Powerex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272 HVIC
High Voltage Half-Bridge Driver
600 Volts/+120mA/-250mA
M81706AFP
16/05
RECOMMENDED MOUNT PAD
A
8
C
D
E
S
T
R
H J
N
L
MQ
P
B
E
F
G
K
DETAIL "A"
DETAIL "A"
DETAIL
"B"
DETAIL "B"
5
1 4
PIN NUMBER
1 VCC 8 VB
2 HIN 7 HO
3 LIN 6 VS
4 GND 5 LO
HV
LEVEL
SHIFT
INTER
LOCK
PULSE
GEN
DELAY
UV DETECT
FILTER
UV DETECT
FILTER
S
R Q
R
HIN
LIN
2
3
VREG
VREG/VCC
LEVEL
SHIFT
VREG/VCC
LEVEL
SHIFT
VS
VCC
GND
VB
6
1
LO
5
4
8
HO
7
Description:
M81706AFP is a high voltage
Power MOSFET and IGBT module
driver for half-bridge applications.
Features:
£ Shoot Through Interlock
£ High Voltage Level Shift
£ Output Current +120/-250mA
£ Half-Bridge Driver
£ SOP-8 Package
Applications:
£ HID Ballast
£ PDP
£ MOSFET Driver
£ IGBT Driver
£ Inverter Module Control
Ordering Information:
M81706AFP is a +120/-250mA,
600 Volt HVIC, High Voltage
Half-Bridge Driver
Outline Drawing and Circuit Diagram
Dimensions Inches Millimeters
A 0.24±0.01 6.2±0.3
B 0.2±0.008 5.0±0.2
C 0.17±0.008 4.4±0.2
D 0.08 Max. 1.9 Max.
E 0.05 1.27
F 0.015±0.002 0.4±0.05
G 0.004 0.1
H 0.06 1.5
J 0.002 Min. 0.05 Min.
Dimensions Inches Millimeters
K 0.04 0.9
L 0.015±0.008 0.4±0.2
M 0.006±0.002 0.15±0.05
N 10° Max. 10° Max.
P 0.03 0.745
Q 0.023 0.595
R 0.05 Min. 1.27 Min.
S 0.23 5.72
T 0.76 0.76
M81706AFP
HVIC, High Voltage Half-Bridge Driver
600 Volts/+120mA/-250mA
Powerex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272
2 6/05
Absolute Maximum Ratings, Ta = 25°C unless otherwise specified
Characteristics Symbol M81706AFP Units
High Side Floating Supply Absolute Voltage VB -0.5 ~ 624 Volts
High Side Floating Supply Offset Voltage VS VB-24 ~ VB+0.5 Volts
High Side Floating Supply Voltage (VBS = VBVS) VBS -0.5 ~ 24 Volts
High Side Output Voltage VHO VS-0.5 ~ VB+0.5 Volts
Low Side Fixed Supply Voltage VCC -0.5 ~ 24 Volts
Low Side Output Voltage VLO -0.5 ~ VCC+0.5 Volts
Logic Input Voltage (HIN, LIN) VIN -0.5 ~ VCC+0.5 Volts
Package Power Dissipation (Ta = 25°C, On Board) Pd 0.6 Watts
Linear Derating Factor (Ta > 25°C, On Board) K
θ
6.0 mW/°C
Junction to Case Thermal Resistance Rth(j-c) 50 °C/W
Junction Temperature Tj -20 ~ 125 °C
Operation Temperature T
opr -20 ~ 100 °C
Storage Temperature Tstg -40 ~ 125 °C
Recommended Operating Conditions
Characteristics Symbol Test Conditions Min. Typ. Max. Units
High Side Floating Supply Absolute Voltage VB VS+10 VS+20 Volts
High Side Floating Supply Offset Voltage VS 0 500 Volts
High Side Floating Supply Voltage VBS VB = VB – VS 10 20 Volts
High Side Output Voltage VHO VS VB Volts
Low Side Fixed Supply Voltage VCC 10 20 Volts
Logic Supply Voltage VLO 0 VCC Volts
Logic Input Voltage VIN HIN, LIN 0 VCC Volts
Electrical Characteristics
Ta = 25°C, VCC = VBS (= VB – VS) = 15V unless otherwise specified
Characteristics Symbol Test Conditions Min. Typ. Max. Units
Floating Supply Leakage Current IFS VB = VS = 600V 1.0 µA
VBS Standby Current IBS HIN = LIN = 0V 0.2 0.5 mA
VCC Standby Current ICC HIN = LIN = 0V 0.2 0.5 1.0 mA
High Level Output Voltage VOH IO = -20mA, LO, HO 13.6 14.2 Volts
Low Level Output Voltage VOL IO = 20mA, LO, HO 0.3 0.6 Volts
High Level Input Threshold Voltage VIH HIN, LIN 2.7 Volts
Low Level Input Threshold Voltage VIL HIN, LIN 0.8 Volts
High Level Input Bias Current IIH VIN = 5V 5 20 µA
Low Level Input Bias Current IIL VIN = 0V 2.0 µA
VBS Supply UV Reset Voltage VBSuvr 8.0 8.9 9.8 Volts
VBS Supply UV Trip Voltage VBSuvt 7.4 8.2 9.0 Volts
VBS Supply UV Hysteresis Voltage VBSuvh 0.5 0.7 Volts
VBS Supply UV Filter Time tVBSuv 7.5 µs
VCC Supply UV Reset Voltage VCCuvr 8.0 8.9 9.8 Volts
M81706AFP
HVIC, High Voltage Half-Bridge Driver
600 Volts/+120mA/-250mA
Powerex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272
36/05
Electrical Characteristics
Ta = 25°C, VCC = VBS (= VB – VS) = 15V unless otherwise specified
Characteristics Symbol Test Conditions Min. Typ. Max. Units
VBS Supply UV Trip Voltage VCCuvt 7.4 8.2 9.0 Volts
VCC Supply UV Hysteresis Voltage VCCuvh 0.5 0.7 Volts
VCC Supply UV Filter Time tVCCuv 7.5 µs
Output High Level Short Circuit Pulsed Current IOH VO = 0V, VIN = 5V, PW < 10µs 120 200 mA
Output Low Level Short Circuit Pulsed Current IOL VO = 15V, VIN = 0V, PW < 10µs 250 350 mA
Output High Level ON Resistance ROH IO = -20mA, ROH = (VOH – VO)/IO 40 70 Ω
Output Low Level ON Resistance ROL IO = 20mA, ROL = VO /IO 15 30 Ω
High Side Turn-On Propagation Delay tdLH(HO) CL = 1000pF between HO – VS 120 240 ns
High Side Turn-Off Propagation Delay tdHL(HO) CL = 1000pF between HO – VS 170 280 ns
High Side Turn-On Rise Time trH CL = 1000pF between HO – VS 130 220 ns
High Side Turn-Off Fall Time tfH CL = 1000pF between HO – VS 50 80 ns
LowSide Turn-On Propagation Delay tdLH(LO) CL = 1000pF between LO – GND 120 240 ns
Low Side Turn-Off Propagation Delay tdHL(LO) CL = 1000pF between LO – GND 170 280 ns
Low Side Turn-On Rise Time trL CL = 1000pF between LO – GND 130 220 ns
Low Side Turn-Off Fall Time tfL CL = 1000pF between LO – GND 50 80 ns
Delay Matching, High Side and Low Side Turn-On ΔtdLH | tdLH(HO) – tdLH(LO) | 0 30 ns
Delay Matching, High Side and Low Side Turn-Off ΔtdHL | tdHL(HO) – tdHL(LO) | 0 30 ns
0.2
0.6
0.8
THERMAL DERATING FACTOR
CHARACTERISTICS
TEMPERATURE, (°C)
PACKAGE POWER DISSIPATION, Pd, (WATTS)
0 25 75 100 125
0
0.4
50
FUNCTION TABLE (X : HORL)
HIN LIN VBS UV VCC UV HO LO Behavorial State
L L H H L L LO = HO = Low
L H H H L H LO = High
H L H H H L HO = High
H H H H L L LO = HO = Low
X L L H L L LO = Low, VBS UV Tripped
X H L H L H LO = High, VBS UV Tripped
L X H L L L LO = Low, VCC UV Tripped
H X H L L L HO = LO = Low, VCC UV Tripped
NOTE: “L” state of VBS UV, VCC UV means that UV trip voltage.
In the case of both input signals (HIN and LIN) are “H”, output signals (HO and LO) become “L”.
M81706AFP
HVIC, High Voltage Half-Bridge Driver
600 Volts/+120mA/-250mA
Powerex, Inc., 200 E. Hillis Street, Youngwood, Pennsylvania 15697-1800 (724) 925-7272
4 6/05
TIMING DIAGRAM
1. Input/Output Timing Diagram
HIGH ACTIVE – When input signal (HIN or LIN) is “H”, then output signal (HO or LO) is “H”. In the case of both input signals (HIN and LIN)
are “H”, then output signals (HO and LO) become “L”.
When VCC supply voltage keeps lower UV trip voltage (VCCuvt = VCCuvr – VCCuvh) for VCC supply UV filter time, output signal becomes
“L”. And then, when VCC supply voltage is higher than UV reset voltage, output signal LO becomes “H”.
HIN
LIN
HO
LO
LO
LIN
VCCuvt VCCuvr
tVCCuv
VCCuvh
VCC
2. VCC(VBS) Supply Under Voltage Lockout Timing Diagram
It is recommended supplying VCC first and VBS second. In the case of shutting off supply voltage, shut off VBS
first and shut off VCC second. At the time of starting VCC and VBS, power supply should be increased slowly. If it is increased
rapidly, output signal (HO or LO) may be “H”.
3. Allowable Supply Voltage Transient
Note: This device has high voltage between closely spaced pins. In most applications, supplemental insulation will be required.
When VBS supply voltage keeps lower UV trip voltage (VBSuvt = VBSuvr – VBSuvh) for VBS supply UV filter time, output signal becomes
“L”. And then, VBS supply voltage is higher than UV reset voltage, output signal HO keeps “L” until next input signal HIN is “H”.
HO
HIN
VBSuvt VBSuvr
tVBSuv
VBSuvh
VBS
When VCC supply voltage keeps lower UV trip voltage (VCCuvt = VCCuvr – VCCuvh) for VCC supply UV filter time, output signal becomes
“L”. And then, when VCC supply voltage is higher than UV reset voltage, input signal (LIN) is “L”; output signal HO becomes “H”.
HO
HIN
LIN(L)
VCCuvt VCCuvr
tVCCuv
VCCuvh
VCC
VBS(H)