Horizont al Sync
DACVSYNC A-O VDDR3 VSS 50k
programmable:
PU/PD/none Display Vertical Sync
RSET Other N/A AVSSQ DAC internal ref erence t o set full sca le DA C current thro ugh 1%
resistor to AVSS
Integrated DVI/HDMI Interface
© 2007 Advanced Micro Devices, Inc. 41977 AMD RS690 Databook 3.03
Proprietary and Confidential 3-7
3.7 Integrated DVI/HDMI Interface
Note: The RS690C does not contain an integrated DVI/HDMI interface. The following pins should be treated as reserved
for the RS690C.
DACSDA I/O VDDR3 VSS 50k
programmable:
PU/PD/none I2C dat a for disp lay (t o video monit or)
DACSCL I/O VDDR3 VSS 50k
programmable:
PU/PD/none I2C clock for disp la y (to video mon it or)
Table 3-8 Integrated DVI/HDMI Interface
Pin Name DVI/HDMI
Functional
Name Type Power
Domain Ground
Domain Integrated
Termination Functio nal Descripti on
TXOUT_L0N TX0M O VDDLT33
VDDLT18 VSSLT None DVI /HDM I d ata channel 0 (-)
TXOUT_L0P TX0P O VDDLT33
VDDLT18 VSSLT None DVI/HDMI dat a channel 0 (+)
TXOUT_L1N TX1M O VDDLT33
VDDLT18 VSSLT None DVI/HDMI data cha nnel 1 (-)
TXOUT_L1P TX1P O VDDLT33
VDDLT18 VSSLT None DVI/HDMI dat a channel 1 (+)
TXOUT_L2N TX2M O VDDLT33
VDDLT18 VSSLT None DVI/HDMI data cha nnel 2 (-)
TXOUT_L2P TX2P O VDDLT33
VDDLT18 VSSLT None DVI/HDMI dat a channel 2 (+)
TXOUT_L3N TX3M O VDDLT33
VDDLT18 VSSLT None DVI data channel 3 (-). The channel is only used in
DVI dual-link mode and is no t used for HDMI
support.
TXOUT_L3P TX3P O VDDLT33
VDDLT18 VSSLT None DVI data channel 3 (+). The chan nel is only used in
DVI dual-link mode and is no t used for HDMI
support.
TXOUT_U0N TX4M O VDDLT33
VDDLT18 VSSLT None DVI data channel 4 (-). The channel is only used in
DVI dual-link mode and is no t used for HDMI
support.
TXOUT_U0P TX4P O VDDLT33
VDDLT18 VSSLT None DVI data chan nel 4 (+) The chann el is only used in
DVI dual-link mode and is no t used for HDMI
support.
TXOUT_U1N TX5M O VDDLT33
VDDLT18 VSSLT None DVI data channel 5 (-). The channel is only used in
DVI dual-link mode and is no t used for HDMI
support.
TXOUT_U1P TX5P O VDDLT33
VDDLT18 VSSLT None DVI data channel 5 (+). The channel is only used in
DVI dual-link mode and is no t used for HDMI
support.
TXOUT_U2N O VDDLT33
VDDLT18 VSSLT None Unused
TXOUT_U2P O VDDLT33
VDDLT18 VSSLT None Unused
TXOUT_U3N O VDDLT33
VDDLT18 VSSLT None Unused
TXOUT_U3P O VDDLT33
VDDLT18 VSSLT None Unused
Table 3-7 CRT and TV Interface (Continued)
Pin Name Type Power
Domain Ground
Domain Integrated
Termination Functional Description
41977 AMD RS690 Databook 3.03 © 2007 Advanced Micro Devices, Inc.
3-8 Proprietary and Confidential
TMDS Interface Multiplexed on the PCI-E Graphics Lanes
(Not Applicable to the RS690C)
3.8 TMDS Interface Multiplexed on the PCI-E Graphics Lanes (Not Applicable to the RS690C)
The RS690 supports a dual-link TMDS interface, enabling DVI/HDMI, which is multiplexed on the PCI-E external
graphics lanes. The TMDS interface is available only if no external graphics card, or only a x8 one, is attached to the
PCI-E graphics interface.
HDMI is enabled only through the single-link mode. The interface cannot enable HDMI when the integrated DVI/HDMI
interface is supporting HDMI, and vice versa. Table 3-9, “TMDS Interface Multiplexed on the PCI-E Graphics
Interface,” shows the multiplexing relationships between the PCI-E external graphics signals and the TMDS signals.
TXCLK_LN TXCM O VDDLT33
VDDLT18 VSSLT None DVI/HDMI clock channel (-)
TXCLK_LP TXCP O VDDLT33
VDDLT18 VSSLT None DVI/HDMI clock channel (+)
TXCLK_UN O VDDLT33
VDDLT18 VSSLT None Unused
TXCLK_UP O VDDLT33
VDDLT18 VSSLT None Unused
Table 3-9 TMDS Interface Multiplexed on the PCI-E Graphics Interface
Pin Name Ball
Reference TMDS Function
GFX_TX0P J1 TX2P - 1st Link Red+
GFX_TX0N H2 TX2M - 1st Link Red-
GFX_TX1P K2 TX1P - 1st Link Green+
GFX_TX1N K1 TX1M - 1st Link Green-
GFX_TX2P K3 TX0P - 1st Link Blue+
GFX_TX2N L3 TX 0M- 1 st Link B lue -
GFX_TX3P L1 TXCP - Clock+
GFX_TX3N L2 TX CM - Clo ck-
GFX_TX4P N2 TX5P- 2nd Link Red+
GFX_TX4N N1 TX5M - 2nd Link Red-
GFX_TX5P P2 TX4P- 2nd Link Green+
GFX_TX5N P1 TX4M - 2nd Link Green-
GFX_TX6P P3 TX3P - 2nd Link Blue+
GFX_TX6N R3 TX3M - 2nd Link Blue-
Table 3-8 Integrated DVI/HDMI Interface (Continued)
Pin Name DVI/HDMI
Functional
Name Type Power
Domain G round
Domain Integrated
Termination Functional Description
Power Management Pins
© 2007 Advanced Micro Devices, Inc. 41977 AMD RS690 Databook 3.03
Proprietary and Confidential 3-9
3.9 Power Management Pins
3.10 Miscellaneous Pins
Table 3-10 Power Management Pins
Pin Name Type Power
Domain Ground
Domain Functional Description
LDTSTOP# I VDDR3 VSS HyperTransport Stop. Input from th e So uthb rid ge t o en able a nd d isable the
HyperT r ansport link during system state transitions. For systems requiring po wer
management. Single-ende d.
ALLOW_LDTST OP OD VDDR3 VSS Output going to the Southbridge to allow LDTST OP assert io ns:
1 = LDTST OP# can be asserted
0 = LDTST OP# h as to be de-asserted
SYSRESET# I VDDR3 VSS Global Hardware R eset. This sign al comes f rom the Sou thbridge .
POWERGOOD I VDDR3 VSS Input from th e motherboard signifying that the power to th e RS690 is up and ready .
Signal High means all power planes are valid . I t is not observed internally until it
has been high for more than 6 consecutive REFCLK cycles. The rising edge of this
signal is deglitched. The no mi nal inpu t high voltage is 3.3V.
Table 3-11 Miscellaneous Pins
Pin Name Type Power
Domain Ground
Domain Integrated
Termination Func tional Descrip tion
BMREQ# O VDDR3 VSS This output signal to th e S outh bridge ind icates tha t there is a DMA
request from a PCI Express Bus device. The signal is not u sed on
the RS690 plat f orms an d shou ld be left unconnected.
DEBUG[15:13, 10:9,
6, 2:0] I/O VDDR VSS Debug port signals. See section 3.13, “Debug Port Signals,”
on page 3- 11 for det a ils.
DFT_GPIO[5:0] I/O VDD_18 VSS GPIO for DFT purpose.
GPIO[4:2] I/O VDDR3 VSS 50k
programmable:
PU/PD/none
General Purpose I/O. These pins can a lso be u sed as ou tputs to
the voltage regulato r for pulse-width modulation of various volt ages
on the motherboard. If not use d for pulse-width-modulat ion, GPIO3
can also be used as a "h ot p lu g" panel detection input pin that
monitors if the volt age is great er t han 2.0V on th e ho t-plugg in g line
from a digital display.
I2C_CLK I/O VDDR3 VSS 50k
programmable:
PU/PD/none
I2C interface clock signal. Can al so b e used simultaneously as
DDC interface clock . It can a lso be u sed as GPI O.
I2C_DATA I/O VDDR3 VSS 50k
programmable:
PU/PD/none I2C interface data signal. It can also be used as GP IO.
DDC_DATA I/O VDDR3 VSS 50k
programmable:
PU/PD/none
Pin for additio nal DDC data channel for displays. It makes use of
I2C_CLK to create an I2C interf ace . Ca n also b e used as GPIO.
NC No connect. These pins should be left unconnected to anything.
STRP_DATA I/O VDDR3 VSS 50k
programmable:
PU/PD/none
I2C interface data signal for external EEPROM base d strap
loading. Can also be used a s GP IO, or as output to the volt a ge
regulator for pulse-width modulation of RS690’s core volt age.
TESTMODE I VDDR3 VSS When High, puts the R S69 0 in t est mo de a nd d isable s the RS690
from operating no rmally.
THERMALDIODE_P,
THERMALDIODE_N A-O Diode connections to external SM Bu s mi cro con troll er fo r
monitoring IC thermal characteristics.
TMDS_HPD I/O VDDR3 VSS 50k
programmable:
PU/PD/none
TMDS Hot Plug Detect. It mon it ors the hot -plug line for panel
detection. It is a 3.3V CMOS compatible in put. When not used for
hot plug detection, it can also be used a s outp ut t o t he voltage
regulator for pulse-width modulation of various voltages on the
motherboard.
41977 AMD RS690 Databook 3.03 © 2007 Advanced Micro Devices, Inc.
3-10 Proprietary and Confidential
Power Pins
3.11 Power Pins
VDD_HT_PKG Other VDD_HT VSS
The pins are for connecting calibration resistors to the VDD_ HT
power plane. VDD_HT_PKG p ins are con nected to the VDD_ HT
power pins via package rout in g, so that the calibration resistors for
the VDD_HT power plane can be con nected to the RS690 through
the VDD_HT_PKG pins, and t he V DD_HT power plane does n ot
have to be extended physically for the purpose.
VDDA_12_PKG Other VDDA_12 VSS
The pins are for connecting calibration resistors to the VDDA_12
power plane. VDDA_12_PK G pins are connected to the VDDA_1 2
power pins via package rout in g, so that the calibration resistors for
the VDDA_12 power plane can be connected to the RS690 through
the VDDA_12_PKG pin s, an d t he VDDA _12 po wer p la ne does not
have to be extended physically for the purpose.
Tabl e 3 - 12 Powe r Pins
Pin Name Voltage Pin
Count Ball Reference Comments
AVDD 2.5V or 3.3V 2 B22, C22 Dedicated power for the DAC. Ef fort should be made at the bo ard
level to p rovid e as clean a po wer as possible to this pin to avoid
noise injection, which can af fect d isplay qualit y. Adequate
decoupling should be provided be tween th is pin and AVSS.
AVDDQ 1. 8V 1 A21 DAC Bandgap Reference Voltage
AVDDDI 1.8V 1 A20 Dedicated digital power for th e DAC
VDD_CORE 1. 2V 32 A19, A4, A7, A9 , B 19, B9,
C9, D20, D9, G20, H1 1, J1 1,
J19, L11, L13 , L1 5, L 17,
M12, M14, N11, N13, N15,
P12, P14, P17, R11, R13,
R15, U11, U12, U1 4, U15
Core power
VDD_18 1.8V 2 J14, J15 Core transform power for GPIOs and powe r for DFT_GP IOs
VDDA_12 1.2 V 20 AB3, AB4, AC3, AD2, AE1,
AE2, B1, C1, D1, D2, D3,
E2, E3, E6, F4, G7, L9, M9,
U7, W7
PCI Express interface main I/O power
VDDR 1.8 3 AC12, AD12, AE12 IO power for debug interface (1.8V)
VDD_HT 1.2V 15 AA17, AB17, AB19, AC18 ,
AC19, AC20, AD21, AD22,
AD23, AD24, AE23, AE 24,
AE25, W17, Y1 7
IO power for HyperTransport interface
VDDR3 3.3V 2 D11, E11 IO power for the following I/O pads:
, POWERGOOD, SYSRESET#
VDD_PLL 1.2V 2 E7, F7 PCI-Express interface PLL po wer.
LPVDD 1.8V 1 D14 Power for integrated DVI/HDMI PLL macro.
LVDDR18D 1.8V 2 A12, B12 1.8V integrated DVI/HDMI Digital Power
LVDDR33 3.3V 2 C12, C13 3.3V integrated DVI/HDMI Analog Power
PLLVDD18 1.8V 1 A10 1.8V Power for system PLLs
PLLVDD12 1.2V 1 A11 1.2V Power for system PLLs
HTPVDD 1.8V 1 B24 Power for HyperT ransport interf ace P LL
Total Power Pin Count 88
Table 3-11 Miscellaneous Pins (Continued)
Pin Name Type Power
Domain Ground
Domain Integrated
Termination Functional Description
Ground Pins
© 2007 Advanced Micro Devices, Inc. 41977 AMD RS690 Databook 3.03
Proprietary and Confidential 3-11
3.12 Ground Pins
3.13 Debug Port Signals
In order to fully support debugging of custom er platforms, it is mandatory that customer designs allow access to the
signals listed in Table 3-14, “RS690 Debug Port Signals” below. Signals in the table should be brought out to test points
on the motherboard.
Table 3-13 Ground Pins
Pin Name Pin Count Ball Reference Comments
AVSSN 2 G17, H17 Dedicated analog ground for t he DAC
AVSSQ 1 A22 Dedicated ground for the B and Ga p Re ference. Effort should be
made at the board level to provide as clea n a groun d as p ossible
to this pin to avoid noise injection, which can affect disp lay quality.
Adequate decoupling should be provided between this pin and
AVDD.
AVSSDI 1 B20 Dedicated digital ground for the DAC (1.8V )
LPVSS 1 E14 Integrated DVI/HDMI PLL macro g r ound pin.
LVSSR 8 A14, A16, C15, C16 , C19 ,
D12, F14, F15 Integrated DVI/HDMI ground pin.
VSS 5 9 A23, A25, AC14, AC15, AC16,
AC22, AC23, AD25, AE 14,
AE18, AE22, B7, C4, D23,
D25, D4, E9, F11, F17, G11,
G23, G24, H12, H 23, H25,
J12, J22, L12, L14, L20 , L2 3,
L24, M11, M13, M15, M17,
M20, M23, M25, N12 , N14,
P1 1 , P13, P15, P20, R 12, R14,
R17, R20, R23, R24, T23, T2 5,
U20, W23, W24, Y22, Y23,
Y25
Common Ground
VSSA 48 A1, AA3, AC10, A C2, AC4,
AC5, AC6, AC7, AC9, AD1,
AD3, AE10, AE6 , F1, F3, G3,
G6, H1, H3, J2, J3, J6, L6 , M2,
M3, M6, N3, P6 , P9, R6, R9,
T1, T3, U2, U3, U6, V11, V12,
V14, V15, W6, Y 1, Y 11, Y12,
Y14, Y15, Y3, Y 9
PCI Express Interface Ground
VSS_PLL 2 F9. G9 Ground pin fo r PCI -E int erface PLL
PLLVSS 1 B10 Ground pin for graphics core PLL
HTPVSS 1 B25 Ground pin for HyperTransport interface PLL
Total Ground Pin Count 124
Table 3-14 RS690 Debug Port Signals
Pin Name Ball Ref Debug Port Name
DEBUG0 AD13 Debug0
DEBUG1 AE13 Debug1
DEBUG2 AC13 Debug2
DEBUG6 AE15 Debug6
DEBUG9 AC17 Debug9
DEBUG10 AD18 Debug10
DEBUG13 AD17 Debug13
DEBUG14 AE17 Debug14
41977 AMD RS690 Databook 3.03 © 2007 Advanced Micro Devices, Inc.
3-12 Proprietary and Confidential
Strapping Options
3.14 Strapping Options
The RS690 provides strapping options to define specific operat ing parameters. The strap values are latched into internal
registers after the assertion of the POWERGOOD signal to the RS690. Table 3-15, “Strap Definitions for the RS690,”
shows the definitions of all the strap functions. These straps are set by one of the following four met hods:
Allowing the internal pull-up resistors to set all strap values “1”’s automatically.
Attaching pull-down resistors to specific strap pins listed in Ta ble 3-15 to set thei r values to “0”’s.
Downloading the strap values from an I2C serial EEPROM (for debug purpose only; contact your AMD CSS
representative for details).
Setting through an external debug port, if implemented (contact your AMD CSS representative for details).
All of the straps below are defined activ e low. They are pulled up internally by default, so that no external pull ups are
required to select “1”’s for those straps. To select “0”’s, the strap pi ns must be pul led down to VSS through resistors.
During reset, the strap pins are undriven, allowing either an internal pull up to pull a pin to “1” or an external pull down to
pull a pin to “0.” The values on the strap pins are then latched into the device and used as operational parameters.
However, for debug purposes, those latched values may be overridden through an external debug strap port or by a
bit-stream downloaded from a serial EEPROM.
Table 3-15 Strap Definitions for the RS690
DEBUG15 AE21 Debug15
DFT_GPIO2 C8 Debug [programmable*]
DFT_GPIO3 C7 Debug [programmable*]
DFT_GPIO4 B8 Debug [programmable*]
DFT_GPIO5 A8 Debug [programmable*]
*Note: The port is programmable into any of Deb ug0 to De bug1 5.
Strap Function Strap Pin Description
RESERVED DFT_GPIO5 This is a reserved strap and no strap resistor sh ould b e conn ect ed t o it.
GPPSB_LINK_CONFIG DFT_GPIO[4:2] Southbridge and General Purp ose Link Configura tion.
See Table 3-16 below for deta ils.
LOAD_ROM_STRAPS# DFT_GPIO1 Selects loading of strap va lu es from EE PROM
0: I2C master can lo ad strap values from EEPROM if connected, or use default va lues
if not connected
1: Use default values (Default)
RESERVED DFT_GPIO0 This is a reserved strap and no strap resistor sh ould b e conn ect ed t o it.
Table 3 -14 RS690 Debu g Port Sign al s
Pin Name Ball Ref Debug Port Name
Strapping Options
© 2007 Advanced Micro Devices, Inc. 41977 AMD RS690 Databook 3.03
Proprietary and Confidential 3-13
Table 3-16 Strap Definition for GPPSB_LINK_CONFIG
Strap Pin Value Link Width Configuration
DFT_GPIO4 DFT_GPIO3 DFT_GPIO2 SB GPP1 GPP2 GPP3 GPP4
111
Use register field
STRAP_BIF_LINK_CONFIG_GPPSB
of register StrapsOutputMux_7
(NBMISCIND: 0x67 bit[7:4]) to
define link configuration (Default).
-
1 1 0 40000 A
1 0 1 44000 B
1 0 0 42200 C
0 1 1 42110 D
0 1 0 41111 E
Others
Use register field
STRAP_BIF_LINK_CONFIG_GPPSB
of register StrapsOutputMux_7
(NBMISCIND: 0x67 bit[7:4]) to define
link configuration.
-
Note: The three strap pins are internally pulled up so that if left unconnected on the moth erboa rd, t he
RS690 will use register field S TRAP_ BIF_LINK _CONFIG_GPPS B of registe r StrapsOutputMux_7
(NBMISCIND: 0x67 bit[7:4]) to define the link configurat ion. The po wer on default va lue of this regist er
corresponds to Configurat ion E. If the pin straps are used, the GP PSB config uration will then be
determined accordin g to this table and cannot be changed af ter the system has b een powere d up .
41977 AMD RS690 Databook 3.03 © 2007 Advanced Micro Devices, Inc.
3-14 Proprietary and Confidential
Strapping Options
This page intentionally left blank.
© 2007 Advanced Micro Devices, Inc. 41977 AMD RS690 Databook 3.03
Proprietary and Confidential 4-1
Chapter 4
Timing Specifications
4.1 HyperTransport Bus Timing
For HyperTransp ort bus timing information, please refer to CPU specifications.
4.2 HyperTransport Reference Clock T iming Parameters
4.3 PCI-E Differential Clock AC Specifications
4.4 OSCIN Timing
Table 4-1 HTREFCLK Pad (66.66MHz) Timing Parameters
Symbol Parameter Min Typ Max Unit Comment
TIP REFCLK Period 15 ns Time intervals measured at 50%
VDDCK threshold point
FIP REFCLK Frequency 66.66 MHz FIP is the reciprocal of TIP.
TIH REFCLK High Time 2 ns
TIL REFCLK Low Time 2 ns
TIR REFCLK Rise Time 1.5 ns
TIF REFCLK Fall Time 1.5 ns
TIJCC REFCLK Cycle-to-Cycle Jitter Requirement 300 ps
TIJLT REFCLK Long Term Jitter Requirement
(1µs after scope trigger) ––1ns
Table 4-2 PCI-E Differential Clock (GFX_CLK, SB_CLK) AC Characteristics
Parameter Minimum Maximum Unit
Absolute Minimum Differential Clock Period 9.872 ns
Rise Time 175 700 ps
Fall time 175 700 ps
Rise/Fall Matching 20 %
Cycle-to-Cycle Jitter 125 ps
Duty Cycle 45 55 %
Table 4-3 Ti ming Requirements for the OSCIN Pad
Symbol Parameter Min Typical Max Unit Note
TIP REFCLK Period 0.037 1.1 µs1
FIP REFCLK Frequency 0.9 27 MHz 2
TIR REFCLK Rise Time 1.5 ns
TIF REFCLK Fall Time 1.5 ns
TIJCC REFCLK Cycle-to-Cycle Jitter Requirement 300 ps
41977 AMD RS690 Databook 3.03 © 2007 Advanced Micro Devices, Inc.
4-2 Proprietary and Confidential
OSCIN Timing
FRQD Frequency Tolerance 30 ppm 3
Notes:
1 Time intervals measured at 50% threshold point.
2 FIP is the reciprocal of TIP.
3 FRQD is the tolerance of the frequency input for proper generation of the expected PLL fr equencies.
Table 4-3 Timing Requirements for the OSCIN Pad (Continued)
Symbol Parameter Min Typical Max Unit Note
Power Rail Power Up Sequence
© 2007 Advanced Micro Devices, Inc. 41977 AMD RS690 Databook 3.03
Proprietary and Confidential 4-3
4.5 Power Rail Power Up Sequence
Figure 4-1 Power Rail Power Up Sequence for the RS690
Table 4-4 RS690 Power Rail Power Up Sequence Requiremen ts
Figure 4-1 above only shows the power up sequence for the po wer rails that the RS690 connects to. For a power up
sequence for the whole RS690 platform , please refer to the RS690/RS485.
Symbol Parameter Voltage Difference During Ramping
Minimum (V) Maximum (V)
T11 3.3V rails ramp high relative to 1.8V
display and PLL rails 02.1
T12 1.8V debug IO rail ramps high relative to
VDD_CORE (1.2V) 0 No restrictions
T13 1.8V display and PLL rails ramp high
relative to 1.2V PLL rails 0 No restrictions
T14 1.2V PLL rails ramp high relative to
VDD_CORE (1.2V) 0 No restrictions
Notes:
1. Power rails in the same group may require separate power sources. Please refer to the RS690-series IGP Motherboard
Design Guide for details.
2. There are no specific requirements for the following 1.2V rails: VDD_HT, VDDA_12, and VDD_PLL.
3. For power down, the rails should either be turned off simultaneously or in the reversed order of the above power up
sequence. Variations in speeds of decay due to different capacitor discharge rates can be safely ignored.
T11
T13
T14
1.8V Debug IO Rails
(VDDR) T12
3.3V Rails
(VDDR3, LVDDR33, AVDD)
1.8V Display and PLL Rails
(PLLVDD18, LVDDR18D, LPVDD,
AVDDDI, AVDDQ, HTPVDD , VDD_18)
1.2V PLL Rails
(PLLVDD12)
1.2V VDD_CORE
41977 AMD RS690 Databook 3.03 © 2007 Advanced Micro Devices, Inc.
4-4 Proprietary and Confidential
Power Rail Power Up Sequence
This page is left blank intentionall y.
© 2007 Advanced Micro Devices, Inc. 41977 AMD RS690 Databook 3.03
Proprietary and Confidential 5-1
Chapter 5
Electrical Characteristics and Physical Data
5.1 Electrical Characteristics
5.1.1 Maximum and Minimum Ratings
Table 5-1 Maximum and Minimum Ratings
Pin Minimum Typical Maximum Unit Comments
VDD_CORE 1.14 1.2 1.26 V ASIC core power
VDD_18 1.71 1.8 1.89 V Core transform power for GPIOs
and power for DFT_GPIOs
VDD_HT 1.14 1.2 1.26 V IO power for HyperTransport
interface
VDDR3 3.135 3.3 3.465 V 3.3 Volt IO power
VDDA_12 1.14 1.2 1.26 V PCI Express Interface Main I/O
Power
AVDDDI 1.71 1.8 1.89 V Digital power for DAC
AVDDQ 1.71 1.8 1.89 V Band gap reference voltage for
DAC
AVDD 3.135 3.3 3.465 V IO power for DAC
LPVDD 1.71 1.8 1.89 V Power for PLL
LVDDR18D 1.71 1.8 1.89 V 1.8V Power
LVDDR33 3.135 3.3 3.465 V 3.3V Power
PLVDD12 1.14 1.2 1.26 V 1.2V Power for System PLLs
PLVDD18 1.71 1.8 1.89 V 1.8V Power for System PLLs
HTPVDD 1.71 1.8 1.89 V Power for Hyper Transport
interface PLL
Note: Numbers in this table are to be qualified.
41977 AMD RS690 Databook 3.03 © 2007 Advanced Micro Devices, Inc.
5-2 Proprietary and Confidential
Electrical Characteristics
5.1.2 DC Characteristics
Table 5-2 DC Characteristics for 3.3V TT L Signals
Pins Symbol Description Minimum Maximum Unit
ALLOW_LDTSTOP†
BMREQ#†
DACVSYNC
DACSCL*†, DACSDA
DACHSYNC†
DDC_DATA
GPIO[4:2]
LDTSTOP#‡
OSCIN‡
I2C_DATA, I2C_CLK*
POWERGOOD‡
STRP_DATA
SYSRESET#‡
TESTMODE‡
TMDS_HPD‡
TVCLKIN‡
VILdc DC voltage at PAD pin that will produce
a stable low at the Y p in of macro –0.6V
VIHdc DC voltage at PAD pin that will produce
a stable hig h at th e Y pin o f ma cro 1.4 V
VOL Output low voltage 0.35 V
VOH Output high voltage 2.6 V
IOL O ut put lo w current at V= 0.1V 2.3* mA
IOH Output high current at V=VD DR-0.1V 2.2 * mA
Notes:
‡ Input pins. Outpu t parameters in the tab le do not apply.
† Output pins. Input parameters in the table do not apply.
* DACSCL and I2 C_CLK ha ve different values for IOL and IOH:
DACSCL: IOL=14mA, IOH=5.8mA
I2C_CLK: IOL=9.5mA, IOH=3. 2mA
Other numbers in this t ables ar e applicab le to the two signals.
Table 5-3 DC Characteristics for 1.8V TT L Signals
Pins Symbol Description Minimum Maximum Unit
DFT_GPIO[5:0]
VILdc DC voltage at PAD pin that will produce
a stable low at the Y p in of macro 0.69* V
VIHdc DC voltage at PAD pin that will produce
a stable hig h at th e Y pin o f ma cro 0.81* V
VOL Output low voltage 0.59 V
VOH Output high voltage 1.16 V
IOL O ut put lo w current at V= 0.1V 1.52 mA
IOH Output high current at V=VD DR-0.1V 1.79 mA
* Note: Measured with edge rate of 1 µs at PAD pin.
Table 5-4 DC Characteristics for the HTREFCLK Pad (66.66MHz)
Symbol Description Minimum Typical Maximum Comments
VIL Input Low Voltage 0V 0.2V
VIH Input High Voltage 1.4V 1.8V
VIMAX Maximum Input Voltage 2.1V
Table 5-5 DC Characteristics for the OSCIN Pad (14.3181818MHz)
Symbol Description Minimum Typical Maximum Comments
VIL Input Low Voltage 0V 0.6V
VIH Input High Voltage 2.5V 2.6V
VIMAX Maximum Input Voltage 3.3V
Electrical Charac te rist ics
© 2007 Advanced Micro Devices, Inc. 41977 AMD RS690 Databook 3.03
Proprietary and Confidential 5-3
Table 5-6 DC Characteristics for the Integrated DVI/HDMI (Not Applicable to the RS690C)
Symbol Parameter Min Typical Max Unit Note
VCM Common-mode Voltage on S ignal P air -0.5 4.0 V
VH Single-ended High Leve l Output Voltage AVCC - 10 AVCC + 10 mV 1
VL Single-ended Low Level Outpu t Voltag e AVCC - 600 AVCC - 400 mV 1
VSW Single-ended Output Swing 400 600 mV
VOS Differential Output Overshoo t (Ringing ) 15%* 2VS W
VUS Differential Out put Undersho ot (Ring ing) 25%*2VSW
IDDLP Average Supply Current at L PVD D 20.0 mA 2
IDDLV Average Supply Cu rrent at LVDDR18 and
LVDDR33 100.0 mA 2
IPDLP Power Down Current at LPVDD 10.0 µA3
IPDLV Power Down Curren t at LVDDR18 and
LVDDR33 –10.0– µA3
Notes:
1 AVCC st and s f or t he t erminat io n supp ly volt ag e of the receiver, which is 3.3V +/- 5%.
2 Measured under typ ical condit io ns, at minimu m differential clock frequency and maximum DVI/HDMI PLL VOC frequency.
3 Measured under typ ical condit io ns, ba sed on typical leakage values.
4 Figure 5-1 below illustra tes some of the DC Ch aracteristics o f th e DVI/HDMI interface.
Table 5-7 DC Characteristics for the TMDS Interface Multiplexed on the PCI-E Gfx Lanes (Not Applicable to the
RS690C)
Symbol Parameter Min Typical Max Unit Note
VCM Common-mode Voltage on S ignal P air -0.5 4.0 V
VH Single-ended High Leve l Output Voltage AVCC - 10 AVCC + 10 mV 1
VL Single-ended Low Level Outpu t Voltag e AVCC - 600 AVCC - 400 mV 1
VSW Single-ended Output Swing 400 600 mV
VOS Differential Output Overshoo t (Ringing ) 15%* 2VS W
VUS Differential Out put Undersho ot (Ring ing) 25%*2VSW
Notes:
1 AVCC st and s f or t he t erminat io n supp ly volt ag e of the receiver, which is 3.3V +/- 5%.
2 Figure 5-1 below illustra tes some of the DC Ch aracteristics o f the TMDS interface.
41977 AMD RS690 Databook 3.03 © 2007 Advanced Micro Devices, Inc.
5-4 Proprietary and Confidential
Electrical Characteristics
Figure 5-1 DC Characteris tics of the Integrated DVI/HDMI and the TMDS Interface
VSW
VHmax
VHmin
VLmax
VLmin
2VSW
VOS
VUS
Single-ended Waveform s
Differential Waveform
VOS
VUS
RS690 Thermal Characteristics
© 2007 Advanced Micro Devices, Inc. 41977 AMD RS690 Databook 3.03
Proprietary and Confidential 5-5
5.2 RS690 Thermal Characteristics
This section describ es some key thermal parameters of t he RS690. For a detail ed discussion on these parameters and
other thermal design issues, please consu lt the Thermal Design and Analysis Guidelines for the RS485 and RS690.
5.2.1 RS690 Thermal Limits
5.2.2 Other Thermal Parameters
Two thermal parameters, θjc and θjb, are defined for the RS690 package under the “two-resistor” thermal model
(see the Thermal Design and Analysi s Guidelines for the RS485 and RS690 for details), and their definitions are as
follow:
θjc = (Tj - Tc) / Qc
θjb = (Tj - Tb) / Qb
Where:
Tc = Mean case (package-air interface) temperature
Tb = Mean package-board interface temperature
Qc = Heat dissipated through the case (package-air interface)
Qb = Heat dissipated through the PCB
Table 5-9 shows the measured values for θjb and θjc:
However, the “two-resisto r model,” under which th ese parameters are defined, is a highly simpl ified thermal model.
A Delphi model for the RS690 package, available from your AMD CSS representative, will allow more accurate
calculations and is preferred over the “two-resistor model.”
Table 5-8 RS690 Thermal Limits
Parameter Minimum Nominal Maximum Unit Note
Operating Case Temperature 0 95 °C1
Operating Junction Temperature 104 °C2
Absolute Rated Junction
Temperature 125 °C3
Storage Temperature -40 60 °C
Ambient Temperature 0 45 °C4
Thermal Design Power 8 W 5
Notes:
1 - The maximum operating case temperature is the maximum case temperature at which the functionality of the chip is qualified. The
temperature is measured using a fine thermocouple put between the thermal management device contact surface and the back side of
the die.
2 - The maximum operating junction temperature is the interpolated value of the junction temperature at the time when the maximum
operating case temperature is being measured.
3 - The maximum absolute rated junction temperature is the junction temperature at which the device can operate without causing
damage to the ASIC.
4 - The ambient temperature is defined as the temperature of the local intake air at the inlet to the thermal management device.
5 - The Thermal Design Power (TDP) is defined as the worst-case power dissipation while running currently available applications at
nominal voltages and at the maximum operating temperature. The TDP is intended only as a design reference. It is not an absolute
maximum power under all conditions. The value shown here is a preliminary estimate only, and it is measured at a core voltage of 1.2V.
Table 5-9 Thermal Parameters for the RS690
Parameter Value (°C/W)
θjb 13.97
θjc 0.2
41977 AMD RS690 Databook 3.03 © 2007 Advanced Micro Devices, Inc.
5-6 Proprietary and Confidential
Package Information
5.3 Package Information
5.3.1 Physical Dimensions
Figure 5-2 and Table 5-10 describe the physical dimensions of the RS690 package. Figure 5-3 shows the detailed
ball arrangement for the RS690.
Figure 5-2 RS690 Package Outline
Table 5-10 RS690 465-Pin FCBGA Package Physical Dimensions
Ref. Min(mm) Typical (mm) Max. (mm)
c 0.96 1.06 1.16
A 2.18 2.33 2.48
A1 0.30 0.40 0.50
A2 0.84 0.87 0.90
φb 0.40 0.50 0.60
D1 20.80 21.00 21.20
D2 - 7.33 -
E1 20.80 21.00 21.20
E2 - 6.93 -
F1 - 19.20 -
F2 - 19.20 -
e1 - 0.80* -
ddd - - 0.15
* Note: Only minimum pitch shown.
210210046508001_3-REV B
Package Information
© 2007 Advanced Micro Devices, Inc. 41977 AMD RS690 Databook 3.03
Proprietary and Confidential 5-7
Figure 5-3 RS690 Ball Arrangement
41977 AMD RS690 Databook 3.03 © 2007 Advanced Micro Devices, Inc.
5-8 Proprietary and Confidential
Package Information
5.3.2 Pressure Specification
To avoid damages to the ASIC (die or solder ball join t cracks) caused by improper mechanical assembly of the cooling
device, follow the recommendations below:
It is recommended that th e maximum pressure which is evenly applied across the contact area between the
thermal management device and the die does not exceed 40 PSI. Note that a contact pressure of 30-40 PSI is
adequate to secure the thermal management device and achieve the lowest thermal contact resistance with a
temperature drop across the thermal interface material of no more than 3°C. Also, the surface flatness of the
metal spreader should be 0.001 inch/1 inch.
Pre-test the assembly fixture with a strain gauge to make sure that the flexing of the final assembled board and
the pressure applyin g around the ASIC package will not excee d 600 micron strain under any circumstances.
Ensure that any distortion (bow or twist) of the board after SMT and cooling device assembly is within industry
guidelines (IPC/EIA J-STD- 001). For measurement method, refer to the indu stry approved techniqu e described
in the manual IPC-TM-650, section 2.4.22.
5.3.3 Board Solder Reflow Process Re commendations
5.3.3.1 Stencil Opening Size for Solderball Pads on PCB
It is recommended that the stencil aperture for solderballs be kept at the same size as the land pads' except for the
nine pads at each corner of the ASIC package, for which a maximum size of 400µm is recommended (see Figure
5-2 below). This recommendation is based on AMD’s sample land pattern design for the RS690, which is available
from your AMD CS S representative.
Package Information
© 2007 Advanced Micro Devices, Inc. 41977 AMD RS690 Databook 3.03
Proprietary and Confidential 5-9
Figure 5-2 Stencil Opening Recommendations
5.3.3.3 Reflow Profiles
A reference reflow profile is given below. Please note the following:
The final reflow temperature profile will depend on the type of solder paste and chemistry of flux used in th e SMT
process. Modifications to the reference reflow profile may be required in order to accommodate the requirements of
the other components in the application.
An oven with 10 heating zones or above is recommended.
To ensure that the reflow profile meets the target specification on both sides of the board, a different profile and oven
recipe for the first and second reflow may be required.
Mechanical stiffening can be used to minimize board warp age during reflow.
The temperat ure ramp rate requirement is fo r minimizing bo ard warpage.
Maximum number of reflows: 3.
Stencil apperture
for solderballs to
be kept at the same
size as the land
pads', except for
the corner balls.
400 µm maximum for
the nine corner balls'
openings
400 µm maximum for
the nine corner balls'
openings
400 µm maximum for
the nine corner balls'
openings
400 µm maximum for
the nine corner balls'
openings
41977 AMD RS690 Databook 3.03 © 2007 Advanced Micro Devices, Inc.
5-10 Proprietary and Confidential
Thermal Diode Characteristics
Figure 5-4 RoHS/Lead-Free Solder (SAC305 /405 Tin-Silver-Copper) Reflow Profile
5.4 Thermal Diode Characteristics
The RS690 has an on-die thermal dio de, with it s positive and negative terminals connected to the THERMALDIODE_P
and THERMALDIODE_N pins respectively . Combined with a thermal sensor circuit, the diode temperature (T), and
hence the ASIC temperature, can be derived from a differential voltage reading (V). The equation relating T to V is
given bel ow. (F or deta il s on h ow t his equ at ion is der ived and how it can be used for measuring tempe ratures, please refer
to published articles on thermal diode usage and/o r thermal diode sensor technical specifications.)
where:
V = Difference of two base-to-emitter voltage readings, one using current = I and the other using current = N x I
N = Ratio of the two thermal diode currents (=10 when using an ADI thermal sensor, e.g.: ADM 1020, 1030)
η = Ideality factor of the diode
K = Boltzman’s Constant
T = Temperature in Kelvin
q = Electron charge
The following are some measurements for the ideality factor of the thermal diode:
TBA
The sensor circuit should be calibrated to offset the series resistance of the thermal diode, as well as any other known
errors.
50
250
150
200
100
Soldering Zone
45 - 90 sec. Max.
60 - 80 sec. typical
Peak Temp. (235oC+/-5% typ., 245 oC max.)
220 deg.C
60 – 80 sec. typical
<2.0oC / Sec.
<2.0o.C / Sec.
2 min to 4 mi n Max.
Heating Time
Solder/Part Surface Temp. ( oC )
Pre-hea ting Zone
Soaking Zone
130 oC
170oC
60 – 120 sec. max
VηK×T×N()ln×
q
--------------------------------------------
=
© 2007 Advanced Micro Devices, Inc. 41977 AMD RS690 Databook 3.03
Proprietary and Confidential 6-1
Chapter 6
Power Management and ACPI
6.1 ACPI Power Management Implementation
This chapter describes the support for ACPI power management provided by the RS690. The RS690 system contro ller
supports ACPI Revision 1.0b . The hardware, system BIOS, video BIOS, and drivers of the RS690 have all the logic
required for meeting the power management specificatio ns of PC 2001, OnNow, and the Windows Logo Program and
Device Requiremen ts version 2.1. Table 6-1, “ACPI States Supported by the RS690,” describes the ACPI states
supported by the RS690 system controller. Table 6-2, “ACPI Signal Definit ions,” describes the signals used in the ACPI
power management scheme of the RS690.
Note: Also supported are additional processor power states that are not part of the ACPI specification, e.g. C1E (C1
Enhanced) and C3 pop-up. Please refer to the SB600 Databook and the RS690 Register Programming Requirements for
more information.
Table 6-1 ACPI States Supported by the RS690
ACPI State Description
Graphics States:
D0 Full on, display active.
D1 Display Off. RS690 power on. Configuration registers, state, and main memory contents retained.
D3 Hot Similar to D1, with additional power saving and the graphics PLLs shut off.
D3 Cold RS690 power off.
Processor States:
S0/C0: Working State Working State. The processor is executing instructions.
S0/C1: Halt CPU Halt state. No instructions are executed. This state has the lowest latency on resume and contributes
minimum power savings.
S0/C2: Stop Grant
Caches Snoopable S top Grant or Cache Snoopable CPU state. This st ate of fers more power savings but has a higher latency
on resume than the C1 state.
S0/C3: Stop Grant
Caches Not Snoopable S top Grant or Cache not Snoopable Sleep state. The CPU’s caches maintain state but ignore any snoops.
This state offers more power savings but has a higher latency on resume than the C1 and C2 states.
System States:
S1: Standby
Powered On Suspend System is in Standby mode. This state has low wakeup latency on resume. OEM support of this state is
optional.
S3: Standby
Suspend to RAM System is off but context is saved to RAM. OEM support of this state is optional. System memory is put
into self-refresh.
S4: Hibernate
Suspend to Disk System is off but context is saved to disk. When the system transitions to the working state, the OS is
resumed without a system re-boot.
S5: Soft Off System is off. OS re-boots when the system transitions to the working state.
G3: Mechanical Off Occurs when system power (AC or battery) is not present or is unable to keep the system in one of the
other states.
Table 6-2 ACPI Signal Definitions
Signal Name Description Source
ALLOW_LDTSTOP Output to the Southbridge to allow LDTSTOP# assertion. Northbridge
LDTSTOP# HyperTransport Technology Stop: Enables and disables links during
system state transitions. Southbridge
POWERON# Power on Power switch
RESET# Global Reset Southbridge
41977 AMD RS690 Databook 3.03 © 2007 Advanced Micro Devices, Inc.
6-2 Proprietary and Confidential
Power Management for the Graphics Controller
6.2 Power Management for the Graphics Controller
The RS690 supports power management for the embedded graphics device as specified by the PCI Bus Power
Management Interface Specification version 1.0, according to which the integrated graphics core of the RS690 qualifies
as a device embedding a single function in the power management system .
6.2.1 PCI Function Power States
There are up to four power states defined for each PCI function associated with each PCI device in the system. These
power states are D0, D1, D2 and D3. D0 (on) consumes the most power while D3 (off) consumes the least. D1 and D2
enable levels of power savings in between those of D0 and D3. The concepts of these power states are universal for all
functions in the system. When transitioned to a given pow er management state, the intended functional beh a vior is
dependent upon the type (or class) of the function.
6.2.2 PCI Power Management Interface
The four basic power management operations are:
Capabilities Reporting
Power Status Reporting
Setting Power State
System Wakeup
All four of these capabilities are required for each power management functi on wi th the exception of wakeup event
generation.
This section describes the format of the registers in the PCI Configuration Space that are used by these power
management operations. The Status and Capabilities Pointer (CA P_PTR) fields have been highligh ted to in dicat e where
the PCI Power Management features appear in the standard Configuration Space Header.
6.2.3 Capabilities List Data Structure in PCI Configuration Space
The Capabilities bit in the PCI Status register (offset = 06h) indicates whether or not the subject function implements a
linked list of extended capabilities. Sp ecifi cally, if bit 4 is set, the CAP_PTR register is implemented to give offset to the
first item in th e Capab il ities link list.
Table 6-3 Standard PCI Configuration Space Header Type 0
R e g i s t e r F i e l d s ( 3 2 b i t s ) Offset
MSB LSB
Device ID Vendor ID 00h (LSB)
Status (with Bit 4 set to 1) Command 04h
Class Code Revision ID 08h
BIST Header Type Latency Timer Cache Line Size 0Ch
Base Address Registers 10h
14h
18h
1Ch
20h
24h
CardBus CIS Pointer 28h
Subsystem ID Subsystem Vendor ID 2Ch
Expansion ROM Base Address 30h
Reserved CAP_PTR 34h
Reserved 38h
Max_Lat Min_Gnt Interrupt Pin Interrupt Line 3Ch
Power Management for the Graphics Controller
© 2007 Advanced Micro Devices, Inc. 41977 AMD RS690 Databook 3.03
Proprietary and Confidential 6-3
The location of the Capabilities Pointer (CAP_PTR) depends on the PCI header type. See PCI specification Revision 2.2
for specification of CAP_PTR offsets.
The graphics core implements extended capabilities of the AGP and Power Management. It needs to provide the
standardized register interface. The first entry in the chain of descriptors has to be the PMI descriptor, as this functionalit y
will be supported even if the RS690 operates as a PCI device. The Capabilities Identifier for Power Management is 01h.
6.2.4 Register Block Definition
This section describes the PCI Power Management Interface registers. These registers are implemented inside the Host
Interface (HI) as part of the configuration space of the device (RS690).
The first 16 bits (Capabilities ID [offset = 0] and Next Item Pointer [offset = 1]) are used for the linked list infrastructure.
The next 32 bits (PMC [offset = 2] and PMCSR registers [offset = 4]) are required for compliance with this specification.
As with all PCI configuration registers, these registers may be accessed as bytes, 16-bit words, or 32-bit DWORDs. All of
the write operations to the reserved registers must be treated as no-ops. This implies that the access must be completed
normally on the bus and the data should be discarded. Read accesses to the reserved or the unimplemented registers must
be completed normally and a data value of 0000h should be returned.
Table 6-4 PCI Status Register
Bits Default Value Read/
Write Description
15:05----Refer to PCI Local Bus Specification, Revision 2.2
04 1b Read Only This bit indicates whether this function implements a list of extended capabilities
such as PCI power management. When set, this bit indicates the presence of
Capabilities. A value of 0 implies that this function does not implement
Capabilities.
03:00 0h Read Only Reserved
Table 6-5 Capabilities Pointer (CAP_PTR)
Bits Default Value Read/
Write Description
07:00 50h Read Only The CAP_PTR provides an offset in the PCI Configuration Space of the
function to access the location of the first item in the Capabilities linked list. The
CAP_PTR offset is DWORD aligned, so that the two least significant bits are
always zeros.
Table 6-6 Power Management Register Block
Register Fields Offset
Capabilities ID 00h
Next Item Ptr 01h
Power Management Capabilities (PMC) 02h
Power Management Control/Status Register (PMCSR) 04h
Reserved 06h
41977 AMD RS690 Databook 3.03 © 2007 Advanced Micro Devices, Inc.
6-4 Proprietary and Confidential
Power Management for the Graphics Controller
The offset for each register is listed as an offset from the beginning of the linked list item that is determined either from
the CAP_PTR (if Power Manage ment is the f irst item in the lis t) or the NEXT_ITEM_PTR of the previous item in the list.
6.2.5 Capability Identifier: Cap_ID (Offset = 0)
The Capability Identifier, when read by system software as 01h, indicates that the data structure currently being pointed to
is the PCI Power Management data structure. Each function of a PCI device may have only one item in its capability list
with Cap_ID set to 01h.
Figure 6-1, ‘Linked List for Capabilities,” shows the implementation of the capabilities list. The CAP_PTR gives the
location of the first item in the list. PCI Power Management registers have been stated as example in this list (although the
capabilities can be in any order).
The first byte of each entry is required to be the ID of that capability. The PCI Power Management capability has an
ID of 01h.
The next byte is a pointer giving an absolute offset in the functions PCI Configuration Space to the next item in the
list and must be DWORD aligned.
If there are no more entries in the list, the NEX T_ ITEM_PTR must be set to 0 to indicate an end of the linked list .
Each capability can then have registers following the NEXT_ITEM_PTR.
The definition of these registers (including layout, size, and bit definitio ns) is specific to each capability. The PCI Power
Management Register Block is defined in Figure 6-1, ‘Linked List for Capabilities,” below.
Table 6-7 Power Management Control/Status Register (PMCSR)
Field
Name Bits Default
(Reset) Description
Power State 1:0 00 This field describes the power state of the graphics core.
States Function
00 = D0 Normal operation, no power savings enabled
01 = D1 Sleeping state 1:
Display is off
Host access to DRAM is allowed
10 = D2 Sleeping state 2
Display is off.
All engines are off.
Graphics core does not respond to host accesses to the frame buffer.
11 = D3 Everything, except Host Interface, is turned off.
Power State 15:2 0 These Read Only bits will return the clock status of each clock tree, generated inside the clock
block.
Table 6-8 Capability Identifier (Cap_ID)
Bits Default Value Read/
Write Description
07:00 01h Read Only This field, when set to 01h, identifies the linked list item as being the PCI Power
Management registers
Power Management for the Graphics Controller
© 2007 Advanced Micro Devices, Inc. 41977 AMD RS690 Databook 3.03
Proprietary and Confidential 6-5
6.2.6 Next Item Pointer
The Next Item Pointer register describes the location of the next item in the capability list of the function. The value given
is an offset in the PCI Configuration Space of that function. This register must be set to 00h if the function does not
implement any other capabilities defined by th e PCI Specifications for inclusion in the capabilities list, or if pow er
management is the last item in the list.
6.2.7 PMC - Power Management Capabilities (Offset = 2)
The Power Management Capabilities register is a 16-b it Read Onl y register that provides information on the capabilities
of the function related to power management. The information in this register is generally static and is known at design
time.
Table 6-9 Next Item Pointer (NEXT_ITEM_PTR)
Bits Default
Value Read/
Write Description
07:00 80h Read Only This field provides an offset in the PCI Configuration S p ace of the function pointing to the location
of next item in the capability list of the function. For Power Management of the RS690, this
pointer is set to 80h and it points to the next capability pointer of the MSI structure.
Table 6-10 Power Management Capabilities – PMC
Bits Default Value Read/
Write Description
15:11 00111b Read Only This 5-bit field indicates the power states in which the function may assert PME#. A value of
0b for any bit indicates that the function is not capable of asserting the PME# signal while in
that power state.
bit(11) XXXX1b - PME# can be asserted from D0.
bit(12) XXX1Xb - PME# can be asserted from D1.
bit(13) XX1XXb - PME# can be asserted from D2.
bit(14) X0XXXb - PME# cannot be asserted from D3hot.
bit(15) 0XXXXb - PME# cannot be asserted from D3cold.
10 001b Read Only RS690 supports D2.
Cap_Ptr = 50 h
8 bits
PCI Configuration Header
Offset 34h
025Ch
AGP Capability
0100h
PM Registers
Offset 5Ch
Offset 50h
Figure 6-1 Linked List for Capabilities
41977 AMD RS690 Databook 3.03 © 2007 Advanced Micro Devices, Inc.
6-6 Proprietary and Confidential
Power Management for the Graphics Controller
09 001b Read Only RS690 supports D1.
08:06 000b Read Only Reserved
05 1b Read Only The Device Specific Initialization bit indicates whether special initialization of this function is
required (beyond the standard PCI configuration header) before the generic class device
driver is able to use it. The RS690 requires device specific initialization after Reset; this field
must therefore return a value 1 to the system.
04 0b Read Only Reserved
03 0b Read Only Reserved
02:00 001b Read Only A value of 001b indicates that this function complies with Revision 1.0 of the PCI Power
Management Interface Specification.
Table 6-10 Power Management Capabilities – PMC (Continued)
Bits Default Value Read/
Write Description
© 2007 Advanced Micro Devices, Inc. 41977 AMD RS690 Databook 3.03
Proprietary and Confidential 7-1
Chapter 7
Testability
7.1 Test Capability Features
The RS690 system controller has integrated test modes and capabilities. These test features cover both the ASIC and
board level testing. The ASIC tests provide a very high fault coverage and low DPM (Defect Per Million) ratio of the part.
The board level tests modes can be used for motherboard manufacturing and debug purposes. The followin g are the test
modes of the RS690 system controller:
Full scan implementation on the digital core logic that provides about 99% fault coverage through ATPG (Automatic
Test Pattern Generation Vectors).
Dedicated test logic for the on-chip custom memo ry macros to provide complete coverage on these modul es.
Improved access to the analog modules and PLLs in the RS690 system controller to allow full evaluation and
characterization of these modules.
A JTAG test mode (which is not entirely compliant to the IEEE 1149.1 standard) to allow board level testing of
neighboring devices.
An XOR TREE test mode on all the digital I/O’ s to allow for proper soldering verification at the board level.
A VOH/VOL test mode on all digital I/O s to allow for proper veri fi cation of output high and output low vo ltag es at
the board level.
These test modes can be accessed through the settings on the instruction register of the JTAG circuitry.
7.2 Test Interface
7.3 XOR Tree
7.3.1 Brief Description of an XOR Tree
An example of a generic XOR tree is shown in the figure below.
Table 7-1 Pins on the Test Interface
Pin Name Ball number Type Description
TESTMODE C3 I IEEE 1149.1 test port reset
DDC_DATA B3 I TMS: Test Mode Select (IEEE 1149.1 test mode select)
I2C_DATA B4 I TDI: Test Mode Data In (IEEE 1149.1 data in)
I2C_CLK A2 I TCLK: Test Mode Clock (IEEE 1149.1 clock)
TMDS_HPD C14 O TDO: Test Mode Data Out (IEEE 1149.1 data out)
POWERGOOD C11 I I/O Reset
OSCIN B11 I I/O Test Clock
41977 AMD RS690 Databook 3.03 © 2007 Advanced Micro Devices, Inc.
7-2 Proprietary and Confidential
XOR Tree
Figure 7-1 An Example of a Generic XOR Tree
Pin A is assigned to the output direction, and pins 1 through 6 are assigned to the input direction . It can be seen that after
all pins 1 to 6 are assigned to logic 0 or 1, a logic change in any one of these pins will toggle the output pin A.
The following is the truth table for the XOR tree shown in Figure 7-1 The XOR start signal is assumed to be logic 1.
7.3.2 Description of the XOR Tree for the RS690
The XOR start signal is applied at the TDI Pin of the JTAG circuitry and the output of the XOR tree is obtained at the
TDO Pin. Refer to Section 7.3.4 for the list of the signals included on the XOR tree. There is no specific connection order
to the signals on the tree. A toggle of any of these balls in the XOR tree will cause the outpu t to toggle.
7.3.3 XOR Tree Activation
The RS690 chip enters the XOR tree test mode by means of the JTAG. First, the 8-bit instruction register of the JTAG is
loaded with the XOR instruct ion (“00001000”). This instruction will assi gn the input direction to all the pins except pin
TDO, which is assigned the output direction to serve as the output of the XOR tree. After loading, the JTAG is taken to
the Run-Test state for completion of the XOR tree initi alizati on.
Note: 10 MHz clock frequency is recommended for the XOR TREE test mode.
7.3.4 XOR Chain for the RS690
Table 7-3 RS690 XOR Tree
XOR Start Signal
123456
A
Table 7-2 Example of an XOR Tree
Test Vector
number Input Pin 1 Input Pin 2 Input Pin 3 Input Pin 4 Input Pin 5 Input Pin 6 Output Pin A
10000001
21000000
31100001
41110000
51111001
61111100
71111111
No. Pin Name Ball Ref.
1GPIO2 G12
2GPIO4 F12
3GPIO3 E12
4 DACVSYNC C6
5 DACHSYNC A5
6 DACSCL B6
No. Pin Name Ball Ref.
XOR Tree
© 2007 Advanced Micro Devices, Inc. 41977 AMD RS690 Databook 3.03
Proprietary and Confidential 7-3
7 DFT_GPIO0 D6
8 DFT_GPIO1 D7
9 DFT_GPIO2 C8
10 DFT_GPIO3 C7
11 DFT_GPIO4 B8
12 DFT_GPIO5 A8
13 HT_RXCAD15N/P R18/R19
14 HT_RXCAD14N/P R22/R21
15 HT_RXCAD13N/P U21/U22
16 HT_RXCAD12N/P U19/U18
17 HT_RXCAD11N/P W20/W19
18 HT_RXCAD10N/P AB22/AC21
19 HT_RXCAD9N/P AA20/AB20
20 HT_RXCAD8N/P Y19/AA19
21 HT_RXCAD7N/P R25/T24
22 HT_RXCAD6N/P U24/U25
23 HT_RXCAD5N/P U23/V23
24 HT_RXCAD4N/P V25/V24
25 HT_RXCAD3N/P AA24/AA25
26 HT_RXCAD2N/P AA23/AB23
27 HT_RXCAD1N/P AB25/AB24
28 HT_RXCAD0N/P AC25/AC24
29 HT_RXCTLN/P P25/P24
30 HT_RXCLK1N/P W22/W21
31 HT_RXCLK0N/P W25/Y24
32 GPP_RX3N/P AA9/AB9
33 GPP_RX2N/P AA7/Y7
34 GPP_RX1N/P AE20/AD20
35 GPP_RX0N/P AE16/AD16
36 SB_RX3N/P AB11/AA11
37 SB_RX2N/P W12/W11
38 SB_RX1N/P AA12/AB12
39 SB_RX0N/P W15/W14
40 GFX_RX15N/P AB6/AB7
41 GFX_RX14N/P W9/V9
42 GFX_RX13N/P Y5/Y4
No. Pin Name Ball Ref.
43 GFX_RX12N/P W5/W4
44 GFX_RX11N/P U5/U4
45 GFX_RX10N/P R8/R7
46 GFX_RX9N/P R5/R4
47 GFX_RX8N/P P5/P4
48 GFX_RX7N/P P7/P8
49 GFX_RX6N/P M5/M4
50 GFX_RX5N/P M7/M8
51 GFX_RX4N/P L5/L4
52 GFX_RX3N/P L7/L8
53 GFX_RX2N/P J5/J4
54 GFX_RX1N/P J7/J8
55 GFX_RX0N/P G4/G5
56 NC/NC AD17/AE17
57 NC AE21
58 NC AD18
59 NC AC17
60 NC AE15
61 NC AC13
62 NC AE13
63 NC AD13
No. Pin Name Ball Ref.
41977 AMD RS690 Databook 3.03 © 2007 Advanced Micro Devices, Inc.
7-4 Proprietary and Confidential
VOH/VOL Test
7.3.5 Unused Pins
When the XOR tree is activated, any pin on the XOR tree must be either pulled down or pulled up to the I/O voltage of the
interface to which the pin belongs. No pins on the XOR tree should be left floating. All pins that are not part of the XOR
tree can be left floating.
7.4 VOH/VOL Test
7.4.1 Brief Description of a VOH/VOL Tree
The VOH/VOL logic gives signal output on I/O’s when test patterns are applied through the TEST_ODD and
TEST_EVEN inputs. Sample of a generic VOH/VOL tree is shown in the figure below.
Figure 7-2 Sample of a Generic VOH/VOL Tree
The following is the truth table for the above VOH/VOL tree.
Refer to Section 7.4.3 below for the list of pins that are on the VOH/VOL tree. VOH/VOL Tree Activation
7.4.2 VOH/VOL Tree Activation
To activate the VOH/VOL tree and run a VOH/VOL test, perform the sequence below:
1. Supply a clock at any speed (same or faster than test pattern data rate) to the OSCIN pin as the IO test clock source.
1
6
5
4
3
2
VOH/VOL
mode
TEST_ODD
TEST_EVEN
Table 7-4 Truth Table for the VOH/VOL Tree Outputs
Test Vector
Number TEST_ODD
Input TEST_EVEN
Input Output
Pin 1 Output
Pin 2 Output
Pin 3 Output
Pin 4 Output
Pin 5 Output
Pin 6
1 0 0 000000
2 0 1 010101
3 1 0 101010
4 1 1 111111
VOH/VOL Test
© 2007 Advanced Micro Devices, Inc. 41977 AMD RS690 Databook 3.03
Proprietary and Confidential 7-5
2. Set POWERGOOD to 0.
3. Set TESTMODE to 1
4. Set DACSDA to 0
5. Load JTAG instruction register with the instruction 0110 0011
6. Load JTAG instruction register with the instruction 0010 0111
7. Set POWERGOOD to 1.
8. Load JTAG instruction register with the instruction 1001 1001.
9. Run test by loading JTAG data register with data 0000 00 00 0000 00xy, where bit x is the input value for
TEST_ODD and bit y that for TEST_EVEN (see Table 7-4 above).
10. To end test, load JTAG instruction register with the instruction 0101 1101.
7.4.3 VOH/VOL pin list
Table 7-5 below shows the RS690 VOH/VOL tree. There is no specific order of connection. Under the Control column,
an “ODD” or “EVEN” indicates that the logical output of the pin is same as the “TEST_ODD” or “TEST_EVEN” input
respectively.
Table 7-5 RS690 VOH/VOL Tree
No. Pin Name Ball Ref. Control
1 HT_TXCAD15P/N P21/P22 EVEN
2 HT_TXCAD14P/N P18/P19 ODD
3 HT_TXCAD13P/N M22/M21 EVEN
4 HT_TXCAD12P/N M18/M19 ODD
5 HT_TXCAD11P/N L18/L19 EVEN
6 HT_TXCAD10P/N G22/G21 ODD
7 HT_TXCAD9P/N J20/J21 EVEN
8 HT_TXCAD8P/N F21/F22 ODD
9 HT_TXCTLP/N N23/P23 EVEN
10 HT_TXCAD7P/N N24/N25 ODD
11 HT_TXCAD6P/N L25/M24 EVEN
12 HT_TXCAD5P/N K25/K24 ODD
13 HT_TXCAD4P/N J23/K23 EVEN
14 HT_TXCAD3P/N G25/H24 ODD
15 HT_TXCAD2P/N F25/F24 EVEN
16 HT_TXCAD1P/N E23/F23 ODD
17 HT_TXCAD0P/N E24/E25 EVEN
18 DACSCL B6 ODD
19 DACVSYNC C6 EVEN
20 DACHSYNC A5 ODD
21 GPIO2 G12 EVEN
22 GPIO4 F12 ODD
23 GPIO3 E12 EVEN
24 DFT_GPIO5 A8 ODD
25 DFT_GPIO4 B8 EVEN
26 DFT_GPIO3 C7 ODD
27 DFT_GPIO2 C8 EVEN
28 DFT_GPIO1 D7 ODD
29 DFT_GPIO0 D6 EVEN
30 SB_TX3P/N AD7/AE7 ODD
31 SB_TX2P/N AD8/AE8 EVEN
32 SB_TX1P/N AC8/AD9 ODD
33 SB_TX0P/N AE9/AD10 EVEN
34 GPP_TX3P/N AD5/AD6 ODD
35 GPP_TX2P/N AD4/AE5 EVEN
36 GPP_TX1P/N AD19/AE19 ODD
37 GPP_TX0P/N AD14/AD15 EVEN
38 GFX_TX15P/N AE3/AE4 ODD
No. Pin Name Ball Ref. Control
41977 AMD RS690 Databook 3.03 © 2007 Advanced Micro Devices, Inc.
7-6 Proprietary and Confidential
VOH/VOL Test
39 GFX_TX14P/N AB1/AC1 EVEN
40 GFX_TX13P/N AA2/AB2 ODD
41 GFX_TX12P/N Y2/AA1 EVEN
42 GFX_TX11P/N W1/W2 ODD
43 GFX_TX10P/N V3/W3 EVEN
44 GFX_TX9P/N V2/V1 ODD
45 GFX_TX8P/N T2/U1 EVEN
46 GFX_TX7P/N R1/R2 ODD
47 GFX_TX6P/N P3/R3 EVEN
48 GFX_TX5P/N P2/P1 ODD
49 GFX_TX4P/N N2/N1 EVEN
50 GFX_TX3P/N L1/L2 ODD
51 GFX_TX2P/N K3/L3 EVEN
52 GFX_TX1P/N K2/K1 ODD
53 GFX_TX0P/N J1/H2 EVEN
54 NC AE17 EVEN
55 NC AD17 ODD
56 NC AE21 EVEN
57 NC AD18 ODD
58 NC AC17 EVEN
59 NC AE15 ODD
60 NC AC13 ODD
61 NC AE13 ODD
62 NC AD13 ODD
No. Pin Name Ball Ref. Control
© 2007 Advanced Micro Devices, Inc. 41977 AMD RS690 Databook 3.03
Proprietary and Confidential A-1
Appendix A
Pin Listings
This appendix contains pin listings for the RS690 sorted in different ways. To go to the li sting of interest, use the linked
cross-references below:
“RS690 Pin List Sorted by Ball Reference” on page A-2
“RS690 Pin List Sorted by Pin Name” on page A-6
41977 AMD RS690 Databook 3.03 © 2007 Advanced Micro Devices, Inc.
A-2 Proprietary and Confidential
A.1 RS690 Pin List Sorted by Ball Reference
Table A-1 RS690 Pin List Sorted by Ball Reference
Ball
Ref. Pin Name
A1 VSSA
A10 PLLVDD18
A11 PLLVDD12
A12 LVDDR18D
A13 NC
A14 LVSSR
A15 TXOUT_U0P
A16 LVSSR
A17 TXOUT_U2N
A18 TXOUT_U3P
A19 VDD_CORE
A2 I2C_CLK
A20 AVDDDI
A21 AVDDQ
A22 AVSSQ
A23 VSS
A24 HT_RXCALP
A25 VSS
A3 STRP_DATA
A4 VDD_CORE
A5 DACHSYNC
A6 DACSDA
A7 VDD_CORE
A8 DFT_GPIO5
A9 VDD_CORE
AA1 GFX_TX12N
AA11 SB_RX3P
AA12 SB_RX1N
AA14 NC
AA15 THERMALDIODE_P
AA17 VDD_HT
AA19 HT_RXCAD8P
AA2 GFX_TX13P
AA20 HT_RXCAD9N
AA23 HT_RXCAD2N
AA24 HT_RXCAD3N
AA25 HT_RXCAD3P
AA3 VSSA
AA7 GPP_RX2N
AA9 GPP_RX3N
AB1 GFX_TX14P
AB11 SB_RX3N
AB12 SB_RX1P
AB14 NC
AB15 THERMALDIODE_N
AB17 VDD_HT
AB19 VDD_HT
AB2 GFX_TX13N
AB20 HT_RXCAD9P
AB22 HT_RXCAD10N
AB23 HT_RXCAD2P
AB24 HT_RXCAD1P
AB25 HT_RXCAD1N
AB3 VDDA_12
AB4 VDDA_12
AB6 GFX_RX15N
AB7 GFX_RX15P
AB9 GPP_RX3P
AC1 GFX_TX14N
AC10 VSSA
AC11 VDDA_12_PKG
AC12 VDDR
AC13 DEBUG2
AC14 VSS
AC15 VSS
AC16 VSS
AC17 DEBUG9
AC18 VDD_HT
AC19 VDD_HT
AC2 VSSA
AC20 VDD_HT
AC21 HT_RXCAD10P
AC22 VSS
AC23 VSS
AC24 HT_RXCAD0P
AC25 HT_RXCAD0N
AC3 VDDA_12
AC4 VSSA
AC5 VSSA
AC6 VSSA
AC7 VSSA
AC8 SB_TX1P
AC9 VSSA
AD1 VSSA
AD10 SB_TX0N
AD11 PCE_CALRP
AD12 VDDR
AD13 DEBUG0
Ball
Ref. Pin Name
AD14 GPP_TX0P
AD15 GPP_TX0N
AD16 GPP_RX0P
AD17 DEBUG13
AD18 DEBUG10
AD19 GPP_TX1P
AD2 VDDA_12
AD20 GPP_RX1P
AD21 VDD_HT
AD22 VDD_HT
AD23 VDD_HT
AD24 VDD_HT
AD25 VSS
AD3 VSSA
AD4 GPP_TX2P
AD5 GPP_TX3P
AD6 GPP_TX3N
AD7 SB_TX3P
AD8 SB_TX2P
AD9 SB_TX1N
AE1 VDDA_12
AE10 VSSA
AE11 PCE_CALRN
AE12 VDDR
AE13 DEBUG1
AE14 VSS
AE15 DEBUG6
AE16 GPP_RX0N
AE17 DEBUG14
AE18 VSS
AE19 GPP_TX1N
AE2 VDDA_12
AE20 GPP_RX1N
AE21 DEBUG15
AE22 VSS
AE23 VDD_HT
AE24 VDD_HT
AE25 VDD_HT
AE3 GFX_TX15P
AE4 GFX_TX15N
AE5 GPP_TX2N
AE6 VSSA
AE7 SB_TX3N
AE8 SB_TX2N
Ball
Ref. Pin Name
© 2007 Advanced Micro Devices, Inc. 41977 AMD RS690 Databook 3.03
Proprietary and Confidential A-3
AE9 SB_TX0P
B1 VDDA_12
B10 PLLVSS
B11 OSCIN
B12 LVDDR18D
B13 TXOUT_L1P
B14 TXOUT_L0P
B15 TXOUT_L0N
B16 TXOUT_U0N
B17 TXOUT_U2P
B18 TXOUT_U3N
B19 VDD_CORE
B2 BMREQ#
B20 AVSSDI
B21 RSET
B22 AVDD
B23 HTREFCLK
B24 HTPVDD
B25 HTPVSS
B3 DDC_DATA
B4 I2C_DATA
B5 ALLOW_LDTSTOP
B6 DACSCL
B7 VSS
B8 DFT_GPIO4
B9 VDD_CORE
C1 VDDA_12
C10 SYSRESET#
C11 POWERGOOD
C12 LVDDR33
C13 LVDDR33
C14 TMDS_HPD
C15 LVSSR
C16 LVSSR
C17 TXOUT_U1P
C18 TXOUT_U1N
C19 LVSSR
C2 TVCLKIN
C20 Y
C21 C
C22 AVDD
C23 HTTSTCLK
C24 HT_RXCALN
C25 HT_TXCALP
C3 TESTMODE
C4 VSS
Ball
Ref. Pin Name
C5 LDTSTOP#
C6 DACVSYNC
C7 DFT_GPIO3
C8 DFT_GPIO2
C9 VDD_CORE
D1 VDDA_12
D11 VDDR3
D12 LVSSR
D14 LPVDD
D15 TXCLK_LN
D17 TXOUT_L3P
D19 COMP
D2 VDDA_12
D20 VDD_CORE
D22 VDD_HT_PKG
D23 VSS
D24 HT_TXCALN
D25 VSS
D3 VDDA_12
D4 VSS
D6 DFT_GPIO0
D7 DFT_GPIO1
D9 VDD_CORE
E1 GFX_CLKN
E11 VDDR3
E12 GPIO3
E14 LPVSS
E15 TXCLK_LP
E17 TXOUT_L3N
E19 RED
E2 VDDA_12
E23 HT_TXCAD1P
E24 HT_TXCAD0P
E25 HT_TXCAD0N
E3 VDDA_12
E6 VDDA_12
E7 VDD_PLL
E9 VSS
F1 VSSA
F11 VSS
F12 GPIO4
F14 LVSSR
F15 LVSSR
F17 VSS
F19 GREEN
F2 GFX_CLKP
Ball
Ref. Pin Name
F21 HT_TXCAD8P
F22 HT_TXCAD8N
F23 HT_TXCAD1N
F24 HT_TXCAD2N
F25 HT_TXCAD2P
F3 VSSA
F4 VDDA_12
F7 VDD_PLL
F9 VSS_PLL
G1 SB_CLKP
G11 VSS
G12 GPIO2
G14 TXOUT_L2N
G15 TXCLK_UN
G17 AVSSN
G19 BLUE
G2 SB_CLKN
G20 VDD_CORE
G21 HT_TXCAD10N
G22 HT_TXCAD10P
G23 VSS
G24 VSS
G25 HT_TXCAD3P
G3 VSSA
G4 GFX_RX0N
G5 GFX_RX0P
G6 VSSA
G7 VDDA_12
G9 VSS_PLL
H1 VSSA
H11 VDD_CORE
H12 VSS
H14 TXOUT_L2P
H15 TXCLK_UP
H17 AVSSN
H2 GFX_TX0N
H23 VSS
H24 HT_TXCAD3N
H25 VSS
H3 VSSA
J1 GFX_TX0P
J11 VDD_CORE
J12 VSS
J14 VDD_18
J15 VDD_18
J19 VDD_CORE
Ball
Ref. Pin Name
41977 AMD RS690 Databook 3.03 © 2007 Advanced Micro Devices, Inc.
A-4 Proprietary and Confidential
J2 VSSA
J20 HT_TXCAD9P
J21 HT_TXCAD9N
J22 VSS
J23 HT_TXCAD4P
J24 HT_TXCLK0P
J25 HT_TXCLK0N
J3 VSSA
J4 GFX_RX2P
J5 GFX_RX2N
J6 VSSA
J7 GFX_RX1N
J8 GFX_RX1P
K1 GFX_TX1N
K2 GFX_TX1P
K23 HT_TXCAD4N
K24 HT_TXCAD5N
K25 HT_TXCAD5P
K3 GFX_TX2P
L1 GFX_TX3P
L11 VDD_CORE
L12 VSS
L13 VDD_CORE
L14 VSS
L15 VDD_CORE
L17 VDD_CORE
L18 HT_TXCAD11P
L19 HT_TXCAD11N
L2 GFX_TX3N
L20 VSS
L21 HT_TXCLK1P
L22 HT_TXCLK1N
L23 VSS
L24 VSS
L25 HT_TXCAD6P
L3 GFX_TX2N
L4 GFX_RX4P
L5 GFX_RX4N
L6 VSSA
L7 GFX_RX3N
L8 GFX_RX3P
L9 VDDA_12
M1 VDDA_12_PKG
M11 VSS
M12 VDD_CORE
M13 VSS
M14 VDD_CORE
Ball
Ref. Pin Name
M15 VSS
M17 VSS
M18 HT_TXCAD12P
M19 HT_TXCAD12N
M2 VSSA
M20 VSS
M21 HT_TXCAD13N
M22 HT_TXCAD13P
M23 VSS
M24 HT_TXCAD6N
M25 VSS
M3 VSSA
M4 GFX_RX6P
M5 GFX_RX6N
M6 VSSA
M7 GFX_RX5N
M8 GFX_RX5P
M9 VDDA_12
N1 GFX_TX4N
N11 VDD_CORE
N12 VSS
N13 VDD_CORE
N14 VSS
N15 VDD_CORE
N2 GFX_TX4P
N23 HT_TXCTLP
N24 HT_TXCAD7P
N25 HT_TXCAD7N
N3 VSSA
P1 GFX_TX5N
P11 VSS
P12 VDD_CORE
P13 VSS
P14 VDD_CORE
P15 VSS
P17 VDD_CORE
P18 HT_TXCAD14P
P19 HT_TXCAD14N
P2 GFX_TX5P
P20 VSS
P21 HT_TXCAD15P
P22 HT_TXCAD15N
P23 HT_TXCTLN
P24 HT_RXCTLP
P25 HT_RXCTLN
P3 GFX_TX6P
P4 GFX_RX8P
Ball
Ref. Pin Name
P5 GFX_RX8N
P6 VSSA
P7 GFX_RX7N
P8 GFX_RX7P
P9 VSSA
R1 GFX_TX7P
R11 VDD_CORE
R12 VSS
R13 VDD_CORE
R14 VSS
R15 VDD_CORE
R17 VSS
R18 HT_RXCAD15N
R19 HT_RXCAD15P
R2 GFX_TX7N
R20 VSS
R21 HT_RXCAD14P
R22 HT_RXCAD14N
R23 VSS
R24 VSS
R25 HT_RXCAD7N
R3 GFX_TX6N
R4 GFX_RX9P
R5 GFX_RX9N
R6 VSSA
R7 GFX_RX10P
R8 GFX_RX10N
R9 VSSA
T1 VSSA
T2 GFX_TX8P
T23 VSS
T24 HT_RXCAD7P
T25 VSS
T3 VSSA
U1 GFX_TX8N
U11 VDD_CORE
U12 VDD_CORE
U14 VDD_CORE
U15 VDD_CORE
U18 HT_RXCAD12P
U19 HT_RXCAD12N
U2 VSSA
U20 VSS
U21 HT_RXCAD13N
U22 HT_RXCAD13P
U23 HT_RXCAD5N
U24 HT_RXCAD6N
Ball
Ref. Pin Name
© 2007 Advanced Micro Devices, Inc. 41977 AMD RS690 Databook 3.03
Proprietary and Confidential A-5
U25 HT_RXCAD6P
U3 VSSA
U4 GFX_RX11P
U5 GFX_RX11N
U6 VSSA
U7 VDDA_12
V1 GFX_TX9N
V11 VSSA
V12 VSSA
V14 VSSA
V15 VSSA
V2 GFX_TX9P
V23 HT_RXCAD5P
V24 HT_RXCAD4P
V25 HT_RXCAD4N
V3 GFX_TX10P
V9 GFX_RX14P
W1 GFX_TX11P
W11 SB_RX2P
W12 SB_RX2N
W14 SB_RX0P
W15 SB_RX0N
W17 VDD_HT
W19 HT_RXCAD11P
W2 GFX_TX11N
W20 HT_RXCAD11N
W21 HT_RXCLK1P
W22 HT_RXCLK1N
W23 VSS
W24 VSS
W25 HT_RXCLK0N
W3 GFX_TX10N
W4 GFX_RX12P
W5 GFX_RX12N
W6 VSSA
W7 VDDA_12
W9 GFX_RX14N
Y1 VSSA
Y11 VSSA
Y12 VSSA
Y14 VSSA
Y15 VSSA
Y17 VDD_HT
Y19 HT_RXCAD8N
Y2 GFX_TX12P
Y22 VSS
Ball
Ref. Pin Name
Y23 VSS
Y24 HT_RXCLK0P
Y25 VSS
Y3 VSSA
Y4 GFX_RX13P
Y5 GFX_RX13N
Y7 GPP_RX2P
Y9 VSSA
Ball
Ref. Pin Name
41977 AMD RS690 Databook 3.03 © 2007 Advanced Micro Devices, Inc.
A-6 Proprietary and Confidential
A.2 RS690 Pin List Sorted by Pin Name
Table A-2 RS690 Pin List Sorted by Pin Name
Pin Name Ball
Ref.
ALLOW_LDTSTOP B5
AVDD B22
AVDD C22
AVDDDI A20
AVDDQ A21
AVSSDI B20
AVSSN G17
AVSSN H17
AVSSQ A22
BLUE G19
BMREQ# B2
CC21
COMP D19
DACHSYNC A5
DACSCL B6
DACSDA A6
DACVSYNC C6
DDC_DATA B3
DEBUG0 AD13
DEBUG1 AE13
DEBUG10 AD18
DEBUG13 AD17
DEBUG14 AE17
DEBUG15 AE21
DEBUG2 AC13
DEBUG6 AE15
DEBUG9 AC17
DFT_GPIO0 D6
DFT_GPIO1 D7
DFT_GPIO2 C8
DFT_GPIO3 C7
DFT_GPIO4 B8
DFT_GPIO5 A8
GFX_CLKN E1
GFX_CLKP F2
GFX_RX0N G4
GFX_RX0P G5
GFX_RX10N R8
GFX_RX10P R7
GFX_RX11N U5
GFX_RX11P U4
GFX_RX12N W5
GFX_RX12P W4
GFX_RX13N Y5
GFX_RX13P Y4
GFX_RX14N W9
GFX_RX14P V9
GFX_RX15N AB6
GFX_RX15P AB7
GFX_RX1N J7
GFX_RX1P J8
GFX_RX2N J5
GFX_RX2P J4
GFX_RX3N L7
GFX_RX3P L8
GFX_RX4N L5
GFX_RX4P L4
GFX_RX5N M7
GFX_RX5P M8
GFX_RX6N M5
GFX_RX6P M4
GFX_RX7N P7
GFX_RX7P P8
GFX_RX8N P5
GFX_RX8P P4
GFX_RX9N R5
GFX_RX9P R4
GFX_TX0N H2
GFX_TX0P J1
GFX_TX10N W3
GFX_TX10P V3
GFX_TX11N W2
GFX_TX11P W1
GFX_TX12N AA1
GFX_TX12P Y2
GFX_TX13N AB2
GFX_TX13P AA2
GFX_TX14N AC1
GFX_TX14P AB1
GFX_TX15N AE4
GFX_TX15P AE3
GFX_TX1N K1
GFX_TX1P K2
GFX_TX2N L3
GFX_TX2P K3
GFX_TX3N L2
GFX_TX3P L1
GFX_TX4N N1
Pin Name Ball
Ref.
GFX_TX4P N2
GFX_TX5N P1
GFX_TX5P P2
GFX_TX6N R3
GFX_TX6P P3
GFX_TX7N R2
GFX_TX7P R1
GFX_TX8N U1
GFX_TX8P T2
GFX_TX9N V1
GFX_TX9P V2
GPIO2 G12
GPIO3 E12
GPIO4 F12
GPP_RX0N AE16
GPP_RX0P AD16
GPP_RX1N AE20
GPP_RX1P AD20
GPP_RX2N AA7
GPP_RX2P Y7
GPP_RX3N AA9
GPP_RX3P AB9
GPP_TX0N AD15
GPP_TX0P AD14
GPP_TX1N AE19
GPP_TX1P AD19
GPP_TX2N AE5
GPP_TX2P AD4
GPP_TX3N AD6
GPP_TX3P AD5
GREEN F19
HT_RXCAD0N AC25
HT_RXCAD0P AC24
HT_RXCAD10N AB22
HT_RXCAD10P AC21
HT_RXCAD11N W20
HT_RXCAD11P W19
HT_RXCAD12N U19
HT_RXCAD12P U18
HT_RXCAD13N U21
HT_RXCAD13P U22
HT_RXCAD14N R22
HT_RXCAD14P R21
HT_RXCAD15N R18
Pin Name Ball
Ref.
© 2007 Advanced Micro Devices, Inc. 41977 AMD RS690 Databook 3.03
Proprietary and Confidential A-7
HT_RXCAD15P R19
HT_RXCAD1N AB25
HT_RXCAD1P AB24
HT_RXCAD2N AA23
HT_RXCAD2P AB23
HT_RXCAD3N AA24
HT_RXCAD3P AA25
HT_RXCAD4N V25
HT_RXCAD4P V24
HT_RXCAD5N U23
HT_RXCAD5P V23
HT_RXCAD6N U24
HT_RXCAD6P U25
HT_RXCAD7N R25
HT_RXCAD7P T24
HT_RXCAD8N Y19
HT_RXCAD8P AA19
HT_RXCAD9N AA20
HT_RXCAD9P AB20
HT_RXCALN C24
HT_RXCALP A24
HT_RXCLK0N W25
HT_RXCLK0P Y24
HT_RXCLK1N W22
HT_RXCLK1P W21
HT_RXCTLN P25
HT_RXCTLP P24
HT_TXCAD0N E25
HT_TXCAD0P E24
HT_TXCAD10N G21
HT_TXCAD10P G22
HT_TXCAD11N L19
HT_TXCAD11P L18
HT_TXCAD12N M19
HT_TXCAD12P M18
HT_TXCAD13N M21
HT_TXCAD13P M22
HT_TXCAD14N P19
HT_TXCAD14P P18
HT_TXCAD15N P22
HT_TXCAD15P P21
HT_TXCAD1N F23
HT_TXCAD1P E23
HT_TXCAD2N F24
HT_TXCAD2P F25
HT_TXCAD3N H24
Pin Name Ball
Ref.
HT_TXCAD3P G25
HT_TXCAD4N K23
HT_TXCAD4P J23
HT_TXCAD5N K24
HT_TXCAD5P K25
HT_TXCAD6N M24
HT_TXCAD6P L25
HT_TXCAD7N N25
HT_TXCAD7P N24
HT_TXCAD8N F22
HT_TXCAD8P F21
HT_TXCAD9N J21
HT_TXCAD9P J20
HT_TXCALN D24
HT_TXCALP C25
HT_TXCLK0N J25
HT_TXCLK0P J24
HT_TXCLK1N L22
HT_TXCLK1P L21
HT_TXCTLN P23
HT_TXCTLP N23
HTPVDD B24
HTPVSS B25
HTREFCLK B23
HTTSTCLK C23
I2C_CLK A2
I2C_DATA B4
LDTSTOP# C5
LPVDD D14
LPVSS E14
LVDDR18D A12
LVDDR18D B12
LVDDR33 C12
LVDDR33 C13
LVSSR A14
LVSSR A16
LVSSR C15
LVSSR C16
LVSSR C19
LVSSR D12
LVSSR F14
LVSSR F15
NC AA14
NC AB14
OSCIN B11
PCE_CALRN AE11
Pin Name Ball
Ref.
PCE_CALRP AD11
PLLVDD12 A11
PLLVDD18 A10
PLLVSS B10
POWERGOOD C11
RED E19
RSET B21
SB_CLKN G2
SB_CLKP G1
SB_RX0N W15
SB_RX0P W14
SB_RX1N AA12
SB_RX1P AB12
SB_RX2N W12
SB_RX2P W11
SB_RX3N AB11
SB_RX3P AA11
SB_TX0N AD10
SB_TX0P AE9
SB_TX1N AD9
SB_TX1P AC8
SB_TX2N AE8
SB_TX2P AD8
SB_TX3N AE7
SB_TX3P AD7
STRP_DATA A3
SYSRESET# C10
TESTMODE C3
THERMALDIODE_N AB15
THERMALDIODE_P AA15
TMDS_HPD C14
TVCLKIN C2
TXCLK_LN D15
TXCLK_LP E15
TXCLK_UN G15
TXCLK_UP H15
TXOUT_L0N B15
TXOUT_L0P B14
TXOUT_L1N A13
TXOUT_L1P B13
TXOUT_L2N G14
TXOUT_L2P H14
TXOUT_L3N E17
TXOUT_L3P D17
TXOUT_U0N B16
TXOUT_U0P A15
Pin Name Ball
Ref.
41977 AMD RS690 Databook 3.03 © 2007 Advanced Micro Devices, Inc.
A-8 Proprietary and Confidential
TXOUT_U1N C18
TXOUT_U1P C17
TXOUT_U2N A17
TXOUT_U2P B17
TXOUT_U3N B18
TXOUT_U3P A18
VDD_18 J14
VDD_18 J15
VDD_CORE A19
VDD_CORE A4
VDD_CORE A7
VDD_CORE A9
VDD_CORE B19
VDD_CORE B9
VDD_CORE C9
VDD_CORE D20
VDD_CORE D9
VDD_CORE G20
VDD_CORE H11
VDD_CORE J11
VDD_CORE J19
VDD_CORE L11
VDD_CORE L13
VDD_CORE L15
VDD_CORE L17
VDD_CORE M12
VDD_CORE M14
VDD_CORE N11
VDD_CORE N13
VDD_CORE N15
VDD_CORE P12
VDD_CORE P14
VDD_CORE P17
VDD_CORE R11
VDD_CORE R13
VDD_CORE R15
VDD_CORE U11
VDD_CORE U12
VDD_CORE U14
VDD_CORE U15
VDD_HT AA17
VDD_HT AB17
VDD_HT AB19
VDD_HT AC18
VDD_HT AC19
VDD_HT AC20
VDD_HT AD21
Pin Name Ball
Ref.
VDD_HT AD22
VDD_HT AD23
VDD_HT AD24
VDD_HT AE23
VDD_HT AE24
VDD_HT AE25
VDD_HT W17
VDD_HT Y17
VDD_HT_PKG D22
VDD_PLL E7
VDD_PLL F7
VDDA_12 AB3
VDDA_12 AB4
VDDA_12 AC3
VDDA_12 AD2
VDDA_12 AE1
VDDA_12 AE2
VDDA_12 B1
VDDA_12 C1
VDDA_12 D1
VDDA_12 D2
VDDA_12 D3
VDDA_12 E2
VDDA_12 E3
VDDA_12 E6
VDDA_12 F4
VDDA_12 G7
VDDA_12 L9
VDDA_12 M9
VDDA_12 U7
VDDA_12 W7
VDDA_12_PKG AC11
VDDA_12_PKG M1
VDDR AC12
VDDR AD12
VDDR AE12
VDDR3 D11
VDDR3 E11
VSS A23
VSS A25
VSS AC14
VSS AC15
VSS AC16
VSS AC22
VSS AC23
VSS AD25
VSS AE14
Pin Name Ball
Ref.
VSS AE18
VSS AE22
VSS B7
VSS C4
VSS D23
VSS D25
VSS D4
VSS E9
VSS F11
VSS F17
VSS G11
VSS G23
VSS G24
VSS H12
VSS H23
VSS H25
VSS J12
VSS J22
VSS L12
VSS L14
VSS L20
VSS L23
VSS L24
VSS M11
VSS M13
VSS M15
VSS M17
VSS M20
VSS M23
VSS M25
VSS N12
VSS N14
VSS P11
VSS P13
VSS P15
VSS P20
VSS R12
VSS R14
VSS R17
VSS R20
VSS R23
VSS R24
VSS T23
VSS T25
VSS U20
VSS W23
VSS W24
Pin Name Ball
Ref.
© 2007 Advanced Micro Devices, Inc. 41977 AMD RS690 Databook 3.03
Proprietary and Confidential A-9
VSS Y22
VSS Y23
VSS Y25
VSS_PLL F9
VSS_PLL G9
VSSA A1
VSSA AA3
VSSA AC10
VSSA AC2
VSSA AC4
VSSA AC5
VSSA AC6
VSSA AC7
VSSA AC9
VSSA AD1
VSSA AD3
VSSA AE10
VSSA AE6
VSSA F1
VSSA F3
VSSA G3
VSSA G6
VSSA H1
VSSA H3
VSSA J2
VSSA J3
VSSA J6
VSSA L6
VSSA M2
VSSA M3
VSSA M6
VSSA N3
VSSA P6
VSSA P9
VSSA R6
VSSA R9
VSSA T1
VSSA T3
VSSA U2
VSSA U3
VSSA U6
VSSA V11
VSSA V12
VSSA V14
VSSA V15
VSSA W6
Pin Name Ball
Ref.
VSSA Y1
VSSA Y11
VSSA Y12
VSSA Y14
VSSA Y15
VSSA Y3
VSSA Y9
YC20
Pin Name Ball
Ref.
41977 AMD RS690 Databook 3.03 © 2007 Advanced Micro Devices, Inc.
A-10 Proprietary and Confidential
This page is left blank intentionally.
© 2007 Advanced Micro Devices, Inc. 41977 AMD RS690 Databook 3.03
Proprietary and Confidential B-1
Appendix B
Revision History
Rev. 0.2 (May 2006)
Preliminary release (Rev. 0.1 has not been released publicly).
Rev0.3 (Aug 2006)
Added references to the RS690C.
Added legal disclaimers concerning DVI and HDMI references in this book.
Changed the ways in which the integrated DVI/HDMI and the TMDS interface (multiplexed on the PCI-E graphics
lanes) are being referred to.
Updated Section 1.3.9, “DVI/HDMI (Not applicable to the RS690C)”: Clarified limitation of HDCP support.
Updated Section 1.6, “Branding Diagram”: Added branding diagrams.
Updated Section 2.2, “DVI/HDMI (Not Applicable to th e RS690C)”: Corrected data orderi ng of DVI/ HDMI; the
section now applies to both the integrate DVI/HDMI interface and the TMDS interface (multiplexed on the PCI-E
graphics lanes).
Updated Table 3-10, “Power Management Pins”: Corrected nominal voltage of POWERGOOD to 3.3V.
Updated Table 3-19, “TMDS Interface Multiplexed on the PCI-E Graphics Interface”: Corrected mapping
relationships between and PCI-E and TMDS signals.
Updated Section 3.10, “Miscellaneous Pins”: Added description for pulse-width modulation function of the following
pins: STRP_DATA, GPIO[4:2], and TMDS_HPD; added description for DDC_DATA; corrected I/O type for GPIOs.
Updated Table 3-15, “Strap Definitions for the RS690”: Added descriptions for two Reserved st raps.
Added Section 4.1, “HyperTransport Bus Timing”: Referred designers to AMD specifications.
Updated Section 4.4, “OSCIN Timing”: Removed high and low time requirements.
Updated Section 4.5, “Power Rail Power Up Sequence”: Added power rail power up sequence.
Added Table 5-6, “DC Characteristics for the Integrated DVI/HDMI (Not Applicable to the RS690C).”
Added Table 5-7, “DC Characteristics for the TMDS Interface Multiplexed on the PCI-E Gfx Lanes (Not Applicable
to the RS690C).”
Updated Section 5.2, “RS690 Thermal Characteristics.”
Updated Section 5.3.3.1, “Stencil Opening Size for Solderball Pads on PCB”: Changed stencil openin g
recommendations.
Rev 0.4 (Aug 2006)
Revised Table 3-23, “Power Pins”: Corrected ball references for VDD_PLL pins; corrected voltage level for
LVDDR33.
Rev 0.5 (Sep 2006)
Revised Section 1.3.6, “3D Acceleration Features”: Corrected maximum resolution supported to 2048x1536@32bpp
for a maximum pixel clock speed of 400MHz. .
Revised Section 1.3.9, “DVI/HDMI (Not applicable to the RS690C)”: Updated HDMI basic audio support statement.
Updated Table 3-10, “Power Management Pins”: Corrected I/O type for ALLOW_LDTSTOP to “OD.”
Updated Table 3-11, “Miscellaneous Pins”: Corrected I/O type for TMDS_HPD to “I/O.”
Revised Section 4.5, “Power Rail Power Up Sequence”: Removed 1.2V PCI-E and HT rails from the sequence.
41977 AMD RS690 Databook 3.03 © 2007 Advanced Micro Devices, Inc.
B-2 Proprietary and Confidential
Rev 0.6 (Oct 2006)
Updated Table 5-4, “DC Characteristics for the HTREFCLK Pad (66.66MHz)”: Revised VIH minimum to 1.4V.
Rev 3.00 (Jan 2007)
Raised revision number to 3.00, following the AMD scheme.
Revised H.264 support statemen t and moved it to Section 1.3.
Added Section 1.3.2, “ATI HyperMemory™.”
Updated Section 1.3.8, “Multiple Display Features”: Corrected TV modes supported.
Added Section 1.5.2, “Branding Diagrams fo r ASIC Revision A12 and After.”
Updated Section 2.2, “DVI/HDMI (Not Applicable to the RS690C)”: Reorganized the section into two subsections.
Updated Table 5-2, “DC Characteristics for 3.3V TTL Signals”: Corrected IOL and IOH values for DACSCL and
I2C_CLK.
Updated Section 5.3.2, “Pressure Specification”: Revised statement on the maximum pressure to be applied for
securing the thermal management device.
Updated Table 3-23, “Power Pins” and Table 5-1, “Maximum and Minimum Ratings”: Clarified description fo r
VDD_18, which also powers the DFT_GPIOs.
Rev 3.01 (Feb 2007)
Updated Section 1.3.9, “DVI/HDMI (Not applicable to the RS690C)”: Qualified that HDCP support is for single-link
transmission only; revised audio support statement.
Updated Table 3-2, “1 x 16 Lane PCI Express Interface for External Graphics”: Corrected pin type of
GFX_REFCLKP/N to input only.
Updated Table 3-3, “1 x 4 Lane A-Link Express II Interface for Southbridge”: Corrected pin type of SB_CLKP/N to
input only.
Updated Table 3-11, “Miscellaneous Pins”: Updated description for BMREQ#.
Updated Table 5-8, “RS690 Thermal Limi ts”: Revised Operating Case Temperature to 0°C minimum and 95 °C
maximum.
Rev 3.02 (April 2007)
Added legal note on Macrovision in Section 1.3.8, “Multiple Display Features.”
Added Table 5-3, “DC Characteristics for 1.8V TTL Signals.”
Rev 3.03 (April 2007)
Updated legal notes on Macrovision and moved them to the legal notice page at the beginning of the book.