4.1.4 Debounce Counter
Each capacitive sensing input maintains its own debounce counter. For an inactive sensor, this counter tracks the number of succes-
sive samples which have crossed that input's active threshold. For an active sensor, this counter tracks the number of successive sam-
ples which have crossed the inactive threshold. When the counter reaches a terminal value defined in the the configuration profile, the
touch/release event is qualified.
4.1.5 Touch Deltas
Each capacitive sensing input uses a stored touch delta value that describes the expected difference between inactive and active ca-
pacitive sensing output codes. This value is stored in the configuration profile for the system and is used by the touch qualification en-
gine, which defines inactive and active thresholds relative to the touch delta.
The touch deltas are stored in the configuration profile in a touch delta/16 format. For this reason, touch deltas must be configured as
multiples of 16.
4.1.6 Auto-Accumulation and Averaging
Capacitive sensing inputs have an auto-accumulate and average post-sample filter that can be used to improve signal strength if nee-
ded. Settings stored in the configuration profile can configure the engine to accumulate 1, 4, 8, 16, 32, or 64 samples. After the defined
number of samples have been accumulated, the result is divided by either 1, 4, 8, 16, 32, or 64, depending on the accumulation setting.
This auto-accumulated and averaged value is the sample output used for all touch qualification processing. Note that sample time per
sensor increases as the level of accumulation increases. To reduce current consumption, the engine should not be set to auto-accumu-
late unless it is required to achieve acceptable signal strength due to thick overlays or other system-level factors.
4.1.7 Drive strength
The drive strength of the current source used to charge the electrode being measured by the capacitive sensing input can be adjusted
in integer increments from 1x to 8x (8x is the default). High drive strength gives the best sensitivity and resolution for small capacitors,
such as those typically implemented as touch-sensitive PCB features. To measure larger capacitance values, the drive strength should
be lowered accordingly. The highest drive strength setting that yields capacitive sensing output which does not saturate the sensing
engine when the electrode is active (touched) should always be used to maximize input sensitivity.
4.1.8 Active Mode Scan Enable
Active mode scanning of capacitive sensing inputs is controlled by an enable setting for each capacitive sensing input. This setting is
stored in the configuration profile.
4.1.9 Active Mode Scan Period
The capacitive sensing input engine stays in active mode whenever one or more inputs have qualified as active. During this time, the
sensors scan at a periodicity defined by the active mode scan period, which is stored in the configuration profile. Every active mode
scan pushes new samples through the processing engine, which checks for new touch and release events on all enabled inputs.
If free run mode is enabled, the engine will repeatedly scan all enabled inputs during the active mode scan period. In this mode of
operation, the active mode scan period is used as a timer to determine how much time has passed since the last qualified active sensor
has been seen. When a defined amount of time without a qualified touch event has occurred, the engine switches to a low power mode
using the sleep mode scan period, and conserves current.
If free run mode is disabled, the engine will enter a low power state after completing one scan of all enabled inputs and processing the
resulting samples. The engine will remain in this low power state until it wakes, at a time defined by active mode scan period, to perform
another scan.
CPT007B Data Sheet
Functional Description
silabs.com | Smart. Connected. Energy-friendly. Preliminary Rev. 0.2 | 14