February 2004 i
© 20 04 Act el Corporat ion *See Actel’s website for the latest version of the datasheet.
Axcelerator Family FPGAs
Leading-Edge Performance
350+ M Hz System Per for m anc e
500+ MH z I n terna l Perfo rm ance
High-Performance Embedded FIFO s
700Mb/ s LVDS Capable I/Os
Specifications
Up to 2 Million Equi valent System Gat es
Up to 684 I/Os
Up to 10 ,752 Ded icat e d F lip -Flops
Up to 295kbits Embedded SRA M /F IFO
Manufactured on Advanced 0.15µm CMOS Antifuse
Process Technology, 7 Layer s of Metal
Features
Single-Chip, Nonvolatil e Solution
Up to 100% Resource Utilization with 100% Pin Locking
1.5V Core Voltage for Low Power
Footprin t Compatible Packaging
Flexible, Multi-Standard I/Os:
1.5V, 1.8V, 2. 5V, 3. 3V Mi xe d Volt age Operation
Bank-S el ectable I/Os – 8 Banks per Chi p
Single-Ended I/O Standards: LVTTL, LVCMOS, 3.3V
PCI, and 3.3V PCI -X
Differential I/O Standards: LVPECL and LVDS
Voltage-Referenced I/O Standards: GTL+, HSTL
Class 1, SSTL 2 Cl ass 1 and 2, SSTL3 Class 1 and 2
Regi st er e d I/Os
Hot-Swap Compliant I/Os (except PCI)
Programmable Slew Rate and Drive Strength on
Outputs
Program m abl e D elay and Weak Pull -Up/ Pu ll-Down
Circuits on Inputs
E mb edded Memo ry:
Variable-Aspect 4,608-bit RAM Blocks (x1, x2, x4,
x9, x1 8, x36 O rg ani zat i ons Availab le)
Independent, Width-Configurable Read and Write Ports
Programmable Embedded FIFO Control Logic
Segment able Cl ock Reso urces
Embedded Phase-Locked Loop:
14-20 0 MHz Input Range
Frequency Synthes i s Cap abilit ies up to 1 GHz
Deterministic, User-Controllable Timing
Unique In-System Diagnostic and Debug Capability
with Actel Si licon Explorer II
Boundar y-Scan Tes ting Compliant w ith IEEE S tandard
1149. 1 (JTAG)
•FuseLock
TM Secure Programming Technology
Preve nts Reve rs e Engineering and Des ign Thef t
e
u
Table 1 Axcelerator Family Product Profile
Device AX125 AX250 AX500 AX1000 AX2000
Capacity (in Equivalent System Gates) 125,000 250,000 500,000 1,000,000 2,000,000
Typical Gates 82,000 154,000 286,000 612,000 1,060,000
Modules
Register (R-cells) 672 1,408 2,688 6,048 10,752
Combinatorial (C-cells) 1,344 2,816 5,376 12,096 21,504
Maximum Flip-Flops 1,344 2,816 5,376 12,096 21,504
Embedded RAM/FIFO
Number of Core RAM Blocks 4 12 16 36 64
Total Bits of Core RAM 18,432 55,296 73,728 165,888 294,912
Clocks (Segmentable)
Hardwired 44444
Routed 4 4 4 4 4
PLLs 88888
I/Os
I/O Banks 8 8 8 8 8
Maximum User I/Os 168 248 336 516 684
Maximum LVDS Channels 84 124 168 258 342
Total I/O Registers 504 744 1,008 1,548 2,052
Package
CSP
PQFP
BGA
FBGA
CQFP
CCGA
180
256, 324
208
256, 484
208, 352
208
484, 676
208, 352
729
484, 676, 896
352
624
896, 1152
352
624
v2.1
Axcelerator Family FPGAs
ii v2.1
Ordering Information
Device Resources
AX1000 1 FG
_
Blank =Standard Speed
=Approximately 15% Faster than Standard
1=Approximately 25% Faster than Standard2
Package Type
=Ball Grid Array (1.27mm pitch)
=Fine Ball Grid Array (1.0mm pitch)
=Chip Scale Package (0.8mm pitch)
PQ =Plastic Quad Flat Pack (0.5mm pitch)
CQ=Ceramic Quad Flat Pack (0.5mm pitch)
896 I
Package Lead Count
Application
Blank =Commercial (0 to +70˚ C)
I =Industrial (-40 to +85˚ C)
PP =Pre-Production
125,000 Equivalent System Gates
AX125 =
AX250
250,000 Equivalent System Gates
=
AX500
500,000 Equivalent System Gates
=
AX1000
1,000,000 Equivalent System Gates
=
AX2000
2,000,000 Equivalent System Gates
=
Part Number
Speed Grade
=Approximately 35% Faster than Standard3
BG
FG
CS
CG =Ceramic Column Grid Array
M =Military (-55 to +125C)
B =MIL-STD-883 Class B
User I/Os (In c lu di ng Cloc k Buffers)
Package AX125 AX250 AX500 AX1000 AX2000
CS180 98
PQ208 115 115
CQ208 115 115
FG256 138 138
FG324 168––––
CQ352 TBD 198 198 198
FG484 248 317 317
CG624 418 418
FG676 336 418
BG729 516
FG896 516 586
FG1152 ––––684
Note: The FG256, FG324, and FG484 are footprint compatible with each other. The FG676, FG896, and FG1152 are also footprint
compatible with each other.
Axcelerator Family FPGAs
v2.1 iii
Temperature Grade Offerings
Speed Grade and Temperature Grade Matrix
Contact your local Actel represent at ive for device availability.
Package AX125 AX250 AX500 AX1000 AX2000
CS180 C, I
PQ208 C, I, M C, I, M
CQ208 M, B M, B
FG256 C, I C, I, M
FG324 C, I
CQ352 M, B M, B M, B M, B
FG484 C, I, M C, I, M C, I, M
CG624 M, B M, B
FG676 C, I, M C, I, M
BG729 C, I, M
FG896 C, I, M C, I, M
FG1152 C, I, M
Note: C= Commercial
I= Industrial
M = Military
B = MIL-STD-883 Class B
Std –1 –2 –3
C✓✓
I✓✓
M✓✓ ––
B✓✓ ––
iv v2.1
Table of Co ntents
Axcelerator Family FPGAs
General Description
Devi ce Arch itecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
Programm able Interconnect Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1
Logic Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2
Embedded Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
I/O Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5
Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6
Glob a l R e so u rces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 -6
Low Power (LP) Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7
Design Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7
Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7
In-S ystem Diagnostic and Debug Capabi lities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-7
Related Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-8
Detailed Specifications
Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2
Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-6
I/O Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-8
Voltage R e fe r e n ce I/O Stan d a r d s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3 0
Dif f er e n ti a l St a n d a rd s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-37
Module Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-41
Routing Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-48
Glob a l R e so u rces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 -5 3
Global Resource Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-57
Axcelerator Clock Management System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-61
Sample Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-67
Embedded Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-70
Build ing RAM and FIFO Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-89
Other Architec tu ral Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-9 0
Special Fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-91
Sili c on E xp l o re r II Pr o b e In te r fa c e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 -9 2
Prog ramm i n g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 -9 2
Package Pin Assignments
Lis t o f C han g e s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 -1
Datasheet Catego ries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-3
Axcelerator Family FPGAs
v2.1 1-1
General Description
Axcelerator offers hi gh performance at densiti es of up to
two million equivalent system gates. Based upon Actel’s
new AX architecture, Axcelerator has several system-
level features such as embedded SRAM (with complete
FIFO control logic), PLLs, segmentable clocks, chip-wide
highway routing, and carry logic.
Device Architec tu re
Actel's AX architecture, derived from the highly-
successful SX-A sea-of-modules architecture, has been
designed for high performance and total logic module
utilization (Figure 1-1). Unlike in traditional FPGAs, the
entire floor of the Axcelerator device is covered with a
grid of logic modules, with virtually no chip area lost to
interco nnec t elem ents or routing.
Prog ra m m able Int erconnect
Element
The Axcelerator family uses a patented metal-to-metal
antifuse programmable interconnect element that resides
between the upper two layers of metal (Figure 1-2 on
page 1-2). This completely eliminates the channels of
routing and interconnect resources between logic
modules (as implemented on traditional FPGAs), and
enables the efficient sea-of-modules architecture. The
antifuses are normally open circuit and, when
programmed, form a permanent, passive, low-
impedance connection, leading to the fastest signal
propagation in the industry. In addition, the extremely
small size of these interconnect elements gives the
Axcelerato r famil y a b u ndant routing resource s.
The very nature of Actel's nonvolatile antifuse
technology provides excellent protection against design
pirating and cloning (FuseLock technology). Cloning is
impossible (even if the security fuse is left
unprogrammed) as no bitstream or programming file is
ever downloaded or stored in the device. Reverse
engineering is virtually impossible due to the difficulty of
trying to distinguish between programmed and
unprogrammed antifuses and also due to the
programming methodology of antifuse devices (see
Security in "Special Fuses" on page 2-91).
Figure 1-1 Sea-of-Modules Comparison
Switch
Matrix
Routing
Logic Block
Logic
Modules
Sea-of-Modules
Architecture
Traditional FPGA
Architecture
Axcelerator Family FPGAs
1-2 v2.1
Logic Modules
Actel’s Axcelerator family provides two types of logic
modules: the register cell (R-cell) and the combinatorial
cell (C-cell). The AX C-cell can implement more than
4,000 combinatorial functions of up to five inputs
(Figure 1-3 on page 1-3). The C-cell contains carry logic
for even more efficient implementation of arithmetic
functions. With its small size, the C-cell structure is
extremely synthesis-friendly, simplifying the overall
design as well as reducing design time.
The R-cell contains a flip-flop featuring asynchronous
clear, asynchronous preset, and active-low enable control
signals (Figure 1-3 on page 1-3). The R-cell registers
feature programmable clock polarity selectable on a
register-by-register basis. This provides additional
flexibility (e.g ., eas y m apping of dual -da ta -rate functions
into the FPGA) while conserving valuable clock resources.
The clock source for the R-cell can be chosen from the
hardwi red clocks , routed cl oc ks, or inte rna l logic.
Two C-cells, a single R-ce ll, and two Transmit (TX) and two
Receive (RX) routing buffers form a Cluster, while two
Clusters comprise a Supe rCluste r (Figur e 1-4 on pag e 1-3).
Each SuperCluster also contains an independent Buffer (B)
module, which supports buffer insertion on high-fanout
nets by the place-and-route tool, minimizing system
delays while improving logic utilization.
The logic modules within the SuperCluster are arranged
so that two combinatorial modules are side by side,
giving a C–C–R – C–C–R pattern to the SuperCluster. This
C–C–R pattern enables efficient implementation
(minimum delay) of two-bit carry logic for improved
arithmetic performance (Figure 1-5 on pa ge 1- 3).
The AX architecture is fully fracturable, meaning that if
one or more of the logic modules in a SuperCluster are
used b y a par ticular s ignal pa th, the o ther log ic modul es
are still av ailab l e for use b y o ther paths .
At the chip level, SuperClusters are organized into core
tiles, which are arrayed to build up the full chip. For
exam ple, the AX1000 i s composed o f a 3x3 array of nin e
core tiles. Surrounding the array of core tiles are blocks
of I/O Clusters and the I/O bank ring (Table 1-1 on
page 1-4). Each core tile consists of an array of 336
SuperClusters and four SRAM blocks (176 SuperClusters
and th ree SRAM bl ocks for the A X250). The SRAM blo cks
are arranged in a column on the west side of the tile
(Figure 1-6 on page 1-4).
Figure 1-2 Axcelerator Family Interconnect Elements
Axcelerator Family FPGAs
v2.1 1-3
Figure 1-3 AX C-Cell and R-Cell
Figure 1-4 AX SuperCluster
Figure 1-5 AX 2-bit Carry Logic
C-cell
A[0:1]
B[0:1]
D[0:3]
DB
CFN
FCO
FCI
Y
PSET
CLR
D
E
CLK
Q
(Positive Edge Triggered)
C-Cell R-Cell
RX
TX
B
CRCC C R
RX RX RX
TX TXTX
DCOUT
YY
C-Cell C-Cell
Carry Logic
FCI
FCO
Axcelerator Family FPGAs
1-4 v2.1
Table 1-1 Number of Core Tiles per Device
Device Number of Core Tiles
AX125 1 regular tile
AX250 4 smaller tiles
AX500 4 regular tiles
AX1000 9 regular tiles
AX2000 16 regular tiles
Figure 1-6 AX Device Architecture (AX1000 shown)
Chip Layout
SuperCluster
I/O Structure
See Figure 7
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
RAMC
HD
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
HD
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
HD
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
HD
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
HD
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
HD
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
HD
SC
SC
SC
SC
RD
RD
RD
RD
RD
RD
RD
RD
RD
RD
RD
RD
RD
RD
RD
RD
RD
RD
RD
RD
RD
RD
RD
RD
RD
RD
RD
RD
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
HD
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
HD
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
HD
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
HD
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
HD
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
SC
HD
SC
SC
SC
SC
Core Tile
4k
RAM/
FIFO
4k
RAM/
FIFO
4k
RAM/
FIFO
4k
RAM/
FIFO
RX
TX
B
CRCC C R
RX RX RX
TX TXTX
Axcelerator Family FPGAs
v2.1 1-5
Embe dde d Memory
As mentioned earlier, each core tile has either three (in a
smaller til e) or fo ur (in t he r egular tile) em bedded SRAM
blocks along the west side, and each variable-aspect-
ratio SRAM block is 4,608 bits in size. Available memory
configur ations are: 128x36, 256 x18, 512x 9, 1kx4, 2kx 2 or
4kx1 bits. The individual blocks have separate read and
write ports that can be configured with different bit
widths on each port. For e xampl e, dat a c an be w r itt en in
by eight and r ead out by one.
In addition, every SRAM block has an embedded FIFO
control unit. The control unit allows the SRAM block to
be configured as a synchronou s FIFO without using core
logic modules. The FIFO width and depth are
programmable. The FIFO also features programmable
ALMOST-EMPTY (AEMPTY) and ALMOST-FULL (AFULL)
flags in addition to th e normal EMPTY and FUL L flags. In
addition to the flag logic, the embedded FIFO control
unit also contains the counters necessary for the
generation of t he r ead and write address pointers as well
as control circuitry to prevent metastability and
erroneous operation. The embedded SRAM/FIFO blocks
can be cascaded to create larger configurations.
I/O Logic
The Axcelerator family of FPGAs features a flexible I/O
structure, supporting a range of mixed voltages with its
bank-selectable I/Os: 1.5V, 1.8V, 2.5V, and 3.3V. In all,
Axcelerator FPGAs support at least 14 different I/O
standards (single-ended, differential, voltage-
referenced). The I/Os are organized into banks, with
eight ban ks per dev ice (tw o per side ). Th e configuratio n
of these banks determines the I/O standards supported
(see "User I/Os" on page 2-9 for mo re in fo rma tio n ). A ll I/
O standards are available in each bank.
Each I/O mo dule has an input re gister (InReg) , an output
register (OutReg), and an enable register (EnReg)
(Figure 1-7). An I/O Cluster includes two I/O modules,
four RX modules, two TX modules, and a buffer (B)
module.
Figure 1-7 I/O Cluster Arrangement
I/O Cluster
I/O Module
CoreTile
4k
RAM/
FIFO
4k
RAM/
FIFO
4k
RAM/
FIFO
4k
RAM/
FIFO
OutReg EnRegInReg
I/O
Module
I/O
Module RX RX RX RX
TX TX
B
N
I
O
B
A
K
Axcelerator Family FPGAs
1-6 v2.1
Routing
The AX hierarchical routing structure ties the logic
modules, the embedded memory blocks, and the I/O
modules to gether (Figure 1-8). At th e lowe st level, in and
between SuperClusters, there are three local routing
structures: FastConnect, DirectConnect, and CarryConnect
routing. DirectConnects provide the highest performance
routing inside the SuperClusters by connecting a C-cell to
the adjacent R-cell. DirectConnects do not require an
antifuse to make the connection and achieve a signal
propagation time of less than 0.1 ns.
FastConnects provide high-performance, horizontal
routing inside the SuperCluster and vertical routing to
the SuperCluster immediately below it. Only one
program mable conn ection is used in a FastC onnect path,
deliverin g a ma xi m um rout i ng delay of 0.4 ns.
CarryConnects are used for routing carry logic between
adjacent SuperClusters. They connect the FCO output of
one two-bi t, C-cell carry logic to the FCI input of the two-
bit, C-cell carry logic of the SuperCluster below it.
CarryConnects do not require an antifuse to make the
connec tion and achieve a signal propagatio n tim e of l ess
than 0.1 ns.
The next level contains the core tile routing. Over the
SuperClusters within a core tile, both vertical and
horizontal tracks run across rows or columns respectively.
At the chip level, vertical and horizontal tracks extend
across the full length of the device, both north-to-south
and eas t-to-we st. Thes e tra cks are compo sed of highwa y
routing that extend the entire length of the device
(segmented at core tile boundaries) as well as segmented
routing of varying lengt hs.
Global Resources
Each family member has three types of global signals
available to the designer: HCLK, CLK, and GCLR/GPSET.
There are four hardwired clocks (HCLK) per device that
can directly drive the clock input of each R-cell. Each of
the four routed clocks (CLK) can drive the clock, clear,
preset, or en able pin of an R-cell or an y input of a C-cell
(Figure 1 -3 on page 1- 3).
Global clear (GCLR) and global preset (GPSET) drive the
clear an d preset inputs of each R-cell as well as each I/O
Registe r on a chip-w id e basis at power up.
Each HCLK and CLK has an associ ated analog PLL (a total
of eight per chip). Each embedded PLL can be used for
clock delay minimization, clock delay adjustment, or
clock frequency synthesis. The PLL is capable of
operating with input frequencies ranging from 14 MHz
to 200 MHz and can generate output frequencies
between 20 MHz and 1 GHz. The clock can be either
divided or multiplied by factors ranging from 1 to 64.
Additionally, multiply and divide settings can be used in
any co m bin ation as long as the r es ulti ng c l ock frequency
is between 20 MHz and 1 GHz. Adjacent PLLs can be
casca ded to creat e com pl ex frequen cy c ombinations.
Figure 1-8 AX Routing Structures
Axcelerator Family FPGAs
v2.1 1-7
The PLL can be used to introduce either a positive or a
negative clock delay of up to 3.75 ns in 250 ps
increments. The reference cloc k required to drive the PLL
can be derived from three sources: external input pad
(either single-ended or differential), internal logi c, or the
output of an adjac ent PLL.
Low Power (LP) Mode
The AX architecture was created for high-performance
designs but also includes a low power mode (activated
via the LP pin). When the low power mode is activated, I/
O banks can be disabled (inputs disabled, outputs
tristated), and PLLs can be placed in a power-down
mode. All internal register states are maintained in this
mode. Furthermore, individual I/O banks can be
configured to opt out of the LP mode, thereby giving the
designer access to critical signals while the rest of the
chip is in low power mode.
The power can be further reduced by providing an
external voltage source (VPUMP) to the device to bypass
the internal charge pump (See "Low Power Mode" on
page 2-90 for more in forma t ion) .
Design Environment
The Axcelerator family of FPGAs is fully supported by
both Actel's Libero™ Integrated Design Environment
and Designer FPGA Development software. Actel Libero
IDE is an integrated design manager that seamlessly
integrates design tools while guiding the user through
the design flow, managing all design and log files, and
passing necessa ry design data among tools. Additionall y,
Libero IDE allows users to integrate both schematic and
HDL synthesis into a single flow and verify the entire
design in a single environment (see the Libero IDE Flow
diagram located on Actel’s website). Libero IDE includes
Synplify® AE from Synplicity®, ViewDraw® AE from
Mentor Graphics®, ModelSim® HDL Simulator from
Mentor Graphics, WaveFormer Lite™ AE from
SynaptiCAD®, a n d Designer softwa re from A ctel.
Actel’s Designer software is a place-and-route tool and
provides a c om pre hens i ve s uite of ba ck end s upport tools
for FPGA development. The Designer software includes
the follo wing:
Timer – a world-class integrated static timing analyzer
and constraints editor which support timing-driven
place-and-route
NetlistViewer – a design netlist schematic viewer
ChipPlanner – a gra phical floor planne r viewer and edi tor
SmartPower – allows the designer to quickly estimate
the power consumption of a design
PinEditor – a graphical application for editing pin
assignments and I/O attribu te s
I/O Attribute Editor – displays all assigned and
unassigned I/O macros and their attributes in a
spreadsheet format
With the Designer software, a user can lock the design
pins bef ore layout whi le minimally im pacting the resul ts
of place-and- route. Addition ally, Actel’s back-annotat ion
flow is compa tibl e with all the majo r sim ulato rs an d th e
simulation results can be cross-probed with Silicon
Explorer II, Actel’s integrated verification and logic
analysis tool. Another tool included in the Designer
software is the ACTgen macro builder, which easily
creates popular and commonly used logic functions for
implementation into your schematic or HDL design.
Actel's Designer software is compatible with the most
popular FPGA design entry and verification tools from
EDA vendors, such as Mentor Graphics, Synplicity,
Synopsys, and Cadence Design Systems. The Designer
software is available for both the Windows and UNIX
operating sy stems.
Programming
Program ming su pport is provided thr ough A ctel's Silico n
Sculptor II, a single-site programmer driven via a PC-
based GUI. Factory programming is available for high-
volume pr odu ction needs.
In-System Diagnostic and Debug
Capabilities
The Axcelerator family of FPGAs includes internal probe
circuitry, allowing the designer to dynamically observe
and analyze any signal inside the FPGA without disturbing
nor mal d evice oper a t i on. Up t o f o ur indivi dual si gnals can
be brought out to dedicated probe pins (PRA/B/C/D) on
the device. The probe circuitry is accessed and controlled
via Silicon Explorer II (Figure 1-9 on page 1-8), Actel's
integrated verification and logic analysis tool that
attaches to the serial port o f a PC an d communicates with
the FPGA via the JTAG port (See "Silicon Ex plore r II P robe
Interface " on page 2 -9 2).
Summary
Actel’s Axcelerator family of FPGAs extends the
successful SX-A architecture, adding embedded RAM/
FIFOs, PLLs, and high-speed I/Os. With the support of a
suite of robust software tools, design engineers can
incorporate high gate counts and fixed pins into an
Axcelerator design yet still achieve high performance
and efficient devi ce utili zat ion.
Axcelerator Family FPGAs
1-8 v2.1
Related Documents
Application Notes
Simultaneous Switching Noise and Signal Integrity
http://www.actel.com/documents/SSO.pdf
Axcelera tor Fam i l y PLL and Clock M anagemen t
http://www.actel.com/documents/AX_PLL_AN.pdf
Implem enta tion of Security in Actel A n ti fuse FPGA s
http://www.actel. com / documents/Ant ifuseSecurityAN.pdf
User’s Guides and Manuals
Antifuse Macro Libra ry Guide
http://www.actel.com/documents/libguide.pdf
ACTg en M acros User’s Guide
http://www.actel.com/documents/genguide.pdf
Silicon Sculptor II User’s Guide
http://www.actel.com/techdocs/manuals/default.asp
White Paper
Design Security in Nonvol at ile Flas h and Ant ifus e FPGAs
http://www.actel.com/documents/DesignSecurity.pdf
Miscellaneous
Libero IDE flow di agram
http://www.actel.com/products/tools/libero/flow.html
Figure 1-9 Probe Setup
Serial
Connection
Additional 14 Channels
(Logic Analyzer)
Axcelerator FPGAs
Silicon Explorer II
TDI
TCK
TMS
16 Pin
Connection
22 Pin
Connection
PRA
PRB
TDO
CH3/PRC
CH4/PRD
Axcelerator Family FPGAs
v2.1 2-1
Detailed Specifications
5V Tolerance
There are tw o schemes to achieve 5V toleran ce:
1. 3.3V PCI and 3.3V PCI-X are the only I/O standards
that directly allow 5V tolerance. To implement this,
an internal clamp diode between the input pad and
the VCCI pad is enabled so that the voltage at the
input pin is clampe d as show n in EQ 2-1:
Vinput = VCCI + Vdiode = 3.3V + 0.8V = 4. 1V
EQ 2-1
An external series resister (~100) is required between
the input pin and the 5V signal source to limit the
current ( Figure 2-1).
2. 5V tolerance can also be achieved with 3.3V I/O
standards (3.3V PCI, 3.3V PCI-X, and LVTTL) using a
bus-switch product (e.g. IDTQS32X2384). This will
convert the 5V signal to a 3.3V signal with minimum
delay (Figure 2-2).
Table 2-1 Supply Voltages
VCCA VCCI Input Tolerance Output Drive Level
1.5V 1.5V 3.3V 1.5V
1.5V 1.8V 3.3V 1.8V
1.5V 2.5V 3.3V 2.5V
1.5V 3.3V 3.3V 3.3V
Table 2-2 I/O Features Comparison
I/O Assignment Clamp Diode Hot Insertion 5V Tolerance Input Buffer Output Buffer
LVTTL No Yes Yes1Enabled/Disabled
3.3V PCI, 3.3V PCI-X Yes N o Yes1, 2 Enabled/Disabled
LVCMOS2.5V No Yes No Enabled/Disabled
LVCMOS1.8V No Yes No Enabled/Disabled
LVCMOS1.5V (JESD8-11) No Yes No Enabled/Disabled
Voltage-Referenced Input Buffer No Yes No Enabled/Disabled
Differential, LVDS/LVPECL, Input No Yes No Enabled Disabled3
Differential, LVDS/LVPECL, Output No Yes No Disabled Enabled4
1. Can be implemented with an IDT bus switch.
2. Can be implemented with an external resistor.
3. The OE input of the output buffer must be de-asserted permanently (handled by software).
4. The OE input of the output buffer must be asserted permanently (handled by software).
Figure 2-1 Use of an External Resistor for 5V Tolerance
Figure 2-2 Bus Switch IDTQS32X2384
Non-Actel Part Actel FPGA
5V 3.3V 3.3V
PCI
clamp
diode
Rext
5V 3.3
V
3.3
V
20X
5V
Axcelerator Family FPGAs
2-2 v2.1
Operating Conditions
Absolute Maximum Conditions
Stresses beyond those listed in Table 2-3 may cause permanent damage to the device. Exposure to Absolute Maximum
rated conditions for extended periods may affect device reliability. Devices should not be operated outside the
recommendations in Table 2-4.
Power-Up/Down Sequence
All Axcelerator I/Os are tristated during power-up until normal device operating conditions are reached, when I/Os
ente r u se r mo d e. VCCDA shou ld be power ed up befo re (or coincide nta lly with) VCCA and VCCI to ensure the behavior of
user I/Os a t system s tart-up. Conversely, VCCDA should be powered down after (or coincidentally with) VCCA and VCCI.
Table 2-3 Absolute Maximum Ratings
Symbol Parameter Limits Units
VCCA DC Core Supply Voltage –0.3 to 1.6 V
VCCI DC I/O Supply Voltage –0.3 to 3.75 V
VREF DC I/O Reference Voltage –0.3 to 3.75 V
VIInput Voltage –0.5 to 3.75 V
VOOut put Voltage –0.5 to 3.75 V
TSTG Storage Temperature –60 to +150 °C
VCCDA* Supply Voltage for Differential I/Os –0.3 to 3.75 V
Note: * Should be the maximum of all VI.
Table 2-4 Recommended Operating Conditions
Parameter Range Commercial Industrial Military Units
Ambient Temperature (TA)1 0 to +70 –40 to +85 –55 to +125 °C
1.5V Core Supply Voltage 1.425 to 1.575 1.425 to 1.575 1.425 to 1.575 V
1.5V I/O Supply Voltage 1.425 to 1.575 1.425 to 1.575 1.425 to 1.575 V
1.8V I/O Supply Voltage 1.71 to 1.89 1.71 to 1.89 1.71 to 1.89 V
2.5V I/O Supply Voltage2 2.375 to 2.625 2.375 to 2.625 2.375 to 2.625 V
3.3V I/O Supply Voltage 3.0 to 3.6 3.0 to 3.6 3 .0 to 3.6 V
2.5V VCCDA I/O Supply Voltage (no differential I/O used) 2.375 to 2.625 2.375 to 2.625 2.375 to 2.625 V
3.3V VCCDA I/O Supply Voltage (differential or
voltage-referenced I/O used) 3.0 to 3.6 3.0 to 3.6 3.0 to 3.6 V
3.3V VPUMP Supply Voltage 3.0 to 3.6 3.0 to 3.6 3.0 to 3.6 V
Notes:
1. Ambient temperature (TA) is used for commercial and industrial grades; case temperature (TC) is used for military grades.
2. 2.375V to 2.625V for LVDS operation.
Axcelerator Family FPGAs
v2.1 2-3
Table 2-5 Standby Power
Device Temperature
ICCA ICCDA ICCBANK ICCPLL ICCCP
Units
Standby
Current
(Core)
Standby
Current,
Differential
I/O
Standby Curr ent per
I/O Bank Standby
Current
per PLL
Standby Curren t ,
Charge Pump
2.5V VCCI 3.3V V CCI Active Bypassed
mode
AX125 Typical at 25°C 1.5 1.5 0.2 0.3 0.2 0.3 0.01 mA
70°C 10 6 0.5 0.75 1 0.4 0.01 mA
85°C 15 6 0.6 0.8 1 0.4 0.2 mA
125°C 40 8 1 1.5 2 0.4 0.5 mA
AX250 Typical at 25°C 1.5 1.4 0.25 0.4 0.2 0.3 0.01 mA
70°C 15 7 0.8 0.9 1 0.4 0.01 mA
85°C 25 7 0.8 1 1 0.4 0.2 mA
125°C 55 9 1.3 1.8 2 0.4 0.5 mA
AX500 Typical at 25°C 5 1.4 0.4 0.75 0.2 0.3 0.01 mA
70°C 20 7 1 1.5 1 0.4 0.01 mA
85°C 40 7 1 1.9 1 0.4 0.2 mA
125°C 75 9 1.75 2.5 1.5 0.4 0.5 mA
AX1000 Typical at 25°C 7.5 1.5 0.5 1.25 0.2 0.3 0.01 mA
70°C 40 8 1.5 3 1 0.4 0.01 mA
85°C 85 8 1.5 3.4 1 0.4 0.2 mA
125°C 150 10 3 4 1.5 0.4 0.5 mA
AX2000 Typical at 25°C 20 1.6 0.7 1.5 0.2 0.3 0.01 mA
70°C 80 10 2 7 1 0.4 0.01 mA
85°C 150 10 3 8 1 0.4 0.2 mA
125°C 300 15 4 10 1.5 0.4 0.5 mA
Note: ICCCP Acti ve is the ICCDA or the Int ernal Charge Pump current. ICCCP Bypassed mode is the External Charge Pump current (IIH VPUMP
pin).
Table 2-6 Default Cload/VCCI
Cload VCCI P(µW/MHz)*
Single-Ended without VREF
LVTTL 35 pF 3.3V 381.15
LVCMOS-25 35 pF 2.5V 218.75
LVCMOS-18 35 pF 1.8V 113.40
LVCMOS-15 (JESD8-11) 35 pF 1.5V 78.75
PCI 10 pF 3.3V 108.9
PCI-X 10 pF 3.3V 108.9
Single-Ended with VREF
HSTLI 20 pF 1.5V 45.0
SSTL-2I 30 pF 2.5V 187.5
SSTL-2II 30 pF 2.5V 187.5
SSTL-3I 30 pF 3.3V 326.7
SSTL-3II 30 pF 3.3V 326.7
Note: * Pload is the dynamic power due to the charging/discharging of an output load. Typical formula is Pload = Cload*VCCI2.
Axcelerator Family FPGAs
2-4 v2.1
Ptotal = Pdc + Pac
PHCLK = (P1 + P2 * s + P3 * sqrt[s]) * Fs
PCLK = (P4 + P5 * s + P6 * sqrt[s]) * Fs
PR-cells = P7 * ms * Fs
PC-cells = P8 * mc * Fs
Pinputs = P9 * pi * Fpi
Table 2-7 Different Components Contributing to the Total Power Consumption in Axcelerator Devices
Component Definition
Device Specific V alue (in µW/MHz)
AX125 AX250 AX500 AX1000 AX2000
P1 Core tile HCLK power component 33 49 71 130 216
P2 R-cell power component 0.2 0.2 0.2 0.2 0.2
P3 HCLK signal power dissipation 4.5 4.5 9 13.5 18
P4 Core tile RCLK power component 33 49 71 130 216
P5 R-cell power component 0.3 0.3 0.3 0.3 0.3
P6 RCLK signal power dissipation 6.5 6.5 13 19.5 26
P7 Power dissipation due to the switching activity on the
R-cell 1.6 1.6 1.6 1.6 1.6
P8 Power dissipation due to the switching activity on the
C-cell 1.4 1.4 1.4 1.4 1.4
P9 Power component associated with the input voltage 10 10 10 10 10
P10 Power component associated with the output voltage 90 90 90 90 90
P11 Power component associated with the read operation
in the RAM block 25 25 25 25 25
P12 Power com ponen t associat ed w ith the wr ite o perati on
in the RAM block 30 30 30 30 30
P13 Core PLL power component 1.5 1.5 1.5 1.5 1.5
Pdc =I
CCA * VCCA
Pac =P
HCLK + PCLK + PR-cells + PC-cells + Pinputs + Poutputs + Pmemory + PPLL
s = the number of R-cells clocked by this clock
Fs = the clock frequency
s = the number of R-cells clocked by this clock
Fs = the clock frequency
ms = the number of R-cells switching at each Fs cycle
Fs = the clock frequency
mc = the number of C-cells switching at each Fs cycle
Fs = the clock frequency
pi = the number of inputs
Fpi = the average input frequency
Axcelerator Family FPGAs
v2.1 2-5
Poutputs = (P10 + Cload * VCCI2) * po * Fpo
Pmemory = P11 * Nblock * FRCLK + P12 * Nblock * FWCLK
PPLL = P13 * FCLK
Power Estimation Example
This exampl e em pl oy s an AX10 00 s h ift-r egist er design wi th 1,080 R-cells, 1 C-cell, 1 reset input, and 1 out put .
This design us es on e H CLK at 100 M H z.
ms = 1,080 (in a shift register 100% of R-cells are toggling at each clock cycle)
Cload = the output load (technology dependent)
VCCI = the output voltage (technology dependent)
po = the number of outputs
Fpo = the average output frequency
Nblock = the number of RAM/FIFO blocks (1 block = 4k)
FRCLK = the read-clock fre quency of the memory
FWCLK = t he write-clock frequency of the memory
FRefCLK = the clock frequency of the clock input of the PLL
FCLK = the clock frequency of the first clock output of the PLL
Fs = 100 MHz
s = 1080
=> PHCLK = (P1 + P2 * s + P3 * sqrt[s]) * Fs = 79 mW
and Fs = 100 MHz
=> PR-cells = P7 * ms * Fs = 173 mW
mc = 1 (1 C-cell in this shift-register)
and Fs = 100 MHz
=> PC-cells = P8 * mc * Fs = 0.14 mW
Fpi ~ 0 MHz
and pi= 1 (1 reset input => this is why Fpi=0)
=> Pinputs = P9 * pi * Fpi = 0 mW
Fpo = 50 MH z
Cload = 35 pF
VCCI= 3.3 V
and po = 1
=> Poutputs = (P10 + Cload * VCCI2) * po * Fpo= 24 mW
No RAM/FIFO in this shift-register
=> Pmemory = 0 m W
No PLL in this shift-register
=> PPLL = 0 mW
Pac = PHCLK + PCLK + PR-cells + PC-cells + Pinputs + Poutputs + Pmemory + P PLL = 276 mW
Pdc = 7.5m A * 1.5V = 11. 25 mW
Ptotal = Pdc + Pac = 11 .2 5 mW + 276m W = 287.25mW
Axcelerator Family FPGAs
2-6 v2.1
Therm a l Characteristics
Introduction
The temperature variable in Actel’s Designer software
refers to the junction temperature, not the ambient
temperature. This is an important distinction because
dynamic and static power consumption cause the chip
junction temperature to be higher than the ambient
temperature. EQ 2-2 can be used to calculate junction
temperature.
TJ = Junction Tempera tur e = T + TaEQ 2-2
Where:
T = θja * P
Where:
Package Thermal Characteristics
The device junction-to-case thermal characteristic is θjc,
and the junction-to-ambient air characteristic is θja. The
thermal characteristics for θja are shown with two
different air flow rates. θjc values are provided for
reference.
The absolute maximum junction temperature is 150°C.
The maximum power dissipation allowed for
comme rcial- and industrial-gr ade dev ices is a function of
θja. A sample calculation of the absolute maximum
power dissipation allowed for an 896-pin FBGA package
at comm er ci al tem per at ur e and st i ll air is as follow s :
The maximum power dissipation allowed for Military temperature and Mil-Std 883B devices is specified as a function
of θjc. The c al culat io n of t h e a bsolute maxi m um power dissipation allowed for a Military te m per atu re or Mil-Std 883B
application is illust ra te d in the follow i ng example for a 484-pin FBGA package:
Ta=A mb ie nt Te mperature
T=Temperature gradient between junction
(silicon) and ambi en t
P=Power
θja =Junction to a mbient o f package. θja numbers
are located under Table 2-8 on page 2-7.
Maxi mum Power Allowed Max. junction temp. (°C) Max. ambient temp. (°C)
θja(°C/W)
--------------------------------------------------------------------------------------------------------------------------------------- 150°C70°C
13.6°C/W
------------------------------------ 5.88 W===
Maximum Power Allowed Max. junction temp. (°C ) Max. case temp. (°C)
θjc(°C/W)
----------------------------------------------------------------------------------------------------------------------------- 150°C 125°C
3.2°C/W
----------------------------------------7.815 W===
Axcelerator Family FPGAs
v2.1 2-7
Table 2-8 Package Thermal Characteristics
Pack age Type Pi n Count θjc Still Air θja 1.0m/s θja 2.5m/s Units
Chip Scale Package (CSP) 180 N/A 57.8 51.0 50 °C/W
Plastic Quad Flat Pack (PQFP) 208 8.0 26 23.5 20.9 °C/W
Plastic Ball Grid Array (PBGA) 729 2.2 13.7 10.6 9.6 °C/W
Fine Pitch Ball Grid Array (FBGA) 256 3.0 26.6 22.8 21.5 °C/W
Fine Pitch Ball Grid Array (FBGA) 324 3.0 25.8 22.1 20.9 °C/W
Fine Pitch Ball Grid Array (FBGA) 484 3.2 20.5 17.0 15.9 °C/W
Fine Pitch Ball Grid Array (FBGA) 676 3.2 16.4 13.0 12.0 °C/W
Fine Pitch Ball Grid Array (FBGA) Hardwired 896 2.4 13.6 10.4 9.4 °C/W
Fine Pitch Ball Grid Array (FBGA) 1152 1.8 12.0 8.9 7.9 °C/W
Ceramic Quad Flat Pack (CQFP) 208 2.0* 22 19.8 18.0 °C/W
Ceramic Quad Flat Pack (CQFP) 352 2.0* 17.9 16.1 14.7 °C/W
Ceramic Column Grid Array (CCGA) 624 6.5** 8.9 8.5 8 °C/W
Notes:
* θjc for the CQFP 352 and CQFP 208 refers to the thermal resistance between the junction and the bottom of the package.
** θjc fo r the CC GA 624 refer s t o the therm al re sist anc e be tw een the junct ion and t he top s ur face of the pac ka ge. Thermal
resistance from junction to board (θJB) for CG624 package is 3.4 C/W.
Table 2-9 Temperature and Voltage Timing Derating Factors
(N or mal i zed to Wor st- Cas e Co mm er ci al , TJ = 70°C, VCCA = 1.425V)
VCCA
Junction Temperature
–55°C –40°C 0°C 25°C 70°C 85°C 125°C
1.4V 0.77 0.80 0.88 0.93 1.02 1.05 1.13
1.425V 0.75 0.78 0.86 0.91 1.00 1.03 1.11
1.5V 0.7 0.73 0.80 0.84 0.93 0.95 1.03
1.525V 0.68 0.71 0.78 0.82 0.91 0.93 1.01
1.6V 0.66 0.68 0.75 0.79 0.87 0.89 0.97
Notes:
1. The user can set the junction temperature in Designer software to be any integer value in the range of –55°C to 175°C.
2. The user can set the core voltage in Designer software to be any value between 1.4V and 1.6V.
Axcelerator Family FPGAs
2-8 v2.1
I/O Sp eci f ic at io ns
Pin Descriptions
Supply Pins
GND Ground
Low su ppl y vol t age.
VCCA Supply Voltage
Supply voltage for array (1.5V). See "Supply Voltages" on
page 2-1 for more inf ormation.
VCCIBx Supply Vo ltage
Supply voltage for I/Os. Bx is the I/O Bank ID – 0 to 7. See
"Supply Voltages" on page 2-1 and "User I/Os" on
page 2-9 for more inf ormation.
VCCDA Supply Voltag e
Supply voltage for the I/O differential amplifier and JTAG
and pr obe interfaces . See " Supply Voltages" on page 2-1
for more information. VCCDA should be tied to 3.3V.
When neither voltage-referenced nor differential I/Os
are used, VCCDA may be tied to 2.5V whe n VCCI<= 2.5V in
a given I/O bank. However, Actel recommends tying
VCCDA to 3.3V.
VCCPLA/B/C/D/E/F/G/H Supply Vo ltage
PLL analog power supply (1.5V) for internal PLL. There
are eight in each device. VCCPLA supports the PLL
associated with global resource HCLKA, VCCPLB supports
the PLL associated with global resource HCLKB, etc. The
PLL analog power supply pins should be connected to
1.5V whet her PLL is used or not.
VCOMPLA/B/C/D/E/F/G/HSupply Vo ltage
Compensation reference signals for internal PLL. There
are eight in each device. VCOMPLA supports the PLL
associated with global resource HCLKA, VCOMPLE
supports the PLL associated with global resource CLKE,
etc. (see Figure 2-3 for correct external co n ne ction to th e
supply) . The VCOMPLX p in s should be le ft f loa ting if PLL is
not used.
VPUMP Supply Voltage (External Pump)
In the low power mode, VPUMP will be used to access a n
external charge pump (if the user desires to bypass the
internal charge pump to further reduce power). The
device starts using the external charge pump when the
voltage level on VPUMP reaches VIH.1 In normal device
operation, when using th e internal ch arge pump, V PUMP
should be tied to GND.
User-Defined Supply Pins
VREF Supply Voltage
Refe re n ce vo ltage for I/O bank s. VREF pins are configured
by the user from regular I/O pins; VREF pins are not in
fixed location s. There can be one or more VREF pins in an
I/O bank.
Global Pins
HCLKA/B/ C/D De dic ated ( Hardwired) Clocks A, B, C
and D
These pins are the c lock i nput for sequen tial modules or
north PLLs. Input levels are compatible with all
supported I/O standards (there is a P/N pin pair for
support of differential I/O standards). This input is
directly wired to each R-cell and offers clock speeds
independent of the number of R-cel ls being drive n.
CLKE/F/G/H Routed Clocks E, F, G, and H
These pins are clock inputs for clock distribution
networ ks or south PLLs . Input leve ls are com patible with
all supported I/O standards (there is a P/N pin pair for
support of differential I/O standards). The clock input is
buffered p ri o r to clo cking the R-cell s.
JTAG/Probe Pins
PRA/B/C/ D Pro be A/ B/C/D
The Probe pins are used to output data from any user-
defined design node within the device (controlled with
Silicon Explorer II). These independent diagnostic pins
can be used to allow real-time diagnostic output of any
signal path within the device. The pins’ probe
capabilities can be permanently disabled to protect
programmed design confidentiality. The probe pins are
of either LVTTL or LVCMOS25 output levels, depending
on the setting of VCCDA.
1. When VPUMP=VIH, it shuts off the internal charge pump. See "Low Power Mode" on page 2-90.
Figure 2-3 VCCPLX and VCOMPLX Power Supply Connect
1.5V Supply
Axcelerator Chip
0.1µf10µf
250 V
CCPLX
V
COMPLX
Axcelerator Family FPGAs
v2.1 2-9
TCK Test Clock
Test clock input for JTAG boundary-scan testing and
diagno stic prob e (Silicon Explorer II).
TDI Test Data Input
Serial input for JTAG boundary-scan testing and
diagnost ic p robe. TDI is e quipped with an internal 10k
pull-up resi stor.
TDO Test Data Output
Serial output for JTAG boundary-scan testing.
TMS Test Mode Select
The TMS pin controls the use of the IEEE 1149.1
boundary-scan pins (TCK, TDI, TDO, TRST). TMS is
equipp ed w ith an in te rna l 10kpull-up resisto r.
TRST Boundar y Sc a n Re s e t Pi n
The TRST pin functions as an active-low input to
asynchronously initialize or reset the boundary scan
circuit. The TRST pin is equipped with a 10kpull-up
resistor.
Special Functions
LP Low Pow er P in
The LP pin controls the low power mode of Axcelerator
devices. The device is placed in the low power mode by
connecting the LP pin to logic high. To exit the low
power mode, the LP pin must be set LOW. Additionally,
the LP pin must be set LO W during chip powerin g-u p or
chip powering-down operations. See "Low Power
Mode" on page 2-90 for more details.
NC No Connec t i on
This pin is not connected to circuitry within the device.
These pins can be driven to any voltage or can be left
floating with no effe ct on the ope rati on of the device.
User I/Os2
Introduction
The Axcelerator family features a flexible I/O structure,
supporting a range of mixed voltages (1.5V, 1.8V, 2.5V,
and 3.3V) with its bank-selectable I/Os. Table 2-10
contains the I/O standards supported by the Axcelerator
family.
Each I/O provides programmable slew rates, drive
strengths, and weak pull-up and weak pull-down circuits.
All I/O standards are 3.3V tolerant, and I/O standards
except 3.3V PCI and 3.3V PCI-X are capable of hot
insertion. 3.3V PCI and 3.3V PCI-X are 5V tolerant with
the aid of an external resistor (see "5V Tolerance" on
page 2-1).
The input buff er has an optio nal us er-configu ra ble delay
element. The element can reduce or eliminate the hold
time requirement for inp ut sign als registered within the
I/O cell. The value for the delay is set on a bank-wide
basis. Note that the delay WILL be a function of process
variat ion s as well as tem perature and vol ta ge changes.
Each I/O includes three registers: an input (InReg), an
output (Out Reg) , and an enable register (EnReg ).
I/Os are or ganiz ed into b anks, and the re are ei ght b anks
per dev ice – two per side (Figure 2-6 on pa ge 2-16 ). Eac h
I/O bank has a common V CCI, the supp ly vo ltag e for i ts I/
Os.
For voltage-referenced I/Os, each bank also has a
common reference-voltage bus, VREF. While VREF must
have a common voltage for an entire I/O bank, its
location is user-selectable. In other words, any user I/O in
the bank can be selected to be a VREF. Please note that
output pins sho uld not be loca te d next to VREF pins .
The differential amplifier supply voltage VCCDA should be
connec ted to 3.3V. When neith er voltag e-refer enced nor
differential I/Os are used, VCCDA may be connected to
2.5V when VCCI <= 2.5V in a give n I/ O ban k; howe v er, it is
still recommended to connect VCCDA to 3.3V.
2. Do not use an external resister to pull the I/O above VCCI for a higher logic “1” voltage level. The desired higher logic “1”
voltage level will be degraded due to a small I/O current, which exists when the I/O is pulled up above VCCI.
Axcelerator Family FPGAs
2-10 v2.1
The user can gain access to the various I/O standards in
three ways:
Instantiate specific library macros that represent the
desired spe cifi c sta n d ar d.
Use generic I/O macros and then use Actel Designer’s
PinEditor to specify the desired I/O standards. (Please
note that this is not applicable to differential
standards.)
A co mbin a t ion of the fi rst tw o methods.
Please refer to the I/O Features in Axcelerator Family
Devices application not e and the Antifuse Ma cro Library
Guide for more d e tails.
Simultaneous Switching Outputs (SSO)
When multiple output drivers switch simultaneously,
they induce a voltage drop in the chip/package power
distribution. This simultaneous switching momentarily
raises the ground voltage within the device relative to
the system ground. This apparent shift in the ground
potential to a non-zero value is known as simultaneous
switching noise (SSN) or more commonly, ground
bounce.
SSN becomes more of an issue in high pin count
packages and when using high performance devices such
as the Axcelerator family. Based upon our testing, Actel
recommends that users not exceed 8 simultaneous switch
outputs (SSO) per each VCCI/GND pair. To ease this
potential burden on designers, Actel has designed all of
the Axcelerator BGAs3 to not exceed this limit with the
exception of the CS180, which has an I/O to VCCI/GND
pair ratio of 9 to 1.
Please refer to the Simultaneous Switching Noise and
Signal Inte grity application note for more information.
I/O Banks and Compatibility
Since each I/O bank has its own user-assigned input
reference voltage (VREF) and an input/output supply
voltage (VCCI), only I/Os with compatible standards can
be assigne d to the sa me bank.
Table 2-11 shows the compatible I/O standards for a
common VREF (for voltage-referenced standards).
Similarly, Table 2-12 shows compatible standards for a
co mmo n VCCI.
Table 2-10 I/O Standards Supported by the Axcelerator Family
I/O Standa r d Input/Output Supply
Voltage (VCCI)Input Re ference Voltage
(VREF)Board Termination Voltage
(VTT)
LVTTL 3.3 N/A N/A
LVCMOS 2.5V 2.5 N/A N/A
LVCMOS 1.8V 1.8 N/A N/A
LVCMOS 1.5V (JDEC8-11) 1.5 N/A N/A
3.3V PCI, 3.3V PCI-X 3.3 N/A N/A
GTL+ 3.3V 3.3 1.0 1.2
GTL+ 2.5V 2.5 1.0 1.2
HSTL Class 1 1.5 0.75 0.75
SSTL3 Class 1 and II 3.3 1.5 1.5
SSTL2 Class1 and II 2.5 1.25 1.25
LVDS 2.5 N/A N/A
LVPECL 3.3 N/A N/A
3. The user should note that in Bank 8 of both AX1000-FG484 and AX500-FG484, there are local violations of this 8:1 ratio.
Table 2-11 Compatible I/O Standards for Different VREF
Values
VREF C ompatible Standards
1.5V SSTL 3 (Class I and II)
1.25V SSTL 2 (Class I and II)
1.0V GTL+ (2.5V and 3.3V Outputs)
0.75V HSTL (Class I)
Table 2-12 Compatible I/O Standards for Different VCCI
Values
VCCIa
a. VCCI is used for both inputs and outputs.
Compatible Standards VREF
3.3V LVTTL/ PCI/ PCI-X/ LVPECL/ GTL+ 3.3V 1.0
3.3V SSTL 3 (Class I and II)/ LVTTL/ PCI/ PCI-X/ LVPECL 1.5
2.5V LVCMOS 2.5V, GTL+ 2.5V, LVDS b1.0
2.5V LVCMOS 2.5V/ SSTL 2 (Classes I and II), LVDSb
b.VCCI tolerance is ±5%.
1.25
1.8V LVCMOS 1.8V N/A
1.5V LVCMOS 1.5V, HSTL Class I 0.75
Axcelerator Family FPGAs
v2.1 2-11
Table 2-13 summarizes the different combinations of
voltages and I/O standards that can be used together in
the same I/O bank. Note that two I/O standards are
compatible if:
Their VCCI values are identical.
Their VREF standards are identical (if applicable).
For ex ample, if LV TTL 3.3V (V REF= 1.0V) is u sed, then the
other available (i.e. compatible) I/O standards in the
same ba nk a re LVTTL 3. 3V PCI /PC I-X, GT L+, and LVPEC L.
Also note that when multiple I/O standards are used
within a bank, the voltage tolerance will be limited to
the minimum tolerance of all I/O standards used in the
bank. For instance, when using LVCMOS2.5 (+/-8% VCCI
to leran ce) a nd LVDS ( +/-5 % VCCI t ol er anc e) w ith in an I/O
bank, the maximum voltage tolerance of the bank will
be +/-5% V CCI.
Table 2-13 Legal I/O Usage Matrix
I/O Standa r d
LVTTL 3.3V
LVCMOS 2.5V
LVCMOS1.8V
LVCMOS1.5V (JESD8-11)
3.3V PCI/PCI-X
GTL + (3.3V)
GTL + (2.5V)
HSTL Cla ss I ( 1.5V)
SSTL2 Class I & II (2.5V)
SSTL3 Class I & II (3.3V)
LVDS (2.5V ±5%)
LVPECL (3.3V)
LVTTL 3.3V (VREF=1.0V) ––✓✓ –––
LVTTL 3.3V(V REF=1.5V) ––––––
LVCMOS 2.5V (VREF=1.0V) – ––––––
LVCMOS 2.5V (VREF=1.25V) – ––––––
LVCMOS1.8V –––––
LVCMOS1.5V (VREF=1.75V) (JESD8-11) ––––––
3.3V PCI/PCI-X (VREF=1.0V) –––✓✓ –––
3.3V PCI/PCI-X (VREF=1.5V) ––––––
GTL + (3.3V) –––✓✓ –––
GTL + (2.5V) ––––––
HSTL Class I ––––––
SSTL2 Class I & II ––––––
SSTL3 Class I & II ––––––
LVDS (VREF=1.0V) ––––––
LVDS (VREF=1.25V) ––––––
LVPECL (VREF=1.0V) –––✓✓ –––
LVPECL (VREF=1.5V) ––––––
A "" indicates whether standards can be used within a bank at the same time. Examples:
a) LVTTL can be used with 3.3V PCI/ PCI-X and GTL+ (3.3V), when VREF = 1.0V (GTL+ requirement).
b) LVTTL can be used with 3.3V PCI/PCI-X and SSTL3 Class I and II, when VREF = 1.5V (SSTL3 requirement).
c) LVDS VCCI = 2.5V ±5%.
Axcelerator Family FPGAs
2-12 v2.1
I/O Clusters
Each I/O cluster incorporates two I/O modules, four RX modules and two TX modules, and a buffer module. In turn,
each I/O m odule cont ains one Inpu t Reg ister (InReg) , one Out put Regis ter (OutRe g), and one E nable R egister (En Reg)
(Figure 2-4).
Using an I/O Register
To access the I/O registers, registers must be instantiated
in the netlist and then connected to the I/Os. Usage of
each I/O register (register combining) is individually
controlled and can be selected/deselected using the
PinEditor tool in Actel’s Designer software. I/O register
combining can also be controlled at the device level,
affecting all I/Os. Please note, the I/O register option is
deselected by default in any given design.4
In addition, Designer software provides a global option to
enable/disable t he usage of registers in the I /Os. This option
is design specific. The setting for each individual I/O
overrides this global option. Furthermore, the global set
fuse option in the Designer software, when checked, causes
all I/O registers to output logic HIGH at device power-up.
Using the Weak Pull-Up and Pull-Down
Circuits
Each Axcelerator I/O comes with a weak pull-up/down
circuit (on the order of 10k). I/O macros are provided
for combinations of pull up/down for LVTTL, LVCMOS
(2.5V, 1.8V, and 1.5V) standards. These macros can be
instantiated if a keeper circuit for any input buffer is
required.
Figure 2-4 I/O Cluster Interface
EnReg
DIN YOUT
Y DCIN
OutREg
DIN YOUT
InReg
I/O CLUSTER
FPGA LOGIC CORE
OEP
UOP
UIP programmable delay
slew rate I/O
OEN
UON
UIN
drive strength
P PAD
N PAD
routed input track
routed input track
output track
routed input track
routed input track
output track
routed input track
routed input track
output track
EnReg
DIN YOUT
Y DCIN
OutREg
DIN YOUT
InReg
routed input track
routed input track
output track programmable delay
slew rate I/O
drive strength
V
REF
V
REF
BSR BSR
4. Please note that register combining for multi fanout nets is not supported.
Axcelerator Family FPGAs
v2.1 2-13
Cus t omizi n g t he I/O
A five-bit programmable input delay element is
associated with each I/O. The value of this delay is set
on a bank-wide basis (Table 2-14). It is optional for
each input buffer within the bank (i.e. the user can
enable or disable the delay element for the I/O).
When the input buffer drives a register within the I/O,
the delay element is ac tivated by default to ensure a
zero hold-time. The default setting for this property
can be set in Designer.
When the input buffer does not drive a register, the
delay element is deactivated to provide higher
performance. Again, this can be overridden by
changing the default setting for this property in
Designer.
The slew-rate value for the LVTTL output buffer can
be program m ed and can be set to either slow or fast.
The drive stre ngt h value for LVTTL output buffers ca n
be programmed as well. There are four different
drive stren gth values – 8m A, 12m A, 16mA , or 24m A –
that can be specified in Designer.5
Us ing th e Different ia l I/O St a nda rds
Differential I/O macros should be instantiated in the
netlist. The settings for these I/O standards cannot be
changed inside Designer. Please note that there are no
tristated or bidirectional I/O buffers for differential
standards.
Using the Voltage-Referen ced I/O Standards
Using these I/O standards is similar to that of single-
ended I/O standards. Their settings can be changed in
Designer.
Using DDR (Double Data Rate)
In Double Dat a Rate mode , new d ata is presen t on every
transition of the clock signal. Clock and data lines have
identical bandwidth and signal integrity requirements,
making it very efficient for implementing very high-
sp ee d s y stems.
To impl em ent a DDR, user s nee d to:
1. Instantiate an input buffer (with the required I/O
standard)
2. Instant iate the D DR_REG mac ro (Figure 2-5)
3. Connect the output from the Input buffer to the
input of the DDR macro
Macros for Specific I/O Standards
There are different macro types for any I/O standard or
feature that determine the required VCCI and VREF
voltages for an I/O. The generic buffer macros require
the LVT TL standar d with slow slew rate, and 24mA -drive
strength. LVTTL can support high slew rate but this
should onl y be us ed for cr itical signals .
Most of the macro symbols represent variations of the six
generic sym bol types :
CLKBUF: Clo ck Buffer
HCLKBUF: Har dw ired Cloc k Buffer
INBUF: Input Buffer
OUTBUF: Output Buffer
Table 2-14 Bank-Wide Delay Values
Bits Setting Delay (ns) Bits Setting Delay (ns)
00.54162.01
10.65172.13
20.71182.19
30.83192.3
4 0.9 20 2.38
51.01212.49
61.08222.55
71.19232.67
81.27242.75
91.39252.87
10 1.45 26 2.93
11 1.56 27 3.04
12 1.64 28 3.12
13 1.75 29 3.23
14 1.81 30 3.29
15 1.93 31 3.41
Note: Delay valu es are ap proximate a nd will v ary w ith process,
temperature, and voltage.
5. These values are minimum drive strengths.
Figure 2-5 DDR Regis ter
DQR
QF
D
CLR
PSET
CLK
Axcelerator Family FPGAs
2-14 v2.1
TRIBUF: Trist ate Buffer
BIBUF: Bidirectiona l Buffer
Other m acros in clu d e the fo l lowing:
Differential I/O standard macros: The LVDS and
LVPECL macros either have a pair of differential
inputs (e.g. INBUF_LVDS) or a pair of differential
outputs (e.g . OUTBUF_LVPECL).
Pull-up a nd pul l-dow n var iations of t he INBUF, BIB UF,
and TRIBU F macr os. These ar e available onl y with TTL
and LVCMOS thresholds. They can be used to model
the behavior of the pull-up and pull-down resistors
available in the architecture. Whenever an input pin
is left unconnected, the output pin will either go high
or low rather than unknown. This allows users to
leave inputs unconnected without having the
negative effect on simulation of propagating
unknowns.
DDR_REG macro. It can be connected to any I/O
standard input buffers (i.e. INBUF) to implement a
double data rate regi s ter. De signe r software will ma p
it to the I/O module in the same way it maps the
other registers to the I/O module.
Table 2-15, Table 2-16, and Table 2-17 on page 2-15 list
all the available macro names differentiated by I/O
stan dard, typ e , slew rate, an d d rive stren g th.
Table 2-15 Macros for Single-Ended I/O Standards
Standard VCCI Macro Names
LVTTL 3.3V CLKBUF, HCLKBUF
INBUF,
OUTBUF,
OUTBUF_S_8, OUTBUF_S_12, OUTBUF_S_16, OUTBUF_S_24,
OUTBUF_H_8, OUTBUF_H_12, OUTBUF_H_16, OUTBUF_H_24,
TRIBUF,
TRIBUF_S_8, TRIBUF_S_12, TRIBUF_S_16, TRIBU F_S_24,
TRIBUF_H_8, TRIBUF_H_12, TRIBUF_H_16, TRIBU F_H_24,
BIBUF,
BIBUF_S_8, BIBUF_S_12, BIBUF_S_16, BIBUF_S_24,
BIBUF_H_8, BIBUF_H_12, BIBUF_H_16, BIBUF_H_24,
3.3V PCI 3.3V C LKBU F_PCI, HCLKBUF_PCI,
INBUF_PCI,
OUTBUF_PCI,
TRIBUF_PCI,
BIBUF_PCI
3.3V PCI-X 3.3V CLKBUF_PCI-X,
HCLKBUF_PCI-X,
INBUF_PCI-X,
OUTBUF_PCI-X,
TRIBUF_PCI-X,
BIBUF_PCI-X
LVCMOS25 2.5V CLKBUF_LVCMOS25,
HCLKBUF_LVCMOS25,
INBUF_LVCMOS25,
OUTBUF_LVCMOS25,
TRIBUF_LVCMOS25,
BIBUF_LVCMOS25
Axcelerator Family FPGAs
v2.1 2-15
LVCMOS18 1.8V CLKBUF_LVCMOS18,
HCLKBUF_LVCMOS18,
INBUF_LVCMOS18,
OUTBUF_LVCMOS18,
TRIBUF_LVCMOS18,
BIBUF_LVCMOS18
LVCMOS15 (JESD8-11) 1.5V CLKBUF_LVCMOS15,
HCLKBUF_LVCMOS15,
INBUF_LVCMOS15,
OUTBUF_LVCMOS15,
TRIBUF_LVCMOS15,
BIBUF_LVCMOS15
Table 2-16 I/O Macros for Differential I/O Standards
Standard VCCI Macro Names
LVPECL 3.3V CLKBUF_LVPECL, HCLKBUF_LVPECL,
INBUF_LVPECL, OUTBUF_LVPECL,
TRIBUF_LVPECL, BIBUF_LVPECL
LVDS 2.5V CLKBUF_LVDS, HCLKBUF_LVDS,
INBUF_LVDS, OUTBUF_LVDS,
TRIBUF_LV DS, BIBUF_LVDS
Table 2-17 I/O Macros for Voltage-Referenced I/O Standards
Standard VCCI VREF Macr o Names
GTL+ 3.3V 1.0V CLKBUF_GTP33, HCLKBUF_GTP33,
INBUF_GTP33, OUTBUF_GTP33,
TRIBUF_GTP33, BIBUF_GTP33
GTL+ 2.5V 1.0V CLKBUF_GTP25, HCLKBUF_GTP25,
INBUF_GTP25, OUTBUF_GTP25,
TRIBUF_GTP25, BIBUF_GTP25
Table 2-15 Macros for Single-Ended I/O Standards (Continued)
Standard VCCI Macro Names
Axcelerator Family FPGAs
2-16 v2.1
User I/O Naming Conventions
Due to the complex and flexible nature of the Axcelerator family’s user I/Os, a naming scheme is used to show the
deta ils of th e I/O. The n am in g sc h eme e x p lains to wh ich bank a n I/O belo ngs, as well as th e p a iring and p in polar ity for
differential I/Os (Figure 2-6).
Figure 2-6 I/O Ban k and Dedicated Pin Layo ut
Figure 2-7 General Naming Schemes
PRC
PRD
PRB
PRA
TDO
TDI
TCK
TMS
TRST
LP
Corner4 Corner3
Corner1
I/O BANK 3 I/O BANK 2
I/O BANK 0
I/O BANK 5
I/O BANK 1
I/O BANK 4
I/O BANK 7 I/O BANK 6
Corner2
AX125 GND
VCCDA
GND
VCCDA
VPUMP
GND
VCCDA
GND
VCCDA
VCOMPLG
VCOMPLH
VCCPLG
VCCPLH
VCOMPLB
VCOMPLA
VCCPLB
VCCPLA
VCOMPLE
VCOMPLF
VCCPLE
VCCPLF
VCOMPLD
VCOMPLC
VCCPLD
VCCPLC
GND
VCCDA
GND
VCCDA
GND
VCCDA
GND
VCCDA
GND
VCCA
GND
VCCA
GND
VCCA
GND
VCCA
GND
VCCA
GND
VCCA
GND
VCCI 2
GND
VCCI1
GND GND
VCCI5
GND
VCCI4
GND
VCCDA
GND
VCCDA
GND
VCCDA
GND
VCCA
GND
VCCA
GND
VCCI6
GND
VCCI7
GND
VCCI3
VCCI0
IOxxXBxFx
Fx refers to an
unimplemented feature
and can be ignored.
Bank I/D 0 through 7,
clockwise from IOB NW
P - Positive Pin/ N- Negative Pin
Pair number in the
bank, starting at 00,
clockwise from IOB NW
IO12PB1F1 is the positive pin of the thirteenth pair of the
first I/O bank (IOB NE). IO12PB1 combined
with IO12NB1 form a differential pair.
For those I/Os that can be employed
either as a user I/O or as a special
function, the following nomenclature
is used:
IOxxXBxFx/special_function_name
IOxxPB1Fx/CLKA this pin can be configured as a clock
input or as a user I/O.
Examples:
Axcelerator Family FPGAs
v2.1 2-17
Timing Model
Hard wired Clock – Using TTL 4-High Slew
Clo ck I/ O Rout e d Clock – Usi ng TTL 4-Hi gh S le w Clock
I/O
Note: Typical timing data for the AX500, –3 speed grade
Figure 2-8 Typical Timing Data
Combinatorial
Cell
Combinatorial
Cell
Combinatorial
Cell Combinatorial
Cell
DQ DQ DQ
Y
FCO
+
+
Routed Clock
Register Cell
LVPECL
LVPECL
LVDS
Register Cell
Hardwired or Routed Clock
Hardwired Clock
I/O Module
I/O Module
(Registered) I/O Module
(Nonregistered)
I/O Module
(Non- registered)
I/O Mo
d
u
l
e
(Nonregistered)
Y
Buffer
Module Buffer
Module
Buffer
Module
Carry Chain
I/O
I/O
LVTTL
Output Drive Strength = 4 (24mA)
High Slew Rate
tHCKH + 2.18 ns
FMAX (external) = 350 MHz
FMAX (internal) = 700 MHz
tSUD = 0.20 ns
tIOCKLQ = 0.68 ns
tDP = 1.66 ns tRD2 = 0.37 ns
tDP = 1.66 ns
tHCKL = 2.98 ns
tRCKL = 2.86 ns
tRCO = 0.58 ns
tSUD = 0.20 ns
tRD1 = 0.30 ns
tPD = 0.65 ns
tRCKL = 2.86 ns
FMAX (external) = 350 MHz
FMAX (internal) = 700 MHz
tRCO = 0.68 ns
tSUD = 0.20 ns
tBPFD = 0.17 ns
tPY = 0.79 ns
GTL + 3.3V
tIOCLKY = 0.68 ns
tSUD = 0.20 ns
tBFPD = 0.17 ns tPD = 0.65 ns tBFPD = 0.17 ns
tPDC = 0.61 ns tCCY = 0.38 ns
tPY = 2.83 ns
tPY = 1.70 ns
tRD1 = 0.30 ns
tRD2 = 0.33 ns
tRD3 = 0.37 ns
External Setup
= (tDP + tRD2 + tSUD) – tHCKL
= (1.50 + 0.33 + 0.20) – 2.18 = –0.15 ns
Clock-to-Out (Pad-to-Pad)
= tHCKL + tRCO + tRD1 + tPYs
= 2.86 + 0.68 + 0.30 + 2.83 = 6.62 ns
Externa l Setup
= (tDP + tID2 + tSUD) – tRCKH
= (1.50 + 0.33 + 0.20) – 2.86 = –0.83 ns
Clock-to-Out (Pad-to-Pad)
= tRCKH + tRCO + tRD1 + tPY
= 0.83 + 0.68 + 0.30 + 2.83 = 6.67 ns
Axcelerator Family FPGAs
2-18 v2.1
I/O Standard Electrical Specifications
Table 2-18 Input Capacitance
Symbol Parameter Conditions Min. Max. Units
CIN Input Capacitance VIN=0, f=1.0 MHz 10 pF
CINCLK Input Capacitance on Clock Pin VIN=0, f=1.0 MHz 10 pF
Figure 2-9 Input Buffer Delays
Figure 2-10 Output Buffer Delays
YIN INBUF
PAD
ln
Y
GND
Input High
0V
VCCA
Vtrip
Vtrip
50% 50%
ln
ln
Out
GND
50% 50%
TRIBUF
En
En
Out
GND
50%
10%
50% En
Out
GND
50% 50%
90%
To AC test loads (shown below)
OUT Pad
V
TT
t
ENHZ
t
ENHZ
V
OH
V
trip
GND/V
TT
V
TT
V
OL
t
ENLZ
t
ENLZ
V
CCI
/V
TT
V
trip
V
trip
V
trip
V
OH
t
DLH
t
DHL
V
CCA
V
CCA
V
CCA
V
OL
Axcelerator Family FPGAs
v2.1 2-19
I/O Module Timing Characteristics
Figure 2-11 Timing Model
Figure 2-12 Input Register Timing Characteristics
OE
Out
IN
DQ
CLK
OutReg
EnReg
InReg
DQ
Q
Q
D
D
CLK
(Routed or
Hardwired)
E
D
Q
CLR
PRESET
CLK
t
SUE
t
HE
t
SUD
t
HD
t
RCO
t
WASYN
t
HASYN
t
CLR
t
REASYN
t
CPWHL
t
CPWLH
t
PRESET
t
WASYN
t
HASYN
t
REAAYN
Axcelerator Family FPGAs
2-20 v2.1
Figure 2-13 Output Register Timing Characteristics
Figure 2-14 Output Enable Register Timing Characteristics
E
D
Q
CLR
PRESET
CLK
t
SUE
t
HE
t
SUD
t
HD
t
RCO
t
WASYN
t
HASYN
t
CLR
t
REASYN
t
CPWHL
t
CPWLH
t
PRESET
t
WASYN
t
HASYN
t
REAAYN
E
D
Q
CLR
PRESET
CLK
t
SUE
t
HE
t
SUD
t
HD
t
RCO
t
WASYN
t
HASYN
t
CLR
t
REASYN
t
CPWHL
t
CPWLH
t
PRESET
t
WASYN
t
HASYN
t
REAAYN
Axcelerator Family FPGAs
v2.1 2-21
3.3V LVTTL
Low-Voltage Transistor-Transistor Log ic is a gene ra l purpos e s tan dar d (E IA/JE SD) for 3. 3V applications. It use s an LVTTL
input buf fer and push-pull output buffer.
AC Loadings
Timing Characteristics
Table 2-19 DC Input and Output Levels
VIL VIH VOL VOH IOL IOH
Min,V Max,V Min,V Max,V Max,V Min,V mA mA
-0.3 0.8 2.0 3.6 0.4 2.4 24 –24
Figure 2-15 AC Test Loads
Table 2-20 AC Waveforms, Measuring Points, and Capacitive Load
Input Low (V) I np ut Hig h (V) Mea suri ng Po int* (V) VREF (typ) (V) Cload (pF)
03.0 1.40 N/A 35
* Measuring Point = Vtrip
R to V
CCI
for t
plz
/t
pzl
R to GND for t
phz
/t
pzh
35 pF for t
pzh
/t
pzl
5 pF for t
phz
/t
plz
Test Point Test Point
35 pF for tristate
R=1k
for tpd
Table 2-21 Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C
'–3 ' Speed '–2' Speed '–1' Speed 'Std' Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
LVTTL Output Drive Strength = 1 (8mA) / Low Slew Rate
tDP Input Buffer 1.50 1.73 1.96 2.34 ns
tPY Output Buffer 10.16 10.15 13.29 15.63 ns
tIOCLKQ Sequential Clock-to-Q for the input register 0.66 0.76 0.86 1.02 ns
tIOCLKY Clock-to-Output Y for the I/O output register and
the enable register 8.80 10.15 11.51 13.54 ns
tSUD Data Input Set-Up 0.20 0.23 0.27 0.31 ns
tSUE Enable Input Set-Up 0.22 0.25 0.29 0.34 ns
tHD Data Input Hold 0.00 0.00 0.00 0.00 ns
tHE Enable Input Hold 0.00 0.00 0.00 0.00 ns
tCPWHL Clock Pulse Width High to Low 0.39 0.45 0.51 0.60 ns
tCPWLH Clock Pulse W idth Low to High 0.37 0.43 0.48 0.57 ns
tWASYN Asynchronous Pulse Width 0.37 0.43 0.48 0.57 ns
tREASYN Asynchronous Recovery Time 0.21 0.24 0.28 0.32 ns
tHASYN Asynchronous Removal Time 0.21 0.24 0.28 0.32 ns
Axcelerator Family FPGAs
2-22 v2.1
tCLR Asynchronous Clear-to-Q 0.23 0.27 0.30 0.35 ns
tPRESET Asynchronous Preset-to-Q 0.23 0.27 0.30 0.35 ns
LVTTL Output Drive Strength = 2 (12mA) / Low Slew Rate
tDP Input Buffer 1.50 1.73 1.96 2.31 ns
tPY Output Buffer 9.09 10.49 11.89 13.98 ns
tIOCLKQ Sequential Clock-to-Q for the input register 0.65 0.75 0.85 1.00 ns
tIOCLKY Clock-to-Output Y for the I/O output register and
the enable register 6.92 7.98 9.05 10.65 ns
tSUD Data Input Set-Up 0.20 0.23 0.26 0.31 ns
tSUE Enable Input Set-Up 0.22 0.25 0.29 0.34 ns
tHD Data Input Hold 0.00 0.00 0.00 0.00 ns
tHE Enable Input Hold 0.00 0.00 0.00 0.00 ns
tCPWHL Clock Pulse Width High to Low 0.39 0.45 0.51 0.60 ns
tCPWLH Clock Pulse W idth Low to High 0.37 0.43 0.48 0.57 ns
tWASYN Asynchronous Pulse Width 0.37 0.43 0.48 0.57 ns
tREASYN Asynchronous Recovery Time 0.21 0.24 0.28 0.33 ns
tHASYN Asynchronous Removal Time 0.21 0.24 0.28 0.33 ns
tCLR Asynchronous Clear-to-Q 0.23 0.27 0.30 0.36 ns
tPRESET Asynchronous Preset-to-Q 0.23 0.27 0.30 0.36 ns
LVTTL Output Drive Strength =3 (16mA) / Low Slew Rate
tDP Input Buffer 1.50 1.73 1.96 2.31 ns
tPY Output Buffer 8.40 9.96 10.98 12.92 ns
tIOCLKQ Sequential Clock-to-Q for the input register 0.66 0.77 0.87 1.02 ns
tIOCLKY Clock-to-Output Y for the I/O output register and
the enable register 0.66 0.77 0.87 1.02 ns
tSUD Data Input Set-Up 0.20 0.23 0.26 0.31 ns
tSUE Enable Input Set-Up 0.22 0.25 0.29 0.34 ns
tHD Data Input Hold 0.00 0.00 0.00 0.00 ns
tHE Enable Input Hold 0.00 0.00 0.00 0.00 ns
tCPWHL Clock Pulse Width High to Low 0.39 0.45 0.51 0.60 ns
tCPWLH Clock Pulse W idth Low to High 0.37 0.43 0.48 0.57 ns
tWASYN Asynchronous Pulse Width 0.37 0.43 0.48 0.57 ns
tREASYN Asynchronous Recovery Time 0.22 0.25 0.29 0.33 ns
tHASYN Asynchronous Removal Time 0.22 0.25 0.29 0.33 ns
tCLR Asynchronous Clear-to-Q 0.24 0.27 0.31 0.37 ns
Table 2-21 Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C (Continued)
'–3 ' Speed '–2' Speed '–1' Speed 'Std' Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
Axcelerator Family FPGAs
v2.1 2-23
tPRESET Asynchronous Preset-to-Q 0.24 0.27 0.31 0.37 ns
LVTTL Output Drive Strength = 4 (24mA) / Low Slew Rate
tDP Input Buffer 1.50 1.73 1.96 2.31 ns
tPY Output Buffer 8.07 9.31 10.55 12.42 ns
tIOCLKQ Sequential Clock-to-Q for the input register 0.66 0.77 0.87 1.02 ns
tIOCLKY Clock-to-Output Y for the I/O output register and
the enable register 6.64 7.67 8.69 10.22 ns
tSUD Data Input Set-Up 0.20 0.23 0.26 0.31 ns
tSUE Enable Input Set-Up 0.22 0.25 0.29 0.34 ns
tHD Data Input Hold 0.00 0.00 0.00 0.00 ns
tHE Enable Input Hold 0.00 0.00 0.00 0.00 ns
tCPWHL Clock Pulse Width High to Low 0.39 0.45 0.51 0.60 ns
tCPWLH Clock Pulse W idth Low to High 0.37 0.43 0.48 0.57 ns
tWASYN Asynchronous Pulse Width 0.37 0.43 0.48 0.57 ns
tREASYN Asynchronous Recovery Time 0.22 0.25 0.29 0.33 ns
tHASYN Asynchronous Removal Time 0.22 0.25 0.29 0.33 ns
tCLR Asynchronous Clear-to-Q 0.24 0.27 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.24 0.27 0.31 0.37 ns
LVTTL Output Drive Strength = 1 (8mA) / High Slew Rate
tDP Input Buffer 1.50 1.73 1.96 2.31 ns
tPY Output Buffer 2.41 2.78 3.15 3.71 ns
tIOCLKQ Sequential Clock-to-Q for the input register 0.66 0.77 0.87 1.02 ns
tIOCLKY Clock-to-Output Y for the I/O output register and
the enable register 0.66 0.77 0.87 1.02 ns
tSUD Data Input Set-Up 0.20 0.23 0.26 0.31 ns
tSUE Enable Input Set-Up 0.22 0.25 0.29 0.34 ns
tHD Data Input Hold 0.00 0.00 0.00 0.00 ns
tHE Enable Input Hold 0.00 0.00 0.00 0.00 ns
tCPWHL Clock Pulse Width High to Low 0.39 0.45 0.51 0.60 ns
tCPWLH Clock Pulse W idth Low to High 0.37 0.43 0.48 0.57 ns
tWASYN Asynchronous Pulse Width 0.37 0.43 0.48 0.57 ns
tREASYN Asynchronous Recovery Time 0.22 0.25 0.29 0.33 ns
tHASYN Asynchronous Removal Time 0.22 0.25 0.29 0.33 ns
tCLR Asynchronous Clear-to-Q 0.24 0.27 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.24 0.27 0.31 0.37 ns
Table 2-21 Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C (Continued)
'–3 ' Speed '–2' Speed '–1' Speed 'Std' Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
Axcelerator Family FPGAs
2-24 v2.1
LVTTL Output Drive Strength = 2 (12mA) / High Slew Rate
tDP Input Buffer 1.50 1.73 1.96 2.31 ns
tPY Output Buffer 2.25 2.60 2.94 3.46 ns
tIOCLKQ Sequential Clock-to-Q for the input register 0.66 0.77 0.87 1.02 ns
tIOCLKY Clock-to-Output Y for the I/O output register and
the enable register 0.66 0.77 0.87 1.02 ns
tSUD Data Input Set-Up 0.20 0.23 0.26 0.31 ns
tSUE Enable Input Set-Up 0.22 0.25 0.29 0.34 ns
tHD Data Input Hold 0.00 0.00 0.00 0.00 ns
tHE Enable Input Hold 0.00 0.00 0.00 0.00 ns
tCPWHL Clock Pulse Width High to Low 0.39 0.45 0.51 0.60 ns
tCPWLH Clock Pulse W idth Low to High 0.37 0.43 0.48 0.57 ns
tWASYN Asynchronous Pulse Width 0.37 0.43 0.48 0.57 ns
tREASYN Asynchronous Recovery Time 0.22 0.25 0.29 0.33 ns
tHASYN Asynchronous Removal Time 0.22 0.25 0.29 0.33 ns
tCLR Asynchronous Clear-to-Q 0.24 0.27 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.24 0.27 0.31 0.37 ns
LVTTL Output Drive Strength =3 (16mA) / High Slew Rate
tDP Input Buffer 1.50 1.73 1.96 2.31 ns
tPY Output Buffer 2.24 2.58 2.93 3.45 ns
tIOCLKQ Sequential Clock-to-Q for the input register 0.66 0.77 0.87 1.02 ns
tIOCLKY Clock-to-Output Y for the I/O output register and
the enable register 0.66 0.77 0.87 1.02 ns
tSUD Data Input Set-Up 0.20 0.23 0.26 0.31 ns
tSUE Enable Input Set-Up 0.22 0.25 0.29 0.34 ns
tHD Data Input Hold 0.00 0.00 0.00 0.00 ns
tHE Enable Input Hold 0.00 0.00 0.00 0.00 ns
tCPWHL Clock Pulse Width High to Low 0.39 0.45 0.51 0.60 ns
tCPWLH Clock Pulse W idth Low to High 0.37 0.43 0.48 0.57 ns
tWASYN Asynchronous Pulse Width 0.37 0.43 0.48 0.57 ns
tREASYN Asynchronous Recovery Time 0.22 0.25 0.29 0.33 ns
tHASYN Asynchronous Removal Time 0.22 0.25 0.29 0.33 ns
tCLR Asynchronous Clear-to-Q 0.24 0.27 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.24 0.27 0.31 0.37 ns
Table 2-21 Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C (Continued)
'–3 ' Speed '–2' Speed '–1' Speed 'Std' Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
Axcelerator Family FPGAs
v2.1 2-25
LVTTL Output Drive Strength = 4 (24mA) / High Slew Rate
tDP Input Buffer 1.50 1.73 1.96 4.35 ns
tPY Output Buffer 2.83 3.27 3.70 3.40 ns
tIOCLKQ Sequential Clock-to-Q for the input register 0.66 0.77 0.87 1.02 ns
tIOCLKY Clock-to-Output Y for the I/O output register and
the enable register 0.66 0.77 0.87 1.02 ns
tSUD Data Input Set-Up 0.20 0.23 0.26 0.31 ns
tSUE Enable Input Set-Up 0.22 0.25 0.29 0.34 ns
tHD Data Input Hold 0.00 0.00 0.00 0.00 ns
tHE Enable Input Hold 0.00 0.00 0.00 0.00 ns
tCPWHL Clock Pulse Width High to Low 0.39 0.45 0.51 0.60 ns
tCPWLH Clock Pulse W idth Low to High 0.37 0.43 0.48 0.57 ns
tWASYN Asynchronous Pulse Width 0.37 0.43 0.48 0.57 ns
tREASYN Asynchronous Recovery Time 0.22 0.25 0.29 0.33 ns
tHASYN Asynchronous Removal Time 0.22 0.25 0.29 0.33 ns
tCLR Asynchronous Clear-to-Q 0.24 0.27 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.24 0.27 0.31 0.37 ns
Table 2-21 Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C (Continued)
'–3 ' Speed '–2' Speed '–1' Speed 'Std' Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
Axcelerator Family FPGAs
2-26 v2.1
2.5V LVCMOS
Low-Voltage Compleme ntary Met al-Oxide Sem iconductor for 2 .5V is an extension of the LVC MOS stan dard (JESD8-5)
used for gene ral-pur pos e 2. 5V appl ica tions . It uses a 3.3V t olera nt CM OS i nput buffer and a push- pull output buffer.
AC Loadings
Timing Characteristics
Table 2-22 DC Input and Output Levels
VIL VIH VOL VOH IOL IOH
Min,V Max,V Min,V Max,V Max,V Min,V mA mA
-0.3 0.7 1.7 3.6 0.4 2.0 12 -12
Figure 2-16 AC Test Loads
Table 2-23 AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input High (V) Measuring Point* (V) VREF (typ) (V) Cload (pF)
0 2.5 1.25 N/A 35
* Measuring Point = Vtrip
R to V
CCI
for t
plz
/t
pzl
R to GND for t
phz
/t
pzh
35 pF for t
pzh
/t
pzl
5 pF for t
phz
/t
plz
Test Point Test Point
35 pF for tristate
R=1k
for tpd
Table 2-24 Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 2.3V, TJ = 70°C
'–3' Speed '–2' Speed '–1' Speed 'Std' Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
LVCMOS25 Output Module Timing
tDP Input Buffer 1.44 1.66 1.88 2.225 ns
tPY Output Buffer 2.41 2.78 3.15 3.71 ns
tIOCLKQ Sequential Clock-to-Q for the input register 0.66 0.77 0.87 1.02 ns
tIOCLKY Clock-to-Output Y for the I/O output register
and the enable register 0.66 0.77 0.87 1.02 ns
tSUD Data Input Set-Up 0.20 0.23 0.26 0.31 ns
tSUE Enable Input Set-Up 0.22 0.25 0.29 0.34 ns
tHD Data Input Hold 0.00 0.00 0.00 0.00 ns
tHE Enable Input Hold 0.00 0.00 0.00 0.00 ns
tCPWHL Clock Pulse Width High to Low 0.39 0.45 0.51 0.60 ns
tCPWLH Clock Pulse Width Low to High 0.37 0.43 0.48 0.57 ns
tWASYN Asyn chr ono us Pulse Width 0.37 0.43 0.48 0 .57 n s
tREASYN Asynchr onous Recovery Time 0.22 0.25 0.29 0.33 n s
tHASYN Asyn chr ono us Removal Time 0.22 0.25 0.29 0.33 n s
tCLR Asynch r ono us Clear- to-Q 0.24 0.27 0.31 0.37 ns
tPRESET A syn chr ono us Preset -t o-Q 0.24 0.27 0.31 0.37 n s
Axcelerator Family FPGAs
v2.1 2-27
1.8V LVCMOS
Low-Voltage Compleme ntary Met al-Oxide Sem iconductor for 1 .8V is an extension of the LVC MOS stan dard (JESD8-5)
used for gene ral-pur pos e 1. 8V appl ica tions . It uses a 3.3V t olera nt CM OS i nput buffer and a push- pull output buffer.
AC Lo a d ings
Timing Characteristics
Table 2-25 DC Input and Output Levels
VIL VIH VOL VOH IOL IOH
Min,V Max,V Min,V Max,V Max,V Min,V mA mA
-0.3 0.2VCCI 0.7VCCI 2.1 0.2 VCCI-0.2 8mA -8mA
Figure 2-17 AC Test Loads
Table 2-26 AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input High (V) Measuring Point* (V) VREF (typ) (V) Cload (pF)
0 1.8 0.5VCCI N/A 35
* Measuring Point = Vtrip
R to V
CCI
for t
plz
/t
pzl
R to GND for t
phz
/t
pzh
35 pF for t
pzh
/t
pzl
5 pF for t
phz
/t
plz
Test Point Test Point
35 pF for tristate
R=1k
for tpd
Table 2-27 Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 1.7V, TJ = 70°C
'–3 ' Speed '– 2' Speed '– 1' Speed 'St d' Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
LVCMOS18 Output Module Timing
tDP Input Buffer 2.42 2.79 3.16 4.35 ns
tPY Output Buffer 2.83 3.27 3.70 2.20 ns
tIOCLKQ Sequential Clock-to-Q for the input register 0.66 0.77 0.87 1.02 ns
tIOCLKY Clock-to-Output Y for the I/O output register
and the enable register 0.66 0.77 0.87 1.02 ns
tSUD Data Input Set-Up 0.20 0.23 0.26 0.31 ns
tSUE Enable Input Set-Up 0.22 0.25 0.29 0.34 ns
tHD Data Input Hold 0.00 0.00 0.00 0.00 ns
tHE Enable Input Hold 0.00 0.00 0.00 0.00 ns
tCPWHL Clock Pulse Width High to Low 0.39 0.45 0.51 0.60 ns
tCPWLH Clock Pulse W idth Low to High 0.37 0.43 0.48 0.57 ns
tWASYN Asynchronous Pulse Width 0.37 0.43 0.48 0.57 ns
tREASYN Asynchronous Recovery Time 0.22 0.25 0.29 0.33 ns
tHASYN Asynchronous Removal Time 0.22 0.25 0.29 0.33 ns
tCLR Asynchronous Clear-to-Q 0.24 0.27 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.24 0.27 0.31 0.37 ns
Axcelerator Family FPGAs
2-28 v2.1
1.5V LVCMOS (JESD8-11)
Low-Voltage Compleme ntary Met al-Oxide Sem iconductor for 1 .5V is an extension of the LVC MOS stan dard (JESD8-5)
used for gene ral-pur pos e 1. 5V appl ica tions . It uses a 3.3V t olera nt CM OS i nput buffer and a push- pull output buffer.
AC Lo a d ings
Timing Characteristics
Table 2-28 DC Input and Output Levels
VIL VIH VOL VOH IOL IOH
Min,V Max,V Min,V Max,V Max,V Min,V mA mA
-0.5 0.35VCCI 0.65VCCI 1.95 0.4 VCCI-0.4 8mA -8mA
Table 2-29 AC Test Loads
Table 2-30 AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input High (V) Measuring Point* (V) VREF (typ) (V) Cload (p F )
0 1.5 0.5VCCI N/A 35
* Measuring Point = Vtrip
R to V
CCI
for t
plz
/t
pzl
R to GND for t
phz
/t
pzh
35 pF for t
pzh
/t
pzl
5 pF for t
phz
/t
plz
Test Point Test Point
35 pF for tristate
R=1k
for tpd
Table 2-31 Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 1.4V, TJ = 70°C
'–3' Speed '–2' Speed '–1' Speed 'Std' Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
LVCMOS15 (JESD8-11) I/O Module Timi ng
tDP Input Buffer 3.65 4.22 4.78 5.62 ns
tPY Output Buffer 2.35 2.71 3.07 3.61 ns
tIOCLKQ Sequential Clock-to-Q for the input register 0.66 0.77 0.87 1.02 ns
tIOCLKY Clock-to-Output Y for the I/O output register
and the enable register 0.66 0.77 0.87 1.02 ns
tSUD Data Input Set-Up 0.21 0.25 0.28 0.33 ns
tSUE Enable Input Set-Up 0.24 0.27 0.31 0.37 ns
tHD Data In put Hold 0.00 0.00 0.00 0.00 ns
tHE Enable Input Hold 0.00 0.00 0.00 0.00 ns
tCPWHL Clock Pulse Width High to Low 0.39 0.45 0.51 0.60 ns
tCPWLH Clock Pulse Width Low to High 0.37 0.43 0.48 0.57 ns
tWASYN Asynchronous Pulse Width 0.37 0.43 0.48 0.57 ns
tREASYN Asynchronous Recovery Time 0.22 0.25 0.29 0.33 ns
tHASYN Asynchronous Removal T ime 0.22 0.25 0.29 0.33 ns
tCLR Asynchronous Clear-to-Q 0.24 0.27 0.31 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.24 0.27 0.31 0.37 ns
Axcelerator Family FPGAs
v2.1 2-29
3.3V PCI, 3.3V PCI-X
Peripheral Component Interface for 3.3V standard specifies support for both 33 MHz and 66 MHz PCI bus applications.
It uses an LV T TL i nput buffer and a push-pul l outp ut bu ffer. The input and output bu ffers are 5V t ol erant wit h the ai d
of external components. Axcelerator 3.3V PCI and 3.3V PCI-X buffers are compliant with the PCI Local Bus Specification
Rev. 2.1.
AC Lo a d ings
Timing Characteristics
Table 2-32 DC Input and Output Levels
VIL VIH VOL VOH IOL IOH
Min,V Max,V Min,V Max,V Max,V Min,V mA mA
PCI -0.5 0.3VCCI 0.5VCCI VCCI+0.5 (per PCI specification)
PCI-X -0.5 0.35VCCI 0.5VCCI VCCI+0.5 (per PCI specification)
Figure 2-18 AC Test Loads
Table 2-33 AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input High (V) Measuring Point* (V) VREF (typ) (V) Cload (pF)
(Per PCI Spec and PCI-X Spec) N/A 10
* Measuring Point = Vtrip
Test Point Test Point
10 pF for tristate
R=1k R to V
CCI
FOR t
plz
/t
pzl
R to GND for t
phz
/t
pzh
10 pF for t
phz
/t
pzl
5 pF for t
phz
/t
pzh
for t
pd
Table 2-34 Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C
'–3' Speed '–2' Speed '–1' Speed 'Std' Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
3.3V PC I/PCI-X Output M od ule Tim ing
tDP Input Buffer 1.16 1.34 1.52 1.78 ns
tPY Output Buffer 1.51 1.74 1.97 2.32 ns
tIOCLKQ Sequential Clock-to-Q for the input register 0.66 0.77 0.87 1.02 ns
tIOCLKY Clock-to-Output Y for the I/O output register and
the enable register 0.66 0.77 0.87 1.02 ns
tSUD Data Input Set-Up 0.20 0.23 0.26 0.31 ns
tSUE Enable Input Set-Up 0.22 0.25 0.29 0.34 ns
tHD Data Input Hold 0.00 0.00 0.00 0.00 ns
tHE Enable Input Hold 0.00 0.00 0.00 0.00 ns
tCPWHL Clock Pulse Width High to Low 0.39 0.45 0.51 0.60 ns
tCPWLH Clock Pulse Width Low to High 0.37 0.43 0.48 0.57 ns
tWASYN Asyn chr ono us Pulse Widt h 0.3 7 0.43 0.48 0.57 ns
tREASYN Asynchr onous Recovery Time 0.22 0.25 0.29 0.33 ns
tHASYN Asyn chr ono us Removal Time 0.22 0.25 0.29 0.33 ns
tCLR Asynch r ono us Clear- to-Q 0.24 0.27 0.31 0.37 ns
tPRESET A syn chr ono us Preset -t o-Q 0.24 0.27 0.31 0.37 ns
Axcelerator Family FPGAs
2-30 v2.1
Voltage Refe rence I /O Standards
GTL+
Gunning Transce iver Logi c Plus is a high- speed b us standa rd (JESD 8-3). I t requi res a di ffer ential am plifier inp ut buffer
and an Op en Dra in output buffer. The VCCI pin should be connected to 2.5V or 3.3V.
AC Loadings
Timing Characteristics
Table 2-35 DC Input and Output Levels
VIL VIH VOL VOH IOL IOH
Min,V Max,V Min,V Max,V Max,V Min,V mA mA
N/A VREF-0.1 VREF+0.1 N/A 0.6 NA NA NA
Figure 2-19 AC Test Loads
Table 2-36 AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input High (V) Measuring Point* (V) VREF (typ) (V) Cload (pF)
VREF-0.2 VREF+0.2 VREF 1.0 10
* Measuring Point = Vtrip
Test Point
10 pF
25
V
TT
Table 2-37 Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 2.3V, TJ = 70°C
'–3' Speed '–2' Speed '–1' Speed 'Std' Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
2.5V GTL+ I/O Module Timing
tDP Input Buffer 1.37 1.58 1.79 2.11 ns
tPY Output Buffer 0.79 0.91 1.03 1.22 ns
tIOCLKQ Sequential Clock-to-Q for the input register 0.68 0.78 0.89 1.04 ns
tIOCLKY Clock-to-Output Y for the I/O output register
and the enable register 0.68 0.78 0.89 1.04 ns
tSUD Data Input Set-Up 0.20 0.23 0.26 0. 31 ns
tSUE Enable Input Set-Up 0.22 0.25 0.29 0.34 ns
tHD Data I nput Hold 0.00 0 .00 0 .00 0.00 ns
tHE Enable Input Hold 0.00 0.00 0.00 0.00 ns
tCPWHL Clock Pulse Width High to Low 0.39 0.45 0.51 0.60 ns
tCPWLH Clock Pulse Width Low to High 0.37 0.43 0.48 0.57 ns
tWASYN Asynchronous Pulse Width 0.37 0.43 0.48 0.57 ns
tREASYN Asynchronous Recovery Time 0.22 0.25 0.29 0.34 ns
tHASYN Asynchronous Removal Time 0.22 0.25 0.29 0.34 ns
tCLR Asynchronous Clear-to-Q 0.24 0.28 0.32 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.24 0.28 0.32 0.37 ns
Axcelerator Family FPGAs
v2.1 2-31
Table 2-38 Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C
'–3' Speed '–2' Speed '–1' Speed 'Std' Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
3.3V GTL+I/O Module Timin g
tDP Input Buffer 1.37 1.58 1.79 2.11 ns
tPY Output Buffer 0.79 0.91 1.03 1.22 ns
tIOCLKQ Sequential Clock-to-Q for the input register 0.68 0.78 0.89 1.04 ns
tIOCLKY Clock-to-Output Y for the I/O output register
and the enable register 0.68 0.78 0.89 1.04 ns
tSUD Data Input Set-Up 0.20 0 .23 0. 26 0.3 1 ns
tSUE Enable Input Set-Up 0.22 0.25 0.29 0.34 ns
tHD Data I nput Hold 0 . 00 0 .00 0. 00 0.0 0 ns
tHE Enable Input Hold 0.00 0.00 0.00 0.00 ns
tCPWHL Clock Pulse Width High to Low 0.39 0.45 0.51 0.60 ns
tCPWLH Clock Pulse Width Low to High 0.37 0.43 0.48 0.57 ns
tWASYN Asynchronous Pulse Width 0.37 0.43 0.48 0.57 ns
tREASYN Asynchronous Recovery Time 0.22 0.25 0.29 0.34 ns
tHASYN Asynchronous Removal Time 0.22 0.25 0.29 0.34 ns
tCLR Asynchronous Clear-to-Q 0.24 0.28 0.32 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.24 0.28 0.32 0.37 ns
Axcelerator Family FPGAs
2-32 v2.1
HSTL Class I
High-Speed Transceiver Logic is a general-purpose high-speed 1.5V bus standard (EIA/JESD8-6). The Axcelerator devices
suppor t C l a ss I. Th i s requires a d iffere n t ial amp lifi er inp u t b u ffer and a push -pul l o u tput bu ffer.
AC Loadings
Timing Characteristics
Table 2-39 DC Input and Output Levels
VIL VIH VOL VOH IOL IOH
Min,V Max,V Min,V Max,V Max,V Min,V mA mA
-0.3 VREF-0.1 VREF+0.1 3.6 0.4 VCC-0.4 8 -8
Figure 2-20 AC Test Loads
Table 2-40 AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input High (V) Measuring Point* (V) VREF (typ) (V) Cload (pF)
VREF-0.5 VREF+0.5 VREF 0.75 20
* Measuring Point = Vtrip
Test Point
20 pF
50
VTT
Table 2-41 Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 1.425V, TJ = 70°C
'– 3 ' Spe ed ' 2' Spee d '–1 ' Speed 'Std' Spee d
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
1.5V HSTL Class I I/O Module Timing
tDP Input Buffer 1.46 1.68 1.91 2.25 ns
tPY Output Buffer 3.58 4.13 4.68 5.51 ns
tIOCLKQ Sequential Clock-to-Q for the input register 0.68 0.78 0.89 1.04 ns
tIOCLKY C lock-to-Output Y for the I/O output register
and the enable register 0.68 0.78 0.89 1.04 ns
tSUD Data Input Set-Up 0.20 0.23 0.26 0.31 n s
tSUE Enable Input Set-Up 0.22 0.25 0.29 0.34 ns
tHD Data Input Hold 0.00 0.00 0.00 0.00 ns
tHE Enable Input Hold 0.00 0.00 0.00 0.00 ns
tCPWHL Clock Pulse Width High to Low 0.39 0.45 0.51 0.60 ns
tCPWLH Clock Pulse W idth Low to High 0.37 0.43 0.48 0.57 ns
tWASYN Asynchronous Pulse Width 0.37 0.43 0.48 0.57 ns
tREASYN Asynchronous Recovery Time 0.22 0.25 0.29 0.34 ns
tHASYN Asynchronous Removal Time 0.22 0.25 0.29 0.34 ns
tCLR Asynchronous Clear-to-Q 0.24 0.28 0.32 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.24 0.28 0.32 0.37 ns
Axcelerator Family FPGAs
v2.1 2-33
SSTL2
Stub Series Terminated Logic for 2.5V is a general-purpose 2.5V memory bus standard (JESD8-9). The Axcelerator
devices support both classe s of this standar d. Thi s requires a differential amplifier input buffer and a pus h-p ull out put
buffer.
Cla s s I
AC Loadings
Timing Characteristics
Table 2-42 DC Input and Output Levels
VIL VIH VOL VOH IOL IOH
Min,V Max,V Min,V Max,V Max,V Min,V mA mA
-0.3 VREF-0.2 VREF+0.2 3.6 VREF-0.57 VREF+0.57 7.6 -7.6
Figure 2-21 AC Test Loads
Table 2-43 AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input High (V) Measuring Point* (V) VREF (typ) (V) Cload (pF)
VREF-0.75 VREF+0.75 VREF 1.25 30
* Measuring Point = Vtrip
Test Point
30 pF
50
25
V
TT
Table 2-44 Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 2.3V, TJ = 70°C
'–3' Speed '–2' Speed '–1' Speed 'Std' Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
2.5V SSTL2 Class I I/O Module Timing
tDP Input Buffer 1.53 1.77 2.00 2.35 ns
tPY Output Buffer 1.68 1.94 2.20 2.58 ns
tIOCLKQ Sequential Clock-to-Q for the input register 0.68 0.78 0.89 1.04 ns
tIOCLKY Clock-to-Output Y for the I/O output
register and the enable register 0.68 0.78 0.89 1.04 ns
tSUD Data Input Set-Up 0.20 0 .23 0.26 0.31 ns
tSUE Enable Input Set-Up 0.22 0.25 0.29 0.34 ns
tHD Data Input Hold 0.00 0.00 0.00 0.00 ns
tHE Enable Input Hold 0.00 0.00 0.00 0.00 ns
tCPWHL Clock Pulse Width High to Low 0.39 0.45 0.51 0.60 ns
tCPWLH Clock Pulse W idth Low to High 0.37 0.43 0.48 0.57 ns
tWASYN Asynchronous Pulse Width 0.37 0.43 0.48 0 .57 ns
tREASYN Asynchronous Recovery Time 0.22 0.25 0.29 0.34 ns
tHASYN Asynchronous Removal Time 0.22 0.25 0.29 0.34 ns
tCLR Asynchronous Clear-to-Q 0.24 0.28 0.32 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.24 0.28 0.32 0.37 ns
Axcelerator Family FPGAs
2-34 v2.1
Cla s s II
AC Loadings
Timing Characteristics
Table 2-45 DC Input and Output Levels
VIL VIH VOL VOH IOL IOH
Min,V Max,V Min,V Max,V Max,V Min,V mA mA
-0.3 VREF-0.2 VREF+0.2 3.6 VREF-0.8 VREF+0.8 15.2 -15.2
Figure 2-22 AC Test Loads
Table 2-46 AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input High (V) Measuring Point* (V) VREF (typ) (V) Cload (pF)
VREF-0.75 VREF+0.75 VREF 1.25 30
* Measuring Point = Vtrip
Test Point
30 pF
25
25
V
TT
Table 2-47 Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 2.3V, TJ = 70°C
'–3' Speed '–2' Speed '–1' Speed 'Std' Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
2.5V SSTL2 Class II I/O Module Timing
tDP Input Buffer 1.00 1.16 1.31 1.55 ns
tPY Output Buffer 1.05 1.21 1.38 1.62 ns
tIOCLKQ Sequential Clock-to-Q for the input register 0.68 0.78 0.89 1.04 ns
tIOCLKY Clock-to-Output Y for the I/O output register
and the enable register 0.68 0.78 0.89 1.04 ns
tSUD Data Input Set-Up 0.22 0.25 0.28 0.34 ns
tSUE Enable Input Set-Up 0.24 0.28 0.32 0.37 ns
tHD Data Input Hold 0.00 0.00 0.00 0.00 ns
tHE Enable Input Hold 0.00 0.00 0.00 0.00 ns
tCPWHL Clock Pulse Width High to Low 0.39 0.45 0.51 0.60 ns
tCPWLH Clock Pulse Width Low to High 0.37 0.43 0.48 0.57 ns
tWASYN Asynchronous Pulse Width 0.37 0.43 0.48 0.57 ns
tREASYN Asynchronous Recovery Time 0.22 0.25 0.29 0.34 ns
tHASYN Asynchronous Removal Time 0.22 0.25 0.29 0.34 ns
tCLR Asynchronous Clear-to-Q 0.24 0.28 0.32 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.24 0.28 0.32 0.37 ns
Axcelerator Family FPGAs
v2.1 2-35
SSTL3
Stub Series Terminated Logic for 3.3V is a general-purpose 3.3V memory bus standard (JESD8-8). The Axcelerator
devices support both classe s of this standar d. Thi s requires a differential amplifier input buffer and a pus h-p ull out put
buffer.
Cla s s I
AC Loadings
Timing Characteristics
Table 2-48 DC Input and Output Levels
VIL VIH VOL VOH IOL IOH
Min,V Max,V Min,V Max,V Max,V Min,V mA mA
-0.3 VREF-0.2 VREF+0.2 3.6 VREF-0.6 VREF+0.6 8 -8
Figure 2-23 AC Test Loads
Table 2-49 AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input High (V) Measuring Point* (V) VREF (typ) (V) Cload (pF)
VREF-1.0 VREF+1.0 VREF 1.50 30
*Measuring Point = Vtrip
Test Point
30 pF
50
25
V
TT
Table 2-50 Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C
'–3 ' Spe ed ' –2' Speed '–1 ' Sp e ed ' Std' Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
3.3V SSTL3 Class I I/O Module Timing
tDP Input Buffer 1.23 1.42 1.61 1.89 ns
tPY Output Buffer 1.75 2.02 2.29 1.69 ns
tIOCLKQ Sequential Clock-to-Q for the input register 0.68 0.78 0.89 1.04 ns
tIOCLKY Clock-to-Output Y for the I/O output
register and the enable register 0.68 0.78 0.89 1.04 ns
tSUD Data Input Set-Up 0.20 0.23 0.26 0.31 ns
tSUE Enable Input Set-Up 0.22 0.25 0.29 0.34 ns
tHD Data Input Hold 0.00 0.00 0.00 0.00 ns
tHE Enable Input Hold 0 .00 0.00 0.00 0.00 ns
tCPWHL Clock Pulse Width High to Low 0.39 0.45 0.51 0.60 ns
tCPWLH Clock Pulse Width Low to High 0.37 0.43 0.48 0.57 ns
tWASYN Asynchronous Pulse Width 0.37 0.43 0.48 0.57 ns
tREASYN Asynchronous Recovery Time 0.22 0.25 0.29 0.34 ns
tHASYN Asynchronous Removal Time 0.22 0.25 0.29 0.34 ns
tCLR Asynchronous Clear-to-Q 0.24 0.28 0.32 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.24 0.28 0.32 0.37 ns
Axcelerator Family FPGAs
2-36 v2.1
Cla s s II
AC Loadings
Timing Characteristics
Table 2-51 DC Input and Output Levels
VIL VIH VOL VOH IOL IOH
Min,V Max,V Min,V Max,V Max,V Min,V mA mA
-0.3 VREF-0.2 VREF+0.2 3.6 VREF-0.8 VREF+0.8 16 -16
Figure 2-24 AC Test Loads
Table 2-52 AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input High (V) Measuring Point* (V) VREF (t yp) (V) Cload (pF)
VREF-1.0 VREF+1.0 VREF 1.50 30
* Measuring Point = Vtrip
Test Point
30 pF
25
25
V
TT
Table 2-53 Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C
'–3' Speed '–2' Speed '–1' Speed 'Std' Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
3.3V SSTL3 Class II I/O Module Timing
tDP Input Buffer 0.83 0.96 1.09 1.28 ns
tPY Output Buffer 1.11 1.28 1.46 1.71 ns
tIOCLKQ Sequential Clock-to-Q for the
input register 0.68 0.78 0.89 1.04 ns
tIOCLKY Clock-to-Output Y for the I/O
output register and the enable
register
0.68 0.78 0.89 1.04 ns
tSUD Data Input Set-Up 0.22 0.25 0.28 0.34 ns
tSUE Enable Input Set-Up 0.24 0.28 0.32 0.37 ns
tHD Data Input Hold 0.00 0.00 0.00 0.00 ns
tHE Enable Input Hold 0.00 0.00 0.00 0.00 ns
tCPWHL Clock Pulse Width High to Low 0.39 0.45 0.51 0.60 ns
tCPWLH Clock Pulse W idth Low to High 0.37 0.43 0.48 0.57 ns
tWASYN Asynchronous Pulse Width 0.37 0.43 0.48 0.57 n s
tREASYN Asynchronous Recovery Time 0.22 0.25 0.29 0.34 ns
tHASYN Asynchronous Removal Time 0.22 0.25 0.29 0.34 ns
tCLR Asynchronous Clear-to-Q 0.24 0.28 0.32 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.24 0.28 0.32 0.37 ns
Axcelerator Family FPGAs
v2.1 2-37
Differential Stan d ards
Physical Implementation
Implementing differential I/O standards requires the
configuration of a pair of external I/O pads, resulting in a
single internal signal. To facilitate construction of the
differential pair, a single I/O Cluster contains the
resources for a pair of I/Os. Configuration of the I/O
Cluster as a differential pair is handled by Actel’s
Designer software when the user instantiates a
differential I/O macro i n the de sign.
Differential I/Os can also be used in conjunction with the
embedded Input Register (InReg), Output Register
(OutReg), Enable Register (EnReg), and Double Data
Rate (DDR). However, there is no support for
bid irectional I/Os or tr i state s with thes e standards .
LVDS
Low-Voltage Differential Signal (ANSI/TIA/EIA-644) is a
hig h -spe e d , d iffere n ti a l I/O st an dard. It requi res th a t o ne
data bit is carried through two signal lines; so two pins
are needed. It also requires an external resistor
termination. The voltage swing between these two
signal lines is approximately 350mV.
The LVDS circuit consists of a differential driver
connected to a terminated receiver through a constant-
impedance transmission line. The receiver is a wide-
common-mode-range differential amplifier. The
common-mode range is from 0.2V to 2.2V for a
differential input with 400mV swing.
To implement the driver for the LVDS circuit, drivers from
two adjacent I/O cells are used to generate the
differential signals ( Note th at the dr iver i s not a curre nt-
mode driver). This driver provides a nominal constant
current of 3.5mA. When this current flows through a
100 t ermi nati on resi stor on th e recei ver si de, a vol tage
swing of 350mV is developed across the resistor. The
direction of the current flow is controlled by the data fed
to the driver.
An external-resistor network (three resistors) is needed
to reduce th e voltage swing t o about 350mV. Therefor e,
four external resistors are required, three for the driver
and one for the receiver.
Figure 2-25 LVDS Board-Level Implementation
140100
ZO=50
ZO=50
165
165
+
P
N
P
N
INBUF_LVDS
OUTBUF_LVDS
FPGA FPGA
Table 2-54 DC Input and Output Levels
DC Parameter Description Min. Typ. Max. Units
VCCI1Supply Voltage 2.375 2.5 2.625 V
VOH Output High Voltage 1.25 1.425 1.6 V
VOL Output Low Voltage 0.9 1.075 1.25 V
VODIFF Differential Output Voltage 250 350 450 mV
VOCM Output Common Mode Voltage 1.125 1.25 1.375 V
VICM2Input Common Mode Voltage 0.2 1.25 2.2 V
1. +/- 5%
2. Differential input voltage =+/-350mV.
Axcelerator Family FPGAs
2-38 v2.1
Timing Characteristics
Table 2-55 AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input High (V) Measuring Point* (V)
1.2-0.125 1.2+0.125 1.2
* Measuring Point = Vtrip
Table 2-56 Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 2.3V, TJ = 70°C
'–3' Speed '–2' Speed '–1' Speed 'Std' Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
LVDS Output Module Timing
tDP In put Buf f er 1.66 1.9 2 2.17 2.55 ns
tPY Output Buffer 1.79 2.07 2.34 2.75 ns
tIOCLKQ Sequential Clock-to-Q for the input register 0.68 0.78 0.89 1.04 ns
tIOCLKY Clock-to-Output Y for the I/O output register
and the enable register 0.68 0.78 0.89 1.04 ns
tSUD Data Input Set-Up 0.20 0 .23 0.26 0.31 ns
tSUE Enable Input Set-Up 0.22 0.25 0.29 0.34 ns
tHD Data Input Hold 0.00 0.00 0.00 0.00 ns
tHE Enable Input Hold 0.00 0.00 0.00 0.00 ns
tCPWHL Clock Pulse Width High to Low 0.39 0.45 0.51 0.60 ns
tCPWLH Clock Pulse Width Low to High 0.37 0.43 0.48 0.57 ns
tWASYN Asynchronous Pulse Width 0.37 0.43 0.48 0.57 ns
tREASYN Asynchronous Recovery Time 0.22 0.25 0.29 0.34 ns
tHASYN Asynchronous Removal T ime 0.22 0.25 0.29 0.34 ns
tCLR Asynchronous Clear-to-Q 0.24 0.28 0.32 0.37 ns
tPRESET Asynchronous Preset-to-Q 0.24 0.28 0.32 0.37 ns
Axcelerator Family FPGAs
v2.1 2-39
LVPECL
Low-Voltage Positive Emi tter-Coupled L ogic (LVP ECL) is anot her differential I/O s tandard. It re quires that one data bit
is carried throug h two signal l ines. Li ke LVDS, tw o pins are neede d. It also requires external resistor ter mination. Th e
voltage s wing between the se two signal line s is appr oximately 850 m V.
The LVP ECL circuit is simil ar to the LVD S schem e . It requi res f ou r externa l resist o rs, three for the dr i v er and o n e for th e
receiver. The values for the three driver resistors are different from that of LVDS since the output voltage levels are
different. Plea se not e th at th e VOH levels are 200 mV below the standard LVP ECL levels.
Figure 2-26 LVPECL Board-Level Implementation
Table 2-57 DC Input and Output Levels
DC Parameter Min. Max. Min. Max. Min. Max. Units
VCCI 3.0 3.3 3.6 V
VOH 1.8 2.11 1.92 2.28 2.13 2.41 V
VOL 0.96 1.27 1.06 1.43 1.30 1.57 V
VIH 1.49 2.72 1.49 2.72 1.49 2.72 V
VIL 0.86 2.125 0.86 2.125 0.86 2.125 V
Differential Input Voltage 0.3 0.3 0.3 V
Table 2-58 AC Waveforms, Measuring Points, and Capacitive Loads
Input Low (V) Input High (V) Measuring Point* (V)
1.6-0.3 1.6+0.3 1.6
* Measuring Point = Vtrip
187100
ZO=50
ZO=50
100
100
+
P
N
P
N
INBUF_LVDS
OUTBUF_LVDS
FPGA FPGA
Axcelerator Family FPGAs
2-40 v2.1
Timing Characteristics
Table 2-59 Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C
'–3' Speed '–2' Speed '–1' Speed 'Std' Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
LVPECL Output Module Timing
tDP Input Buffe r 1.66 1.92 2.17 2.55 ns
tPY Output Buffer 1.70 1.96 2.22 2.62 ns
tIOCLKQ Sequential Clock-to-Q for the input register 0.68 0.78 0.89 1.04 ns
tIOCLKY Clock-to-Output Y for the I/O output register
and the enable register 0.68 0.78 0.89 1.04 ns
tSUD Data Input Set-Up 0.20 0.23 0.26 0.31 ns
tSUE Enable Input Set-Up 0.22 0.25 0.29 0.34 ns
tHD Data Input Hold 0.00 0.00 0.00 0.00 ns
tHE Enable Input Hold 0.00 0.00 0.00 0.00 ns
tCPWHL Clock Pulse Width High to Low 0.39 0.45 0.51 0.60 ns
tCPWLH Clock Pulse Width Low to High 0.37 0.43 0.48 0.57 ns
tWASYN Asyn ch rono us Pulse Width 0.37 0.43 0.48 0.57 ns
tREASYN Asynchr onous Recovery Time 0.22 0.2 5 0.29 0.34 ns
tHASYN Asyn chr ono us Removal Time 0.22 0.2 5 0.29 0.34 ns
tCLR Asynch rono us Clear-to-Q 0.24 0.28 0.32 0.37 ns
tPRESET Asyn ch r ono us Preset -to-Q 0.24 0.28 0.32 0.37 ns
Axcelerator Family FPGAs
v2.1 2-41
Module Specifications
C-Cell
Introduction
The C-cell is one of the two logic module t yp es in t he AX
architecture. It is the combinatorial logic resource in the
Axcelerator device. The AX architecture implements a
new Combinat orial Cel l that is an e xtension of the C-cell
impleme nted i n the SX-A family. The m ain enh ancem ent
of the new C-cell is the ad diti on of ca rry- cha in logic.
The C- cell ca n be used in a ca rr y-chai n mode to c ons tr uct
arithmetic functions. If carry-chain logic is not required,
i t c an be disab l ed.
The C-cell features the following (Figure 2-27):
8-input MUX (data: D0-D3, select: A0, A1, B0, B1).
User signals ca n be ro ute d to any one of these inputs.
Any of the C-cell inputs (D0-D3, A0, A1, B0, B1) can be
tied to one of the four rout ed clock s (CLKE /F/G/H) .
Inverter (DB input) can be used to drive a
comp le ment signal of any of the inp uts to th e C-cell.
A carry input and a carry output. The carry input
signal of the C- cell is the car ry outp ut from the C-cell
directly to the nort h .
Carry connect for carry-chain logic with a signal
propagation time of less than 0.1 ns.
A hardwired connection (direct connect) to the
adjacent R-cell (Register Cell) for all C-cells on the east
side of a Supe rCluster with a si gnal propag ation tim e
of less than 0.1 ns.
This layout of the C-cell (and the C-cell Cluster) enables
the implem entati on of over 4,000 functions of up to five
bits. For example, two C-cells can be used together to
implement a four-input XOR function in a single cell
delay.
The carry-chain configuration is handled automatically
for the user with Actel's extensive macro library (please
see Actel’s Antifuse Macro Library Guide for a complete
listing of available Axcelerator macros ).
Figure 2-27 C-Cell
1
0
D1 D3 B1B0
D0 D2 DB A1A0
CFN FCI
FCO Y
0
0
0
0
1
1
1
1
Axcelerator Family FPGAs
2-42 v2.1
Timing Model and Waveforms
Timing Characteristics
Figure 2-28 C-Cell Timing Model and Waveforms
Y, FCO
Y, FCO
GND
VCCA
50% 50%
50% 50%
GND
GND
50% 50%
A, B, D, FCI
tPD, tPDC
VCCA
VCCA
tPD, tPDC
tPD, tPDC tPD, tPDC
Table 2-60 Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C
'–3' Speed '–2' Speed '–1' Speed 'Std' Speed
UnitsParameter Description Min. Max. Min. Max. Min. Max. Min. Max.
C-Cell Pr opag at ion Delays
tPD Any input to output Y 0.65 0.75 0.85 1.00 ns
tPDC Any input to carry chain output (FCO) 0.61 0.70 0.80 0.94 ns
tPDB Any input through DB when one input is used 0.79 0.91 1.03 1.22 ns
tCCY Input to carry chain (FCI) to Y 0.54 0.62 0.71 0.83 ns
tCC Input to carry chain (FCI) to carry chain output (FCO) 0.07 0.08 0.09 0.11 ns
Axcelerator Family FPGAs
v2.1 2-43
Carry-Chain Logic
The Axce lera tor d edicat ed car ry-c hain l ogic offers a very
compact solution for implementing arithmetic functions
withou t sacrificin g perfor m anc e.
To implement the carry-chain logic, two C-cells in a
Cluster are co nnec te d toge ther so the FCO (i.e. carry out)
for the two bits is generated in a Carry Look-ahead
scheme t o ac hi eve minimum propagation delay from the
FCI (i.e. carry in) into the two-bit Cluster. The two-bit
carry l ogic is shown in Figure 2-29.
The FCI of one , two -C-ce ll cluster is drive n by the FCO of
the two-C-cell Cluster immediately above it. Similarly, the
FCO of one, tw o-C-cell cluster, drives the FC I input of the
two-C-cell Cluster immediately below it (Figure 1-4 on
page 1-3 and Figur e 2- 30 on pa ge 2- 44).
The ca rry-cha in logic is s elected via the CFN input. Whe n
carry logic is not required, this signal is deasserted to
save power. Again, this configuration is handled
automat ically for the user thr ough Ac tel’s mac ro librar y.
The s ignal propa gatio n delay b etwe en two C-cell s in th e
carry-chai n se quence is 0.1 ns.
Figure 2-29 AX 2-Bit Carry Logic
1
0
1
0
1
0
1
01
0
1
0
1
0
1
01
0
1
0
1
0
DCOUT
D0
D2
DB
A1
A0
Y
FCO
Y
D0
D2
DB
A1
A0
D1
D3
B1
B0
D1
D3
B1
B0
CFN
CFN
FCI
Axcelerator Family FPGAs
2-44 v2.1
Timing Characteristics
Refe r to th e C- ce ll "Timing Characte ristics" on page 2-46 for more inf or mation on ca rry-ch ain timing.
Note: The carry-chain sequence can end on either C-cell.
Figure 2-30 Carry-Chain Sequenc ing of C-ce lls
DCINDCOUT
C-cell1 C-cell2
DCOUT R-cell1
DCIN
C-cell
(2n-1) C-cell2n
DCOUT R-celln
CDIN
n-2
Clusters
FCO2n
FCI(2n-1)
FCI5
FCO4
FCI3FCO2
FCI1
Axcelerator Family FPGAs
v2.1 2-45
R-Cell
Introduction
The R-cell, the sequential logic resource of the
Axcelerator devices, is the second logic module type in
the AX family architecture. The Axcelerator R-cell is an
enhanced version of the SX-A R-cell. It includes
additional clock inputs for all eight global resources of
the Axcelerator architecture as well as global presets and
clears ( Figure 2-31).
The main features of the R-cell include the following:
Direct connection to the adjacent logic module
through the hardwired connection DCIN. DCIN is
driven by the DCOUT of an adjacent C-cell via the
Direct-Connect routing resource, providing a
connec tion with le ss tha n 0.1 ns of rout ing del ay.
The R-cell can be used as a s tan dal one flip -flo p. It ca n
be driven by any C-cell or I/O modules through the
regular routing structure (using DIN as a routable
data input). This gives the option of using the R-Cell
as a 2:1 MU Xed fl ip - f lo p as wel l.
Provision of data enable-input (S 0).
Indepe nde nt ac tive l ow asy nch ronous clear (CLR).
Independent active low asynchronous preset (PSET). If
both CLR an d PSET a re low, CLR ha s higher prior ity.
Global power-on clear (GCLR) and preset (GPSET),
which driv e eac h flip -flo p on a chi p- w ide basis .
When the global set fuse option in the Designer
software is unchecked (by default), GCLR = 0 and
GPSET =1 at d evice pow er-up. When the option is
checked, GCLR = 1 and GPSET= 0. Both pins are
pulled HIGH when the device is in user mode.
S0, S1, PSET, and CLR can be driven by routed clocks
CLKE/ F/G/H or user signals.
DIN and S1 ca n be dr iven by us er sig nals.
As with the C-cell, the configuration of the R-cell to
perform various functions is handled automatically for
the user through Actel's extensive macro library (please
se e Acte l’s M acro Libr ary G uide for a complete listing of
available AX macros).
Figure 2-31 R-Cell
S1
S0
CKP
CLR
GCLR
PSET
GPSET
DCIN
DIN(user signals)
CKS
Y
HCLKA/B/C/D
CLKE/F/G/H
Internal Logic
Axcelerator Family FPGAs
2-46 v2.1
Timing Models and Waveforms
Timing Characteristics
Figure 2-32 R-Cell Delays
E
D
Q
CLR
PRESET
CLK
tSUE tHE
tSUD tHD
tRCO
tWASYN
tHASYN
tCLR
tREASYN
tCPWHL tCPWLH
tPRESET
tWASYN
tHASYN tREAAYN
Table 2-61 Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C
'–3 ' Speed '–2 ' Speed '–1' Speed 'Std' Sp eed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
R-Cell Propagation Delays
tRCO Sequential Clock-to-Q 0.58 0.67 0.76 0.89 ns
tCLR Asynchronous Clear-to-Q 0.21 0 .24 0.27 0.32 ns
tPRESET Asynchronous Preset-to-Q 0.23 0.27 0.30 0.35 ns
tSUD Flip-Flop Data Input Set-Up 0.20 0.23 0.26 0.31 ns
tSUE Flip-Flop Enable Input Set-Up 0.22 0.25 0.29 0.34 ns
tHD Flip-Flop Data Input Hold 0.00 0.00 0.00 0.00 ns
tHE Flip-Flop Enable Input Hold 0.00 0.00 0.00 0.00 ns
tWASYN Asynchronous Pulse Width 0.48 0 .55 0.63 0.74 ns
tREASYN Asynchronous Recovery Time 0.22 0.25 0.28 0.33 ns
tHASYN Asynchronous Removal Time 0.22 0.25 0.28 0.33 ns
tCPWHL Clock Pulse Width High to Low 0.05 0.06 0.07 0.08 ns
tCPWLH Clock Pulse Width Low to High 0.05 0.06 0.07 0.08 ns
Axcelerator Family FPGAs
v2.1 2-47
Buffer Module
Introduction
An additional resource inside each SuperCluster is the
Buffer (B) module (Figure 1-4 on page 1-3).
When a fanout constraint is applied to a design, the
synthesis tool inserts buffers as needed. The buffer
module has been added to the AX architecture to avoid
logic duplication resulting from the hard fanout
constraints. The router utilizes this logic resource to
save a rea an d reduce lo ading and delays on medi um-to-
high-fanout nets.
Timing Characteristics
Figure 2-33 Buffer Module Timing Model
IN OUT
Figure 2-34 Buffer Module Waveform
OUT
GND
50% 50%
50% 50%
GND
IN
VCCA
VCCA
tBFPD
tBFPD
Table 2-62 Worst-Case Commercial Conditions VCCA = 1.425V, VCCI = 3.0V, TJ = 70°C
'–3 ' Speed '– 2' Speed '–1' Speed 'Std' Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
Buffer Module Propagation Delays
tBFPD Any input to output Y 0.17 0.20 0.22 0.26 ns
Axcelerator Family FPGAs
2-48 v2.1
Routing S pecifications
Routing Resources
The routing structure found in Axcelerator devices
enables any logic module to be connected to any other
logic module while retaining high performance. There
are multiple paths and routing resources that can be
used to route one logic module to another, both within a
SuperClu ste r and elsewh er e o n the chi p .
There are four primary types of routing within the AX
architecture: DirectConnect, CarryConnect, FastConnect
and Vertical and Horizontal Routing.
DirectConnect
DirectConnects provide a high-speed connection
between an R-cell and its adjacent C-cell (Figure 2-35).
This connection can be made from DCOUT of the C-cell
to DCIN of the R-cell by configuring of the S1 line of the
R-cell. This provides a connection that does not require
an antifus e and has a delay of less tha n 0.1 n s.
CarryConnect
CarryConnects are used to build carry chains for
arithmetic functions (Figure 2-35). The FCO output of the
right C-cell of a 2-C-cell Cluster drives the FCI input of the
left C-cell in the 2-C-cell Cluster immediately below it.
This pattern continues down both sides of each
Sup e rClus ter co lumn .
Similar to the DirectConnects, CarryConnects can be built
without an antifuse connection. This connection has a
delay of less than 0.1 ns from the FCO of one 2-C-cell
Cluster to the FCI of the 2-C-cell Cluster immediately
below it (see the "Carry-Chain Logic" on page 2-43 for
more info rmation ).
FastConnect
For high- speed routing of logic signal s, FastConne cts can
be used to build a short distance connection using a
single antifuse (Figure 2-36 on page 2-49). FastConnects
provide a m aximum del ay of 0.3 ns. The out puts of each
logic module connect directly to the Output Tracks
within a SuperCluster. Signals on the Output Tracks can
then be routed through a single antifuse connection to
drive the inputs of logic modules either within one
SuperCluster or in the SuperCluster immediately below
it.
Vertical and Horizontal Routing
Vertical and Horizontal Tracks provide both local and
long distance routing (Figure 2-37 on page 2-49). These
tracks are composed of both short-distance, segmented
routing and across-chip routing tracks (segmented at
core tile boundaries). The short-distance, segmented
routing resources can be concatenated through antifuse
connections to build longer routing tracks.
These short-distance routing tracks can be used within
and bet ween Super Cluster s or b etween m odul es of non-
adjacent SuperClusters. They can be connected to the
Output Tracks and to any logic module input (R-cell, C-
cell, Buf fer, and TX module).
The across-chip horizontal and vertical routing provides
long-distance routing resources. These resources
in terfa ce wi th the rest o f the rout ing st ruc tures throu gh
Figure 2-35 DirectConnect and C arryConne ct
Axcelerator Family FPGAs
v2.1 2-49
the RX and TX modules (Figure 2-37). The RX module is
used to dr ive sign als from t he across -chip ho rizontal an d
vertical routing to the Output Tracks within the
SuperC luster. The TX modul e is used to drive ve rtical and
horizontal acro ss-chip routing from either short-di stance
horizontal tracks or from Output Tracks. The TX module
can als o be used to dr ive signals from vertical acr oss-c hip
tracks to horizontal across-chip tracks and vice versa.
Figure 2-36 Fast Co nn ec t Ro ut i ng
Figure 2-37 Horizontal and Vertical Tracks
Axcelerator Family FPGAs
2-50 v2.1
Timing Characteristics
Table 2-63 AX125
Worst-Ca se Commerc ial Conditions VCCA = 1.425 V, TJ = 70°C
'–3' Speed '–2' Speed '– 1' Speed 'Std' Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
Pr edicted Routing Dela ys
tDC Direct Connect Routing Delay, FO1 0.10 0.11 0.12 0.15 ns
tFC Fast Connect Routing Delay, FO1 0.30 0 .35 0.39 0.46 ns
tRD1 Routing delay for FO1 0.30 0.35 0.40 0.47 ns
tRD2 Routing delay for FO2 0.33 0.38 0.43 0.51 ns
tRD3 Routing delay for FO3 0.37 0.43 0.48 0.57 ns
tRD4 Routing delay for FO4 0.42 0.48 0.55 0.64 ns
tRD5 Routing delay for FO5 0.48 0.55 0.62 0.73 ns
tRD6 Routing delay for FO6 0.55 0.64 0.72 0.85 ns
tRD7 Routing delay for FO7 0.68 0.79 0.89 1.05 ns
tRD8 Routing delay for FO8 0.76 0.88 0.99 1.17 ns
tRD16 Routing delay for FO16 1.29 1.49 1.69 1.99 ns
tRD32 Routing delay for FO32 2.01 2.32 2.63 3.10 ns
Table 2-64 AX250
Worst-Ca se Commerc ial Conditions VCCA = 1.425 V, TJ = 70°C
'– 3' Speed '–2' Speed '–1' Speed 'Std' Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
Pr edicted Routing Dela ys
tDC Direct Connect Routing Delay, FO1 0.10 0.11 0.12 0.15 ns
tFC Fast Connect Routing Delay, FO1 0.30 0.35 0.39 0.46 ns
tRD1 Routing delay for FO1 0.34 0.39 0.45 0.53 ns
tRD2 Routing delay for FO2 0.35 0.41 0.46 0.54 ns
tRD3 Routing delay for FO3 0.42 0.48 0.55 0.64 ns
tRD4 Routing delay for FO4 0.48 0.56 0.63 0.75 ns
tRD5 Routing delay for FO5 0.52 0.60 0.68 0.80 ns
tRD6 Routing delay for FO6 0.73 0.84 0.96 1.13 ns
tRD7 Routing delay for FO7 0.78 0.90 1.02 1.20 ns
tRD8 Routing delay for FO8 0.86 1.00 1.13 1.33 ns
tRD16 Routing delay for FO16 1.88 2.17 2.46 2.89 ns
tRD32 Routing delay for FO32 3.08 3.55 4.03 4.74 ns
Axcelerator Family FPGAs
v2.1 2-51
Table 2-65 AX500
Worst-Ca se Commerc ial Conditions VCCA = 1.425 V, TJ = 70°C
'– 3' Speed '–2' Speed '–1' Speed 'Std' Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
Pr edicted Routing Dela ys
tDC Direct Connect Routing Delay, FO1 0.10 0.11 0.12 0.15 ns
tFC Fast Connect Routing Delay, FO1 0.30 0.35 0.39 0.46 ns
tRD1 Routing delay for FO1 0.34 0.39 0.45 0.53 ns
tRD2 Routing delay for FO2 0.35 0.41 0.46 0.54 ns
tRD3 Routing delay for FO3 0.42 0.48 0.55 0.64 ns
tRD4 Routing delay for FO4 0.48 0.56 0.63 0.75 ns
tRD5 Routing delay for FO5 0.52 0.60 0.68 0.80 ns
tRD6 Routing delay for FO6 0.73 0.84 0.96 1.13 ns
tRD7 Routing delay for FO7 0.78 0.90 1.02 1.20 ns
tRD8 Routing delay for FO8 0.86 1.00 1.13 1.33 ns
tRD16 Routing delay for FO16 1.88 2.17 2.46 2.89 ns
tRD32 Routing delay for FO32 3.08 3.55 4.03 4.74 ns
Table 2-66 AX1000
Worst-Ca se Commerc ial Conditions VCCA = 1.425 V, TJ = 70°C
'–3' Speed '–2' Speed '–1' Speed 'Std' Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
Pr edicted Routing Dela ys
tDC Direct Connect Routing Delay, FO1 0.10 0.12 0.13 0.15 ns
tFC Fast Connect Routing Delay, FO1 0.30 0.35 0.39 0.46 ns
tRD1 Routing delay for FO1 0.39 0.45 0.51 0.60 ns
tRD2 Routing delay for FO2 0.46 0.53 0.60 0.71 ns
tRD3 Routing delay for FO3 0.48 0.56 0.63 0.74 ns
tRD4 Routing delay for FO4 0.55 0.63 0.71 0.84 ns
tRD5 Routing delay for FO5 0.63 0.73 0.82 0.97 ns
tRD6 Routing delay for FO6 0.86 0.99 1.13 1.32 ns
tRD7 Routing delay for FO7 0.88 1.02 1.15 1.36 ns
tRD8 Routing delay for FO8 1.28 1.48 1.68 1.97 ns
tRD16 Routing delay for FO16 2.23 2.57 2.91 3.42 ns
tRD32 Routing delay for FO32 3.68 4.24 4.81 5.65 ns
Axcelerator Family FPGAs
2-52 v2.1
Table 2-67 AX2000
Worst-Ca se Commerc ial Conditions VCCA = 1.425 V, TJ = 70°C
'– 3' Speed '–2' Speed '–1' Speed 'Std' Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
Pr edicted Routing Dela ys
tDC Direct Connect Routing Delay, FO1 0.10 0.12 0.13 0.15 ns
tFC Fast Connect Routing Delay, FO1 0.30 0.35 0.39 0.46 ns
tRD1 Routing delay for FO1 0.43 0.50 0.56 0.66 ns
tRD2 Routing delay for FO2 0.51 0.59 0.67 0.79 ns
tRD3 Routing delay for FO3 0.61 0.70 0.80 0.94 ns
tRD4 Routing delay for FO4 0.66 0.76 0.87 1.02 ns
tRD5 Routing delay for FO5 0.85 0.98 1.11 1.31 ns
tRD6 Routing delay for FO6 1.28 1.48 1.68 1.97 ns
tRD7 Routing delay for FO7 1.43 1.65 1.87 2.20 ns
tRD8 Routing delay for FO8 1.50 1.73 1.96 2.31 ns
tRD16 Routing delay for FO16 2.24 2.58 2.92 3.44 ns
tRD32 Routing delay for FO32 3.68 4.24 4.81 5.65 ns
Axcelerator Family FPGAs
v2.1 2-53
Global Resources
One of the most important aspects of any FPGA
architecture is its global resources or clocks. The
Axcelerator family provides the user with flexible and
easy-to-use global resources, without the limitations
normally found in other FPGA architectures.
The AX architecture contains two types of global
resources, the HCLK (hardwired clock) and CLK (routed
clock). Every Axcelerator device is provided with four
HCLKs and four CLKs for a total of eight clocks,
regardl ess of dev ice density.
Hardwired Clocks
The hardwired (HCLK) is a low-skew network that can
directly drive the clock inputs of all sequential modules
(R-cells, I/O registers and embedded RAM/FIFOs) in the
device with no antifuse in the path. All four HCLKs are
available everywhere on the chip.
Timing Characteristics
Table 2-68 AX125
Worst-Ca se Commerc ial Conditions VCCA = 1.425 V, VCCI = 3.0V, TJ = 70°C
'–3 ' Sp eed '–2' Sp eed '–1' Speed 'St d' Sp ee d
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
Dedicated (Hardwired) Array Clock Networks
tHCKL Input Low to High 2.18 2.52 2.85 3.35 ns
tHCKH Input High to Low 2.81 3.24 3.67 4.32 ns
tHPWH Minimum Pulse Width High 0.50 0.58 0.66 0.77 ns
tHPWL Minimum Pulse W idth Low 0.45 0.52 0.59 0.69 ns
tHCKSW Maximum Skew 0.05 0.06 0.07 0.08 ns
tHP Minimum Period 1.00 1.15 1.31 1.54 ns
tHMAX Maximum Frequency 1000 870 763 649 M Hz
Table 2-69 AX250
Worst-Ca se Commerc ial Conditions VCCA = 1.425 V, VCCI = 3.0V, TJ = 70°C
'–3 ' Sp eed '–2' Sp eed '–1' Speed 'St d' Sp ee d
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
Dedicated (Hardwired) Array Clock Networks
tHCKL Input Low to High 2.18 2.52 2.85 3.35 ns
tHCKH Input High to Low 2.81 3.24 3.67 4.32 ns
tHPWH Minimum Pulse Width High 0.50 0.58 0.66 0.77 ns
tHPWL Minimum Pulse W idth Low 0.45 0.52 0.59 0.69 ns
tHCKSW Maximum Skew 0.05 0.06 0.07 0.08 ns
tHP Minimum Period 1.00 1.15 1.31 1.54 ns
tHMAX Maximum Frequency 1000 870 763 649 M Hz
Axcelerator Family FPGAs
2-54 v2.1
Table 2-70 AX500
Worst-Ca se Commerc ial Conditions VCCA = 1.425 V, VCCI = 3.0V, TJ = 70°C
'–3' Speed '–2' Speed '–1' Speed 'Std' Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
Dedicated (Hardwired) Array Clock Networks
tHCKL Input Low to High 2.18 2.52 2.85 3.35 ns
tHCKH Input High to Low 2.81 3.24 3.67 4.32 ns
tHPWH Minimum Pulse Width High 0.50 0.58 0.66 0.77 ns
tHPWL Minimum Pulse Width Low 0.45 0.52 0.59 0.69 ns
tHCKSW Maximum Skew 0.05 0.06 0.07 0.08 ns
tHP Minimum Period 1.00 1.15 1 .31 1.54 ns
tHMAX Maximum Frequency 1000 870 763 649 MHz
Table 2-71 AX1000
Worst-Ca se Commerc ial Conditions VCCA = 1.425 V, VCCI = 3.0V, TJ = 70°C
'–3' Speed '–2' Speed '–1' Speed 'Std' Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
Dedicated (Hardwired) Array Clock Networks
tHCKL Input Low to High 2.50 2.88 3.27 3.85 ns
tHCKH Input High to Low 3.10 3.58 4.05 4.77 ns
tHPWH Minimum Pulse Width High 0.50 0.58 0.66 0.77 ns
tHPWL Minimum Pulse Width Low 0.45 0.52 0.59 0.69 ns
tHCKSW Maximum Skew 0.05 0.06 0.07 0.08 ns
tHP Minimum Period 1.00 1.15 1 .31 1.54 ns
tHMAX Maximum Frequency 1000 870 763 649 MHz
Table 2-72 AX2000
Worst-Ca se Commerc ial Conditions VCCA = 1.425 V, VCCI = 3.0V, TJ = 70°C
'–3 ' Speed '–2' Speed '–1' Speed 'Std' Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
Dedicated (Hardwired) Array Clock Networks
tHCKL Input Low to High 2.80 3.23 3.66 4.31 ns
tHCKH Input High to Low 3.30 3.81 4.32 5.08 ns
tHPWH Minimum Pulse Width High 0.50 0.58 0.66 0.77 ns
tHPWL Minimum Pulse Width Low 0.45 0.52 0.59 0.69 ns
tHCKSW Maximum Skew 0.05 0.06 0.07 0.08 ns
tHP Minimum Period 1.00 1.15 1.31 1.54 ns
tHMAX Maximum Fr equenc y 1000 870 763 6 49 MHz
Axcelerator Family FPGAs
v2.1 2-55
Routed Clocks
The routed clock (CLK) is a low-skew network that can
drive the clock inputs of all sequential modules in the
device (logically equivalent to the HCLK), but has the
added flexibility in that it can drive the S0 (Enable), S1,
PSET, and CLR input of a register (R-cells and I/O
registers ) as w ell as any of the inputs of any C -cel l in th e
device. This allows CLKs to be used not only as clocks, but
also for other global signals or high fanout nets. All four
CLKs ar e available ever yw her e on th e chi p.
Timing Characteristics
Table 2-73 AX125
Worst-Ca se Commerc ial Conditions VCCA = 1.425 V, VCCI = 3.0V, TJ = 70°C
'–3 ' Speed '–2' Speed '–1' Speed 'Std ' Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
Routed Array Clock Networks
tRCKL Input Low to High 2.50 2.88 3.27 3.85 ns
tRCKH Input High to Low 2.50 2.88 3.27 3.85 ns
tRPWH Minimum Pulse Width High 0.50 0.58 0.66 0.77 ns
tRPWL Minimum Pulse Width Low 0.45 0.52 0.59 0.69 ns
tRCKSW Maximum Skew 0.30 0.35 0.39 0.46 ns
tRP Minimum Period 1.001.151.311.54 ns
tRMAX Maximum Frequency 1000 870 763 649 MHz
Table 2-74 AX250
Worst-Ca se Commerc ial Conditions VCCA = 1.425 V, VCCI = 3.0V, TJ = 70°C
'–3 ' Speed '–2' Speed '–1' Speed 'Std ' Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
Routed Array Clock Networks
tRCKL Input Low to High 2.50 2.88 3.27 3.85 ns
tRCKH Input High to Low 2.50 2.88 3.27 3.85 ns
tRPWH Minimum Pulse Width High 0.50 0.58 0.66 0.77 ns
tRPWL Minimum Pulse Width Low 0.45 0.52 0.59 0.69 ns
tRCKSW Maximum Skew 0.30 0.35 0.39 0.46 ns
tRP Minimum Period 1.001.151.311.54 ns
tRMAX Maximum Frequency 1000 870 763 649 MHz
Axcelerator Family FPGAs
2-56 v2.1
Table 2-75 AX500
Worst-Ca se Commerc ial Conditions VCCA = 1.425 V, VCCI = 3.0V, TJ = 70°C
'–3' Speed '–2' Speed '–1 ' Speed 'Std' Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
Routed Array Clock Networks
tRCKL Input Low to High 2.86 3.30 3.74 4.40 ns
tRCKH Input High to Low 2.86 3.30 3.74 4.40 ns
tRPWH Minimum Pulse Width High 0.50 0.58 0.66 0.77 ns
tRPWL Minimum Pulse Width Low 0.45 0.52 0.59 0.69 ns
tRCKSW Maximum Skew 0.30 0.35 0.39 0.46 ns
tRP Minimum Period 1.00 1.15 1.31 1.54 ns
tRMAX Maximum Frequency 1000 870 763 649 MHz
Table 2-76 AX1000
Worst-Ca se Commerc ial Conditions VCCA = 1.425 V, VCCI = 3.0V, TJ = 70°C
'–3' Speed '–2 ' Speed '–1 ' Sp ee d 'S td' Sp e ed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
Routed Array Clock Networks
tRCKL Input Low to High 3.90 4.50 5.10 6.00 ns
tRCKH Input High to Low 3.90 4.50 5.10 6 .00 ns
tRPWH Minimum Pulse Width High 0.50 0.58 0.66 0.77 ns
tRPWL Minimum Pulse Width Low 0.45 0.52 0.59 0.69 ns
tRCKSW Maximum Skew 0.30 0.35 0.39 0.46 ns
tRP Minimum Period 1.00 1 .15 1.31 1.54 ns
tRMAX Maximum Frequency 1000 870 763 649 MHz
Table 2-77 AX2000
Worst-Ca se Commerc ial Conditions VCCA = 1.425 V, VCCI = 3.0V, TJ = 70°C
'–3' Speed '–2' Speed '–1' Speed 'Std' Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
Routed Array Clock Networks
tRCKL Input Low to High 4.90 5.65 6.41 7.54 ns
tRCKH Input High to Low 4.90 5.65 6.41 7.54 n s
tRPWH Minimum Pulse Width High 0.50 0.58 0.66 0.77 ns
tRPWL Minimum Pulse Width Low 0.45 0.52 0.59 0.69 ns
tRCKSW Maximum Skew 2.60 3.00 3.40 4.00 ns
tRP Minimum Period 1.00 1.15 1.31 1.54 ns
tRMAX Maximum Frequency 1000 870 763 649 MHz
Axcelerator Family FPGAs
v2.1 2-57
Global Resou rce Distribution
At the root of each global resource is a PLL. There are
two groups of four PLLs for every device. One group,
located at the center of the n orth edge (in the I/O ring)
of the chip, sources the four HCLKs. The second group,
located at the cen ter of the south edge (a gain in th e I/O
ring), sources the four CLKs (Figure 2-38).
Regardless of the type of global resource, HCLK or CLK,
each o f the eight r esources reach the Cl ockTileDist (CTD )
Cluster l ocated at th e center of every core tile with zer o
skew. From the ClockTileDist Cluster, all four HCLKs and
four CLKs are distributed t hrough the core t ile (Figure 2-
39).
Figure 2-38 PLL Group
Figure 2-39 Example of HCLK and CLK Distributions on the AX2000
PLL Cluster
PLL Cluster
PN PN PN PN
PN PN PN PN
HCLKA HCLKB HCLKC HCLKD
CLKE
PLL
CLKF CLKG CLKH
PLL PLL PLL
PLL PLL PLL PLL
PLL Group
HCLK CLK
PLL Group
4
4
ClockTileDist Cluster
Axcelerator Family FPGAs
2-58 v2.1
The ClockTileDist Cluster contains an HCLKMux (HM)
module for each of the four HCLK trees and a CLKMux
(CM) module for each of the CLK trees. The HCLK
branches then propagate horizontally through the
middle of the core tile to HCLKColDist (HD) modules in
every Super Cluster c olum n. Th e C LK bran ches propag ate
vertically through the center of the core tile to
CLKRowDist (RD) modules in every SuperCluster row.
Tog ether, the H CLK and CLK branche s provide for a low-
skew global fanout within the core tile (Figure 2-40 and
Figure 2-41).
Figure 2-40 CTD, CD, a nd HD Module Layout
Figure 2-41 HCLK and CLK Distribution within a Core Tile
Axcelerator Family FPGAs
v2.1 2-59
The HM and CM modul es can select bet ween:
The HCLK or CLK sou rce respec tively
A lo cal s ignal ro ute d on ge ner ic r out i ng r eso urces
An unused input can be tied to ground for power
savings.
This allows each core tile to have eight clocks
independent of the other core tiles in the device.
Both HCLK and CLK are segmentable, meaning that
individual branches of the global resource can be used
independently.
Like the HM and CM modules, the HD and RD modules
ca n sele ct betwee n:
The HCLK or CLK source from the HM or CM module
respectively
A lo cal s ignal ro ute d on ge ner ic r out i ng r eso urces
Again, an unu sed input can be t ied to groun d for power
savings.
The AX architecture is capable of supporting a large
number of local clocks – 24 segments per HCLK driving
north-south and 28 segments per CLK driving east-west
per co re til e.
Actel's Designer softwares place-and-route takes
advantage of the segmented clock structure found in
Axcelerator devices by turning off any unused clock
segments. This results in not only better performance but
also lower power consumption. Future releases of
Designer will give the user greater control over the use
of these indiv id ual cl ock segments.
Global Resource Access Macros
Global resources can be driven by one of three sources:
external pad(s), an internal net, or the output of a PLL.
These connections can be made by using one of three
types of macros : CLK BUF, CLK INT, and PLL CLK.
CLKB U F and HCLKB U F
CLKBUF (HC LKBUF ) is used to drive a CLK (HCLK ) from
external pads. These macros can be used either
generically or with the specific I/O standard desired
(e.g. CLKBUF_LVCMOS25, HCLKBUF_LVDS, etc.)
(Figure 2-42).
Package pins CLKEP and CLKEN are associated with
CLKE; package pins HCLKAP and HCLKAN are
associated wi t h HC LKA , etc.
Note that when CLKBUF (HCLKBUF) is used with a
single-ended I/O standard, it must be tied to the P-
pad of the CLK (HCLK) package pin. In this case, the
CLK (HCLK ) N-pad ca n be used for user signa ls.
CLKINT an d HC LKINT
CLKINT (HCLKINT) is used to access the CLK (HCLK)
resource internally from the user signals (Figure 2-43).
PLLRCLK and PLLH CLK
PLLRCLK (PLLHCLK) is used to drive global resource
CLK (HCLK) from a PLL (Figure 2-44).
Using Global Resources with PLLs
Each global resource has an associated PLL at its root. For
example, PLLA can drive HCLKA, PLLE can drive CLKE, etc.
(Fi gur e 2-45 on page 2-60).
In addition, each clock pin of the package can be used to
drive either its associated global resource or PLL. For
example, package pins CLKEP and CLKEN can drive either
the RefCLK i nput of PL LE or CLKE.
There are two macros required when interfacing the
embedded PLLs with the global resources: PLLINT and PLLOUT.
PLLINT
This macro is used to drive the RefCLK input of the
PLL inter nal l y from user signals.
PLLOUT
This macro is used to connect either the CLK1 or CLK2
output of a PLL to the regular routing network (Figure 2-
46 on page 2- 60).
Figure 2-42 CLKBUF and HCLKBUF
P
NCLKBUF
HCLKBUF
Clock
Network
Figure 2-43 CLKINT and HCLKINT
Figure 2-44 PLLRCLK and PLLHCLK
CLKINT
HCLKINT
Clock
Network
Logic
PLLRCLK
PLLHCLK
Clock
Network
CLK1
CLK2
FB
RefCLK
PLL
Axcelerator Family FPGAs
2-60 v2.1
Implementation Examp le:
Figure 2-47 shows a complex clock distribution example. The reference clock (RefCLK) of PLLE is being sourced from
nonclock signal pins (INBUF to PLLINT). The CLK1 output of PLLE is being fed to the RefCLK input of PLLF. The CLK2
output of PL LE is driving logi c (via PLLO UT). In tur n, this logic is driving t he globa l resource CL KE. PLLF is dr iving both
CLKF and CL KG glo bal resour ces .
Figure 2-45 Example of HCLKA driven from a PLL with External Clock Source
Figure 2-46 Example of PLLINT and PLLOUT Usage
Figure 2-47 Complex Clock Distribution Example
HCLKAP
HCLKAN PLLHCLK
HCLKA
Network
CLK1
CLK2FB
RefCLK
PLLA
PLLINT PLLHCLK
PLLOUT
HCLKA
Network
CLK1
CLK2FB
RefCLK
PLLA
Logic
Logic
CLK1
CLK2
FB
RefCLK
PLLF
CLK1
CLK2FB
RefCLK
PLLE
PLLINTINBUF
Non-Clock
Pins
P
NPLLRCLK
PLLOUT
PLLRCLK
PLLRCLK
CLKE
Logic
CLKF
CLKG
CLKINT
Axcelerator Family FPGAs
v2.1 2-61
Axcelerator Clock Management System
Introduction
Each member of the Axcelerator family contains eight
phase-locked loop (PLL) blocks which perform the
followi n g fu nctio ns:
Program m abl e Del ay (32 s tep s of 250 ps)
Clo ck Skew Min imization
Clock Frequency Synthesis
Each PLL has th e fo llowi ng key features:
Input Freq uency Range – 14 t o 200 MHz
Output Frequency Rang e – 20 MHz to 1 GHz
Output Duty Cy cl e Rang e – 45% to 55%
Maximum Lo ng-T erm Jitte r – 1% or 100ps (whichever is
greater)
Maximum Short-Term Jitter – 50ps + 1% of Output
Frequency
Maxim um Acquis itio n Time (lock) – 20µs
Physical Implementation
The eight PLL blocks are arra nged in tw o groups of four.
One group is located in the c enter of the no rthern edge
of the chip, while the second group is centered on the
southern edge. The northern group is associated with
the four HCLK networks (e.g. PLLA can drive HCLKA),
while the southern group is assoc ia ted wit h the fou r CL K
networ ks (e. g. PLLE can drive CLKE).
Each PLL cell is connected to two I/O pads and a PLL
Cluster that interfaces with the FPGA core. Figure 2-48
illustrates a PLL block. The VCCPLL pin should be
connected to a 1.5V power supply through a 250
resistor. Furthermore, 0.1µF and 10µF decoupling
capacitors should be connected across the VCCPLL and
VCompPLL pins. Note: The VCompPLL pin should never be
grounde d (Figu re 2-3 on page 2-8)!
The I/O pads associated with the PLL can also be
configured for regular I/O functions except when it is
used as a clock buffer. The I/O pads can be configured in
all the modes available to the regular I/O pads in the
same I/O bank. In particular, the [H]CLKxP pad can be
configured as a differential pair, single-ended, or
voltage- referen ced standar d. The [H]CLK xN pad ca n only
be used as a differential pair with [H]CLKxP.
The block marked “/ i De lay Match” i s a fixed delay equal
to that of the i divider. The “/j Delay Match” block has
the same func tion as its j divider counterpart.
Figure 2-48 PLL Block Diagram
RefCLK
FB
Lock
6
DIVJ
CLK1
CLK2
FBMuxSel DelayLine DIVJ LowFreq Osc
56 3
Delay Line
PowerDown
Delay Line
PLL
/i Delay
Match
/j Delay
Match
/i
/j
Axcelerator Family FPGAs
2-62 v2.1
Functional Description
Figure 2-48 on page 2-61 illustrates a block diagram of
the PLL. The PLL contains two dividers, i and j, that allow
freq uency sca lin g of the clo ck si g nal:
The i divider in the feedback path allows
multiplication of the input clock by integer factors
ranging from 1 to 64, and the resultant frequency is
available at the output of the PLL block.
The j divid er di vi des the PL L output by i nte ger fa ct ors
ranging from 1 to 64, and the divided clock is
avai lable at CLK1.
The two dividers together can implement any
combination of multiplication and division up to a
maximum frequency of 1 GHz on CLK1. Both the CLK1
and CLK2 out put s ha ve a fixed 50/50 duty c ycle.
The output frequenci es of the two clocks are given by
the following formulas (fREF is the reference clock
frequency):
f CLK1 = f REF * (DividerI) / (DividerJ)
f CLK2 = f REF * (DividerI)
CLK2 provides the PLL output directly—without
division
The input and output frequency ranges are selected by
LowFreq and Osc(2:0), respectively. These functions and
their pos sible val ues are detaile d in Table 2-78.
The delay lines shown in Figure 2-48 on page 2-61 are
programmable. The feedback clock path can be delayed
(using the five DelayLine bits) relative to the reference
clock (or vice versa) by up to 3.75 ns in increments of 250
ps. Table 2-78 describes the usage of these bits. The delay
increments are independent of freq uency, so this results
in phase changes that vary with frequency. The delay
value is highly dependent on VCC and the s peed grade.
Figure 2-49 on page 2-63 is a logical diagram of the
various con tr ol signa ls to the PLL and shows how the PLL
interfaces with the global and routing networks of the
FPGA . Not e tha t not all sig nals are user-accessibl e. T hese
non-user-acce ssible signals are us ed by Acte l's place-and-
route tool to control the configuration of the PLL. The
user gains access to these control signals either based
upon the connections built in the user's design or
through the special macros (Table 2-82 on page 2-65)
inserted into the design. For example, connecting the
macro PLLOUT to C LK2 wi ll cont rol the OUTS EL signal.
Table 2-78 PLL Interface Signals
Signal Name Type User Accessible Allowable Values Function
RefCLK Input Yes Refer ence Clock fo r the PLL
FB Input Yes Feedback port for the PLL
PowerDown Input Yes PLL power down control
0 PLL powered down
1 PLL active
DIVI[5:0] Input Yes 1 to 64, in unsigned
binary notation offset
by -1
Sets value for feedback divider (multiplier)
DIVJ[ 5:0] Input Yes Sets value for CLK1 divid er
LowFreq Input Yes Input frequency range selector
0 50–200 MHz
1 14–50 MHz
Osc[2:0] Input Yes Output frequency range selector
XX0 400– 100 0 MHZ
001 200–400 MHZ
011 100–200 MHZ
101 50– 100 MHZ
111 20– 50 MHZ
DelayLine[4:0] Input Yes –15 to +15
(increments), in signed-
and-ma gni tude bin ary
representation
Clock Delay (positive/negative) in increments of 250 ps, with
maximum value of ± 3.75 ns
FBMuxSel Input No Selects the source for the feedback input
REFSEL Input No Selects the source for the referen ce clock
OUTSEL Input No Selects the source for the routed net output
PLLSEL Input No ROOTSEL & PLLSEL are used to select the source of the global
clock network
ROOTSEL Input No
Axcelerator Family FPGAs
v2.1 2-63
PLL Configurations
The fo llow ing rules ap pl y t o the different PLL inputs and
outputs:
Reference Clock
The RefCL K ca n be dr i ven by (Figure 2-50):
1. Global routed clocks (CLKE/F/G/H) or user-created
clock ne twork
2. CLK1 output of an adjacent PLL
3. [H]CLK xP ( single- ended or voltage -ref ere nced)
4. [H]CLKxP/[H]CLKxN pair (differential modes like
LVPECL or LVDS)
Feedback Clock
The feedback clock can be driven by ( Figure 2-51 on page
2-64):
1. Global routed clocks (CLKE/F/G/H) or user-created
clock ne twork
2. External [H]CLKxP/N I/O pad(s) from the adjace nt PLL
cell
3. An internal signa l from th e PLL block
Lock Output Yes High value indicates PLL has locked
CLK1 Output Yes PLL clock output
CLK2 Output Yes PLL clock output
Note: Not all signals are available to the user.
Figure 2-49 PLL Logical Interface
Table 2-78 PLL I nterface Signals (Continued)
Signal Name Type User Accessible Allowable Values Function
RefCLK
FB
CLK1
CLK2
REFSEL ROOTSEL
FBMuxSEL
[H]CLKINT
[H]CLKxP
[H]CLKxN
I/O
Core net
CLK net FBINT
0
0
1
1
2
3
CLKINT
CLK1 (PLLn-1) CLK1 (PLLn-1) [H]CLK
To PLLn+1
PLLSEL
OUTSEL
CLK Out
(Routed net out pin)
PLL
Figure 2-50 Reference Clock Connections
Non-clock
Pins
P
N
INBUF
PLL
RefCLK
RefCLK PLL
RefCLK PLL
PLL CLK1
Regular, LVPECL, or LVDS IOPAD
Any macro from the core, except HCLK nets
For cascading
Logic
Axcelerator Family FPGAs
2-64 v2.1
CLK1 a n d C LK2
Both PL L outputs, CLK 1 and CLK2, can be used to drive a
global resource, an adjacent PLL RefCLK input, or a net in
the FPGA core. Not all drive combinations are possible
(Table 2-79).
Rest r ictions on CLK1 and CLK2
When both are driving global resources, they must be
driving the same type of global resource (i.e. either
HCLK or CLK).
Only one c an drive a routed net at any given time .
Table 2-80 and Table 2-81 specify all the possible CLK1
and CLK2 connections for the north and south PLLs.
HCLK1 and HCLK2 are used to denote the different HCLK
networks when two are being driven at the same time by
a single PLL (Note that HCLK1 is the primary clock
reso urce asso ciated with the PL L, and HCLK 2 is the cl ock
resource associated with the adjacent PLL). Likewise,
CLK1 and CLK2 are used to denote the different CLK
networks when two are being driven at the same time by
a single PL L (Figure 2-48 on pag e 2-6 1).
Figure 2-51 Fe edback Clock Connections
Table 2-79 PLL General Connections Rules
CLK1 CLK2
HCLK HCLK
CLK CLK
HCLK Routed net output
Routed net output HCLK
HCLK NONE
NONE HCLK
CLK NONE
NONE CLK
Note: The PLL outputs remain LOW when REFCLK is constant
(either LOW or HIGH).
PLL
FB
FB PLL
PLLOUT/PLLRCLK
Any macro except HCLK macros
Table 2-80 Nort h PL L Conn ec t ion s
CLK1 CLK2
HCLK1 Routed net
HCLK1 Unused
HCLK2 HCLK1
HCLK2 Routed net
HCLK2 Both HCLK1 and routed net
HCLK2 Unused
Unused HCLK1
Unused Routed net
Unused Both HCLK1 and routed net
Unused Unused
Routed net H CLK1
Routed net Unused
Both HCLK1 and HCLK2 Routed net
Both HCLK1 and HCLK2 Unused
Both HCLK1 and routed net Unusable
Both HCLK2 and routed net HCLK1
Both HCLK2 and routed net Unused
HCLK1, HCLK2, and routed net Unusable
Note: Desi gner softw are curr entl y d oes no t su ppor t a l l of the se
connections. Only exclusive connections where one
output connects to a single net are supported at this ti me
(e.g.CLK1 driving HCLK1, and HCLK2 is not supported).
Table 2-81 South PLL Connections
CLK1 CLK2
CLK1 Routed net
CLK1 Unused
CLK2 CLK1
CLK2 Routed net
CLK2 Both CLK1 and routed net
CLK2 Unused
Unused CLK1
Unused Routed net
Unused Both CLK1 and routed net
Unused Unused
Routed net CLK1
Routed net Unused
Both CLK1 and CLK2 Routed net
Both CLK1 and CLK2 Unused
Both CLK1 and routed net Unusable
Both CLK2 and routed net CLK1
Both CLK2 and routed net Unused
CLK1, CLK2, and routed net Unusable
Note: Desi gner softw are curr entl y d oes no t su ppor t a l l of the se
connections. Only exclusive connections where one
output connects to a single net are supported at this ti me
(e.g., CLK1 driving both CLK1 and CLK2 is not supported).
Axcelerator Family FPGAs
v2.1 2-65
Special PLL Macros
Table 2-82 shows the macros used to connect the RefCLK input and CLK1 and CLK2 outputs using the different routing
reso urce s.
Table 2-82 PLL Special Macros
Macro Name Usage
PLLINT Connects RefCLK to a regular routed net or a pad.
PLLRCLK Connects CLK1 or CLK2 to the CLK network.
PLLHCLK Connects CLK1 or CLK2 to the HCLK network.
PLLOUT Connects CLK1 or CLK2 to a regular routed net.
Table 2-83 Electrical Specifications
Parameter Value Notes
Frequenc y Ranges
Reference Frequency (min.) 14 MHz Lowest input frequency
Reference Frequency (max.) 200 MHz Highest input frequency
OSC Freq uency (min.) 20 MHz Lowest output frequency
OSC Frequency (max.) 1 GHz Highest output frequency
Jitter
Long-Term Jitter (max.) 1% Percentage of period, low reference clock frequencies
Long-Term Jitter (max.) 100ps High reference clock frequencies
Short-Term Jitter (max.) 50ps+1% Percentage of output frequency
Acquisition Time (lock) from Cold Start
Acquisition Time (max.)* 400 cycles Pe riod of low reference clock frequencies
Acqui si tion Ti me (max.)* 1.5 µs High refer ence clock frequencies
Po we r Co nsumpt i on
Analog Supply Current (low freq.) 200µA Current at minimum oscillator frequency
Analog Supply Current (high freq.) 200µAFrequency-dependent current
Digital Supply Current (low freq.) 0.5µA/MHz Current at maximum oscillator frequency, unloaded
Digital Supply Curr ent (high f req.) 1µA/MHz Frequency-dependent current
Duty Cycle
Minimum Duty Cycle 45%
Maximum Duty Cycle 55%
Note: *The lock bit remains LOW until RefCLK reaches the minimum input frequency.
Axcelerator Family FPGAs
2-66 v2.1
User Flow
There are two method s of includ ing a PLL i n a des ign :
The recomm ended method of using a PLL is to create
custom PLL blocks using Actel's macro generator,
ACTg en, that can be instantiat ed i n a des ig n.
The alternative method is to instantiate one of the
generic library primitives (PLL or PLLFB) into either a
schematic or HDL netlist, using inverters for polarity
control and tying all unused add ress and data bits to
ground.
Timing Characteristics
Figure 2-52 PLL Model
CLK
CLK1
Lock
CLK2
Configuration Pins
DividerI/DividerJ
Delay Line
FBMux
OSC
6356
FB
tPCLK*
* t
PCLK
is the delay in the clock signal
Axcelerator Family FPGAs
v2.1 2-67
Sam pl e Imp le m ent at i ons
Frequency Synthesis
Figure 2-53 illustrates an example where the PLL is used
to multiply a 155.5 MHz external clock up to 622 MHz.
Note that the same PLL schematic could use an external
350 MHz clock, wh ich is div ided dow n to 155 MHz by the
FPGA inte rnal logic .
Figure 2-54 illustrates the PLL using both dividers to
synthesize a 133 MHz output clock from a 155 MHz input
reference clock. The input frequency of 155 MHz is
multiplied by 6 and divided by 7, giving a CLK1 output
frequency of 132.86 MHz. When dividers are used, a
given ratio can be g enerated in multiple ways, allowing
the user to stay within the operating frequency ranges of
the PLL .
Figure 2-53 Using the PLL 155.5 MHz In, 622 MHz Out
Figure 2-54 Using the PLL 155 MHz In, 133 MHz Out
Delay Line
PLL
Delay Line
RefCLK
FB
/i
6
/j
6
CLK1
PowerDown
Lock
CLK2
FBMuxSel 5DividerIDelayLine
DividerJ
LowFreq 3
Osc
÷4
155.5 MHz
622 MHz
/i Delay
Match
/j Delay
Match
5
Delay Line
PLL
Delay Line
RefCLK
FB
/i
6
/j
6
CLK1
PowerDown Lock
CLK2
FBMuxSel DividerI
DelayLine
DividerJ
LowFreq
3
Osc
÷6
155 MHz 132.8 MHz
155 MHz
155 MHz
930 MHz
/7
Yes
/i Delay
Match
/j Delay
Match
Axcelerator Family FPGAs
2-68 v2.1
Adjustable Clock Delay
Figure 2-55 illustrates using the PLL to delay the reference clock by employing one of the adjustable delay lines. In this
case, the output clock is delayed relative to the reference clock. Delaying the reference clock relative to the output
clock is accomplished by using the delay line in the feedback path.
Figure 2-55 Using the PLL Delaying the Reference Clock
Delay Line
Delay Line
PLL
RefCLK
FB
6
/j
6
CLK1
PowerDown Lock
CLK2
FBMuxSel 5DividerIDelayLine
DividerJ
LowFreq 3
Osc
÷1
133 MHz
133 MHz
/j
/i Delay
Match
/j Delay
Match
Axcelerator Family FPGAs
v2.1 2-69
Clock Skew Minimization
Figure 2-56 indicates how feedback from the clock
network can be used to create minimal skew between
the dis tribu ted clock netwo rk and the "i nput" clock. The
input clock i s fed to the referenc e clock inp ut of the PLL.
The output clock (CLK2) feeds a routed clock network.
The feedb ack input to the PLL use s a clock input delaye d
by a rou ting network. The PLL then adjus ts the phase of
the input clock to match the delayed clock, thus
providing nearly zero effective skew between the two
clocks. Refer to Actels Axcelerator Family PLL and Clock
Management application note for more information.
Figure 2-56 Using the PLL for Clock Deskewing
QCLR
Delay Line
PLL
RefCLK
FB
6
/j
6
CLK1
PowerDown
Input Clock
Clock Network
Lock
CLK2
FBMuxSel 5DividerI
DelayLine
DividerJ
LowFreq 3
Osc
÷1
133 MHz
133 MHz
D
QSET
133 MHz
Delay Line /i
/i Delay
Match
/i Delay
Match
Axcelerator Family FPGAs
2-70 v2.1
Embe dde d Memory
The AX architecture provides extensive, high-speed
memory resources to the user. Each 4,608 bit block of
RAM contains its own embedded FIFO controller,
allowing the user to configu re each block as either RAM
or FIFO.
To meet the needs of high performance designs, the
memory blocks operate in synchronous mode for both
read and write operations . However, t he read and w rite
clocks are completely independent, and each may
operate up to and abov e 500 MHz.
No additional core logic resources are required to
cascade the address and data buses when cascading
different RAM blocks. Dedicated routing runs along each
column of RAM to facilitate cascading.
The AX memory block includes dedicated FIFO control
logic to generate internal addresses and external flag
logic (FULL, EMPTY, AFULL, AEMPTY). Since read and
write operations can occur asynchronously to one
another, special control circuitry is included to prevent
metastabi lity, overf low, and un derflow. A block diagr am
of the memory module is illustrate d in Figure 2-57.
During RAM operation, read (RA) and write (WA)
addresses are sourced by user logic and the FIFO
controller is ignored. In FIFO mode, the internal
addresses are generated by the FIFO controller and
routed to the RAM array by internal MUXes. Enables
with programmable polarity are provided to create
upper address bits for cascading up to 16 memory blocks.
When cascading memory blocks, the bussed signals WA,
WD, WEN, RA, RD, and REN are internally linked to
eliminat e external routing congestion.
RAM
Each memory block consists of 4,608 bits that can be
organized as 128x36, 256x18, 512x9, 1kx4, 2kx2, or 4kx1
and are cascadable to create larger memory sizes. This
allows built-in bus width conversion (Table 2-84). Each
block has independent read and write ports which
enable simultaneou s re ad and write operatio ns .
Figure 2-57 Axcelerator Memory Module
RA [K:0] RD [(N-1):0]
REN
RCLK
WD [(M-1):0]
WA [J:0]
WEN
WCLK
PIPE
RW [2:0]
WW [2:0]
Table 2-84 Memory Block WxD Options
Data-wor d (in bits) Depth Address Bus Data Bus
1 4,096 RA/WA[11:0] RD/WD[0]
2 2,048 RA/WA[10:0] RD/WD[1:0]
4 1,024 RA/WA[9:0] RD/WD[3:0]
9 512 RA/WA[8:0] RD/WD[8:0]
18 256 RA/WA[7:0] RD/WD[17:0]
36 128 RA/WA[6:0] RD/WD[35:0]
Axcelerator Family FPGAs
v2.1 2-71
Clocks
The RCLK and the WCLK have independent source
polarity selection and can be sourced by any global or
lo ca l sig n al.
RAM Configurations
The AX architecture allows the read side and write side
of RAMs to be organized independently, allowing for
bus conver sion. For exam ple, the w rite side ca n be set to
256x18 and the read side to 512x9.
Both the w r ite width and r ead width for th e RAM blocks
can be specified independently and changed dynamically
with the WW (write width) and RW (read width) pins.
The DxW different configurations are: 128x36, 256x18,
512x9, 1kx4 , 2kx2 , and 4kx1. The allo wable R W a nd WW
value s are shown in Table 2-86.
When widths of one, two, and four are selected, the
ninth bit is unused. For example, when writing nine-bit
values and readi ng four-bit values , only the first four bits
and the second four bits of each nine-bit value are
addressable for read operations. The ninth bit is not
accessible. Conversely, when writing four-bit values and
reading nine- bi t va lues, the ninth bit of a re ad oper at ion
will be undefined.
Note that the RAM blocks employ little-endian byte order for read and write operations.
Table 2-85 RAM Signal Description
Signal Direction Description
WCLK Input Write clock (can be active on either edge).
WA[J:0] Input Write address bus.The value J is dependent on the RAM configuration and the number of cascaded
memory blocks. The valid range for J is from 6 to15.
WD[M-1:0] Input Write data bus. The value M is dependent on the RAM configuration and can be 1, 2, 4, 9, 18, or
36.
RCLK Input Read clock (can be active on either edge).
RA[K:0] Inp ut Read addr es s bus. The value K is depen dent on the RAM confi gurati on and the num ber of cascad ed
memory blocks. The valid range for K is from 6 to 15.
RD[N-1:0] Out put Read data bus. The value N is depe ndent on the RAM conf igurat ion and can b e 1, 2, 4, 9, 1 8, or 36 .
REN Input Read enable. When this signal is valid on the active edge of the clock, data at location RA will be
driven onto RD.
WEN Input Write enable. When t his signal is valid on the active edge of the clock, WD data will b e written at
location WA.
RW[2:0] Input Width of the read operation dataword.
WW[2:0] Input Width of the write operation dataword.
Pipe Input Sets the pipe option to be on or off.
Table 2-86 Allowable RW and WW Values
RW(2:0) WW( 2:0) D x W
000 000 4kx1
001 001 2kx2
010 010 1kx4
011 011 512x9
100 100 256x18
101 101 128x36
11x 11x reserved
Axcelerator Family FPGAs
2-72 v2.1
Modes of Operation
There are tw o read modes and one write mode:
Read Nonpi pel ined ( sy nchr onous – one clock edge) :
In the st andard re ad mod e, new data is driven onto the
RD bus in the clock cycle immediately following RA and
REN valid. The read address is registered on the read-
port active-clock edge and data appears at read-data
after the RAM access time. Setting the PIPE to OFF
enables this mo d e .
Read Pipel in ed (sync hr onous – two cl oc k edges):
The pipelined mode incurs an additional clock delay
from address to data, but enables operation at a much
higher frequency. The read-address is registered on the
read-port active-clock edge, and the read data is
registered and appears at RD a ft er th e second r ead clock
edge. Setting the PIPE to ON enables this mode.
Write (synchro nous – one clock edge):
On the write active-clock edge, the write data are
written into the SRAM at the write address when WEN is
high. The setup time o f the write addr ess, write enable s,
and write data are minimal with respect to the write
clock.
Write and read transfers are described with timing
requireme nts begi nning in "Timing Charac terist ics" .
Timing Characteristics
Table 2-87 SRAM Model
Figure 2-58 RAM Write Timing Waveforms
WD RD
RA
REN
WA
WCLK RCLK
WEN
WCLK
tWCKP
tWSU tWHD
tWCKH tWCKL
WA<11:0>, WD<35:0>
Axcelerator Family FPGAs
v2.1 2-73
Figure 2-59 RAM Read Timing Waveforms
Table 2-88 One RAM Block
Worst-Ca se Commerc ial Conditions VCCA = 1.425 V, VCCI = 3.0V, TJ = 70°C
'– 3' Speed '–2' Speed '–1' Speed 'St d' Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
Write Mode
tWDSU Write Data Setup vs. WCLK 0.94 1.08 1.23 1.45 ns
tWDHD Write Data Hold vs. WCLK 0.19 0.22 0.25 0.30 ns
tWADSU Write Address Setup vs. WCLK 0.94 1.08 1.23 1.45 ns
tWADHD Write Address Hold vs. WCLK 0.19 0.22 0.25 0.30 ns
tWENSU W rit e Enable Setup vs. WCLK 0.94 1.08 1.23 1.45 ns
tWENHD Write Enable Hold vs. WCLK 0.19 0.22 0.25 0.30 ns
tWCKH WCLK Minimum High Pulse Width 0.85 0 .98 1.11 1.31 ns
tWCLK WCLK Minimum Low Pulse Width 1.00 1.15 1.30 1.53 ns
tWCKP WCLK Minimum Period 1.99 2.29 2.61 3.07 n s
Read Mod e
tRADSU Read Address Setup vs. RCLK 0.70 0.81 0.92 1.08 ns
tRADHD Read Address Hold vs. RCLK 0.00 0.00 0.00 0.00 ns
tRENSU Read Enable Setup vs. RCLK 0.70 0.81 0.92 1.08 ns
tRENHD Read Enable Hold vs. RCLK 0.00 0.00 0.00 0.00 ns
tRCK2RD1 RCLK-To-OUT (Pipelined) 1.21 1.39 1.59 1.86 ns
tRCK2RD2 RCLK-To-OUT (Non-Pipelined) 2.27 2.62 2.98 3.50 ns
tRCLKH RCLK Minimum High Pulse Width 0 .87 1.00 1.14 1.34 ns
tRCLKL RCLK Minimum Low Pulse Width 1.05 1.21 1.38 1.62 ns
tRCKP RCLK Minimum Period 2.10 2.42 2.76 3.24 ns
RCLK
RA<11:0>, REN<4:0>
RD <35:0>
t
RSU
t
RHD
t
RCKP
t
RCKH
t
RCKL
tRSU
t
RCK2RD1
t
RCK2RD2
Axcelerator Family FPGAs
2-74 v2.1
Table 2-89 Two RAM Blocks Cascaded
Worst-Ca se Commerc ial Conditions VCCA = 1.425 V, VCCI = 3.0V, TJ = 70°C
'–3 ' Sp eed '–2 ' Sp eed '–1 ' Sp eed 'Std' Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
Write Mode
tWDSU Write Data Setup vs. WCLK 1.21 1.39 1.59 1.86 ns
tWDHD Write Data Hold vs. WCLK 0.19 0.22 0.25 0.30 ns
tWADSU Write Address Setup vs. WCLK 1.21 1.39 1.59 1.86 ns
tWADHD Write Address Hold vs. WCLK 0.19 0.22 0.25 0.30 ns
tWENSU Wri te Enable Set up vs. W CLK 1.21 1.39 1.59 1.86 ns
tWENHD Write Enable Hold vs. WCLK 0.19 0.22 0.25 0.30 ns
tWCKH WCLK Minimum High Pulse Width 0.85 0 .98 1.11 1.31 ns
tWCLK WCLK Minimum Low Pulse Width 1.99 2.29 2.61 3.07 ns
tWCKP WCLK Minimum Period 3.98 4.58 5.22 6.13 ns
Read Mod e
tRADSU Read Address Setup vs. RCLK 1.48 1.70 1.94 2.28 ns
tRADHD Read Address Hold vs. RCLK 0.00 0.00 0.00 0.00 ns
tRENSU Read Enable Setup vs. RCLK 1.48 1.70 1.94 2.28 ns
tRENHD Read Enable Hold vs. RCLK 0.00 0.00 0.00 0.00 ns
tRCK2RD1 RCLK-To-OUT (Pipelined) 1.31 1.51 1.72 2.02 ns
tRCK2RD2 RCLK-To-OUT (Non-Pipelined) 2.40 2.76 3.14 3.69 ns
tRCLKH RCLK Minimum High Pulse Width 0.83 0.95 1.08 1.27 ns
tRCLKL RCLK Minimum Low Pulse Width 2.14 2.46 2.80 3.29 ns
tRCKP RCLK Minimum Period 4.28 4.92 5.60 6.59 ns
Axcelerator Family FPGAs
v2.1 2-75
Table 2-90 Four RAM Blocks Cascaded
Worst-Ca se Commerc ial Conditions VCCA = 1.425 V, VCCI = 3.0V, TJ = 70°C
'–3' Speed '–2' Speed '–1' Speed 'Std' Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
Write Mode
tWDSU Write Data Setup vs. WCLK 2.06 2.37 2.70 3.17 ns
tWDHD Write Data Hold vs. WCLK 0.19 0.22 0.25 0.30 ns
tWADSU Write Address Setup vs. WCLK 2.06 2.37 2.70 3.17 ns
tWADHD Write Address Hold vs. WCLK 0.19 0.22 0.25 0.30 ns
tWENSU Write Enable Setup vs. WCLK 2.06 2.37 2.70 3.17 ns
tWENHD Write Enable Hold vs. WCLK 0.19 0.22 0.25 0.30 ns
tWCKH WCLK Minimum High Pulse Width 0.85 0.98 1.11 1.31 ns
tWCLK WCLK Minimum Low Pulse Width 2.84 3.27 3.72 4.37 ns
tWCKP WCLK Minimum Period 5.68 6.53 7.44 8.75 ns
Read Mod e
tRADSU Read Address Setup vs. RCLK 2.68 3.08 3.51 4.13 ns
tRADHD Read Address Hold vs. RCLK 0.00 0.00 0.00 0.00 ns
tRENSU Read Enable Setup vs. RCLK 2.68 3.08 3.51 4.13 ns
tRENHD Read Enable Hold vs. RCLK 0.00 0.00 0.00 0.00 ns
tRCK2RD1 RCLK-To-OUT (Pipelined) 2.16 2.49 2.83 3.33 ns
tRCK2RD2 RCL K-To-OUT (Non-Pipelined) 2.92 3.36 3.82 4.50 ns
tRCLKH RCLK Minimum High Pulse Width 0.83 0.95 1.08 1.27 ns
tRCLKL RCLK Minimum Low Pulse Width 3.35 3.85 4 .39 5.16 ns
tRCKP RCLK Minimum Period 6.70 7.70 8.78 10.32 ns
Axcelerator Family FPGAs
2-76 v2.1
Table 2-91 Eight RAM Blocks Cascaded
Worst-Ca se Commerc ial Conditions VCCA = 1.425 V, VCCI = 3.0V, TJ = 70°C
'– 3' Speed '–2 ' Speed '–1 ' Speed 'Std' Sp eed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
Write Mode
tWDSU Write Data Setup vs. WCLK 5.02 5.78 6.58 7.74 ns
tWDHD Write Data Hold vs. WCLK 0.19 0.22 0.25 0.30 ns
tWADSU Write Address Setup vs. WCLK 5.02 5.78 6.58 7.74 ns
tWADHD Write Address Hold vs. WCLK 0.19 0.22 0.25 0.30 ns
tWENSU Write Enable Setup vs. WCLK 5.02 5.78 6.58 7.74 ns
tWENHD Write Enable Hold vs. WCLK 0.19 0.22 0.25 0.30 ns
tWCKH WCLK Minimum High Pulse Width 0.85 0.98 1.11 1.31 ns
tWCLK WCLK Minimum Low Pulse Width 5.80 6.68 7.60 8.94 ns
tWCKP WCLK Minimum Period 11.61 13.35 15 .21 17.88 ns
Read Mod e
tRADSU Read Address Setup vs. RCLK 5.87 6.75 7.69 9.04 ns
tRADHD Read Address Hold vs. RCLK 0.00 0.00 0.00 0.00 ns
tRENSU Read Enable Setup vs. RCLK 5.87 6.75 7.69 9.04 ns
tRENHD Read Enable Hold vs. RCLK 0.00 0.00 0.00 0.00 ns
tRCK2RD1 RCLK-To-OUT (Pipelined) 3.10 3.57 4.06 4.77 ns
tRCK2RD2 RCLK-To-OUT (Non-Pipelined) 4.76 5.48 6.24 7.34 ns
tRCLKH RCLK Minimum High Pulse Width 0.83 0.95 1.08 1.27 ns
tRCLKL RCLK Minimum Low Pulse Width 6.53 7.51 8.55 10.05 ns
tRCKP RCLK Minimum Period 13.06 15.02 17.11 20.11 ns
Axcelerator Family FPGAs
v2.1 2-77
Table 2-92 Sixteen RAM Blocks Cascaded
Worst-Ca se Commerc ial Conditions VCCA = 1.425 V, VCCI = 3.0V, TJ = 70°C
'– 3' Speed ' 2' Speed '–1' Speed 'Std' Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
Write Mode
tWDSU Write Data Setup vs. WCLK 14.38 16.54 18.84 22.15 ns
tWDHD Write Data Hold vs. WCLK 0.19 0.22 0.25 0.30 ns
tWADSU Write Address Setup vs. WCLK 14.38 16.54 18.84 22.15 ns
tWADHD Write Address Hold vs. WCLK 0.19 0.22 0.25 0.30 ns
tWENSU W rit e Enable Setup vs. WCLK 14.38 16.54 18.84 22.15 ns
tWENHD Write Enable Hold vs. WCLK 0.19 0.22 0.25 0.30 ns
tWCKH WCLK Minimum High Pulse Width 0.85 0.98 1.11 1.31 ns
tWCLK WCLK Minimum Low Pulse Width 15.16 17.44 19.86 23.35 ns
tWCKP WCLK Minimum Period 30.33 34.87 39.73 46.70 ns
Read Mod e
tRADSU Read Address Setup vs. RCLK 15.76 18.13 20.65 24.27 ns
tRADHD Read Address Hold vs. RCLK 0.00 0.00 0.00 0.00 ns
tRENSU Read Enable Setup vs. RCLK 15.76 18.13 20.65 24.27 ns
tRENHD Read Enable Hold vs. RCLK 0.00 0.00 0.00 0.00 ns
tRCK2RD1 RCLK-To-OUT (Pipelined) 11.06 12.71 14.48 17.03 ns
tRCK2RD2 RCLK-To-OUT (Non-Pipelined) 12.10 13.91 15.85 18.63 ns
tRCLKH RCLK Minimum High Pulse Width 0.83 0.95 1 .08 1.27 ns
tRCLKL RCLK Minimum Low Pulse Width 16.31 18.75 21.36 25.11 ns
tRCKP RCLK Minimum Period 32.61 37.50 42.72 50.22 ns
Axcelerator Family FPGAs
2-78 v2.1
FIFO
Every memory block has its own embedded FIFO
controller. Each FIFO block has one read port and one
write port. This embedded FIFO controller uses no
internal FP GA logic and fea tures :
Glitch-fre e FIFO Flag s
Gray-code address counters/pointers to prevent
metastabi lity pr obl em s
Overflow and underflow control
Both ports are configurable in various size from 4kx1 to
128x36, similar to the RAM block size. Each port is fully
synchrono us.
Read and write operations can be completely
independent. Data on the appropriate WD pins are
written to the FIFO on every active WCLK edge as long as
WEN is high. Data is read from the FIFO and output on
the appropriate RD pins on every active RCLK edge as
long as REN is asserted.
The FIFO block offers programmable almost empty
(AEMPTY) and almost full (AFULL) flags as well as EMPTY
and FU LL flags ( Figure 2-60):
The FULL flag is synchronous to WCLK. It allows the
FIF O to in h ibi t w riting when full.
The EMPTY f lag i s sync hronous to RC LK. It allows the
FIFO to inhibit reading at the empty condition.
Gray code counters are used to prevent metastability
problems associated with flag logic. The depth of the
FIFO is depend ent on th e data w idth and t he num ber of
memory blocks used to create the FIFO. The write
operations to the FIFO are synchronous with respect to
the WCLK, and the read operations are synchronous with
respect to the RCLK.
The FIFO blo ck may be reset to the empt y state.
Figure 2-60 Axcelerator RAM with Embedded FIFO Controller
CNT 16
E
CNT 16
E=
=
AFVAL
AEVAL
>
> =
SUB 16
RCLK
WD
WCLK
CLR
FWEN
FREN
DEPTH[3:0]
RD [n-1:0]
WD [n-1:0]
RCLK
WCLK
RA [J:0]
WA [J:0]
REN
WEN
FULL
AEMPTY
AFULL
EMPTY
RD
PIPE
RW[2:0]
WW[2:0]
WIDTH[2:0]
RAM
Axcelerator Family FPGAs
v2.1 2-79
FIFO Flag Logic
The FIFO is user configurable into various DEPTHs and
WIDTHs. Figure 2-61 shows the FIFO address counter
details.
Bits 11 to 5 ar e ac ti ve f or all modes.
As the data word size is reduced, more least-
significant bits are added to the addres s.
As the number of cascaded blocks increases, the
numbe r of signifi cant bits in the address incr eas es .
For e xample, if f our blocks are ca scaded as a 1kx1 6 FIFO
with each block having a 1kx4 aspect ratio, bits 11 to 2 of
the address will be used to specify locations within each
RAM block, whereas bits 13 and 12 will be used to specify
the RAM block.
The AFULL and AEMPTY flag threshold values are
programmable. The threshold values are AFVAL and
AEVAL, respectively. Although the trigger threshold for
each flag is de fined with eight bits, the effectiv e num ber
of threshold bits in the comparison depends on the
configuration. The effective number of threshold bits
corresponds to the range of active bits in the FIFO
addres s space (Table 2-93).
Note: Inactive counter bits are set to zero.
Figure 2-61 FIFO Addr ess Counters
Table 2-93 FIFO Flag Logic
Mode Inacti ve AEVAL/AFVAL bits Inactive DIFF bits (set to 0) DIFF comparison to AFVAL/AEVAL
Non-cascade [7:4] [15:12] DIFF[11:8] withAE/FVAL[3:0]
Cascade 2 blocks [7:5] [15:13] DIFF[12:8] withAE/FVAL[4:0]
Cascade 4 blocks [7:6] [15:14] DIFF[13:8] withAE/FVAL[5:0]
Cascade 8 blocks [7] [15] DIFF[14:8] withAE/FVAL[6:0]
Cascade 16 blocks None None DIFF[15:8] withAE/FVAL[7:0]
CNTR [12]
activate
FIFO Address Counters
>> REN [4:0], RAD [11:0]
>> WEN [4:0], WAD [11:0]
[12:W] [13:W] [14:W] [15:W]
128x36 1kx4512x9256x18
[11:5] [11:4] [11:3]
[11:2] [11:1] [11:0]
4kx1
2kx2
Variable Active Address Space
CNTR [15]
activate
CNTR [2]
activate
CNTR [3]
activate
CNTR [4]
activate
CNTR [11:5]
always active
CNTR [13]
activate
CNTR [14]
activate
CNTR [0]
activate
CNTR [1]
activate
Cas 16 blks
by 1
by 2
by 4
by 9
by 18
by 36
Cas 2 blks
Cas 4 blks
Cas 8 blks
Mode when
Active Counter
Bits
R/W EN[3]
R/W ADD[0]
R/W ADD[1]
R/W ADD[2]
R/W ADD[3]
R/W ADD[7:5]
R/W ADD[11:8]
R/W EN[0]
R/W EN[1]
R/W EN[2]
R/W ADD[4]
FIFO Address
AEVAL/AFVAL[7]
not compared
not compared
not compared
not compared
not compared
not compared
AEVAL/AFVAL[3:0]
AEVAL/AFVAL[4]
AEVAL/AFVAL[5]
AEVAL/AFVAL[6]
CNTR [15:0]
Alignment of
Threshold bits
Axcelerator Family FPGAs
2-80 v2.1
Figure 2-62 illustrates flag generation. The Verilog codes for the flags are:
assign AF = (DIFF[15:0] >={AFVAL[7:0],8’b00000000})?1:0;
assig n AE = ({A EVAL[7 :0 ],8’b00000000}>=DIFF [1 5: 0])? 1:0 ;
The number of DIFF-bits active depends on the configuration depth and width (Table 2-94).
The active-high CLR pin is used to reset the FIFO to the
empty state, w hich sets FU LL and AFU LL low, and EM PTY
and AEMPTY high.
Assuming that the EMPTY flag is not set, new data is
read from t he FIF O when RE N is vali d on the a ctive edg e
of the c lock. Wr ite and read t ransfer s are described with
timing requirements in "Timing Characteristics" on
page 2-83.
Figure 2-62 ALMOST-EMPTY and ALMOST-FULL Logic
Table 2-94 Number of Available Configuration Bits
Number of Blocks Bl ock DxW Number of AEVAL/AFVAL Bits
11x14
21x24
22x15
41x44
42x25
44x16
81x84
82x45
84x26
88x17
16 1x16 4
16 2x8 5
16 4x4 6
16 8x2 7
16 16x1 8
ALMOST EMPTY and ALMOST FULL Logic
WCNTR
[15:0]
WCLK
RCNTR
[15:0]
RCLK
16
16
X
Y
X
Y
AEMPTY
AFULL
X>=Y
(16 bit)
DIFF [15:0]
AEVAL [7:0], GND [7:0] (MSB....LSB)
AFVAL [7:0], GND [7:0] (MSB....LSB)
Axcelerator Family FPGAs
v2.1 2-81
Glitch Elimination
An analog filter is added to each FIFO controller to
guar antee gli tch-free F I FO- fl ag logi c.
Overflow and Underflow Control
The counter MSB keeps track of the difference between
the read address (RA) and the write address (WA). The
EMPTY flag is set when th e read an d write addr esses ar e
equal. To prevent underflow, the write address is double-
sampled by the read clock prior to comparison with the
read address (part A in Figure 2-63). To prevent overflow ,
the read address is double-sampled by the write clock
prior to comparison to the write address (part B in
Figure 2-63).
FIFO Configurations
Unlike the RAM, the FIFO’s write width and read width
cannot be specified independently. For the FIFO, the
write and read widths must be the sa me. The WIDTH pins
are used to specify o ne of six allowable word widths, as
shown in Table 2-95.
The DEPTH pins allow RAM cells to be cascaded to create
larger FIFO s . Th e four pin s allo w depth s of 2, 4, 8, and 16
to be specified. Table 2-84 on page 2-70 describes the
FIFO depth options for various data width and memory
blocks.
Interface
Figure 2-64 shows a logic block diagram of the
Axcelera tor FI FO m odul e.
Cascading FIFO Blocks
FIFO blocks can be cascaded to create deeper FIFO
functio ns. When bui lding larger FIFO bloc ks, if the wor d
width can be fractured in a multi-bit FIFO, the fractured
word configuration is recommended over a cascaded
configur ation. For e xam pl e, 256x36 can be configured as
two blo cks of 256x1 8. This shoul d be taken in to account
when b uilding the FI FO bloc ks manual ly. How ever, whe n
using ACTgen, the user only needs to specify the depth
and width of the necessary FIFO blocks. ACTgen
automatically configures these blocks to optimize
performance.
Clock
As with RAM configuration, the RCLK and WCLK pins
have independent polar ity se lect io n
Figure 2-63 Overflow and Underflow Control
AB
=EMPTY
WA
RA
RCLK =FULL
RA
WA
WCLK
Table 2-95 FIFO Width Configurations
WIDTH(2:0) WxD
000 1x4k
001 2x2k
010 4x1k
011 9x512
100 18x256
101 36x128
11x reserved
Figure 2-64 FIFO Block Diagram
DEPTH [3:0] RD [35:0]
FULL
EMPTY
AFULL
AEMPTY
WIDTH [2:0]
FWEN
FREN
PIPE
RCLK
WD [35:0]
AEVAL [7:0]
AFVAL [7:0]
WCLK
CLR
Axcelerator Family FPGAs
2-82 v2.1
Table 2-96 FIFO Signal Description
Signal Direction Description
WCLK Input Write clock (active either edge).
FWEN Input FIFO write en able. W h en t his signal is as ser ted, the WD bu s data is latc hed into t he
FIFO, and the internal write counte rs are incremented.
WD[N-1:0] Input W rit e data bus . The value N is dep endent on th e RAM conf igurat i on and can b e 1,
2, 4, 9, 18, or 36.
FULL Output Active high signal indicating that the FIFO is FULL. When this signal is set,
additional write requests are ignored.
AFULL Output Active high signal indicating that the FIFO is AFULL.
AFVAL Input 8-bit input defining the AFULL value of the FIFO.
RCLK Input Read clock (active either edge).
FREN Input FIFO read enable.
RD[N-1:0] Output Read data bus. The value N is dependent on the RAM configuration and can be 1,
2, 4, 9, 18, or 36.
EMPTY Output Empty flag indicating that the FIFO is EMPTY. When this signal is asserted,
attempts to read the FIFO will be ignored.
AEMPTY Output Active high signal indicating that the FIFO is AEMPTY.
AEVAL Input 8-bit input defining the almost-empty value of the FIFO.
PIPE Input Sets the pipe option on or off.
CLR Input Active high clear input.
DEPTH Input Determines the depth of the FIFO and the number of FIFOs to be cascaded.
WIDTH Input Determines the width of the dataword / width of the FIFO, and the number of the
FIFOs to be cascaded.
Axcelerator Family FPGAs
v2.1 2-83
Timing Cha r ac ter ist ics
Figure 2-65 FIFO Model
Figure 2-66 FIFO Write Timing
WD
FWEN
FREN
RCLK
WCLK
RD
AFULL
EMPTY
AEMPTY
FULL
Clr
tWCKP
t
WSU
t
WHD
t
WCK2FF
t
CLR2FF
t
CLR2HF
t
WCKH
t
WCKL
WCLK
CLR
WD<35:0>, FWEN
EMPTY, AEMPTY, AFULL, FULL
Axcelerator Family FPGAs
2-84 v2.1
Figure 2-67 FIFO Read Timing
RCLK
CLR
t
RCKP
t
RSU
t
RHD
t
RCK2RD1
t
RCK2RD2
t
RCK2FF
t
CLR2FF
t
CLRHF
t
RCKH
t
RCKL
FREN
EMPTY, AEMPTY, AFULL, FULL
RD <35:0>
Axcelerator Family FPGAs
v2.1 2-85
Table 2-97 One FIFO Block
Worst-Ca se Commerc ial Conditions VCCA = 1.425 V, VCCI = 3.0V, TJ = 70°C
'–3' Speed '–2' Speed '–1' Speed 'Std' Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
FIFO Module Timing
tWSU Write Setup 0.94 1.08 1.23 1.45 ns
tWHD Write Hold 0.19 0.22 0.25 0.30 ns
tWCKH WCLK High 0.85 0.98 1.11 1.31 ns
tWCKL WCLK Low 1.00 1.15 1.30 1.53 ns
tWCKP Minimum WCLK Period 2.00 2.30 2.60 3.06 ns
tRSU Read Setup 0.70 0.81 0.92 1.08 ns
tRHD Read Hold 0.00 0.00 0.00 0.00 ns
tRCKH RCLK High 0.87 1.00 1.14 1.34 ns
tRCKL RCLK Low 1.05 1.21 1.38 1.62 ns
tRCKP Minimum RCLK period 2.10 2.42 2.76 3.24 ns
tCLRHF Clear High 0.94 1.08 1.23 1.45 ns
tCLR2FF Clear-to-flag (EMPTY/FULL) 1.75 2.02 2.30 2.70 ns
tCLR2FF Clear-to-flag (AEMPTY/AFULL) 4.02 4.62 5.26 6.19 ns
tCK2FF Clock -to-fla g (EMPTY/FULL ) 1.95 2.24 2.55 3.00 ns
tCK2PF Clock -to-flag (AEMPTY/AF ULL) 4.62 5.31 6.05 7.11 ns
tRCK2RD1 RCLK-To-OUT (Pipelined) 1.21 1.39 1.59 1.86 ns
tRCK2RD2 RCLK-To-OUT (Non-Pipelined) 2.27 2.62 2.98 3.50 ns
Axcelerator Family FPGAs
2-86 v2.1
Table 2-98 Two FIFO Bloc ks Cas caded
Worst-Ca se Commerc ial Conditions VCCA = 1.425 V, VCCI = 3.0V, TJ = 70°C
'–3' Speed '–2' Speed '–1' Speed 'Std' Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
FIFO Module Timing
tWSU Write Setup 1.21 1.39 1.59 1.86 ns
tWHD Write Hold 0.19 0.22 0.25 0.30 ns
tWCKH WCLK High 0.85 0.98 1.11 1.31 ns
tWCKL WCLK Low 1 .99 2.29 2.61 3.07 ns
tWCKP Minimum WCLK Period 3.98 4.58 5.22 6.14 ns
tRSU Read Setup 1.48 1.70 1.94 2.28 ns
tRHD Read Hold 0.00 0.00 0.00 0.00 ns
tRCKH RCLK High 0.83 0.95 1.08 1.27 ns
tRCKL RCLK Low 2.14 2.46 2.80 3.29 ns
tRCKP Minimum RCLK period 4.28 4.92 5.60 6.58 ns
tCLRHF Clear High 0.94 1.08 1.23 1.45 ns
tCLR2FF Clear-to-flag (EMPTY/FULL) 1.75 2.02 2.30 2.70 ns
tCLR2FF Clear-to-flag (AEMPTY/AFULL) 4.02 4.62 5.26 6.19 ns
tCK2FF Clock-to -fl ag (EMPTY/F ULL) 1.95 2.24 2.55 3.00 ns
tCK2PF Clock-to-flag (AEMPTY/AFU LL) 4.6 2 5.31 6.05 7.11 ns
tRCK2RD1 RCLK-To-OUT (Pipelined) 1.31 1.51 1.72 2.02 ns
tRCK2RD2 RCLK-To-OUT (Nonpipelined) 2.40 2.76 3.14 3.69 ns
Axcelerator Family FPGAs
v2.1 2-87
Table 2-99 Four FIFO Blocks Cascaded
Worst-Ca se Commerc ial Conditions VCCA = 1.425 V, VCCI = 3.0V, TJ = 70°C
'–3 ' Speed '–2' Speed '–1' Speed 'S td ' Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
FIFO Module Timing
tWSU Write Setup 2.06 2.37 2.70 3.17 ns
tWHD Write Hold 0.19 0.22 0.25 0.30 ns
tWCKH WCLK High 0.85 0.98 1.11 1.31 ns
tWCKL WCLK Low 2.84 3.27 3.72 4.37 ns
tWCKP Minimum WCLK Period 5.68 6.54 7.44 8.74 ns
tRSU Read Setup 2.68 3.08 3.51 4.13 ns
tRHD Read Hold 0.00 0.00 0.00 0.00 ns
tRCKH RCLK High 0.83 0.95 1.08 1.27 ns
tRCKL RCLK Low 3.35 3.85 4.39 5.16 ns
tRCKP Minimum RCLK period 6.7 7.7 8.78 10.32 ns
tCLRHF Clear High 0.94 1.08 1.23 1.45 ns
tCLR2FF Clear-to-flag (EMPTY/FULL) 1.75 2.02 2.30 2.70 ns
tCLR2FF Clear-to-flag (AEMPTY/AFULL) 4.02 4.62 5.26 6.19 ns
tCK2FF Clock-to-flag (EMPTY/FULL) 1.95 2.24 2.55 3.00 ns
tCK2PF Clock-to-flag (AEMPTY/AFULL) 4.62 5.31 6.05 7.11 ns
tRCK2RD1 RCLK-To-OUT (Pipelined) 2.16 2.49 2.83 3.33 ns
tRCK2RD2 RCLK-To-OUT (Nonpipelined) 2.92 3.36 3.82 4.50 ns
Axcelerator Family FPGAs
2-88 v2.1
Table 2-100 Eight FIFO Blocks Cascaded
Worst-Ca se Commerc ial Conditions VCCA = 1.425 V, VCCI = 3.0V, TJ = 70°C
'– 3' Speed '–2' Speed '–1' Sp eed 'Std ' Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
FIFO Module Timing
tWSU Write Setup 5.02 5.78 6.58 7.74 ns
tWHD Write Hold 0.19 0.22 0.25 0.30 ns
tWCKH WCLK High 0.85 0.98 1.11 1.31 ns
tWCKL WCLK Low 5.80 6.68 7 .60 8.94 ns
tWCKP Minimum WCLK Period 11.60 13.36 15.20 17.88 ns
tRSU Read Setup 5.87 6.75 7.69 9.04 ns
tRHD Read Hold 0.00 0.00 0.00 0.00 ns
tRCKH RCLK High 0.83 0.95 1.08 1.27 ns
tRCKL RCLK Low 6.53 7.51 8.55 10.05 ns
tRCKP Minimum RCLK period 13.08 15.02 17.10 20.10 ns
tCLRHF Clear High 0.94 1.08 1.23 1.45 ns
tCLR2FF Clear-to-flag (EMPTY/FULL) 1.75 2.02 2.30 2.70 ns
tCLR2FF Clear-to-flag (AEMPTY/AFULL) 4.02 4.62 5.26 6.19 ns
tCK2FF Clock-to-flag (EMPTY/FULL) 1.95 2.24 2.55 3.00 ns
tCK2PF Clock-to-flag (AEMPTY/AFULL) 4.62 5.31 6.05 7.11 ns
tRCK2RD1 RCLK-To-OUT (Pipelined) 3.10 3.57 4.06 4.77 ns
tRCK2RD2 RCLK-To-OUT (Nonpipelined) 4.76 5.48 6.24 7.34 ns
Axcelerator Family FPGAs
v2.1 2-89
Building RAM an d FIFO M odules
RAM and FIFO modules can be generated and included
in a design in two different wa ys :
Using the ACTgen Macro Builder where the user
defines the depth and width of the FIFO/RAM, and
then instantiates this block into the design (please
refe r t o A c te l’s ACTg en Macr os User’s Guide for more
information).
The alternative is to instantiate the RAM/FIFO blocks
manually, using inverters for polarity control and
tying all unused da ta bits to ground.
Table 2-101 Sixteen FIFO Blocks Cascaded
Worst-Ca se Commerc ial Conditions VCCA = 1.425 V, VCCI = 3.0V, TJ = 70°C
'–3' Speed '–2' Speed '–1' Speed 'Std' Speed
Parameter Description Min. Max. Min. Max. Min. Max. Min. Max. Units
FIFO Module Timing
tWSU Write Setup 14.38 16.54 18.84 22.15 ns
tWHD Write Hold 0.19 0.22 0.25 0.30 ns
tWCKH WCLK High 0.85 0.98 1.11 1.31 ns
tWCKL WCLK Low 15.16 17.44 19.86 23.35 ns
tWCKP Minimum WCLK Period 30.32 34.88 39.72 46.70 ns
tRSU Read Setup 15.76 18.13 20.65 24.27 ns
tRHD Read Hold 0.00 0.00 0.00 0.00 ns
tRCKH RCLK High 0.83 0.95 1.08 1.27 ns
tRCKL RCLK Low 16.31 18.75 21.36 25.11 ns
tRCKP Minimum RCLK period 32. 62 37.50 42 .72 50.22 ns
tCLRHF Clear High 0.94 1.08 1.23 1.45 ns
tCLR2FF Clear-to- flag (EMPTY/FUL L) 1.75 2.02 2.30 2.70 n s
tCLR2FF Clear - to- flag (AEMPTY/AFU LL) 4.02 4.62 5.26 6.19 ns
tCK2FF Clock-to-flag (EMPTY/FULL) 1.95 2.24 2.55 3.00 ns
tCK2PF Clock-to-flag (AEMPTY/AFULL) 4.62 5.31 6.05 7.11 ns
tRCK2RD1 RCLK-To-OUT (Pipelined) 11.06 12.71 14.48 17.03 ns
tRCK2RD2 RCLK-To-OUT (Nonpipelined) 12.10 13.91 15.85 18.63 ns
Axcelerator Family FPGAs
2-90 v2.1
Other Architec tu ra l Fe atures
Low Power Mode
Although designed for high performance, the AX
archite cture also allow s t he us er t o p lace th e d evice int o
a low power mode. Each I/O bank in an Axcelerator
device can be configured individually, when in low
power mode, to tristate all outputs, disable inputs, or
both. The low power mode is activated by asserting the
LP pin, which is grou nded in normal operation.
While in the low power mode, the device is still fully
functional and all internal logic states are preserved. This
allows a user to disable all but a few signa ls and oper ate
the part in a low-frequency, watchdog mode if desired.
Please n ote, if the I/O b ank is not disabl ed, differentia l I/
Os belonging to the I/O bank will still consume normal
power, even when operating in the low power mode.
The Axcelerator device will resume normal operation
10µs a fter th e LP p i n is pulled L O W.
To further reduce power consumption, the internal
charge pump can be bypassed and an external power
supply voltage can be used instead. This saves the
internal charge-pump operating current, resulting in no
DC current draw. The Axcelerator family devices have a
dedicated "VPUMP" pin that can be used to access an
external charge pump device. In normal chip operation,
when using the internal charge pump, VPUMP should be
tied to GND. When the voltage level on VPUMP is set to
3.3V, the internal charge pump is turned off, and the
VPUMP voltage will be used as the charge pump voltage.
Adequat e voltage regulat ion (i.e. h igh drive, low out put
impedance, and good decoupling) should be used at
VPUMP.
In addition, any PLL in use can be powered down to
further reduce power consumption. This can be done
with the PowerDown pin driven LOW. Driving this pin
HIGH restarts the PLL with the output clock(s) being
stable once lock is restored.
JTAG
Axcelerator offers a JT AG interface that is compliant with
the IEE E 1149.1 standard. The use r can em ploy the JTAG
interface f or p robing a design a nd performing an y JTAG
Public Instructions as defined in the Table 2-102.
Interface
The interface consists of four inputs: Test Mode Select
(TMS), Test Data In (TDI), Test Clock (TCK), TAP Controller
Reset (TRST), and an output, Test Data Out (TDO). TMS,
TDI, and TRST have on-chip pull -up resistors.
TRST
TRST (Test-Logic Reset) is an active-low asynchronous
rese t sig nal to the TA P con trol ler. The TRST i npu t can b e
us ed to re set the Test Ac cess Por t (TAP) Co ntrol ler to th e
TRST state. The TAP Controller can be held at this state
permanently by grounding the TRST pin. To hold the
JTAG TAP controller in the TRST state, it is recommended
to conne ct TR ST t o grou nd vi a a 1k resist or.
An on-chip power-on-reset (POWRST) circuit is included.
POWRST has the same function as "TRST," but it only
occurs at power-up or during recovery from a VCCA a nd/
or VCCDA voltage dr op.
TDO
TDO is normally tristated, and it is active only when the
TAP controller is in the "Shift_DR" state or "Shift_IR"
state. The least significant bit of the selected register (i.e.
IR or DR) is clocked out to TDO fi rst by the falling edge of
TCK.
TAP Controller
The TAP Controller is compliant with the IEEE Standard
1149. 1. It is a st at e m achine of 1 6 stat es t hat contro ls th e
Instruction Register (IR) and the Data Registers (such as
BSR, IDCODE, USRCODE, BYPASS, etc.). The TAP
Controller steps int o on e of the s tates d epend ing on th e
sequen ce of TMS at t he rising edges of TCK.
Table 2-102 JTAG Instruction Code
Instructio n (IR4: IR0) Binary Code
Extest 00000
Preload / Sample 00001
Intest 00010
USERCODE 00011
IDCODE 00100
HIGHZ 01110
CLAMP 01111
Diagnostic 10000
Reserved All others
Bypass 11111
Axcelerator Family FPGAs
v2.1 2-91
Instruction Register (IR)
The IR has 5 bits (IR4 to IR0). At the TRST state, IR is reset
to IDCODE. Each time when IR is selected, it goes
through "select IR-Scan," "Capture-IR," "Shift-IR," all the
way through "Update-IR." When there is no test error,
the first five data bits coming out of TDO during the
"Shift-IR" will be "10111." If a test error occurs, the last
three bits will contai n one to t hre e zer oes cor res ponding
to negatively asserted signals: "TDO_ERRORB,"
"PROBA_ERRORB," and "PROBB_ERRORB." The error(s)
will be erased wh en the TAP is at the "Upda te-IR" or the
TRST state. When in user mode start-up sequence, if the
micro-probe has not been used, the "PRO BA_ERRORB" is
used as a "Pow er-u p done s uccessfully" flag.
Data Registers (DRs)
Data registers are distributed throughout the chip. They
store testing/programming vectors. The MSB of a data
register is connected to TDI, while the LSB is connected
to TDO. There are different types of data registers.
Descriptions of the ma in regi ster s ar e as follow:
1. IDCODE:
The IDCODE is a 32-bit hard coded JTAG Silicon
Signature. It is a hardwired device ID code, which
contains the Actel identity, part number, and version
number in a specific JTAG fo rmat.
2. USERCODE:
The USE RCO DE is a 32- bi t pro gra m mabl e J TAG Silicon
Signatur e. It is a s upplementar y identity code for the
user to program information to distinguish different
programmed parts. USERCODE fuses will read out as
"zeroe s" when no t progr ammed, so only t he "1" bits
need to be progr am m ed.
3. Boundar y- Scan Regi s ter (BSR):
Each I/O con tains three Bo unda ry-Scan Cells. Eac h cell
has a shift register bit, a latch, and two MUXes. The
boundary-scan cells are used for the Output-enable
(E), Output (O), and Input (I) registers. The bit order
of the boundary-scan cells for each of them is E-O-I.
The boundary-scan cells are then chained serially to
form t he Boundary-Scan Register (BSR) . The length of
the BSR is the number of I/Os in the die multiplied by
three.
4. Bypass Regi ster (BYR ):
This is the "1-bit" register. It is used to shorten the
TDI-TDO serial chain in board-level testing to only
one bit p er dev ice not being tes ted. It is also selec ted
for all "reserv ed" or unused instruct io ns.
Probing
Interna l activ ities of the JTAG interface can b e observe d
via the Silicon Explorer II probes: "PRA," "PRB," "PRC,"
and "PRD."
Speci al Fuses
Security
Actel antifuse FPGAs, with FuseLock technology, offer
the highest level of design security available in a
programmable logic device. Since antifuse FPGAs are
live-at power-up, there is no bitstream that can be
intercepted, and no bitstream or programming data is
ever downloaded to the device during power-up, thus
making device cloning impossible. In addition, special
security fuses are hidden throughout the fabric of the
device and may be programmed by the user to thwart
attempts to reverse engineer the device by attempting
to exploi t eithe r t he pr ogr am m in g or pro bin g i nte rfaces.
Both invasive and noninvasive attacks against an
Axcelerator device that access or bypass these security
fuses will destroy access to the rest of the device. (refer
to the Design Security in Nonvolatile Flash and Antifuse
FPGAs white paper ).
Look for this symbol to ensure your valuable IP is secure.
To ensure maximum security in Axcelerator devices, it is
recomm ended that the user program th e device sec urity
fuse (SFUS). When programmed, the Silicon Explorer II
testing probes are disabled to prevent internal probing,
and the programming interface is also disabled. In
additio n, users cannot write into the embed ded memor y
blocks through the JTAG port, which prevents sensitive
data in the embedded memory from being overwritten
or erased. All JTAG public instructions are still accessible
by the user.
For more information, refer to Actel’ s Implementation of
Security in Actel Antifuse FPGAs application note.
Figure 3 Fu seLock Logo
e
u
Axcelerator Family FPGAs
2-92 v2.1
Silicon Explorer II Prob e In terface
Silicon Explorer II is an integrated hardware and
software solution that, in c onjunction wit h the Designer
tools, allows users to examine any of the internal nets
(except I/O registe rs) of th e d ev ice while it is o p e ra ting in
a prototype or a production system. T he user can probe
up to four nodes at a time without changing the
placement and routing of the design and without using
any additional device resources. Highlighted nets in
Designers ChipEditor can be accessed using Silicon
Explo rer II in order to observe their real time val ues .
Silicon Explorer II's noninvasive method does not alter
timing or loading effects, thus shortening the debug
cycle. In addition, Silicon Explorer II does not require
relayout or additional MUXes to bring signals out to an
external pin, which is necessary when using
programmable logic devices from other suppliers. By
eliminating multiple place-and-route program cycles the
integrity of the design is maintained throughout the
debug pro ces s.
Each member of the Axcelerator family has four external
pads: PRA, PRB, PRC, and PRD. These can be used to bring
out four probe signa ls from the Ax celerator devi ce (note
that the AX125 only has two probe signals that can be
observed: PRA and PRB). Ea ch co re tile can h as up to tw o
probe signals. To disallow probing, the SFUS security fuse
in the silicon signature has to be programmed (please
see "Special Fuses" on page 2-91).
Silicon Explorer II connects to the host PC using a
standard se rial port connector. Connections t o t he c i rcuit
board are achieved using a nine-pin D-Sub connector
(Figure 1-9 on page 1-8). Once the design has been
placed-and-routed, and the Axcelerator device has been
programmed, Silicon Explorer II can be connected and
the Explorer software can be launched.
Silicon Explorer II comes with an additional optional PC
hosted tool that emulates an 18-channel logic analyzer.
Four channels are used to monitor four internal nodes,
and 14 channels are available to probe external signals.
The software included with the tool provides the user
with an intuitive interface that allows for easy viewing
and editi ng of sign al wa vef orms .
Programming
Device programming is supported through the Silicon
Sculptor II, a single-site, robust and compact device
programmer for the PC. Up to four Silicon Sculptor IIs can
be daisy-chained and controlled from a single PC host.
With standalone softwar e f or the PC, Silicon Sculptor II is
designed to allow concurrent programming of multiple
units from the sam e PC w hen daisy-ch ai ned.
Silicon Sculptor II programs devices independently to
achieve the fastest programming times possible. Each
fuse is verified by Silicon Sculptor II to ensure correct
program m ing . Furt her mo re, at the end of programming,
there are integrity tests that are run to ensure that
programming was completed properly. Not only does it
test programmed and nonprogrammed fuses, Silicon
Sculptor II also provides a self-test to test its own
hardware extensively.
Programming an Axcelerator device using Silicon
Sculptor II is similar to programming any other antifuse
device. The pr oce dur e is as follow s :
1. Load the .AFM file
2. Select th e dev ic e to be programmed
3. Begin progr am m i ng
When the design is ready to go to production, Actel
offers device volume-programming services either
through distribution partners or via our In-House
Programming Center.
For more details on programming the Axcelerator
devices, please refer to the Silicon Sculptor II User’s
Guide.
Axcelerator Family FPGAs
v2.1 3-1
Package Pin Assignments
180-Pin CSP
Figure 3-1 180-Pin CSP (Bottom View)
A1 Ball Pad Corner
1
2
34567
89
1011121314
A
B
C
D
E
F
G
H
J
K
L
M
N
P
Axcelerator Family FPGAs
3-2 v2.1
180- Pi n CSP
AX12 5 Functi on Pin Numbe r
Bank 0
IO00NB0F0 B3
IO00PB0F0 A3
IO02NB0F0 B4
IO02PB0F0 A4
IO07NB0F0/HCLKAN B5
IO07PB0F0/HCLKAP A5
IO08NB0F0/HCLKBN B7
IO08PB0F0/HCLKBP B6
Bank 1
IO09NB1F1/HCLKCN C9
IO09PB1F1/HCLKCP C8
IO10NB1F1/HCLKDN A10
IO10P B1F1/H C LKDP B10
IO11NB1F 1 B11
IO11PB1F1 A11
IO15NB1F 1 B12
IO15PB1F1 A12
IO17NB1F1 D12
IO17PB1F1 D11
Bank 2
IO18NB2F2 C13
IO18PB2F2 C12
IO19NB2F2 C14
IO1 9PB2F2 B14
IO20NB2F2 D13
IO20PB2F2 D14
IO22NB2F2 F12
IO22PB2F2 E12
IO24NB2F2 E13
IO24PB2F2 E14
IO26NB2F2 F13
IO26PB2F2 F14
IO28NB2 F2 G12
IO28PB2F2 G11
Bank 3
IO30NB3F3 H13
IO30PB3F3 G13
IO32NB3F3 H1 1
IO32PB3F3 H12
IO34NB3F3 K14
IO34PB3F3 J14
IO36NB3F3 K13
IO36PB3F3 J13
IO38NB3F3 L13
IO38PB3F3 L14
IO40NB3F3 M13
IO40PB 3F3 M14
IO41NB3F3 K12
IO41PB3F3 J12
Bank 4
IO42NB4F4 P13
IO42PB4F4 N13
IO43NB4F4 L12
IO43PB 4F4 M12
IO46NB4F4 P12
IO46PB4F4 N12
IO47NB4F4 N1 1
IO47PB4F4 P11
IO49NB4F4/CLKEN M11
IO49PB4F4/CLKEP M10
IO50NB4F4/CLKFN N9
IO50PB4F4/CLKFP P9
Bank 5
IO51NB5F5/CLKGN M7
IO51PB5F5/CLKGP M8
IO52NB5F5/CLKHN P5
IO52PB5F5 /CLKHP N5
IO53NB5F5 P4
IO53PB5F5 N4
IO55NB5F5 P3
IO55PB5F5 N3
IO56NB5F5 M4
IO56PB5F5 M5
IO57NB5F5 M2
IO57PB5F5 M3
180-Pi n CSP
AX125 Function Pin Number
IO59NB5F5 N2
IO59PB5F5 P2
Bank 6
IO60NB6F6 M1
IO60PB6F6 N1
IO62NB6F6 K3
IO62PB6F6 L3
IO64NB6F6 L2
IO64PB6F6 L1
IO66NB6F6 K2
IO66PB6F6 K1
IO68NB6F6 H3
IO68PB6F6 J3
IO70NB6F6 G4
IO70PB6F6 H4
IO71NB6F6 J1
IO71PB6F6 J2
Bank 7
IO72NB7F7 G2
IO72PB7F7 H2
IO74NB7F7 F3
IO74PB7F7 G3
IO76NB7F7 F1
IO76PB7F7 F2
IO78NB7F7 E1
IO78PB7F7 E2
IO79NB7F7 D2
IO79PB7F7 D1
IO83NB7F7 C1
IO83PB7F7 C2
Dedicated I/O
VCCDA B1
GND A1
GND A14
GND A7
GND A8
GND E10
GND E5
180-Pin CSP
AX125 Function Pin Num ber
Axcelerator Family FPGAs
v2.1 3-3
GND E6
GND E9
GND F10
GND F5
GND G1
GND G14
GND H1
GND H14
GND J10
GND J5
GND K10
GND K5
GND K6
GND K9
GND N14
GND P1
GND P14
GND P7
GND P8
GND/LP C3
PRA D8
PRB B8
PRC N8
PRD N7
TCK C4
TDI E3
TDO C5
TMS D4
TRST B2
VCCA E7
VCCA G10
VCCA H5
VCCA K8
VCCPLA C6
VCCPLB C7
VCCPLC A9
VCCPLD C10
VCCPLE N10
180- Pi n CSP
AX12 5 Functi on Pin Numbe r
VCCPLF L8
VCCPLG P6
VCCPLH M6
VCCDA B13
VCCDA D3
VCCDA E8
VCCDA G5
VCCDA H10
VCCDA K7
VCCDA L11
VCCDA L4
VCCIB0 D5
VCCIB0 D6
VCCIB1 D10
VCCIB1 D9
VCCIB2 E11
VCCIB2 F11
VCCIB3 J11
VCCIB3 K11
VCCIB4 L10
VCCIB4 L9
VCCIB5 L5
VCCIB5 L6
VCCIB6 J4
VCCIB6 K4
VCCIB7 E4
VCCIB7 F4
VCCDA A2
VCOMPLA A6
VCOMPLB D7
VCOMPLC B9
VCOMPLD C11
VCOMPLE P10
VCOMPLF M9
VCOMPLG N6
VCOMPLH L7
VPUMP A13
180-Pi n CSP
AX125 Function Pin Number
Axcelerator Family FPGAs
3-4 v2.1
208-Pin PQFP
Figure 3-2 208-Pin PQFP
208-Pin PQFP
1208
Axcelerator Family FPGAs
v2.1 3-5
208-Pin PQFP
AX250 Function Pin N um ber
Bank 0
IO02NB0F0 197
IO03NB0F0 198
IO03PB0F0 199
IO12NB0F0/HCLKAN 191
IO12PB0F0/HCLKAP 192
IO13NB0F0/HCLKBN 185
IO13PB0F0/HCLKBP 186
Bank 1
IO14NB1F1/HCLKCN 180
IO14PB1F1/HCLKCP 181
IO15NB1F1/HCLKDN 174
IO15PB1F1/HCLKDP 175
IO16NB1F1 170
IO16PB1F1 171
IO24NB1F1 165
IO24PB1F1 166
IO26NB1F1 161
IO26PB1F1 162
IO27NB1F1 159
IO27PB1F1 160
Bank 2
IO29NB2F2 151
IO29PB2F2 153
IO30NB2F2 152
IO30PB2F2 154
IO31PB2F2 148
IO32NB2F2 146
IO32PB2F2 147
IO34NB2F2 144
IO34PB2F2 145
IO39NB2F2 139
IO39PB2F2 140
IO40PB2F2 141
IO41NB2F2 137
IO41PB2F2 138
IO43NB2F2 132
IO43PB2F2 134
IO44NB2F2 131
IO44PB2F2 133
Bank 3
IO45NB3F3 127
IO45PB3F3 129
IO46NB3F3 126
IO46PB3F3 128
IO48NB3F3 122
IO48PB3F3 123
IO50NB3F3 120
IO50PB3F3 121
IO55NB3F3 116
IO55PB3F3 117
IO57NB3F3 114
IO57PB3F3 115
IO59NB3F3 110
IO59PB3F3 111
IO60NB3F3 108
IO60PB3F3 109
IO61NB3F3 106
IO61PB3F3 107
Bank 4
IO62NB4F4 100
IO62PB4F4 103
IO63NB4F4 101
IO63PB4F4 102
IO64NB4F4 96
IO64PB4F4 97
IO72NB4F4 91
IO72PB4F4 92
IO74NB4F4/CLKEN 87
IO74PB4F4/CLKEP 88
IO75NB4F4/CLKFN 81
IO75PB4F4/CLKFP 82
Bank 5
IO76NB5F5/CLKGN 76
IO76PB5F5/CLKGP 77
IO77NB5F5/CLKHN 70
208-Pin PQFP
AX25 0 Functi on Pin Numbe r
IO77PB5F5/CLKHP 71
IO78NB5F5 66
IO78PB5F5 67
IO86NB5F5 62
IO87NB5F5 60
IO87PB5F5 61
IO88NB5F5 56
IO88PB5F5 57
IO89NB5F5 54
IO89PB5F5 55
Bank 6
IO91NB6F6 47
IO91PB6F6 49
IO92NB6F6 48
IO92PB6F6 50
IO93NB6F6 42
IO93PB6F6 43
IO94PB6F6 44
IO96NB6F6 40
IO96PB6F6 41
IO101NB6F6 35
IO101PB6F6 36
IO102PB6F6 37
IO103NB6F6 33
IO103PB6F6 34
IO105NB6F6 28
IO105PB6F6 30
IO106NB6F6 27
IO106PB6F6 29
Bank 7
IO107NB7F7 23
IO107PB7F7 25
IO108NB7F7 22
IO108PB7F7 24
IO110NB7F7 18
IO110PB7F7 19
IO112NB7F7 16
IO112PB7F7 17
208- Pi n PQ F P
AX250 Function Pin Number
Axcelerator Family FPGAs
3-6 v2.1
IO117NB7F7 12
IO117PB7F7 13
IO119NB7F7 10
IO119PB7F7 11
IO121PB7F7 7
IO122NB7F7 5
IO122PB7F7 6
IO123NB7F7 3
IO123PB7F7 4
Dedicated I/O
VCCDA 1
VCCDA 26
VCCDA 53
VCCDA 63
VCCDA 78
VCCDA 95
VCCDA 105
VCCDA 130
VCCDA 157
VCCDA 167
VCCDA 182
VCCDA 202
GND 104
GND 9
GND 15
GND 21
GND 32
GND 39
GND 46
GND 51
GND 59
GND 65
GND 69
GND 90
GND 94
GND 99
GND 113
GND 119
208-Pin PQFP
AX250 Function Pin N um ber
GND 125
GND 136
GND 143
GND 150
GND 155
GND 164
GND 169
GND 173
GND 194
GND 196
GND 201
GND/LP 208
PRA 184
PRB 183
PRC 80
PRD 79
TCK 205
TDI 204
TDO 203
TMS 206
TRST 207
VCCA 2
VCCA 52
VCCA 156
VCCA 14
VCCA 38
VCCA 64
VCCA 93
VCCA 118
VCCA 142
VCCA 168
VCCA 195
VCCPLA 189
VCCPLB 187
VCCPLC 178
VCCPLD 176
VCCPLE 85
VCCPLF 83
208-Pin PQFP
AX25 0 Functi on Pin Numbe r
VCCPLG 74
VCCPLH 72
VCCIB0 193
VCCIB0 200
VCCIB1 163
VCCIB1 172
VCCIB2 135
VCCIB2 149
VCCIB3 112
VCCIB3 124
VCCIB4 89
VCCIB4 98
VCCIB5 58
VCCIB5 68
VCCIB6 31
VCCIB6 45
VCCIB7 8
VCCIB7 20
VCOMPLA 190
VCOMPLB 188
VCOMPLC 179
VCOMPLD 177
VCOMPLE 86
VCOMPLF 84
VCOMPLG 75
VCOMPLH 73
VPUMP 158
208- Pi n PQ F P
AX250 Function Pin Number
Axcelerator Family FPGAs
v2.1 3-7
208-Pin PQFP
AX500 Function Pin N um ber
Bank 0
IO03NB0F0 198
IO03PB0F0 199
IO04NB0F0 197
IO19NB0F1/HCLKAN 191
IO19PB0F1/HCLKAP 192
IO20NB0F1/HCLKBN 185
IO20PB0F1/HCLKBP 186
Bank 1
IO21NB1F2/HCLKCN 180
IO21PB1F2/HCLKCP 181
IO22NB1F2/HCLKDN 174
IO22PB1F2/HCLKDP 175
IO23NB1F2 170
IO23PB1F2 171
IO37NB1F3 165
IO37PB1F3 166
IO39NB1F3 161
IO39PB1F3 162
IO41NB1F3 159
IO41PB1F3 160
Bank 2
IO43NB2F4 151
IO43PB2F4 153
IO44NB2F4 152
IO44PB2F4 154
IO45PB2F4 148
IO46NB2F4 146
IO46PB2F4 147
IO48NB2F4 144
IO48PB2F4 145
IO57NB2F5 139
IO57PB2F5 140
IO58PB2F5 141
IO59NB2F5 137
IO59PB2F5 138
IO61NB2F5 132
IO61PB2F5 134
IO62NB2F5 131
IO62PB2F5 133
Bank 3
IO63NB3F6 127
IO63PB3F6 129
IO64NB3F6 126
IO64PB3F6 128
IO66NB3F6 122
IO66PB3F6 123
IO68NB3F6 120
IO68PB3F6 121
IO77NB3F7 116
IO77PB3F7 117
IO79NB3F7 114
IO79PB3F7 115
IO81NB3F7 110
IO81PB3F7 111
IO82NB3F7 108
IO82PB3F7 109
IO83NB3F7 106
IO83PB3F7 107
Bank 4
IO84PB4F8 103
IO85NB4F8 100
IO86NB4F8 101
IO86PB4F8 102
IO87NB4F8 96
IO87PB4F8 97
IO101NB4F9 91
IO101PB4F9 92
IO103NB4F9/CLKEN 87
IO103PB4F9/CLKEP 88
IO104NB4F9/CLKFN 81
IO104PB4F9/CLKFP 82
Bank 5
IO105NB5F10/CLKGN 76
IO105PB5F10/CLKGP 77
IO106NB5F10/CLKHN 70
208-Pin PQFP
AX50 0 Functi on Pin Numbe r
IO106PB5F10/CLKHP 71
IO107NB5F10 66
IO107PB5F10 67
IO119NB5F11 62
IO121NB5F11 60
IO121PB5F11 61
IO123NB5F11 56
IO123PB5F11 57
IO125NB5F11 54
IO125PB5F11 55
Bank 6
IO127NB6F12 47
IO127PB6F12 49
IO128NB6F12 48
IO128PB6F12 50
IO129NB6F12 42
IO129PB6F12 43
IO130PB6F12 44
IO132NB6F12 40
IO132PB6F12 41
IO141NB6F13 35
IO141PB6F13 36
IO142PB6F13 37
IO143NB6F13 33
IO143PB6F13 34
IO145NB6F13 28
IO145PB6F13 30
IO146NB6F13 27
IO146PB6F13 29
Bank 7
IO147NB7F14 23
IO147PB7F14 25
IO148NB7F14 22
IO148PB7F14 24
IO150NB7F14 18
IO150PB7F14 19
IO152NB7F14 16
IO152PB7F14 17
208- Pi n PQ F P
AX500 Function Pin Number
Axcelerator Family FPGAs
3-8 v2.1
IO161NB7F15 12
IO161PB7F15 13
IO163NB7F15 10
IO163PB7F15 11
IO165PB7F15 7
IO166NB7F15 5
IO166PB7F15 6
IO167NB7F15 3
IO167PB7F15 4
Dedicated I/O
VCCDA 1
VCCDA 26
VCCDA 53
VCCDA 63
VCCDA 78
VCCDA 95
VCCDA 105
VCCDA 130
VCCDA 157
VCCDA 167
VCCDA 182
VCCDA 202
GND 104
GND 9
GND 15
GND 21
GND 32
GND 39
GND 46
GND 51
GND 59
GND 65
GND 69
GND 90
GND 94
GND 99
GND 113
GND 119
208-Pin PQFP
AX500 Function Pin N um ber
GND 125
GND 143
GND 136
GND 150
GND 155
GND 164
GND 169
GND 173
GND 194
GND 196
GND 201
GND/LP 208
PRA 184
PRB 183
PRC 80
PRD 79
TCK 205
TDI 204
TDO 203
TMS 206
TRST 207
VCCA 2
VCCA 14
VCCA 38
VCCA 52
VCCA 64
VCCA 93
VCCA 118
VCCA 142
VCCA 156
VCCA 168
VCCA 195
VCCPLA 189
VCCPLB 187
VCCPLC 178
VCCPLD 176
VCCPLE 85
VCCPLF 83
208-Pin PQFP
AX50 0 Functi on Pin Numbe r
VCCPLG 74
VCCPLH 72
VCCIB0 200
VCCIB0 193
VCCIB1 172
VCCIB1 163
VCCIB2 149
VCCIB2 135
VCCIB3 124
VCCIB3 112
VCCIB4 98
VCCIB4 89
VCCIB5 68
VCCIB5 58
VCCIB6 45
VCCIB6 31
VCCIB7 20
VCCIB7 8
VCOMPLA 190
VCOMPLB 188
VCOMPLC 179
VCOMPLD 177
VCOMPLE 86
VCOMPLF 84
VCOMPLG 75
VCOMPLH 73
VPUMP 158
208- Pi n PQ F P
AX500 Function Pin Number
Axcelerator Family FPGAs
v2.1 3-9
256-Pin FBGA
Figure 3-3 256-Pin FBGA (Bottom View)
1
3
5
791113
15 246
8
101214
16
C
E
G
J
L
N
R
D
F
H
K
M
P
T
B
A
A1 Ball Pad Corner
Axcelerator Family FPGAs
3-10 v2.1
256-Pin FBGA
AX125 Function Pin N um ber
Bank 0
IO01NB0F0 B4
IO01PB0F0 B3
IO03NB0F0 A4
IO03PB0F0 A3
IO04NB0F0 B6
IO04PB0F0 B5
IO06NB0F0 A6
IO06PB0F0 A5
IO07NB0F0/HCLKAN B8
IO07PB0F0/HCLKAP B7
IO08NB0F0/HCLKBN A9
IO08PB0F0/HCLKBP A8
Bank 1
IO09NB1F1/HCLKCN C10
IO09PB1F1/HCLKCP C9
IO10NB1F1/HCLKDN B11
IO10PB1F1/HCLKDP B10
IO12NB1F1 A13
IO12PB1F1 A12
IO13NB1F1 B13
IO13PB1F1 B12
IO14NB1F1 C12
IO14PB1F1 C11
IO15NB1F1 A15
IO15PB1F1 B14
IO16NB1F1 C15
IO16PB1F1 C14
IO17NB1F1 D13
IO17PB1F1 D12
Bank 2
IO18NB2F2 F13
IO18PB2 F2 E13
IO19NB2F2 F14
IO19PB2 F2 E14
IO20NB2F2 F15
IO20PB2 F2 E15
IO21NB2F2 C16
IO21 PB2F2 B16
IO22NB2F2 H13
IO22PB2F2 G13
IO23NB2F2 E16
IO23PB2F2 D16
IO25NB2F2 H15
IO25PB2F2 G15
IO26NB2F2 H14
IO26PB2F2 G14
IO27NB2F2 G16
IO27PB2F2 F16
IO28NB2F2 K15
IO28PB2F2 K16
IO29NB2F2 J16
IO29PB2F2 H16
Bank 3
IO30NB3F3 K13
IO30PB3F3 J13
IO31NB3F3 K14
IO31PB3F3 J14
IO33NB3F3 L15
IO33PB3F3 L16
IO35NB3F3 P16
IO35PB3F3 N16
IO36PB3F3 M 16
IO37NB3F3 P15
IO37 PB3F3 R16
IO39NB3F3 N15
IO39PB3F3 M 15
IO40NB3F3 M13
IO40PB3F3 L13
IO41NB3F3 M14
IO41PB3F3 L14
Bank 4
IO42NB4F4 N12
IO42PB4F4 N13
IO43NB4F4 T14
IO43 PB4F4 R14
256-Pin FBGA
AX12 5 Functi on Pin Numbe r
IO44PB4F4 T15
IO45NB4F4 R12
IO45PB4F4 R13
IO46NB4F4 P11
IO46PB4F4 P12
IO47PB4F4 T11
IO48NB4F4 T12
IO48PB4F4 T13
IO 49N B4F4/CLKEN R9
IO49PB4F4/CLKEP R10
IO50NB4F4/CLKFN T8
IO50PB4F4/CLKFP T9
Bank 5
IO51NB5F5/CLKGN P7
IO51PB5F5/CLKGP P8
IO52NB5F5/CLKHN R6
IO52PB5F5/CLKHP R7
IO54NB5F5 T5
IO54PB5F5 T6
IO55NB5F5 P5
IO55PB5F5 P6
IO56NB5F5 T3
IO56PB5F5 T4
IO 57N B5F5 R3
IO 57PB5F5 R4
IO 58N B5F5 R1
IO58PB5F5 T2
IO59NB5F5 N4
IO59PB5F5 N5
Bank 6
IO60NB6F6 L4
IO60PB 6F6 M4
IO61NB6F6 L3
IO61PB 6F6 M3
IO63NB6F6 P2
IO63PB6F6 N2
IO64NB6F6 J 4
IO64PB6F6 K4
256-Pin FB GA
AX125 Function Pin Number
Axcelerator Family FPGAs
v2.1 3-11
IO65NB6F6 N1
IO65PB6F6 P1
IO67NB6F6 L2
IO67PB6F6 M2
IO69NB6F6 L1
IO69PB6F6 M1
IO70NB6F6 J3
IO70PB6F6 K3
IO71NB6F6 J2
IO71PB6F6 K2
Bank 7
IO72NB7F7 J1
IO72PB7F7 K1
IO73NB7F7 G2
IO73PB7F7 H2
IO74NB7F7 G3
IO74PB7F7 H3
IO75NB7F7 E1
IO75PB7F7 F1
IO76NB7F7 G1
IO77NB7F7 E2
IO77PB7F7 F2
IO78NB7F7 G4
IO78PB7F7 H4
IO79NB7F7 C1
IO79PB7F7 D1
IO81NB7F7 C2
IO81PB7F7 B1
IO82NB7F7 D2
IO82PB7F7 D3
IO83NB7F7 E3
IO83PB7F7 F3
Dedicated I/O
VCCDA E4
GND A1
GND A16
GND B15
GND B2
256-Pin FBGA
AX125 Function Pin N um ber
GND D15
GND E12
GND E5
GND F11
GND F6
GND G10
GND G7
GND G8
GND G9
GND H10
GND H7
GND H8
GND H9
GND J10
GND J7
GND J8
GND J9
GND K10
GND K7
GND K8
GND K9
GND L11
GND L6
GND M12
GND M5
GND P13
GND P3
GND R15
GND R2
GND T1
GND T16
GND/LP D4
NC A11
NC R11
NC R5
PRA D8
PRB C8
PRC N9
256-Pin FBGA
AX12 5 Functi on Pin Numbe r
PRD P9
TCK D5
TDI C6
TDO C4
TMS C3
TRST C5
VCCA D14
VCCA F1 0
VCCA F4
VCCA F7
VCCA F8
VCCA F9
VCCA G11
VCCA G6
VCCA H11
VCCA H6
VCCA J11
VCCA J6
VCCA K11
VCCA K6
VCCA L1 0
VCCA L7
VCCA L8
VCCA L9
VCCA N3
VCCA P14
VCCPLA C7
VCCPLB D6
VCCPLC A10
VCCPLD D10
VCCPLE P10
VCCPLF N11
VCCPLG T7
VCCPLH N7
VCCDA A2
VCCDA C13
VCCDA D9
VCCDA H1
256-Pin FB GA
AX125 Function Pin Number
Axcelerator Family FPGAs
3-12 v2.1
VCCDA J15
VCCDA N14
VCCDA N8
VCCDA P4
VCCIB0 E6
VCCIB0 E7
VCCIB0 E8
VCCIB1 E10
VCCIB1 E11
VCCIB1 E9
VCCIB2 F12
VCCIB2 G12
VCCIB2 H12
VCCIB3 J12
VCCIB3 K12
VCCIB3 L12
VCCIB4 M10
VCCIB4 M11
VCCIB4 M9
VCCIB5 M6
VCCIB5 M7
VCCIB5 M8
VCCIB6 J5
VCCIB6 K5
VCCIB6 L5
VCCIB7 F5
VCCIB7 G5
VCCIB7 H5
VCOMPLA A7
VCOMPLB D7
VCOMPLC B9
VCOMPLD D11
VCOMPLE T10
VCOMPLF N10
VCOMPLG R8
VCOMPLH N6
VPUMP A14
256-Pin FBGA
AX125 Function Pin N um ber
256-Pin FBGA
AX25 0 Functi on Pin Numbe r
Bank 0
IO01NB0F0 B4
IO01PB0F0 B3
IO03NB0F0 A4
IO03PB0F0 A3
IO05NB0F0 B6
IO05PB0F0 B5
IO07NB0F0 A6
IO07PB0F0 A5
IO12NB0F0/HCLKAN B8
IO12PB0F0/HCLKAP B7
IO13NB0F0/HCLKBN A9
IO13PB0F0/HCLKBP A8
Bank 1
IO14NB1F1/HCLKCN C10
IO14PB1F1/HCLKCP C9
IO1 5NB1F 1/HC LKD N B11
IO15PB 1F1/HC LKD P B10
IO17NB1F1 A13
IO17PB1F1 A12
IO19NB1F 1 B13
IO19 PB1F1 B12
IO21NB1F1 C12
IO21PB1F1 C11
IO23NB1F1 A15
IO23 PB1F1 B14
IO26NB1F1 C15
IO26PB1F1 C14
IO27NB1F1 D13
IO27PB1F1 D12
Bank 2
IO29NB2F2 F13
IO29PB2F2 E13
IO30NB2F2 F14
IO30PB2F2 E14
IO32NB2F2 C16
IO32 PB2F2 B16
IO33NB2F2 F15
IO33PB2F2 E15
IO35NB2F2 H1 3
IO35PB2F2 G13
IO36NB2F2 E16
IO36PB2F2 D16
IO38NB2F2 H1 5
IO38PB2F2 G15
IO39NB2F2 H1 4
IO39PB2F2 G14
IO40NB2F2 G16
IO40PB2F2 F16
IO43NB2F2 K15
IO43PB 2F2 K16
IO44NB2F2 J16
IO44PB2F2 H16
Bank 3
IO45NB3F3 K13
IO45PB 3F3 J13
IO46NB3F3 K14
IO46PB 3F3 J14
IO52NB3F3 L15
IO52PB3F3 L16
IO54NB3F3 P16
IO54PB3F3 N16
IO55PB3F3 M16
IO56NB3F3 P15
IO56PB3F3 R16
IO58NB3F3 N1 5
IO58PB3F3 M15
IO59NB3F3 M13
IO59PB3F3 L13
IO61NB3F3 M14
IO61PB3F3 L14
Bank 4
IO62NB4F4 N1 2
IO62PB4F4 N13
IO63NB4F4 T14
IO63PB4F4 R14
256-Pin FB GA
AX250 Function Pin Number
Axcelerator Family FPGAs
v2.1 3-13
IO66PB4 F4 T15
IO67NB4F4 R12
IO67PB4F4 R13
IO69NB4F 4 P11
IO69PB4 F4 P12
IO70PB4 F4 T11
IO73NB4F 4 T12
IO73PB4 F4 T13
IO74NB4F4/CLKEN R9
IO74PB4F4/CLKEP R10
IO75NB4F4/CLKFN T8
IO75PB4F4/CLKFP T9
Bank 5
IO76NB5F5/CLKGN P7
IO76PB5F5/CLKGP P8
IO77NB5F5/CLKHN R6
IO77PB5F5/CLKHP R7
IO79NB5F5 T5
IO79PB5F5 T6
IO81NB5F5 P5
IO81PB5F5 P6
IO83NB5F5 T3
IO83PB5F5 T4
IO85NB5F5 R3
IO85PB5F5 R4
IO88NB5F5 R1
IO88PB5F5 T2
IO89NB5F5 N4
IO89PB5F5 N5
Bank 6
IO91NB6F6 L4
IO91PB6F6 M4
IO92NB6F6 L3
IO92PB6F6 M3
IO94NB6F6 P2
IO94PB6F6 N2
IO97NB6F6 J4
IO97PB6F6 K4
256-Pin FBGA
AX250 Function Pin N um ber
IO98NB6F6 N1
IO98PB6F6 P1
IO100NB6F6 L2
IO100PB6F6 M2
IO102NB6F6 L1
IO102PB6F6 M1
IO103NB6F6 J3
IO103PB6F6 K3
IO104NB6F6 J2
IO104PB6F6 K2
Bank 7
IO107NB7F7 J1
IO107PB7F7 K1
IO108NB7F7 G2
IO108PB7F7 H2
IO111NB7F7 G3
IO111PB7F7 H3
IO112NB7F7 E1
IO112PB7F7 F1
IO113NB7F7 G1
IO114NB7F7 E2
IO114PB7F7 F2
IO115NB7F7 G4
IO115PB7F7 H4
IO116NB7F7 C1
IO116PB7F7 D1
IO117NB7F7 C2
IO117PB7F7 B1
IO118NB7F7 D2
IO118PB7F7 D3
IO119NB7F7 E3
IO119PB7F7 F3
Dedi c ated I/ O
VCCDA E4
GND A1
GND A16
GND B15
GND B2
256-Pin FBGA
AX25 0 Functi on Pin Numbe r
GND D15
GND E12
GND E5
GND F11
GND F6
GND G10
GND G7
GND G8
GND G9
GND H10
GND H7
GND H8
GND H9
GND J10
GND J7
GND J8
GND J9
GND K10
GND K7
GND K8
GND K9
GND L11
GND L6
GND M12
GND M5
GND P13
GND P3
GND R15
GND R2
GND T1
GND T16
GND/LP D4
PRA D 8
PRB C8
PRC N 9
PRD P9
TCK D5
TDI C6
256-Pin FB GA
AX250 Function Pin Number
Axcelerator Family FPGAs
3-14 v2.1
TDO C4
TMS C3
TRST C5
VCCA D14
VCCA F10
VCCA F4
VCCA F7
VCCA F8
VCCA F9
VCCA G11
VCCA G6
VCCA H11
VCCA H6
VCCA J11
VCCA J6
VCCA K11
VCCA K6
VCCA L10
VCCA L7
VCCA L8
VCCA L9
VCCA N3
VCCA P14
VCCPLA C7
VCCPLB D6
VCCPLC A10
VCCPLD D10
VCCPLE P10
VCCPLF N11
VCCPLG T7
VCCPLH N7
VCCDA A11
VCCDA A2
VCCDA C13
VCCDA D9
VCCDA H1
VCCDA J15
VCCDA N14
256-Pin FBGA
AX250 Function Pin N um ber
VCCDA N8
VCCDA P4
VCCDA R11
VCCDA R5
VCCIB0 E6
VCCIB0 E7
VCCIB0 E8
VCCIB1 E10
VCCIB1 E11
VCCIB1 E9
VCCIB2 F12
VCCIB2 G12
VCCIB2 H12
VCCIB3 J12
VCCIB3 K12
VCCIB3 L12
VCCIB4 M10
VCCIB4 M11
VCCIB4 M9
VCCIB5 M6
VCCIB5 M7
VCCIB5 M8
VCCIB6 J5
VCCIB6 K5
VCCIB6 L5
VCCIB7 F5
VCCIB7 G5
VCCIB7 H5
VCOMPLA A7
VCOMPLB D7
VCOMPLC B9
VCOMPLD D11
VCOMPLE T10
VCOMPLF N10
VCOMPLG R8
VCOMPLH N6
VPUMP A14
256-Pin FBGA
AX25 0 Functi on Pin Numbe r
Axcelerator Family FPGAs
v2.1 3-15
324-Pin FBGA
Figure 3-4 324-Pin FBGA (Bottom View)
1
3
5
791113
15 246
8
101214
16
C
E
G
J
L
N
R
D
F
H
K
M
P
T
B
A
17
18
U
V
A1 Ball Pad Corner
Axcelerator Family FPGAs
3-16 v2.1
324-Pin FBGA
AX125 Function Pin N um ber
Bank 0
IO00NB0F0 C5
IO00PB0F0 C4
IO01NB0F0 A3
IO01PB0F0 A2
IO02NB0F0 C7
IO02PB0F0 C6
IO03NB0F0 B5
IO03PB0F0 B4
IO04NB0F0 A5
IO04PB0F0 A4
IO05NB0F0 A7
IO05PB0F0 A6
IO06NB0F0 B7
IO06PB0F0 B6
IO07NB0F0/HCLKAN C9
IO07PB0F0/HCLKAP C8
IO08NB0F0/HCLKBN B10
IO08PB0F0/HCLKBP B9
Bank 1
IO09NB1F1/HCLKCN D11
IO09PB1F1/HCLKCP D10
IO10NB1F1/HCLKDN C12
IO10PB1F1/HCLKDP C11
IO11NB1F1 A15
IO11PB1F1 A14
IO12NB1F1 B14
IO12PB1F1 B13
IO13NB1F1 A17
IO13PB1F1 A16
IO14NB1F1 D13
IO14PB1F1 D12
IO15NB1F1 C14
IO15PB1F1 C13
IO16NB1F1 B16
IO16PB1F1 C15
IO17NB1F 1 E14
IO17PB1 F1 E13
Bank 2
IO18NB2F2 G14
IO18PB2F2 F14
IO19NB2F2 D16
IO19PB2F2 D15
IO20NB2F2 C18
IO20 PB2F2 B18
IO21NB2F2 D17
IO21PB2F2 C17
IO22NB2F2 F17
IO22PB2F2 E17
IO23NB2F2 G16
IO23PB2F2 F16
IO24NB2F2 E18
IO24PB2F2 D18
IO25NB2F2 G18
IO25PB2F2 F18
IO26NB2F2 H17
IO26PB2F2 G17
IO27NB2F2 J16
IO27PB2F2 H16
IO28NB2F2 J18
IO28PB2F2 H18
IO29NB2F2 K17
IO29PB2F2 J17
Bank 3
IO30NB3F3 N18
IO30PB3F3 M 18
IO31NB3F3 L18
IO31PB3F3 K18
IO32NB3F3 L16
IO32PB3F3 L17
IO33NB3F 3 R18
IO33PB3F3 P18
IO34NB3F3 N15
IO34PB3F3 M 15
IO35NB3F3 M16
IO35PB3F3 M 17
324-Pin FBGA
AX12 5 Functi on Pin Numbe r
IO36NB3F3 P16
IO36PB3F3 N16
IO37NB3F3 R17
IO37PB3F3 P17
IO38NB3F3 N1 4
IO38PB3F3 M14
IO39NB3F3 U1 8
IO39PB3F3 T18
IO40NB3F3 R16
IO40PB3F3 T17
IO41NB3F3 P13
IO41PB3F3 P14
Bank 4
IO42NB4F4 T13
IO42PB4F4 T14
IO43NB4F4 U1 5
IO43PB4F4 T15
IO44NB4F4 U1 3
IO44PB4F4 U14
IO45NB4F4 V15
IO45PB 4F4 V16
IO46NB4F4 V13
IO46PB 4F4 V14
IO47NB4F4 V12
IO47PB4F4 U12
IO48NB4F4 V10
IO48PB 4F4 V11
IO49NB4F4/CLKEN T10
IO49PB4F4/CLKEP T11
IO50NB4F4/CLKFN U9
IO50PB4F4/CLKFP U10
Bank 5
IO51NB5F5/CLKGN R8
IO51PB5F5/CLKGP R9
IO52NB5F5/CLKHN T7
IO52PB5F5/CLKHP T8
IO53NB5F5 U6
IO53PB5F5 U7
324-Pin FB GA
AX125 Function Pin Number
Axcelerator Family FPGAs
v2.1 3-17
IO54NB5F5 V8
IO54PB5F5 V9
IO55NB5F5 V6
IO55PB5F5 V7
IO56NB5F5 U4
IO56PB5F5 U5
IO57NB5F5 T4
IO57PB5F5 T5
IO58NB5F5 V4
IO58PB5F5 V5
IO59NB5F5 V2
IO59PB5F5 V3
Bank 6
IO60NB6F6 P5
IO60PB6F6 P6
IO61NB6F6 T2
IO61PB6F6 U3
IO62NB6F6 T1
IO62PB6F6 U1
IO63NB6F6 P1
IO63PB6F6 R1
IO64NB6F6 R3
IO64PB6F6 P3
IO65NB6F6 P2
IO65PB6F6 R2
IO66NB6F6 M3
IO66PB6F6 N3
IO67NB6F6 M2
IO67PB6F6 N2
IO68NB6F6 M1
IO68PB6F6 N1
IO69NB6F6 K4
IO69PB6F6 L4
IO70NB6F6 K1
IO70PB6F6 L1
IO71NB6F6 K3
IO71PB6F6 L3
Bank 7
324-Pin FBGA
AX125 Function Pin N um ber
IO72NB7F7 H4
IO72PB7F7 J4
IO73NB7F7 K2
IO73PB7F7 L2
IO74NB7F7 H2
IO74PB7F7 H1
IO75NB7F7 H3
IO75PB7F7 J3
IO76NB7F7 F2
IO76PB7F7 G2
IO77NB7F7 F1
IO77PB7F7 G1
IO78NB7F7 D2
IO78PB7F7 E2
IO79NB7F7 F3
IO79PB7F7 G3
IO80NB7F7 E3
IO80PB7F7 E4
IO81NB7F7 D1
IO81PB7F7 E1
IO82NB7F7 D3
IO82PB7F7 C2
IO83NB7F7 B1
IO83PB7F7 C1
Dedi c ated I/ O
VCCDA F5
GND A1
GND A18
GND B17
GND B2
GND C16
GND C3
GND E16
GND F13
GND F6
GND G12
GND G7
GND H10
324-Pin FBGA
AX12 5 Functi on Pin Numbe r
GND H11
GND H8
GND H9
GND J10
GND J11
GND J8
GND J9
GND K10
GND K11
GND K8
GND K9
GND L10
GND L11
GND L8
GND L9
GND M12
GND M7
GND N13
GND N6
GND R14
GND R4
GND T16
GND T3
GND U17
GND U2
GND V1
GND V18
GND/LP E5
NC A10
NC A11
NC A12
NC A13
NC A8
NC A9
NC B12
NC F15
NC F4
NC G15
324-Pin FB GA
AX125 Function Pin Number
Axcelerator Family FPGAs
3-18 v2.1
NC G4
NC H14
NC H15
NC H5
NC J1
NC J14
NC J15
NC J5
NC K14
NC K15
NC K5
NC L14
NC L15
NC L5
NC M4
NC M5
NC N17
NC N4
NC N5
NC R12
NC R13
NC R6
NC R7
NC T12
NC T6
NC U16
NC V17
PRA E9
PRB D9
PRC P10
PRD R10
TCK E6
TDI D 7
TDO D5
TMS D4
TRST D6
VCCA E15
VCCA G10
324-Pin FBGA
AX125 Function Pin N um ber
VCCA G11
VCCA G5
VCCA G8
VCCA G9
VCCA H12
VCCA H7
VCCA J12
VCCA J7
VCCA K12
VCCA K7
VCCA L12
VCCA L7
VCCA M10
VCCA M11
VCCA M8
VCCA M9
VCCA P4
VCCA R15
VCCPLA D8
VCCPLB E7
VCCPLC B11
VCCPLD E11
VCCPLE R11
VCCPLF P12
VCCPLG U8
VCCPLH P8
VCCDA B3
VCCDA D14
VCCDA E10
VCCDA J2
VCCDA K16
VCCDA P15
VCCDA P9
VCCDA R5
VCCIB0 F7
VCCIB0 F8
VCCIB0 F9
VCCIB1 F10
324-Pin FBGA
AX12 5 Functi on Pin Numbe r
VCCIB1 F11
VCCIB1 F12
VCCIB2 G13
VCCIB2 H13
VCCIB2 J13
VCCIB3 K13
VCCIB3 L13
VCCIB3 M13
VCCIB4 N10
VCCIB4 N11
VCCIB4 N12
VCCIB5 N7
VCCIB5 N8
VCCIB5 N9
VCCIB6 K6
VCCIB6 L6
VCCIB6 M6
VCCIB7 G6
VCCIB7 H6
VCCIB7 J6
VCOMPLA B8
VCOMPLB E8
VCOMPLC C10
VCOMPLD E12
VCOMPLE U11
VCOMPLF P11
VCOMPLG T9
VCOMPLH P7
VPUMP B15
324-Pin FB GA
AX125 Function Pin Number
Axcelerator Family FPGAs
v2.1 3-19
484-Pin FBGA
Figure 3-5 484-Pin FBGA (Bottom View)
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
12345678910111213141516171819202122
A1 Ball Pad Corner
Axcelerator Family FPGAs
3-20 v2.1
484-Pin FBGA
AX250 Function Pin N um ber
Bank 0
IO00NB0F0 D7
IO00PB0F0 D6
IO01NB0F0 E7
IO01PB0F0 E6
IO02NB0F0 C5
IO02PB0F0 C4
IO03NB0F0 C7
IO03PB0F0 C6
IO04NB0F0 E9
IO04PB0F0 E8
IO05NB0F0 D9
IO05PB0F0 D8
IO06NB0F0 B7
IO06PB0F0 B6
IO07NB0F0 C9
IO07PB0F0 C8
IO08NB0F0 A7
IO08PB0F0 A6
IO09NB0F0 B9
IO09PB0F0 B8
IO10NB0F0 A9
IO10PB0F0 A8
IO11NB0F0 B10
IO11PB0F0 A10
IO12NB0F0/HCLKAN E11
IO12PB0F0/HCLKAP E10
IO13NB0F0/HCLKBN D12
IO13PB0F0/HCLKBP D11
Bank 1
IO14NB1F1/HCLKCN F13
IO14PB1F1/HCLKCP F12
IO15NB1F1/HCLKDN E14
IO15PB1F1/HCLKDP E13
IO16NB1F1 C13
IO16PB1F1 C12
IO17NB1F1 B14
IO17PB1F1 B13
IO18NB1F1 A14
IO18PB1F1 A13
IO19NB1F1 A16
IO19PB1F1 A15
IO20NB1F1 B16
IO20PB1F1 B15
IO21NB1F1 C17
IO21PB1F1 C16
IO22NB1F1 F15
IO22PB1F1 F14
IO23NB1F1 D16
IO23PB1F1 D15
IO24NB1F1 E16
IO24PB1F1 E15
IO25NB1F1 F18
IO25PB1F1 F17
IO26NB1F1 D18
IO26PB1F1 E17
IO27NB1F1 G16
IO27PB1F1 G15
Bank 2
IO28NB2F2 F19
IO28PB2F2 E19
IO29NB2F2 J16
IO29PB2F2 H16
IO30NB2F2 E20
IO30PB2F2 D20
IO31NB2F2 J17
IO31PB2F2 H17
IO32NB2F2 G20
IO32PB2F2 F20
IO33NB2F2 H19
IO33PB2F2 G19
IO34NB2F2 E22
IO34PB2F2 D22
IO35NB2F2 J18
IO35PB2F2 H18
IO36NB2F2 G21
484-Pin FBGA
AX25 0 Functi on Pin Numbe r
IO36PB2F2 F21
IO37NB2F2 K19
IO37PB2F2 J19
IO38NB2F2 J20
IO38PB2F2 H20
IO39NB2F2 L16
IO39PB2F2 K16
IO40NB2F2 J21
IO40PB2F2 H21
IO41NB2F2 L17
IO41PB2F2 K17
IO42NB2F2 J22
IO42PB2F2 H22
IO43NB2F2 L18
IO43PB2F2 K18
IO44NB2F2 L20
IO44PB2F2 K20
Bank 3
IO45NB3F3 M19
IO45PB3F3 L19
IO46NB3F3 M21
IO46PB3F3 L21
IO47NB3F3 N17
IO47PB3F3 M17
IO48NB3F3 N18
IO48PB3F3 N19
IO49NB3F3 N16
IO49PB3F3 M16
IO50NB3F3 N20
IO50PB3F3 M20
IO51NB3F3 P21
IO51PB3F3 N21
IO52NB3F3 P18
IO52PB3F3 P19
IO53NB3F3 R20
IO53PB3F3 P20
IO54NB3F3 T21
IO54PB3F3 R21
484-Pin FB GA
AX250 Function Pin Number
Axcelerator Family FPGAs
v2.1 3-21
IO55NB3F3 R17
IO55PB3F3 P17
IO56NB3F3 U20
IO56PB3F3 T20
IO57NB3F3 T18
IO57PB3F3 R18
IO58NB3F3 U19
IO58PB3F3 T19
IO59NB3F3 R16
IO59PB3F3 P16
IO60NB3F3 W20
IO60PB3F3 V20
IO61NB3F3 U18
IO61PB3F3 V19
Bank 4
IO62NB4F4 T15
IO62PB4F4 T16
IO63NB4F4 W17
IO63PB4F4 V17
IO64NB4F4 V15
IO64PB4F4 V16
IO65NB4F4 Y19
IO65PB4F4 W18
IO66NB4F4 AB18
IO66PB4F4 AB19
IO67NB4F4 W15
IO67PB4F4 W16
IO68NB4F4 U14
IO68PB4F4 U15
IO69NB4F4 AA16
IO69PB4F4 AA17
IO70NB4F4 AB14
IO70PB4F4 AB15
IO71NB4F4 Y14
IO71PB4F4 W14
IO72NB4F4 AA14
IO72PB4F4 AA15
IO73NB4F4 AA13
484-Pin FBGA
AX250 Function Pin N um ber
IO73PB4F4 AB13
IO74NB4F4/CLKEN V12
IO74PB4F4/CLKEP V13
IO75NB4F4/CLKFN W11
IO75PB4F4/CLKFP W12
Bank 5
IO76NB5F5/CLKGN U10
IO76PB5F5/CLKGP U11
IO77NB5F5/CLKHN V9
IO77PB5F5/CLKHP V10
IO78NB5F5 AA9
IO78PB5F5 AA10
IO79NB5F5 AB9
IO79PB5F5 AB10
IO80NB5F5 AA7
IO80PB5F5 AA8
IO81NB5F5 W8
IO81PB5F5 W9
IO82NB5F5 AB5
IO82PB5F5 AB6
IO83NB5F5 AA5
IO83PB5F5 AA6
IO84NB5F5 U8
IO84PB5F5 U9
IO85NB5F5 Y6
IO85PB5F5 Y7
IO86NB5F5 W6
IO86PB5F5 W7
IO87NB5F5 Y4
IO87PB5F5 Y5
IO88NB5F5 V6
IO88PB5F5 V7
IO89NB5F5 T7
IO89PB5F5 T8
Bank 6
IO90NB6F6 V4
IO90PB6F6 W5
IO91NB6F6 P7
484-Pin FBGA
AX25 0 Functi on Pin Numbe r
IO91PB6F6 R7
IO92NB6F6 U5
IO92PB6F6 T5
IO93NB6F6 P6
IO93PB6F6 R6
IO94NB6F6 T4
IO94PB6F6 U4
IO95NB6F6 P5
IO95PB6F6 R5
IO96NB6F6 T3
IO96PB6F6 U3
IO97NB6F6 P3
IO97PB6F6 R3
IO98NB6F6 R2
IO98PB6F6 T2
IO99NB6F6 P4
IO99PB6F6 R4
IO100NB6F6 P1
IO100PB6F6 R1
IO101NB6F6 M7
IO101PB6F6 N7
IO102NB6F6 N2
IO102PB6F6 P2
IO103NB6F6 M6
IO103PB6F6 N6
IO104NB6F6 M4
IO104PB6F6 N4
IO105NB6F6 M5
IO105PB6F6 N5
IO106NB6F6 M3
IO106PB6F6 N3
Bank 7
IO107NB7F7 M2
IO107PB7F7 N1
IO108NB7F7 L3
IO108PB7F7 L2
IO109NB7F7 K2
IO109PB7F7 K1
484-Pin FB GA
AX250 Function Pin Number
Axcelerator Family FPGAs
3-22 v2.1
IO110NB7F7 K5
IO110PB7F7 L5
IO111NB7F7 K6
IO111PB7F7 L6
IO112NB7F7 K4
IO112PB7F7 K3
IO113NB7F7 K7
IO113PB7F7 L7
IO114NB7F7 H1
IO114PB7F7 J1
IO115NB7F7 H2
IO115PB7F7 J2
IO116NB7F7 H4
IO116PB7F7 J4
IO117NB7F7 H5
IO117PB7F7 J5
IO118NB7F7 F2
IO118PB7F7 G2
IO119NB7F7 H6
IO119PB7F7 J6
IO120NB7F7 F1
IO120PB7F7 G1
IO121NB7F7 F4
IO121PB7F7 G4
IO122NB7F7 G5
IO122PB7F7 G6
IO123NB7F7 F5
IO123PB7F7 E4
Dedicated I/O
VCCDA H7
GND A1
GND A11
GND A12
GND A2
GND A21
GND A22
GND AA1
GND AA2
484-Pin FBGA
AX250 Function Pin N um ber
GND AA21
GND AA22
GND AB1
GND AB11
GND AB12
GND AB2
GND AB21
GND AB22
GND B1
GND B2
GND B21
GND B22
GND C20
GND C3
GND D19
GND D4
GND E18
GND E5
GND G18
GND H15
GND H8
GND J14
GND J9
GND K10
GND K11
GND K12
GND K13
GND L1
GND L10
GND L11
GND L12
GND L13
GND L22
GND M1
GND M10
GND M11
GND M12
GND M13
484-Pin FBGA
AX25 0 Functi on Pin Numbe r
GND M22
GND N10
GND N11
GND N12
GND N13
GND P14
GND P9
GND R15
GND R8
GND U16
GND U6
GND V18
GND V5
GND W19
GND W4
GND Y20
GND Y3
GND/LP G7
NC A17
NC A18
NC A19
NC A4
NC A5
NC AA11
NC AA12
NC AA18
NC AA19
NC AA4
NC AB16
NC AB17
NC AB4
NC AB7
NC AB8
NC B11
NC B12
NC B17
NC B18
NC B19
484-Pin FB GA
AX250 Function Pin Number
Axcelerator Family FPGAs
v2.1 3-23
NC B4
NC B5
NC C10
NC C11
NC C14
NC C15
NC C18
NC C19
NC D1
NC D2
NC D21
NC D3
NC E1
NC E2
NC E21
NC E3
NC F22
NC F3
NC G22
NC G3
NC H3
NC J3
NC K21
NC K22
NC N22
NC P22
NC R19
NC R22
NC T1
NC T22
NC U1
NC U2
NC U21
NC U22
NC V1
NC V2
NC V21
NC V22
484-Pin FBGA
AX250 Function Pin N um ber
NC V3
NC W1
NC W2
NC W21
NC W22
NC W3
NC Y10
NC Y11
NC Y12
NC Y13
NC Y15
NC Y16
NC Y17
NC Y18
NC Y8
NC Y9
PRA G11
PRB F11
PRC T12
PRD U12
TCK G8
TDI F9
TDO F7
TMS F6
TRST F8
VCCA G17
VCCA J10
VCCA J11
VCCA J12
VCCA J13
VCCA J7
VCCA K14
VCCA K9
VCCA L14
VCCA L9
VCCA M14
VCCA M9
VCCA N14
484-Pin FBGA
AX25 0 Functi on Pin Numbe r
VCCA N9
VCCA P10
VCCA P11
VCCA P12
VCCA P13
VCCA T6
VCCA U17
VCCPLA F10
VCCPLB G9
VCCPLC D13
VCCPLD G13
VCCPLE U13
VCCPLF T14
VCCPLG W10
VCCPLH T10
VCCDA D14
VCCDA D5
VCCDA F16
VCCDA G12
VCCDA L4
VCCDA M18
VCCDA T11
VCCDA T17
VCCDA U7
VCCDA V14
VCCDA V8
VCCIB0 A3
VCCIB0 B3
VCCIB0 H10
VCCIB0 H11
VCCIB0 H9
VCCIB1 A20
VCCIB1 B20
VCCIB1 H12
VCCIB1 H13
VCCIB1 H14
VCCIB2 C21
VCCIB2 C22
484-Pin FB GA
AX250 Function Pin Number
Axcelerator Family FPGAs
3-24 v2.1
VCCIB2 J15
VCCIB2 K15
VCCIB2 L15
VCCIB3 M15
VCCIB3 N15
VCCIB3 P15
VCCIB3 Y21
VCCIB3 Y22
VCCIB4 AA20
VCCIB4 AB20
VCCIB4 R12
VCCIB4 R13
VCCIB4 R14
VCCIB5 AA3
VCCIB5 AB3
VCCIB5 R10
VCCIB5 R11
VCCIB5 R9
VCCIB6 M8
VCCIB6 N8
VCCIB6 P8
VCCIB6 Y1
VCCIB6 Y2
VCCIB7 C1
VCCIB7 C2
VCCIB7 J8
VCCIB7 K8
VCCIB7 L8
VCOMPLA D10
VCOMPLB G10
VCOMPLC E12
VCOMPLD G14
VCOMPLE W13
VCOMPLF T13
VCOMPLG V11
VCOMPLH T9
VPUMP D17
484-Pin FBGA
AX250 Function Pin N um ber
484-Pin FBGA
AX50 0 Functi on Pin Numbe r
Bank 0
IO00NB0F0 E3
IO00PB0F0 D3
IO01NB0F0 E7
IO01PB0F0 E6
IO02NB0F0 C5
IO02PB0F0 C4
IO03NB0F0 D7
IO03PB0F0 D6
IO04NB0F0 B5
IO04PB0F0 B4
IO05NB0F0 C7
IO05PB0F0 C6
IO06NB0F0 A5
IO06PB0F0 A4
IO07NB0F0 A7
IO07PB0F0 A6
IO08NB0F0 B7
IO08PB0F0 B6
IO10NB0F0 B9
IO10PB0F0 B8
IO11NB0F0 E9
IO11PB0F0 E8
IO12NB0F1 D9
IO12PB0F1 D8
IO13NB0F1 C9
IO13PB0F1 C8
IO14NB0F1 A9
IO14PB0F1 A8
IO15NB0F 1 B10
IO15PB0F1 A10
IO16NB0F 1 B12
IO16 PB0F1 B11
IO18NB0F1 C13
IO18PB0F1 C12
IO19NB0F1/HCLKAN E11
IO19PB0F1/HCLKAP E10
IO20NB0F1/HCLKBN D12
IO20PB0F1/HCLKBP D11
Bank 1
IO21NB1F2/HCLKCN F13
IO21PB1F2/HCLKCP F12
IO22NB1F2/HCLKDN E14
IO22PB1F2/HCLKDP E13
IO24NB1F2 A1 4
IO24PB1F2 A13
IO25NB1F2 B14
IO25PB1F2 B13
IO26NB1F2 C1 5
IO27NB1F2 A1 6
IO27PB1F2 A15
IO28NB1F2 B16
IO28PB1F2 B15
IO29NB1F2 D1 6
IO29PB1F2 D15
IO30NB1F2 A1 8
IO30PB1F2 A17
IO31NB1F2 F15
IO31PB1F2 F14
IO32NB1F3 C1 7
IO32PB1F3 C16
IO33NB1F3 E16
IO33PB1F3 E15
IO34NB1F3 B18
IO34PB1F3 B17
IO35NB1F3 B19
IO35PB1F3 A19
IO36NB1F3 C1 9
IO36PB1F3 C18
IO37NB1F3 F18
IO37PB1F3 F17
IO38NB1F3 D1 8
IO38PB1F3 E17
IO39NB1F3 E21
IO39PB1F3 D21
IO40NB1F3 E20
484-Pin FB GA
AX500 Function Pin Number
Axcelerator Family FPGAs
v2.1 3-25
IO40PB1F3 D20
IO41NB1F3 G16
IO41PB1F3 G15
Bank 2
IO42NB2F4 F19
IO42PB2 F4 E19
IO43NB2F4 J16
IO43PB2F4 H16
IO44NB2F 4 E22
IO44PB2F4 D22
IO45NB2F4 H19
IO45PB2F4 G19
IO46NB2F4 G22
IO46PB2F4 F22
IO47NB2F4 J17
IO47PB2F4 H17
IO48NB2F4 G20
IO48PB2F4 F20
IO49NB2F4 J18
IO49PB2F4 H18
IO50NB2F4 G21
IO50PB2F4 F21
IO51NB2F4 K19
IO51PB2F4 J19
IO52NB2F5 J21
IO52PB2F5 H21
IO53NB2F5 J20
IO53PB2F5 H20
IO54NB2F5 J22
IO54PB2F5 H22
IO55NB2F5 L17
IO55PB2F5 K17
IO56NB2F5 K21
IO56PB2F5 K22
IO58NB2F5 L20
IO58PB2F5 K20
IO59NB2F5 L18
IO59PB2F5 K18
484-Pin FBGA
AX500 Function Pin N um ber
IO60NB2F5 M21
IO60PB2F5 L21
IO61NB2F5 L16
IO61PB2F5 K16
IO62NB2F5 M19
IO62PB2F5 L19
Bank 3
IO63NB3F6 N16
IO63PB3F6 M 16
IO64NB3F6 P22
IO64PB3F6 N22
IO65NB3F6 N20
IO65PB3F6 M 20
IO66NB3F6 P21
IO66PB3F6 N21
IO67NB3F6 N18
IO67PB3F6 N19
IO68NB3F6 T22
IO68 PB3F6 R22
IO69NB3F6 N17
IO69PB3F6 M 17
IO70NB3F6 T21
IO70 PB3F6 R21
IO71NB3F6 P18
IO71PB3F6 P19
IO72NB3F 6 R20
IO72PB3F6 P20
IO73 PB3F6 R19
IO74NB3F7 V21
IO74PB3F7 U21
IO75NB3F7 V22
IO75PB3F7 U22
IO76NB3F7 U20
IO76PB3F7 T20
IO77NB3F 7 R17
IO77PB3F7 P17
IO78NB3F7 W21
IO78PB3F7 W22
484-Pin FBGA
AX50 0 Functi on Pin Numbe r
IO79NB3F7 T18
IO79PB3F7 R18
IO80NB3F7 W20
IO80PB 3F7 V20
IO81NB3F7 U1 9
IO81PB3F7 T19
IO82NB3F7 U1 8
IO82PB 3F7 V19
IO83NB3F7 R16
IO83PB3F7 P16
Bank 4
IO84NB4F8 AB18
IO84PB4F8 AB19
IO85NB4F8 T15
IO85PB4F8 T16
IO86 NB4F 8 AA18
IO86PB 4F8 AA19
IO87NB4F8 W17
IO87PB 4F8 V17
IO88NB4F8 Y19
IO88PB4F8 W18
IO89NB4F8 U1 4
IO89PB4F8 U15
IO90NB4F8 Y17
IO90PB 4F8 Y18
IO91NB4F8 V15
IO91PB 4F8 V16
IO92PB4F8 AB17
IO93NB4F8 Y15
IO93PB 4F8 Y16
IO94 NB4F 9 AA16
IO94PB 4F9 AA17
IO95NB4F9 AB14
IO95PB4F9 AB15
IO96NB4F9 W15
IO96PB4F9 W16
IO97 NB4F 9 AA13
IO97PB4F9 AB13
484-Pin FB GA
AX500 Function Pin Number
Axcelerator Family FPGAs
3-26 v2.1
IO98NB4F9 AA14
IO98PB4F9 AA15
IO100NB4F9 Y14
IO100PB 4F9 W14
IO101NB4F9 Y12
IO101PB4F9 Y13
IO102NB4F9 AA11
IO102PB4F9 AA12
IO103NB4F9/CLKEN V12
IO103PB4F9/CLKEP V13
IO1 04N B4F9/C LKF N W11
IO104 PB4F9/C LKF P W1 2
Bank 5
IO105NB5F10/CLKGN U10
IO105PB5F10/CLKGP U11
IO106NB5F10/CLKHN V9
IO106PB5F10/CLKHP V10
IO107NB5F10 Y10
IO107PB5F10 Y11
IO108NB5F10 AA9
IO108PB5F10 AA10
IO110NB5F10 AB9
IO110PB5 F10 AB10
IO111NB5F10 Y8
IO111PB5F10 Y9
IO112NB5F10 AB7
IO113NB5F10 W8
IO113PB5F10 W9
IO114NB5F11 AA7
IO114PB5F11 AA8
IO115NB5F11 AB5
IO115PB5F11 AB6
IO116NB5F11 Y6
IO116PB5F11 Y7
IO117NB5F11 U8
IO117PB5F11 U9
IO118NB5F11 AA5
IO118PB5F11 AA6
484-Pin FBGA
AX500 Function Pin N um ber
IO119NB5F11 AA4
IO119PB5F11 AB4
IO120NB5F11 Y4
IO120PB5F11 Y5
IO121NB5F11 W6
IO121PB5F11 W7
IO122NB5F11 V3
IO122PB5F11 W3
IO123NB5F11 T7
IO123PB5F11 T8
IO124NB5F11 V4
IO124PB5F11 W5
IO125NB5F11 V6
IO125PB5F11 V7
Bank 6
IO126NB6F12 V2
IO126PB6F12 W2
IO127NB6F12 P7
IO127PB6F12 R7
IO128NB6F12 V1
IO128PB6F12 W1
IO129NB6F12 U5
IO129PB6F12 T5
IO130NB6F12 T1
IO130PB6F12 U1
IO131NB6F12 P6
IO131PB6F12 R6
IO132NB6F12 T4
IO132PB6F12 U4
IO133NB6F12 U2
IO134NB6F12 T3
IO134PB6F12 U3
IO135NB6F12 P5
IO135PB6F12 R5
IO136NB6F13 R2
IO136PB6F13 T2
IO138NB6F13 P4
IO138PB6F13 R4
484-Pin FBGA
AX50 0 Functi on Pin Numbe r
IO139NB6F13 N2
IO139PB6F13 P2
IO140NB6F13 P3
IO140PB6F13 R3
IO141 NB6F 13 M6
IO141PB6F13 N6
IO142NB6F13 P1
IO142PB6F13 R1
IO143 NB6F 13 M5
IO143PB6F13 N5
IO144 NB6F 13 M4
IO144PB6F13 N4
IO145 NB6F 13 M7
IO145PB6F13 N7
IO146 NB6F 13 M3
IO146PB6F13 N3
Bank 7
IO147NB7F14 K7
IO147PB7F14 L7
IO148 NB7F 14 M2
IO148PB7F14 N1
IO149NB7F14 K5
IO149PB7F14 L5
IO150NB7F14 L3
IO150PB7F14 L2
IO151NB7F14 K6
IO151PB7F14 L6
IO152NB7F14 K2
IO152PB7F14 K1
IO153NB7F14 K4
IO153PB7F14 K3
IO154NB7F14 H3
IO154PB7F14 J3
IO155NB7F14 H5
IO155PB7F14 J5
IO156NB7F14 H4
IO156PB7F14 J4
IO157NB7F14 H2
484-Pin FB GA
AX500 Function Pin Number
Axcelerator Family FPGAs
v2.1 3-27
IO157PB7F14 J2
IO158NB7F15 H1
IO158PB7F15 J1
IO159NB7F15 F1
IO159PB7F15 G1
IO160NB7F15 F2
IO160PB7F15 G2
IO161NB7F15 H6
IO161PB7F15 J6
IO162NB7F15 F3
IO162PB7F15 G3
IO163NB7F15 G5
IO163PB7F15 G6
IO164NB7F15 D1
IO164PB7F15 E1
IO165NB7F15 F4
IO165PB7F15 G4
IO166NB7F15 D2
IO166PB7F15 E2
IO167NB7F15 F5
IO167PB7F15 E4
Dedicated I/O
VCCDA H7
GND A1
GND A11
GND A12
GND A2
GND A21
GND A22
GND AA1
GND AA2
GND AA21
GND AA22
GND AB1
GND AB11
GND AB12
GND AB2
GND AB21
484-Pin FBGA
AX500 Function Pin N um ber
GND AB22
GND B1
GND B2
GND B21
GND B22
GND C20
GND C3
GND D19
GND D4
GND E18
GND E5
GND G18
GND H15
GND H8
GND J14
GND J9
GND K10
GND K11
GND K12
GND K13
GND L1
GND L10
GND L11
GND L12
GND L13
GND L22
GND M1
GND M10
GND M11
GND M12
GND M13
GND M22
GND N10
GND N11
GND N12
GND N13
GND P14
GND P9
484-Pin FBGA
AX50 0 Functi on Pin Numbe r
GND R15
GND R8
GND U16
GND U6
GND V18
GND V5
GND W19
GND W4
GND Y20
GND Y3
GND/LP G7
NC AB8
NC AB16
NC C10
NC C11
NC C14
PRA G11
PRB F11
PRC T12
PRD U12
TCK G8
TDI F9
TDO F7
TMS F6
TRST F8
VCCA G17
VCCA J10
VCCA J11
VCCA J12
VCCA J13
VCCA J7
VCCA K14
VCCA K9
VCCA L1 4
VCCA L9
VCCA M14
VCCA M9
VCCA N14
484-Pin FB GA
AX500 Function Pin Number
Axcelerator Family FPGAs
3-28 v2.1
VCCA N9
VCCA P10
VCCA P11
VCCA P12
VCCA P13
VCCA T6
VCCA U17
VCCPLA F10
VCCPLB G9
VCCPLC D13
VCCPLD G13
VCCPLE U13
VCCPLF T14
VCCPLG W1 0
VCCPLH T10
VCCDA D14
VCCDA D5
VCCDA F16
VCCDA G12
VCCDA L4
VCCDA M18
VCCDA T11
VCCDA T17
VCCDA U7
VCCDA V14
VCCDA V8
VCCIB0 A3
VCCIB0 B3
VCCIB0 H10
VCCIB0 H11
VCCIB0 H9
VCCIB1 A20
VCCIB1 B20
VCCIB1 H12
VCCIB1 H13
VCCIB1 H14
VCCIB2 C21
VCCIB2 C22
484-Pin FBGA
AX500 Function Pin N um ber
VCCIB2 J15
VCCIB2 K15
VCCIB2 L15
VCCIB3 M15
VCCIB3 N15
VCCIB3 P15
VCCIB3 Y21
VCCIB3 Y22
VCCIB4 AA20
VCCIB4 AB20
VCCIB 4 R12
VCCIB 4 R13
VCCIB 4 R14
VCCIB5 AA3
VCCIB5 AB3
VCCIB 5 R10
VCCIB 5 R11
VCCIB5 R9
VCCIB6 M8
VCCIB6 N8
VCCIB6 P8
VCCIB6 Y1
VCCIB6 Y2
VCCIB7 C1
VCCIB7 C2
VCCIB7 J8
VCCIB7 K8
VCCIB7 L8
VCOMPLA D10
VCOMPLB G10
VCOMPLC E12
VCOMPLD G14
VCOMPLE W13
VCOMPLF T13
VCOMPLG V11
VCOMPLH T9
VPUMP D17
484-Pin FBGA
AX50 0 Functi on Pin Numbe r
Axcelerator Family FPGAs
v2.1 3-29
484-Pin FBGA
AX1000 Function Pin Number
Bank 0
IO01NB0F0 E3
IO01PB0F0 D3
IO02NB0F0 E7
IO02PB0F0 E6
IO05NB0F0 D2
IO05PB0F0 E2
IO06NB0F0 C5
IO06PB0F0 C4
IO12NB0F1 D7
IO12PB0F1 D6
IO13NB0F1 B5
IO13PB0F1 B4
IO14NB0F1 E9
IO14PB0F1 E8
IO15NB0F1 C7
IO15PB0F1 C6
IO16NB0F1 A5
IO16PB0F1 A4
IO17NB0F1 B7
IO17PB0F1 B6
IO18NB0F1 A7
IO18PB0F1 A6
IO19NB0F1 C9
IO19PB0F1 C8
IO20NB0F1 D9
IO20PB0F1 D8
IO21NB0F1 B9
IO21PB0F1 B8
IO22NB0F2 A9
IO22PB0F2 A8
IO23NB0F2 B10
IO23PB0F2 A10
IO26NB0F2 A14
IO26PB0F2 A13
IO29NB0F2 B12
IO29PB0F2 B11
IO30NB0F 2/ HCLKA N E11
IO3 0PB0F2/ HCL KAP E10
IO31NB0F2/HCLKBN D12
IO31PB0F2/HCLKBP D11
Bank 1
IO32NB1F3/HCLKCN F13
IO32PB1F3/HCLKCP F12
IO33NB1F3/HCLKDN E14
IO33PB1F3/HCLKDP E13
IO34NB1F3 C13
IO34PB1F3 C12
IO37NB1F 3 B14
IO37 PB1F3 B13
IO38NB1F3 A16
IO38PB1F3 A15
IO40NB1F3 C15
IO42NB1F4 A18
IO42PB1F4 A17
IO43NB1F 4 B16
IO43 PB1F4 B15
IO44NB1F 4 B18
IO44 PB1F4 B17
IO45NB1F 4 B19
IO45PB1F4 A19
IO46NB1F4 C19
IO46PB1F4 C18
IO48NB1F4 F15
IO48PB1F4 F14
IO49NB1F4 D16
IO49PB1F4 D15
IO50NB1F4 C17
IO50PB1F4 C16
IO51NB1F4 E22
IO51PB1F4 D22
IO52NB1F4 E16
IO52PB1F4 E15
IO57NB1F5 E21
IO57PB1F5 D21
IO60NB1F5 G16
IO60PB1F5 G15
IO61NB1F5 D18
IO61PB1F5 E17
IO63NB1F5 E20
IO63PB1F5 D20
Bank 2
IO64NB2F6 F18
IO64PB2F6 F17
IO67NB2F6 F19
IO67PB2F6 E19
484-Pin FBGA
AX1000 Function Pin Num ber IO68NB2F6 J16
IO68PB2F6 H16
IO70NB2F6 J17
IO70PB2F6 H17
IO74NB2F7 J18
IO74PB2F7 H18
IO75NB2F7 G20
IO75PB2F7 F20
IO79NB2F7 H1 9
IO79PB2F7 G19
IO80NB2F7 L16
IO80PB 2F7 K16
IO84NB2F7 L17
IO84PB 2F7 K17
IO85NB2F8 G21
IO85PB2F8 F21
IO86NB2F8 G22
IO86PB2F8 F22
IO87NB2F8 J20
IO87PB2F8 H20
IO88NB2F8 L18
IO88PB 2F8 K18
IO89NB2F8 K19
IO89PB 2F8 J19
IO90NB2F8 J21
IO90PB2F8 H21
IO91NB2F8 J22
IO91PB2F8 H22
IO93NB2F8 K21
IO93PB 2F8 K22
IO94NB2F8 L20
IO94PB 2F8 K20
IO95NB2F8 M21
IO95PB2F8 L21
Bank 3
IO96NB3F9 N1 6
IO96PB3F9 M16
IO97NB3F9 M19
IO97PB3F9 L19
IO98NB3F9 P22
IO98PB3F9 N22
IO99NB3F9 N2 0
IO99PB3F9 M20
484-Pin FB GA
AX1000 Function Pin Number
Axcelerator Family FPGAs
3-30 v2.1
IO100NB3F9 N17
IO100PB3F9 M17
IO101NB3 F9 P21
IO101PB3F9 N21
IO103NB3F9 R20
IO103PB 3F9 P20
IO104NB3F9 N18
IO104PB3F9 N19
IO105NB3 F9 T22
IO105PB3F9 R22
IO106NB3F9 R17
IO106PB 3F9 P17
IO107NB3F 1 0 T21
IO107PB3F10 R21
IO110NB3F10 V22
IO110PB3F10 U22
IO113NB3F10 V21
IO113PB3F10 U21
IO114NB3F 1 0 P18
IO114PB3F1 0 P19
IO116PB3F10 R19
IO117NB3F10 U20
IO117PB3F1 0 T20
IO118NB3F 1 1 T18
IO118PB3F11 R18
IO121NB3F11 U19
IO121PB3F1 1 T19
IO124NB3F11 R16
IO124PB3F1 1 P16
IO127NB3F 1 1 W2 1
IO127PB3 F11 W22
Bank 4
IO129PB4 F12 AB17
IO132NB4F12 Y19
IO132PB4 F12 W18
IO133NB4F 1 2 W1 7
IO133PB4F12 V17
IO135NB4F 1 2 T15
IO135PB4F1 2 T16
IO138NB4F12 Y17
IO138PB4F12 Y18
IO139NB4F13 V15
IO139PB4F13 V16
484-Pin FBGA
AX1000 Function Pin Number IO140NB4F13 U18
IO140PB4F13 V19
IO142NB4F13 W20
IO142PB4F13 V20
IO143NB4F13 W15
IO143PB4F13 W16
IO144NB4F13 AA18
IO144PB4F13 AA19
IO145NB4F13 U14
IO145PB4F13 U15
IO146NB4F13 Y15
IO146PB4F13 Y16
IO147NB4F13 AB18
IO147PB4F13 AB19
IO149NB4F13 Y14
IO149PB4F13 W14
IO150NB4F13 AA16
IO150PB4F13 AA17
IO152NB4F14 AA14
IO152PB4F14 AA15
IO154NB4F14 AB14
IO154PB4F14 AB15
IO155NB4F14 AA13
IO155PB4F14 AB13
IO158NB4F14 Y12
IO158PB4F14 Y13
IO159NB4F14/CLKEN V12
IO159PB4F14/CLKEP V13
IO160NB4F14/CLKFN W11
IO160PB4F14/CLKFP W12
Bank 5
IO161NB5F15/CLKGN U10
IO161PB5F15/CLKGP U11
IO162NB5F15/CLKHN V9
IO162PB5F15/CLKHP V10
IO163NB5F15 Y10
IO163PB5F15 Y11
IO167NB5F15 AA11
IO167PB5F15 AA12
IO169NB5F15 AA9
IO169PB5F15 AA10
IO170NB5F15 AB9
IO170PB5F15 AB10
484-Pin FBGA
AX1000 Function Pin Num ber IO171NB5F16 W8
IO171PB5F16 W9
IO172NB5F16 Y8
IO172PB5F16 Y9
IO173NB5F16 U8
IO173PB5F16 U9
IO174NB5F16 AA7
IO174PB5F16 AA8
IO175NB5F16 AB5
IO175PB5F16 AB6
IO176NB5F16 AA5
IO176PB5F16 AA6
IO177NB5F16 AA4
IO177PB5F16 AB4
IO178NB5F16 Y6
IO178PB5F16 Y7
IO179NB5F16 T7
IO179PB5F16 T8
IO180NB5F16 W6
IO180PB5F16 W7
IO181NB5F17 Y4
IO181PB5F17 Y5
IO184NB5F17 AB7
IO187NB5F17 V3
IO187PB5F17 W3
IO188NB5F17 V4
IO188PB5F17 W5
IO192NB5F17 V6
IO192PB5F17 V7
Bank 6
IO194NB6F18 V2
IO194PB6F18 W2
IO195NB6F18 U5
IO195PB6F18 T5
IO200NB6F18 T4
IO200PB6F18 U4
IO201NB6F18 P6
IO201PB6F18 R6
IO203NB6F19 U2
IO204NB6F19 T3
IO204PB6F19 U3
IO205NB6F19 P5
IO205PB6F19 R5
484-Pin FB GA
AX1000 Function Pin Number
Axcelerator Family FPGAs
v2.1 3-31
IO208NB6F19 V1
IO208PB6F19 W1
IO209NB6F19 P7
IO209PB6F19 R7
IO212NB6F19 P4
IO212PB6F19 R4
IO214NB6F20 P3
IO214PB6F20 R3
IO215NB6F20 M6
IO215PB6F20 N6
IO216NB6F20 R2
IO216PB6F20 T2
IO217NB6F20 T1
IO217PB6F20 U1
IO219NB6F20 M5
IO219PB6F20 N5
IO220NB6F20 P1
IO220PB6F20 R1
IO221NB6F20 N2
IO221PB6F20 P2
IO222NB6F20 M3
IO222PB6F20 N3
IO223NB6F20 M7
IO223PB6F20 N7
IO224NB6F20 M4
IO224PB6F20 N4
Bank 7
IO225NB7F21 M2
IO225PB7F21 N1
IO226NB7F21 K2
IO226PB7F21 K1
IO228NB7F21 L3
IO228PB7F21 L2
IO229NB7F21 K5
IO229PB7F21 L5
IO230NB7F21 H1
IO230PB7F21 J1
IO231NB7F21 H2
IO231PB7F21 J2
IO232NB7F21 K4
IO232PB7F21 K3
IO233NB7F21 K6
IO233PB7F21 L6
484-Pin FBGA
AX1000 Function Pin Number IO234NB7F21 F1
IO234PB7F21 G1
IO235NB7F21 F2
IO235PB7F21 G2
IO236NB7F22 H3
IO236PB7F22 J3
IO237NB7F22 K7
IO237PB7F22 L7
IO241NB7F22 H6
IO241PB7F22 J6
IO242NB7F22 H4
IO242PB7F22 J4
IO243NB7F22 H5
IO243PB7F22 J5
IO246NB7F22 F3
IO246PB7F22 G3
IO250NB7F23 F4
IO250PB7F23 G4
IO253NB7F23 G5
IO253PB7F23 G6
IO254NB7F23 D1
IO254PB7F23 E1
IO257NB7F23 F5
IO257PB7F23 E4
Dedi c ated I/ O
VCCDA H7
GND A1
GND A11
GND A12
GND A2
GND A21
GND A22
GND AA1
GND AA2
GND AA 21
GND AA 22
GND AB1
GND AB11
GND AB12
GND AB2
GND AB21
GND AB22
GND B1
484-Pin FBGA
AX1000 Function Pin Num ber GND B2
GND B21
GND B22
GND C20
GND C3
GND D19
GND D4
GND E18
GND E5
GND G18
GND H15
GND H8
GND J14
GND J9
GND K10
GND K11
GND K12
GND K13
GND L1
GND L10
GND L11
GND L12
GND L13
GND L22
GND M1
GND M10
GND M11
GND M12
GND M13
GND M22
GND N10
GND N11
GND N12
GND N13
GND P14
GND P9
GND R15
GND R8
GND U16
GND U6
GND V18
GND V5
GND W19
484-Pin FB GA
AX1000 Function Pin Number
Axcelerator Family FPGAs
3-32 v2.1
GND W4
GND Y20
GND Y3
GND/LP G7
PRA G11
PRB F11
PRC T12
PRD U12
TCK G8
TDI F9
TDO F7
TMS F6
TRST F8
VCCA G17
VCCA J10
VCCA J11
VCCA J12
VCCA J13
VCCA J7
VCCA K14
VCCA K9
VCCA L14
VCCA L9
VCCA M14
VCCA M9
VCCA N14
VCCA N9
VCCA P10
VCCA P11
VCCA P12
VCCA P13
VCCA T6
VCCA U17
VCCPLA F10
VCCPLB G9
VCCPLC D13
VCCPLD G13
VCCPLE U13
VCCPLF T14
VCCPLG W1 0
VCCPLH T10
VCCDA AB 1 6
VCCDA AB8
484-Pin FBGA
AX1000 Function Pin Number VCCDA C10
VCCDA C11
VCCDA C14
VCCDA D14
VCCDA D5
VCCDA F16
VCCDA G12
VCCDA L4
VCCDA M18
VCCDA T11
VCCDA T17
VCCDA U7
VCCDA V14
VCCDA V8
VCCIB0 A3
VCCIB0 B3
VCCIB0 H10
VCCIB0 H11
VCCIB0 H9
VCCIB1 A20
VCCIB 1 B20
VCCIB1 H12
VCCIB1 H13
VCCIB1 H14
VCCIB2 C21
VCCIB2 C22
VCCIB2 J15
VCCIB2 K15
VCCIB2 L15
VCCIB3 M15
VCCIB3 N15
VCCIB3 P15
VCCIB3 Y21
VCCIB3 Y22
VCCIB4 AA20
VCCIB4 AB20
VCCIB 4 R12
VCCIB 4 R13
VCCIB 4 R14
VCCIB5 AA3
VCCIB5 AB3
VCCIB 5 R10
VCCIB 5 R11
484-Pin FBGA
AX1000 Function Pin Num ber VCCIB5 R9
VCCIB6 M8
VCCIB6 N8
VCCIB6 P8
VCCIB6 Y1
VCCIB6 Y2
VCCIB7 C1
VCCIB7 C2
VCCIB7 J8
VCCIB7 K8
VCCIB7 L8
VCOMPLA D10
VCOMPLB G10
VCOMPLC E12
VCOMPLD G14
VCOMPLE W13
VCOMPLF T13
VCOMPLG V11
VCOMPLH T9
VPUMP D17
484-Pin FB GA
AX1000 Function Pin Number
Axcelerator Family FPGAs
v2.1 3-33
676-Pin FBGA
Figure 3-6 676-Pin FBGA (Bottom View)
A1 Ball Pad Corner
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
1234567891011121314151617181920212223242526
Axcelerator Family FPGAs
3-34 v2.1
676-Pin FBGA
AX500 Function Pin Nu m ber
Bank 0
IO00NB0F0 F8
IO00PB0F0 E8
IO01NB0F0 A5
IO01PB0F0 A4
IO02NB0F0 E7
IO02PB0F0 E6
IO03NB0F0 D6
IO03PB0F0 D5
IO04NB0F0 B5
IO04PB0F0 C5
IO05NB0F0 B6
IO05PB0F0 C6
IO06NB0F0 C7
IO06PB0F0 D7
IO07NB0F0 A7
IO07PB0F0 A6
IO08NB0F0 C8
IO08PB0F0 D8
IO09NB0F0 F10
IO09PB0F0 F9
IO10NB0F0 B8
IO10PB0F0 B7
IO11NB0F0 D10
IO11PB0F0 E10
IO12NB0F1 B9
IO12PB0F1 C9
IO13NB0F1 F11
IO13PB0F1 G11
IO14NB0F1 D11
IO14PB0F1 E11
IO15NB0F1 B10
IO15PB0F1 C10
IO16NB0F1 A10
IO16PB0F1 A9
IO17NB0F1 F12
IO17PB0F1 G12
IO18NB0F1 C12
IO18PB0F1 C11
IO19NB0F1/HCLKAN A12
IO19P B0F1 /HCLKAP B12
IO20NB0F1/HCLKBN C13
IO20PB0F1/HCLKBP B13
Bank 1
IO21NB1F2/HCLKCN C15
IO21PB1F2/HCLKCP C1 4
IO22NB1F2/HCLKDN A15
IO22P B1F2 /HCLKDP B15
IO23NB1F2 F15
IO23PB1F2 G15
IO24NB1F2 B16
IO24PB1F2 A16
IO25NB1F2 A18
IO25PB1F2 A17
IO26NB1F2 D16
IO26PB1F2 E16
IO27NB1F2 F16
IO27PB1F2 G16
IO28NB1F2 C18
IO28PB1F2 C17
IO29NB1F2 B19
IO 29PB1F2 B18
IO30NB1F2 D19
IO30PB1F2 C19
IO31NB1F2 F17
IO31PB1F2 E17
IO32NB1F3 B20
IO32PB1F3 A20
IO33NB1F3 B22
IO 33PB1F3 B21
IO34NB1F3 D20
IO34PB1F3 C20
IO35NB1F3 D21
IO35PB1F3 C21
IO36NB1F3 D22
IO36PB1F3 C22
IO37NB1F3 F19
IO37PB1F3 E19
676-Pin FBGA
AX50 0 Functi on Pin Numbe r
IO38NB1F3 B23
IO38PB1F3 A23
IO39NB1F3 E21
IO39PB1F3 E20
IO40NB1F3 D2 3
IO40PB1F3 C23
IO41NB1F3 D2 5
IO41PB1F3 C25
Bank 2
IO42NB2F4 G24
IO42PB2F4 G23
IO43NB2F4 G26
IO43PB2F4 F26
IO44NB2F4 F25
IO44PB2F4 E25
IO45NB2F4 J21
IO45PB 2F4 J22
IO46NB2F4 H2 5
IO46PB2F4 G25
IO47NB2F4 K23
IO47PB 2F4 J23
IO48NB2F4 J24
IO48PB2F4 H24
IO49NB2F4 K21
IO49PB2F4 K22
IO50NB2F4 K25
IO50PB 2F4 J25
IO51NB2F4 L20
IO51PB2F4 L21
IO52NB2F5 K26
IO52PB 2F5 J26
IO53NB2F5 L23
IO53PB2F5 L22
IO54NB2F5 L24
IO54PB2F5 K24
IO55NB2F5 M20
IO55PB2F5 M21
IO56NB2F5 L26
IO56PB2F5 L25
676-Pin FB GA
AX500 Function Pin Number
Axcelerator Family FPGAs
v2.1 3-35
IO57NB2F5 M23
IO57PB2F5 M22
IO58NB2F5 M26
IO58PB2F5 M25
IO59NB2F5 N22
IO59PB2F5 N23
IO60NB2F5 N24
IO60PB2F5 M24
IO61NB2F5 N20
IO61PB2F5 N21
IO62NB2F5 P25
IO62PB2F5 N25
Bank 3
IO63NB3F6 T26
IO63PB3F6 R26
IO64NB3F6 R24
IO64PB3F6 P24
IO65NB3F6 P20
IO65PB3F6 P21
IO66NB3F6 T25
IO66PB3F6 R25
IO67NB3F6 T23
IO67PB3F6 R23
IO68NB3F6 V26
IO68PB3F6 U26
IO69NB3F6 V25
IO69PB3F6 U25
IO70NB3F6 Y25
IO70PB3 F6 W2 5
IO71NB3F 6 W24
IO71PB3F6 V24
IO72NB3F6 V23
IO72PB3F6 U23
IO73NB3F6 T21
IO73PB3F6 T20
IO74NB3F7 AA26
IO74PB3F7 Y26
IO75NB3F7 AA24
IO75PB3F7 Y24
676-Pin FBGA
AX500 Function Pin Nu m ber
IO76NB3F7 Y23
IO76PB3F7 W23
IO77NB3F7 V21
IO77PB3F7 U21
IO78NB3F7 AB25
IO 78PB3F7 AA25
IO79NB3F7 AC26
IO79PB3F7 AB26
IO80NB3F7 AC24
IO80PB3F7 AB24
IO81NB3F7 AB23
IO 81PB3F7 AA23
IO82NB3F7 AA22
IO82PB3F7 Y22
IO83NB3F7 AE26
IO 83PB3F7 AD26
Bank 4
IO84NB4F8 AB21
IO 84PB4F8 AA21
IO85NB4F8 AE23
IO 85PB4F8 AE24
IO86NB4F8 AC21
IO 86PB4F8 AC22
IO87NB4F8 AF22
IO87PB4F8 AF23
IO88NB4F8 AD22
IO 88PB4F8 AD23
IO89NB4F8 AC19
IO 89PB4F8 AC20
IO90NB4F8 AE21
IO 90PB4F8 AE22
IO91NB4F8 AA17
IO 91PB4F8 AA18
IO92NB4F8 AD20
IO 92PB4F8 AD21
IO93NB4F8 AF20
IO93PB4F8 AF21
IO94NB4F9 AE19
IO 94PB4F9 AE20
676-Pin FBGA
AX50 0 Functi on Pin Numbe r
IO95 NB4F 9 AC17
IO95PB 4F9 AC18
IO96 NB4F 9 AD18
IO96PB 4F9 AD19
IO97 NB4F 9 AA16
IO97PB4F9 Y16
IO98NB4F9 AE17
IO98PB4F9 AE18
IO99 NB4F 9 AC16
IO99PB4F9 AB16
IO100NB4F9 AF17
IO100PB4F9 AF18
IO101 NB4F 9 AA15
IO101PB4F9 Y15
IO102 NB4F 9 AC15
IO102PB4F9 AB15
IO103NB4F9/CLKEN AE16
IO103PB4F9/CLKEP AF16
IO104NB4F9/CLKFN AE14
IO104PB4F9/CLKFP AE15
Bank 5
IO105NB5F10/CLKGN AE12
IO105PB5F10/CLKGP AE13
IO106NB5F10/CLKHN AE11
IO106PB5F10/CLKHP AF11
IO107NB5F10 Y12
IO107PB 5F10 AA13
IO108 NB5F 10 AC12
IO108PB5F10 AB12
IO109 NB5F 10 AC10
IO109PB 5F10 AC11
IO110NB5F10 AF9
IO110PB5F10 AF10
IO111NB5F10 Y11
IO111PB 5F10 AA12
IO112NB5F10 AE9
IO112PB5F10 AE10
IO113NB5F10 AC9
IO113PB5F10 AD9
676-Pin FB GA
AX500 Function Pin Number
Axcelerator Family FPGAs
3-36 v2.1
IO114NB5F11 AF6
IO114PB5F11 AF7
IO115NB5F11 AA10
IO115PB5 F11 AB10
IO116NB5F11 AE7
IO116PB5F11 AE8
IO117NB5F11 AD7
IO117PB5F11 AD8
IO118NB5F11 AC7
IO118PB5F11 AC8
IO119NB5F11 AD6
IO119PB5F11 AE6
IO120NB5F11 AE5
IO120PB5F11 AF5
IO121NB5F11 AF4
IO121PB5F11 AE4
IO122NB5F11 AC5
IO122PB5F11 AC6
IO123NB5F11 AD4
IO123PB5F11 AD5
IO124NB5F11 AB6
IO124PB5F11 AB7
IO125NB5F11 AE3
IO125PB5F11 AF3
Bank 6
IO126NB6F12 AB3
IO126PB6F12 AC3
IO127NB6F12 AA2
IO127PB6F12 AB2
IO128NB6F12 AC2
IO128PB6F12 AD2
IO129NB6F12 Y1
IO129PB6F12 AA1
IO130NB6F12 Y3
IO130PB6F12 AA3
IO131NB6F12 U6
IO131PB6F12 V6
IO132NB6F12 W2
IO132PB6F12 Y2
676-Pin FBGA
AX500 Function Pin Nu m ber
IO133NB6F12 V4
IO133PB6F12 W4
IO134NB6F12 V3
IO134PB6F12 W3
IO135NB6F12 V1
IO135PB6F12 V2
IO136NB6F13 U4
IO136PB6F13 U5
IO137NB6F13 T6
IO137PB6F13 T7
IO138NB6F13 T5
IO138PB6F13 T4
IO13 9NB6F 13 R6
IO139 PB6F13 R7
IO140NB6F13 T3
IO140PB6F13 U3
IO141NB6F13 U1
IO141PB6F13 U2
IO14 2NB6F 13 R2
IO142PB6F13 T2
IO143NB6F13 P3
IO143 PB6F13 R3
IO144NB6F13 P5
IO144PB6F13 P4
IO145NB6F13 P6
IO145PB6F13 P7
IO14 6NB6F 13 R1
IO146PB6F13 T1
Bank 7
IO147NB7F14 N6
IO147PB7F14 N7
IO148NB7F14 N5
IO148PB7F14 N4
IO149NB7F14 N2
IO149PB7F14 N3
IO150NB7F14 L1
IO150PB7F14 M1
IO151NB7F14 M2
IO151PB7F14 M3
676-Pin FBGA
AX50 0 Functi on Pin Numbe r
IO152 NB7F 14 M5
IO152PB 7F14 M4
IO153 NB7F 14 M7
IO153PB 7F14 M6
IO154 NB7 F14 K2
IO154PB7F14 L2
IO155 NB7 F14 K3
IO155PB7F14 L3
IO156NB7F14 L5
IO156PB7F14 L4
IO157NB7F14 L6
IO157PB7F14 L7
IO158NB7F15 J1
IO158PB 7F1 5 K1
IO159NB7F15 J4
IO159PB 7F1 5 K4
IO160NB7F15 H2
IO160PB7F15 J2
IO161 NB7 F15 K6
IO161PB 7F1 5 K5
IO162NB7F15 H3
IO162PB7F15 J3
IO163NB7F15 G2
IO163PB7F15 G1
IO164NB7F15 G4
IO164PB7F15 H4
IO165NB7F15 F3
IO165PB7F15 G3
IO166NB7F15 E2
IO166PB7F15 F2
IO167NB7F15 F5
IO167PB7F15 G5
Dedicated I/O
VCCDA B1
GND A1
NC A11
GND A13
GND A14
GND A19
676-Pin FB GA
AX500 Function Pin Number
Axcelerator Family FPGAs
v2.1 3-37
NC A21
NC A22
NC A24
NC A25
GND A26
GND A8
NC AA11
NC AA19
NC AA20
NC AA4
NC AA5
NC AA6
NC AA7
NC AA8
NC AA9
NC AB1
NC AB11
NC AB17
NC AB18
NC AB19
NC AB20
NC AB8
NC AB9
NC AC1
NC AC13
NC AC14
GND AC23
NC AC25
GND AC4
NC AD1
NC AD11
NC AD16
GND AD24
NC AD25
GND AD3
NC AE1
GND AE2
GND AE25
GND AF1
676-Pin FBGA
AX500 Function Pin Nu m ber
GND AF13
GND AF14
GND AF19
NC AF2
NC AF25
GND AF26
GND AF8
NC B11
GND B2
NC B24
GND B25
GND B26
NC B4
NC C16
GND C24
GND C3
NC C4
NC D1
NC D13
NC D14
NC D17
NC D18
NC D2
NC D26
NC D3
NC D9
NC E1
NC E18
NC E23
NC E24
NC E26
NC E3
NC E4
NC E9
NC F1
NC F18
NC F20
NC F21
NC F22
676-Pin FBGA
AX50 0 Functi on Pin Numbe r
NC F23
NC F24
NC F4
NC F6
NC F7
GND G20
NC G21
NC G22
GND G7
GND H1
GND H19
NC H21
NC H22
NC H23
GND H26
NC H5
NC H6
GND H8
GND J18
NC J5
NC J6
GND J9
GND K10
GND K11
GND K12
GND K13
GND K14
GND K15
GND K16
GND K17
GND L10
GND L11
GND L12
GND L13
GND L14
GND L15
GND L16
GND L17
GND M10
676-Pin FB GA
AX500 Function Pin Number
Axcelerator Family FPGAs
3-38 v2.1
GND M11
GND M12
GND M13
GND M14
GND M15
GND M16
GND M17
GND N1
GND N10
GND N11
GND N12
GND N13
GND N14
GND N15
GND N16
GND N17
GND N26
GND P1
GND P10
GND P11
GND P12
GND P13
GND P14
GND P15
GND P16
GND P17
NC P22
GND P26
GND R10
GND R11
GND R12
GND R13
GND R14
GND R15
GND R16
GND R17
NC R20
NC R21
NC R22
676-Pin FBGA
AX500 Function Pin Nu m ber
NC R4
NC R5
GND T10
GND T11
GND T12
GND T13
GND T14
GND T15
GND T16
GND T17
NC T22
NC T24
GND U10
GND U11
GND U12
GND U13
GND U14
GND U15
GND U16
GND U17
NC U22
NC U24
GND V18
NC V22
NC V5
GND V9
GND W1
GND W19
NC W21
NC W22
GND W26
NC W5
NC W6
GND W8
GND Y20
NC Y21
NC Y4
NC Y5
NC Y6
676-Pin FBGA
AX50 0 Functi on Pin Numbe r
GND Y7
GND/LP C2
PRA E13
PRB B14
PRC Y14
PRD AD14
TCK E5
TDI B3
TDO G6
TMS D4
TRST A2
VCCA AB4
VCCA AF2 4
VCCA C1
VCCA C26
VCCA J10
VCCA J11
VCCA J12
VCCA J13
VCCA J14
VCCA J15
VCCA J16
VCCA J17
VCCA K18
VCCA K9
VCCA L1 8
VCCA L9
VCCA M18
VCCA M9
VCCA N18
VCCA N9
VCCA P18
VCCA P9
VCCA R18
VCCA R9
VCCA T18
VCCA T9
VCCA U18
VCCA U9
676-Pin FB GA
AX500 Function Pin Number
Axcelerator Family FPGAs
v2.1 3-39
VCCA V10
VCCA V11
VCCA V12
VCCA V13
VCCA V14
VCCA V15
VCCA V16
VCCA V17
VCCPLA E12
VCCPLB F13
VCCPLC E15
VCCPLD G14
VCCPLE AF15
VCCPLF AA14
VCCPLG AF12
VCCPLH AB13
VCCDA AB 2 2
VCCDA AB5
VCCDA AD10
VCCDA AD13
VCCDA D24
VCCDA E14
VCCDA P2
VCCDA P23
VCCIB0 G10
VCCIB0 G8
VCCIB0 G9
VCCIB0 H10
VCCIB0 H11
VCCIB0 H12
VCCIB0 H13
VCCIB0 H9
VCCIB1 G17
VCCIB1 G18
VCCIB1 G19
VCCIB1 H14
VCCIB1 H15
VCCIB1 H16
VCCIB1 H17
676-Pin FBGA
AX500 Function Pin Nu m ber
VCCIB1 H18
VCCIB2 H20
VCCIB2 J19
VCCIB2 J20
VCCIB2 K19
VCCIB2 K20
VCCIB2 L19
VCCIB2 M19
VCCIB2 N19
VCCIB3 P19
VCCIB3 R19
VCCIB3 T19
VCCIB3 U19
VCCIB3 U20
VCCIB3 V19
VCCIB3 V20
VCCIB3 W2 0
VCCIB4 W1 4
VCCIB4 W1 5
VCCIB4 W1 6
VCCIB4 W1 7
VCCIB4 W1 8
VCCIB4 Y17
VCCIB4 Y18
VCCIB4 Y19
VCCIB5 W1 0
VCCIB5 W1 1
VCCIB5 W1 2
VCCIB5 W1 3
VCCIB5 W9
VCCIB5 Y10
VCCIB5 Y8
VCCIB5 Y9
VCCIB6 P8
VCCIB6 R8
VCCIB6 T8
VCCIB6 U7
VCCIB6 U8
VCCIB6 V7
676-Pin FBGA
AX50 0 Functi on Pin Numbe r
VCCIB6 V8
VCCIB6 W7
VCCIB7 H7
VCCIB7 J7
VCCIB7 J8
VCCIB7 K7
VCCIB7 K8
VCCIB7 L8
VCCIB7 M8
VCCIB7 N8
VCCDA A3
VCOMPLA D12
VCOMPLB G13
VCOMPLC D15
VCOMPLD F14
VCCDA AD17
VCOMPLE AD 1 5
VCOMPLF AB14
VCOMPLG AD1 2
VCOMPLH Y13
VCCDA B17
VPUMP E22
676-Pin FB GA
AX500 Function Pin Number
Axcelerator Family FPGAs
3-40 v2.1
676-Pin FBGA
AX1000 Function Pin Number
Bank 0
IO00NB0F0 B4
IO00PB0F0 C4
IO02NB0F0 E7
IO02PB0F0 E6
IO03NB0F0 D6
IO03PB0F0 D5
IO04NB0F0 B5
IO04PB0F0 C5
IO05NB0F0 A5
IO05PB0F0 A4
IO06NB0F0 F7
IO06PB0F0 F6
IO07NB0F0 B6
IO07PB0F0 C6
IO08NB0F0 C7
IO08PB0F0 D7
IO10NB0F0 F8
IO10PB0F0 E8
IO11NB0F0 A7
IO11PB0F0 A6
IO12NB0F1 C8
IO12PB0F1 D8
IO13NB0F1 B8
IO13PB0F1 B7
IO14NB0F1 D9
IO14PB0F1 E9
IO16NB0F1 F10
IO16PB0F1 F9
IO18NB0F1 B9
IO18PB0F1 C9
IO19NB0F1 A10
IO19PB0F1 A9
IO20NB0F1 D10
IO20PB0 F1 E10
IO21NB0F1 B10
IO21PB0F1 C10
IO22NB0F2 F11
IO22PB0F2 G11
IO24NB0F2 D11
IO24PB0F2 E11
IO26NB0F2 C12
IO26PB0F2 C11
IO28NB0F2 F12
IO28PB0F2 G12
IO30NB0F2/HCLKAN A12
IO30PB 0F2/HC LKA P B12
IO31NB0F2/HCLKBN C13
IO31 PB0F 2/HC LKBP B13
Bank 1
IO32NB1F3/HCLKCN C15
IO32PB1F3/HCLKCP C1 4
IO33NB1F3/HCLKDN A15
IO33PB 1F3/HC LKD P B15
IO35NB1F 3 B16
IO35PB1F3 A16
IO36NB1F3 F15
IO36PB1F3 G15
IO38NB1F3 F16
IO38PB1F3 G16
IO40NB1F3 A18
IO40PB1F3 A17
IO41NB1F4 C18
IO41PB1F4 C17
IO42NB1F4 D16
IO42PB1F4 E16
IO44NB1F4 D18
IO44PB1F4 D17
IO45NB1F 4 B19
IO45 PB1F4 B18
IO46NB1F 4 B20
IO46PB1F4 A20
IO48NB1F4 F17
IO48PB1F4 E17
IO49NB1F4 A22
IO49PB1F4 A21
IO50NB1F4 E18
IO50PB1F4 F18
676-Pin FBGA
AX1000 Function Pin Num ber
IO51NB1F4 D1 9
IO51PB1F4 C19
IO52NB1F4 D2 0
IO52PB1F4 C20
IO54NB1F5 B22
IO54PB1F5 B21
IO55NB1F5 D2 1
IO55PB1F5 C21
IO56NB1F5 F19
IO56PB1F5 E19
IO57NB1F5 B23
IO57PB1F5 A23
IO58NB1F5 D2 2
IO58PB1F5 C22
IO59NB1F5 B24
IO59PB1F5 A24
IO60NB1F5 E21
IO60PB1F5 E20
IO62NB1F5 D2 3
IO62PB1F5 C23
IO63NB1F5 F21
IO63PB1F5 F20
Bank 2
IO64NB2F6 H2 1
IO64PB2F6 G21
IO65NB2F6 G22
IO65PB2F6 F22
IO66NB2F6 F24
IO66PB2F6 F23
IO67NB2F6 E24
IO67PB2F6 E23
IO68NB2F6 H2 3
IO68PB2F6 H22
IO69NB2F6 D2 5
IO69PB2F6 C25
IO70NB2F6 G24
IO70PB2F6 G23
IO71NB2F6 F25
IO71PB2F6 E25
676-Pin FB GA
AX1000 Function Pin Number
Axcelerator Family FPGAs
v2.1 3-41
IO72NB2F6 G26
IO72PB2F6 F26
IO73NB2F 6 E26
IO73PB2F6 D26
IO74NB2F7 J21
IO74PB2F7 J22
IO75NB2F7 J24
IO75PB2F7 H24
IO76NB2F7 K23
IO76PB2F7 J23
IO77NB2F7 H25
IO77PB2F7 G25
IO78NB2F7 K25
IO78PB2F7 J25
IO80NB2F7 K21
IO80PB2F7 K22
IO81NB2F7 K26
IO81PB2F7 J26
IO82NB2F7 L24
IO82PB2F7 K24
IO83NB2F7 L23
IO83PB2F7 L22
IO84NB2F7 L20
IO84PB2F7 L21
IO86NB2F8 L26
IO86PB2F8 L25
IO88NB2F8 M23
IO88PB2F8 M22
IO89NB2F8 M26
IO89PB2F8 M25
IO90NB2F8 M20
IO90PB2F8 M21
IO91NB2F8 N24
IO91PB2F8 M24
IO92NB2F8 N22
IO92PB2F8 N23
IO94NB2F8 N20
IO94PB2F8 N21
IO95NB2F 8 P25
676-Pin FBGA
AX1000 Function Pin Number
IO95PB2F8 N25
IO98NB3F9 P20
IO98PB3F9 P21
IO99NB3F 9 R24
IO99PB3F9 P24
IO1 00NB3F 9 R22
IO100PB3F9 P22
IO101NB3F9 T26
IO10 1PB3F9 R26
IO1 02NB3F 9 R21
IO10 2PB3F9 R20
IO103NB3F9 T25
IO10 3PB3F9 R25
IO105NB3F9 V26
IO105PB3F9 U26
IO106NB3F9 T23
IO10 6PB3F9 R23
Bank 3
IO107NB3F10 U24
IO107PB3F10 T24
IO108NB3F10 U22
IO108PB3F10 T22
IO109NB3F10 V25
IO109PB3F10 U25
IO110NB3F10 T21
IO110PB3F10 T20
IO112NB3F10 V23
IO112PB3F10 U23
IO113NB3F10 Y25
IO113PB3F10 W25
IO114NB3F10 V21
IO114PB3F10 U21
IO115NB3F10 W24
IO115PB3F10 V24
IO116NB3F10 AA26
IO116PB3F10 Y26
IO118NB3F11 AC26
IO118PB3F11 AB26
IO119NB3F11 AB25
676-Pin FBGA
AX1000 Function Pin Num ber
IO119PB 3F11 AA25
IO120NB3F11 W22
IO120PB 3F11 V22
IO121 NB3 F11 Y23
IO121PB3F11 W23
IO122 NB3F 11 AA24
IO122PB 3F11 Y24
IO123NB3F11 AE26
IO123PB 3F11 AD26
IO124 NB3 F11 Y21
IO124PB3F11 W21
IO125 NB3F 11 AD25
IO125PB 3F11 AC25
IO126NB3F11 AB23
IO126PB 3F11 AA23
IO127 NB3F 11 AC24
IO127PB3F11 AB24
IO128 NB3F 11 AA22
IO128PB 3F11 Y22
Bank 4
IO129NB4F12 AB21
IO129PB 4F12 AA21
IO131 NB4F 12 AD22
IO131PB 4F12 AD23
IO132NB4F12 AE23
IO132PB4F12 AE24
IO133NB4F12 AB20
IO133PB 4F12 AA20
IO134 NB4F 12 AC21
IO134PB 4F12 AC22
IO135NB4F12 AF22
IO135PB4F12 AF23
IO137NB4F12 AB19
IO137PB 4F12 AA19
IO139 NB4F 13 AC19
IO139PB 4F13 AC20
IO140NB4F13 AE21
IO140PB4F13 AE22
IO141 NB4F 13 AD20
676-Pin FB GA
AX1000 Function Pin Number
Axcelerator Family FPGAs
3-42 v2.1
IO141PB4F13 AD21
IO143NB4F 1 3 AB1 7
IO143PB4 F13 AB18
IO144NB4F13 AE19
IO144PB4F13 AE20
IO145NB4F13 AC17
IO145PB4F13 AC18
IO146NB4F13 AD18
IO146PB4F13 AD19
IO147NB4F13 AA17
IO147PB4F13 AA18
IO148NB4F13 AF20
IO148PB4F13 A F21
IO149NB4F13 AA16
IO149PB4F13 Y16
IO151NB4F13 AC16
IO151PB4 F13 AB16
IO153NB4F14 AE17
IO153PB4F14 AE18
IO154NB4F14 AF17
IO154PB4F14 A F18
IO155NB4F14 AA15
IO155PB4F14 Y15
IO157NB4F14 AC15
IO157PB4 F14 AB15
IO159NB4F14/CLKEN AE16
IO159PB4F14/CLKEP AF16
IO160NB4F14/CLKFN AE14
IO160PB4F14/CLKFP AE15
Bank 5
IO161NB5F15/CLKGN AE12
IO161PB5F15/CLKGP AE13
IO162NB5F15/CLKHN AE11
IO162PB5F15/CLKHP AF11
IO163NB5F15 AC12
IO163PB5 F15 AB12
IO165NB5F15 Y12
IO165PB5F15 AA13
IO167NB5F15 Y11
676-Pin FBGA
AX1000 Function Pin Number
IO167PB5F15 AA12
IO16 8NB5F 15 AF9
IO168PB5F15 AF10
IO169NB5F15 AB11
IO169PB5F15 AA11
IO171NB5F16 AE9
IO171PB5F16 AE10
IO173NB5F16 AC10
IO173PB5F16 AC11
IO174NB5F16 AE7
IO174PB5F16 AE8
IO175NB5F16 AC9
IO175PB5F16 AD9
IO17 6NB5F 16 AF6
IO176 PB5F16 AF7
IO177NB5F16 AA10
IO177PB5F16 AB10
IO179NB5F16 AD7
IO179PB5F16 AD8
IO180NB5F16 AC7
IO180PB5F16 AC8
IO181NB5F17 AA9
IO181PB5F17 AB9
IO183NB5F17 AD6
IO183PB5F17 AE6
IO184NB5F17 AE5
IO184 PB5F17 AF5
IO185NB5F17 AA8
IO185PB5F17 AB8
IO187NB5F17 AC5
IO187PB5F17 AC6
IO188NB5F17 AD4
IO188PB5F17 AD5
IO189NB5F17 AB6
IO189PB5F17 AB7
IO19 0NB5F 17 AF4
IO190PB5F17 AE4
IO191NB5F17 AE3
IO191 PB5F17 AF3
676-Pin FBGA
AX1000 Function Pin Num ber
IO192NB5F17 AA6
IO192PB5F17 AA7
Bank 6
IO193NB6F18 Y5
IO193PB6F18 AA5
IO194NB6F18 AB3
IO194PB6F18 AC3
IO195NB6F18 Y4
IO195PB6F18 AA4
IO196NB6F18 AC2
IO196PB6F18 AD2
IO197NB6F18 W6
IO197PB6F18 Y6
IO198NB6F18 AD1
IO198PB 6F18 AE1
IO199NB6F18 AA2
IO199PB6F18 AB2
IO200NB6F18 Y3
IO200PB6F18 AA3
IO201NB6F18 V5
IO201PB6F18 W5
IO202NB6F18 AB1
IO202PB6F18 AC1
IO203NB6F19 V4
IO203PB6F19 W4
IO204NB6F19 V3
IO204PB6F19 W3
IO205NB6F19 U6
IO205PB6F19 V6
IO206NB6F19 W2
IO206PB6F19 Y2
IO207NB6F19 U4
IO207PB6F19 U5
IO208NB6F19 Y1
IO208PB6F19 AA1
IO209NB6F19 T6
IO209PB6F19 T7
IO211NB6F19 T3
IO211PB6F19 U3
676-Pin FB GA
AX1000 Function Pin Number
Axcelerator Family FPGAs
v2.1 3-43
IO212NB6F19 V1
IO212PB6F19 V2
IO213NB6F19 T5
IO213PB6F19 T4
IO214NB6F20 U1
IO214PB6F20 U2
IO215NB6F20 R6
IO215PB6F20 R7
IO217NB6F20 R5
IO217PB6F20 R4
IO218NB6F20 R2
IO218PB6F20 T2
IO219NB6F20 P3
IO219PB6F20 R3
IO220NB6F20 R1
IO220PB6F20 T1
IO221NB6F20 P6
IO221PB6F20 P7
IO223NB6F20 P5
IO223PB6F20 P4
Bank 7
IO225NB7F21 N5
IO225PB7F21 N4
IO226NB7F21 N2
IO226PB7F21 N3
IO227NB7F21 N6
IO227PB7F21 N7
IO229NB7F21 M7
IO229PB7F21 M6
IO231NB7F21 M5
IO231PB7F21 M4
IO232NB7F21 L1
IO232PB7F21 M1
IO233NB7F21 M2
IO233PB7F21 M3
IO235NB7F21 K2
IO235PB7F21 L2
IO236NB7F22 L5
IO236PB7F22 L4
676-Pin FBGA
AX1000 Function Pin Number
IO237NB7F22 L6
IO237PB7F22 L7
IO238NB7F22 K3
IO238PB7F22 L3
IO240NB7F22 J1
IO240PB7F22 K1
IO241NB7F22 K6
IO241PB7F22 K5
IO242NB7F22 H2
IO242PB7F22 J2
IO243NB7F22 J4
IO243PB7F22 K4
IO244NB7F22 H3
IO244PB7F22 J3
IO245NB7F22 G2
IO245PB7F22 G1
IO247NB7F23 J6
IO247PB7F23 J5
IO248NB7F23 E1
IO248PB7F23 F1
IO249NB7F23 E2
IO249PB7F23 F2
IO250NB7F23 G4
IO250PB7F23 H4
IO251NB7F23 F3
IO251PB7F23 G3
IO253NB7F23 H6
IO253PB7F23 H5
IO254NB7F23 D2
IO254PB7F23 D1
IO255NB7F23 E4
IO255PB7F23 F4
IO256NB7F23 D3
IO256PB7F23 E3
IO257NB7F23 F5
IO257PB7F23 G5
Dedi c ated I/ O
GND A1
GND A13
676-Pin FBGA
AX1000 Function Pin Num ber
GND A14
GND A19
GND A26
GND A8
GND AC23
GND AC4
GND AD24
GND AD3
GND AE2
GND AE25
GND AF1
GND AF1 3
GND AF1 4
GND AF1 9
GND AF2 6
GND AF8
GND B2
GND B25
GND B26
GND C24
GND C3
GND G20
GND G7
GND H1
GND H19
GND H26
GND H8
GND J18
GND J9
GND K10
GND K11
GND K12
GND K13
GND K14
GND K15
GND K16
GND K17
GND L10
GND L11
676-Pin FB GA
AX1000 Function Pin Number
Axcelerator Family FPGAs
3-44 v2.1
GND L12
GND L13
GND L14
GND L15
GND L16
GND L17
GND M10
GND M11
GND M12
GND M13
GND M14
GND M15
GND M16
GND M17
GND N1
GND N10
GND N11
GND N12
GND N13
GND N14
GND N15
GND N16
GND N17
GND N26
GND P1
GND P10
GND P11
GND P12
GND P13
GND P14
GND P15
GND P16
GND P17
GND P26
GND R10
GND R11
GND R12
GND R13
GND R14
676-Pin FBGA
AX1000 Function Pin Number
GND R15
GND R16
GND R17
GND T10
GND T11
GND T12
GND T13
GND T14
GND T15
GND T16
GND T17
GND U10
GND U11
GND U12
GND U13
GND U14
GND U15
GND U16
GND U17
GND V18
GND V9
GND W1
GND W19
GND W26
GND W8
GND Y20
GND Y7
GND/LP C2
NC A25
NC AC13
NC AC14
NC AF2
NC AF25
NC D13
NC D14
PRA E13
PRB B14
PRC Y14
PRD AD14
676-Pin FBGA
AX1000 Function Pin Num ber
TCK E5
TDI B3
TDO G6
TMS D4
TRST A2
VCCA AB4
VCCA AF2 4
VCCA C1
VCCA C26
VCCA J10
VCCA J11
VCCA J12
VCCA J13
VCCA J14
VCCA J15
VCCA J16
VCCA J17
VCCA K18
VCCA K9
VCCA L1 8
VCCA L9
VCCA M18
VCCA M9
VCCA N18
VCCA N9
VCCA P18
VCCA P9
VCCA R18
VCCA R9
VCCA T18
VCCA T9
VCCA U18
VCCA U9
VCCA V10
VCCA V11
VCCA V12
VCCA V13
VCCA V14
VCCA V15
676-Pin FB GA
AX1000 Function Pin Number
Axcelerator Family FPGAs
v2.1 3-45
VCCA V16
VCCA V17
VCCPLA E12
VCCPLB F13
VCCPLC E15
VCCPLD G14
VCCPLE AF15
VCCPLF AA14
VCCPLG AF12
VCCPLH AB13
VCCDA A11
VCCDA A3
VCCDA AB 2 2
VCCDA AB5
VCCDA AD10
VCCDA AD11
VCCDA AD13
VCCDA AD16
VCCDA AD17
VCCDA B1
VCCDA B11
VCCDA B17
VCCDA C16
VCCDA D24
VCCDA E14
VCCDA P2
VCCDA P23
VCCIB0 G10
VCCIB0 G8
VCCIB0 G9
VCCIB0 H10
VCCIB0 H11
VCCIB0 H12
VCCIB0 H13
VCCIB0 H9
VCCIB1 G17
VCCIB1 G18
VCCIB1 G19
VCCIB1 H14
676-Pin FBGA
AX1000 Function Pin Number
VCCIB1 H15
VCCIB1 H16
VCCIB1 H17
VCCIB1 H18
VCCIB2 H20
VCCIB2 J19
VCCIB2 J20
VCCIB2 K19
VCCIB2 K20
VCCIB2 L19
VCCIB2 M19
VCCIB2 N19
VCCIB3 P19
VCCIB 3 R19
VCCIB3 T19
VCCIB3 U19
VCCIB3 U20
VCCIB3 V19
VCCIB3 V20
VCCIB3 W2 0
VCCIB4 W1 4
VCCIB4 W1 5
VCCIB4 W1 6
VCCIB4 W1 7
VCCIB4 W1 8
VCCIB4 Y17
VCCIB4 Y18
VCCIB4 Y19
VCCIB5 W1 0
VCCIB5 W1 1
VCCIB5 W1 2
VCCIB5 W1 3
VCCIB5 W9
VCCIB5 Y10
VCCIB5 Y8
VCCIB5 Y9
VCCIB6 P8
VCCIB6 R8
VCCIB6 T8
676-Pin FBGA
AX1000 Function Pin Num ber
VCCIB6 U7
VCCIB6 U8
VCCIB6 V7
VCCIB6 V8
VCCIB6 W7
VCCIB7 H7
VCCIB7 J7
VCCIB7 J8
VCCIB7 K7
VCCIB7 K8
VCCIB7 L8
VCCIB7 M8
VCCIB7 N8
VCOMPLA D12
VCOMPLB G13
VCOMPLC D15
VCOMPLD F14
VCOMPLE AD 1 5
VCOMPLF AB14
VCOMPLG AD1 2
VCOMPLH Y13
VPUMP E22
676-Pin FB GA
AX1000 Function Pin Number
Axcelerator Family FPGAs
3-46 v2.1
896-Pin FBGA
Figure 3-7 896-Pin FBGA (Bottom View)
A1 Ball Pad Corner
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
123456789101112131415161718192021222324252627282930
AG
AH
AJ
AK
Axcelerator Family FPGAs
v2.1 3-47
896-Pin FBGA
AX1000 Function Pin Number
Bank 0
IO00NB0F0 D6
IO00PB0F0 E6
IO01NB0F0 A5
IO01PB0F0 B5
IO02NB0F0 G9
IO02PB0F0 G8
IO03NB0F0 F8
IO03PB0F0 F7
IO04NB0F0 D7
IO04PB0F0 E7
IO05NB0F0 C7
IO05PB0F0 C6
IO06NB0F0 H9
IO06PB0F0 H8
IO07NB0F0 D8
IO07PB0F0 E8
IO08NB0F0 E9
IO08PB0F0 F9
IO09NB0F0 A7
IO09PB0F0 B7
IO10NB0F0 H10
IO10PB0F0 G10
IO11NB0F0 C9
IO11PB0F0 C8
IO12NB0F 1 E10
IO12PB0F1 F10
IO13NB0F1 D10
IO13PB0F1 D9
IO14NB0F1 F11
IO14PB0F1 G11
IO15NB0F1 A10
IO15PB0F1 A9
IO16NB0F1 H12
IO16PB0F1 H11
IO17NB0F1 B11
IO17PB0F1 B10
IO18NB0F1 D11
IO18PB0F1 E11
IO19NB0F1 C12
IO19PB0F1 C11
IO20NB0F1 F12
IO20PB0F1 G12
IO21NB0F1 D12
IO21PB0F1 E12
IO22NB0F2 H13
IO22PB0F2 J13
IO23NB0F2 A12
IO23PB0F2 A11
IO24NB0F2 F13
IO24PB0F2 G13
IO25NB0F 2 B13
IO25 PB0F2 B12
IO26NB0F2 E14
IO26PB0F2 E13
IO27NB0F 2 B14
IO27PB0F2 A14
IO28NB0F2 H14
IO28PB0F2 J14
IO29NB0F 2 B15
IO29PB0F2 A15
IO30NB0F2/HCLKAN C14
IO30PB0F2/HCLKAP D1 4
IO31NB0F2/HCLKBN E15
IO31PB0F2/HCLKBP D15
Bank 1
IO32NB1F3/HCLKCN E17
IO32PB1F3/HCLKCP E16
IO33NB1F3/HCLKDN C17
IO33PB1F3/HCLKDP D1 7
IO34NB1F3 A17
IO34 PB1F3 B17
IO35NB1F3 D18
IO35PB1F3 C18
IO36NB1F3 H17
IO36PB1F3 J17
896-Pin FBGA
AX1000 Function Pin Num ber
IO37NB1F3 B19
IO37PB1F3 A19
IO38NB1F3 H1 8
IO38PB 1F3 J18
IO39NB1F3 B20
IO39PB1F3 A20
IO40NB1F3 C2 0
IO40PB1F3 C19
IO41NB1F4 E20
IO41PB1F4 E19
IO42NB1F4 F18
IO42PB1F4 G18
IO43NB1F4 A2 2
IO43PB1F4 A21
IO44NB1F4 F20
IO44PB1F4 F19
IO45NB1F4 D2 1
IO45PB1F4 D20
IO46NB1F4 D2 2
IO46PB1F4 C22
IO47NB1F4 A2 5
IO47PB1F4 A24
IO48NB1F4 H1 9
IO48PB1F4 G19
IO49NB1F4 C2 4
IO49PB1F4 C23
IO50NB1F4 G20
IO50PB1F4 H20
IO51NB1F4 F21
IO51PB1F4 E21
IO52NB1F4 F22
IO52PB1F4 E22
IO53NB1F4 B25
IO53PB1F4 B24
IO54NB1F5 D2 4
IO54PB1F5 D23
IO55NB1F5 F23
IO55PB1F5 E23
896-Pin FB GA
AX1000 Function Pin Number
Axcelerator Family FPGAs
3-48 v2.1
IO56NB1F5 H21
IO56PB1F5 G21
IO57NB1F5 D25
IO57PB1F5 C25
IO58NB1F5 F24
IO58PB1 F5 E24
IO59NB1F5 D26
IO59PB1F5 C26
IO60NB1F5 G23
IO60PB1F5 G22
IO61NB1F5 B27
IO61PB1F5 A27
IO62NB1F5 F25
IO62PB1 F5 E25
IO63NB1F5 H23
IO63PB1F5 H22
Bank 2
IO64NB2F6 K23
IO64PB2F6 J23
IO65NB2F6 J24
IO65PB2F6 H24
IO66NB2F6 H26
IO66PB2F6 H25
IO67NB2F6 G26
IO67PB2F6 G25
IO68NB2F6 K25
IO68PB2F6 K24
IO69NB2F6 F27
IO69PB2 F6 E27
IO70NB2F6 J26
IO70PB2F6 J25
IO71NB2F6 H27
IO71PB2F6 G27
IO72NB2F6 J28
IO72PB2F6 H28
IO73NB2F6 G28
IO73PB2F6 F28
IO74NB2F7 L23
896-Pin FBGA
AX1000 Function Pin Number
IO74PB2F7 L24
IO75NB2F7 L26
IO75PB2F7 K26
IO76NB2F7 M25
IO76PB2F7 L25
IO77NB2F7 K27
IO77PB2F7 J27
IO78NB2F7 M27
IO78PB2F7 L27
IO79NB2F7 K30
IO79PB2F7 K29
IO80NB2F7 M23
IO80PB2F7 M 24
IO81NB2F7 M28
IO81PB2F7 L28
IO82NB2F7 N26
IO82PB2F7 M 26
IO83NB2F7 N25
IO83PB2F7 N24
IO84NB2F7 N22
IO84PB2F7 N23
IO85NB2F8 M29
IO85PB2F8 L29
IO86NB2F8 N28
IO86PB2F8 N27
IO87NB2F8 P29
IO87PB2F8 P30
IO88NB2F8 P25
IO88PB2F8 P24
IO89NB2F8 P28
IO89PB2F8 P27
IO90NB2F8 P22
IO90PB2F8 P23
IO91NB2F 8 R26
IO91PB2F8 P26
IO92NB2F 8 R24
IO92 PB2F8 R25
IO93NB2F 8 R29
896-Pin FBGA
AX1000 Function Pin Num ber
IO93PB2F8 R30
IO94NB2F8 R22
IO94PB2F8 R23
IO95NB2F8 T27
IO95PB2F8 R27
Bank 3
IO96NB3F9 T29
IO96PB3F9 T30
IO97NB3F9 U2 9
IO97PB3F9 U30
IO98NB3F9 T22
IO98PB3F9 T23
IO99NB3F9 U2 6
IO99PB3F9 T26
IO100NB3F9 U24
IO100PB3F9 T24
IO101 NB 3F9 V28
IO101PB3F9 U28
IO102NB3F9 U23
IO102PB3F9 U22
IO103 NB 3F9 V27
IO103PB3F9 U27
IO104NB3F9 W29
IO104P B3F 9 V29
IO105 NB 3F9 Y28
IO105PB3F9 W28
IO106 NB 3F9 V25
IO106PB3F9 U25
IO107NB3F10 W26
IO107PB 3F10 V26
IO108NB3F10 W24
IO108PB 3F10 V24
IO109 NB3 F10 Y27
IO109PB3F10 W27
IO110 NB3 F10 V23
IO110PB 3F10 V22
IO111 NB3F 10 AA29
IO111PB 3F10 Y29
896-Pin FB GA
AX1000 Function Pin Number
Axcelerator Family FPGAs
v2.1 3-49
IO112NB3F10 Y25
IO112PB3 F10 W25
IO113NB3F 1 0 AB2 7
IO113PB3F10 AA27
IO114NB3F10 Y23
IO114PB3 F10 W23
IO115NB3F10 AA26
IO115PB3F10 Y26
IO116NB3F10 AC28
IO116PB3 F10 AB28
IO117NB3F10 AE29
IO117PB3F10 AD29
IO118NB3F11 AE28
IO118PB3F11 AD28
IO119NB3F11 AD27
IO119PB3F11 AC27
IO120NB3F11 AA24
IO120PB3F11 Y24
IO121NB3F 1 1 AB2 5
IO121PB3F11 AA25
IO122NB3F11 AC26
IO122PB3 F11 AB26
IO123NB3F11 AG28
IO123PB3F11 A F28
IO124NB3F 1 1 AB2 3
IO124PB3F11 AA23
IO125NB3F11 AF27
IO125PB3F11 AE27
IO126NB3F11 AD25
IO126PB3F11 AC25
IO127NB3F11 AE26
IO127PB3F11 AD26
IO128NB3F11 AC24
IO128PB3 F11 AB24
Bank 4
IO129NB4F12 AD23
IO129PB4F12 AC23
IO130NB4F12 AK26
896-Pin FBGA
AX1000 Function Pin Number
IO130 PB4F12 AK27
IO131NB4F12 AF24
IO131PB4F12 AF25
IO132NB4F12 AG25
IO132PB4F12 AG26
IO133NB4F12 AD22
IO133PB4F12 AC22
IO134NB4F12 AE23
IO134PB4F12 AE24
IO135NB4F12 AH24
IO135PB4F12 AH25
IO136NB4F12 AJ25
IO136PB4F12 AJ26
IO137NB4F12 AD21
IO137PB4F12 AC21
IO13 8NB4F 12 AK 24
IO138 PB4F12 AK25
IO139NB4F13 AE21
IO139PB4F13 AE22
IO140NB4F13 AG23
IO140PB4F13 AG24
IO141NB4F13 AF22
IO141PB4F13 AF23
IO142NB4F13 AJ23
IO142PB4F13 AJ24
IO143NB4F13 AD19
IO143PB4F13 AD20
IO144NB4F13 AG21
IO144PB4F13 AG22
IO145NB4F13 AE19
IO145PB4F13 AE20
IO146NB4F13 AF20
IO146PB4F13 AF21
IO147NB4F13 AC19
IO147PB4F13 AC20
IO148NB4F13 AH22
IO148PB4F13 AH23
IO149NB4F13 AC18
896-Pin FBGA
AX1000 Function Pin Num ber
IO149PB4F13 AB18
IO150NB4F13 AK21
IO150PB4F13 AJ21
IO151NB4F13 AE18
IO151PB 4F13 AD18
IO152NB4F14 AJ20
IO152PB4F14 AK20
IO153NB4F14 AG19
IO153PB4F14 AG20
IO154 NB4F 14 AH19
IO154PB 4F14 AH20
IO155 NB4F 14 AC17
IO155PB4F14 AB17
IO156NB4F14 AK19
IO156PB4F14 AJ19
IO157NB4F14 AE17
IO157PB 4F14 AD17
IO158NB4F14 AJ17
IO158PB4F14 AJ18
IO159NB4F14/CLKEN AG18
IO159PB 4F14/C LKEP AH18
IO160NB4F14/CLKFN AG16
IO160PB4F14/CLKFP AG17
Bank 5
IO161NB5F15/CLKGN AG14
IO161PB5F15/CLKGP AG15
IO162NB5F15/CLKHN AG13
IO162PB 5F15/C LKH P AH13
IO163NB5F15 AE14
IO163PB 5F15 AD14
IO164NB5F15 AJ12
IO164PB5F15 AJ13
IO165NB5F15 AB14
IO165PB 5F15 AC15
IO166NB5F15 AK11
IO166PB5F15 AK12
IO167NB5F15 AB13
IO167PB 5F15 AC14
896-Pin FB GA
AX1000 Function Pin Number
Axcelerator Family FPGAs
3-50 v2.1
IO168NB5F15 AH11
IO168PB5F15 AH12
IO169NB5F15 AD13
IO169PB5F15 AC13
IO170NB5F15 AJ10
IO170PB5F15 AJ11
IO171NB5F16 AG11
IO171PB5F16 AG12
IO172NB5F16 AK9
IO172PB5F16 AK10
IO173NB5F16 AE12
IO173PB5F16 AE13
IO174NB5F16 AG9
IO174PB5F16 AG10
IO175NB5F16 AE11
IO175PB5F16 A F11
IO176NB5F16 AH8
IO176PB5F16 AH9
IO177NB5F16 AC12
IO177PB5F16 AD12
IO178NB5F16 AJ7
IO178PB5F16 AJ8
IO179NB5F16 AF9
IO179PB5F16 A F10
IO180NB5F16 AE9
IO180PB5F16 AE10
IO181NB5F17 AC11
IO181PB5F17 AD11
IO182NB5F17 AK6
IO182PB5F17 AK7
IO183NB5F17 AF8
IO183PB5F17 AG8
IO184NB5F17 AG7
IO184PB5F17 AH7
IO185NB5F17 AC10
IO185PB5F17 AD10
IO186NB5F17 AJ5
IO186PB5F17 AJ6
896-Pin FBGA
AX1000 Function Pin Number
IO187NB5F17 AE7
IO187PB5F17 AE8
IO18 8NB5F 17 AF6
IO188 PB5F17 AF7
IO189NB5F17 AD8
IO189PB5F17 AD9
IO190NB5F17 AH6
IO190PB5F17 AG6
IO191NB5F17 AG5
IO191PB5F17 AH5
IO192NB5F17 AC8
IO192PB5F17 AC9
Bank 6
IO193NB6F18 AB7
IO193PB6F18 AC7
IO194NB6F18 AD5
IO194PB6F18 AE5
IO195NB6F18 AB6
IO195PB6F18 AC6
IO196NB6F18 AE4
IO196 PB6F18 AF4
IO197NB6F18 AA8
IO197PB6F18 AB8
IO19 8NB6F 18 AF3
IO198PB6F18 AG3
IO199NB6F18 AC4
IO199PB6F18 AD4
IO200NB6F18 AB5
IO200PB6F18 AC5
IO201NB6F18 Y7
IO201PB6F18 AA7
IO202NB6F18 AD3
IO202PB6F18 AE3
IO203NB6F19 Y6
IO203PB6F19 AA6
IO204NB6F19 Y5
IO204PB6F19 AA5
IO205NB6F19 W8
896-Pin FBGA
AX1000 Function Pin Num ber
IO205PB6F19 Y8
IO206NB6F19 AA4
IO206PB6F19 AB4
IO207NB6F19 W6
IO207PB6F19 W7
IO208NB6F19 AB3
IO208PB6F19 AC3
IO209NB6F19 V8
IO209PB6F19 V9
IO210NB6F19 AA2
IO210PB6F19 AA1
IO211NB6F19 V5
IO211PB6F19 W5
IO212NB6F19 Y3
IO212PB6F19 Y4
IO213NB6F19 V7
IO213PB6F19 V6
IO214NB6F20 W3
IO214PB6F20 W4
IO215NB6F20 U8
IO215PB6F20 U9
IO216NB6F20 W1
IO216PB6F20 W2
IO217NB6F20 U7
IO217PB6F20 U6
IO218NB6F20 U4
IO218PB6F20 V4
IO219NB6F20 T5
IO219PB6F20 U5
IO220NB6F20 U3
IO220PB6F20 V3
IO221NB6F20 T8
IO221PB6F20 T9
IO222NB6F20 U2
IO222PB6F20 V2
IO223NB6F20 T7
IO223PB6F20 T6
IO224NB6F20 R2
896-Pin FB GA
AX1000 Function Pin Number
Axcelerator Family FPGAs
v2.1 3-51
IO224PB6F20 T2
Bank 7
IO225NB7F21 R7
IO225PB7F21 R6
IO226NB7F21 R4
IO226PB7F21 R5
IO227NB7F21 R8
IO227PB7F21 R9
IO228NB7F21 P1
IO228PB7F21 R1
IO229NB7F21 P9
IO229PB7F21 P8
IO230NB7F21 N2
IO230PB7F21 P2
IO231NB7F21 P7
IO231PB7F21 P6
IO232NB7F21 N3
IO232PB7F21 P3
IO233NB7F21 P4
IO233PB7F21 P5
IO234NB7F21 L1
IO234PB7F21 M1
IO235NB7F21 M4
IO235PB7F21 N4
IO236NB7F22 N7
IO236PB7F22 N6
IO237NB7F22 N8
IO237PB7F22 N9
IO238NB7F22 M5
IO238PB7F22 N5
IO239NB7F22 L2
IO239PB7F22 M2
IO240NB7F22 L3
IO240PB7F22 M3
IO241NB7F22 M8
IO241PB7F22 M7
IO242NB7F22 K4
IO242PB7F22 L4
896-Pin FBGA
AX1000 Function Pin Number
IO243NB7F22 L6
IO243PB7F22 M6
IO244NB7F22 K5
IO244PB7F22 L5
IO245NB7F22 J4
IO245PB7F22 J3
IO246NB7F22 G2
IO246PB7F22 H2
IO247NB7F23 L8
IO247PB7F23 L7
IO248NB7F23 G3
IO248PB7F23 H3
IO249NB7F23 G4
IO249PB7F23 H4
IO250NB7F23 J6
IO250PB7F23 K6
IO251NB7F23 H5
IO251PB7F23 J5
IO252NB7F23 F2
IO252PB7F23 F1
IO253NB7F23 K8
IO253PB7F23 K7
IO254NB7F23 F4
IO254PB7F23 F3
IO255NB7F23 G6
IO255PB7F23 H6
IO256NB7F23 F5
IO256PB7F23 G5
IO257NB7F23 H7
IO257PB7F23 J7
Dedi c ated I/ O
GND A13
GND A18
GND A2
GND A23
GND A29
GND A8
GND AA 10
896-Pin FBGA
AX1000 Function Pin Num ber
GND AA21
GND AA28
GND AA3
GND AB2
GND AB22
GND AB29
GND AB9
GND AC1
GND AC30
GND AE25
GND AE6
GND AF2 6
GND AF5
GND AG27
GND AG4
GND AH10
GND AH15
GND AH16
GND AH21
GND AH28
GND AH3
GND AJ1
GND AJ2
GND AJ22
GND AJ29
GND AJ30
GND AJ9
GND AK13
GND AK18
GND AK2
GND AK23
GND AK29
GND AK8
GND B1
GND B2
GND B22
GND B29
GND B30
896-Pin FB GA
AX1000 Function Pin Number
Axcelerator Family FPGAs
3-52 v2.1
GND B9
GND C10
GND C15
GND C16
GND C21
GND C28
GND C3
GND D27
GND D28
GND D4
GND E26
GND E5
GND H1
GND H30
GND J2
GND J22
GND J29
GND J9
GND K10
GND K21
GND K28
GND K3
GND L11
GND L20
GND M12
GND M13
GND M14
GND M15
GND M16
GND M17
GND M18
GND M19
GND N1
GND N12
GND N13
GND N14
GND N15
GND N16
896-Pin FBGA
AX1000 Function Pin Number
GND N17
GND N18
GND N19
GND N30
GND P12
GND P13
GND P14
GND P15
GND P16
GND P17
GND P18
GND P19
GND R12
GND R13
GND R14
GND R15
GND R16
GND R17
GND R18
GND R19
GND R28
GND R3
GND T12
GND T13
GND T14
GND T15
GND T16
GND T17
GND T18
GND T19
GND T28
GND T3
GND U12
GND U13
GND U14
GND U15
GND U16
GND U17
896-Pin FBGA
AX1000 Function Pin Num ber
GND U18
GND U19
GND V1
GND V12
GND V13
GND V14
GND V15
GND V16
GND V17
GND V18
GND V19
GND V30
GND W12
GND W13
GND W14
GND W15
GND W16
GND W17
GND W18
GND W19
GND Y11
GND Y20
GND/LP E4
NC A16
NC A26
NC A4
NC A6
NC AA30
NC AB1
NC AB30
NC AC2
NC AC29
NC AD1
NC AD2
NC AD30
NC AE1
NC AE15
NC AE16
896-Pin FB GA
AX1000 Function Pin Number
Axcelerator Family FPGAs
v2.1 3-53
NC AE2
NC AE30
NC AF1
NC AF2
NC AF29
NC AF30
NC AG1
NC AG2
NC AG29
NC AG30
NC AH27
NC AH4
NC AJ14
NC AJ15
NC AJ16
NC AJ27
NC AJ4
NC AK14
NC AK15
NC AK16
NC AK17
NC AK22
NC AK4
NC AK5
NC B16
NC B18
NC B21
NC B23
NC B26
NC B4
NC B6
NC B8
NC C27
NC D1
NC D2
NC D29
NC D30
NC E1
896-Pin FBGA
AX1000 Function Pin Number
NC E2
NC E29
NC E30
NC F15
NC F16
NC F29
NC F30
NC G1
NC G29
NC G30
NC H29
NC J1
NC J30
NC K1
NC K2
NC L30
NC M30
NC N29
NC T1
NC U1
NC W30
NC Y1
NC Y2
NC Y30
PRA G15
PRB D16
PRC AB16
PRD AF16
TCK G7
TDI D5
TDO J8
TMS F6
TRST C4
VCCA AD6
VCCA AH26
VCCA E28
VCCA E3
VCCA L12
896-Pin FBGA
AX1000 Function Pin Num ber
VCCA L1 3
VCCA L1 4
VCCA L1 5
VCCA L1 6
VCCA L1 7
VCCA L1 8
VCCA L1 9
VCCA M11
VCCA M20
VCCA N11
VCCA N20
VCCA P11
VCCA P20
VCCA R11
VCCA R20
VCCA T11
VCCA T20
VCCA U11
VCCA U20
VCCA V11
VCCA V20
VCCA W1 1
VCCA W2 0
VCCA Y12
VCCA Y13
VCCA Y14
VCCA Y15
VCCA Y16
VCCA Y17
VCCA Y18
VCCA Y19
VCCPLA G14
VCCPLB H15
VCCPLC G17
VCCPLD J16
VCCPLE AH1 7
VCCPLF AC16
VCCPLG AH 14
896-Pin FB GA
AX1000 Function Pin Number
Axcelerator Family FPGAs
3-54 v2.1
VCCPLH AD15
VCCDA AD24
VCCDA AD7
VCCDA AF12
VCCDA AF13
VCCDA AF15
VCCDA AF18
VCCDA AF19
VCCDA C13
VCCDA C5
VCCDA D13
VCCDA D19
VCCDA D3
VCCDA E18
VCCDA F26
VCCDA G16
VCCDA T25
VCCDA T4
VCCIB0 A3
VCCIB0 B3
VCCIB0 J10
VCCIB0 J11
VCCIB0 J12
VCCIB0 K11
VCCIB0 K12
VCCIB0 K13
VCCIB0 K14
VCCIB0 K15
VCCIB1 A28
VCCIB1 B28
VCCIB1 J19
VCCIB1 J20
VCCIB1 J21
VCCIB1 K16
VCCIB1 K17
VCCIB1 K18
VCCIB1 K19
VCCIB1 K20
896-Pin FBGA
AX1000 Function Pin Number
VCCIB2 C29
VCCIB2 C30
VCCIB2 K22
VCCIB2 L21
VCCIB2 L22
VCCIB2 M21
VCCIB2 M22
VCCIB2 N21
VCCIB2 P21
VCCIB 2 R21
VCCIB3 AA22
VCCIB3 AH29
VCCIB3 AH30
VCCIB3 T21
VCCIB3 U21
VCCIB3 V21
VCCIB3 W2 1
VCCIB3 W2 2
VCCIB3 Y21
VCCIB3 Y22
VCCIB4 AA16
VCCIB4 AA17
VCCIB4 AA18
VCCIB4 AA19
VCCIB4 AA20
VCCIB4 AB19
VCCIB4 AB20
VCCIB4 AB21
VCCIB4 AJ28
VCCIB4 AK28
VCCIB5 AA11
VCCIB5 AA12
VCCIB5 AA13
VCCIB5 AA14
VCCIB5 AA15
VCCIB5 AB10
VCCIB5 AB11
VCCIB5 AB12
896-Pin FBGA
AX1000 Function Pin Num ber
VCCIB5 AJ3
VCCIB5 AK3
VCCIB6 AA9
VCCIB6 AH1
VCCIB6 AH2
VCCIB6 T10
VCCIB6 U10
VCCIB6 V10
VCCIB6 W10
VCCIB6 W9
VCCIB6 Y10
VCCIB6 Y9
VCCIB7 C1
VCCIB7 C2
VCCIB7 K9
VCCIB7 L10
VCCIB7 L9
VCCIB7 M10
VCCIB7 M9
VCCIB7 N10
VCCIB7 P10
VCCIB7 R10
VCOMPLA F14
VCOMPLB J15
VCOMPLC F17
VCOMPLD H16
VCOMPLE AF17
VCOMPLF AD16
VCOMPLG AF14
VCOMPLH AB15
VPUMP G24
896-Pin FB GA
AX1000 Function Pin Number
Axcelerator Family FPGAs
v2.1 3-55
896- Pin FBG A
AX2000 Func tion Pin Number
Bank 0
IO00NB0F0 B4
IO00PB0F0 A4
IO01NB0F0 F8
IO01PB0F0 F7
IO02NB0F0 D6
IO02PB0F0 E6
IO04NB0F0 A5
IO04PB0F0 B5
IO05NB0F0 H8
IO05PB0F0 G8
IO06NB0F0 D7
IO06PB0F0 E7
IO07NB0F0 D8
IO07PB0F0 E8
IO08NB0F0 C7
IO08PB0F0 C6
IO09NB0F0 G9
IO09PB0F0 H9
IO10NB0F0 A6
IO10PB0F0 B6
IO11NB0F0 H10
IO11PB0F0 G10
IO12NB0F1 E9
IO12PB0F1 F9
IO13NB0F1 E10
IO13PB0F1 F10
IO15NB0F1 F11
IO15PB0F1 G11
IO16NB0F1 A7
IO16PB0F1 B7
IO17NB0F1 D10
IO17PB0F1 D9
IO18NB0F1 C9
IO18PB0F1 C8
IO19NB0F1 D11
IO19PB0F1 E11
IO20PB0F1 B8
IO21NB0F1 H12
IO21PB0F1 H11
IO23NB0F2 A10
IO23PB0F2 A9
IO25NB0F2 F12
IO25PB0F2 G12
IO26NB0F2 B11
IO26PB0F2 B10
IO27NB0F2 D12
IO27PB0F2 E12
IO28NB0F2 C12
IO28PB0F2 C11
IO30NB0F2 A12
IO30PB0F2 A11
IO31NB0F2 F13
IO31PB0F2 G13
IO33NB0F2 H13
IO33PB0F2 J13
IO34NB0F3 B13
IO34PB0F3 B12
IO37NB0F3 E14
IO37PB0F3 E13
IO38NB0F3 B14
IO38PB0F3 A14
IO39NB0F3 H14
IO39PB0F3 J14
IO40NB0F3 B15
IO40PB0F3 A15
IO41NB0F3/HCLKAN C14
IO41PB0F3/HCLKAP D14
IO42NB0F3/HCLKBN E15
IO42PB0F3/HCLKBP D15
Bank 1
IO43NB1F4/HCLKCN E17
IO43PB1F4/HCLKCP E16
IO44NB1F4/HCLKDN C17
IO44PB1F4/HCLKDP D17
IO45NB1F4 A16
896-Pin FBGA
AX2000 Function Pin Number
IO45PB1F4 B16
IO47NB1F4 H17
IO47PB1F4 J17
IO48NB1F4 A17
IO48PB1F4 B17
IO49NB1F4 H18
IO49PB1F4 J18
IO51NB1F4 F18
IO51PB1F4 G18
IO52NB1F4 B18
IO53NB1F4 D18
IO53PB1F4 C18
IO55NB1F5 H19
IO55PB1F5 G19
IO56NB1F5 B19
IO56PB1F5 A19
IO57NB1F5 E20
IO57PB1F5 E19
IO58NB1F5 C20
IO58PB1F5 C19
IO59NB1F5 B20
IO59PB1F5 A20
IO61NB1F5 F20
IO61PB1F5 F19
IO62NB1F5 A22
IO62PB1F5 A21
IO63NB1F5 D21
IO63PB1F5 D20
IO65NB1F6 G20
IO65PB1F6 H20
IO66NB1F6 B23
IO66PB1F6 B21
IO67NB1F6 H21
IO67PB1F6 G21
IO68NB1F6 D22
IO68PB1F6 C22
IO69NB1F6 A25
IO69PB1F6 A24
896-Pin FBG A
AX2000 Function Pin Number
Axcelerator Family FPGAs
3-56 v2.1
IO70NB1F6 F22
IO70PB1F6 E22
IO71NB1F6 F21
IO71PB1F6 E21
IO73NB1F6 C24
IO73PB1F6 C23
IO74NB1F6 D24
IO74PB1F6 D23
IO75NB1F6 H23
IO75PB1F6 H22
IO76NB1F7 B25
IO76PB1F7 B24
IO78NB1F7 B26
IO78PB1F7 A26
IO79NB1F7 F23
IO79PB1F7 E23
IO80NB1F7 D25
IO80PB1F7 C25
IO81NB1F7 G23
IO81PB1F7 G22
IO82NB1F7 B27
IO82PB1F7 A27
IO83NB1F7 F24
IO83PB1F7 E24
IO84NB1F7 D26
IO84PB1F7 C26
IO85NB1F7 F25
IO85PB1F7 E25
Bank 2
IO86NB2F8 G26
IO86PB2F8 G25
IO87NB2F8 K23
IO87PB2F8 J23
IO88NB2F8 J24
IO88PB2F8 H24
IO89NB2F8 E29
IO89PB2F8 D29
IO90NB2F8 F27
896- Pin FBG A
AX2000 Func tion Pin Number
IO90PB2F8 E27
IO91NB2F8 H26
IO91PB2F8 H25
IO92NB2F8 G28
IO92PB2F8 F28
IO93NB2F8 J26
IO93PB2F8 J25
IO94NB2F8 H27
IO94PB2F8 G27
IO95NB2F8 H29
IO95PB2F8 G29
IO96NB2F9 G30
IO96PB2F9 F30
IO97NB2F9 K25
IO97PB2F9 K24
IO98NB2F9 J28
IO98PB2F9 H28
IO99NB2F9 L23
IO99PB2F9 L24
IO100NB2F9 K27
IO100PB2F9 J27
IO101PB2F9 J30
IO102NB2F9 E30
IO102PB2F9 D30
IO103NB2F9 L26
IO103PB2F9 K26
IO104NB2F9 F29
IO105NB2F9 M25
IO105PB2F9 L25
IO106NB2F9 K30
IO106PB2F9 K29
IO107NB2F10 M23
IO107PB2F10 M24
IO109NB2F10 M27
IO109PB2F10 L27
IO110NB2F10 M28
IO110PB2F10 L28
IO111NB2F10 N22
896-Pin FBGA
AX2000 Function Pin Number
IO111PB2F10 N23
IO112NB2F10 M29
IO112PB2F10 L29
IO113NB2F10 N26
IO113PB2F10 M26
IO114NB2F10 M30
IO114PB2F10 L30
IO115NB2F10 N28
IO115PB2F10 N27
IO117NB2F10 N25
IO117PB2F10 N24
IO118NB2F11 N29
IO119NB2F11 P22
IO119PB2F11 P23
IO121NB2F11 P25
IO121PB2F11 P24
IO122NB2F11 P28
IO122PB2F11 P27
IO123NB2F11 R26
IO123PB2F11 P26
IO124NB2F11 P29
IO124PB2F11 P30
IO125NB2F11 R22
IO125PB2F11 R23
IO127NB2F11 R24
IO127PB2F11 R25
IO128NB2F11 R29
IO128PB2F11 R30
Bank 3
IO129NB3F12 T27
IO129PB3F12 R27
IO130NB3F12 T29
IO130PB3F12 T30
IO131NB3F12 T22
IO131PB3F12 T23
IO132NB3F12 U26
IO132PB3F12 T26
IO133NB3F12 U24
896-Pin FBG A
AX2000 Function Pin Number
Axcelerator Family FPGAs
v2.1 3-57
IO133PB3F12 T24
IO135NB3F12 U23
IO135PB3F12 U22
IO136NB3F12 U29
IO136PB3F12 U30
IO137NB3F12 V28
IO137PB3F12 U28
IO138NB3F12 V27
IO138PB3F12 U27
IO139NB3F13 V25
IO139PB3F13 U25
IO141NB3F13 V23
IO141PB3F13 V22
IO142NB3F13 W29
IO142PB3F13 V29
IO143NB3F13 W26
IO143PB3F13 V26
IO145NB3F13 W24
IO145PB3F13 V24
IO146NB3F13 W27
IO146PB3F13 W28
IO147NB3F13 Y28
IO147PB3F13 Y27
IO148NB3F13 Y30
IO148PB3F13 W30
IO149NB3F13 Y25
IO149PB3F13 W25
IO150NB3F14 AA29
IO150PB3F14 Y29
IO151NB3F14 AC29
IO152NB3F14 AA26
IO152PB3F14 Y26
IO153NB3F14 Y23
IO153PB3F14 W23
IO154NB3F14 AB30
IO154PB3F14 AA30
IO155NB3F14 AB27
IO155PB3F14 AA27
896- Pin FBG A
AX2000 Func tion Pin Number
IO156NB3F14 AC28
IO156PB3F14 AB28
IO157NB3F14 AA24
IO157PB3F14 Y24
IO158NB3F14 AF29
IO158PB3F14 AF30
IO159NB3F14 AB25
IO159PB3F14 AA25
IO160NB3F14 AE30
IO160PB3F14 AD30
IO161NB3F15 AE29
IO161PB3F15 AD29
IO162NB3F15 AD27
IO162PB3F15 AC27
IO163NB3F15 AC26
IO163PB3F15 AB26
IO164NB3F15 AE28
IO164PB3F15 AD28
IO165NB3F15 AC24
IO165PB3F15 AB24
IO166NB3F15 AG28
IO166PB3F15 AF28
IO167NB3F15 AE26
IO167PB3F15 AD26
IO168NB3F15 AD25
IO168PB3F15 AC25
IO169NB3F15 AF27
IO169PB3F15 AE27
IO170NB3F15 AB23
IO170PB3F15 AA23
Bank 4
IO171NB4F16 AG29
IO171PB4F16 AG30
IO172NB4F16 AF24
IO172PB4F16 AF25
IO173NB4F16 AG25
IO173PB4F16 AG26
IO174NB4F16 AJ25
896-Pin FBGA
AX2000 Function Pin Number
IO174PB4F16 AJ26
IO175NB4F16 AK26
IO175PB4F16 AK27
IO176NB4F16 AE23
IO176PB4F16 AE24
IO177NB4F16 AH24
IO177PB4F16 AH25
IO178NB4F16 AD23
IO178PB4F16 AC23
IO179PB4F16 AJ27
IO180NB4F16 AG23
IO180PB4F16 AG24
IO181NB4F17 AK24
IO181PB4F17 AK25
IO182NB4F17 AD22
IO182PB4F17 AC22
IO183NB4F17 AF22
IO183PB4F17 AF23
IO184NB4F17 AE21
IO184PB4F17 AE22
IO185NB4F17 AJ23
IO185PB4F17 AJ24
IO187NB4F17 AH22
IO187PB4F17 AH23
IO188NB4F17 AD21
IO188PB4F17 AC21
IO189PB4F17 AK22
IO190NB4F17 AF20
IO190PB4F17 AF21
IO191NB4F17 AG21
IO191PB4F17 AG22
IO192NB4F17 AE19
IO192PB4F17 AE20
IO195NB4F18 AK21
IO195PB4F18 AJ21
IO196NB4F18 AD19
IO196PB4F18 AD20
IO197NB4F18 AJ20
896-Pin FBG A
AX2000 Function Pin Number
Axcelerator Family FPGAs
3-58 v2.1
IO197PB4F18 AK20
IO198NB4F18 AC19
IO198PB4F18 AC20
IO199NB4F18 AG19
IO199PB4F18 AG20
IO200NB4F18 AH19
IO200PB4F18 AH20
IO201NB4F18 AK19
IO201PB4F18 AJ19
IO202NB4F18 AC18
IO202PB4F18 AB18
IO206NB4F19 AE18
IO206PB4F19 AD18
IO207NB4F19 AJ17
IO207PB4F19 AJ18
IO208NB4F19 AE17
IO208PB4F19 AD17
IO209NB4F19 AK17
IO210NB4F19 AC17
IO210PB4F19 AB17
IO211NB4F19 AJ16
IO211PB4F19 AK16
IO212NB4F19/CLKEN AG18
IO212PB4F19/CLKEP AH18
IO213NB4F19/CLKFN AG16
IO213PB4F19/CLKFP AG17
Bank 5
IO214NB5F20/CLKGN AG14
IO214PB5F20/CLKGP AG15
IO215NB5F20/CLKHN AG13
IO215PB5F20/CLKHP AH13
IO216NB5F20 AB14
IO216PB5F20 AC15
IO217NB5F20 AK15
IO217PB5F20 AJ15
IO218NB5F20 AE14
IO218PB5F20 AD14
IO219NB5F20 AK14
896- Pin FBG A
AX2000 Func tion Pin Number
IO219PB5F20 AJ14
IO222NB5F20 AB13
IO222PB5F20 AC14
IO223NB5F21 AJ12
IO223PB5F21 AJ13
IO225NB5F21 AH11
IO225PB5F21 AH12
IO226NB5F21 AC13
IO226PB5F21 AD13
IO227NB5F21 AE12
IO227PB5F21 AE13
IO228NB5F21 AG11
IO228PB5F21 AG12
IO229NB5F21 AK11
IO229PB5F21 AK12
IO230NB5F21 AC12
IO230PB5F21 AD12
IO232NB5F21 AE11
IO232PB5F21 AF11
IO233NB5F21 AJ10
IO233PB5F21 AJ11
IO234NB5F21 AC11
IO234PB5F21 AD11
IO236NB5F22 AK9
IO236PB5F22 AK10
IO237NB5F22 AG9
IO237PB5F22 AG10
IO238NB5F22 AF9
IO238PB5F22 AF10
IO239NB5F22 AH8
IO239PB5F22 AH9
IO240NB5F22 AC10
IO240PB5F22 AD10
IO242NB5F22 AE9
IO242PB5F22 AE10
IO243NB5F22 AJ7
IO243PB5F22 AJ8
IO244NB5F22 AK6
896-Pin FBGA
AX2000 Function Pin Number
IO244PB5F22 AK7
IO245NB5F23 AF8
IO245PB5F23 AG8
IO246NB5F23 AD8
IO246PB5F23 AD9
IO247NB5F23 AG7
IO247PB5F23 AH7
IO248NB5F23 AK5
IO249NB5F23 AJ5
IO249PB5F23 AJ6
IO250NB5F23 AC8
IO250PB5F23 AC9
IO251NB5F23 AH6
IO251PB5F23 AG6
IO252NB5F23 AF6
IO252PB5F23 AF7
IO253NB5F23 AG2
IO253PB5F23 AG1
IO254NB5F23 AE7
IO254PB5F23 AE8
IO255NB5F23 AG5
IO255PB5F23 AH5
IO256NB5F23 AJ4
IO256PB5F23 AK4
Bank 6
IO257NB6F24 AE4
IO257PB6F24 AF4
IO258NB6F24 AB7
IO258PB6F24 AC7
IO259NB6F24 AD5
IO259PB6F24 AE5
IO260NB6F24 AF1
IO260PB6F24 AF2
IO261NB6F24 AF3
IO261PB6F24 AG3
IO262NB6F24 AC4
IO262PB6F24 AD4
IO263NB6F24 AD3
896-Pin FBG A
AX2000 Function Pin Number
Axcelerator Family FPGAs
v2.1 3-59
IO263PB6F24 AE3
IO264NB6F24 AB6
IO264PB6F24 AC6
IO265NB6F24 AD1
IO265PB6F24 AE1
IO266NB6F24 AA8
IO266PB6F24 AB8
IO267NB6F25 AB5
IO267PB6F25 AC5
IO268NB6F25 AB3
IO268PB6F25 AC3
IO269NB6F25 AC2
IO269PB6F25 AD2
IO270NB6F25 Y7
IO270PB6F25 AA7
IO271NB6F25 AA4
IO271PB6F25 AB4
IO272NB6F25 Y6
IO272PB6F25 AA6
IO273NB6F25 AB1
IO273PB6F25 AE2
IO274NB6F25 W8
IO274PB6F25 Y8
IO275NB6F25 Y5
IO275PB6F25 AA5
IO277NB6F25 AA2
IO277PB6F25 AA1
IO278NB6F26 W6
IO278PB6F26 W7
IO279NB6F26 Y3
IO279PB6F26 Y4
IO280NB6F26 V8
IO280PB6F26 V9
IO281NB6F26 Y1
IO281PB6F26 Y2
IO282NB6F26 V5
IO282PB6F26 W5
IO284NB6F26 V7
896- Pin FBG A
AX2000 Func tion Pin Number
IO284PB6F26 V6
IO285NB6F26 W3
IO285PB6F26 W4
IO286NB6F26 U8
IO286PB6F26 U9
IO287NB6F26 W1
IO287PB6F26 W2
IO288NB6F26 U7
IO288PB6F26 U6
IO290NB6F27 U4
IO290PB6F27 V4
IO291NB6F27 U3
IO291PB6F27 V3
IO292NB6F27 T5
IO292PB6F27 U5
IO293NB6F27 U2
IO293PB6F27 V2
IO294NB6F27 T8
IO294PB6F27 T9
IO296NB6F27 T1
IO296PB6F27 U1
IO298NB6F27 T7
IO298PB6F27 T6
IO299NB6F27 R2
IO299PB6F27 T2
Bank 7
IO300NB7F28 R8
IO300PB7F28 R9
IO302NB7F28 R4
IO302PB7F28 R5
IO303NB7F28 P1
IO303PB7F28 R1
IO304NB7F28 R7
IO304PB7F28 R6
IO306NB7F28 N2
IO306PB7F28 P2
IO307NB7F28 N3
IO307PB7F28 P3
896-Pin FBGA
AX2000 Function Pin Number
IO308NB7F28 P9
IO308PB7F28 P8
IO309NB7F28 P4
IO309PB7F28 P5
IO310NB7F29 P7
IO310PB7F29 P6
IO311NB7F29 L1
IO311PB7F29 M1
IO312NB7F29 M5
IO312PB7F29 N5
IO313NB7F29 M4
IO313PB7F29 N4
IO315NB7F29 L2
IO315PB7F29 M2
IO316NB7F29 N7
IO316PB7F29 N6
IO317NB7F29 L3
IO317PB7F29 M3
IO318NB7F29 N8
IO318PB7F29 N9
IO320NB7F29 L6
IO320PB7F29 M6
IO321NB7F30 K4
IO321PB7F30 L4
IO322NB7F30 M8
IO322PB7F30 M7
IO323NB7F30 J1
IO323PB7F30 K1
IO324NB7F30 K5
IO324PB7F30 L5
IO326NB7F30 G1
IO326PB7F30 K2
IO327NB7F30 J4
IO327PB7F30 J3
IO328NB7F30 L8
IO328PB7F30 L7
IO329NB7F30 G2
IO329PB7F30 H2
896-Pin FBG A
AX2000 Function Pin Number
Axcelerator Family FPGAs
3-60 v2.1
IO330NB7F30 G3
IO330PB7F30 H3
IO331NB7F30 K8
IO331PB7F30 K7
IO332NB7F31 J6
IO332PB7F31 K6
IO333NB7F31 D1
IO333PB7F31 D2
IO334NB7F31 G4
IO334PB7F31 H4
IO335NB7F31 F2
IO335PB7F31 F1
IO336NB7F31 H5
IO336PB7F31 J5
IO337NB7F31 E2
IO337PB7F31 E1
IO338NB7F31 H7
IO338PB7F31 J7
IO339NB7F31 F4
IO339PB7F31 F3
IO340NB7F31 F5
IO340PB7F31 G5
IO341NB7F31 G6
IO341PB7F31 H6
Dedicated I/O
VCCDA D3
GND A13
GND A18
GND A2
GND A23
GND A29
GND A8
GND AA10
GND AA21
GND AA28
GND AA3
GND AB2
GND AB22
896- Pin FBG A
AX2000 Func tion Pin Number
GND AB29
GND AB9
GND AC1
GND AC30
GND AE25
GND AE6
GND AF26
GND AF5
GND AG27
GND AG4
GND AH10
GND AH15
GND AH16
GND AH21
GND AH28
GND AH3
GND AJ1
GND AJ2
GND AJ22
GND AJ29
GND AJ30
GND AJ9
GND AK13
GND AK18
GND AK2
GND AK23
GND AK29
GND AK8
GND B1
GND B2
GND B22
GND B29
GND B30
GND B9
GND C10
GND C15
GND C16
GND C21
896-Pin FBGA
AX2000 Function Pin Number
GND C28
GND C3
GND D27
GND D28
GND D4
GND E26
GND E5
GND H1
GND H30
GND J2
GND J22
GND J29
GND J9
GND K10
GND K21
GND K28
GND K3
GND L11
GND L20
GND M12
GND M13
GND M14
GND M15
GND M16
GND M17
GND M18
GND M19
GND N1
GND N12
GND N13
GND N14
GND N15
GND N16
GND N17
GND N18
GND N19
GND N30
GND P12
896-Pin FBG A
AX2000 Function Pin Number
Axcelerator Family FPGAs
v2.1 3-61
GND P13
GND P14
GND P15
GND P16
GND P17
GND P18
GND P19
GND R12
GND R13
GND R14
GND R15
GND R16
GND R17
GND R18
GND R19
GND R28
GND R3
GND T12
GND T13
GND T14
GND T15
GND T16
GND T17
GND T18
GND T19
GND T28
GND T3
GND U12
GND U13
GND U14
GND U15
GND U16
GND U17
GND U18
GND U19
GND V1
GND V12
GND V13
896- Pin FBG A
AX2000 Func tion Pin Number
GND V14
GND V15
GND V16
GND V17
GND V18
GND V19
GND V30
GND W12
GND W13
GND W14
GND W15
GND W16
GND W17
GND W18
GND W19
GND Y11
GND Y20
GND/LP E4
PRA G15
PRB D16
PRC AB16
PRD AF16
TCK G7
TDI D5
TDO J8
TMS F6
TRST C4
VCCA AD6
VCCA AH26
VCCA E28
VCCA E3
VCCA L12
VCCA L13
VCCA L14
VCCA L15
VCCA L16
VCCA L17
VCCA L18
896-Pin FBGA
AX2000 Function Pin Number
VCCA L19
VCCA M11
VCCA M20
VCCA N11
VCCA N20
VCCA P11
VCCA P20
VCCA R11
VCCA R20
VCCA T11
VCCA T20
VCCA U11
VCCA U20
VCCA V11
VCCA V20
VCCA W11
VCCA W20
VCCA Y12
VCCA Y13
VCCA Y14
VCCA Y15
VCCA Y16
VCCA Y17
VCCA Y18
VCCA Y19
VCCPLA G14
VCCPLB H15
VCCPLC G17
VCCPLD J16
VCCPLE AH17
VCCPLF AC16
VCCPLG AH14
VCCPLH AD15
VCCDA AD24
VCCDA AD7
VCCDA AE15
VCCDA AE16
VCCDA AF12
896-Pin FBG A
AX2000 Function Pin Number
Axcelerator Family FPGAs
3-62 v2.1
VCCDA AF13
VCCDA AF15
VCCDA AF18
VCCDA AF19
VCCDA AH27
VCCDA AH4
VCCDA C13
VCCDA C27
VCCDA C5
VCCDA D13
VCCDA D19
VCCDA E18
VCCDA F15
VCCDA F16
VCCDA F26
VCCDA G16
VCCDA T25
VCCDA T4
VCCIB0 A3
VCCIB0 B3
VCCIB0 J10
VCCIB0 J11
VCCIB0 J12
VCCIB0 K11
VCCIB0 K12
VCCIB0 K13
VCCIB0 K14
VCCIB0 K15
VCCIB1 A28
VCCIB1 B28
VCCIB1 J19
VCCIB1 J20
VCCIB1 J21
VCCIB1 K16
VCCIB1 K17
VCCIB1 K18
VCCIB1 K19
VCCIB1 K20
896- Pin FBG A
AX2000 Func tion Pin Number
VCCIB2 C29
VCCIB2 C30
VCCIB2 K22
VCCIB2 L21
VCCIB2 L22
VCCIB2 M21
VCCIB2 M22
VCCIB2 N21
VCCIB2 P21
VCCIB2 R21
VCCIB3 AA22
VCCIB3 AH29
VCCIB3 AH30
VCCIB3 T21
VCCIB3 U21
VCCIB3 V21
VCCIB3 W21
VCCIB3 W22
VCCIB3 Y21
VCCIB3 Y22
VCCIB4 AA16
VCCIB4 AA17
VCCIB4 AA18
VCCIB4 AA19
VCCIB4 AA20
VCCIB4 AB19
VCCIB4 AB20
VCCIB4 AB21
VCCIB4 AJ28
VCCIB4 AK28
VCCIB5 AA11
VCCIB5 AA12
VCCIB5 AA13
VCCIB5 AA14
VCCIB5 AA15
VCCIB5 AB10
VCCIB5 AB11
VCCIB5 AB12
896-Pin FBGA
AX2000 Function Pin Number
VCCIB5 AJ3
VCCIB5 AK3
VCCIB6 AA9
VCCIB6 AH1
VCCIB6 AH2
VCCIB6 T10
VCCIB6 U10
VCCIB6 V10
VCCIB6 W10
VCCIB6 W9
VCCIB6 Y10
VCCIB6 Y9
VCCIB7 C1
VCCIB7 C2
VCCIB7 K9
VCCIB7 L10
VCCIB7 L9
VCCIB7 M10
VCCIB7 M9
VCCIB7 N10
VCCIB7 P10
VCCIB7 R10
VCOMPLA F14
VCOMPLB J15
VCOMPLC F17
VCOMPLD H16
VCOMPLE AF17
VCOMPLF AD16
VCOMPLG AF14
VCOMPLH AB15
VPUMP G24
896-Pin FBG A
AX2000 Function Pin Number
Axcelerator Family FPGAs
v2.1 3-63
1152-Pin FBGA
Figure 3-8 1152-Pin FBGA (Bottom View)
A1 Ball Pad Corner
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
123456789101112131415161718192021222324252627282930
AG
AH
AJ
AP
AK
AL
AM
AN
31323334
Axcelerator Family FPGAs
3-64 v2.1
1152-Pin FBGA
AX2000 Function Pin Number
Bank 0
IO00NB0F0 D6
IO00PB0F0 C6
IO01NB0F0 H10
IO01PB0F0 H9
IO02NB0F0 F8
IO02PB0F0 G8
IO03NB0F0 A6
IO03PB0F0 B6
IO04NB0F0 C7
IO04PB0F0 D7
IO05NB0F0 K10
IO05PB0F0 J10
IO06NB0F0 F9
IO06PB0F0 G9
IO07NB0F0 F10
IO07PB0F0 G10
IO08NB0F0 E9
IO08PB0F0 E8
IO09NB0F0 J11
IO09PB0F0 K11
IO10NB0F0 C8
IO10PB0F0 D8
IO11NB0F0 K12
IO11PB0F0 J12
IO12NB0F1 G11
IO12PB0F1 H11
IO13NB0F1 G12
IO13PB0F1 H12
IO14NB0F1 A7
IO14PB0F1 B7
IO15NB0F1 H13
IO15PB0F1 J13
IO16NB0F1 C9
IO16PB0F1 D9
IO17NB0F1 F12
IO17PB0F1 F11
IO18NB0F1 E11
IO18PB0F1 E10
IO19NB0F1 F13
IO19PB0F1 G13
IO20NB0F1 A10
IO20PB0F1 A9
IO21NB0F1 K14
IO21PB0F1 K13
IO22NB0F2 B11
IO22PB0F2 B10
IO23NB0F2 C12
IO23PB0F2 C11
IO24NB0F2 A12
IO24PB0F2 A11
IO25NB0F2 H14
IO25PB0F2 J14
IO26NB0F2 D13
IO26PB0F2 D12
IO27NB0F2 F14
IO27PB0F2 G14
IO28NB0F2 E14
IO28PB0F2 E13
IO29NB0F2 B13
IO29PB0F2 B12
IO30NB0F2 C14
IO30PB0F2 C13
IO31NB0F2 H15
IO31PB0F2 J15
IO32NB0F2 A14
IO32PB0F2 B14
IO33NB0F2 K15
IO33PB0F2 L15
IO34NB0F3 D15
IO34PB0F3 D14
IO35NB0F3 A15
IO35PB0F3 B15
IO36NB0F3 B16
IO36PB0F3 A16
IO37NB0F3 G16
IO37PB0F3 G15
IO38NB0F3 D16
1152-Pin FB G A
AX2000 Function Pin Num ber
IO38PB0F3 C16
IO39NB0F3 K16
IO39PB0F3 L16
IO40NB0F3 D17
IO40PB0F3 C17
IO41NB0F3/HCLKAN E16
IO41PB0F3/HCLKAP F16
IO42NB0F3/HCLKBN G17
IO42PB0F3/HCLKBP F17
Bank 1
IO43NB1F4/HCLKCN G19
IO43PB1F4/HCLKCP G18
IO44NB1F4/HCLKDN E19
IO44PB1F4/HCLKDP F19
IO45NB1F4 C18
IO45PB1F4 D18
IO46NB1F4 A18
IO46PB1F4 B18
IO47NB1F4 K19
IO47PB1F4 L19
IO48NB1F4 C19
IO48PB1F4 D19
IO49NB1F4 K20
IO49PB1F4 L20
IO50NB1F4 A19
IO50PB1F4 B19
IO51NB1F4 H20
IO51PB1F4 J20
IO52NB1F4 B20
IO52PB1F4 A20
IO53NB1F4 F20
IO53PB1F4 E20
IO54NB1F5 B21
IO54PB1F5 A21
IO55NB1F5 K21
IO55PB1F5 J21
IO56NB1F5 D21
IO56PB1F5 C21
IO57NB1F5 G22
1152-Pin FBGA
AX2000 Function Pin Number
Axcelerator Family FPGAs
v2.1 3-65
IO57PB1F5 G21
IO58NB1F5 E22
IO58PB1F5 E21
IO59NB1F5 D22
IO59PB1F5 C22
IO60NB1F5 B23
IO60PB1F5 A23
IO61NB1F5 H22
IO61PB1F5 H21
IO62NB1F5 C24
IO62PB1F5 C23
IO63NB1F5 F23
IO63PB1F5 F22
IO64NB1F6 B24
IO64PB1F6 A24
IO65NB1F6 J22
IO65PB1F6 K22
IO66NB1F6 B25
IO66PB1F6 A25
IO67NB1F6 K23
IO67PB1F6 J23
IO68NB1F6 F24
IO68PB1F6 E24
IO69NB1F6 C27
IO69PB1F6 C26
IO70NB1F6 H24
IO70PB1F6 G24
IO71NB1F6 H23
IO71PB1F6 G23
IO72NB1F6 B28
IO72PB1F6 A28
IO73NB1F6 E26
IO73PB1F6 E25
IO74NB1F6 F26
IO74PB1F6 F25
IO75NB1F6 K25
IO75PB1F6 K24
IO76NB1F7 D27
IO76PB1F7 D26
1152-Pin FBGA
AX2000 Function Pin Number
IO77NB1F7 B29
IO77PB1F7 A29
IO78NB1F7 D28
IO78PB1F7 C28
IO79NB1F7 H25
IO79PB1F7 G25
IO80NB1F7 F27
IO80PB1F7 E27
IO81NB1F7 J25
IO81PB1F7 J24
IO82NB1F7 D29
IO82PB1F7 C29
IO83NB1F7 H26
IO83PB1F7 G26
IO84NB1F7 F28
IO84PB1F7 E28
IO85NB1F7 H27
IO85PB1F7 G27
Bank 2
IO86NB2F8 J28
IO86PB2F8 J27
IO87NB2F8 M25
IO87PB2F8 L25
IO88NB2F8 L26
IO88PB2F8 K26
IO89NB2F8 G31
IO89PB2F8 F31
IO90NB2F8 H29
IO90PB2F8 G29
IO91NB2F8 K28
IO91PB2F8 K27
IO92NB2F8 J30
IO92PB2F8 H30
IO93NB2F8 L28
IO93PB2F8 L27
IO94NB2F8 K29
IO94PB2F8 J29
IO95NB2F8 K31
IO95PB2F8 J31
1152-Pin FB G A
AX2000 Function Pin Num ber
IO96NB2F9 J32
IO96PB2F9 H32
IO97NB2F9 M27
IO97PB2F9 M26
IO98NB2F9 L30
IO98PB2F9 K30
IO99NB2F9 N25
IO99PB2F9 N26
IO100NB2F9 M29
IO100PB2F9 L29
IO101NB2F9 L33
IO101PB2F9 L32
IO102NB2F9 K34
IO102PB2F9 K33
IO103NB2F9 N28
IO103PB2F9 M28
IO104NB2F9 M34
IO104PB2F9 L34
IO105NB2F9 P27
IO105PB2F9 N27
IO106NB2F9 M32
IO106PB2F9 M31
IO107NB2F10 P25
IO107PB2F10 P26
IO108NB2F10 N33
IO108PB2F10 M33
IO109NB2F10 P29
IO109PB2F10 N29
IO110NB2F10 P30
IO110PB2F10 N30
IO111NB2F10 R24
IO111PB2F10 R25
IO112NB2F10 P31
IO112PB2F10 N31
IO113NB2F10 R28
IO113PB2F10 P28
IO114NB2F10 P32
IO114PB2F10 N32
IO115NB2F10 R30
1152-Pin FBGA
AX2000 Function Pin Number
Axcelerator Family FPGAs
3-66 v2.1
IO115PB2F10 R29
IO116NB2F10 P34
IO116PB2F10 P33
IO117NB2F10 R27
IO117PB2F10 R26
IO118NB2F11 R34
IO118PB2F11 R33
IO119NB2F11 T24
IO119PB2F11 T25
IO120NB2F11 T33
IO120PB2F11 T34
IO121NB2F11 T27
IO121PB2F11 T26
IO122NB2F11 T30
IO122PB2F11 T29
IO123NB2F11 U28
IO123PB2F11 T28
IO124NB2F11 T31
IO124PB2F11 T32
IO125NB2F11 U24
IO125PB2F11 U25
IO126NB2F11 U33
IO126PB2F11 U34
IO127NB2F11 U26
IO127PB2F11 U27
IO128NB2F11 U31
IO128PB2F11 U32
Bank 3
IO129NB3F12 V29
IO129PB3F12 U29
IO130NB3F12 V31
IO130PB3F12 V32
IO131NB3F12 V24
IO131PB3F12 V25
IO132NB3F12 W28
IO132PB3F12 V28
IO133NB3F12 W26
IO133PB3F12 V26
IO134NB3F12 W33
1152-Pin FBGA
AX2000 Function Pin Number
IO134PB3F12 V33
IO135NB3F12 W25
IO135PB3F12 W24
IO136NB3F12 W31
IO136PB3F12 W32
IO137NB3F12 Y30
IO137PB3F12 W30
IO138NB3F12 Y29
IO138PB3F12 W29
IO139NB3F13 Y27
IO139PB3F13 W27
IO140NB3F13 AA33
IO140PB3F13 Y33
IO141NB3F13 Y25
IO141PB3F13 Y24
IO142NB3F13 AA31
IO142PB3F13 Y31
IO143NB3F13 AA28
IO143PB3F13 Y28
IO144NB3F13 AA34
IO144PB3F13 Y34
IO145NB3F13 AA26
IO145PB3F13 Y26
IO146NB3F13 AA29
IO146PB3F13 AA30
IO147NB3F13 AB30
IO147PB3F13 AB29
IO148NB3F13 AB32
IO148PB3F13 AA32
IO149NB3F13 AB27
IO149PB3F13 AA27
IO150NB3F14 AC31
IO150PB3F14 AB31
IO151NB3F14 AD33
IO151PB3F14 AC33
IO152NB3F14 AC28
IO152PB3F14 AB28
IO153NB3F14 AB25
IO153PB3F14 AA25
1152-Pin FB G A
AX2000 Function Pin Num ber
IO154NB3F14 AD32
IO154PB3F14 AC32
IO155NB3F14 AD29
IO155PB3F14 AC29
IO156NB3F14 AE30
IO156PB3F14 AD30
IO157NB3F14 AC26
IO157PB3F14 AB26
IO158NB3F14 AH33
IO158PB3F14 AG33
IO159NB3F14 AD27
IO159PB3F14 AC27
IO160NB3F14 AG32
IO160PB3F14 AF32
IO161NB3F15 AG31
IO161PB3F15 AF31
IO162NB3F15 AF29
IO162PB3F15 AE29
IO163NB3F15 AE28
IO163PB3F15 AD28
IO164NB3F15 AG30
IO164PB3F15 AF30
IO165NB3F15 AE26
IO165PB3F15 AD26
IO166NB3F15 AJ30
IO166PB3F15 AH30
IO167NB3F15 AG28
IO167PB3F15 AF28
IO168NB3F15 AF27
IO168PB3F15 AE27
IO169NB3F15 AH29
IO169PB3F15 AG29
IO170NB3F15 AD25
IO170PB3F15 AC25
Bank 4
IO171NB4F16 AP29
IO171PB4F16 AN29
IO172NB4F16 AH26
IO172PB4F16 AH27
1152-Pin FBGA
AX2000 Function Pin Number
Axcelerator Family FPGAs
v2.1 3-67
IO173NB4F16 AJ27
IO173PB4F16 AJ28
IO174NB4F16 AL27
IO174PB4F16 AL28
IO175NB4F16 AM28
IO175PB4F16 AM29
IO176NB4F16 AG25
IO176PB4F16 AG26
IO177NB4F16 AK26
IO177PB4F16 AK27
IO178NB4F16 AF25
IO178PB4F16 AE25
IO179NB4F16 AP28
IO179PB4F16 AN28
IO180NB4F16 AJ25
IO180PB4F16 AJ26
IO181NB4F17 AM26
IO181PB4F17 AM27
IO182NB4F17 AF24
IO182PB4F17 AE24
IO183NB4F17 AH24
IO183PB4F17 AH25
IO184NB4F17 AG23
IO184PB4F17 AG24
IO185NB4F17 AL25
IO185PB4F17 AL26
IO186NB4F17 AP25
IO186PB4F17 AP26
IO187NB4F17 AK24
IO187PB4F17 AK25
IO188NB4F17 AF23
IO188PB4F17 AE23
IO189NB4F17 AN24
IO189PB4F17 AM24
IO190NB4F17 AH22
IO190PB4F17 AH23
IO191NB4F17 AJ23
IO191PB4F17 AJ24
IO192NB4F17 AG21
1152-Pin FBGA
AX2000 Function Pin Number
IO192PB4F17 AG22
IO193NB4F18 AP23
IO193PB4F18 AP24
IO194NB4F18 AN22
IO194PB4F18 AN23
IO195NB4F18 AM23
IO195PB4F18 AL23
IO196NB4F18 AF21
IO196PB4F18 AF22
IO197NB4F18 AL22
IO197PB4F18 AM22
IO198NB4F18 AE21
IO198PB4F18 AE22
IO199NB4F18 AJ21
IO199PB4F18 AJ22
IO200NB4F18 AK21
IO200PB4F18 AK22
IO201NB4F18 AM21
IO201PB4F18 AL21
IO202NB4F18 AE20
IO202PB4F18 AD20
IO203NB4F19 AN21
IO203PB4F19 AP21
IO204NB4F19 AP20
IO204PB4F19 AN20
IO205NB4F19 AN19
IO205PB4F19 AP19
IO206NB4F19 AG20
IO206PB4F19 AF20
IO207NB4F19 AL19
IO207PB4F19 AL20
IO208NB4F19 AG19
IO208PB4F19 AF19
IO209NB4F19 AN18
IO209PB4F19 AP18
IO210NB4F19 AE19
IO210PB4F19 AD19
IO211NB4F19 AL18
IO211PB4F19 AM18
1152-Pin FB G A
AX2000 Function Pin Num ber
IO212NB4F19/CLKEN AJ20
IO212PB4F19/CLKEP AK20
IO213NB4F19/CLKFN AJ18
IO213PB4F19/CLKFP AJ19
Bank 5
IO214NB5F20/CLKGN AJ16
IO214PB5F20/CLKGP AJ17
IO215NB5F20/CLKHN AJ15
IO215PB5F20/CLKHP AK15
IO216NB5F20 AD16
IO216PB5F20 AE17
IO217NB5F20 AM17
IO217PB5F20 AL17
IO218NB5F20 AG16
IO218PB5F20 AF16
IO219NB5F20 AM16
IO219PB5F20 AL16
IO220NB5F20 AP16
IO220PB5F20 AN16
IO221NB5F20 AN15
IO221PB5F20 AP15
IO222NB5F20 AD15
IO222PB5F20 AE16
IO223NB5F21 AL14
IO223PB5F21 AL15
IO224NB5F21 AN14
IO224PB5F21 AP14
IO225NB5F21 AK13
IO225PB5F21 AK14
IO226NB5F21 AE15
IO226PB5F21 AF15
IO227NB5F21 AG14
IO227PB5F21 AG15
IO228NB5F21 AJ13
IO228PB5F21 AJ14
IO229NB5F21 AM13
IO229PB5F21 AM14
IO230NB5F21 AE14
IO230PB5F21 AF14
1152-Pin FBGA
AX2000 Function Pin Number
Axcelerator Family FPGAs
3-68 v2.1
IO231NB5F21 AN12
IO231PB5F21 AP12
IO232NB5F21 AG13
IO232PB5F21 AH13
IO233NB5F21 AL12
IO233PB5F21 AL13
IO234NB5F21 AE13
IO234PB5F21 AF13
IO235NB5F22 AN11
IO235PB5F22 AP11
IO236NB5F22 AM11
IO236PB5F22 AM12
IO237NB5F22 AJ11
IO237PB5F22 AJ12
IO238NB5F22 AH11
IO238PB5F22 AH12
IO239NB5F22 AK10
IO239PB5F22 AK11
IO240NB5F22 AE12
IO240PB5F22 AF12
IO241NB5F22 AN10
IO241PB5F22 AP10
IO242NB5F22 AG11
IO242PB5F22 AG12
IO243NB5F22 AL9
IO243PB5F22 AL10
IO244NB5F22 AM8
IO244PB5F22 AM9
IO245NB5F23 AH10
IO245PB5F23 AJ10
IO246NB5F23 AF10
IO246PB5F23 AF11
IO247NB5F23 AJ9
IO247PB5F23 AK9
IO248NB5F23 AN7
IO248PB5F23 AP7
IO249NB5F23 AL7
IO249PB5F23 AL8
IO250NB5F23 AE10
1152-Pin FBGA
AX2000 Function Pin Number
IO250PB5F23 AE11
IO251NB5F23 AK8
IO251PB5F23 AJ8
IO252NB5F23 AH8
IO252PB5F23 AH9
IO253NB5F23 AN6
IO253PB5F23 AP6
IO254NB5F23 AG9
IO254PB5F23 AG10
IO255NB5F23 AJ7
IO255PB5F23 AK7
IO256NB5F23 AL6
IO256PB5F23 AM6
Bank 6
IO257NB6F24 AG6
IO257PB6F24 AH6
IO258NB6F24 AD9
IO258PB6F24 AE9
IO259NB6F24 AF7
IO259PB6F24 AG7
IO260NB6F24 AH3
IO260PB6F24 AH4
IO261NB6F24 AH5
IO261PB6F24 AJ5
IO262NB6F24 AE6
IO262PB6F24 AF6
IO263NB6F24 AF5
IO263PB6F24 AG5
IO264NB6F24 AD8
IO264PB6F24 AE8
IO265NB6F24 AF3
IO265PB6F24 AG3
IO266NB6F24 AC10
IO266PB6F24 AD10
IO267NB6F25 AD7
IO267PB6F25 AE7
IO268NB6F25 AD5
IO268PB6F25 AE5
IO269NB6F25 AE4
1152-Pin FB G A
AX2000 Function Pin Num ber
IO269PB6F25 AF4
IO270NB6F25 AB9
IO270PB6F25 AC9
IO271NB6F25 AC6
IO271PB6F25 AD6
IO272NB6F25 AB8
IO272PB6F25 AC8
IO273NB6F25 AE1
IO273PB6F25 AE2
IO274NB6F25 AA10
IO274PB6F25 AB10
IO275NB6F25 AB7
IO275PB6F25 AC7
IO276NB6F25 AD1
IO276PB6F25 AD2
IO277NB6F25 AC4
IO277PB6F25 AC3
IO278NB6F26 AA8
IO278PB6F26 AA9
IO279NB6F26 AB5
IO279PB6F26 AB6
IO280NB6F26 Y10
IO280PB6F26 Y11
IO281NB6F26 AB3
IO281PB6F26 AB4
IO282NB6F26 Y7
IO282PB6F26 AA7
IO283NB6F26 AC2
IO283PB6F26 AC1
IO284NB6F26 Y9
IO284PB6F26 Y8
IO285NB6F26 AA5
IO285PB6F26 AA6
IO286NB6F26 W10
IO286PB6F26 W11
IO287NB6F26 AA3
IO287PB6F26 AA4
IO288NB6F26 W9
IO288PB6F26 W8
1152-Pin FBGA
AX2000 Function Pin Number
Axcelerator Family FPGAs
v2.1 3-69
IO289NB6F27 AA1
IO289PB6F27 AA2
IO290NB6F27 W6
IO290PB6F27 Y6
IO291NB6F27 W5
IO291PB6F27 Y5
IO292NB6F27 V7
IO292PB6F27 W7
IO293NB6F27 W4
IO293PB6F27 Y4
IO294NB6F27 V10
IO294PB6F27 V11
IO295NB6F27 Y1
IO295PB6F27 Y2
IO296NB6F27 W1
IO296PB6F27 W2
IO297NB6F27 V1
IO297PB6F27 V2
IO298NB6F27 V9
IO298PB6F27 V8
IO299NB6F27 U4
IO299PB6F27 V4
Bank 7
IO300NB7F28 U10
IO300PB7F28 U11
IO301NB7F28 U2
IO301PB7F28 U1
IO302NB7F28 U6
IO302PB7F28 U7
IO303NB7F28 T3
IO303PB7F28 U3
IO304NB7F28 U9
IO304PB7F28 U8
IO305NB7F28 R2
IO305PB7F28 R1
IO306NB7F28 R4
IO306PB7F28 T4
IO307NB7F28 R5
IO307PB7F28 T5
1152-Pin FBGA
AX2000 Function Pin Number
IO308NB7F28 T11
IO308PB7F28 T10
IO309NB7F28 T6
IO309PB7F28 T7
IO310NB7F29 T9
IO310PB7F29 T8
IO311NB7F29 N3
IO311PB7F29 P3
IO312NB7F29 P7
IO312PB7F29 R7
IO313NB7F29 P6
IO313PB7F29 R6
IO314NB7F29 M2
IO314PB7F29 N2
IO315NB7F29 N4
IO315PB7F29 P4
IO316NB7F29 R9
IO316PB7F29 R8
IO317NB7F29 N5
IO317PB7F29 P5
IO318NB7F29 R10
IO318PB7F29 R11
IO319NB7F29 L2
IO319PB7F29 L1
IO320NB7F29 N8
IO320PB7F29 P8
IO321NB7F30 M6
IO321PB7F30 N6
IO322NB7F30 P10
IO322PB7F30 P9
IO323NB7F30 L3
IO323PB7F30 M3
IO324NB7F30 M7
IO324PB7F30 N7
IO325NB7F30 K2
IO325PB7F30 K1
IO326NB7F30 G2
IO326PB7F30 H2
IO327NB7F30 L6
1152-Pin FB G A
AX2000 Function Pin Num ber
IO327PB7F30 L5
IO328NB7F30 N10
IO328PB7F30 N9
IO329NB7F30 J4
IO329PB7F30 K4
IO330NB7F30 J5
IO330PB7F30 K5
IO331NB7F30 M10
IO331PB7F30 M9
IO332NB7F31 L8
IO332PB7F31 M8
IO333NB7F31 F2
IO333PB7F31 F1
IO334NB7F31 J6
IO334PB7F31 K6
IO335NB7F31 H4
IO335PB7F31 H3
IO336NB7F31 K7
IO336PB7F31 L7
IO337NB7F31 G4
IO337PB7F31 G3
IO338NB7F31 K9
IO338PB7F31 L9
IO339NB7F31 H6
IO339PB7F31 H5
IO340NB7F31 H7
IO340PB7F31 J7
IO341NB7F31 J8
IO341PB7F31 K8
Dedicated I/O
VCCDA F5
GND A13
GND A2
GND A22
GND A27
GND A3
GND A31
GND A32
GND A33
1152-Pin FBGA
AX2000 Function Pin Number
Axcelerator Family FPGAs
3-70 v2.1
GND A4
GND A8
GND AA14
GND AA15
GND AA16
GND AA17
GND AA18
GND AA19
GND AA20
GND AA21
GND AB1
GND AB13
GND AB22
GND AB34
GND AC12
GND AC23
GND AC30
GND AC5
GND AD11
GND AD24
GND AD31
GND AD4
GND AE3
GND AE32
GND AF2
GND AF33
GND AG1
GND AG27
GND AG34
GND AG8
GND AH28
GND AH7
GND AJ29
GND AJ6
GND AK12
GND AK17
GND AK18
GND AK23
GND AK30
1152-Pin FBGA
AX2000 Function Pin Number
GND AK5
GND AL1
GND AL11
GND AL2
GND AL24
GND AL3
GND AL31
GND AL32
GND AL33
GND AL34
GND AL4
GND AM1
GND AM10
GND AM15
GND AM2
GND AM20
GND AM25
GND AM3
GND AM31
GND AM32
GND AM33
GND AM34
GND AM4
GND AN1
GND AN2
GND AN26
GND AN3
GND AN31
GND AN32
GND AN33
GND AN34
GND AN4
GND AN9
GND AP13
GND AP2
GND AP22
GND AP27
GND AP3
GND AP31
1152-Pin FB G A
AX2000 Function Pin Num ber
GND AP32
GND AP33
GND AP4
GND AP8
GND B1
GND B2
GND B26
GND B3
GND B31
GND B32
GND B33
GND B34
GND B4
GND B9
GND C1
GND C10
GND C15
GND C2
GND C20
GND C25
GND C3
GND C31
GND C32
GND C33
GND C34
GND C4
GND D1
GND D11
GND D2
GND D24
GND D3
GND D31
GND D32
GND D33
GND D34
GND D4
GND E12
GND E17
GND E18
1152-Pin FBGA
AX2000 Function Pin Number
Axcelerator Family FPGAs
v2.1 3-71
GND E23
GND E30
GND E5
GND F29
GND F30
GND F6
GND G28
GND G7
GND H1
GND H34
GND J2
GND J33
GND K3
GND K32
GND L11
GND L24
GND L31
GND L4
GND M12
GND M23
GND M30
GND M5
GND N1
GND N13
GND N22
GND N34
GND P14
GND P15
GND P16
GND P17
GND P18
GND P19
GND P20
GND P21
GND R14
GND R15
GND R16
GND R17
GND R18
1152-Pin FBGA
AX2000 Function Pin Number
GND R19
GND R20
GND R21
GND R3
GND R32
GND T14
GND T15
GND T16
GND T17
GND T18
GND T19
GND T20
GND T21
GND U14
GND U15
GND U16
GND U17
GND U18
GND U19
GND U20
GND U21
GND U30
GND U5
GND V14
GND V15
GND V16
GND V17
GND V18
GND V19
GND V20
GND V21
GND V30
GND V5
GND W14
GND W15
GND W16
GND W17
GND W18
GND W19
1152-Pin FB G A
AX2000 Function Pin Num ber
GND W20
GND W21
GND Y14
GND Y15
GND Y16
GND Y17
GND Y18
GND Y19
GND Y20
GND Y21
GND Y3
GND Y32
GND/LP G6
NC A17
NC A26
NC AB2
NC AB33
NC AC34
NC AD3
NC AD34
NC AE31
NC AE33
NC AE34
NC AF1
NC AF34
NC AG2
NC AG4
NC AH1
NC AH2
NC AH31
NC AH32
NC AH34
NC AJ1
NC AJ2
NC AJ3
NC AJ31
NC AJ32
NC AJ33
NC AJ34
1152-Pin FBGA
AX2000 Function Pin Number
Axcelerator Family FPGAs
3-72 v2.1
NC AJ4
NC AL29
NC AM19
NC AM7
NC AN13
NC AN17
NC AN25
NC AN27
NC AN8
NC AP17
NC AP9
NC B17
NC B22
NC B27
NC B8
NC D10
NC D20
NC D23
NC D25
NC F3
NC F32
NC F33
NC F34
NC F4
NC G1
NC G32
NC G33
NC G34
NC H31
NC H33
NC J1
NC J3
NC J34
NC M1
NC M4
NC P1
NC P2
NC R31
NC T1
1152-Pin FBGA
AX2000 Function Pin Number
NC T2
NC V3
NC V34
NC W3
NC W34
PRA J17
PRB F18
PRC AD18
PRD AH18
TCK J9
TDI F7
TDO L10
TMS H8
TRST E6
VCCA AA13
VCCA AA22
VCCA AB14
VCCA AB15
VCCA AB16
VCCA AB17
VCCA AB18
VCCA AB19
VCCA AB20
VCCA AB21
VCCA AF8
VCCA AK28
VCCA G30
VCCA G5
VCCA N14
VCCA N15
VCCA N16
VCCA N17
VCCA N18
VCCA N19
VCCA N20
VCCA N21
VCCA P13
VCCA P22
VCCA R13
1152-Pin FB G A
AX2000 Function Pin Num ber
VCCA R22
VCCA T13
VCCA T22
VCCA U13
VCCA U22
VCCA V13
VCCA V22
VCCA W13
VCCA W22
VCCA Y13
VCCA Y22
VCCPLA J16
VCCPLB K17
VCCPLC J19
VCCPLD L18
VCCPLE AK19
VCCPLF AE18
VCCPLG AK16
VCCPLH AF17
VCCDA AF26
VCCDA AF9
VCCDA AG17
VCCDA AG18
VCCDA AH14
VCCDA AH15
VCCDA AH17
VCCDA AH20
VCCDA AH21
VCCDA AK29
VCCDA AK6
VCCDA E15
VCCDA E29
VCCDA E7
VCCDA F15
VCCDA F21
VCCDA G20
VCCDA H17
VCCDA H18
VCCDA H28
1152-Pin FBGA
AX2000 Function Pin Number
Axcelerator Family FPGAs
v2.1 3-73
VCCDA J18
VCCDA V27
VCCDA V6
VCCIB0 A5
VCCIB0 B5
VCCIB0 C5
VCCIB0 D5
VCCIB0 L12
VCCIB0 L13
VCCIB0 L14
VCCIB0 M13
VCCIB0 M14
VCCIB0 M15
VCCIB0 M16
VCCIB0 M17
VCCIB1 A30
VCCIB1 B30
VCCIB1 C30
VCCIB1 D30
VCCIB1 L21
VCCIB1 L22
VCCIB1 L23
VCCIB1 M18
VCCIB1 M19
VCCIB1 M20
VCCIB1 M21
VCCIB1 M22
VCCIB2 E31
VCCIB2 E32
VCCIB2 E33
VCCIB2 E34
VCCIB2 M24
VCCIB2 N23
VCCIB2 N24
VCCIB2 P23
VCCIB2 P24
VCCIB2 R23
VCCIB2 T23
VCCIB2 U23
1152-Pin FBGA
AX2000 Function Pin Number
VCCIB3 AA23
VCCIB3 AA24
VCCIB3 AB23
VCCIB3 AB24
VCCIB3 AC24
VCCIB3 AK31
VCCIB3 AK32
VCCIB3 AK33
VCCIB3 AK34
VCCIB3 V23
VCCIB3 W23
VCCIB3 Y23
VCCIB4 AC18
VCCIB4 AC19
VCCIB4 AC20
VCCIB4 AC21
VCCIB4 AC22
VCCIB4 AD21
VCCIB4 AD22
VCCIB4 AD23
VCCIB4 AL30
VCCIB4 AM30
VCCIB4 AN30
VCCIB4 AP30
VCCIB5 AC13
VCCIB5 AC14
VCCIB5 AC15
VCCIB5 AC16
VCCIB5 AC17
VCCIB5 AD12
VCCIB5 AD13
VCCIB5 AD14
VCCIB5 AL5
VCCIB5 AM5
VCCIB5 AN5
VCCIB5 AP5
VCCIB6 AA11
VCCIB6 AA12
VCCIB6 AB11
1152-Pin FB G A
AX2000 Function Pin Num ber
VCCIB6 AB12
VCCIB6 AC11
VCCIB6 AK1
VCCIB6 AK2
VCCIB6 AK3
VCCIB6 AK4
VCCIB6 V12
VCCIB6 W12
VCCIB6 Y12
VCCIB7 E1
VCCIB7 E2
VCCIB7 E3
VCCIB7 E4
VCCIB7 M11
VCCIB7 N11
VCCIB7 N12
VCCIB7 P11
VCCIB7 P12
VCCIB7 R12
VCCIB7 T12
VCCIB7 U12
VCOMPLA H16
VCOMPLB L17
VCOMPLC H19
VCOMPLD K18
VCOMPLE AH19
VCOMPLF AF18
VCOMPLG AH16
VCOMPLH AD17
VPUMP J26
1152-Pin FBGA
AX2000 Function Pin Number
Axcelerator Family FPGAs
3-74 v2.1
729-Pin PBGA
Figure 3-9 729-Pin PBGA (Bottom View)
A1 Ball Pad Corner
D
F
H
K
M
P
T
V
Y
AD
AF
AG
E
G
J
L
N
R
U
W
AC
AE
B
A
C
AB
AA
13681012141620242627 18 2479111315192325 1722 21 5
Axcelerator Family FPGAs
v2.1 3-75
729-Pi n PBGA
AX1000 Function Pin Number
Bank 0
IO00NB0F0 E6
IO00PB0F0 F6
IO01NB0F0 G8
IO01PB0F0 G7
IO02NB0F0 D7
IO02PB0F0 E7
IO03NB0F0 D5
IO03PB0F0 E5
IO04NB0F0 G9
IO04PB0F0 H9
IO05NB0F0 E8
IO05PB0F0 F8
IO06NB0F0 C6
IO06PB0F0 D6
IO07NB0F0 B5
IO07PB0F0 C5
IO08NB0F0 A6
IO08PB0F0 A5
IO09NB0F0 E9
IO09PB0F0 F9
IO10NB0F0 G10
IO10PB0F0 H10
IO11NB0F0 B7
IO11PB0F0 B6
IO12NB0F1 C8
IO12PB0F1 C7
IO13NB0F 1 E10
IO13PB0F1 F10
IO14NB0F1 G11
IO14PB0F1 H11
IO15NB0F1 D9
IO15PB0F1 D8
IO16NB0F1 A8
IO16PB0F1 A7
IO17NB0F1 B9
IO17PB0F1 B8
IO18NB0F1 C10
IO18PB0F1 C9
IO19NB0F1 E11
IO19PB0F1 F11
IO20NB0F1 G12
IO20PB0F1 H12
IO21NB0F1 D11
IO21PB0F1 D10
IO22NB0F2 A10
IO22PB0F2 A9
IO23NB0F 2 B11
IO23 PB0F2 B10
IO24NB0F2 G13
IO24PB0F2 H13
IO25NB0F2 C12
IO25PB0F2 C11
IO26NB0F2 E12
IO26PB0F2 D12
IO27NB0F2 E13
IO27PB0F2 F13
IO28NB0F2 G14
IO28PB0F2 H14
IO29NB0F2 A12
IO29 PB0F2 B12
IO30NB0F2/HCLKAN C13
IO30PB0F2/HCLKAP D1 3
IO31NB0F2/HCLKBN F14
IO31PB0F2/HCLKBP E14
Bank 1
IO32NB1F3/HCLKCN C14
IO32PB 1F3/HC LKC P B14
IO33NB1F3/HCLKDN D16
IO33PB1F3/HCLKDP D1 5
IO34NB1F 3 B16
IO34PB1F3 A16
IO35NB1F3 E15
IO35PB1F3 F15
IO36NB1F3 H15
IO36PB1F3 G15
729-Pin PBGA
AX1000 Function Pin Num ber
IO37NB1F3 C1 7
IO37PB1F3 C16
IO38NB1F3 B18
IO38PB1F3 B17
IO39NB1F3 A1 8
IO39PB1F3 A17
IO40NB1F3 H1 6
IO40PB1F3 G16
IO41NB1F4 B19
IO41PB1F4 A19
IO42NB1F4 C1 9
IO42PB1F4 C18
IO43NB1F4 D1 8
IO43PB1F4 D17
IO44NB1F4 H1 7
IO44PB1F4 G17
IO45NB1F4 F17
IO45PB1F4 E17
IO46NB1F4 B20
IO46PB1F4 A20
IO47NB1F4 C2 1
IO47PB1F4 C20
IO48NB1F4 H1 8
IO48PB1F4 G18
IO49NB1F4 F18
IO49PB1F4 E18
IO50NB1F4 D2 0
IO50PB1F4 D19
IO51NB1F4 A2 2
IO51PB1F4 A21
IO52NB1F4 B22
IO52PB1F4 B21
IO53NB1F4 F19
IO53PB1F4 E19
IO54NB1F5 F20
IO54PB1F5 E20
IO55NB1F5 E21
IO55PB1F5 D21
729-Pin PBGA
AX1000 Function Pin Number
Axcelerator Family FPGAs
3-76 v2.1
IO56NB1F5 H19
IO56PB1F5 G19
IO57NB1F5 D22
IO57PB1F5 C22
IO58NB1F5 B23
IO58PB1F5 A23
IO59NB1F5 D23
IO59PB1F5 C23
IO60NB1F5 G21
IO60PB1F5 G20
IO61NB1F 5 E23
IO61PB1 F5 E22
IO62NB1F5 F22
IO62PB1F5 F21
IO63NB1F5 H20
IO63PB1F5 J19
Bank 2
IO64NB2F6 J21
IO64PB2F6 H21
IO65NB2F6 F24
IO65PB2F6 F23
IO66NB2F6 F26
IO66PB2F6 F25
IO67NB2F 6 E26
IO67PB2 F6 E25
IO68NB2F6 J22
IO68PB2F6 H22
IO69NB2F6 G24
IO69PB2F6 G23
IO70NB2F6 K20
IO70PB2F6 J20
IO71NB2F6 G26
IO71PB2F6 G25
IO72NB2F6 J24
IO72PB2F6 J23
IO73NB2F6 H24
IO73PB2F6 H23
IO74NB2F7 L21
729-Pi n PBGA
AX1000 Function Pin Number
IO74PB2F7 K21
IO75NB2F7 G27
IO75PB2F7 F27
IO76NB2F7 K23
IO76PB2F7 K22
IO77NB2F7 H26
IO77PB2F7 H25
IO78NB2F7 K25
IO78PB2F7 K24
IO79NB2F7 J26
IO79PB2F7 J25
IO80NB2F7 M20
IO80PB2F7 L20
IO81NB2F7 J27
IO81PB2F7 H27
IO82NB2F7 L23
IO82PB2F7 L22
IO83NB2F7 L25
IO83PB2F7 L24
IO84NB2F7 N21
IO84PB2F7 M 21
IO85NB2F8 K27
IO85PB2F8 K26
IO86NB2F8 M23
IO86PB2F8 M 22
IO87NB2F8 M25
IO87PB2F8 M 24
IO88NB2F8 L27
IO88PB2F8 L26
IO89NB2F8 M27
IO89PB2F8 M 26
IO90NB2F8 N23
IO90PB2F8 N22
IO91NB2F8 N25
IO91PB2F8 N24
IO92NB2F8 N27
IO92PB2F8 N26
IO93NB2F8 P26
729-Pin PBGA
AX1000 Function Pin Num ber
IO93PB2F8 P27
IO94NB2F8 N1 9
IO94PB2F8 N20
IO95NB2F8 P23
IO95PB2F8 P22
Bank 3
IO96NB3F9 P25
IO96PB3F9 P24
IO97NB3F9 R26
IO97PB3F9 R27
IO98NB3F9 P21
IO98PB3F9 P20
IO99NB3F9 R24
IO99PB3F9 R25
IO100NB3F9 T26
IO100PB3F9 T27
IO101NB3F9 T24
IO101PB3F9 T25
IO102NB3F9 R20
IO102PB3F9 R21
IO103NB3F9 R23
IO103PB3F9 R22
IO104NB3F9 U26
IO104PB3F9 U27
IO105NB3F9 U24
IO105PB3F9 U25
IO106NB3F9 R19
IO106PB3F9 P19
IO107 NB3 F10 V26
IO107PB 3F10 V27
IO108NB3F10 T23
IO108PB3F10 T22
IO109 NB3 F10 V24
IO109PB 3F10 V25
IO110NB3F10 T20
IO110PB3F10 T21
IO111NB3F10 W26
IO111PB3F10 W27
729-Pin PBGA
AX1000 Function Pin Number
Axcelerator Family FPGAs
v2.1 3-77
IO112NB3F10 U22
IO112PB3F10 U23
IO113NB3F10 Y26
IO113PB3F10 Y27
IO114NB3F10 U20
IO114PB3F10 U21
IO115NB3F 1 0 W2 4
IO115PB3 F10 W25
IO116NB3F10 V22
IO116PB3F10 V23
IO117NB3F10 Y24
IO117PB3F10 Y25
IO118NB3F11 V20
IO118PB3F11 V21
IO119NB3F11 AA26
IO119PB3F11 AA27
IO120NB3F 1 1 W2 2
IO120PB3 F11 W23
IO121NB3F11 AA24
IO121PB3F11 AA25
IO122NB3F 1 1 W2 0
IO122PB3 F11 W21
IO123NB3F 1 1 AB2 6
IO123PB3 F11 AB27
IO124NB3F11 Y22
IO124PB3F11 Y23
IO125NB3F 1 1 AB2 4
IO125PB3 F11 AB25
IO126NB3F11 AA22
IO126PB3F11 AA23
IO127NB3F11 AC26
IO127PB3F11 AC27
IO128NB3F11 Y20
IO128PB3 F11 W19
Bank 4
IO129NB4F12 AA20
IO129PB4F12 Y21
IO130NB4F 1 2 AB2 2
729-Pi n PBGA
AX1000 Function Pin Number
IO130PB4F12 AB23
IO131NB4F12 AC22
IO131PB4F12 AC23
IO132NB4F12 AD23
IO132PB4F12 AD24
IO133NB4F12 AF23
IO133PB4F12 AE23
IO134NB4F12 AC21
IO134PB4F12 AB21
IO135NB4F12 AC20
IO135PB4F12 AB20
IO136NB4F12 AD21
IO136PB4F12 AD22
IO137NB4F12 Y19
IO137PB4F12 AA19
IO138NB4F12 AE21
IO138PB4F12 AE22
IO139NB4F13 AF21
IO139PB4F13 AF22
IO140NB4F13 AG22
IO140PB4F13 AG23
IO141NB4F13 Y18
IO141PB4F13 AA18
IO142NB4F13 AE20
IO142PB4F13 AD20
IO143NB4F13 AG20
IO143PB4F13 AG21
IO144NB4F13 AC19
IO144PB4F13 AB19
IO145NB4F13 AD18
IO145PB4F13 AD19
IO146NB4F13 AC18
IO146PB4F13 AB18
IO147NB4F13 Y17
IO147PB4F13 AA17
IO148NB4F13 AF19
IO148PB4F13 AF20
IO149NB4F13 AC17
729-Pin PBGA
AX1000 Function Pin Num ber
IO149PB4F13 AB17
IO150NB4F13 AE18
IO150PB4F13 AE19
IO151 NB4F 13 AA16
IO151PB 4F13 Y16
IO152NB4F14 AG18
IO152PB4F14 AG19
IO153 NB4F 14 AC16
IO153PB4F14 AB16
IO154NB4F14 AF17
IO154PB4F14 AF18
IO155NB4F14 AB15
IO155PB 4F14 AC15
IO156NB4F14 AE16
IO156PB4F14 AE17
IO157 NB4 F14 Y15
IO157PB 4F14 AA15
IO158NB4F14 AG16
IO158PB4F14 AG17
IO159NB4F14/CLKEN AF15
IO159PB4F14/CLKEP AF16
IO160NB4F 14 /CLKF N AD14
IO16 0PB4F14 /CLK FP AD15
Bank 5
IO161NB5F15/CLKGN AE14
IO161PB5F15/CLKGP AE15
IO16 2NB 5F15/C LKH N AC13
IO162PB 5F15/C LKH P AD13
IO163 NB5 F15 Y14
IO163PB 5F15 AA14
IO164NB5F15 AE13
IO164PB5F15 AF13
IO165NB5F15 AF12
IO165PB5F15 AG12
IO166 NB5F 15 AD12
IO166PB5F15 AE12
IO167 NB5 F15 Y13
IO167PB 5F15 AA13
729-Pin PBGA
AX1000 Function Pin Number
Axcelerator Family FPGAs
3-78 v2.1
IO168NB5F15 AD11
IO168PB5F15 AE11
IO169NB5F15 AG11
IO169PB5F15 A F11
IO170NB5F 1 5 AB1 1
IO170PB5F15 AC11
IO171NB5F16 AF10
IO171PB5F16 AG10
IO172NB5F16 AD10
IO172PB5F16 AE10
IO173NB5F16 Y12
IO173PB5F16 AA12
IO174NB5F 1 6 AB1 0
IO174PB5F16 AC10
IO175NB5F16 AF9
IO175PB5F16 AG9
IO176NB5F16 AD9
IO176PB5F16 AE9
IO177NB5F16 Y11
IO177PB5F16 AA11
IO178NB5F16 AF8
IO178PB5F16 AG8
IO179NB5F16 AD8
IO179PB5F16 AE8
IO180NB5F16 AB9
IO180PB5F16 AC9
IO181NB5F17 Y10
IO181PB5F17 AA10
IO182NB5F17 AF7
IO182PB5F17 AG7
IO183NB5F17 AD7
IO183PB5F17 AE7
IO184NB5F17 AC7
IO184PB5F17 AC8
IO185NB5F17 AF6
IO185PB5F17 AG6
IO186NB5F17 AB7
IO186PB5F17 AB8
729-Pi n PBGA
AX1000 Function Pin Number
IO187NB5F17 Y9
IO187PB5F17 AA9
IO188NB5F17 AD6
IO188PB5F17 AE6
IO189NB5F17 AB6
IO189PB5F17 AC6
IO19 0NB5F 17 AF5
IO190PB5F17 AG5
IO191NB5F17 AA6
IO191PB5F17 AA7
IO192NB5F17 Y8
IO192PB5F17 AA8
Bank 6
IO193NB6F18 W8
IO193PB6F18 Y7
IO194NB6F18 AB5
IO194PB6F18 AC5
IO195NB6F18 AC2
IO195PB6F18 AC3
IO196NB6F18 AC4
IO196PB6F18 AD4
IO197NB6F18 Y5
IO197PB6F18 Y6
IO198NB6F18 AB3
IO198PB6F18 AB4
IO199NB6F18 V7
IO199PB6F18 W7
IO200NB6F18 AA4
IO200PB6F18 AA5
IO201NB6F18 W5
IO201PB6F18 W6
IO202NB6F18 AB1
IO202PB6F18 AC1
IO203NB6F19 Y3
IO203PB6F19 AA3
IO204NB6F19 AA2
IO204PB6F19 AB2
IO205NB6F19 U8
729-Pin PBGA
AX1000 Function Pin Num ber
IO205PB6F19 V8
IO206NB6F19 V5
IO206PB6F19 V6
IO207NB6F19 Y1
IO207PB6F19 AA1
IO208NB6F19 W4
IO208PB6F19 Y4
IO209NB6F19 T7
IO209PB6F19 U7
IO210NB6F19 W2
IO210PB6F19 Y2
IO211NB6F19 U5
IO211PB6F19 U6
IO212NB6F19 V3
IO212PB6F19 W3
IO213NB6F19 R9
IO213PB6F19 T8
IO214NB6F20 U4
IO214PB6F20 V4
IO215NB6F20 T5
IO215PB6F20 T6
IO216NB6F20 V1
IO216PB6F20 W1
IO217NB6F20 R7
IO217PB6F20 R8
IO218NB6F20 U2
IO218PB6F20 V2
IO219NB6F20 T1
IO219PB6F20 U1
IO220NB6F20 R5
IO220PB6F20 R6
IO221NB6F20 T3
IO221PB6F20 T4
IO222NB6F20 R2
IO222PB6F20 T2
IO223NB6F20 P8
IO223PB6F20 P9
IO224NB6F20 R3
729-Pin PBGA
AX1000 Function Pin Number
Axcelerator Family FPGAs
v2.1 3-79
IO224PB6F20 R4
Bank 7
IO225NB7F21 P1
IO225PB7F21 R1
IO226NB7F21 P3
IO226PB7F21 P2
IO227NB7F21 N7
IO227PB7F21 P7
IO228NB7F21 P5
IO228PB7F21 P4
IO229NB7F21 N2
IO229PB7F21 N1
IO230NB7F21 N6
IO230PB7F21 P6
IO231NB7F21 N9
IO231PB7F21 N8
IO232NB7F21 N4
IO232PB7F21 N3
IO233NB7F21 M2
IO233PB7F21 M1
IO234NB7F21 M4
IO234PB7F21 M3
IO235NB7F21 M5
IO235PB7F21 N5
IO236NB7F22 L2
IO236PB7F22 L1
IO237NB7F22 L4
IO237PB7F22 L3
IO238NB7F22 L6
IO238PB7F22 M6
IO239NB7F22 M8
IO239PB7F22 M7
IO240NB7F22 K2
IO240PB7F22 K1
IO241NB7F22 K4
IO241PB7F22 K3
IO242NB7F22 K5
IO242PB7F22 L5
729-Pi n PBGA
AX1000 Function Pin Number
IO243NB7F22 J2
IO243PB7F22 J1
IO244NB7F22 J4
IO244PB7F22 J3
IO245NB7F22 H2
IO245PB7F22 H1
IO246NB7F22 H4
IO246PB7F22 H3
IO247NB7F23 L8
IO247PB7F23 L7
IO248NB7F23 J6
IO248PB7F23 K6
IO249NB7F23 H5
IO249PB7F23 J5
IO250NB7F23 G2
IO250PB7F23 G1
IO251NB7F23 K8
IO251PB7F23 K7
IO252NB7F23 G4
IO252PB7F23 G3
IO253NB7F23 F2
IO253PB7F23 F1
IO254NB7F23 G6
IO254PB7F23 H6
IO255NB7F23 F5
IO255PB7F23 G5
IO256NB7F23 F3
IO256PB7F23 F4
IO257NB7F23 H7
IO257PB7F23 J7
Dedi c ated I/ O
GND A1
GND A2
GND A25
GND A26
GND A27
GND A3
GND AC 24
729-Pin PBGA
AX1000 Function Pin Num ber
GND AE1
GND AE2
GND AE25
GND AE26
GND AE27
GND AE3
GND AE5
GND AF1
GND AF2
GND AF2 5
GND AF2 6
GND AF2 7
GND AF3
GND AG1
GND AG2
GND AG25
GND AG26
GND AG27
GND AG3
GND B1
GND B2
GND B25
GND B26
GND B27
GND B3
GND C1
GND C2
GND C25
GND C26
GND C27
GND C3
GND E27
GND L11
GND L12
GND L13
GND L14
GND L15
GND L16
729-Pin PBGA
AX1000 Function Pin Number
Axcelerator Family FPGAs
3-80 v2.1
GND L17
GND M11
GND M12
GND M13
GND M14
GND M15
GND M16
GND M17
GND N11
GND N12
GND N13
GND N14
GND N15
GND N16
GND N17
GND P11
GND P12
GND P13
GND P14
GND P15
GND P16
GND P17
GND R11
GND R12
GND R13
GND R14
GND R15
GND R16
GND R17
GND T11
GND T12
GND T13
GND T14
GND T15
GND T16
GND T17
GND U11
GND U12
729-Pi n PBGA
AX1000 Function Pin Number
GND U13
GND U14
GND U15
GND U16
GND U17
GND/LP J8
NC U3
PRA J14
PRB D14
PRC V14
PRD AB14
TCK E4
TDI D4
TDO J9
TMS H8
TRST E3
VCCA AA21
VCCA AD5
VCCA E1
VCCA G22
VCCA K10
VCCA K11
VCCA K17
VCCA K18
VCCA L10
VCCA L18
VCCA U10
VCCA U18
VCCA V10
VCCA V11
VCCA V17
VCCA V18
VCCPLA A13
VCCPLB J13
VCCPLC B15
VCCPLD C15
VCCPLE AG14
VCCPLF AF14
729-Pin PBGA
AX1000 Function Pin Num ber
VCCPLG AB13
VCCPLH AG13
VCCDA A11
VCCDA AB12
VCCDA AC12
VCCDA AC25
VCCDA AD16
VCCDA AD17
VCCDA E16
VCCDA E2
VCCDA E24
VCCDA F1 2
VCCDA F1 6
VCCDA F7
VCCDA K14
VCCDA P10
VCCDA P18
VCCDA W1 4
VCCDA W9
VCCIB0 A4
VCCIB0 B4
VCCIB0 C4
VCCIB0 J10
VCCIB0 J11
VCCIB0 J12
VCCIB0 K12
VCCIB0 K13
VCCIB1 A24
VCCIB1 B24
VCCIB1 C24
VCCIB1 J16
VCCIB1 J17
VCCIB1 J18
VCCIB1 K15
VCCIB1 K16
VCCIB2 D25
VCCIB2 D26
VCCIB2 D27
729-Pin PBGA
AX1000 Function Pin Number
Axcelerator Family FPGAs
v2.1 3-81
VCCIB2 K19
VCCIB2 L19
VCCIB2 M18
VCCIB2 M19
VCCIB2 N18
VCCIB3 AD25
VCCIB3 AD26
VCCIB3 AD27
VCCIB3 R18
VCCIB3 T18
VCCIB3 T19
VCCIB3 U19
VCCIB3 V19
VCCIB4 AE24
VCCIB4 AF24
VCCIB4 AG24
VCCIB4 V15
VCCIB4 V16
VCCIB4 W16
VCCIB4 W17
VCCIB4 W18
VCCIB5 AE4
VCCIB5 AF4
VCCIB5 AG4
VCCIB5 V12
VCCIB5 V13
VCCIB5 W10
VCCIB5 W11
VCCIB5 W12
VCCIB6 AD1
VCCIB6 AD2
VCCIB6 AD3
VCCIB6 R10
VCCIB6 T10
VCCIB6 T9
VCCIB6 U9
VCCIB6 V9
VCCIB7 D1
729-Pi n PBGA
AX1000 Function Pin Number
VCCIB7 D 2
VCCIB7 D 3
VCCIB7 K9
VCCIB7 L9
VCCIB7 M10
VCCIB7 M9
VCCIB7 N10
VCOMPLA B13
VCOMPLB A14
VCOMPLC A15
VCOMPLD J15
VCOMPLE AG15
VCOMPLF W15
VCOMPLG AC 14
VCOMPLH W13
VPUMP D24
729-Pin PBGA
AX1000 Function Pin Num ber
Axcelerator Family FPGAs
3-82 v2.1
352-Pin CQFP
Figure 3-10 352-Pin CQFP (Bottom View)
Ceramic
T ie Bar
Pin 1
352-Pin CQFP
1
2
3
4
264
263
262
261
41
42
43
44
45
46
47
48
49
85
86
87
88
180
179
178
177
223
222
221
220
219
218
217
216
215
352
351
350
349
339
338
337
336
335
334
333
332
331
268
267
266
265
89
90
91
92
127
128
129
130
131
132
133
134
135
173
174
175
176
Axcelerator Family FPGAs
v2.1 3-83
352- Pi n CQ F P
AX2000 Function Pin Number
Bank 0
IO01NB0F0 341
IO01PB0F0 342
IO02PB0F0 343
IO04NB0F0 337
IO04PB0F0 338
IO05NB0F0 335
IO05PB0F0 336
IO08NB0F0 331
IO08PB0F0 332
IO37NB0F3 325
IO37PB0F3 326
IO38NB0F3 323
IO38PB0F3 324
IO41NB0F3/HCLKAN 319
IO41PB0F3/HCLKAP 320
IO42NB0F3/HCLKBN 313
IO42PB0F3/HCLKBP 314
Bank 1
IO43NB1F4/HCLKCN 305
IO43PB1F4/HCLKCP 306
IO44NB1F4/HCLKDN 299
IO44PB1F4/HCLKDP 300
IO48NB1F4 295
IO48PB1F4 296
IO65NB1F6 283
IO65PB1F6 284
IO66NB1F6 289
IO66PB1F6 290
IO68NB1F6 287
IO68PB1F6 288
IO69NB1F6 275
IO69PB1F6 276
IO70NB1F6 281
IO70PB1F6 282
IO71NB1F6 277
IO71PB1F6 278
IO73NB1F6 269
IO73PB1F6 270
IO74NB1F6 271
IO74PB1F6 272
Bank 2
IO87NB2F8 261
IO87PB2F8 262
IO88NB2F8 255
IO88PB2F8 256
IO89NB2F8 259
IO89PB2F8 260
IO91NB2F8 253
IO91PB2F8 254
IO99NB2F9 249
IO99PB2F9 250
IO100NB2F9 247
IO100PB2F9 248
IO107NB2F10 243
IO107PB2F10 244
IO110NB2F10 241
IO110PB2F10 242
IO111NB2F10 237
IO111PB2F10 238
IO112NB2F10 235
IO112PB2F10 236
IO113NB2F10 231
IO113PB2F10 232
IO114NB2F10 229
IO114PB2F10 230
IO115NB2F10 225
IO115PB2F10 226
IO117NB2F10 223
IO117PB2F10 224
Bank 3
IO129NB3F12 219
IO129PB3F12 220
IO132NB3F12 217
IO132PB3F12 218
IO137NB3F12 213
IO137PB3F12 214
IO139NB3F13 211
IO139PB3F13 212
IO141NB3F13 205
IO141PB3F13 206
IO142NB3F13 207
352-Pin CQFP
AX2000 Function Pin Num ber
IO142PB3F13 208
IO145NB3F13 199
IO145PB3F13 200
IO146NB3F13 201
IO146PB3F13 202
IO147NB3F13 193
IO147PB3F13 194
IO148NB3F13 195
IO148PB3F13 196
IO149NB3F13 189
IO149PB3F13 190
IO161NB3F15 183
IO161PB3F15 184
IO163NB3F15 187
IO163PB3F15 188
IO165NB3F15 181
IO165PB3F15 182
IO167NB3F15 179
IO167PB3F15 180
Bank 4
IO181NB4F17 172
IO181PB4F17 173
IO182NB4F17 170
IO182PB4F17 171
IO183NB4F17 166
IO183PB4F17 167
IO184NB4F17 164
IO184PB4F17 165
IO185NB4F17 160
IO185PB4F17 161
IO190NB4F17 158
IO190PB4F17 159
IO191NB4F17 154
IO191PB4F17 155
IO192NB4F17 152
IO192PB4F17 153
IO207NB4F19 146
IO207PB4F19 147
IO212NB4F19/CLKEN 142
IO212PB4F19/CLKEP 143
IO213NB4F19/CLKFN 136
352-Pin CQ FP
AX2000 Function Pin Number
Axcelerator Family FPGAs
3-84 v2.1
IO213PB4F19/CLKFP 137
Bank 5
IO214NB5F20/CLKGN 128
IO214PB5F20/CLKGP 129
IO215NB5F20/CLKHN 122
IO215PB5F20/CLKHP 123
IO217NB5F20 118
IO217PB5F20 119
IO236NB5F22 110
IO236PB5F22 111
IO237NB5F22 112
IO237PB5F22 113
IO238NB5F22 104
IO238PB5F22 105
IO239NB5F22 106
IO239PB5F22 107
IO240NB5F22 100
IO240PB5F22 101
IO242NB5F22 94
IO242PB5F22 95
IO243NB5F22 98
IO243PB5F22 99
IO244NB5F22 92
IO244PB5F22 93
Bank 6
IO257PB6F24 86
IO258NB6F24 84
IO258PB6F24 85
IO261NB6F24 82
IO261PB6F24 83
IO262NB6F24 78
IO262PB6F24 79
IO265NB6F24 76
IO265PB6F24 77
IO279NB6F26 72
IO279PB6F26 73
IO280NB6F26 70
IO280PB6F26 71
IO281NB6F26 66
IO281PB6F26 67
IO282NB6F26 64
352- Pi n CQ F P
AX2000 Function Pin Number
IO282PB6F26 65
IO284NB6F26 60
IO284PB6F26 61
IO285NB6F26 58
IO285PB6F26 59
IO286NB6F26 54
IO286PB6F26 55
IO287NB6F26 52
IO287PB6F26 53
IO294NB6F27 48
IO294PB6F27 49
IO296NB6F27 46
IO296PB6F27 47
Bank 7
IO300NB7F28 42
IO300PB7F28 43
IO303NB7F28 40
IO303PB7F28 41
IO310NB7F29 34
IO310PB7F29 35
IO311NB7F29 36
IO311PB7F29 37
IO312NB7F29 28
IO312PB7F29 29
IO315NB7F29 30
IO315PB7F29 31
IO316NB7F29 22
IO316PB7F29 23
IO317NB7F29 24
IO317PB7F29 25
IO318NB7F29 18
IO318PB7F29 19
IO320NB7F29 16
IO320PB7F29 17
IO334NB7F31 10
IO334PB7F31 11
IO335NB7F31 12
IO335PB7F31 13
IO338NB7F31 6
IO338PB7F31 7
IO341NB7F31 4
352-Pin CQFP
AX2000 Function Pin Num ber
IO341PB7F31 5
Dedicated I/O
GND 1
GND 9
GND 15
GND 21
GND 27
GND 33
GND 39
GND 45
GND 51
GND 57
GND 63
GND 69
GND 75
GND 81
GND 88
GND 89
GND 97
GND 103
GND 109
GND 115
GND 121
GND 133
GND 145
GND 151
GND 157
GND 163
GND 169
GND 176
GND 177
GND 186
GND 192
GND 198
GND 204
GND 210
GND 216
GND 222
GND 228
GND 234
GND 240
352-Pin CQ FP
AX2000 Function Pin Number
Axcelerator Family FPGAs
v2.1 3-85
GND 246
GND 252
GND 258
GND 264
GND 265
GND 274
GND 280
GND 286
GND 292
GND 298
GND 310
GND 322
GND 330
GND 334
GND 340
GND 345
GND 352
PRA 312
PRB 311
PRC 135
PRD 134
TCK 349
TDI 348
TDO 347
TMS 350
TRST 351
VCCA 3
VCCA 14
VCCA 32
VCCA 56
VCCA 74
VCCA 87
VCCA 102
VCCA 114
VCCA 150
VCCA 162
VCCA 175
VCCA 191
VCCA 209
VCCA 233
VCCA 251
352- Pi n CQ F P
AX2000 Function Pin Number
VCCA 263
VCCA 279
VCCA 291
VCCA 329
VCCA 339
VCCDA 2
VCCDA 44
VCCDA 90
VCCDA 91
VCCDA 116
VCCDA 117
VCCDA 130
VCCDA 131
VCCDA 132
VCCDA 148
VCCDA 149
VCCDA 174
VCCDA 178
VCCDA 221
VCCDA 266
VCCDA 268
VCCDA 293
VCCDA 294
VCCDA 307
VCCDA 308
VCCDA 309
VCCDA 327
VCCDA 328
VCCDA 346
VCCIB0 321
VCCIB0 333
VCCIB0 344
VCCIB1 273
VCCIB1 285
VCCIB1 297
VCCIB2 227
VCCIB2 239
VCCIB2 245
VCCIB2 257
VCCIB3 185
VCCIB3 197
352-Pin CQFP
AX2000 Function Pin Num ber
VCCIB3 203
VCCIB3 215
VCCIB4 144
VCCIB4 156
VCCIB4 168
VCCIB5 96
VCCIB5 108
VCCIB5 120
VCCIB6 50
VCCIB6 62
VCCIB6 68
VCCIB6 80
VCCIB7 8
VCCIB7 20
VCCIB7 26
VCCIB7 38
VCCPLA 317
VCCPLB 315
VCCPLC 303
VCCPLD 301
VCCPLE 140
VCCPLF 138
VCCPLG 126
VCCPLH 124
VCOMPLA 318
VCOMPLB 316
VCOMPLC 304
VCOMPLD 302
VCOMPLE 141
VCOMPLF 139
VCOMPLG 127
VCOMPLH 125
VPUMP 267
352-Pin CQ FP
AX2000 Function Pin Number
Axcelerator Family FPGAs
3-86 v2.1
624-Pin CCGA
Figure 3-11 624-Pin CCGA (Bottom View)
1
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
2345678910111214 131516171819202122232425
Axcelerator Family FPGAs
v2.1 3-87
624- Pi n CCG A
AX2000 Function Pin Number
Bank 0
IO00NB0F0 D7*
IO00PB0F0 E7*
IO01NB0F0 G7
IO01PB0F0 G6
IO02NB0F0 B5
IO02PB0F0 B4
IO04PB0F0 C7
IO05NB0F0 F8
IO05PB0F0 F7
IO06NB0F0 H8
IO06PB0F0 H7
IO11NB0F0 J8
IO11PB0F0 J7
IO12PB0F1 B6
IO13NB0F1 E9*
IO13PB0F1 D8*
IO15NB0F1 C9
IO15PB0F1 C8
IO16NB0F1 A5
IO16PB0F1 A4
IO17NB0F1 D10
IO17PB0F1 D9
IO18NB0F1 A7
IO18PB0F1 A6
IO19NB0F1 G9
IO19PB0F1 G8
IO20PB0F1 B7
IO23NB0F2 F10
IO23PB0F2 F9
IO26NB0F2 C11*
IO26PB0F2 B8*
IO27NB0F2 H10
IO27PB0F2 H9
IO28NB0F2 A9
IO28PB0F2 B9
* Not routed on the same package layer
and to adjacen t LGA pads as its diffe rentia l
pair complement. Recommended to be
used as a single-ended I/O.
IO30NB0F2 B11
IO30PB0F2 B10
IO31NB0F2 E11
IO31PB0F2 F11
IO33NB0F2 D12
IO33PB0F2 D11
IO34NB0F3 A11
IO34PB0F3 A10
IO37NB0F3 J13
IO37PB0F3 K13
IO38NB0F3 H11
IO38PB0F3 G11
IO40PB0F3 B12
IO41NB0F3/HCLKAN G13
IO41PB0F3/HCLKAP G12
IO42NB0F3/HCLKBN C13
IO42PB0F3/HCLKBP C12
Bank 1
IO43NB1F4/HCLKCN G15
IO43PB1F4/HCLKCP G14
IO44NB1F4/HCLKDN B14
IO44PB1F4/HCLKDP B13
IO45NB1F4 H13
IO47NB1F4 D14
IO47PB1F4 C14
IO48NB1F4 A16
IO48PB1F4 A15
IO49PB1F4 H15
IO51NB1F4 E15
IO51PB1F4 F15
IO52NB1F4 A17
IO55NB1F5 G16
IO55PB1F5 H16
IO56NB1F5 A20
IO56PB1F5 A19
IO57NB1F5 D16
624-Pi n CCGA
AX2000 Function Pin Number
* Not routed on the same package layer
and to ad ja cent L GA pa ds as it s diffe ren tial
pair complement. Recommended to be
used as a single-ended I/O.
IO57PB1F5 D15
IO58NB1F5 A22
IO58PB1F5 A21
IO59NB1F5 F16
IO61NB1F5 G17
IO61PB1F5 H17
IO62NB1F5 B17
IO62PB1F5 B16
IO63NB1F5 H18
IO65NB1F6 C17
IO66PB1F6 B18
IO67NB1F6 J18
IO67PB1F6 J19
IO68NB1F6 B20
IO68PB1F6 B19
IO69NB1F6 E17
IO69PB1F6 F17
IO70NB1F6 B22
IO70PB1F6 B21
IO71PB1F6 G18
IO73NB1F6 G19
IO74NB1F6 C19
IO74PB1F6 C18
IO75NB1F6 D18
IO75PB1F6 D17
IO76NB1F7 C21
IO76PB1F7 C20
IO79NB1F7 H20
IO79PB1F7 H19
IO80NB1F7 E18
IO80PB1F7 F18
IO81NB1F7 G21
IO81PB1F7 G20
IO82NB1F7 F20
IO82PB1F7 F19
IO85NB1F7 D20*
624-Pin CCGA
AX2000 Function Pin Number
* Not routed on the same package layer
and to a djac ent LG A pads as its differe nti al
pair complement. Recommended to be
used as a single-ended I/O.
Axcelerator Family FPGAs
3-88 v2.1
IO85PB1F7 D19*
Bank 2
IO86NB2F8 F23
IO86PB2F8 E23
IO87NB2F8 H23
IO87PB2F8 G23
IO88NB2F8 E24
IO88PB2F8 D24
IO89NB2F8 M17*
IO89PB2F8 G22*
IO91NB2F8 J22
IO91PB2F8 H22
IO92NB2F8 L18
IO92PB2F8 K18
IO96NB2F9 G24
IO96PB2F9 F24
IO97NB2F9 J21
IO97PB2F9 J20
IO98PB2F9 J23
IO99NB2F9 L19
IO99PB2F9 K19
IO100NB2F9 E25
IO100PB2F9 D25
IO103PB2F9 K20
IO105NB2F9 M19
IO105PB2F9 M18
IO106NB2F9 J24
IO106PB2F9 H24
IO107NB2F10 L23*
IO107PB2F10 N16*
IO109NB2F10 L22
IO109PB2F10 K22
IO110NB2F10 G25
IO110PB2F10 F25
IO111NB2F10 L21
IO111PB2F10 L20
624- Pi n CCG A
AX2000 Function Pin Number
* Not routed on the same package layer
and to adjacen t LGA pads as its diffe rentia l
pair complement. Recommended to be
used as a single-ended I/O.
IO112NB2F10 L24
IO112PB2F10 K24
IO113NB2F10 N17
IO115NB2F10 M20
IO115PB2F10 M21
IO117NB2F10 N19
IO117PB2F10 N18
IO118NB2F11 J25
IO121NB2F11 N24
IO121PB2F11 M24
IO122NB2F11 L25
IO122PB2F11 K25
IO123NB2F11 N22
IO123PB2F11 M22
IO124NB2F11 N23
IO124PB2F11 M23
IO127NB2F11 P18
IO127PB2F11 P17
IO128NB2F11 N25
IO128PB2F11 M25
Bank 3
IO129NB3F12 N20
IO130PB3F12 P24
IO131NB3F12 P21
IO133NB3F12 P20
IO133PB3F12 P19
IO138NB3F12 R23
IO138PB3F12 P23
IO139NB3F13 R22
IO139PB3F13 P22
IO141NB3F13 R19
IO142NB3F13 R25
IO142PB3F13 P25
IO143PB3F13 R21
IO145NB3F13 T18
IO145PB3F13 R18
624-Pi n CCGA
AX2000 Function Pin Number
* Not routed on the same package layer
and to ad ja cent L GA pa ds as it s diffe ren tial
pair complement. Recommended to be
used as a single-ended I/O.
IO146NB3F13 T24
IO146PB3F13 R24
IO147NB3F13 T20
IO147PB3F13 R20
IO148NB3F13 U25
IO148PB3F13 T25
IO149NB3F13 T22
IO153NB3F14 U19
IO153PB3F14 T19
IO154NB3F14 Y25
IO154PB3F14 W25
IO157NB3F14 V20
IO157PB3F14 U20
IO158NB3F14 AB25
IO158PB3F14 AA25
IO160PB3F14 W24
IO161NB3F15 U24
IO161PB3F15 U23
IO162NB3F15 AA24
IO162PB3F15 Y24
IO163NB3F15 V22
IO163PB3F15 U22
IO164NB3F15 V23
IO164PB3F15 V24
IO166NB3F15 AB24
IO167NB3F15 V21
IO167PB3F15 U21
IO168NB3F15 Y23
IO168PB3F15 AA23
IO169NB3F15 W22*
IO169PB3F15 W23*
IO170NB3F15 Y22
IO170PB3F15 Y21
Bank 4
IO171NB4F16 AC20*
IO171PB4F16 AC21*
624-Pin CCGA
AX2000 Function Pin Number
* Not routed on the same package layer
and to a djac ent LG A pads as its differe nti al
pair complement. Recommended to be
used as a single-ended I/O.
Axcelerator Family FPGAs
v2.1 3-89
IO172NB4F16 W20
IO172PB4F16 Y20
IO173NB4F16 AD21
IO173PB4F16 AD22
IO174NB4F16 AA19
IO176NB4F16 Y18
IO176PB4F16 Y19
IO177NB4F16 AB19
IO177PB4F16 AB18
IO182NB4F17 V19
IO182PB4F17 W19
IO183PB4F17 AC19
IO184NB4F17 AB17
IO184PB4F17 AC17
IO185NB4F17 AD19
IO185PB4F17 AD20
IO187PB4F17 AC18
IO188NB4F17 Y17
IO188PB4F17 AA17
IO189PB4F17 AE22
IO191NB4F17 W18
IO191PB4F17 V18
IO192PB4F17 U18
IO195PB4F18 AE21
IO196NB4F18 AB16
IO197NB4F18 AD17
IO197PB4F18 AD18
IO198NB4F18 V17
IO198PB4F18 W17
IO199NB4F18 AE19
IO199PB4F18 AE20
IO200NB4F18 AC15
IO201NB4F18 AD15
IO201PB4F18 AD16
IO202NB4F18 Y15
IO202PB4F18 Y16
624- Pi n CCG A
AX2000 Function Pin Number
* Not routed on the same package layer
and to adjacen t LGA pads as its diffe rentia l
pair complement. Recommended to be
used as a single-ended I/O.
IO206NB4F19 AB14
IO206PB4F19 AB15
IO207NB4F19 AE15
IO207PB4F19 AE16
IO208PB4F19 W16
IO209NB4F19 AE14
IO210NB4F19 V15
IO210PB4F19 V16
IO211NB4F19 AD14
IO211PB4F19 AC14
IO212NB4F19/CLKEN W14
IO212PB4F19/CLKEP W15
IO213NB4F19/CLKFN AC13
IO213PB4F19/CLKFP AD13
Bank 5
IO214NB5F20/CLKGN W13
IO214PB5F20/CLKGP Y13
IO215NB5F20/CLKHN AC12
IO215PB5F20/CLKHP AD12
IO216NB5F20 U13
IO216PB5F20 V13
IO217NB5F20 AE10
IO217PB5F20 AE11
IO218NB5F20 W11
IO218PB5F20 W12
IO222NB5F20 AA11
IO222PB5F20 Y11
IO223PB5F21 AE9
IO225NB5F21 AE6
IO225PB5F21 AE7
IO226NB5F21 Y10
IO226PB5F21 W10
IO227PB5F21 T13
IO228NB5F21 AB10
IO228PB5F21 AB11
IO229NB5F21 AD9
624-Pi n CCGA
AX2000 Function Pin Number
* Not routed on the same package layer
and to ad ja cent L GA pa ds as it s diffe ren tial
pair complement. Recommended to be
used as a single-ended I/O.
IO229PB5F21 AD10
IO230NB5F21 V11
IO233NB5F21 AD7
IO233PB5F21 AD8
IO234NB5F21 V9
IO234PB5F21 V10
IO236NB5F22 AC9
IO238NB5F22 W8
IO238PB5F22 W9
IO239NB5F22 AE4
IO239PB5F22 AE5
IO240NB5F22 AB9
IO242NB5F22 AA9
IO242PB5F22 Y9
IO243NB5F22 AD5
IO243PB5F22 AD6
IO244NB5F22 U8
IO246NB5F23 AB8
IO246PB5F23 AC8
IO247NB5F23 AB7
IO247PB5F23 AC7
IO250NB5F23 AA8
IO250PB5F23 Y8
IO251NB5F23 V8
IO251PB5F23 V7
IO252NB5F23 Y7
IO252PB5F23 W7
IO253NB5F23 AC5
IO253PB5F23 AC6
IO254NB5F23 Y6
IO254PB5F23 W6
IO256NB5F23 AB6*
IO256PB5F23 AA6*
Bank 6
IO257NB6F24 Y3
IO257PB6F24 AA3
624-Pin CCGA
AX2000 Function Pin Number
* Not routed on the same package layer
and to a djac ent LG A pads as its differe nti al
pair complement. Recommended to be
used as a single-ended I/O.
Axcelerator Family FPGAs
3-90 v2.1
IO258NB6F24 V3
IO258PB6F24 W3
IO259NB6F24 AA2
IO259PB6F24 AB2
IO260NB6F24 V6*
IO260PB6F24 W4*
IO262NB6F24 U4
IO262PB6F24 V4
IO263NB6F24 Y5
IO263PB6F24 W5
IO268NB6F25 U6
IO268PB6F25 U5
IO269PB6F25 U3
IO272NB6F25 T2
IO272PB6F25 U2
IO273NB6F25 W2
IO273PB6F25 Y2
IO274NB6F25 R6
IO274PB6F25 T6
IO275NB6F25 T7
IO275PB6F25 U7
IO277NB6F25 V2
IO278NB6F26 R4
IO278PB6F26 T4
IO279PB6F26 R3
IO280NB6F26 R5
IO281NB6F26 AA1
IO281PB6F26 AB1
IO284NB6F26 R8
IO284PB6F26 T8
IO285NB6F26 W1
IO285PB6F26 Y1
IO286NB6F26 P2
IO286PB6F26 R2
IO287NB6F26 T1
IO287PB6F26 U1
624- Pi n CCG A
AX2000 Function Pin Number
* Not routed on the same package layer
and to adjacen t LGA pads as its diffe rentia l
pair complement. Recommended to be
used as a single-ended I/O.
IO288NB6F26 P5
IO290NB6F27 P6
IO291NB6F27 P1
IO291PB6F27 R1
IO292NB6F27 P7
IO292PB6F27 R7
IO293NB6F27 M1
IO293PB6F27 N1
IO294NB6F27 P8
IO296NB6F27 N3
IO296PB6F27 P3
IO298NB6F27 N4
IO298PB6F27 P4
IO299NB6F27 M2
IO299PB6F27 N2
Bank 7
IO300NB7F28 P9*
IO300PB7F28 N6*
IO302NB7F28 M6
IO304NB7F28 N8
IO304PB7F28 N7
IO308NB7F28 M4
IO309NB7F28 L3
IO309PB7F28 M3
IO310NB7F29 N10
IO310PB7F29 N9
IO311NB7F29 K1
IO311PB7F29 L1
IO313NB7F29 M5
IO316NB7F29 L6
IO316PB7F29 L5
IO317NB7F29 K2
IO317PB7F29 L2
IO318NB7F29 K4
IO318PB7F29 L4
IO320NB7F29 J3
624-Pi n CCGA
AX2000 Function Pin Number
* Not routed on the same package layer
and to ad ja cent L GA pa ds as it s diffe ren tial
pair complement. Recommended to be
used as a single-ended I/O.
IO321NB7F30 J2
IO321PB7F30 J1
IO323NB7F30 L7
IO323PB7F30 M7
IO324NB7F30 M9
IO324PB7F30 M8
IO327NB7F30 F1
IO327PB7F30 G1
IO328NB7F30 K7
IO328PB7F30 K6
IO329NB7F30 D1
IO329PB7F30 E1
IO331PB7F30 G2
IO332NB7F31 H3
IO332PB7F31 H2
IO333NB7F31 E2
IO333PB7F31 F2
IO334NB7F31 H4
IO334PB7F31 J4
IO335NB7F31 H5
IO335PB7F31 H6
IO337NB7F31 D2
IO338NB7F31 J6
IO338PB7F31 J5
IO339NB7F31 F3
IO339PB7F31 E3
IO340NB7F31 G4*
IO340PB7F31 G3*
IO341NB7F31 K8
IO341PB7F31 L8
Dedicated I/O
GND K5
GND A18
GND A2
GND A24
GND A25
624-Pin CCGA
AX2000 Function Pin Number
* Not routed on the same package layer
and to a djac ent LG A pads as its differe nti al
pair complement. Recommended to be
used as a single-ended I/O.
Axcelerator Family FPGAs
v2.1 3-91
GND A8
GND AA10
GND AA16
GND AA18
GND AA21
GND AA5
GND AB22
GND AB4
GND AC10
GND AC16
GND AC23
GND AC3
GND AD1
GND AD2
GND AD24
GND AD25
GND AE1
GND AE18
GND AE2
GND AE24
GND AE25
GND AE8
GND B1
GND B2
GND B24
GND B25
GND C10
GND C16
GND C23
GND C3
GND D22
GND D4
GND E10
GND E16
GND E21
GND E5
624- Pi n CCG A
AX2000 Function Pin Number
* Not routed on the same package layer
and to adjacen t LGA pads as its diffe rentia l
pair complement. Recommended to be
used as a single-ended I/O.
GND E8
GND H1
GND H21
GND H25
GND K21
GND K23
GND K3
GND L11
GND L12
GND L13
GND L14
GND L15
GND M11
GND M12
GND M13
GND M14
GND M15
GND N11
GND N12
GND N13
GND N14
GND N15
GND P11
GND P12
GND P13
GND P14
GND P15
GND R11
GND R12
GND R13
GND R14
GND R15
GND T21
GND T23
GND T3
GND T5
624-Pi n CCGA
AX2000 Function Pin Number
* Not routed on the same package layer
and to ad ja cent L GA pa ds as it s diffe ren tial
pair complement. Recommended to be
used as a single-ended I/O.
GND V1
GND V25
GND V5
PRA F13
PRB A13
PRC AB12
PRD AE13
TCK F5
TDI C5
TDO F6
TMS D6
TRST E6
VCCA AB20
VCCA F22
VCCA F4
VCCA J17
VCCA J9
VCCA K10
VCCA K11
VCCA K15
VCCA K16
VCCA L10
VCCA L16
VCCA R10
VCCA R16
VCCA T10
VCCA T11
VCCA T15
VCCA T16
VCCA U17
VCCA U9
VCCA Y4
VCCDA A12
VCCDA A14
VCCDA AA13
VCCDA AA15
624-Pin CCGA
AX2000 Function Pin Number
* Not routed on the same package layer
and to a djac ent LG A pads as its differe nti al
pair complement. Recommended to be
used as a single-ended I/O.
Axcelerator Family FPGAs
3-92 v2.1
VCCDA AA20
VCCDA AA7
VCCDA AB13
VCCDA AC11
VCCDA AD11
VCCDA AD4
VCCDA AE12
VCCDA AE17
VCCDA B15
VCCDA C15
VCCDA C6
VCCDA D13
VCCDA E13
VCCDA E19
VCCDA F21
VCCDA G10
VCCDA G5
VCCDA N21
VCCDA N5
VCCDA W21
VCCIB0 A3
VCCIB0 B3
VCCIB0 C4
VCCIB0 D5
VCCIB0 J10
VCCIB0 J11
VCCIB0 K12
VCCIB1 A23
VCCIB1 B23
VCCIB1 C22
VCCIB1 D21
VCCIB1 J15
VCCIB1 J16
VCCIB1 K14
VCCIB2 C24
VCCIB2 C25
624- Pi n CCG A
AX2000 Function Pin Number
* Not routed on the same package layer
and to adjacen t LGA pads as its diffe rentia l
pair complement. Recommended to be
used as a single-ended I/O.
VCCIB2 D23
VCCIB2 E22
VCCIB2 K17
VCCIB2 L17
VCCIB2 M16
VCCIB3 AA22
VCCIB3 AB23
VCCIB3 AC24
VCCIB3 AC25
VCCIB3 P16
VCCIB3 R17
VCCIB3 T17
VCCIB4 AB21
VCCIB4 AC22
VCCIB4 AD23
VCCIB4 AE23
VCCIB4 T14
VCCIB4 U15
VCCIB4 U16
VCCIB5 AB5
VCCIB5 AC4
VCCIB5 AD3
VCCIB5 AE3
VCCIB5 T12
VCCIB5 U10
VCCIB5 U11
VCCIB6 AA4
VCCIB6 AB3
VCCIB6 AC1
VCCIB6 AC2
VCCIB6 P10
VCCIB6 R9
VCCIB6 T9
VCCIB7 C1
VCCIB7 C2
VCCIB7 D3
624-Pi n CCGA
AX2000 Function Pin Number
* Not routed on the same package layer
and to ad ja cent L GA pa ds as it s diffe ren tial
pair complement. Recommended to be
used as a single-ended I/O.
VCCIB7 E4
VCCIB7 K9
VCCIB7 L9
VCCIB7 M10
VCCPLA E12
VCCPLB J12
VCCPLC E14
VCCPLD H14
VCCPLE Y14
VCCPLF U14
VCCPLG Y12
VCCPLH U12
VCOMPLA F12
VCOMPLB H12
VCOMPLC F14
VCOMPLD J14
VCOMPLE AA14
VCOMPLF V14
VCOMPLG AA12
VCOMPLH V12
VPUMP E20
624-Pin CCGA
AX2000 Function Pin Number
* Not routed on the same package layer
and to a djac ent LG A pads as its differe nti al
pair complement. Recommended to be
used as a single-ended I/O.
Axcelerator Family FPGAs
v2.1 4-1
List of Changes
The follo wing table lists critical changes that we re made in the current ve rs io n of th e document.
Previou s version Chang es in current version (v2.1 ) Page
v2.0 Table 2-78 PLL Interface Signals was updated. 62
The "Low Power Mode" was updated. 90
Advanced v1.6 Table 1 Axcelerator Family Product Profile has been updated. i
The "Ordering Information" section has been updated. ii
The "Device Resources" section has been updated. ii
The "Temperature Grade Offerings" section is new. iii
The "Speed Grade and Temperature Grade Matrix" section has been updated. iii
The "Supply Voltages" sec tion has been updated. 2-1
The "I/O Features Comparison" section has been updated. 2-1
Table 2-3 Absolute Maximum Ratings has been up dated . 2-2
Table 2-4 Recommended Operating Conditions has been updated. 2-2
Table 2-5 Standby Power has been updated. 2-3
Table 2-6 Default Cload/VCCI has been updated. 2-3
The "Different Components Contributing to the Total Power Consumption in Axcelerator
Devices" section has been updated. 2-4
The "Power Estimation Example" section has been updated. 2-5
The "Thermal Characteristics" section has been updated. 2-6
The "Package Thermal Characteristics" section has been updated. 2-6
The "" section has been updated. 2-6
The "Pin Descriptions" section has been updated. 2-8
Timing numbers have been updated from "3.3V LVTTL" on page 2-21 to "Timing
Charact erist ic s" on page 2-46. Many AC Loads were updated as well. 2-212-46
Timing characteristics for the "Hardwired Clocks" section were updated. 2-53
Timing characteristics for the "Routed Clocks" section were updated. 2-55
The RAM block timing tables from pages 2-72 to 2-75 were updated. 2-722-75
The FIFO block timing tables from pages 2-84 to 2-88 were updated. 2-842-88
The "Low Power Mode" section was updated. 2-90
The "Interface" section was updated. 2-90
The "Data Registers (DRs)" section was updated. 2-91
The "Security" section was updated. 2-91
The "Silicon Explorer II Probe Interface" section was updated. 2-92
The "Programming" section was updated. 2-92
In the 208-pin PQFP table on page 3-7 (AX500), pins 2, 52, and 156 changed from VCCDA to
VCCA.
For pins 170 and 171, the I/O names refer to pair 23 instead of 24.
3-7
The following changes were made in the 676-pin FBGA table on page 3-34 (AX500):
AE2, AE25 Change from NC to GND.
AF2, AF25 Changed from GND to NC
AB4, AF24, C1, C26 Changed from VCCDA to VCCA
AD15 Change from VCCDA to VCOMPLE
AD17 Chan ged from VCOMPLE to VCCDA
3-34
In the 896-pin FBGA table on page 3-55 (AX2000), the AK28 change from VCCIB5 to VCCIB4. 3-55
The 352-pin CQFP on page 3-82 is new. 3-82
The 624-pin CCGA on page 3-86 is new. 3-86
Axcelerator Family FPGAs
4-2 v2.1
Advanced v1.5 All I/O FIFO capability was removed. n/a
Table 1 Axcelerator Family Product Profile was updated. i
Figure 1-9 Design Flow and Figure 1-9 Probe Setup were updated. 1-9
Figure 2-4 I/O Cluster Interface was updated. 2-12
The "Using an I/O Register" section was updated. 2-12
The AX250 and AX1000 descriptions were added to the "484-Pin FB GA"section. 3-19
Advanced v1.4 Table 2-5 Standby Power was updated. 2-3
The figure in "I/O Specifications" on page 2-8 was updated. 2-8
Figure 2-48 PLL Block Diagram was updated. 2-61
The figure for "User Flow" was updated. 2-66
Advanced v1.3 In the "208-Pin PQFP" table, pin 196 was missing, but it has been added in this version with a
func tion of GND . 3-4
The following pins in the "484-Pi n FBGA" table for AX500 were changed:
Pin G7 is GND/LP
Pins AB8, C10, C11, C14, AB16 are NC.
3-19
The "676-Pin FBGA" table was updated. 3-33
Advanced v1.2 The "Device Resources" table was updated for the CS180. ii
The "Programmable Interconnect Element" and Figure 1-2 Axcelerator Family Interc onnect
Elements were new. 1-1 and
1-2
The "180-Pin CSP" tab le is new. 3-1
The " 208- Pin PQF P" t able fo r t he AX50 0 were updat ed. Th e fol low ing pi n s wer e not def ine d in
the previous version:
GND 21
IO106PB5F10/CLKHP 71
GND 136
3-4
Advanced v1.1 Table 1 Axcelerator Family Product Profile was updated. i
"Ord eri ng Infor matio n", "Device Resources" and the Product Plan table were updated. ii
Figure 1-3 AX C-Cell and R-Cell was updat ed. 1-3
"Design Environment" was updated. 1-7
Figure 1-8 AX Routing Structures was new. 1-6
Table 2-5 Standby Power was updated. 2-3
"Package Thermal Ch aracteristics" was updated. 2-6
Figure 2-3 VCCPLX and VCOMPLX Power Supply Connect was updated. 2-8
Table 2-10 I/O Standards Supported by the Axcelerator Family was updated. 2-10
Figure 2-11 Timing Model was updated. 2-19
The timing characteristics tables from pages 2-19 to 2-46 were updated. 2-192-46
The "Global Resources" section was updated. 2-53
The timing characteristics tables from pages 2-83 to 2-88 were updated. 2-832-88
The "208-Pin PQFP" tables are new. 3-5
The "256-Pin FBGA" tables are new. 3-9
The "324-Pin FBGA" tables are new. 3-15
Previou s version Chang es in current version (v2.1 ) Page
Axcelerator Family FPGAs
v2.1 4-3
Datasheet Categories
In order to provide the latest information to designers, some datasheets are published before data has been fully
characterized. Datasheets are designated as “Product Brief,” “Advanced,” “Production,” and “Web-only.” The
definiti on of th es e cat egories are as follow s:
Product Brief
The product brief is a summarized version of a advanced datasheet (advanced or production) containing general
produc t inform ation. This brief give s an ov er view o f specific device and fami ly in for m ation.
Advanced
This datasheet version contains initial estimated information based on simulation, other products, devices, or speed
grades. This infor m ation c an be us ed as estima tes , but not for produ ct ion .
Datasheet Supplement
The da tashee t supple me n t g ives s p ec ific device i n fo rmatio n fo r a deriv ative family that d iffers fro m th e g en e ra l family
datasheet . The supple ment is to be used i n conjunction w ith the datas heet to obtain m ore detailed inf ormation an d
for specifications that do not differ between the two families.
Unmarked (production)
This datasheet version contains information that is considered to be final.
5172160-9/2.04
http://www.actel.com
Actel and the Actel logo are registe red trademarks of Actel Corporat ion.
All other trademarks are the proper ty of their owners.
Acte l Corporation
2061 Stierlin Court
Mountain View, CA
94043-4655 USA
Phone 650.318.4200
Fax 650.318.4600
Acte l Europe L td.
Dunlop House, Riverside Way
Camberley, Surrey GU15 3YL
United Kingdom
Phone +44 (0)1276.401450
Fax +44 (0)1276.401490
Actel Japan
EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Phone +81.03.3445.7671
Fax +81.03.3445.7668
Actel Hong Kong
39th Floor, One Pacific Place
88 Queensway, Admiralty
Hong Kong
Phone +852.227.35712
Fax +852.227.35999