VDSM ITAVM ITRMS ITSM VT0 rT = = = = = = 8500 V 1200 A 1880 A 35000 A 1.25 V 0.480 m Phase Control Thyristor 5STP 12N8500 Doc. No. 5SYA1044-02 Sep. 01 * Patented free-floating silicon technology * Low on-state and switching losses * Designed for traction, energy and industrial applications * Optimum power handling capability * Interdigitated amplifying gate Blocking Part Number 5STP 12N8500 5STP 12N8200 5STP 12N7800 Conditions VDSM VRSM 8500 V 8200 V 7800 V f = 5 Hz, tp = 10ms VDRM VRRM 8000 V 7700 V 7300 V f = 50 Hz, tp = 10ms 9000 V 8600 V 8200 V tp = 5ms, single pulse VRSM1 IDSM 1000 mA VDSM IRSM 400 mA VRSM dV/dtcrit 2000 V/s Exp. to 0.67 x VDRM, Tj = 90C Mechanical data FM a Mounting force nom. 90 kN min. 81 kN max. 108 kN Acceleration Device unclamped 50 m/s2 Device clamped 100 m/s2 m Weight 2.9 kg DS Surface creepage distance 56 mm Da Air strike distance 22 mm Tj = 90C ABB Semiconductors AG reserves the right to change specifications without notice. 5STP 12N8500 On-state ITAVM Max. average on-state current 1200 A ITRMS Max. RMS on-state current 1880 A ITSM Max. peak non-repetitive 35000 A surge current 38000 A 2 It Limiting load integral Half sine wave, TC = 70C tp = 10 ms Tj = 90C tp = 8.3 ms After surge: 2 6125 kA s tp = 10 ms VD = VR = 0V 2 8.3 ms 5992 kA s tp = VT On-state voltage 2.00 V IT = 1500 A VT0 Threshold voltage 1.25 V IT = 700 - 2100 A rT Slope resistance 0.480 m IH Holding current IL Latching current 75-150 mA Tj = 25C 50-125 mA Tj = 90C 150- mA 600 150- mA 800 Tj = 25C Tj = 90C Tj = 90C Switching di/dtcrit Critical rate of rise of on-state current 250 A/s Cont. f = 50 Hz VD 0.67VDRM , Tj = 90C 500 A/s 60 sec. f = 50Hz ITRM = 2000 A IFG = 2 A, tr = 0.5 s IFG = 2 A, tr = 0.5 s td Delay time 3.0 s VD = 0.4VDRM tq Turn-off time 600 s VD 0.67VDRM ITRM = 2000 A, Tj = 90C dvD/dt = 20V/s VR > 200 V, diT/dt = -1 A/s Qrr Recovery charge min 2800 As max 3400 As Triggering VGT Gate trigger voltage 2.6 V Tj = 25 IGT Gate trigger current 400 mA Tj = 25 VGD Gate non-trigger voltage 0.3 V VD =0.4 x VDRM IGD Gate non-trigger current 10 mA VD = 0.4 x VDRM VFGM Peak forward gate voltage 12 V IFGM Peak forward gate current 10 A VRGM Peak reverse gate voltage 10 V PG Gate power loss 3W ABB Semiconductors AG reserves the right to change specifications without notice. Doc. No. 5SYA1044-02 Sep. 01 page 2 of 6 5STP 12N8500 Thermal Tjmax Max. operating junction temperature range 90 C Tstg Storage temperature range -40...140 C RthJC Thermal resistance 11.4 K/kW Anode side cooled junction to case 11.4 K/kW Cathode side cooled 5.7 K/kW Thermal resistance case to 2 K/kW Single side cooled heat sink 1 K/kW Double side cooled Analytical function for transient thermal impedance: ZthJC [K/kW] 6 5 n ZthJC(t) = a Ri(1 - e - t/ i ) i =1 180 sine: add 0.5 K/kW 180 rectangular: add 0.5 K/kW 120 rectangular: add 0.8 K/kW 60 rectangular: add 1.5 K/kW 4 3 2 i 1 2 3 4 Ri(K/kW) 3.4 1.26 0.68 0.35 i(s) 0.8685 0.1572 0.0219 0.0078 Fm = 81..108 kN Double-side cooling 1 0 0.001 TN1 RthCH Double side cooled 0.010 0.100 1.000 10.00 t [s] Fig. 1 Transient thermal impedance junction to case. On-state characteristic model: VT = A + B iT + C ln(iT +1) + D IT Valid for iT = 200 - 4000 A A B C D 1.97 -0.00018 -0.3 0.062 Fig. 2 On-state characteristics. Tj=125C, 10ms half sine Fig. 3 On-state characteristics. ABB Semiconductors AG reserves the right to change specifications without notice. Doc. No. 5SYA1044-02 Sep. 01 page 3 of 6 5STP 12N8500 Tcase (C) 90 Double-sided cooling DC 180 rectangular 180 sine 120 rectangular 85 80 5STP 12N8500 75 70 0 200 400 600 800 1000 1200 1400 1600 1800 ITAV (A) Fig. 4 On-state power dissipation vs. mean onstate current. Turn - on losses excluded. Fig. 5 Max. permissible case temperature vs. mean on-state current. Fig. 6 Surge on-state current vs. pulse length. Half-sine wave. Fig. 7 Surge on-state current vs. number of pulses. Half-sine wave, 10 ms, 50Hz. ABB Semiconductors AG reserves the right to change specifications without notice. Doc. No. 5SYA1044-02 Sep. 01 page 4 of 6 5STP 12N8500 Fig. 8 Gate trigger characteristics. Fig. 9 Max. peak gate power loss. IRM(A) 400 300 ITRM = 2000 A max 200 Tj = Tjmax min 102 90 80 70 5STP 12N8500 60 50 40 30 Fig. 10 Recovery charge vs. decay rate of onstate current. 1 2 3 4 5 6 7 8 910 30 20 -diT/dt (A/s) Fig. 11 Peak reverse recovery current vs. decay rate of on-state current. Turn - off time, typical parameter relationship. 1.0 f 1 (T j ) 0.9 0.8 0.6 60 5STP 12N8500 0.7 70 80 Fig. 12 tq/tq1 = f1(Tj) 90 Tj (C) Fig. 13 tq/tq1 = f2(-diT/dt) tq = tq1 * f1(Tj) * f2(-diT/dt) * f3(dv/dt) Fig. 14 tq/tq1 = f3(dv/dt) tq1 :at normalized values (see page 2) tq : at varying conditions ABB Semiconductors AG reserves the right to change specifications without notice. Doc. No. 5SYA1044-02 Sep. 01 page 5 of 6 5STP 12N8500 Turn-on and Turn-off losses Fig. 15 Won = f(IT, tP), Tj = 125C. Half sinusoidal waves. Fig. 16 Won = f(IT, di/dt), Tj = 125C. Rectangular waves. W off (Ws/pulse) 10 ITRM = 6500 A ITRM = 4500 A 8 ITRM = 2500 A 6 5STP 12N8500 4 2 0 0 1 2 3 Fig. 17 Woff = f(V0,IT), Tj = 125C. Half sinusoidal waves. tP = 10 ms. 4 V0 (kV) Fig. 18 Woff = f(V0,di/dt), Tj = 125C. Rectangular waves. ABB Semiconductors AG reserves the right to change specifications without notice. ABB Semiconductors AG Fabrikstrasse 3 CH-5600 Lenzburg, Switzerland Telephone Fax Email Internet +41 (0)62 888 6419 +41 (0)62 888 6306 abbsem@ch.abb.com www.abbsem.com Doc. No. 5SYA1044-02 Sep. 01