Low Power 3D Magnetic Sensor with I2C Interface
TLV493D-A1B6 3D Magnetic Sensor
3D Magnetic Sensor
Sense & Control
Data Sheet
Rev. 1.0, 2016-01-29
Data Sheet 2 Rev. 1.0, 2016-01-29
TLV493D-A1B6
3D Magnetic Sensor
1 Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1 Target Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.1 Power Mode Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Sensing Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Pin Configuration (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Definition of Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Sensitive Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Temperature Measurement (default = activated) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4 Interface and Timing Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5 Magnetic Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6 Characteristical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.1 Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.2 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
8 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table of Contents
TLV493D-A1B6
3D Magnetic Sensor
Data Sheet 3 Rev. 1.0, 2016-01-29
Table 1 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Table 2 TSOP-6 Pin Description and Configuration (see Figure 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 3 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 4 ESD Protection (TA = 25°C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 5 Operating Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 6 Electrical Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 7 Temperature Measurement Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 8 Interface and Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 9 Conversion table for 12Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 10 Initial Magnetic Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 11 Sensor Drifts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 12 Package Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
List of Tables
TLV493D-A1B6
3D Magnetic Sensor
Data Sheet 4 Rev. 1.0, 2016-01-29
Figure 1 All three Sensitive Directions Bx, By and Bz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 2 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 3 Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 4 Definition of Magnetic Field Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 5 Center of Sensitive Area. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 6 Application Circuit with external Power Supply and µC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 7 I2C Timing Specification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 8 IDD versus Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 9 Image of TLV493D-A1B6 in TSOP-6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 10 Footprint PG-TSOP-6-6-5, Reflow Soldering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 11 Footprint PG-TSOP-6-6-5, Wave Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 12 Package Outlines (all dimensions in mm) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 13 Packing (all dimensions in mm). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
List of Figures
Data Sheet 5 Rev. 1.0, 2016-01-29
TLV493D-A1B6
3D Magnetic Sensor
Product Description
1 Product Description
1.1 Target Applications
The 3D magnetic sensor TLV493D-A1B6 offers accurate three-dimensional sensing with extremely low power
consumption in a small 6-pin package. With its magnetic field detection in x, y, and z-direction the sensor
reliably measures three-dimensional, linear and rotation movements. Applications include joysticks, control
elements (white goods, multifunction knops), or electric meters (anti tampering) and any other application
that requires accurate angular measurements or low power consumptions.
The integrated temperature sensor can furthermore be used for plausibility checks.
Figure 1 All three Sensitive Directions Bx, By and Bz
1.2 Features
3D magnetic sensing
Very low power consumption = 10µA during operations (10Hz, typ)
Power down mode with 7nA power consumption
Digital output via 2-wire based standard I2C interface up to 1 MBit/sec
12 bit data resolution for each measurement direction
Bx, By and Bz linear field measurement up to +-130mT
Excellent matching of X/Y measurement for accurate angle sensing
Variable update frequencies and power modes (configurable during operation)
Supply voltage range= 2.8V…3.5V, Temperature range Tj= -40°C…125°C
Small, industrial 6 pin TSOP package
Triggering by external µC possible
Interrupt signal available to wake up a microcontroller
Temperature measurement
Table 1 Ordering Information
Product Name Marking Ordering Code Package
3D Magnetic Sensor
TLV493D-A1B6
VA (serie)
SA (eng. samples)
SP001286056 PG-TSOP-6-6-5
VDD
S
X
N
GND
(ADDR)
SDA
GND
GND
SCL
(/INT)
Y
Z
S
S
N
N
Data Sheet 6 Rev. 1.0, 2016-01-29
TLV493D-A1B6
3D Magnetic Sensor
Functional Description
2 Functional Description
2.1 General
Description of the Block diagram and its functions.
Figure 2 Block Diagram
The IC consists of three main function units containing the following building blocks:
The power mode control system, containing a low-power oscillator, basic biasing, accurate reset,
undervoltage detection and a fast oscillator.
The sensing part, containing the HALL biasing, HALL probes with multiplexers and successive tracking ADC.
Furthermore a temperature sensor is implemented.
•The I2C interface, containing the register file and I/O pads.
2.1.1 Power Mode Control
The power mode control provides the power distribution in the IC, a power-on reset function and a specialized
low-power oscillator clock source. Additionally it is handling the start-up behavior.
On start-up this unit:
activates the biasing, provides an accurate reset detector and fast oscillator.
interprets the applied voltage level on ADDR pin as logical “0” or “1”. This determines one of two
possible I2C bus addresses to access the sensor.
sensor enters power down mode (configured via I2C interface).
Note: After supplying the sensor (= power up) the sensor enters the mode power down by default.
Register & Interface
Sensing Part
z
SCL; /INT
Spinning lat.
Hall plates
Z-Direction
Comparator
Digital tracking ,
demodulation &
I²C interface
Spinning
vertical-Hall plates
X-Direction
Spinning
vertical -Hall plates
Y-Direction
MUX
ADC
Power Mode Control
Bias
VDD
GND
Temperature
SDA
F-OSC LP-OSC
Data Sheet 7 Rev. 1.0, 2016-01-29
TLV493D-A1B6
3D Magnetic Sensor
Functional Description
After re-configuration to one of the operating modes a measurement cycle is performed regularly
containing of:
starts the internal biasing, checks for reset condition and provides the fast oscillator
provides the HALL biasing
the measurement of the three HALL probe channels sequentially incl. temperature (default = activated)
and enters the configured mode again
In any case functions are only executed if the supply voltage is high enough, otherwise the reset circuit will halt
the state machine until the level is reached and restarts its operation afterwards. The functions are also
restarted if a reset event occurs in between.
2.1.2 Sensing Part
Performs the measurements of the magnetic field in X, Y and Z direction. Each X, Y and Z-HALL probe is
connected sequentially to a multiplexer, which is then connected to an Analog to Digital Converter (ADC).
Optionally, the temperature is determined as well after the three HALL channels. The current consumption
decreases by -25% when temperature measurement is deactivated.
Data Sheet 8 Rev. 1.0, 2016-01-29
TLV493D-A1B6
3D Magnetic Sensor
Functional Description
2.2 Pin Configuration (top view)
Figure 3 shows the pinout of the TLV493D-A1B6.
Figure 3 Pinout
2.3 Definition of Magnetic Field
A positive field is considered as South-Pole facing the corresponding Hall element.
Figure 4 shows the definition of the magnetic directions X, Y, Z of the TLV493D-A1B6.
Figure 4 Definition of Magnetic Field Direction
Table 2 TSOP-6 Pin Description and Configuration (see Figure 1)
Pin No. Name Description
1SCL
/INT
Interface serial clock pin (input)
Interrupt pin, signals a finished measurement cycle
2GND connect to GND
3GND Ground Pin
4VDD Supply Pin
5GND connect to GND
6SDA
ADDR
Interface serial data pin (input/output), open drain
Sensor ID configuration during power up
1 2 3
6 5 4
N
S
N
S
X-Axis Y-Axis Z-Axis
N
S
Data Sheet 9 Rev. 1.0, 2016-01-29
TLV493D-A1B6
3D Magnetic Sensor
Functional Description
2.4 Sensitive Area
Figure 5 Center of Sensitive Area
1
Data Sheet 10 Rev. 1.0, 2016-01-29
TLV493D-A1B6
3D Magnetic Sensor
Functional Description
2.5 Application Circuit
The use of an interrupt line is optional, but highly recommended to ensure proper and efficient readout of the
sensor data.
The pull-up resistors R1 & R2 of the I2C bus have to be set in a way to keep the rise- and fall time specification
of the interface bus parameters (see specification section) with the parasitic capacitive load of the actual
setup.
The serial resistances R between SDA /SCL & Pull up R1/R2 may be used to avoid reflections on longer bus lines
causing ground bouncing on sensor side and communication issues.
The series resistance R between and the SCL µC pin and the pull up resistor R2 together with the capacitance
C2 to ground may provide additional EMC filtering if required.
Please note: too small resistive values for R1/2 have to be prevented to avoid unnecessary power consumption
during interface transmissions, especially for low-power applications. The additional capacitor C2 on the SCL
line will limit the maximum possible bitrate on the bus.
Figure 6 Application Circuit with external Power Supply and µC
For additional EMC precaution in harsh environments, C1 may be implemented by two 100nF capacitors in
parallel, which should be already given by Cbuf near the µC and/or power supply.
µC
e.g.
XMC1100
Power
Supply
TLV493D
V
DD
SDA
SCL
(/INT)
R
1
R
2
GND
C
1
V
DD
GND
C
Buf
R
1/2
=1.2k
C
1
=100nF
R=100
C=200pF
R
R
R
C
2
Data Sheet 11 Rev. 1.0, 2016-01-29
TLV493D-A1B6
3D Magnetic Sensor
Specification
3 Specification
3.1 Absolute Maximum Ratings
Attention: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent
damage to the device. This is a stress rating only and functional operation of the device at
these or any other conditions above those indicated in the operational sections of this
specification is not implied. Furthermore, only single error cases are assumed. More than one
stress/error case may also damage the device.
Exposure to absolute maximum rating conditions for extended periods may affect device
reliability. During absolute maximum rating overload conditions the voltage on VDD pins with
respect to ground (VSS) must not exceed the values defined by the absolute maximum ratings.
3.2 Operating Range
Table 3 Absolute Maximum Ratings
Parameter Symbol min typ max Unit Note/Condition
Junction temperature Tj-40 125 °C
Voltage on VDD VDD -0.3 3.5 V
Magnetic field Bmax ––1T
Voltage range on any pin to
GND
-0.1 3.5 V open-drain outputs are not
current limited
Table 4 ESD Protection1) (TA = 25°C)
1) Characterization of ESD is carried out on a sample basis, not subject to production test.
Parameter Symbol Values Unit Note or Test Condition
Min. Typ. Max.
ESD voltage (HBM)2)
2) Human Body Model (HBM) tests according to ANSI/ESDA/JEDEC JS-001.
VESD -1.5 +1.5 kV R = 1.5 kΩ, C = 100 pF
ESD voltage (CDM)3)
3) Charged Device Model (CDM), ESD susceptibility according to JEDEC JESD22-C101.
750 V for corner pins
500 V all pins
Table 5 Operating Range
Parameter Symbol min typ max Unit Note/Condition
Operating temperature Tj-40 125 °C Tj = Ta + 3°C as worst case
assumption
I2C bit clock frequency f100 400 1000 kHz Assume a tolerance of <10%
Supply voltage VDD 2.8 3.3 3.5 V see Note below
Reset level Vres –2.2–Vsee Note below
Data Sheet 12 Rev. 1.0, 2016-01-29
TLV493D-A1B6
3D Magnetic Sensor
Specification
Note: To provide these ultra low power consumption figures, the chip does not use a classic (and current
consuming) reset concept. The implemented reset focus is on ensuring a proper supply for the ADC
operation only (so it inhibits the ADC reliably until the sensor supply is high enough). Thus, the sensor rely
on a proper supply ramp incl. 3.7mA current consumption during power-on to ensure it is initialized
correctly, typically a monotonic rise of Vdd from zero to 3.3V within less than 10µs and without
over/undershoots larger than 300mV. If such a supply can not be provided, the I2C reset feature of the
sensor shall be used by the µC after power-up. If supply monitoring is used in the system (e.g. brown-out
detector etc.) it is also recommended to use the I2C reset of the sensor upon events detected by this
monitor.
Data Sheet 13 Rev. 1.0, 2016-01-29
TLV493D-A1B6
3D Magnetic Sensor
Specification
3.3 Electrical Characteristics
Note: All specification parameters refer to 3.3V +5% nominal supply VDD on the pins directly. Typical values
refer to 25°C and to 3.3V +5% nominal supply.
Note: The average supply current IDD in the low power modes and I2C triggered mode will decrease by about
25% when the temperature measurement is disabled.
Table 6 Electrical Setup
Parameter Symbol min typ max Unit Note/Condition
Supply current 1)
1) Average values
IDD 7 100 nA power down mode (default
after power on), all off
10 µA ultra low power mode
80 µA low power mode
Average operating current IDD_op 3.7 mA peak during ADC measurements
for about 270µs2) 3)
2) During power down mode the current consumption is about 7nA
3) Current at Pull ups needs to be considered for power supply dimensioning, consider minimum 10mA for the power
supply for the sensor only
Input voltage low threshold VIL ––20%VDD all input pads
Input voltage high threshold VIH 70––%VDD all input pads
Input voltage hysteresis threshold 5 %VDD all input pads
Output voltage low level @ 3 mA
load
VOL 0.4 V all output pads, static load
Fall time SDA/SCL signal 4)
4) Dependent on used R-C-combination
tFALL –0.25
5)
5) For given AppCircuit; Capacitive load (parasitics and discrete caps used) for each bus line = 200pF (SDA, SCL)
0.3 µs 0.3µs for 400kHz mode (or may
require less C load)
Rise time SDA/SCL signal 4) tRISE –0.5
5) µs R=1.2k
Output high level VOH VDD V given by ext. pull-up resistor
Data Sheet 14 Rev. 1.0, 2016-01-29
TLV493D-A1B6
3D Magnetic Sensor
Specification
3.4 Temperature Measurement (default = activated)
Table 7 Temperature Measurement Characteristics
Parameter Symbol min typ max Unit Note/Condition
Digital value @ 25°C1)
1) Theoretical possible measurement range from -50°C to 150°C
340 LSB
Resolution 12bit 1.1 °C/LSB
Accuracy +10 °C
Data Sheet 15 Rev. 1.0, 2016-01-29
TLV493D-A1B6
3D Magnetic Sensor
Interface and Timing Description
4 Interface and Timing Description
This chapter refers to how to set the boundary conditions in order to establish a proper interface
communication.
Figure 7 I2C Timing Specification
Table 8 Interface and Timing
Parameter Symbol min typ max Unit Note/Condition
Update rate X, Y, Z 3.3 kHz max. ADC conversion rate
Update rate (all axis), ultra low p. 10 Hz int. triggered
Update rate (all axis), low p. 100 Hz int. triggered
End-of-Conversion /INT pulse tINT 1.5 µs low-active (when activated)
Internal clock accuracy tclk_E -25 +25 % all above timing parameters
Allowed I2C bit clock frequency fI2C_clk 400 1000 kHz 400kHz is I2C fast mode
Low period of SCL clock tL0.5 µs 1.3µs for 400kHz mode
High period of SCL clock tH0.4 µs 0.6µs for 400kHz mode
SDA fall to SCL fall hold time
(hold time start condition to clock)
tSTA 0.4 µs 0.6µs for 400kHz mode
SCL rise to SDA rise su. time
(setup time clock to stop condition)
tSTOP 0.4 µs 0.6µs for 400kHz mode
SDA rise to SDA fall hold time
(wait time from stop to start cond.)
tWAIT 0.4 µs 0.6µs for 400kHz mode
SDA setup before SCL rising tSU 0.1––µs
SDA hold after SCL falling tHOLD 0––µs
20%V
DD
70%V
DD
20%V
DD
70%V
DD
t
L
t
H
t
STOP
t
WAIT
t
STA
SCL
pin
SDA
pin
t
HOLD
t
SU
1bit transfer STOPcond . STARTcond .
Data Sheet 16 Rev. 1.0, 2016-01-29
TLV493D-A1B6
3D Magnetic Sensor
Interface and Timing Description
Managing correct sensor read outs by the µC:
This sensor does not incorporate shadow-buffers for readout. Thus, it is mandatory to read the sensor data
not during a running conversion to avoid corrupted reads. Ideally, the /INT feature is enabled together with
the low-power or ultra-low power mode and the µC reads the data after the /INT pulse was asserted by the
sensor. Furthermore, the readout needs to be finished before a new conversion is started and the /INT will be
asserted again (if the readout is finished 1 ms before a new /INT pulse, this will be sufficient).
Conversion register value to magnetic field and temperature value:
The conversion is realized by the two’s complement. Please use following table for transformation:
Example for 12Bit read out: 1111 0000 1111: -2048 + 1024 + 512 + 256 + 0 + 0 + 0 + 0 + 8 + 4 + 2 +1 = -241 LSB
Calculation to mT: -241 LSB * 0.098 mT/LSB = -23.6mT
For further information and a detailed I2C bitmap please refer to user manual.
Table 9 Conversion table for 12Bit
MSBBit11Bit10Bit9Bit8Bit7Bit6Bit5Bit4Bit3Bit2LSB
-2048 1024 512 256 128 64 32 16 8421
e.g.111100001111
Data Sheet 17 Rev. 1.0, 2016-01-29
TLV493D-A1B6
3D Magnetic Sensor
Magnetic Characteristics
5 Magnetic Characteristics
Table 10 Initial Magnetic Characteristics1)
Values for 25°C, 0h and VDD = 3.3V
1) Magnetic test on wafer level. It is assumed that initial variations are stored and compensated in the external µC
during module test and calibration.
Parameter Symbol min typ max Unit Note/Condition
Usable magnetic linear range Bxyz_LIN –+130 mT Bx, By and Bz
Offset -1 +0.2 +1 mT Bx, By and Bz
Sensitivity 10.2 LSB12/
mT
Bx, By and Bz; (12bit)
Resolution 12-bit readout2)
2) Resolution is calculated as 1/Sensitivity (and multiplied by 16 for 8-bit value)
Res12 –98 µT/
LSB12
Resolution 8-bit readout2) Res8–1.56 mT/
LSB8
Magnetic noise (rms) 0.1 mT rms = 1 sigma
Magnetic hysteresis 1LSB12 due to quantization effects
Table 11 Sensor Drifts1)
Values for VDD = 3.3V +5%, Tj = -40 to 125 °C, static magnetic field within usable linear range
1) Not subject to production test, verified by design/characterization. Drifts are changes from the initial characteristics
due to external influences.
Parameter Symbol min typ max Unit Note/Condition
Sensitivity drift +20 % Bx, By and Bz
Offset drift -1 +0.2 +1 mT Bx, By and Bz; @ 0mT
X to Y magnetic matching drift2)
2) The matching is defined for sensitivity values of Bx (=X), By (=Y) and Bz (=Z) as:
X/Y matching: 2·(X-Y)/(X+Y) [in %]
X/Y to Z matching: 2· (X+Y-2·Z)/(X+Y+2·Z) [in %]
–+5–%
X/Y to Z magnetic matching drift2) –+20 %
Temperature compensation3)
3) Can be changed by I2C command during operation; further typical values are -2000, -1000, +500 ppm/K
0ppm/K Bx, By and Bz
DNL (Differential Non Linearity)1) +5 LSB12 Bx, By and Bz
INL (Integral Non Linearity)1) 0.1 %FSR4)
4) The FSR is calculated as ±2048 · Res12
Bx, By and Bz
Data Sheet 18 Rev. 1.0, 2016-01-29
TLV493D-A1B6
3D Magnetic Sensor
Characteristical
6 Characteristical
Figure 8 IDD versus Temperature
Data Sheet 19 Rev. 1.0, 2016-01-29
TLV493D-A1B6
3D Magnetic Sensor
Package Information
7 Package Information
7.1 Package Parameters
7.2 Package Outlines
Figure 9 Image of TLV493D-A1B6 in TSOP-6
Figure 10 Footprint PG-TSOP-6-6-5, Reflow Soldering
Table 12 Package Parameters
Parameter Symbol Limit Values Unit Notes
Min. Typ. Max.
Thermal resistance
Junction ambient
RthJA 200 K/W Junction to air1)
for PG-TSOP-6-6-5
1) according to Jedec JESD51-7
Thermal resistance
Junction lead
RthJL 100 K/W Junction to lead
for PG-TSOP-6-6-5
Soldering moisture level MSL 1 260°C2)
2) suitable for reflow soldering with soldering profiles according to JEDEC J-STD-020D.1 (March 2008)
0.5
0.95
1.9
2.9
Data Sheet 20 Rev. 1.0, 2016-01-29
TLV493D-A1B6
3D Magnetic Sensor
Package Information
Figure 11 Footprint PG-TSOP-6-6-5, Wave Soldering
Figure 12 Package Outlines (all dimensions in mm)
0.55
0.95
1.9
4.3
Data Sheet 21 Rev. 1.0, 2016-01-29
TLV493D-A1B6
3D Magnetic Sensor
Package Information
Figure 13 Packing (all dimensions in mm)
Further Information about the package can be found here:
http://www.infineon.com/cms/packages/SMD_-_Surface_Mounted_Devices/TSOP/TSOP6.html
Data Sheet 22 Rev. 1.0 2016-01-29
TLV493D-A1B6
3D Magnetic Sensor
Revision History
8 Revision History
Revision Date Changes
Rev. 1.0 2016-01-29 Initial version
Trademarks of Infineon Technologies AG
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, EasyPIM™, EconoBRIDGE™,
EconoDUAL™, EconoPIM™, EconoPACK™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I2RF™, ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-
d™, NovalithIC™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™,
SIEGET™, SINDRION™, SIPMOS™, SmartLEWIS™, SPOC™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™.
Other Trademarks
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited,
UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of
Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay
Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association
Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc.
MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA
MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave
Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of
Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc.
TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas
Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.
Last Trademarks Update 2011-11-11
Edition 2016-01-29
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2014 Infineon Technologies AG.
All Rights Reserved.
Do you have a question about any
aspect of this document?
Email: erratum@infineon.com
Document reference
Legal Disclaimer
The information given in this document shall in
no event be regarded as a guarantee of
conditions or characteristics. With respect to any
examples or hints given herein, any typical
values stated herein and/or any information
regarding the application of the device, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation, warranties of non-
infringement of intellectual property rights of
any third party.
Information
For further information on technology, delivery
terms and conditions and prices, please contact
the nearest Infineon Technologies Office
(www.infineon.com).
Warnings
Due to technical requirements, components
may contain dangerous substances. For
information on the types in question, please
contact the nearest Infineon Technologies
Office. Infineon Technologies components may
be used in life-support devices or systems only
with the express written approval of Infineon
Technologies, if a failure of such components
can reasonably be expected to cause the failure
of that life-support device or system or to affect
the safety or effectiveness of that device or
system. Life support devices or systems are
intended to be implanted in the human body or
to support and/or maintain and sustain and/or
protect human life. If they fail, it is reasonable to
assume that the health of the user or other
persons may be endangered.
www.infineon.com
The product is not qualified and manufactured according to the requirements of Infineon Technologies with regard to automotive and/or transportation
applications.