M81706AFP Powerex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272 HVIC High Voltage Half-Bridge Driver 600 Volts/+120mA/-250mA 8 5 RECOMMENDED MOUNT PAD D T E R A C S 1 4 DETAIL "A" B DETAIL "B" DETAIL "A" H DETAIL "B" J N F E K G PIN NUMBER 1 2 3 4 L VCC HIN LIN GND 8 7 6 5 VB HO VS LO Q P M 8 VB VREG HIN 2 UV DETECT FILTER HV LEVEL SHIFT INTER LOCK VREG/VCC LEVEL SHIFT RQ R S PULSE GEN UV DETECT FILTER LIN 3 VREG/VCC LEVEL SHIFT DELAY 7 HO 6 VS 1 VCC 5 LO 4 GND Outline Drawing and Circuit Diagram Dimensions A B C D E F G H J 6/05 Inches 0.240.01 0.20.008 0.170.008 0.08 Max. 0.05 0.0150.002 0.004 0.06 0.002 Min. Millimeters 6.20.3 5.00.2 4.40.2 1.9 Max. 1.27 0.40.05 0.1 1.5 0.05 Min. Dimensions K L M N P Q R S T Inches 0.04 0.0150.008 0.0060.002 10 Max. 0.03 0.023 0.05 Min. 0.23 0.76 Millimeters 0.9 0.40.2 0.150.05 10 Max. 0.745 0.595 1.27 Min. 5.72 0.76 Description: M81706AFP is a high voltage Power MOSFET and IGBT module driver for half-bridge applications. Features: Shoot Through Interlock High Voltage Level Shift Output Current +120/-250mA Half-Bridge Driver SOP-8 Package Applications: HID Ballast PDP MOSFET Driver IGBT Driver Inverter Module Control Ordering Information: M81706AFP is a +120/-250mA, 600 Volt HVIC, High Voltage Half-Bridge Driver 1 Powerex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272 M81706AFP HVIC, High Voltage Half-Bridge Driver 600 Volts/+120mA/-250mA Absolute Maximum Ratings, Ta = 25C unless otherwise specified Characteristics High Side Floating Supply Absolute Voltage High Side Floating Supply Offset Voltage Symbol M81706AFP Units VB -0.5 ~ 624 Volts VS VB-24 ~ VB+0.5 Volts High Side Floating Supply Voltage (VBS = VB - VS) VBS -0.5 ~ 24 Volts High Side Output Voltage VHO VS-0.5 ~ VB+0.5 Volts Low Side Fixed Supply Voltage VCC -0.5 ~ 24 Volts Low Side Output Voltage VLO -0.5 ~ VCC+0.5 Volts Logic Input Voltage (HIN, LIN) VIN -0.5 ~ VCC+0.5 Volts Package Power Dissipation (Ta = 25C, On Board) Pd 0.6 Watts Linear Derating Factor (Ta > 25C, On Board) K 6.0 mW/C Rth(j-c) 50 C/W Tj -20 ~ 125 C Junction to Case Thermal Resistance Junction Temperature Operation Temperature Topr -20 ~ 100 C Storage Temperature Tstg -40 ~ 125 C Recommended Operating Conditions Characteristics Symbol Test Conditions Min. Typ. Max. Units High Side Floating Supply Absolute Voltage VB VS+10 -- VS+20 Volts High Side Floating Supply Offset Voltage VS 0 -- 500 Volts High Side Floating Supply Voltage VBS 10 -- 20 Volts High Side Output Voltage VHO VB = VB - VS VS -- VB Volts Low Side Fixed Supply Voltage VCC 10 -- 20 Volts Logic Supply Voltage VLO 0 -- VCC Volts Logic Input Voltage VIN 0 -- VCC Volts HIN, LIN Electrical Characteristics Ta = 25C, VCC = VBS (= VB - VS) = 15V unless otherwise specified Characteristics Floating Supply Leakage Current 2 Symbol IFS Test Conditions VB = VS = 600V Min. Typ. Max. Units -- -- 1.0 A VBS Standby Current IBS HIN = LIN = 0V -- 0.2 0.5 mA VCC Standby Current ICC HIN = LIN = 0V 0.2 0.5 1.0 mA High Level Output Voltage VOH IO = -20mA, LO, HO 13.6 14.2 -- Volts Low Level Output Voltage VOL IO = 20mA, LO, HO -- 0.3 0.6 Volts High Level Input Threshold Voltage VIH HIN, LIN 2.7 -- -- Volts Low Level Input Threshold Voltage VIL HIN, LIN -- -- 0.8 Volts High Level Input Bias Current IIH VIN = 5V -- 5 20 A Low Level Input Bias Current IIL VIN = 0V -- -- 2.0 A VBS Supply UV Reset Voltage VBSuvr 8.0 8.9 9.8 Volts VBS Supply UV Trip Voltage VBSuvt 7.4 8.2 9.0 Volts VBS Supply UV Hysteresis Voltage VBSuvh 0.5 0.7 -- Volts VBS Supply UV Filter Time tVBSuv -- 7.5 -- s VCC Supply UV Reset Voltage VCCuvr 8.0 8.9 9.8 Volts 6/05 Powerex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272 M81706AFP HVIC, High Voltage Half-Bridge Driver 600 Volts/+120mA/-250mA Electrical Characteristics Ta = 25C, VCC = VBS (= VB - VS) = 15V unless otherwise specified Characteristics Symbol Min. Typ. Max. Units VBS Supply UV Trip Voltage VCCuvt Test Conditions 7.4 8.2 9.0 Volts VCC Supply UV Hysteresis Voltage VCCuvh 0.5 0.7 -- Volts VCC Supply UV Filter Time tVCCuv -- 7.5 -- s Output High Level Short Circuit Pulsed Current IOH VO = 0V, VIN = 5V, PW < 10s 120 200 -- mA Output Low Level Short Circuit Pulsed Current IOL VO = 15V, VIN = 0V, PW < 10s 250 350 -- mA Output High Level ON Resistance ROH IO = -20mA, ROH = (VOH - VO)/IO -- 40 70 Output Low Level ON Resistance ROL IO = 20mA, ROL = VO /IO -- 15 30 High Side Turn-On Propagation Delay tdLH(HO) CL = 1000pF between HO - VS -- 120 240 ns High Side Turn-Off Propagation Delay tdHL(HO) CL = 1000pF between HO - VS -- 170 280 ns High Side Turn-On Rise Time trH CL = 1000pF between HO - VS -- 130 220 ns High Side Turn-Off Fall Time tfH CL = 1000pF between HO - VS -- 50 80 ns LowSide Turn-On Propagation Delay tdLH(LO) CL = 1000pF between LO - GND -- 120 240 ns Low Side Turn-Off Propagation Delay tdHL(LO) CL = 1000pF between LO - GND -- 170 280 ns Low Side Turn-On Rise Time trL CL = 1000pF between LO - GND -- 130 220 ns Low Side Turn-Off Fall Time tfL CL = 1000pF between LO - GND -- 50 80 ns Delay Matching, High Side and Low Side Turn-On tdLH | tdLH(HO) - tdLH(LO) | -- 0 30 ns Delay Matching, High Side and Low Side Turn-Off tdHL | tdHL(HO) - tdHL(LO) | -- 0 30 ns THERMAL DERATING FACTOR CHARACTERISTICS PACKAGE POWER DISSIPATION, Pd, (WATTS) 0.8 0.6 0.4 0.2 0 0 25 50 75 100 125 TEMPERATURE, (C) FUNCTION TABLE (X : HORL) HIN LIN VBS UV VCC UV L L H H L H H H H L H H H H H H X L L H X H L H L X H L H X H L HO L L H L L L L L LO L H L L L H L L Behavorial State LO = HO = Low LO = High HO = High LO = HO = Low LO = Low, VBS UV Tripped LO = High, VBS UV Tripped LO = Low, VCC UV Tripped HO = LO = Low, VCC UV Tripped NOTE: "L" state of VBS UV, VCC UV means that UV trip voltage. In the case of both input signals (HIN and LIN) are "H", output signals (HO and LO) become "L". 6/05 3 Powerex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272 M81706AFP HVIC, High Voltage Half-Bridge Driver 600 Volts/+120mA/-250mA TIMING DIAGRAM 1. Input/Output Timing Diagram HIGH ACTIVE - When input signal (HIN or LIN) is "H", then output signal (HO or LO) is "H". In the case of both input signals (HIN and LIN) are "H", then output signals (HO and LO) become "L". HIN LIN HO LO 2. VCC(VBS) Supply Under Voltage Lockout Timing Diagram When VCC supply voltage keeps lower UV trip voltage (VCCuvt = VCCuvr - VCCuvh) for VCC supply UV filter time, output signal becomes "L". And then, when VCC supply voltage is higher than UV reset voltage, output signal LO becomes "H". VCCuvh VCC VCCuvr VCCuvt tVCCuv LO LIN When VCC supply voltage keeps lower UV trip voltage (VCCuvt = VCCuvr - VCCuvh) for VCC supply UV filter time, output signal becomes "L". And then, when VCC supply voltage is higher than UV reset voltage, input signal (LIN) is "L"; output signal HO becomes "H". VBS(H) LIN(L) VCCuvh VCC VCCuvr VCCuvt tVCCuv HO HIN When VBS supply voltage keeps lower UV trip voltage (VBSuvt = VBSuvr - VBSuvh) for VBS supply UV filter time, output signal becomes "L". And then, VBS supply voltage is higher than UV reset voltage, output signal HO keeps "L" until next input signal HIN is "H". VBSuvh VBS VBSuvt tVBSuv VBSuvr HO HIN 3. Allowable Supply Voltage Transient It is recommended supplying VCC first and VBS second. In the case of shutting off supply voltage, shut off VBS first and shut off VCC second. At the time of starting VCC and VBS, power supply should be increased slowly. If it is increased rapidly, output signal (HO or LO) may be "H". Note: This device has high voltage between closely spaced pins. In most applications, supplemental insulation will be required. 4 6/05