PD - 94972A IRF3808PbF HEXFET(R) Power MOSFET Typical Applications l Industrial Motor Drive D Benefits l l l l l l l Advanced Process Technology Ultra Low On-Resistance Dynamic dv/dt Rating 175C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Lead-Free VDSS = 75V RDS(on) = 0.007 G ID = 140A S Description This Advanced Planar Stripe HEXFET (R) Power MOSFET utilizes the latest processing techniques to achieve extremely low onresistance per silicon area. Additional features of this HEXFET power MOSFET are a 175C junction operating temperature, low RJC, fast switching speed and improved repetitive avalanche rating. This combination makes the design an extremely efficient and reliable choice for use in a wide variety of applications. TO-220AB Absolute Maximum Ratings Parameter ID @ TC = 25C ID @ TC = 100C IDM PD @TC = 25C VGS EAS IAR EAR dv/dt TJ TSTG Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting Torque, 6-32 or M3 screw Max. Units 140 97 550 330 2.2 20 430 82 See Fig.12a, 12b, 15, 16 5.5 -55 to + 175 A W W/C V mJ A mJ V/ns C 300 (1.6mm from case ) 10 lbf*in (1.1N*m) Thermal Resistance Parameter RJC RCS RJA Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient Typ. Max. Units --- 0.50 --- 0.45 --- 62 C/W HEXFET(R) is a registered trademark of International Rectifier. www.irf.com 1 07/23/10 IRF3808PbF Electrical Characteristics @ TJ = 25C (unless otherwise specified) RDS(on) VGS(th) gfs Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Qg Qgs Qgd td(on) tr td(off) tf Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Min. 75 --- --- 2.0 100 --- --- --- --- --- --- --- --- --- --- --- Typ. --- 0.086 5.9 --- --- --- --- --- --- 150 31 50 16 140 68 120 IDSS Drain-to-Source Leakage Current LD Internal Drain Inductance --- 4.5 LS Internal Source Inductance --- 7.5 Ciss Coss Crss Coss Coss Coss eff. Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance --- --- --- --- --- --- 5310 890 130 6010 570 1140 V(BR)DSS V(BR)DSS/TJ IGSS Max. Units Conditions --- V VGS = 0V, ID = 250A --- V/C Reference to 25C, ID = 1mA 7.0 m VGS = 10V, ID = 82A 4.0 V VDS = 10V, ID = 250A --- S VDS = 25V, ID = 82A 20 VDS = 75V, VGS = 0V A 250 VDS = 60V, VGS = 0V, TJ = 150C 200 VGS = 20V nA -200 VGS = -20V 220 ID = 82A 47 nC VDS = 60V 76 VGS = 10V --- VDD = 38V --- ID = 82A ns --- RG = 2.5 --- VGS = 10V D Between lead, --- 6mm (0.25in.) nH G from package --- and center of die contact S --- VGS = 0V --- pF VDS = 25V --- = 1.0MHz, See Fig. 5 --- VGS = 0V, VDS = 1.0V, = 1.0MHz --- VGS = 0V, VDS = 60V, = 1.0MHz --- VGS = 0V, VDS = 0V to 60V Source-Drain Ratings and Characteristics IS ISM VSD trr Qrr ton Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse RecoveryCharge Forward Turn-On Time Min. Typ. Max. Units Conditions D MOSFET symbol --- --- 140 showing the A G integral reverse --- --- 550 S p-n junction diode. --- --- 1.3 V TJ = 25C, IS = 82A, VGS = 0V --- 93 140 ns TJ = 25C, IF = 82A --- 340 510 nC di/dt = 100A/s Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Notes: Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11). Starting TJ = 25C, L = 0.130mH RG = 25, IAS = 82A. (See Figure 12). ISD 82A, di/dt 310A/s, VDD V(BR)DSS, TJ 175C Pulse width 400s; duty cycle 2%. 2 Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A. Limited by T Jmax , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance. www.irf.com IRF3808PbF I D, Drain-to-Source Current (A) TOP BOTTOM 1000 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V TOP I D, Drain-to-Source Current (A) 1000 100 4.5V 10 20s PULSE WIDTH T J= 25 C 1 0.1 1 10 BOTTOM 100 4.5V 10 20s PULSE WIDTH T J= 175 C 1 100 0.1 1 V DS, Drain-to-Source Voltage (V) 10 100 V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000.00 3.0 I D = 137A RDS(on) , Drain-to-Source On Resistance 100.00 T J = 25C VDS = 15V 20s PULSE WIDTH 10.00 1.0 3.0 5.0 7.0 9.0 11.0 13.0 15.0 2.0 (Normalized) ID, Drain-to-Source Current () 2.5 TJ = 175C 1.5 1.0 0.5 V GS = 10V 0.0 -60 -40 -20 0 20 40 60 80 TJ , Junction Temperature 100 120 140 160 180 ( C) VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com Fig 4. Normalized On-Resistance Vs. Temperature 3 IRF3808PbF 100000 12 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd ID = 82A VDS = 60V VDS = 37V VDS = 15V 10 VGS , Gate-to-Source Voltage (V) C, Capacitance(pF) Coss = Cds + Cgd 10000 Ciss Coss 1000 8 6 4 2 Crss 100 0 1 10 0 100 40 VDS , Drain-to-Source Voltage (V) 1000.00 160 10000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 120 Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage T J = 175C 100.00 OPERATION IN THIS AREA LIMITED BY R DS(on) 1000 10.00 100 T J = 25C 1.00 100sec 1msec 10 Tc = 25C Tj = 175C Single Pulse VGS = 0V 10msec 1 0.10 0.0 0.5 1.0 1.5 VSD, Source-toDrain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 80 QG, Total Gate Charge (nC) 2.0 1 10 100 1000 VDS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRF3808PbF 140 120 VGS D.U.T. RG 100 ID , Drain Current (A) RD VDS LIMITED BY PACKAGE 80 + -VDD 10V Pulse Width 1 s Duty Factor 0.1 % 60 Fig 10a. Switching Time Test Circuit 40 VDS 20 90% 0 25 50 75 100 125 TC , Case Temperature 150 175 ( C) 10% VGS Fig 9. Maximum Drain Current Vs. Case Temperature td(on) tr t d(off) tf Fig 10b. Switching Time Waveforms (Z thJC) 1 D = 0.50 0.1 0.20 Thermal Response 0.10 0.05 0.02 0.01 SINGLE PULSE (THERMAL RESPONSE) P DM 0.01 t1 t2 Notes: 1. Duty factor D = 2. Peak T 0.001 0.00001 0.0001 0.001 0.01 t1/ t 2 J = P DM x Z thJC +T C 0.1 1 t1, Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRF3808PbF 800 15V TOP + V - DD IAS 20V 0.01 tp Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp A EAS , Single Pulse Avalanche Energy (mJ) D.U.T RG 640 DRIVER L VDS BOTTOM 480 320 160 0 25 50 75 100 Starting Tj, Junction Temperature I AS ID 34A 58A 82A 125 150 ( C) Fig 12c. Maximum Avalanche Energy Vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG QGS QGD 3.5 VG Charge Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. 50K 12V .2F .3F D.U.T. + V - DS VGS(th) Gate threshold Voltage (V) 10 V 3.0 ID = 250A 2.5 2.0 1.5 1.0 -75 -50 -25 VGS 0 25 50 75 100 125 150 175 200 T J , Temperature ( C ) 3mA IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit 6 Fig 14. Threshold Voltage Vs. Temperature www.irf.com IRF3808PbF 1000 Avalanche Current (A) Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav assuming Tj = 25C due to avalanche losses 0.01 100 0.05 0.10 10 1 1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth EAR , Avalanche Energy (mJ) 500 TOP Single Pulse BOTTOM 10% Duty Cycle ID = 140A 400 300 200 100 0 25 50 75 100 125 150 Starting T J , Junction Temperature (C) Fig 16. Maximum Avalanche Energy Vs. Temperature www.irf.com Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = t av *f ZthJC(D, tav) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3*BV*Iav) = DT/ ZthJC Iav = 2DT/ [1.3*BV*Zth] EAS (AR) = PD (ave)*tav 7 IRF3808PbF Peak Diode Recovery dv/dt Test Circuit + D.U.T* Circuit Layout Considerations * Low Stray Inductance * Ground Plane * Low Leakage Inductance Current Transformer + - - + RG * dv/dt controlled by RG * ISD controlled by Duty Factor "D" * D.U.T. - Device Under Test V GS * + - V DD Reverse Polarity of D.U.T for P-Channel Driver Gate Drive P.W. Period D= P.W. Period [VGS=10V ] *** D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode [VDD] Forward Drop Inductor Curent Ripple 5% [ISD] *** VGS = 5.0V for Logic Level and 3V Drive Devices 8 Fig 17. For N-channel HEXFET(R) power MOSFETs www.irf.com IRF3808PbF TO-220AB Package Outline Dimensions are shown in millimeters (inches) TO-220AB Part Marking Information EXAMPLE: T HIS IS AN IRF1010 LOT CODE 1789 ASS EMBLED ON WW 19, 2000 IN T HE AS S EMBLY LINE "C" Note: "P" in assembly line position indicates "Lead - Free" INT ERNAT IONAL RECT IFIER LOGO AS SEMBLY LOT CODE PART NUMBER DAT E CODE YEAR 0 = 2000 WEEK 19 LINE C TO-220AB package is not recommended for Surface Mount Application Notes: 1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/ 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.07/2010 www.irf.com 9