A KYOCERA GROUP COMPANY AVX Surface Mount Ceramic Capacitor Products Ceramic Chip Capacitors Table of Contents How to Order - AVX Part Number Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3 C0G (NP0) Dielectric General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Specifications and Test Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Capacitance Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7 U Dielectric General Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Capacitance Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-10 Designer Kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 X7R Dielectric General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Specifications and Test Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-15 X7S Dielectric General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Specifications and Test Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 X5R Dielectric General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Specifications and Test Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-22 Y5V Dielectric General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Specifications and Test Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 MLCC Tin/Lead Termination General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27-31 Automotive MLCC General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32-33 Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34-35 MLCC with Soft Termination General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Specifications and Test Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37-38 Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Capacitor Array General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Multi-Value Capacitor Array (IPC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Part and Pad Layout Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 Low Inductance Capacitors Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44-45 LICC (Low Inductance Chip Capacitors) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46-47 IDC (InterDigitated Capacitors). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48-49 LICA (Low Inductance Decoupling Capacitor Arrays) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50-51 High Voltage Chips for 600V to 5000V Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52-53 MIL-PRF-55681/Chips Part Number Example (CDR01 thru CDR06) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Military Part Number Identification (CDR01 thru CDR06) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Part Number Example (CDR31 thru CDR35) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Military Part Number Identification (CDR31) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Military Part Number Identification (CDR32) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Military Part Number Identification (CDR33/34/35) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Packaging of Chip Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Embossed Carrier Configuration - 8 & 12mm Tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Paper Carrier Configuration - 8 & 12mm Tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Bulk Case Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Basic Capacitor Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65-69 Surface Mounting Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70-73 1 How to Order Part Number Explanation Commercial Surface Mount Chips EXAMPLE: 08055A101JAT2A 0805 5 A 101 Size (L" x W") 0201 0402 0603 0805 1206 1210 1812 1825 2220 2225 Voltage Dielectric Capacitance 4 = 4V 6 = 6.3V Z = 10V Y = 16V 3 = 25V D = 35V 5 = 50V 1 = 100V 2 = 200V 7 = 500V A = NP0(C0G) C = X7R D = X5R G = Y5V U = U Series W = X6S Z = X7S 2 Sig. Fig + No. of Zeros Examples: 100 = 10 pF 101 = 100 pF 102 = 1000 pF 223 = 22000 pF 224 = 220000 pF 105 = 1F 106 = 10F 107 = 100F For values below 10 pF, use "R" in place of Decimal point, e.g., 9.1 pF = 9R1. Contact Factory for Special Voltages F * E V = 63V = 75V = 150V = 250V 9 = 300V X = 350V 8 = 400V J* A T 2 A Tolerance Failure Terminations Packaging Special Code B = .10 pF T = Plated Ni Rate C = .25 pF and Sn A = N/A D = .50 pF 4 = Automotive 7 = Gold Plated F = 1% ( 10 pF) J = Tin/Lead G = 2% ( 10 pF) J = 5% Contact K = 10% Factory For M = 20% 1 = Pd/Ag Term Z = +80%, -20% Z = Soft P = +100%, -0% Available 2 = 7" Reel 4 = 13" Reel 7 = Bulk Cass. 9 = Bulk A = Std. Contact Factory For Multiples Termination * B, C & D tolerance for 10 pF values. Standard Tape and Reel material (Paper/Embossed) depends upon chip size and thickness. See individual part tables for tape material type for each capacitance value. High Voltage Surface Mount Chips EXAMPLE: 1808AA271KA11A 2 1808 A AVX Style 1206 1210 1808 1812 1825 2220 2225 3640 Voltage C = 600V A = 1000V S = 1500V G = 2000V W = 2500V H = 3000V J = 4000V K = 5000V A 271 K A Temperature Capacitance Capacitance Failure Coefficient Code Tolerance Rate (2 significant digits C0G: J = 5% A = C0G A=Not + no. of zeros) K = 10% Applicable C = X7R Examples: M = 20% 10 pF = 100 X7R: K = 10% 100 pF = 101 M = 20% 1,000 pF = 102 Z = +80%, 22,000 pF = 223 -20% 220,000 pF = 224 1 F = 105 1 1A Termination 1= Pd/Ag T = Plated Ni and Sn Packaging/Marking 1A = 7" Reel Unmarked 3A = 13" Reel Unmarked 9A = Bulk/Unmarked How to Order Part Number Explanation Capacitor Array EXAMPLE: W2A43C103MAT2A W 2 A 4 3 Style Case Size 1 = 0405 2 = 0508 3 = 0612 Array Number of Caps Voltage 6 = 6.3V Z = 10V Y = 16V 3 = 25V 5 = 50V 1 = 100V C 103 Dielectric Capacitance Code (In pF) A = NP0 2 Sig Digits + C = X7R Number of D = X5R Zeros M A T 2A Capacitance Tolerance J = 5% K = 10% M = 20% Failure Rate Termination Code T = Plated Ni and Sn Packaging & Quantity Code 2A = 7" Reel (4000) 4A = 13" Reel (10000) 2F = 7" Reel (1000) Low Inductance Capacitors (LICC) EXAMPLE: 0612ZD105MAT2A 0612 Z D 105 M A Size 0306 0508 0612 Voltage 6 = 6.3V Z = 10V Y = 16V 3 = 25V 5 = 50V Dielectric C = X7R D = X5R Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros Capacitance Tolerance K = 10% M = 20% T Failure Rate Terminations A = N/A T = Plated Ni and Sn J = Tin/Lead 2 A Packaging Available 2 = 7" Reel 4 = 13" Reel Thickness See Page 51 for Codes Interdigitated Capacitors (IDC) EXAMPLE: W3L16D225MAT3A W Style 3 L 1 Case Low Number Size Inductance of Terminals 2 = 0508 1 = 8 Terminals 3 = 0612 6 D 225 M A T 3 Voltage Dielectric Capacitance Capacitance Failure Termination Packaging Tolerance Rate T = Plated Ni 4 = 4V C = X7R Code (In pF) Available M = 20 A = N/A 6 = 6.3V D = X5R 2 Sig. Digits + and Sn 1=7" Reel Number of Z = 10V 3=13" Reel Zeros Y = 16V A Thickness Max. Thickness mm (in.) A=0.95 (0.037) S=0.55 (0.022) Decoupling Capacitor Arrays (LICA) EXAMPLE: LICA3T183M3FC4AA LICA Style & Size 3 T 183 M 3 Voltage Dielectric Cap/Section Capacitance Height 5V = 9 D = X5R (EIA Code) Tolerance Code 10V = Z T = T55T M = 20% 6 = 0.500mm 25V = 3 S = High K P = GMV 3 = 0.650mm T55T 1 = 0.875mm 5 = 1.100mm 7 = 1.600mm F Termination F = C4 Solder Balls- 97Pb/3Sn H = C4 Solder Balls-Low ESR P = Cr-Cu-Au N = Cr-Ni-Au X = None C 4 A # of Inspection Reel Packaging Caps/Part Code M = 7" Reel 1 = one A = Standard R = 13" Reel 6 = 2"x2" Waffle Pack 2 = two B = Established Reliability 8 = 2"x2" Black Waffle 4 = four Testing Pack 7 = 2"x2" Waffle Pack w/ termination facing up A = 2"x2" Black Waffle Pack w/ termination facing up C = 4"x4" Waffle Pack w/ clear lid A Code Face A = Bar B = No Bar C = Dot, S55S Dielectrics 3 C0G (NP0) Dielectric General Specifications C0G (NP0) is the most popular formulation of the "temperature-compensating," EIA Class I ceramic materials. Modern C0G (NP0) formulations contain neodymium, samarium and other rare earth oxides. C0G (NP0) ceramics offer one of the most stable capacitor dielectrics available. Capacitance change with temperature is 0 30ppm/C which is less than 0.3% C from -55C to +125C. Capacitance drift or hysteresis for C0G (NP0) ceramics is negligible at less than 0.05% versus up to 2% for films. Typical capacitance change with life is less than 0.1% for C0G (NP0), one-fifth that shown by most other dielectrics. C0G (NP0) formulations show no aging characteristics. The C0G (NP0) formulation usually has a "Q" in excess of 1000 and shows little capacitance or "Q" changes with frequency. Their dielectric absorption is typically less than 0.6% which is similar to mica and most films. PART NUMBER (see page 2 for complete part number explanation) 0805 5 A 101 J A Size (L" x W") Voltage 6.3V = 6 10V = Z 16V = Y 25V = 3 50V = 5 100V = 1 200V = 2 500V = 7 Dielectric C0G (NP0) = A Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros Capacitance Tolerance Failure Rate A = Not Applicable .10 pF (<10pF) .25 pF (<10pF) .50 pF (<10pF) 1% ( 10 pF) 2% ( 10 pF) 5% 10% % Capacitance +0.5 0 -0.5 +1 0 -1 -2 1KHz -55 -35 -15 +5 +25 +45 +65 +85 +105 +125 Temperature C 10 KHz 100 KHz 1,000 100 0 0 20 40 60 80 100 Temperature C Variation of Impedance with Ceramic Formulation Impedance vs. Frequency 1000 pF - C0G (NP0) vs X7R 0805 100 10 pF 10.0 1.0 100 pF 1000 pF 0.1 1 10 100 Frequency, MHz 1000 10.00 1206 0805 1812 1210 X7R NPO Impedance, 1,000 Impedance, Impedance, 10 MHz Insulation Resistance vs Temperature 10 10,000 4 1 MHz Variation of Impedance with Chip Size Impedance vs. Frequency 1000 pF - C0G (NP0) 100,000 Special Code A = Std. Product 10,000 Frequency Variation of Impedance with Cap Value Impedance vs. Frequency 0805 - C0G (NP0) 10 pF vs. 100 pF vs. 1000 pF A Contact Contact Factory For Factory 1 = Pd/Ag Term For Multiples +2 Typical Capacitance Change Envelope: 0 30 ppm/C 2 Terminations Packaging 2 = 7" Reel T = Plated Ni 4 = 13" Reel and Sn 7 = Gold Plated 7 = Bulk Cass. 9 = Bulk Insulation Resistance (Ohm-Farads) = = = = = = = Capacitance vs. Frequency Temperature Coefficient % Capacitance B C D F G J K T 1.0 0.1 10 100 Frequency, MHz 1000 1.00 0.10 0.01 10 100 Frequency, MHz 1000 C0G (NP0) Dielectric Specifications and Test Methods Parameter/Test Operating Temperature Range Capacitance Insulation Resistance NP0 Specification Limits -55C to +125C Within specified tolerance <30 pF: Q 400+20 x Cap Value 30 pF: Q 1000 100,000M or 1000M - F, whichever is less Dielectric Strength No breakdown or visual defects Q Resistance to Flexure Stresses Appearance Capacitance Variation 5% or .5 pF, whichever is greater Q Meets Initial Values (As Above) Insulation Resistance Solderability Appearance Capacitance Variation Resistance to Solder Heat Thermal Shock Load Life Q Insulation Resistance Dielectric Strength Appearance Capacitance Variation Q Insulation Resistance Dielectric Strength Appearance Capacitance Variation Q (C=Nominal Cap) Insulation Resistance Dielectric Strength Appearance Capacitance Variation Load Humidity Q Insulation Resistance Dielectric Strength No defects Measuring Conditions Temperature Cycle Chamber Freq.: 1.0 MHz 10% for cap 1000 pF 1.0 kHz 10% for cap > 1000 pF Voltage: 1.0Vrms .2V Charge device with rated voltage for 60 5 secs @ room temp/humidity Charge device with 300% of rated voltage for 1-5 seconds, w/charge and discharge current limited to 50 mA (max) Note: Charge device with 150% of rated voltage for 500V devices. Deflection: 2mm Test Time: 30 seconds 1mm/sec Initial Value x 0.3 95% of each terminal should be covered with fresh solder No defects, <25% leaching of either end terminal 90 mm Dip device in eutectic solder at 230 5C for 5.0 0.5 seconds 2.5% or .25 pF, whichever is greater Meets Initial Values (As Above) Dip device in eutectic solder at 260C for 60 seconds. Store at room temperature for 24 2 hours before measuring electrical properties. Meets Initial Values (As Above) Meets Initial Values (As Above) No visual defects Step 1: -55C 2 30 3 minutes 2.5% or .25 pF, whichever is greater Step 2: Room Temp 3 minutes Meets Initial Values (As Above) Step 3: +125C 2 30 3 minutes Meets Initial Values (As Above) Step 4: Room Temp 3 minutes Meets Initial Values (As Above) Repeat for 5 cycles and measure after 24 hours at room temperature No visual defects 3.0% or .3 pF, whichever is greater 30 pF: 10 pF, <30 pF: <10 pF: Q 350 Q 275 +5C/2 Q 200 +10C Initial Value x 0.3 (See Above) Meets Initial Values (As Above) Charge device with twice rated voltage in test chamber set at 125C 2C for 1000 hours (+48, -0). Remove from test chamber and stabilize at room temperature for 24 hours before measuring. No visual defects 5.0% or .5 pF, whichever is greater 30 pF: 10 pF, <30 pF: <10 pF: Q 350 Q 275 +5C/2 Q 200 +10C Initial Value x 0.3 (See Above) Meets Initial Values (As Above) Store in a test chamber set at 85C 2C/ 85% 5% relative humidity for 1000 hours (+48, -0) with rated voltage applied. Remove from chamber and stabilize at room temperature for 24 2 hours before measuring. 5 C0G (NP0) Dielectric Capacitance Range PREFERRED SIZES ARE SHADED SIZE 0201 0402 0603 0805 1206 Soldering Packaging Reflow Only All Paper Reflow Only All Paper Reflow Only All Paper Reflow/Wave Paper/Embossed Reflow/Wave Paper/Embossed 1.00 0.10 (0.040 0.004) 0.50 0.10 (0.020 0.004) 0.25 0.15 (0.010 0.006) 25 50 C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 1.60 0.15 (0.063 0.006) 0.81 0.15 (0.032 0.006) 0.35 0.15 (0.014 0.006) 25 50 G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G 2.01 0.20 (0.079 0.008) 1.25 0.20 (0.049 0.008) 0.50 0.25 (0.020 0.010) 25 50 100 J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J M J M N M N M N N 6 A 0.33 (0.013) Letter Max. Thickness L W SIZE Cap (F) 16 C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 6.3 G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G 100 G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G 16 J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J N N N N N N N 100 16 Cap (pF) (t) Terminal 0.60 0.03 (0.024 0.001) 0.30 0.03 (0.011 0.001) 0.15 0.05 (0.006 0.002) 10 16 25 A A A A A A A A A A A A A A A A A A A A A A A A A A T 200 J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J M M M M M M 16 J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J M M M 25 J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J M M M 200 16 25 3.20 0.20 (0.126 0.008) 1.60 0.20 (0.063 0.008) 0.50 0.25 (0.020 0.010) 50 100 200 J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J M J J Q J J Q J M Q M M M P M P M P M P M P M 500 J J J J J J J J J J J J J J J J J J J J J J J J J J J J J M M M M M M P (W) Width MM (in.) MM (in.) MM (in.) WVDC 0.5 1.0 1.2 1.5 1.8 2.2 2.7 3.3 3.9 4.7 5.6 6.8 8.2 10 12 15 18 22 27 33 39 47 56 68 82 100 120 150 180 220 270 330 390 470 560 680 820 1000 1200 1500 1800 2200 2700 3300 3900 4700 5600 6800 8200 0.010 0.012 0.015 0.018 0.022 0.027 0.033 0.039 0.047 0.068 0.082 0.1 WVDC (L) Length 10 16 25 0201 C 0.56 (0.022) t 16 25 50 6.3 0402 E 0.71 (0.028) PAPER G 0.86 (0.034) J 0.94 (0.037) 25 50 0603 K 1.02 (0.040) M 1.27 (0.050) 25 50 100 0805 N 1.40 (0.055) P Q 1.52 1.78 (0.060) (0.070) EMBOSSED 50 100 1206 X 2.29 (0.090) Y 2.54 (0.100) Z 2.79 (0.110) 200 500 C0G (NP0) Dielectric Capacitance Range PREFERRED SIZES ARE SHADED 1210 1812 1825 2225 Reflow Only Paper/Embossed Reflow Only All Embossed Reflow Only All Embossed Reflow Only All Embossed 3.20 0.20 (0.126 0.008) 2.50 0.20 (0.098 0.008) 0.50 0.25 (0.020 0.010) 50 100 200 4.50 0.30 (0.177 0.012) 3.20 0.20 (0.126 0.008) 0.61 0.36 (0.024 0.014) 50 100 200 4.50 0.30 (0.177 0.012) 6.40 0.40 (0.252 0.016) 0.61 0.36 (0.024 0.014) 100 200 5.72 0.25 (0.225 0.010) 6.35 0.25 (0.250 0.010) 0.64 0.39 (0.025 0.015) 100 200 Cap (pF) 25 50 500 50 L J J J J J J J J J J J J J J J N N J J J J J J J J J J J J J J J N N 25 50 J J J J J J J J J J M M M 100 J J J J M M M Q Q 200 J J J J J J J J J J J J J J J J J J J M M M M M M 500 K K K K K K K K K K K K K K M M M M M M X X X Y 25 K K K K K K K K K K K M M M M M M P P P P X X Y 50 1210 A 0.33 (0.013) 500 500 W SIZE Letter Max. Thickness 500 Cap (F) 25 (t) Terminal T (W) Width MM (in.) MM (in.) MM (in.) WVDC 0.5 1.0 1.2 1.5 1.8 2.2 2.7 3.3 3.9 4.7 5.6 6.8 8.2 10 12 15 18 22 27 33 39 47 56 68 82 100 120 150 180 220 270 330 390 470 560 680 820 1000 1200 1500 1800 2200 2700 3300 3900 4700 5600 6800 8200 0.010 0.012 0.015 0.018 0.022 0.027 0.033 0.039 0.047 0.068 0.082 0.1 WVDC (L) Length SIZE Soldering Packaging C 0.56 (0.022) E 0.71 (0.028) PAPER K K K K K K K K K M M M M K K K K K P P P P P X X X M M M M P Q Q Q Q X 100 200 500 1812 G 0.86 (0.034) J 0.94 (0.037) K 1.02 (0.040) M 1.27 (0.050) M M M M M M M M M M M M M M M P P M M M M M M M M M M M M M M M M 50 100 M M M M M M M M M M M M M M M M M M M M M M M M M M M M P P P P P P Q 50 P P P 200 500 M M M M M M M M M M M M M M M M Y Y Y Y P Q 1.52 1.78 (0.060) (0.070) EMBOSSED P P P P P P P P P P P P P P Y Y Y Y Z Z 100 1825 N 1.40 (0.055) t 200 Q Q Q Q 500 2225 X 2.29 (0.090) Y 2.54 (0.100) Z 2.79 (0.110) 7 RF/Microwave C0G (NP0) Capacitors Ultra Low ESR, "U" Series, C0G (NP0) Chip Capacitors GENERAL INFORMATION are met on each value producing lot to lot uniformity. Sizes available are EIA chip sizes 0603, 0805, and 1210. "U" Series capacitors are C0G (NP0) chip capacitors specially designed for "Ultra" low ESR for applications in the communications market. Max ESR and effective capacitance DIMENSIONS: inches (millimeters) 0402 0603 0805 1210 A A C B A A C B D E B B C C D D E D D D E inches (mm) E Size A B C D 0402 0603 0805 1210 0.0390.004 (1.000.1) 0.0600.010 (1.520.25) 0.0790.008 (2.010.2) 0.1260.008 (3.20.2) 0.0200.004 (0.500.1) 0.0300.010 (0.760.25) 0.0490.008 (1.250.2) 0.0980.008 (2.490.2) 0.024 (0.6) max 0.036 (0.91) max 0.0400.005 (1.020.127) 0.0500.005 (1.270.127) N/A 0.0100.005 (0.250.13) 0.0200.010 (0.510.255) 0.0250.015 (0.6350.381) N/A 0.030 (0.76) min 0.020 (0.51) min 0.040 (1.02) min HOW TO ORDER 0805 1 Case Size U 100 Dielectric = Ultra Low ESR 0402 0603 0805 1210 A T Capacitance Tolerance Code B = 0.1pF C = 0.25pF D = 0.5pF F = 1% G = 2% J = 5% K = 10% M = 20% Voltage Code 3 = 25V 5 = 50V 1 = 100V 2 = 200V J Capacitance EIA Capacitance Code in pF. First two digits = significant figures or "R" for decimal place. Third digit = number of zeros or after "R" significant figures. 2 A Termination Special Code T= Plated Ni and Solder A = Standard Failure Rate Code Packaging Code A = Not Applicable 2 = 7" Reel 4 = 13" Reel 9 = Bulk ELECTRICAL CHARACTERISTICS Capacitance Values and Tolerances: Size 0402 - 0.2 pF to 22 pF @ 1 MHz Size 0603 - 1.0 pF to 100 pF @ 1 MHz Size 0805 - 1.6 pF to 160 pF @ 1 MHz Size 1210 - 2.4 pF to 1000 pF @ 1 MHz Temperature Coefficient of Capacitance (TC): 030 ppm/C (-55 to +125C) Insulation Resistance (IR): 1012 min. @ 25C and rated WVDC 1011 min. @ 125C and rated WVDC Working Voltage (WVDC): Size 0402 0603 0805 1210 8 - Working Voltage 50, 25 WVDC 200, 100, 50 WVDC 200, 100 WVDC 200, 100 WVDC Dielectric Working Voltage (DWV): 250% of rated WVDC Equivalent Series Resistance Typical (ESR): 0402 0603 0805 1210 - See Performance Curve, page 9 See Performance Curve, page 9 See Performance Curve, page 9 See Performance Curve, page 9 Marking: Laser marking EIA J marking standard (except 0603) (capacitance code and tolerance upon request). MILITARY SPECIFICATIONS Meets or exceeds the requirements of MIL-C-55681 RF/Microwave C0G (NP0) Capacitors Ultra Low ESR, "U" Series, C0G (NP0) Chip Capacitors CAPACITANCE RANGE 50V N/A 100V F,G,J,K,M F,G,J,K,M N/A 100V 200V 200V 50V 50V N/A 200V N/A 100V F,G,J,K,M 100 110 120 130 140 150 160 180 200 220 270 300 330 360 390 430 470 510 560 620 680 750 820 910 1000 B,C,J,K,M F,G,J,K,M B,C,D B,C,J,K,M B,C,J,K,M 50V 200V 200V 200V 200V 7.5 8.2 9.1 10 11 12 13 15 18 20 22 24 27 30 33 36 39 43 47 51 56 68 75 82 91 50V 200V 200V N/A B,C,D B,C,D B,C B,C,D 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 N/A N/A N/A 50V B,C Size Available Cap (pF) Tolerance 0402 0603 0805 1210 Size Available Cap (pF) Tolerance 0402 0603 0805 1210 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Size Available Cap (pF) Tolerance 0402 0603 0805 1210 Size Available Cap (pF) Tolerance 0402 0603 0805 1210 ULTRA LOW ESR, "U" SERIES TYPICAL ESR vs. FREQUENCY 0603 "U" SERIES TYPICAL ESR vs. FREQUENCY 0402 "U" SERIES 1 1 3.9 pF 4.7 pF 5.1 pF 6.8 pF 10.0 pF 15.0 pF ESR (ohms) ESR (ohms) 10 pF 15 pF 3.3 pF 0.1 0.01 0.01 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 Frequency (MHz) Frequency (MHz) TYPICAL ESR vs. FREQUENCY 0805 "U" SERIES TYPICAL ESR vs. FREQUENCY 1210 "U" SERIES 2500 1 1 100 pF 10.0 pF ESR (ohms) ESR (ohms) 0.1 0.1 0.1 10 pF 100 pF 300 pF 0.01 0.01 0 500 1000 1500 Frequency (MHz) 2000 2500 0 500 1000 1500 2000 Frequency (MHz) ESR Measured on the Boonton 34A 9 10 0.1 1.0 1.0 10 10 1210 0603 Capacitance (pF) 0402 100 0805 TYPICAL SERIES RESONANT FREQUENCY "U" SERIES CHIP 1000 RF/Microwave C0G (NP0) Capacitors Ultra Low ESR, "U" Series, C0G (NP0) Chip Capacitors Frequency (GHz) Designer Kits Communication Kits "U" Series "U" SERIES KITS Solder Plated, Nickel Barrier 0402 0603 Kit 5000 UZ* Cap. Value pF Tol. 0.5 1.0 1.5 1.8 2.2 2.4 3.0 3.6 B B B B B B B B Kit 4000 UZ** Cap. Value pF Tol. 4.7 5.6 6.8 8.2 10.0 12.0 15.0 B B B B J J J * 150 Capacitors 10 each of 15 values. Cap. Value pF Tol. Cap. Value pF Tol. 1.0 1.2 1.5 1.8 2.0 2.4 2.7 3.0 3.3 3.9 4.7 5.6 .25pF .25pF .25pF .25pF .25pF .25pF .25pF .25pF .25pF .25pF .25pF .25pF 6.8 7.5 8.2 10.0 12.0 15.0 18.0 22.0 27.0 33.0 39.0 47.0 .25pF .25pF .25pF 5% 5% 5% 5% 5% 5% 5% 5% 5% ** 240 Capacitors 10 each of 24 values. 0805 1210 Kit 3000 UZ*** Cap. Value pF 1.0 1.5 2.2 2.4 2.7 3.0 3.3 3.9 4.7 5.6 Tol. Cap. Value pF C C C C C C C C C C 7.5 8.2 9.1 10.0 12.0 15.0 18.0 22.0 24.0 27.0 Kit 3500 UZ*** Tol. Cap. Value pF C C C J J J J J J J 33 36 39 47 56 68 82 100 130 160 Tol. Cap. Value pF Tol. Cap. Value pF Tol. Cap. Value pF Tol. J J J J J J J J J J 2.2 2.7 4.7 5.1 6.8 8.2 9.1 10 13 15 C C C C C C C J J J 18 20 24 27 30 36 39 47 51 56 J J J J J J J J J J 68 82 100 120 130 240 300 390 470 680 J J J J J J J J J J *** 300 Capacitors 10 each of 30 values. Tolerance - B = 0.1pF C = 0.25pF J = 5% 11 X7R Dielectric General Specifications X7R formulations are called "temperature stable" ceramics and fall into EIA Class II materials. X7R is the most popular of these intermediate dielectric constant materials. Its temperature variation of capacitance is within 15% from -55C to +125C. This capacitance change is non-linear. Capacitance for X7R varies under the influence of electrical operating conditions such as voltage and frequency. X7R dielectric chip usage covers the broad spectrum of industrial applications where known changes in capacitance due to applied voltages are acceptable. PART NUMBER (see page 2 for complete part number explanation) 0805 5 C 103 M A T 2 A Size (L" x W") Voltage 4V = 4 6.3V = 6 10V = Z 16V = Y 25V = 3 50V = 5 100V = 1 200V = 2 500V = 7 Dielectric X7R = C Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros Capacitance Tolerance J = 5% K = 10% M = 20% Failure Rate A = Not Applicable Terminations T = Plated Ni and Sn 7 = Gold Plated Packaging 2 = 7" Reel 4 = 13" Reel 7 = Bulk Cass. 9 = Bulk Special Code A = Std. Product X7R Dielectric Typical Temperature Coefficient Capacitance vs. Frequency +30 10 +20 % Capacitance 0 -5 -10 -15 -20 0 20 40 60 0 -10 -20 -30 1KHz -25 -60 -40 -20 +10 80 100 120 140 Temperature C 10 KHz 100 KHz 10 1206 0805 1210 1,000 pF Impedance, Impedance, 10,000 pF 1.00 0.10 Frequency, MHz 12 100 0 0 20 40 1000 1.0 0.1 1 10 80 100 120 Variation of Impedance with Chip Size Impedance vs. Frequency 100,000 pF - X7R 10 1206 0805 1210 1.0 0.1 .01 .01 60 Temperature C Variation of Impedance with Chip Size Impedance vs. Frequency 10,000 pF - X7R 10.00 100 10 MHz 1,000 Frequency Variation of Impedance with Cap Value Impedance vs. Frequency 1,000 pF vs. 10,000 pF - X7R 0805 0.01 10 1 MHz Insulation Resistance vs Temperature 10,000 Impedance, % Cap Change 5 Insulation Resistance (Ohm-Farads) Contact Factory For Multiples 100 Frequency, MHz 1,000 1 10 100 Frequency, MHz 1,000 X7R Dielectric Specifications and Test Methods Parameter/Test Operating Temperature Range Capacitance Insulation Resistance X7R Specification Limits -55C to +125C Within specified tolerance 2.5% for 50V DC rating 3.0% for 25V DC rating 3.5% for 16V DC rating 5.0% for 10V DC rating 100,000M or 1000M - F, whichever is less Dielectric Strength No breakdown or visual defects Dissipation Factor Resistance to Flexure Stresses Appearance Capacitance Variation Dissipation Factor Insulation Resistance Solderability Resistance to Solder Heat Thermal Shock Load Life Load Humidity Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength No defects 12% Measuring Conditions Temperature Cycle Chamber Freq.: 1.0 kHz 10% Voltage: 1.0Vrms .2V For Cap > 10 F, 0.5Vrms @ 120Hz Charge device with rated voltage for 120 5 secs @ room temp/humidity Charge device with 300% of rated voltage for 1-5 seconds, w/charge and discharge current limited to 50 mA (max) Note: Charge device with 150% of rated voltage for 500V devices. Deflection: 2mm Test Time: 30 seconds 1mm/sec Meets Initial Values (As Above) Initial Value x 0.3 95% of each terminal should be covered with fresh solder No defects, <25% leaching of either end terminal 90 mm Dip device in eutectic solder at 230 5C for 5.0 0.5 seconds 7.5% Meets Initial Values (As Above) Dip device in eutectic solder at 260C for 60 seconds. Store at room temperature for 24 2 hours before measuring electrical properties. Meets Initial Values (As Above) Meets Initial Values (As Above) No visual defects Step 1: -55C 2 30 3 minutes 7.5% Step 2: Room Temp 3 minutes Meets Initial Values (As Above) Step 3: +125C 2 30 3 minutes Meets Initial Values (As Above) Step 4: Room Temp 3 minutes Meets Initial Values (As Above) Repeat for 5 cycles and measure after 24 2 hours at room temperature No visual defects 12.5% Initial Value x 2.0 (See Above) Initial Value x 0.3 (See Above) Meets Initial Values (As Above) No visual defects 12.5% Charge device with twice rated voltage in test chamber set at 125C 2C for 1000 hours (+48, -0) Remove from test chamber and stabilize at room temperature for 24 2 hours before measuring. Store in a test chamber set at 85C 2C/ 85% 5% relative humidity for 1000 hours (+48, -0) with rated voltage applied. Initial Value x 2.0 (See Above) Initial Value x 0.3 (See Above) Remove from chamber and stabilize at room temperature and humidity for 24 2 hours before measuring. Meets Initial Values (As Above) 13 X7R Dielectric Capacitance Range PREFERRED SIZES ARE SHADED SIZE 0201 0402 0603 0805 1206 Soldering Packaging Reflow Only All Paper Reflow Only All Paper Reflow Only All Paper Reflow/Wave Paper/Embossed Reflow/Wave Paper/Embossed 0.60 0.03 (0.024 0.001) 0.30 0.03 (0.011 0.001) 0.15 0.05 (0.006 0.002) 16 A A A A A A A 1.00 0.10 (0.040 0.004) 0.50 0.10 (0.020 0.004) 0.25 0.15 (0.010 0.006) 16 25 50 1.60 0.15 (0.063 0.006) 0.81 0.15 (0.032 0.006) 0.35 0.15 (0.014 0.006) 16 25 50 2.01 0.20 (0.079 0.008) 1.25 0.20 (0.049 0.008) 0.50 0.25 (0.020 0.010) 25 50 Cap (F 14 A 0.33 (0.013) L W 100 10 16 G G G G G G G J J J J J J J J J J J J J J J J J J M N N N J J J J J J J J J J J J J J J J J J M M 10 16 G G G G G G G G G G G G Letter Max. Thickness G G G G G G G G G G SIZE C C C C C C C C C C C C C C C 10 J J J J J J J J J J J J J J J J J M J J J J J J J J J J J J J J J J 100 200 J J J J J J J J J J J J M M J J J J J J J J J J J M Cap (pF) (t) Terminal T 10 16 3.20 0.20 (0.126 0.008) 1.60 0.20 (0.063 0.008) 0.50 0.25 (0.020 0.010) 25 50 100 J J J J J J J J J J J J J J J M M M P Q J J J J J J J J J J J J J J J M M M J J J J J J J J J J J J J J M M 10 16 25 200 J J J J J J J J J J J J J J M J J J J J J J J J J J M J J J J J J M M M M P 50 100 200 500 K K K K M M M M P P Q (W) Width MM (in.) MM (in.) MM (in.) WVDC 100 150 220 330 470 680 1000 1500 2200 3300 4700 6800 0.010 0.015 0.022 0.033 0.047 0.068 0.10 0.15 0.22 0.33 0.47 0.68 1.0 1.5 2.2 3.3 4.7 10 22 47 100 WVDC (L) Length 16 16 0201 C 0.56 (0.022) 25 50 t 10 0402 E 0.71 (0.028) PAPER G 0.86 (0.034) 16 25 50 100 0603 J 0.94 (0.037) K 1.02 (0.040) 25 50 100 200 0805 M 1.27 (0.050) N 1.40 (0.055) P Q 1.52 1.78 (0.060) (0.070) EMBOSSED 1206 X 2.29 (0.090) Y 2.54 (0.100) Z 2.79 (0.110) 500 X7R Dielectric Capacitance Range PREFERRED SIZES ARE SHADED 1210 1812 1825 2220 2225 Reflow Only Paper/Embossed Reflow Only All Embossed Reflow Only All Embossed Reflow Only All Embossed Reflow Only All Embossed 4.50 0.30 (0.177 0.012) 3.20 0.20 (0.126 0.008) 0.61 0.36 (0.024 0.014) 100 200 4.50 0.30 (0.177 0.012) 6.40 0.40 (0.252 0.016) 0.61 0.36 (0.024 0.014) 50 100 5.70 0.40 (0.225 0.016) 5.00 0.40 (0.197 0.016) 0.64 0.39 (0.025 0.015) 50 100 5.72 0.25 (0.225 0.010) 6.35 0.25 (0.250 0.010) 0.64 0.39 (0.025 0.015) 50 100 16 500 50 6.3 200 L J J J J J J J J J J J J J J J M M N N J J J J J J J J J J J J J J J M M N N J J J J J J J J J J J J J J J M P P J J J J J J J J J J J J J J J M X X J J J J J J J J J J J J M P Z Z Z Z J J J J J J J J J J M M M M M M M M P Q X Q Z Z 10 16 K K K K K K K K K K K M M K K K K K K K K K M P Q X K K K K K K K P P K P P X Z M M M M M M M M M M M M M M 100 200 500 50 C 0.56 (0.022) M M M M M M M M M M M X X X X X X X X X X X X X X X X X X X X X X X X W T 25 50 100 200 500 50 E 0.71 (0.028) PAPER 1812 100 6.3 50 G 0.86 (0.034) J 0.94 (0.037) K 1.02 (0.040) M 1.27 (0.050) 1825 N 1.40 (0.055) P Q 1.52 1.78 (0.060) (0.070) EMBOSSED X X X X X X X X M M M M M M M M M M M M M M M 100 200 50 2220 X 2.29 (0.090) t X X X X X X X X X X X X Z Z 1210 A 0.33 (0.013) 500 SIZE Letter Max. Thickness 200 Cap (F 10 Cap (pF) (t) Terminal 3.20 0.20 (0.126 0.008) 2.50 0.20 (0.098 0.008) 0.50 0.25 (0.020 0.010) 25 50 100 (W) Width MM (in.) MM (in.) MM (in.) WVDC 100 150 220 330 470 680 1000 1500 2200 3300 4700 6800 0.010 0.015 0.022 0.033 0.047 0.068 0.10 0.15 0.22 0.33 0.47 0.68 1.0 1.5 2.2 3.3 4.7 10 22 47 100 WVDC (L) Length SIZE Soldering Packaging Y 2.54 (0.100) P P P P P P P P P P P P P X 100 2225 Z 2.79 (0.110) 15 X7S Dielectric General Specifications GENERAL DESCRIPTION X7S formulations are called "temperature stable" ceramics and fall into EIA Class II materials. X7S is the most popular of these intermediate dielectric constant materials. Its temperature variation of capacitance is within 22% from -55C to +125C. This capacitance change is non-linear. Capacitance for X7S varies under the influence of electrical operating conditions such as voltage and frequency. X7S dielectric chip usage covers the broad spectrum of industrial applications where known changes in capacitance due to applied voltages are acceptable. PART NUMBER (see page 2 for complete part number explanation) 1206 Z Z 105 M A T 2 A Size (L" x W") Voltage 4 = 4V 6 = 6.3V Z = 10V Y = 16V 3 = 25V 5 = 50V 1 = 100V 2 = 200V Dielectric Z = X7S Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros Capacitance Tolerance K = 10% M = 20% Failure Rate A = N/A Terminations T = Plated Ni and Sn Packaging 2 = 7" Reel 4 = 13" Reel 7 = Bulk Cass. Special Code A = Std. Product Capacitance vs. Frequency 10 +30 5 +20 % Capacitance 0 -5 -10 -15 -20 -25 -60 -40 -20 +10 0 -10 -20 -30 1KHz 0 20 40 60 80 100 120 140 Temperature (C) 10 KHz 100 KHz 10 1206 0805 1210 1,000 pF Impedance, Impedance, 10,000 pF 0.01 10 100 Frequency, MHz 16 1000 100 0 0 20 40 1.0 0.1 1 10 80 100 120 Variation of Impedance with Chip Size Impedance vs. Frequency 100,000 pF - X7S 10 1206 0805 1210 1.0 0.1 .01 .01 60 Temperature C Variation of Impedance with Chip Size Impedance vs. Frequency 10,000 pF - X7S 10.00 0.10 10 MHz 1,000 Frequency Variation of Impedance with Cap Value Impedance vs. Frequency 1,000 pF vs. 10,000 pF - X7S 0805 1.00 1 MHz Insulation Resistance vs Temperature 10,000 Impedance, % Cap Change X7S Dielectric Typical Temperature Coefficient Insulation Resistance (Ohm-Farads) TYPICAL ELECTRICAL CHARACTERISTICS 100 Frequency, MHz 1,000 1 10 100 Frequency, MHz 1,000 X7S Dielectric Specifications and Test Methods Parameter/Test Operating Temperature Range Capacitance Insulation Resistance X7S Specification Limits -55C to +125C Within specified tolerance 2.5% for 50V DC rating 3.0% for 25V DC rating 3.5% for 16V DC rating 5.0% for 10V DC rating 100,000M or 1000M - F, whichever is less Dielectric Strength No breakdown or visual defects Dissipation Factor Resistance to Flexure Stresses Appearance Capacitance Variation Dissipation Factor Insulation Resistance Solderability Resistance to Solder Heat Thermal Shock Load Life Load Humidity Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength No defects 12% Measuring Conditions Temperature Cycle Chamber Freq.: 1.0 kHz 10% Voltage: 1.0Vrms .2V For Cap > 10 F, 0.5Vrms @ 120Hz Charge device with rated voltage for 120 5 secs @ room temp/humidity Charge device with 300% of rated voltage for 1-5 seconds, w/charge and discharge current limited to 50 mA (max) Deflection: 2mm Test Time: 30 seconds 1mm/sec Meets Initial Values (As Above) Initial Value x 0.3 95% of each terminal should be covered with fresh solder No defects, <25% leaching of either end terminal 90 mm Dip device in eutectic solder at 230 5C for 5.0 0.5 seconds 7.5% Meets Initial Values (As Above) Dip device in eutectic solder at 260C for 60 seconds. Store at room temperature for 24 2 hours before measuring electrical properties. Meets Initial Values (As Above) Meets Initial Values (As Above) No visual defects Step 1: -55C 2 30 3 minutes 7.5% Step 2: Room Temp 3 minutes Meets Initial Values (As Above) Step 3: +125C 2 30 3 minutes Meets Initial Values (As Above) Step 4: Room Temp 3 minutes Meets Initial Values (As Above) Repeat for 5 cycles and measure after 24 2 hours at room temperature No visual defects 12.5% Initial Value x 2.0 (See Above) Initial Value x 0.3 (See Above) Meets Initial Values (As Above) No visual defects 12.5% Initial Value x 2.0 (See Above) Initial Value x 0.3 (See Above) Charge device with twice rated voltage in test chamber set at 125C 2C for 1000 hours (+48, -0) Remove from test chamber and stabilize at room temperature for 24 2 hours before measuring. Store in a test chamber set at 85C 2C/ 85% 5% relative humidity for 1000 hours (+48, -0) with rated voltage applied. Remove from chamber and stabilize at room temperature and humidity for 24 2 hours before measuring. Meets Initial Values (As Above) 17 X7S Dielectric Capacitance Range PREFERRED SIZES ARE SHADED 0402 0603 0805 1206 1210 Reflow Only All Paper Reflow Only All Paper Reflow/Wave Paper/Embossed Reflow/Wave Paper/Embossed Reflow Only Paper/Embossed 1.00 0.10 (0.040 0.004) 0.50 0.10 (0.020 0.004) 0.25 0.15 (0.010 0.006) 6.3 1.60 0.15 (0.063 0.006) 0.81 0.15 (0.032 0.006) 0.35 0.15 (0.014 0.006) 6.3 2.01 0.20 (0.079 0.008) 1.25 0.20 (0.049 0.008) 0.50 0.25 (0.020 0.010) 4 3.20 0.20 (0.126 0.008) 1.60 0.20 (0.063 0.008) 0.50 0.25 (0.020 0.010) 6.3 10 3.20 0.20 (0.126 0.008) 2.50 0.20 (0.098 0.008) 0.50 0.25 (0.020 0.010) 6.3 Cap (pF) 18 A 0.33 (0.013) Letter Max. Thickness L W SIZE Cap (F (t) Terminal T (W) Width MM (in.) MM (in.) MM (in.) WVDC 100 150 220 330 470 680 1000 1500 2200 3300 4700 6800 0.010 0.015 0.022 0.033 0.047 0.068 0.10 0.15 0.22 0.33 0.47 0.68 1.0 1.5 2.2 3.3 4.7 10 22 47 100 WVDC (L) Length SIZE Soldering Packaging t C C C C G G G G N N N N Q Q Q Q Q Z 6.3 6.3 4 0402 0603 0805 C 0.56 (0.022) E 0.71 (0.028) PAPER G 0.86 (0.034) J 0.94 (0.037) K 1.02 (0.040) 6.3 10 1206 M 1.27 (0.050) N 1.40 (0.055) 6.3 1210 P Q 1.52 1.78 (0.060) (0.070) EMBOSSED X 2.29 (0.090) Y 2.54 (0.100) Z 2.79 (0.110) X5R Dielectric General Specifications GENERAL DESCRIPTION * General Purpose Dielectric for Ceramic Capacitors * EIA Class II Dielectric * Temperature variation of capacitance is within 15% from -55C to +85C * Well suited for decoupling and filtering applications * Available in High Capacitance values (up to 100F) PART NUMBER (see page 2 for complete part number explanation) 2220 6 D 107 M A T 2 A Size (L" x W") Voltage 4 = 4V 6 = 6.3V Z = 10V Y = 16V 3 = 25V D = 35V 5 = 50V Dielectric D = X5R Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros Capacitance Tolerance K = 10% M = 20% Failure Rate A = N/A Terminations T = Plated Ni and Sn Packaging 2 = 7" Reel 4 = 13" Reel 7 = Bulk Cass. 9 = Bulk Special Code A = Std. Temperature Coefficient 20 % Capacitance 15 10 5 0 -5 -10 -15 -20 -60 -40 -20 0 +20 +40 Temperature C +60 +80 Insulation Resistance (Ohm-Farads) TYPICAL ELECTRICAL CHARACTERISTICS Insulation Resistance vs Temperature 10,000 1,000 100 0 0 20 40 60 80 100 120 Temperature C 19 X5R Dielectric Specifications and Test Methods Parameter/Test Operating Temperature Range Capacitance Insulation Resistance X5R Specification Limits -55C to +85C Within specified tolerance 2.5% for 50V DC rating 3.0% for 25V DC rating 3.5% for 16V DC rating 5.0% for 10V DC rating 100,000M or 500M - F, whichever is less Dielectric Strength No breakdown or visual defects Dissipation Factor Resistance to Flexure Stresses Appearance Capacitance Variation Dissipation Factor Insulation Resistance Solderability Resistance to Solder Heat Thermal Shock Load Life Load Humidity 20 Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength No defects 12% Measuring Conditions Temperature Cycle Chamber Freq.: 1.0 kHz 10% Voltage: 1.0Vrms .2V For Cap > 10 F, 0.5Vrms @ 120Hz Charge device with rated voltage for 120 5 secs @ room temp/humidity Charge device with 300% of rated voltage for 1-5 seconds, w/charge and discharge current limited to 50 mA (max) Deflection: 2mm Test Time: 30 seconds 1mm/sec Meets Initial Values (As Above) Initial Value x 0.3 95% of each terminal should be covered with fresh solder No defects, <25% leaching of either end terminal 90 mm Dip device in eutectic solder at 230 5C for 5.0 0.5 seconds 7.5% Meets Initial Values (As Above) Dip device in eutectic solder at 260C for 60 seconds. Store at room temperature for 24 2 hours before measuring electrical properties. Meets Initial Values (As Above) Meets Initial Values (As Above) No visual defects Step 1: -55C 2 30 3 minutes 7.5% Step 2: Room Temp 3 minutes Meets Initial Values (As Above) Step 3: +85C 2 30 3 minutes Meets Initial Values (As Above) Step 4: Room Temp 3 minutes Meets Initial Values (As Above) Repeat for 5 cycles and measure after 24 2 hours at room temperature No visual defects 12.5% Initial Value x 2.0 (See Above) Initial Value x 0.3 (See Above) Meets Initial Values (As Above) No visual defects 12.5% Initial Value x 2.0 (See Above) Initial Value x 0.3 (See Above) Meets Initial Values (As Above) Charge device with 1.5X rated voltage in test chamber set at 85C 2C for 1000 hours (+48, -0). Note: Contact factory for specific high CV devices that are tested at 1.5X rated voltage. Remove from test chamber and stabilize at room temperature for 24 2 hours before measuring. Store in a test chamber set at 85C 2C/ 85% 5% relative humidity for 1000 hours (+48, -0) with rated voltage applied. Remove from chamber and stabilize at room temperature and humidity for 24 2 hours before measuring. X5R Dielectric Capacitance Range PREFERRED SIZES ARE SHADED SIZE 0201 0402 0603 0805 Soldering Packaging Reflow Only All Paper Reflow Only All Paper Reflow Only All Paper Reflow/Wave Paper/Embossed 1.60 0.15 (0.063 0.006) 0.81 0.15 (0.032 0.006) 0.35 0.15 (0.014 0.006) 10 16 2.01 0.20 (0.079 0.008) 1.25 0.20 (0.049 0.008) 0.50 0.25 (0.020 0.010) 16 25 A 0.33 (0.013) 4 6.3 25 35 6.3 10 35 L W 50 25 A A C C C C C C C C C C T C C C C C C G G G G G G G G G G G G G G G G G t G G G G N N N N N N N N N N N N N N N N N N 10 SIZE Letter Max. Thickness 4 A A A A A 25 A A A A A A A Cap (F 10 Cap (pF) 1.00 0.10 (0.040 0.004) 0.50 0.10 (0.020 0.004) 0.25 0.15 (0.010 0.006) 6.3 10 16 (t) Terminal 0.60 0.03 (0.024 0.001) 0.30 0.03 (0.011 0.001) 0.15 0.05 (0.006 0.002) 16 (W) Width MM (in.) MM (in.) MM (in.) WVDC 100 150 220 330 470 680 1000 1500 2200 3300 4700 6800 0.010 0.015 0.022 0.033 0.047 0.068 0.10 0.15 0.22 0.33 0.47 0.68 1.0 1.5 2.2 3.3 4.7 6.8 10 22 47 100 WVDC (L) Length 16 25 4 6.3 0201 C 0.56 (0.022) E 0.71 (0.028) PAPER 10 16 25 4 0402 G 0.86 (0.034) J 0.94 (0.037) K 1.02 (0.040) 6.3 10 16 25 35 6.3 10 16 0603 M 1.27 (0.050) N 1.40 (0.055) P Q 1.52 1.78 (0.060) (0.070) EMBOSSED 25 35 50 0805 X 2.29 (0.090) Y 2.54 (0.100) Z 2.79 (0.110) 21 X5R Dielectric Capacitance Range PREFERRED SIZES ARE SHADED 1206 1210 1812 Reflow/Wave Paper/Embossed Reflow Only Paper/Embossed Reflow Only All Embossed 3.20 0.20 (0.126 0.008) 1.60 0.20 (0.063 0.008) 0.50 0.25 (0.020 0.010) 16 3.20 0.20 (0.126 0.008) 2.50 0.20 (0.098 0.008) 0.50 0.25 (0.020 0.010) 16 4.50 0.30 (0.177 0.012) 3.20 0.20 (0.126 0.008) 0.61 0.36 (0.024 0.014) 10 10 6.3 10 35 6.3 25 L W t M Q Q Q 6.3 Q Q Q Q Q Q Q 10 16 N X Z 25 Z Z Z 6.3 35 C 0.56 (0.022) E 0.71 (0.028) PAPER G 0.86 (0.034) Z Z Z Z Z Z 10 1206 A 0.33 (0.013) 25 22 35 SIZE Letter Max. Thickness 25 Cap (F 6.3 Cap (pF) (t) Terminal (W) Width MM (in.) MM (in.) MM (in.) WVDC 100 150 220 330 470 680 1000 1500 2200 3300 4700 6800 0.010 0.015 0.022 0.033 0.047 0.068 0.10 0.15 0.22 0.33 0.47 0.68 1.0 1.5 2.2 3.3 4.7 6.8 10 22 47 100 WVDC (L) Length SIZE Soldering Packaging 16 25 35 6.3 10 1210 J 0.94 (0.037) K 1.02 (0.040) M 1.27 (0.050) N 1.40 (0.055) 1812 P Q 1.52 1.78 (0.060) (0.070) EMBOSSED X 2.29 (0.090) Y 2.54 (0.100) Z 2.79 (0.110) 25 T Y5V Dielectric General Specifications Y5V formulations are for general-purpose use in a limited temperature range. They have a wide temperature characteristic of +22% -82% capacitance change over the operating temperature range of -30C to +85C. These characteristics make Y5V ideal for decoupling applications within limited temperature range. PART NUMBER (see page 2 for complete part number explanation) 3 G 104 Z A T 2 A Size (L" x W") Voltage 6.3V = 6 10V = Z 16V = Y 25V = 3 50V = 5 Dielectric Y5V = G Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros Capacitance Tolerance Z = +80 -20% Failure Rate A = Not Applicable Terminations T = Plated Ni and Sn Packaging 2 = 7" Reel 4 = 13" Reel Special Code A = Std. Product Capacitance Change vs. DC Bias Voltage +20 +10 0 -10 -20 -30 -40 -50 -60 -70 -80 +40 c/c (%) +20 0 -20 -40 -60 -80 -35 -15 -100 0 +5 +25 +45 +65 +85 +105 +125 Temperature C 40 60 80 100 +20 10 1 10,000,000 100 10 1 0.01 10,000 +40 +50 +60 +70 +80 +90 1 F - 1206 Impedance vs. Frequency 100 10 1 0.1 0.1 0.1 +30 Temperature C 1,000 |Z| (Ohms) 100 Frequency (Hz) 0 1,000 1,000 1,000,000 100 0.22 F - 0805 Impedance vs. Frequency 0.1 F - 0603 Impedance vs. Frequency 100,000 1,000 % DC Bias Voltage 10,000 0.01 10,000 20 Insulation Resistance vs. Temperature 10,000 |Z| (Ohms) -55 |Z| (Ohms) % Capacitance Temperature Coefficient Insulation Resistance (Ohm-Farads) 0805 100,000 1,000,000 Frequency (Hz) 10,000,000 0.01 10,000 100,000 1,000,000 10,000,000 Frequency (Hz) 23 Y5V Dielectric Specifications and Test Methods Parameter/Test Operating Temperature Range Capacitance Insulation Resistance Y5V Specification Limits -30C to +85C Within specified tolerance 5.0% for 50V DC rating 7.0% for 25V DC rating 9.0% for 16V DC rating 12.5% for 10V DC rating 100,000M or 500M - F, whichever is less Dielectric Strength No breakdown or visual defects Dissipation Factor Resistance to Flexure Stresses Appearance Capacitance Variation Dissipation Factor Insulation Resistance Solderability Resistance to Solder Heat Thermal Shock Load Life Load Humidity 24 Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength Appearance Capacitance Variation Dissipation Factor Insulation Resistance Dielectric Strength No defects 30% Measuring Conditions Temperature Cycle Chamber Freq.: 1.0 kHz 10% Voltage: 1.0Vrms .2V For Cap > 10 F, 0.5Vrms @ 120Hz Charge device with rated voltage for 120 5 secs @ room temp/humidity Charge device with 300% of rated voltage for 1-5 seconds, w/charge and discharge current limited to 50 mA (max) Deflection: 2mm Test Time: 30 seconds 1mm/sec Meets Initial Values (As Above) Initial Value x 0.1 95% of each terminal should be covered with fresh solder No defects, <25% leaching of either end terminal 90 mm Dip device in eutectic solder at 230 5C for 5.0 0.5 seconds 20% Meets Initial Values (As Above) Dip device in eutectic solder at 260C for 60 seconds. Store at room temperature for 24 2 hours before measuring electrical properties. Meets Initial Values (As Above) Meets Initial Values (As Above) No visual defects Step 1: -30C 2 30 3 minutes 20% Step 2: Room Temp 3 minutes Meets Initial Values (As Above) Step 3: +85C 2 30 3 minutes Meets Initial Values (As Above) Step 4: Room Temp 3 minutes Meets Initial Values (As Above) Repeat for 5 cycles and measure after 24 2 hours at room temperature No visual defects 30% Initial Value x 1.5 (See Above) Initial Value x 0.1 (See Above) Meets Initial Values (As Above) No visual defects 30% Initial Value x 1.5 (See above) Initial Value x 0.1 (See Above) Meets Initial Values (As Above) Charge device with twice rated voltage in test chamber set at 85C 2C for 1000 hours (+48, -0) Remove from test chamber and stabilize at room temperature for 24 2 hours before measuring. Store in a test chamber set at 85C 2C/ 85% 5% relative humidity for 1000 hours (+48, -0) with rated voltage applied. Remove from chamber and stabilize at room temperature and humidity for 24 2 hours before measuring. Y5V Dielectric Capacitance Range PREFERRED SIZES ARE SHADED SIZE 0201 0402 0603 0805 1206 1210 Soldering Packaging Reflow Only All Paper Reflow Only All Paper Reflow Only All Paper Reflow/Wave Paper/Embossed Reflow/Wave Paper/Embossed Reflow Only Paper/Embossed 0.60 0.03 (0.024 0.001) 0.30 0.03 (0.011 0.001) 0.15 0.05 (0.006 0.002) 6.3 10 1.00 0.10 (0.040 0.004) 0.50 0.10 (0.020 0.004) 0.25 0.15 (0.010 0.006) 25 1.60 0.15 (0.063 0.006) .81 0.15 (0.032 0.006) 0.35 0.15 (0.014 0.006) 16 25 3.20 0.20 (0.126 0.008) 1.60 0.20 (0.063 0.008) 0.50 0.25 (0.020 0.010) 16 25 3.20 0.20 (0.126 0.008) 2.50 0.20 (0.098 0.008) .50 0.25 (0.020 0.010) 16 25 Cap (F) 50 A A A A C A C C C C Letter Max. Thickness C C G G G G G J K G G K N N K N N N 16 C 0.56 (0.022) 25 50 10 0402 E 0.71 (0.028) PAPER G 0.86 (0.034) 16 25 50 0603 J 0.94 (0.037) W K 1.02 (0.040) M 1.27 (0.050) T 10 16 25 t N 50 10 0805 N 1.40 (0.055) 50 M M Q Q 10 L G N 6.3 10 N 0201 A 0.33 (0.013) 50 G G 4.7 10.0 22.0 47.0 WVDC 10 A A 0.47 1.0 2.2 SIZE 50 10 0.047 0.10 0.22 50 4700 0.010 0.022 16 Cap (pF) (t) Terminal 2.01 0.20 (0.079 0.008) 1.25 0.20 (0.049 0.008) 0.50 0.25 (0.020 0.010) 10 16 25 (W) Width MM (in.) MM (in.) MM (in.) WVDC 820 1000 2200 (L) Length P Q 1.52 1.78 (0.060) (0.070) EMBOSSED M M Q 16 25 50 10 1206 X 2.29 (0.090) N Q Q X Y 2.54 (0.100) 16 25 50 1210 Z 2.79 (0.110) 25 MLCC Tin/Lead Termination "B" General Specifications AVX Corporation will support those customers for commercial and military Multilayer Ceramic Capacitors with a termination consisting of 5% minimum lead. This termination is indicated by the use of a "B" in the 12th position of the AVX Catalog Part Number. This fulfills AVX's commitment to providing a full range of products to our customers. AVX has provided in the following pages a full range of values that we are currently offering in this special "B" termination. Please contact the factory if you require additional information on our MLCC Tin/Lead Termination "B" products. PART NUMBER (see page 2 for complete part number explanation) LD05 5 A Size Dielectric Voltage LD02 - 0402 6.3V = 6 C0G (NP0) = A LD03 - 0603 X7R = C 10V = Z LD04 - 0504 X5R = D 16V = Y LD05 - 0805 25V = 3 LD06 - 1206 50V = 5 LD08 - 1808* 100V = 1 LD10 - 1210 200V = 2 LD12 - 1812 500V = 7 LD13 - 1825 LD14 - 2225 LD15 - 0204 LICC* LD20 - 2220 LD16 - 0306 LICC LD17 - 0508 LICC LD18 - 0612 LICC 101 J A B 2 A Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros Capacitance Tolerance Failure Rate A = Not Applicable Terminations B = 5% min lead Packaging 2 = 7" Reel 4 = 13" Reel 7 = Bulk Cass. 9 = Bulk Special Code A = Std. Product B C D F G J K = = = = = = = *Contact factory ELECTRICAL GRAPHS NPO X7R X7S X5R Y5V 26 Refer to page 4 for Electrical Graphs Refer to page 12 for Electrical Graphs Refer to page 16 for Electrical Graphs Refer to page 19 for Electrical Graphs Refer to page 23 for Electrical Graphs .10 pF (<10pF) .25 pF (<10pF) .50 pF (<10pF) 1% ( 10 pF) 2% ( 10 pF) 5% 10% Contact Factory For Multiples MLCC Tin/Lead Termination "B" Capacitance Range (NPO Dielectric) PREFERRED SIZES ARE SHADED SIZE LD02 LD03 LD05 LD06 Soldering Packaging Reflow Only All Paper Reflow Only All Paper Reflow/Wave Paper/Embossed Reflow/Wave Paper/Embossed 1.60 0.15 (0.063 0.006) 0.81 0.15 (0.032 0.006) 0.35 0.15 (0.014 0.006) 25 50 G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G 2.01 0.20 (0.079 0.008) 1.25 0.20 (0.049 0.008) 0.50 0.25 (0.020 0.010) 25 50 100 E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E J E E J J J J J J J J J J J J J J J J J J J J J J J J J J M J M N M N M N N Cap (F) 16 C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C A 0.33 (0.013) L W 16 SIZE Letter Max. Thickness 50 C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 6.3 G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G 100 G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G 16 E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E E J J J J J J J J J J J N N N N N N N 100 16 200 J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J M M M M 16 J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J M M M M M 3.20 0.20 (0.126 0.008) 1.60 0.20 (0.063 0.008) 0.50 0.25 (0.020 0.010) 25 50 100 J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J M J M M J M P J M P J M P J M P J M P J M M M M M M 200 16 25 200 J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J M Q Q Q Cap (pF) (t) Terminal 1.00 0.10 (0.040 0.004) 0.50 0.10 (0.020 0.004) 0.25 0.15 (0.010 0.006) 25 C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C T (W) Width MM (in.) MM (in.) MM (in.) WVDC 0.5 1.0 1.2 1.5 1.8 2.2 2.7 3.3 3.9 4.7 5.6 6.8 8.2 10 12 15 18 22 27 33 39 47 56 68 82 100 120 150 180 220 270 330 390 470 560 680 820 1000 1200 1500 1800 2200 2700 3300 3900 4700 5600 6800 8200 0.010 0.012 0.015 0.018 0.022 0.027 0.033 0.039 0.047 0.068 0.082 0.10 WVDC (L) Length t 25 50 6.3 25 0402 C 0.56 (0.022) E 0.71 (0.028) PAPER 50 0603 G 0.86 (0.034) J 0.94 (0.037) K 1.02 (0.040) M 1.27 (0.050) 25 50 100 0805 N 1.40 (0.055) P Q 1.52 1.78 (0.060) (0.070) EMBOSSED 50 100 200 1206 X 2.29 (0.090) Y 2.54 (0.100) Z 2.79 (0.110) 27 MLCC Tin/Lead Termination "B" Capacitance Range (NPO Dielectric) PREFERRED SIZES ARE SHADED SIZE LD10 LD12 LD13 LD20 LD14 Soldering Packaging Reflow/Wave Paper/Embossed Reflow Only All Embossed Reflow Only All Embossed Reflow Only All Embossed Reflow Only All Embossed 3.20 0.20 (0.126 0.008) 2.50 0.20 (0.098 0.008) 0.50 0.25 (0.020 0.010) 50 100 4.50 0.30 (0.177 0.012) 3.20 0.20 (0.126 0.008) 0.61 0.36 (0.024 0.014) 50 100 4.50 0.30 (0.177 0.012) 6.40 0.40 (0.252 0.016) 0.61 0.36 (0.024 0.014) 50 100 200 200 J J J J J J J J J J J J J J J N N J J J J J J J J J J J J J J J N N 25 50 J J J J J J J M M M M M M J J J J M M M Q Q 100 200 K K K K K K K K K K K K K K M M M M M K K K K K K K K K M M P P P P P P 25 50 1210 A 0.33 (0.013) 200 L 28 25 W SIZE Letter Max. Thickness 200 Cap (F) 25 Cap (pF) 5.72 0.25 (0.225 0.010) 6.35 0.25 (0.250 0.010) 0.64 0.39 (0.025 0.015) 50 100 200 (t) Terminal 5.70 0.40 (0.225 0.016) 5.00 0.40 (0.197 0.016) 0.64 0.39 (0.025 0.015) 50 100 T (W) Width MM (in.) MM (in.) MM (in.) WVDC 0.5 1.0 1.2 1.5 1.8 2.2 2.7 3.3 3.9 4.7 5.6 6.8 8.2 10 12 15 18 22 27 33 39 47 56 68 82 100 120 150 180 220 270 330 390 470 560 680 820 1000 1200 1500 1800 2200 2700 3300 3900 4700 5600 6800 8200 0.010 0.012 0.015 0.018 0.022 0.027 0.033 0.039 0.047 0.068 0.082 0.10 WVDC (L) Length C 0.56 (0.022) E 0.71 (0.028) PAPER K K K K K K K K K M M X X K K K K K P P P P P X X X M M M M M M M M M M M M M M P P P 100 200 50 1812 G 0.86 (0.034) J 0.94 (0.037) K 1.02 (0.040) M M M M M M M M M M M M M M M M M M M M M M M M M M M X X X X 100 200 50 1825 M 1.27 (0.050) N 1.40 (0.055) P Q 1.52 1.78 (0.060) (0.070) EMBOSSED X X X X X X X X P P P P P P P P P P P P P P P P P P P P P P 100 200 50 2220 X 2.29 (0.090) Y 2.54 (0.100) t P P P P P P P P P P P P P P P P Y Y Y Y P P P P P P P P P P P P P P Y Y Y Y Z Z 100 200 2225 Z 2.79 (0.110) MLCC Tin/Lead Termination "B" Capacitance Range (X7R Dielectric) PREFERRED SIZES ARE SHADED SIZE LD02 LD03 LD05 LD06 Soldering Packaging Reflow Only All Paper Reflow Only All Paper Reflow/Wave Paper/Embossed Reflow/Wave Paper/Embossed 1.00 0.10 (0.040 0.004) 0.50 0.10 (0.020 0.004) 0.25 0.15 (0.010 0.006) 16 C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 1.60 0.15 (0.063 0.006) 0.81 0.15 (0.032 0.006) 0.35 0.15 (0.014 0.006) 16 25 50 Cap (F) 6.3 C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C 10 C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C C A 0.33 (0.013) W 50 C C C C C C C C C C C C C C C C C C C C C C 6.3 10 G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G 100 200 G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G 10 E E E E E E E E E E E E E E E E E E E E J J J J J J J J J J J J J J J J M M N N N N N E E E E E E E E E E E E E E E E E E E E J J J J J J J J J J J J J J J J M M M E E E E E E E E E E E E E E E E E E E E J J J J J J J J J J J J J J M M E E E E E E E E E E E E E E E E E E E E J J J J J J J J J J J J M 100 200 E E E E E E E E E E E E E E E J J J J J J J J J J M M M E E E E E E E E J J J J J J J J J J J J J J M M 10 J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J M M M M M J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J M M M M M J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J M M Q J J J J J J J J J J J J J J J J J J J J J J J J J J J J J M M J J J J J J J J J J J J J J J J J J J J J J J M M J J J J J J J J J J J J J M M M M M M M M P P 16 25 50 100 200 200 P 6.3 SIZE Letter Max. Thickness L 25 C C C C C C C C C C C C C C C C C C C C C C C C 3.20 0.20 (0.126 0.008) 1.60 0.20 (0.063 0.008) 0.50 0.25 (0.020 0.010) 16 25 50 100 Cap (pF) (t) Terminal 2.01 0.20 (0.079 0.008) 1.25 0.20 (0.049 0.008) 0.50 0.25 (0.020 0.010) 16 25 50 Q T (W) Width MM (in.) MM (in.) MM (in.) WVDC 100 120 150 180 220 270 330 390 470 560 680 820 1000 1200 1500 1800 2200 2700 3300 3900 4700 5600 6800 8200 0.010 0.012 0.015 0.018 0.022 0.027 0.033 0.039 0.047 0.056 0.068 0.082 0.10 0.12 0.15 0.18 0.22 0.27 0.33 0.47 0.56 0.68 0.82 1.0 1.2 1.5 1.8 2.2 3.3 4.7 10 22 47 100 WVDC (L) Length 10 t 16 25 50 6.3 10 0402 C 0.56 (0.022) E 0.71 (0.028) PAPER 16 25 50 100 200 0603 G 0.86 (0.034) J 0.94 (0.037) K 1.02 (0.040) M 1.27 (0.050) 10 16 25 50 100 200 10 0805 N 1.40 (0.055) P Q 1.52 1.78 (0.060) (0.070) EMBOSSED 1206 X 2.29 (0.090) Y 2.54 (0.100) Z 2.79 (0.110) 29 MLCC Tin/Lead Termination "B" Capacitance Range (X7R Dielectric) PREFERRED SIZES ARE SHADED LD10 Reflow/Wave Paper/Embossed Cap (pF) 30 L J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J M M M M N J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J M M M M N N N J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J M M P P J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J M J J J J J J J J J J J J J J J J J J J J J J J J J M M P P W T K K K K K K K K K K K K K K K K K K K K M M M M K K K K K K K K K K K K K K K K K M M P Q Q M M M M M M M M M M M M M M M M M M M M M M M M t M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M M P M 10 16 25 50 100 1210 A 0.33 (0.013) 5.72 0.25 (0.225 0.010) 6.35 0.25 (0.250 0.010) 0.64 0.39 (0.025 0.015) 50 100 SIZE Letter Max. Thickness 100 Cap (F) 10 4.50 0.30 4.50 0.30 (0.177 0.012) (0.177 0.012) 3.20 0.20 6.40 0.40 (0.126 0.008) (0.252 0.016) 0.61 0.36 0.61 0.36 (0.024 0.014) (0.024 0.014) 50 100 50 100 (t) Terminal 3.20 0.20 (0.126 0.008) 2.50 0.20 (0.098 0.008) 0.50 0.25 (0.020 0.010) 16 25 50 LD14 (W) Width MM (in.) MM (in.) MM (in.) WVDC 100 120 150 180 220 270 330 390 470 560 680 820 1000 1200 1500 1800 2200 2700 3300 3900 4700 5600 6800 8200 0.010 0.012 0.015 0.018 0.022 0.027 0.033 0.039 0.047 0.056 0.068 0.082 0.10 0.12 0.15 0.18 0.22 0.27 0.33 0.47 0.56 0.68 0.82 1.0 1.2 1.5 1.8 2.2 3.3 4.7 10 22 47 100 WVDC LD13 (L) Length LD12 Reflow Only Reflow Only Reflow Only All Embossed All Embossed All Embossed SIZE Soldering Packaging C 0.56 (0.022) E 0.71 (0.028) PAPER 50 100 1812 G 0.86 (0.034) J 0.94 (0.037) 50 100 1825 K 1.02 (0.040) 50 100 2225 M 1.27 (0.050) N 1.40 (0.055) P Q 1.52 1.78 (0.060) (0.070) EMBOSSED X 2.29 (0.090) Y 2.54 (0.100) Z 2.79 (0.110) MLCC Tin/Lead Termination "B" Capacitance Range (X5R Dielectric) PREFERRED SIZES ARE SHADED LD02 LD03 LD05 LD06 LD10 Reflow Only All Paper Reflow Only All Paper Reflow/Wave Paper/Embossed Reflow/Wave Paper/Embossed Reflow/Wave Paper/Embossed 1.00 0.10 (0.040 0.004) 0.50 0.10 (0.020 0.004) 0.25 0.15 (0.010 0.006) 6.3 10 1.60 0.15 (0.063 0.006) 0.81 0.15 (0.032 0.006) 0.35 0.15 (0.014 0.006) 6.3 25 2.01 0.20 (0.079 0.008) 1.25 0.20 (0.049 0.008) 0.50 0.25 (0.020 0.010) 10 16 3.20 0.20 (0.126 0.008) 1.60 0.20 (0.063 0.008) 0.50 0.25 (0.020 0.010) 10 16 25 3.20 0.20 (0.126 0.008) 2.50 0.20 (0.098 0.008) 0.50 0.25 (0.020 0.010) 16 Letter Max. Thickness W T t C C C G C G G G G N N G N G N M N Q N Q N Q Q Q 6.3 10 0402 A 0.33 (0.013) L SIZE Cap (F Cap (pF) (t) Terminal (W) Width MM (in.) MM (in.) MM (in.) WVDC 100 150 220 330 470 680 1000 1200 1500 1800 2200 2700 3300 3900 4700 5600 6800 8200 0.010 0.012 0.015 0.018 0.022 0.027 0.033 0.039 0.047 0.056 0.068 0.082 0.10 0.12 0.15 0.18 0.22 0.27 0.33 0.47 0.56 0.68 0.82 1.0 1.2 1.5 1.8 2.2 3.3 4.7 6.8 10 22 47 100 WVDC (L) Length SIZE Soldering Packaging C 0.56 (0.022) 6.3 25 0603 E 0.71 (0.028) PAPER G 0.86 (0.034) 10 16 0805 J 0.94 (0.037) Q K 1.02 (0.040) 1206 M 1.27 (0.050) N 1.40 (0.055) 1210 P Q 1.52 1.78 (0.060) (0.070) EMBOSSED X 2.29 (0.090) Y 2.54 (0.100) Z 2.79 (0.110) 31 Automotive MLCC Automotive GENERAL DESCRIPTION AVX Corporation has supported the Automotive Industry requirements for Multilayer Ceramic Capacitors consistently for more than 10 years. Products have been developed and tested specifically for automotive applications and all manufacturing facilities are QS9000 and VDA 6.4 approved. As part of our sustained investment in capacity and state of the art technology, we are now transitioning from the established Pd/Ag electrode system to a Base Metal Electrode system (BME). AVX is using AECQ200 as the qualification vehicle for this transition. A detailed qualification package is available on request and contains results on a range of part numbers including: * X7R dielectric components containing BME electrode and copper terminations with a Ni/Sn plated overcoat. * X7R dielectric components BME electrode and soft terminations with a Ni/Sn plated overcoat. * NP0 dielectric components containing Pd/Ag electrode and silver termination with a Ni/Sn plated overcoat. HOW TO ORDER 0805 Size 0603 0805 1206 1210 1812 5 Voltage 6.3V = 6 10V = Z 16V = Y 25V = 3 50V = 5 100V = 1 200V = 2 C 104 K 4 T 2 A Dielectric NP0 = A X7R = C Capacitance Code (In pF) 2 Significant Digits + Number of Zeros e.g. 10F = 106 Capacitance Tolerance J = 5% K = 10% M = 20% Failure Rate 4 = Automotive Terminations T = Plated Ni and Sn Z = Soft Termination U = Conductive Epoxy Packaging 2 = 7" Reel 4 = 13" Reel Special Code A = Std. Product COMMERCIAL VS AUTOMOTIVE MLCC PROCESS COMPARISON Administrative Commercial Standard Part Numbers. No restriction on who purchases these parts. Automotive Specific Automotive Part Number. Used to control supply of product to Automotive customers. Design Minimum ceramic thickness of 0.020" Minimum Ceramic thickness of 0.029" (0.74mm) on all X7R product. Dicing Side & End Margins = 0.003" min Side & End Margins = 0.004" min Cover Layers = 0.005" min Lot Qualification (Destructive Physical Analysis - DPA) As per EIA RS469 Increased sample plan - stricter criteria. Visual/Cosmetic Quality Standard process and inspection 100% inspection Application Robustness Standard sampling for accelerated wave solder on X7R dielectrics Increased sampling for accelerated wave solder on X7R and NP0 followed by lot by lot reliability testing. All Tests have Accept/Reject Criteria 0/1 32 Automotive MLCC NP0/X7R Dielectric SOFT TERMINATION FEATURES a) Bend Test The capacitor is soldered to the PC Board as shown: b) Temperature Cycle testing "Soft Termination" has the ability to withstand at least 1000 cycles between -55C and +125C 1mm/sec 90 mm Typical bend test results are shown below: Style Conventional Term 0603 >2mm 0805 >2mm 1206 >2mm Soft Term >5 >5 >5 ELECTRODE AND TERMINATION OPTIONS NP0 DIELECTRIC NP0 Ag/Pd Electrode Nickel Barrier Termination PCB Application Sn Ni Ag Figure 1 Termination Code T X7R DIELECTRIC X7R Nickel Electrode Soft Termination PCB Application X7R Dielectric PCB Application Ni Cu Epoxy Ni Sn Sn Ni Cu Figure 2 Termination Code T Ni Figure 3 Termination Code Z Conductive Epoxy Termination Hybrid Application Cu Termination Ni Conductive Epoxy Figure 4 Termination Code U 33 NP0 Automotive Capacitance Range (Ni Barrier Termination) 0603 R47 R51 R56 R62 R68 R75 R82 R91 1R0 1R2 1R5 1R8 2R0 2R2 2R4 2R7 3R0 3R3 3R6 3R9 4R3 4R7 5R1 5R6 6R2 6R8 7R5 8R2 9R1 100 120 150 180 220 270 330 390 470 510 560 680 820 101 121 151 181 221 271 331 391 471 561 681 821 102 122 152 182 222 272 332 392 472 562 682 822 103 25V G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G 25V 50V G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G 50V 0805 100V G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G 100V 25V J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J M M 25V 0603 Letter Max. Thickness 34 A 0.33 (0.013) 50V J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J 1206 100V J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J 50V 100V 25V J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J M M M M 25V 0805 C 0.56 (0.022) E 0.71 (0.028) PAPER G 0.86 (0.034) 1210 50V J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J M M M M M M M 100V J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J M M M Q Q 50V 100V 50V 100V 200V J J J J J J J J J M M M M 25V J J J J J J J J M J M M M M M M P P J M M M M 100V 200V 1206 J 0.94 (0.037) K 1.02 (0.040) 1812 25V 50V 50V 100V K K K K K K 50V 1210 M 1.27 (0.050) N 1.40 (0.055) 100V 1812 P Q 1.52 1.78 (0.060) (0.070) EMBOSSED X 2.29 (0.090) Y 2.54 (0.100) Z 2.79 (0.110) BME X7R Automotive Capacitance Range (Ni Barrier Termination) 0603 0805 16V 25V 50V 100V G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G G 16V 25V 101 121 151 181 221 271 331 391 471 561 681 821 102 122 152 182 222 272 332 392 472 562 682 822 103 123 153 183 223 273 333 393 473 563 683 823 104 124 154 184 224 274 334 394 474 564 684 824 105 155 50V 100V 200V 200V 16V 25V 50V J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J M M M N N N N J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J N N N J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J 16V 25V 0603 Letter Max. Thickness A 0.33 (0.013) C 0.56 (0.022) 50V 1206 100V 200V J J J J J J J J J J J J J J J J J J J M M M M M M M M J J J J J J J J J J J 100V 200V 25V 50V 100V 200V J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J M M M M M M J J J J J J J J J J J J J J J J J J J J J J J J J J J M M M M M M J J J J J J J J J J J J J J J J J J J J J J J J J M M M M J J J J J J J J J J J J J J J J J J J M M M M M M M J J J J J J J J J 16V 25V 50V 100V 200V 0805 E 0.71 (0.028) PAPER G 0.86 (0.034) J 0.94 (0.037) 1210 16V 16V K K K K K K M M P P P P P P P P P 16V 25V K K K K K K M M P P P P 25V 1206 K 1.02 (0.040) M 1.27 (0.050) N 1.40 (0.055) 50V K K K K K K M M P P P P 50V 1812 100V 200V K K K K K M M M M P 100V 200V 16V 25V 50V K K K K K K K M M X X X X X X X K K K K K K K M M X X X X X X X K K K K K K K M M X X X X X X X 16V 25V 1210 P Q 1.52 1.78 (0.060) (0.070) EMBOSSED X 2.29 (0.090) 50V 100V 200V 100V 200V 1812 Y 2.54 (0.100) Z 2.79 (0.110) 35 MLCC with Soft Termination General Specifications GENERAL DESCRIPTION With increased requirements from the automotive industry for additional component robustness, AVX recognized the need to produce a MLCC with enhanced mechanical strength. It was noted that many components may be subject to severe flexing and vibration when used in various under the bonnet automotive applications. To satisfy the requirement for enhanced mechanical strength, AVX had to find a way of ensuring electrical integrity is maintained whilst external forces are being applied to the component. It was found that the structure of the termination needed to be flexible and after much research and development, a "soft termination" was found. This soft termination is designed to enhance the mechanical flexure and temperature cycling performance of a standard ceramic capacitor with an X7R dielectric. The industry standard for flexure is 2 mm minimum with Soft Termination. AVX guarantees a minimum flexure of 5 mm, without any internal cracks. Beyond 5mm generally the component will open. The industry standard for temperature cycling is 1000 cycles, AVX guarantees 3000 cycles. As well as for automotive applications the Soft Termination will provide Design Engineers with a satisfactory solution when designing PCB's which may be subject to high levels of board flexure. PRODUCT ADVANTAGES * High mechanical performance able to withstand, 5mm bend test guaranteed. * Open failure mode is apparent when products are overstressed by 5mm. * Increased temperature cycling performance, 3000 cycles and beyond. * Flexible termination system. * Reduction in circuit board flex failures. * Base metal electrode system. * Automotive or commercial grade products available. APPLICATIONS High Flexure Stress Circuit Boards * e.g. Depanelization: Components near edges of board. Variable Temperature Applications * Soft termination offers improved reliability performance in applications where there is temperature variation. * e.g. All kind of engine sensors: Direct connection to battery rail. Automotive Applications * Improved reliability. * Excellent mechanical performance and thermo mechanical performance. HOW TO ORDER 0805 5 C 104 K Style 0603 0805 1206 1210 1812 Voltage 6 = 6.3V Z = 10V Y = 16V 3 = 25V 5 = 50V 1 = 100V 2 = 200V Dielectric C = X7R Capacitance Code (In pF) 2 Sig Digits + Number of Zeros e.g., 104 = 100nF Capacitance Tolerance J = 5% K = 10% M = 20% 36 A Z Failure Terminations Rate Z = Soft A=Commercial Termination 4 = Automotive 2 A Packaging 2 = 7" reel 4 = 13" reel Special Code A = Std. Product MLCC with Soft Termination Specifications and Test Methods BOARD BEND TEST PROCEDURE PERFORMANCE TESTING According to AEC-Q200 AEC-Q200 Qualification: * Created by the Automotive Electronics Council * Specification defining stress test qualification for passive components Testing: Key tests used to compare soft termination to AEC-Q200 qualification: * Bend Test * Temperature Cycle Test Test Procedure as per AEC-Q200: Sample size: 20 components Span: 90mm Minimum deflection spec: 2 mm LOADING KNIFE * Components soldered onto FR4 PCB (Figure 1) MOUNTING ASSEMBLY * Board connected electrically to the test equipment (Figure 2) DIGITAL CALIPER BEND TESTPLATE CONNECTOR CONTROL PANEL CONTROL PANEL Fig 1 - PCB layout with electrical connections BOARD BEND TEST RESULTS Fig 2 - Board Bend test equipment 0603 Substrate Bend (mm) NPO X7R X7R soft term 1206 12 10 8 6 4 2 0 NPO X7R 0805 Substrate Bend (mm) 12 10 8 6 4 2 0 12 10 8 6 4 2 0 Substrate Bend (mm) Substrate Bend (mm) AEC-Q200 Vrs AVX Soft Termination Bend Test 12 10 8 6 4 2 0 NPO X7R AVX ENHANCED SOFT TERMINATION BEND TEST PROCEDURE X7R soft term 1210 X7R soft term NPO X7R Bend Test The capacitor is soldered to the printed circuit board as shown and is bent up to 10mm at 1mm per second: Max. = 10mm X7R soft term TABLE SUMMARY 90mm Typical bend test results are shown below: Style Conventional Termination Soft Termination 0603 >2mm >5mm 0805 >2mm >5mm 1206 >2mm >5mm TEMPERATURE CYCLE TEST PROCEDURE Test Procedure as per AEC-Q200: The test is conducted to determine the resistance of the component when it is exposed to extremes of alternating high and low temperatures. * Sample lot size quantity 77 pieces * TC chamber cycle from -55C to +125C for 1000 cycles * Interim electrical measurements at 250, 500, 1000 cycles * Measure parameter capacitance dissipation factor, insulation resistance Test Temperature Profile (1 cycle) +1250 C * The board is placed on 2 supports 90mm apart (capacitor side down) * The row of capacitors is aligned with the load stressing knife Max. = 10mm * The load is applied and the deflection where the part starts to crack is recorded (Note: Equipment detects the start of the crack using a highly sensitive current detection circuit) * The maximum deflection capability is 10mm +250 C -550 C 1 hour 12mins 37 MLCC with Soft Termination Specifications and Test Methods BEYOND 1000 CYCLES: TEMPERATURE CYCLE TEST RESULTS 0603 10 8 % Failure % Failure 8 6 4 2 0 6 4 2 0 0 500 1000 1500 2000 2500 3000 0 1206 10 500 1000 1500 2000 2500 3000 1210 10 8 % Failure 8 % Failure 0805 10 6 4 2 0 6 4 2 0 0 500 1000 1500 2000 2500 3000 0 Soft Term - No Defects up to 3000 cycles 500 1000 1500 2000 2500 3000 AEC-Q200 specification states 1000 cycles compared to AVX 3000 temperature cycles. SOFT TERMINATION TEST SUMMARY * Qualified product by using the AEC-Q200 test/specification with the exception of using AVX 3000 temperature cycles (up to +150C bend test guaranteed greater than 5mm). * Soft Termination provides improved performance compared to standard termination systems. WITHOUT SOFT TERMINATION Major fear is of latent board flex failures. 38 * Board bend test improvement by a factor of 2 to 4 times. * Temperature Cycling: - 0% Failure up to 3000 cycles - No ESR change up to 3000 cycles WITH SOFT TERMINATION Far superior mechanical performance. Generally open failure mode beyond 5mm flexure. MLCC with Soft Termination X7R Dielectric Capacitance Range 0603 101 121 151 181 221 271 331 391 471 561 681 821 102 122 152 182 222 272 332 392 472 562 682 822 103 123 153 183 223 273 333 393 473 563 683 823 104 124 154 184 224 274 334 394 474 564 684 824 105 155 185 225 0805 16V 25V 50V 100V J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J 16V 25V 50V 100V 25V 50V 100V J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J M M M N N N N J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J N N N J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J M M M M M M M M 16V 25V 0603 Letter Max. Thickness A 0.33 (0.013) C 0.56 (0.022) 1206 16V 50V 100V 25V 50V 100V J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J J M M M M M M J J J J J J J J J J J J J J J J J J J J J J J J J J J M M M M M M J J J J J J J J J J J J J J J J J J J J J J J J J M M M M J J J J J J J J J J J J J J J J J J J M M M M P Q 16V 25V 0805 E 0.71 (0.028) PAPER G 0.86 (0.034) J 0.94 (0.037) 1210 16V Q Q 50V 100V 16V K K K K K K M M P P P P P P P P P K K K K K K M M P P P P 16V 25V 1206 K 1.02 (0.040) M 1.27 (0.050) N 1.40 (0.055) 25V 1812 50V K K K K K K M M P P P P 50V 100V K K K K K M M M P 100V 16V 25V 50V 100V K K K K K K K M M M X X X X X X K K K K K K K M M M X X X X X X K K K K K K K M M M X X X X X X K K K K K M M X X X X X 16V 25V 50V 100V 1210 P Q 1.52 1.78 (0.060) (0.070) EMBOSSED X 2.29 (0.090) 1812 Y 2.54 (0.100) Z 2.79 (0.110) = Range extension parts 39 Capacitor Array Capacitor Array (IPC) BENEFITS OF USING CAPACITOR ARRAYS AVX capacitor arrays offer designers the opportunity to lower placement costs, increase assembly line output through lower component count per board and to reduce real estate requirements. Reduced Costs Placement costs are greatly reduced by effectively placing one device instead of four or two. This results in increased throughput and translates into savings on machine time. Inventory levels are lowered and further savings are made on solder materials, etc. Space Saving Space savings can be quite dramatic when compared to the use of discrete chip capacitors. As an example, the 0508 4-element array offers a space reduction of >40% vs. 4 x 0402 discrete capacitors and of >70% vs. 4 x 0603 discrete capacitors. (This calculation is dependent on the spacing of the discrete components.) Increased Throughput Assuming that there are 220 passive components placed in a mobile phone: A reduction in the passive count to 200 (by replacing discrete components with arrays) results in an increase in throughput of approximately 9%. A reduction of 40 placements increases throughput by 18%. For high volume users of cap arrays using the very latest placement equipment capable of placing 10 components per second, the increase in throughput can be very significant and can have the overall effect of reducing the number of placement machines required to mount components: If 120 million 2-element arrays or 40 million 4-element arrays were placed in a year, the requirement for placement equipment would be reduced by one machine. During a 20Hr operational day a machine places 720K components. Over a working year of 167 days the machine can place approximately 120 million. If 2-element arrays are mounted instead of discrete components, then the number of placements is reduced by a factor of two and in the scenario where 120 million 2-element arrays are placed there is a saving of one pick and place machine. Smaller volume users can also benefit from replacing discrete components with arrays. The total number of placements is reduced thus creating spare capacity on placement machines. This in turn generates the opportunity to increase overall production output without further investment in new equipment. W2A (0508) Capacitor Arrays 4 pcs 0402 Capacitors = 1 pc 0508 Array 1.88 (0.074) 1.0 1.4 (0.055) (0.039) 5.0 (0.197) AREA = 7.0mm2 (0.276 in2) 2.1 (0.083) AREA = 3.95mm2 (0.156 in2) The 0508 4-element capacitor array gives a PCB space saving of over 40% vs four 0402 discretes and over 70% vs four 0603 discrete capacitors. W3A (0612) Capacitor Arrays 4 pcs 0603 Capacitors = 1 pc 0612 Array 2.0 (0.079) 2.3 1.5 (0.091) (0.059) 6.0 (0.236) AREA = 13.8mm2 (0.543 in2) 3.2 (0.126) AREA = 6.4mm2 (0.252 in2) The 0612 4-element capacitor array gives a PCB space saving of over 50% vs four 0603 discretes and over 70% vs four 0805 discrete capacitors. 40 Capacitor Array NP0/C0G X7R/X5R SIZE # Elements 0405 2 0508 2 0508 4 0612 4 Soldering Packaging MM Length (in.) MM Width (in.) Max. MM Thickness (in.) WVDC Cap 1.0 (pF) 1.2 1.5 1.8 2.2 2.7 3.3 3.9 4.7 5.6 6.8 8.2 10 12 15 18 22 27 33 39 47 56 68 82 100 120 150 180 220 270 330 390 470 560 680 820 1000 1200 1500 1800 2200 2700 3300 3900 4700 5600 6800 8200 Cap 0.010 (F) Reflow Only All Paper 1.00 0.15 (0.039 0.006) 1.37 0.15 (0.054 0.006) 0.66 (0.026) Reflow/Wave All Paper 1.30 0.15 (0.051 0.006) 2.10 0.15 (0.083 0.006) 0.94 (0.037) Reflow/Wave Paper/Embossed 1.30 0.15 (0.051 0.006) 2.10 0.15 (0.083 0.006) 0.94 (0.037) Reflow/Wave Paper/Embossed 1.60 0.150 (0.063 0.006) 3.20 0.20 (0.126 0.008) 1.35 (0.053) 16 = NP0/C0G 25 50 16 25 50 100 16 25 50 100 16 25 SIZE # Elements 0405 2 0508 2 0508 4 Soldering Reflow Only Reflow/Wave Reflow/Wave Packaging All Paper All Paper Paper/Embossed MM 1.00 0.15 1.30 0.15 1.30 0.15 Length (in.) (0.039 0.006) (0.051 0.006) (0.051 0.006) MM 1.37 0.15 2.10 0.15 2.10 0.15 Width (in.) (0.054 0.006) (0.083 0.006) (0.083 0.006) Max. MM 0.66 0.94 0.94 Thickness (in.) (0.026) (0.037) (0.037) 50 100 WVDC 10 16 25 50 10 16 25 50 100 16 25 50 100 Cap 100 (pF) 120 150 180 220 270 330 390 470 560 680 820 1000 1200 1500 1800 2200 2700 3300 3900 4700 5600 6800 8200 Cap 0.010 F 0.012 0.015 0.018 0.022 0.027 0.033 0.039 0.047 0.056 0.068 0.082 0.10 0.12 0.15 0.18 0.22 0.27 0.33 0.47 0.56 0.68 0.82 1.0 1.2 1.5 1.8 2.2 3.3 4.7 10 22 47 100 = X7R 0612 4 Reflow/Wave Paper/Embossed 1.60 0.20 (0.063 0.008) 3.20 0.20 (0.126 0.008) 1.35 (0.053) 16 25 50 100 = X5R 41 Capacitor Array Multi-Value Capacitor Array (IPC) GENERAL DESCRIPTION ADVANTAGES OF THE MULTI-VALUE CAPACITOR ARRAYS A recent addition to the array product range is the MultiValue Capacitor Array. These devices combine two different capacitance values in standard `Cap Array' packages and are available with a maximum ratio between the two capacitance values of 100:1. The multi-value array is currently available in the 0405 and 0508 2-element styles and also in the 0612 4-element style. Whereas to date AVX capacitor arrays have been suited to applications where multiple capacitors of the same value are used, the multi-value array introduces a new flexibility to the range. The multi-value array can replace discrete capacitors of different values and can be used for broadband decoupling applications. The 0508 x 2 element multi-value array would be particularly recommended in this application. Another application is filtering the 900/1800 or 1900MHz noise in mobile phones. The 0405 2-element, low capacitance value NP0, (C0G) device would be suited to this application, in view of the space saving requirements of mobile phone manufacturers. Enhanced Performance Due to Reduced Parasitic Inductance When connected in parallel, not only do discrete capacitors of different values give the desired self-resonance, but an additional unwanted parallel resonance also results. This parallel resonance is induced between each capacitor's self-resonant frequencies and produces a peak in impedance response. For decoupling and bypassing applications this peak will result in a frequency band of reduced decoupling and in filtering applications reduced attenuation. The multi-value capacitor array, combining capacitors in one unit, virtually eliminates the problematic parallel resonance, by minimizing parasitic inductance between the capacitors, thus enhancing the broadband decoupling/filtering performance of the part. Reduced ESR An advantage of connecting two capacitors in parallel is a significant reduction in ESR. However, as stated above, using discrete components brings with it the unwanted side effect of parallel resonance. The multi-value cap array is an excellent alternative as not only does it perform the same function as parallel capacitors but also it reduces the uncertainty of the frequency response. HOW TO ORDER W Style 2 Case Size 1 = 0405 2 = 0508 3 = 0612 A Array 2 Y Number of Caps Voltage 6 = 6.3V Z = 10V Y = 16V 3 = 25V 5 = 50V 1 = 100V C Dielectric A = NP0 C = X7R D = X5R 102M 104M 1st Value 2nd Value Capacitance Capacitance Code (In pF) Tolerance 2 Sig. Digits + K = 10% Number of M = 20% Zeros X5R/X7R 0612 4-element 100/471 221/104 0508 2-element 100/471 221/104 0405 2-element 100/101 101/103 T 2A Failure Rate Termination Code T = Plated Ni and Sn Packaging & Quantity Code 2A = 7" Reel (4000) 4A = 13" Reel (10000) 2F = 7" Reel (1000) IMPEDANCE VS FREQUENCY Cap (Min/Max) NPO A 1 * Max. ratio between the two cap values is 1:100. * The voltage of the higher capacitance value dictates the voltage of the multi-value part. * Only combinations of values within a specific dielectric range are possible. 42 Impedance (Ohms) 2xDiscrete Caps (0603) 0.8 0.6 0.4 Multi Value Cap (0508) 0.2 0 1 10 100 Frequency (MHz) 1000 Capacitor Array PART & PAD LAYOUT DIMENSIONS 0405 - 2 Element PAD LAYOUT millimeters (inches) 0612 - 4 Element PAD LAYOUT W W E E X X P D S P S S D S A A B T C C C/L OF CHIP BW B T BW C/L OF CHIP C L C L BL L BL L 0508 - 2 Element PAD LAYOUT 0508 - 4 Element PAD LAYOUT E E W P S D W S D X X A P S S A B B C T T BW BW C/L OF CHIP C C/L OF CHIP C L C L BL L BL L PART DIMENSIONS PAD LAYOUT DIMENSIONS 0405 - 2 Element 0405 - 2 Element L W 1.00 0.15 1.37 0.15 (0.039 0.006) (0.054 0.006) T 0.66 MAX (0.026 MAX) BW BL 0.36 0.10 0.20 0.10 (0.014 0.004) (0.008 0.004) P S 0.64 REF 0.32 0.10 (0.025 REF) (0.013 0.004) 0508 - 2 Element L W 1.30 0.15 2.10 0.15 (0.051 0.006) (0.083 0.006) W 1.30 0.15 2.10 0.15 (0.051 0.006) (0.083 0.006) 0.94 MAX (0.037 MAX) BW BL 0.43 0.10 0.33 0.08 (0.017 0.004) (0.013 0.003) P S 1.00 REF 0.50 0.10 (0.039 REF) (0.020 0.004) L W C D E 1.20 (0.047) 0.30 (0.012) 0.64 (0.025) A B C D E 0.68 (0.027) 1.32 (0.052) 2.00 (0.079) 0.46 (0.018) 1.00 (0.039) 0508 - 4 Element T 0.94 MAX (0.037 MAX) BW BL 0.25 0.06 0.20 0.08 (0.010 0.003) (0.008 0.003) P X S 0.50 REF 0.75 0.10 0.25 0.10 (0.020 REF) (0.030 0.004) (0.010 0.004) 0612 - 4 Element 1.60 0.20 3.20 0.20 (0.063 0.008) (0.126 0.008) B 0.74 (0.029) 0508 - 2 Element T 0508 - 4 Element L A 0.46 (0.018) A B C D E 0.56 (0.022) 1.32 (0.052) 1.88 (0.074) 0.30 (0.012) 0.50 (0.020) 0612 - 4 Element T 1.35 MAX (0.053 MAX) BW BL +0.25 0.41 0.10 0.18 -0.08 (0.016 0.004) (0.007+0.010 ) -0.003 P X S 0.76 REF 1.14 0.10 0.38 0.10 (0.030 REF) (0.045 0.004) (0.015 0.004) A B C D E 0.89 (0.035) 1.65 (0.065) 2.54 (0.100) 0.46 (0.018) 0.79 (0.031) 43 Low Inductance Capacitors Introduction Multiple terminations of a capacitor will also help in reducing the parasitic inductance of the device. The IDC is such a device. By terminating one capacitor with 8 connections the ESL can be reduced even further. The measured inductance of the 0612 IDC is 60 pH, while the 0508 comes in around 50 pH. These FR4 mountable devices allow for even higher clock speeds in a digital decoupling scheme. Design and product offerings are shown on pages 48 and 49. SpinGuard - 2000 pH + - - 2000 INTERDIGITATED CAPACITORS + As switching speeds increase and pulse rise times decrease the need to reduce inductance becomes a serious limitation for improved system performance. Even the decoupling capacitors, that act as a local energy source, can generate unacceptable voltage spikes: V = L (di/dt). Thus, in high speed circuits, where di/dt can be quite large, the size of the voltage spike can only be reduced by reducing L. Figure 1 displays the evolution of ceramic capacitor toward lower inductance designs over the last few years. AVX has been at the forefront in the design and manufacture of these newer more effective capacitors. + 1500 1206 MLC 1200 pH 170 pH 500 + pH 0612 LICC - 1000 0508 LICC 130 pH 0 1990s 1980s Figure 1. The evolution of Low Inductance Capacitors at AVX (values given for a 100 nF capacitor of each style) LOW INDUCTANCE CHIP CAPACITORS The total inductance of a chip capacitor is determined both by its length to width ratio and by the mutual inductance coupling between its electrodes. Thus a 1210 chip size has lower inductance than a 1206 chip. This design improvement is the basis of AVX's low inductance chip capacitors, LI Caps, where the electrodes are terminated on the long side of the chip instead of the short side. The 1206 becomes an 0612 as demonstrated in Figure 2. In the same manner, an 0805 becomes an 0508 and 0603 becomes an 0306. This results in a reduction in inductance from around 1200 pH for conventional MLC chips to below 200 pH for Low Inductance Chip Capacitors. Standard designs and performance of these LI Caps are given on pages 46 and 47. LOW INDUCTANCE CHIP ARRAYS (LICA(R)) Further reduction in inductance can be achieved by designing alternative current paths to minimize the mutual inductance factor of the electrodes (Figure 3). This is achieved by AVX's LICA(R) product which was the result of a joint development between AVX and IBM. As shown in Figure 4, the charging current flowing out of the positive plate returns in the opposite direction along adjacent negative plates. This minimizes the mutual inductance. The very low inductance of the LICA capacitor stems from the short aspect ratio of the electrodes, the arrangement of the tabs so as to cancel inductance, and the vertical aspect of the electrodes to the mounting surface. Net Inductance Charges leaving + plate 25 pH Charges entering - plate 0612 IDC 0508 IDC LICA 50 pH 60 pH Charges leaving + plate 105pH Charges entering - plate 0306 LICC Net Inductance 1206 0612 Figure 2. Change in aspect ratio: 1206 vs. 0612 44 Figure 3. Net Inductance from design. In the standard Multilayer capacitor, the charge currents entering and leaving the capacitor create complementary flux fields, so the net inductance is greater. On the right, however, if the design permits the currents to be opposed, there is a net cancellation, and the inductance is much lower. Low Inductance Capacitors Introduction Also the effective current path length is minimized because the current does not have to travel the entire length of both electrodes to complete the circuit. This reduces the self inductance of the electrodes. The self inductance is also minimized by the fact that the charging current is supplied by both sets of terminals reducing the path length even further! The inductance of this arrangement is less than 30 pH, causing the self-resonance to be above 100 MHz for the same popular 100 nF capacitance. Parts available in the LICA design are shown on pages 50 and 51. Figure 5 compares the self resonant frequencies of various capacitor designs versus capacitance values. The approximate inductance of each style is also shown. Figure 4. LICA's Electrode/Termination Construction. The current path is minimized - this reduces self-inductance. Current flowing out of the positive plate, returns in the opposite direction along the adjacent negative plate - this reduces the mutual inductance. Active development continues on low inductance capacitors. C4 termination with low temperature solder is now available for plastic packages. Consult AVX for details. 1000.00 LICA (25 pH) Self Resonant Frequency (MHz) 0508 IDC (50 pH) 0612 IDC (60 pH) 100.00 0306 LICC (110 pH) 0508 LICC (130 pH) 0612 LICC (170 pH) 0603 (700 pH) 0805 (800 pH) 10.00 1206 (1200 pH) 1.00 10.00 100.00 1000.00 Capacitance, (nF) Figure 5. Self Resonant Frequency vs. Capacitance and Capacitor Design 45 Low Inductance Capacitors 0612/0508/0306 LICC (Low Inductance Chip Capacitors) GENERAL DESCRIPTION The total inductance of a chip capacitor is determined both by its length to width ratio and by the mutual inductance coupling between its electrodes. Thus a 1210 chip size has a lower inductance than a 1206 chip. This design improvement is the basis of AVX's Low Inductance Chip Capacitors (LICC), where the electrodes are terminated on the long side of the chip instead of the short side. The 1206 becomes an 0612, in the same manner, an 0805 becomes an 0508, an 0603 becomes an 0306. This results in a reduction in inductance from the 1nH range found in normal chip capacitors to less than 0.2nH for LICCs. Their low profile is also ideal for surface mounting (both on the PCB and on IC package) or inside cavity mounting on the IC itself. LICC MLCC HOW TO ORDER 0612 Z D 105 M A T 2 A* Size 0306 0508 0612 Voltage 6 = 6.3V Z = 10V Y = 16V 3 = 25V 5 = 50V Dielectric C = X7R D = X5R Capacitance Code (In pF) 2 Sig. Digits + Number of Zeros Capacitance Tolerance K = 10% M = 20% Failure Rate A = N/A Terminations T = Plated Ni and Sn J = Tin/Lead Packaging Available 2 = 7" Reel 4 = 13" Reel Thickness Thickness mm (in) 0.56 (0.022) 0.61 (0.024) 0.76 (0.030) 1.02 (0.040) 1.27 (0.050) PERFORMANCE CHARACTERISTICS Capacitance Tolerances Operation Temperature Range Temperature Coefficient Voltage Ratings Dissipation Factor TYPICAL INDUCTANCE K = 10%; M = 20% X7R = -55C to +125C; X5R = -55C to +85C 15% (0VDC) 6.3, 10, 16, 25 VDC 6.3V = 6.5% max; 10V = 5.0% max; 16V = 3.5% max; 25V = 3.0% max 100,000M min, or 1,000M per F min.,whichever is less Insulation Resistance (@+25C, RVDC) Package Style Measured Inductance (pH) 1206 MLCC 1200 0612 LICC 170 0508 LICC 130 0306 LICC 105 *Note: See Range Chart for Codes TYPICAL IMPEDANCE CHARACTERISTICS 10 10 Impedance (Ohms) Impedance (Ohms) MLCC_0805 1 0.1 LICC_0508 0.01 0.001 1 10 Frequency (MHz) 46 100 1000 MLCC_1206 1 0.1 LICC_0612 0.01 0.001 1 10 Frequency (MHz) 100 1000 Low Inductance Capacitors 0612/0508/0306 LICC (Low Inductance Chip Capacitors) SIZE 0306 0508 0612 Packaging Embossed Embossed Embossed 0.81 0.15 (0.032 0.006) 1.60 0.15 (0.063 0.006) 1.27 0.25 (0.050 0.010) 2.00 0.25 (0.080 0.010) 1.60 0.25 (0.063 0.010) 3.20 0.25 (0.126 0.010) Length Width MM (in.) MM (in.) WVDC CAP (uF) 6.3 10 16 PHYSICAL DIMENSIONS AND PAD LAYOUT 25 50 6.3 10 16 25 50 6.3 10 16 25 50 t W 0.001 0.0022 T 0.0047 0.010 0.015 L 0.022 0.047 PHYSICAL CHIP DIMENSIONS 0.068 0.10 0612 0.15 0.22 0508 0.47 0306 0.68 mm (in) L W t 1.60 0.25 (0.063 0.010) 1.27 0.25 (0.050 0.010) 0.81 0.15 (0.032 0.006) 3.20 0.25 (0.126 0.010) 2.00 0.25 (0.080 0.010) 1.60 0.15 (0.063 0.006) 0.13 min. (0.005 min.) 0.13 min. (0.005 min.) 0.13 min. (0.005 min.) T - See Range Chart for Thickness and Codes 1.0 1.5 2.2 PAD LAYOUT DIMENSIONS 3.3 4.7 0612 0508 0306 10 = X5R Solid = X7R mm (in.) mm (in.) 0508 0612 Code Thickness Code Thickness Code Thickness 0.61 (0.024) B C 0.76 (0.030) 3.05 (0.120) .635 (0.025) 0.51 (0.020) 2.03 (0.080) 0.51 (0.020) 0.31 (0.012) 1.52 (0.060) 0.51 (0.020) mm (in.) 0306 A mm (in) A S 0.56 (0.022) S V 0.76 (0.030) V 0.56 (0.022) 0.76 (0.030) A 1.02 (0.040) W 1.02 (0.040) A 1.27 (0.050) "B" C "A" C 47 Low Inductance Capacitors 0612/0508 IDC (InterDigitated Capacitors) GENERAL DESCRIPTION * Very low equivalent series inductance (ESL), surface mountable, high speed decoupling capacitor in 0612 and 0508 case size. * Measured inductances of 60 pH (for 0612) and 50 pH (for 0508) are the lowest in the FR4 mountable device family. Now use 10T devices with inductances of 45 pH (for 0612) and 35 pH (for 0508). * Opposing current flow creates opposing magnetic fields. This causes the fields to cancel, effectively reducing the equivalent series inductance. * Perfect solution for decoupling high speed microprocessors by allowing the engineers to lower the power delivery inductance of the entire system through the use of eight vias. * Overall reduction in decoupling components due to very low series inductance and high capacitance. 0612 0508 + - - - + + + - HOW TO ORDER W Style 3 L 1 6 D 225 M T A 3 A Case Low Number Voltage Dielectric Capacitance Capacitance Failure Termination Packaging Tolerance Rate T = Plated Ni Size Inductance of 4 = 4V C = X7R Code (In pF) Available 2 = 0508 ESL = 50pH Terminals 6 = 6.3V D = X5R 2 Sig. Digits + M = 20% A = N/A and Sn 1=7" Reel Number of 3 = 0612 ESL = 60pH 1 = 8 Terminals Z = 10V 3=13" Reel Zeros Y = 16V Thickness Max. Thickness mm (in.) A=0.95 (0.037) S=0.55 (0.022) PERFORMANCE CHARACTERISTICS Capacitance Tolerance Operation Temperature Range Temperature Coefficient Voltage Ratings Dissipation Factor Insulation Resistance (@+25C, RVDC) 20% Preferred X7R = -55C to +125C; X5R = -55C to +85C 15% (0VDC) 4, 6.3, 10, 16 VDC 4V, 6.3V = 6.5% max; 10V = 5.0% max; 16V = 3.5% max 100,000M min, or 1,000M per F min.,whichever is less Dielectric Strength No problems observed after 2.5 x RVDC for 5 seconds at 50mA max current CTE (ppm/C) 12.0 Thermal Conductivity 4-5W/M K Terminations Available Max. Thickness Plated Nickel and Solder 0.037" (0.95mm) TYPICAL ESL AND IMPEDANCE Measured Inductance (pH) 1206 MLCC 1200 0612 LICC 170 0612 IDC 60 10 Impedance (Ohms) Package Style MLCC_1206 1 LICC_0612 0.1 IDC_0612 0.01 0.001 1 0508 IDC 48 50 10 100 Frequency (MHz) 1000 Low Inductance Capacitors 0612/0508 IDC (InterDigitated Capacitors) SIZE Thin 0508 MM (in.) MM Width (in.) Terminal MM Pitch (in.) Thickness MM (in.) Inductance (pH) WVDC CAP (uF) and Thickness 2.03 0.20 (0.080 0.008) 1.27 0.20 (0.050 0.008) 0.508 REF 0.020 REF 0.55 MAX. (0.022) MAX. 95 4 6.3 10 16 Length 0508 Thin 0612 2.03 0.20 (0.080 0.008) 1.27 0.20 (0.050 0.008) 0.508 REF 0.020 REF 0.95 MAX. (0.037) MAX. 95 6.3 10 16 4 0612 3.20 0.20 (0.126 0.008) 1.60 0.20 (0.063 0.008) 0.76 REF 0.030 REF 0.55 MAX. (0.022) MAX. 120 4 6.3 10 16 4 3.20 0.20 (0.126 0.008) 1.60 0.20 (0.063 0.008) 0.76 REF 0.030 REF 0.95 MAX. (0.037) MAX. 120 6.3 10 16 0.047 0.068 0.10 0.22 0.33 0.47 0.68 1.0 Consult factory for additional requirements 1.5 = X7R 2.2 = X5R 3.3 PHYSICAL DIMENSIONS AND PAD LAYOUT L X X P S S T E D BW C/L OF CHIP C L A B C BL W PHYSICAL CHIP DIMENSIONS 0612 L W BW 3.20 0.20 1.60 0.20 0.41 0.10 (0.126 0.008) (0.063 0.008) (0.016 0.004) PAD LAYOUT DIMENSIONS 0612 millimeters (inches) BL 0.18 +0.25 -0.08 (0.007+0.010 ) -0.003 P X S 0.76 REF 1.14 0.10 0.38 0.10 (0.030 REF) (0.045 0.004) (0.015 0.004) 0508 L 2.030.20 (0.0800.008) A B C D E 0.89 1.65 2.54 0.46 0.76 (0.035) (0.065) (0.100) (0.018) (0.030) 0508 W BW BL P 1.270.20 (0.0500.008) 0.2540.10 (0.0100.004) 0.18 +0.25 -0.08 (0.007 +0.010 ) -0.003 0.508 REF (0.020 REF) X S 0.760.10 0.2540.10 (0.0300.004) (0.010.0.004) A B C D E 0.64 1.27 1.91 0.28 0.51 (0.025) (0.050) (0.075) (0.011) (0.020) 49 Low Inductance Capacitors LICA(R) (Low Inductance Decoupling Capacitor Arrays) LICA(R) arrays utilize up to four separate capacitor sections in one ceramic body (see Configurations and Capacitance Options). These designs exhibit a number of technical advancements: Low Inductance features- Low resistance platinum electrodes in a low aspect ratio pattern Double electrode pickup and perpendicular current paths C4 "flip-chip" technology for minimal interconnect inductance HOW TO ORDER LICA 3 T Style & Size Voltage 5V = 9 10V = Z 25V = 3 102 M F 3 Dielectric Cap/Section Capacitance Height D = X5R (EIA Code) Tolerance Code T = T55T 102 = 1000 pF M = 20% 6 = 0.500mm S = High K 103 = 10 nF P = GMV 3 = 0.650mm T55T 104 = 100 nF 1 = 0.875mm 5 = 1.100mm 7 = 1.600mm TABLE 1 Typical Parameters Capacitance, 25C Capacitance, 55C Capacitance, 85C Dissipation Factor 25 DC Resistance IR (Minimum @25) Dielectric Breakdown, Min Thermal Coefficient of Expansion Inductance: (Design Dependent) Frequency of Operation Ambient Temp Range Termination F = C4 Solder Balls- 97Pb/3Sn H = C4 Solder Balls Low ESR P = Cr-Cu-Au N = Cr-Ni-Au X = None T55T Units Co 1.4 x Co Co 12 0.2 2.0 500 8.5 15 to 120 DC to 5 Gigahertz -55 to 125C Nanofarads Nanofarads Nanofarads Percent Ohms Megaohms Volts ppm/C 25-100 Pico-Henries C 4 A # of Inspection Reel Packaging Caps/Part Code M = 7" Reel 1 = one A = Standard R = 13" Reel 6 = 2"x2" Waffle Pack 2 = two B = Established Reliability 8 = 2"x2" Black Waffle 4 = four Testing Pack 7 = 2"x2" Waffle Pack w/ termination facing up A = 2"x2" Black Waffle Pack w/ termination facing up C = 4"x4" Waffle Pack w/ clear lid A Code Face A = Bar B = No Bar C = Dot, S55S Dielectrics TERMINATION OPTIONS C4 AND PAD DIMENSIONS C4 SOLDER (97% Pb/3% Sn) BALLS 0.8 .03 (2 pics) 0.6 .100mm } "Centrality"* 0.925 0.03mm L = .06mm 0.925 0.03mm Vertical and Horizontal Pitch=0.4 .02mm Code Face to Denote Orientation (Optional) C4 Ball diameter: .164 .03mm "Ht" = (Hb +.096 .02mm typ) "Hb" .06 "W" = .06mm Pin A1 is the lower left hand ball. *NOTE: The C4 pattern will be within 0.1mm of the center of the LICA body, in both axes. Code (Body Height) Width (W) Length (L) Height Body (Hb) 1 3 5 6 7 1.600mm 1.600mm 1.600mm 1.600mm 1.600mm 1.850mm 1.850mm 1.850mm 1.850mm 1.850mm 0.875mm 0.650mm 1.100mm 0.500mm 1.600mm 50 TERMINATION OPTION P OR N Low Inductance Capacitors LICA(R) (Low Inductance Decoupling Capacitor Arrays) LICA(R) TYPICAL PERFORMANCE CURVES 10 160 LICA Impedance 0V 5V 10V 120 100 ESR and Impedance, Ohms Capacitance, nF 140 25V 80 60 40 20 0 -60 -40 -20 0 20 40 60 Temperature, C 80 100 120 1.0 Resistance .1 140 .01 1 10 Frequency, MHz Effect of Bias Voltage and Temperature on a 130 nF LICA(R) (T55T) Impedance vs. Frequency LICA VALID PART NUMBER LIST Part Number Voltage Thickness (mm) 25 25 25 25 25 25 25 25 25 25 0.650 0.650 0.875 0.875 0.875 0.650 1.100 1.100 1.600 1.600 LICA3T193M3FC4AA LICA3T153P3FC4AA LICA3T134M1FC1AA LICA3T104P1FC1AA LICA3T333M1FC4AA LICA3T263P3FC4AA LICA3T244M5FC1AA LICA3T194P5FC1AA LICA3T394M7FC1AB LICA3T314P7FC1AB Extended Range LICAZT623M3FC4AB LICA3T104M3FC1A LICA3T803P3FC1A LICA3T503M3FC2A LICA3T403P3FC2A LICA3S253M3FC4A 10 25 25 25 25 25 CONFIGURATION Capacitors per Package 4 4 1 1 4 4 1 1 1 1 0.650 0.650 0.650 0.650 0.650 0.650 4 1 1 2 2 4 Schematic D Code Face B D CAP C Schematic D1 B1 A1 B1 C1 B1 A1 D2 C2 B2 A2 A2 C2 D2 Code Face B2 D1 C1 B1 A1 D2 C2 B2 A2 D3 C3 B3 A3 D4 C4 B4 A4 CAP 2 C1 A1 C2 A2 D3 B3 D4 B4 A3 D1 CAP 2 CAP 1 C3 A Code Face Schematic D1 B B2 D2 CAP 1 C1 C A CAP 3 WAFFLE PACK OPTIONS FOR LICA(R) 100 CAP 4 C4 A4 LICA(R) PACKAGING SCHEME "M" AND "R" 8mm conductive plastic tape on reel: "M"=7" reel max. qty. 3,000, "R"=13" reel max. qty. 8,000 FLUOROWARE(R) Code Face to Denote Orientation Code Face to Denote Orientation Wells for LICA(R) part, C4 side down 76 pieces/foot 1.75mm x 2.01mm x 1.27mm deep on 4mm centers 0.64mm Push Holes H20-080 Option "6" 100 pcs. per 2" x 2" package Note: Standard configuration is Termination side down Option "C" 400 pcs. per 4" x 4" package Code Face to Denote Orientation (Typical) 1.75mm Sprocket Holes: 1.55mm, 4mm pitch 51 High Voltage MLC Chips For 600V to 5000V Application High value, low leakage and small size are difficult parameters to obtain in capacitors for high voltage systems. AVX special high voltage MLC chips capacitors meet these performance characteristics and are designed for applications such as snubbers in high frequency power converters, resonators in SMPS, and high voltage coupling/DC blocking. These high voltage chip designs exhibit low ESRs at high frequencies. Larger physical sizes than normally encountered chips are used to make high voltage chips. These larger sizes require that special precautions be taken in applying these chips in surface mount assemblies. This is due to differences in the coefficient of thermal expansion (CTE) between the substrate materials and chip capacitors. Apply heat at less than 4C per second during the preheat. The preheat temperature must be within 50C of the peak temperature reached by the ceramic bodies through the soldering process. Chips 1808 and larger to use reflow soldering only. Capacitors with X7R Dielectrics are not intended for AC line filtering applications. Contact plant for recommendations. Capacitors may require protective surface coating to prevent external arcing. HOW TO ORDER 1808 AVX Style 1206 1210 1808 1812 1825 2220 2225 3640 A A 271 K Voltage Temperature Capacitance Code 600V = C Coefficient (2 significant digits 1000V = A C0G = A + no. of zeros) 1500V = S X7R = C Examples: 2000V = G 10 pF = 100 2500V = W 100 pF = 101 3000V = H 1,000 pF = 102 4000V = J 22,000 pF = 223 5000V = K 220,000 pF = 224 1 F = 105 A 1 1 Capacitance Test Termination* Tolerance Level 1 = Pd/Ag C0G: J = 5% A = Standard T = NiGuard K = 10% Nickel M = 20% Barrier X7R: K = 10% Solderable M = 20% Plate Z = +80%, -20% A Packaging 1 = 7" Reel 3 = 13" Reel 9 = Bulk Special Code A = Standard W L T t DIMENSIONS SIZE 1206 (L) Length min. max. *Reflow Soldering Only 52 1808* 1812* millimeters (inches) 1825* 2220* 2225* 3640* 3.20 0.2 3.20 0.2 4.57 0.25 4.50 0.3 4.50 0.3 5.7 0.4 5.72 0.25 9.14 0.25 (0.126 0.008) (0.126 0.008) (0.180 0.010) (0.177 0.012) (0.177 0.012) (0.224 0.016) (0.225 0.010) (0.360 0.010) 1.60 0.2 2.50 0.2 2.03 0.25 3.20 0.2 6.40 0.3 5.0 0.4 6.35 0.25 10.2 0.25 (0.063 0.008) (0.098 0.008) (0.080 0.010) (0.126 0.008) (0.252 0.012) (0.197 0.016) (0.250 0.010) (0.400 0.010) (W) Width (T) Thickness Max. (t) terminal 1210 1.52 (0.060) 0.25 (0.010) 0.75 (0.030) 1.70 (0.067) 0.25 (0.010) 0.75 (0.030) 2.03 (0.080) 0.25 (0.010) 1.02 (0.040) 2.54 (0.100) 0.25 (0.010) 1.02 (0.040) 2.54 (0.100) 0.25 (0.010) 1.02 (0.040) 3.3 (0.130) 0.25 (0.010) 1.02 (0.040) 2.54 (0.100) 0.25 (0.010) 1.02 (0.040) 2.54 (0.100) 0.76 (0.030) 1.52 (0.060) High Voltage MLC Chips For 600V to 5000V Applications C0G Dielectric Performance Characteristics Capacitance Range 10 pF to 0.047 F (25C, 1.0 0.2 Vrms at 1kHz, for 1000 pF use 1 MHz) 5%, 10%, 20% 0.1% max. (+25C, 1.0 0.2 Vrms, 1kHz, for 1000 pF use 1 MHz) -55C to +125C 0 30 ppm/C (0 VDC) 600, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125C) 100K M min. or 1000 M - F min., whichever is less 10K M min. or 100 M - F min., whichever is less 120% rated voltage for 5 seconds at 50 mA max. current Capacitance Tolerances Dissipation Factor Operating Temperature Range Temperature Characteristic Voltage Ratings Insulation Resistance (+25C, at 500 VDC) Insulation Resistance (+125C, at 500 VDC) Dielectric Strength HIGH VOLTAGE C0G CAPACITANCE VALUES VOLTAGE 600 1000 1500 2000 2500 3000 4000 5000 min. max. min. max. min. max. min. max. min. max. min. max. min. max. min. max. 1206 1210 10 pF 680 pF 10 pF 470 pF 10 pF 150 pF 10 pF 68 pF -- -- -- -- -- -- -- -- 100 pF 1500 pF 10 pF 820 pF 10 pF 330 pF 10 pF 150 pF -- -- -- -- -- -- -- -- 1808 1812 1825 2220 100 pF 2700 pF 100 pF 1500 pF 10 pF 470 pF 10 pF 270 pF 10 pF 150 pF 10 pF 100 pF 10 pF 39 pF -- -- 100 pF 5600 pF 100 pF 2700 pF 10 pF 1000 pF 10 pF 680 pF 10 pF 390 pF 10 pF 330 pF 10 pF 100 pF -- -- 1000 pF 0.012 F 100 pF 6800 pF 100 pF 2700 pF 100 pF 1800 pF 10 pF 1000 pF 10 pF 680 pF 10 pF 220 pF -- -- 1000 pF 0.012 F 1000 pF 0.010 F 100 pF 2700 pF 100 pF 2200 pF 100 pF 1000 pF 10 pF 680 pF 10 pF 220 pF -- -- 2225 1000 pF 0.015 F 1000 pF 0.010 F 100 pF 3300 pF 100 pF 2200 pF 100 pF 1200 pF 10 pF 820 pF 10 pF 330 pF -- -- 3640 1000 pF 0.047 F 1000 pF 0.018 F 100 pF 8200 pF 100 pF 5600 pF 100 pF 3900 pF 100 pF 2200 pF 100 pF 1000 pF 10 pF 680 pF X7R Dielectric Performance Characteristics Capacitance Range Capacitance Tolerances Dissipation Factor Operating Temperature Range Temperature Characteristic Voltage Ratings Insulation Resistance (+25C, at 500 VDC) Insulation Resistance (+125C, at 500 VDC) Dielectric Strength 10 pF to 0.56 F (25C, 1.0 0.2 Vrms at 1kHz) 10%; 20%; +80%, -20% 2.5% max. (+25C, 1.0 0.2 Vrms, 1kHz) -55C to +125C 15% (0 VDC) 600, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125C) 100K M min. or 1000 M - F min., whichever is less 10K M min. or 100 M - F min., whichever is less 120% rated voltage for 5 seconds at 50 mA max. current HIGH VOLTAGE X7R MAXIMUM CAPACITANCE VALUES VOLTAGE 600 1000 1500 2000 2500 3000 4000 5000 min. max. min. max. min. max. min. max. min. max. min. max. min. max. min. max. 1206 1210 1808 1000 pF 0.015 F 100 pF 5600 pF 100 pF 1800 pF 10 pF 1000pF -- -- -- -- -- -- -- -- 1000 pF 0.033 F 1000 pF 0.015 F 100 pF 3900 pF 100 pF 2200 pF -- -- -- -- -- -- -- -- 1000 pF 0.056 F 1000 pF 0.018 F 100 pF 6800 pF 100 pF 2700 pF 10 pF 1800 pF 10 pF 1500 pF -- -- -- -- 1812 1000 pF 0.10 F 1000 pF 0.027 F 100 pF 0.012 F 100 pF 4700 pF 10 pF 3300 pF 10 pF 2200 pF -- -- -- -- 1825 2220 2225 3640 0.01 F 0.18 F 1000 pF 0.10 F 1000 pF 0.033 F 100 pF 0.01 F 100 pF 6800 pF 100 pF 4700 pF -- -- -- -- 0.01 F 0.22 F 1000 pF 0.10 F 1000 pF 0.039 F 1000 pF 0.01 F 100 pF 8200 pF 100 pF 4700 pF -- -- -- -- 0.01 F 0.22 F 1000 pF 0.10 F 1000 pF 0.047 F 1000 pF 0.015 F 100 pF 0.01 F 100 pF 6800 pF -- -- -- -- 0.01 F 0.56 F 0.01 F 0.22 F 1000 pF 0.068 F 1000 pF 0.027 F 1000 pF 0.022 F 1000 pF 0.018 F 100 pF 6800 pF 100 pF 3300 pF 53 MIL-PRF-55681/Chips Part Number Example CDR01 thru CDR06 MILITARY DESIGNATION PER MIL-PRF-55681 Part Number Example CDR01 L W D t BP 101 B K S M MIL Style Voltage-temperature Limits Capacitance T Rated Voltage Capacitance Tolerance Termination Finish Failure Rate MIL Style: CDR01, CDR02, CDR03, CDR04, CDR05, CDR06 Voltage Temperature Limits: BP = 0 30 ppm/C without voltage; 0 30 ppm/C with rated voltage from -55C to +125C BX = 15% without voltage; +15 -25% with rated voltage from -55C to +125C Capacitance: Two digit figures followed by multiplier (number of zeros to be added) e.g., 101 = 100 pF Termination Finish: M = Palladium Silver N = Silver Nickel Gold S = Solder-coated U = Base Metallization/Barrier Metal/Solder Coated* W = Base Metallization/Barrier Metal/Tinned (Tin or Tin/ Lead Alloy) *Solder shall have a melting point of 200C or less. Failure Rate Level: M = 1.0%, P = .1%, R = .01%, S = .001% Packaging: Bulk is standard packaging. Tape and reel per RS481 is available upon request. Rated Voltage: A = 50V, B = 100V Capacitance Tolerance: J 5%, K 10%, M 20% CROSS REFERENCE: AVX/MIL-PRF-55681/CDR01 THRU CDR06* Per MIL-PRF-55681 AVX Style CDR01 CDR02 CDR03 CDR04 0805 1805 1808 1812 CDR05 1825 CDR06 2225 Length (L) Width (W) .080 .015 .180 .015 .180 .015 .180 .015 .180 +.020 -.015 .225 .020 .050 .015 .050 .015 .080 .018 .125 .015 .250 +.020 -.015 .250 .020 *For CDR11, 12, 13, and 14 see AVX Microwave Chip Capacitor Catalog 54 Thickness (T) Max. Min. .055 .020 .055 .020 .080 .020 .080 .020 D Max. -- -- -- -- Min. .030 -- -- -- Termination Band (t) Max. Min. -- .010 .030 .010 .030 .010 .030 .010 .080 .020 -- -- .030 .010 .080 .020 -- -- .030 .010 MIL-PRF-55681/Chips Military Part Number Identification CDR01 thru CDR06 CDR01 thru CDR06 to MIL-PRF-55681 Military Type Designation Capacitance in pF Rated temperature WVDC Capacitance and voltagetolerance temperature limits AVX Style 0805/CDR01 Military Type Designation Capacitance in pF Rated temperature WVDC Capacitance and voltagetolerance temperature limits AVX Style 1808/CDR03 CDR01BP100B--CDR01BP120B--CDR01BP150B--CDR01BP180B--CDR01BP220B--- 10 12 15 18 22 J,K J J,K J J,K BP BP BP BP BP 100 100 100 100 100 CDR03BP331B--CDR03BP391B--CDR03BP471B--CDR03BP561B--CDR03BP681B--- 330 390 470 560 680 J,K J J,K J J,K BP BP BP BP BP 100 100 100 100 100 CDR01BP270B--CDR01BP330B--CDR01BP390B--CDR01BP470B--CDR01BP560B--- 27 33 39 47 56 J J,K J J,K J BP BP BP BP BP 100 100 100 100 100 CDR03BP821B-CDR03BP102B--CDR03BX123B-CDR03BX153B--CDR03BX183B--- 820 1000 12,000 15,000 18,000 J J,K K K,M K BP BP BX BX BX 100 100 100 100 100 CDR01BP680B--CDR01BP820B--CDR01BP101B--CDR01B--121B--CDR01B--151B--- 68 82 100 120 150 J,K J J,K J,K J,K BP BP BP BP,BX BP,BX 100 100 100 100 100 CDR03BX223B--CDR03BX273B--CDR03BX333B--CDR03BX393A--CDR03BX473A--- 22,000 27,000 33,000 39,000 47,000 K,M K K,M K K,M BX BX BX BX BX 100 100 100 50 50 CDR01B--181B--CDR01BX221B--CDR01BX271B--CDR01BX331B--CDR01BX391B--- 180 220 270 330 390 J,K K,M K K,M K BP,BX BX BX BX BX 100 100 100 100 100 CDR03BX563A--CDR03BX683A--- 56,000 68,000 K K,M BX BX 50 50 CDR01BX471B--CDR01BX561B--CDR01BX681B--CDR01BX821B--CDR01BX102B--- 470 560 680 820 1000 K,M K K,M K K,M BX BX BX BX BX 100 100 100 100 100 CDR04BP122B--CDR04BP152B--CDR04BP182B--CDR04BP222B--CDR04BP272B--- 1200 1500 1800 2200 2700 J J,K J J,K J BP BP BP BP BP 100 100 100 100 100 CDR01BX122B--CDR01BX152B--CDR01BX182B--CDR01BX222B--CDR01BX272B--- 1200 1500 1800 2200 2700 K K,M K K,M K BX BX BX BX BX 100 100 100 100 100 CDR04BP332B--CDR04BX393B--CDR04BX473B--CDR04BX563B--CDR04BX823A--- 3300 39,000 47,000 56,000 82,000 J,K K K,M K K BP BX BX BX BX 100 100 100 100 50 CDR01BX332B--CDR01BX392A--CDR01BX472A--- 3300 3900 4700 K,M K K,M BX BX BX 100 50 50 CDR04BX104A--CDR04BX124A--CDR04BX154A--CDR04BX184A--- 100,000 120,000 150,000 180,000 K,M K K,M K BX BX BX BX 50 50 50 50 AVX Style 1812/CDR04 AVX Style 1805/CDR02 CDR02BP221B--CDR02BP271B--CDR02BX392B--CDR02BX472B--CDR02BX562B--- 220 270 3900 4700 5600 J,K J K K,M K BP BP BX BX BX 100 100 100 100 100 CDR02BX682B--CDR02BX822B--CDR02BX103B--CDR02BX123A--CDR02BX153A--- 6800 8200 10,000 12,000 15,000 K,M K K,M K K,M BX BX BX BX BX 100 100 100 50 50 CDR02BX183A--CDR02BX223A--- 18,000 22,000 K K,M BX BX 50 50 AVX Style 1825/CDR05 CDR05BP392B--CDR05BP472B--CDR05BP562B--CDR05BX683B--CDR05BX823B--- 3900 4700 5600 68,000 82,000 J,K J,K J,K K,M K BP BP BP BX BX 100 100 100 100 100 CDR05BX104B--CDR05BX124B--CDR05BX154B--CDR05BX224A--CDR05BX274A--- 100,000 120,000 150,000 220,000 270,000 K,M K K,M K,M K BX BX BX BX BX 100 100 100 50 50 CDR05BX334A--- 330,000 K,M BX 50 J,K J,K J,K K K,M BP BP BP BX BX 100 100 100 50 50 Add appropriate failure rate AVX Style 2225/CDR06 Add appropriate termination finish CDR06BP682B--CDR06BP822B--CDR06BP103B--CDR06BX394A--CDR06BX474A--- Capacitance Tolerance 6800 8200 10,000 390,000 470,000 Add appropriate failure rate Add appropriate termination finish Capacitance Tolerance 55 MIL-PRF-55681/Chips Part Number Example CDR31 thru CDR35 MILITARY DESIGNATION PER MIL-PRF-55681 Part Number Example (example) L W t D CDR31 BP 101 B K S M MIL Style Voltage-temperature Limits Capacitance T Rated Voltage Capacitance Tolerance Termination Finish Failure Rate MIL Style: CDR31, CDR32, CDR33, CDR34, CDR35 Voltage Temperature Limits: BP = 0 30 ppm/C without voltage; 0 30 ppm/C with rated voltage from -55C to +125C BX = 15% without voltage; +15 -25% with rated voltage from -55C to +125C Capacitance: Two digit figures followed by multiplier (number of zeros to be added) e.g., 101 = 100 pF Rated Voltage: A = 50V, B = 100V Capacitance Tolerance: C .25 pF, D .5 pF, F 1% J 5%, K 10%, M 20% Termination Finish: M = Palladium Silver N = Silver Nickel Gold S = Solder-coated U = Base Metallization/Barrier Metal/Solder Coated* W = Base Metallization/Barrier Metal/Tinned (Tin or Tin/ Lead Alloy) *Solder shall have a melting point of 200C or less. Failure Rate Level: M = 1.0%, P = .1%, R = .01%, S = .001% Packaging: Bulk is standard packaging. Tape and reel per RS481 is available upon request. CROSS REFERENCE: AVX/MIL-PRF-55681/CDR31 THRU CDR35 Per MIL-PRF-55681 (Metric Sizes) AVX Style Length (L) (mm) Width (W) (mm) CDR31 CDR32 CDR33 CDR34 CDR35 0805 1206 1210 1812 1825 2.00 3.20 3.20 4.50 4.50 1.25 1.60 2.50 3.20 6.40 56 Thickness (T) D Max. (mm) 1.3 1.3 1.5 1.5 1.5 Min. (mm) .50 -- -- -- -- Termination Band (t) Max. (mm) .70 .70 .70 .70 .70 Min. (mm) .30 .30 .30 .30 .30 MIL-PRF-55681/Chips Military Part Number Identification CDR31 CDR31 to MIL-PRF-55681/7 Military Type Designation 1 / Capacitance in pF Rated temperature WVDC Capacitance and voltagetolerance temperature limits AVX Style 0805/CDR31 (BP) Military Type Designation 1 / Capacitance in pF Rated temperature WVDC Capacitance and voltagetolerance temperature limits AVX Style 0805/CDR31 (BP) cont'd CDR31BP1R0B--CDR31BP1R1B--CDR31BP1R2B--CDR31BP1R3B--CDR31BP1R5B--- 1.0 1.1 1.2 1.3 1.5 B,C B,C B,C B,C B,C BP BP BP BP BP 100 100 100 100 100 CDR31BP101B--CDR31BP111B--CDR31BP121B--CDR31BP131B--CDR31BP151B--- 100 110 120 130 150 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 100 100 100 CDR31BP1R6B--CDR31BP1R8B--CDR31BP2R0B--CDR31BP2R2B--CDR31BP2R4B--- 1.6 1.8 2.0 2.2 2.4 B,C B,C B,C B,C B,C BP BP BP BP BP 100 100 100 100 100 CDR31BP161B--CDR31BP181B--CDR31BP201B--CDR31BP221B--CDR31BP241B--- 160 180 200 220 240 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 100 100 100 CDR31BP2R7B--CDR31BP3R0B--CDR31BP3R3B--CDR31BP3R6B--CDR31BP3R9B--- 2.7 3.0 3.3 3.6 3.9 B,C,D B,C,D B,C,D B,C,D B,C,D BP BP BP BP BP 100 100 100 100 100 CDR31BP271B--CDR31BP301B--CDR31BP331B--CDR31BP361B--CDR31BP391B--- 270 300 330 360 390 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 100 100 100 CDR31BP4R3B--CDR31BP4R7B--CDR31BP5R1B--CDR31BP5R6B--CDR31BP6R2B--- 4.3 4.7 5.1 5.6 6.2 B,C,D B,C,D B,C,D B,C,D B,C,D BP BP BP BP BP 100 100 100 100 100 CDR31BP431B--CDR31BP471B--CDR31BP511A--CDR31BP561A--CDR31BP621A--- 430 470 510 560 620 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 50 50 50 CDR31BP6R8B--CDR31BP7R5B--CDR31BP8R2B--CDR31BP9R1B--CDR31BP100B--- 6.8 7.5 8.2 9.1 10 B,C,D B,C,D B,C,D B,C,D F,J,K BP BP BP BP BP 100 100 100 100 100 CDR31BP681A--- 680 F,J,K BP 50 CDR31BP110B--CDR31BP120B--CDR31BP130B--CDR31BP150B--CDR31BP160B--- 11 12 13 15 16 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 100 100 100 CDR31BP180B--CDR31BP200B--CDR31BP220B--CDR31BP240B--CDR31BP270B--- 18 20 22 24 27 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 100 100 100 CDR31BP300B--CDR31BP330B--CDR31BP360B--CDR31BP390B--CDR31BP430B--- 30 33 36 39 43 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 100 100 100 CDR31BP470B--CDR31BP510B--CDR31BP560B--CDR31BP620B--CDR31BP680B--- 47 51 56 62 68 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 100 100 100 CDR31BP750B--CDR31BP820B--CDR31BP910B--- 75 82 91 F,J,K F,J,K F,J,K BP BP BP 100 100 100 Add appropriate failure rate Add appropriate termination finish AVX Style 0805/CDR31 (BX) CDR31BX471B--CDR31BX561B--CDR31BX681B--CDR31BX821B--CDR31BX102B--- 470 560 680 820 1,000 K,M K,M K,M K,M K,M BX BX BX BX BX 100 100 100 100 100 CDR31BX122B--CDR31BX152B--CDR31BX182B--CDR31BX222B--CDR31BX272B--- 1,200 1,500 1,800 2,200 2,700 K,M K,M K,M K,M K,M BX BX BX BX BX 100 100 100 100 100 CDR31BX332B--CDR31BX392B--CDR31BX472B--CDR31BX562A--CDR31BX682A--- 3,300 3,900 4,700 5,600 6,800 K,M K,M K,M K,M K,M BX BX BX BX BX 100 100 100 50 50 CDR31BX822A--CDR31BX103A--CDR31BX123A--CDR31BX153A--CDR31BX183A--- 8,200 10,000 12,000 15,000 18,000 K,M K,M K,M K,M K,M BX BX BX BX BX 50 50 50 50 50 Add appropriate failure rate Add appropriate termination finish Capacitance Tolerance 1 / The complete part number will include additional symbols to indicate capacitance tolerance, termination and failure rate level. Capacitance Tolerance 57 MIL-PRF-55681/Chips Military Part Number Identification CDR32 CDR32 to MIL-PRF-55681/8 Military Type Designation 1 / Capacitance in pF Rated temperature WVDC Capacitance and voltagetolerance temperature limits AVX Style 1206/CDR32 (BP) Military Type Designation 1 / Capacitance in pF Rated temperature WVDC Capacitance and voltagetolerance temperature limits AVX Style 1206/CDR32 (BP) cont'd CDR32BP1R0B--CDR32BP1R1B--CDR32BP1R2B--CDR32BP1R3B--CDR32BP1R5B--- 1.0 1.1 1.2 1.3 1.5 B,C B,C B,C B,C B,C BP BP BP BP BP 100 100 100 100 100 CDR32BP101B--CDR32BP111B--CDR32BP121B--CDR32BP131B--CDR32BP151B--- 100 110 120 130 150 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 100 100 100 CDR32BP1R6B--CDR32BP1R8B--CDR32BP2R0B--CDR32BP2R2B--CDR32BP2R4B--- 1.6 1.8 2.0 2.2 2.4 B,C B,C B,C B,C B,C BP BP BP BP BP 100 100 100 100 100 CDR32BP161B--CDR32BP181B--CDR32BP201B--CDR32BP221B--CDR32BP241B--- 160 180 200 220 240 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 100 100 100 CDR32BP2R7B--CDR32BP3R0B--CDR32BP3R3B--CDR32BP3R6B--CDR32BP3R9B--- 2.7 3.0 3.3 3.6 3.9 B,C,D B,C,D B,C,D B,C,D B,C,D BP BP BP BP BP 100 100 100 100 100 CDR32BP271B--CDR32BP301B--CDR32BP331B--CDR32BP361B--CDR32BP391B--- 270 300 330 360 390 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 100 100 100 CDR32BP4R3B--CDR32BP4R7B--CDR32BP5R1B--CDR32BP5R6B--CDR32BP6R2B--- 4.3 4.7 5.1 5.6 6.2 B,C,D B,C,D B,C,D B,C,D B,C,D BP BP BP BP BP 100 100 100 100 100 CDR32BP431B--CDR32BP471B--CDR32BP511B--CDR32BP561B--CDR32BP621B--- 430 470 510 560 620 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 100 100 100 CDR32BP6R8B--CDR32BP7R5B--CDR32BP8R2B--CDR32BP9R1B--CDR32BP100B--- 6.8 7.5 8.2 9.1 10 B,C,D B,C,D B,C,D B,C,D F,J,K BP BP BP BP BP 100 100 100 100 100 CDR32BP681B--CDR32BP751B--CDR32BP821B--CDR32BP911B--CDR32BP102B--- 680 750 820 910 1,000 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 100 100 100 CDR32BP110B--CDR32BP120B--CDR32BP130B--CDR32BP150B--CDR32BP160B--- 11 12 13 15 16 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 100 100 100 CDR32BP112A--CDR32BP122A--CDR32BP132A--CDR32BP152A--CDR32BP162A--- 1,100 1,200 1,300 1,500 1,600 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 50 50 50 50 50 CDR32BP180B--CDR32BP200B--CDR32BP220B--CDR32BP240B--CDR32BP270B--- 18 20 22 24 27 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 100 100 100 CDR32BP182A--CDR32BP202A--CDR32BP222A--- 1,800 2,000 2,200 F,J,K F,J,K F,J,K BP BP BP 50 50 50 CDR32BP300B--CDR32BP330B--CDR32BP360B--CDR32BP390B--CDR32BP430B--- 30 33 36 39 43 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 100 100 100 CDR32BP470B--CDR32BP510B--CDR32BP560B--CDR32BP620B--CDR32BP680B--- 47 51 56 62 68 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 100 100 100 CDR32BP750B--CDR32BP820B--CDR32BP910B--- 75 82 91 F,J,K F,J,K F,J,K BP BP BP 100 100 100 AVX Style 1206/CDR32 (BX) CDR32BX472B--CDR32BX562B--CDR32BX682B--CDR32BX822B--CDR32BX103B--- 4,700 5,600 6,800 8,200 10,000 K,M K,M K,M K,M K,M BX BX BX BX BX 100 100 100 100 100 CDR32BX123B--CDR32BX153B--CDR32BX183A--CDR32BX223A--CDR32BX273A--- 12,000 15,000 18,000 22,000 27,000 K,M K,M K,M K,M K,M BX BX BX BX BX 100 100 50 50 50 CDR32BX333A--CDR32BX393A--- 33,000 39,000 K,M K,M BX BX 50 50 Add appropriate failure rate Add appropriate failure rate Add appropriate termination finish Add appropriate termination finish Capacitance Tolerance Capacitance Tolerance 1 / The complete part number will include additional symbols to indicate capacitance tolerance, termination and failure rate level. 58 MIL-PRF-55681/Chips Military Part Number Identification CDR33/34/35 CDR33/34/35 to MIL-PRF-55681/9/10/11 Military Type Designation 1 / Capacitance in pF Rated temperature WVDC Capacitance and voltagetolerance temperature limits AVX Style 1210/CDR33 (BP) Military Type Designation 1 / Capacitance in pF Rated temperature WVDC Capacitance and voltagetolerance temperature limits AVX Style 1812/CDR34 (BX) CDR33BP102B--CDR33BP112B--CDR33BP122B--CDR33BP132B--CDR33BP152B--- 1,000 1,100 1,200 1,300 1,500 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 100 100 100 CDR34BX273B--CDR34BX333B--CDR34BX393B--CDR34BX473B--CDR34BX563B--- 27,000 33,000 39,000 47,000 56,000 K,M K,M K,M K,M K,M BX BX BX BX BX 100 100 100 100 100 CDR33BP162B--CDR33BP182B--CDR33BP202B--CDR33BP222B--CDR33BP242A--- 1,600 1,800 2,000 2,200 2,400 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 100 100 50 CDR34BX104A--CDR34BX124A--CDR34BX154A--CDR34BX184A--- 100,000 120,000 150,000 180,000 K,M K,M K,M K,M BX BX BX BX 50 50 50 50 CDR33BP272A--CDR33BP302A--CDR33BP332A--- 2,700 3,000 3,300 F,J,K F,J,K F,J,K BP BP BP 50 50 50 AVX Style 1825/CDR35 (BP) AVX Style 1210/CDR33 (BX) CDR33BX153B--CDR33BX183B--CDR33BX223B--CDR33BX273B--CDR33BX393A--- 15,000 18,000 22,000 27,000 39,000 K,M K,M K,M K,M K,M BX BX BX BX BX 100 100 100 100 50 CDR33BX473A--CDR33BX563A--CDR33BX683A--CDR33BX823A--CDR33BX104A--- 47,000 56,000 68,000 82,000 100,000 K,M K,M K,M K,M K,M BX BX BX BX BX 50 50 50 50 50 AVX Style 1812/CDR34 (BP) CDR34BP222B--CDR34BP242B--CDR34BP272B--CDR34BP302B--CDR34BP332B--- 2,200 2,400 2,700 3,000 3,300 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 100 100 100 CDR34BP362B--CDR34BP392B--CDR34BP432B--CDR34BP472B--CDR34BP512A--- 3,600 3,900 4,300 4,700 5,100 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 100 100 50 CDR34BP562A--CDR34BP622A--CDR34BP682A--CDR34BP752A--CDR34BP822A--- 5,600 6,200 6,800 7,500 8,200 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 50 50 50 50 50 CDR34BP912A--CDR34BP103A--- 9,100 10,000 F,J,K F,J,K BP BP 50 50 CDR35BP472B--CDR35BP512B--CDR35BP562B--CDR35BP622B--CDR35BP682B--- 4,700 5,100 5,600 6,200 6,800 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 100 100 100 CDR35BP752B--CDR35BP822B--CDR35BP912B--CDR35BP103B--CDR35BP113A--- 7,500 8,200 9,100 10,000 11,000 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 100 100 100 100 50 CDR35BP123A--CDR35BP133A--CDR35BP153A--CDR35BP163A--CDR35BP183A--- 12,000 13,000 15,000 16,000 18,000 F,J,K F,J,K F,J,K F,J,K F,J,K BP BP BP BP BP 50 50 50 50 50 CDR35BP203A--CDR35BP223A--- 20,000 22,000 F,J,K F,J,K BP BP 50 50 AVX Style 1825/CDR35 (BX) CDR35BX563B--CDR35BX683B--CDR35BX823B--CDR35BX104B--CDR35BX124B--- 56,000 68,000 82,000 100,000 120,000 K,M K,M K,M K,M K,M BX BX BX BX BX 100 100 100 100 100 CDR35BX154B--CDR35BX184A--CDR35BX224A--CDR35BX274A--CDR35BX334A--- 150,000 180,000 220,000 270,000 330,000 K,M K,M K,M K,M K,M BX BX BX BX BX 100 50 50 50 50 CDR35BX394A--CDR35BX474A--- 390,000 470,000 K,M K,M BX BX 50 50 Add appropriate failure rate Add appropriate failure rate Add appropriate termination finish Add appropriate termination finish Capacitance Tolerance Capacitance Tolerance 1 / The complete part number will include additional symbols to indicate capacitance tolerance, termination and failure rate level. 59 Packaging of Chip Components Automatic Insertion Packaging TAPE & REEL QUANTITIES All tape and reel specifications are in compliance with RS481. 8mm Paper or Embossed Carrier 12mm 0612, 0508, 0805, 1206, 1210 Embossed Only 1812, 1825 2220, 2225 1808 Paper Only 0201, 0306, 0402, 0603 Qty. per Reel/7" Reel 2,000, 3,000 or 4,000, 10,000, 15,000 3,000 500, 1,000 Contact factory for exact quantity Qty. per Reel/13" Reel Contact factory for exact quantity 5,000, 10,000, 50,000 10,000 4,000 Contact factory for exact quantity REEL DIMENSIONS Tape Size(1) A Max. B* Min. C D* Min. N Min. 8mm 330 (12.992) 1.5 (0.059) 13.0 +0.50 -0.20 -0.008 ) (0.512 +0.020 20.2 (0.795) W3 -0.0 8.40 +1.5 (0.331 +0.059 -0.0 ) 14.4 (0.567) 7.90 Min. (0.311) 10.9 Max. (0.429) -0.0 12.4 +2.0 -0.0 (0.488 +0.079 ) 18.4 (0.724) 11.9 Min. (0.469) 15.4 Max. (0.607) 50.0 (1.969) 12mm Metric dimensions will govern. English measurements rounded and for reference only. (1) For tape sizes 16mm and 24mm (used with chip size 3640) consult EIA RS-481 latest revision. 60 W2 Max. W1 Embossed Carrier Configuration 8 & 12mm Tape Only 10 PITCHES CUMULATIVE TOLERANCE ON TAPE 0.2mm (0.008) EMBOSSMENT P0 T2 T D0 P2 DEFORMATION BETWEEN EMBOSSMENTS Chip Orientation E1 A0 F TOP COVER TAPE B1 T1 W B0 K0 S1 E2 P1 MAX. CAVITY SIZE - SEE NOTE 1 CENTER LINES OF CAVITY B1 IS FOR TAPE READER REFERENCE ONLY INCLUDING DRAFT CONCENTRIC AROUND B0 D1 FOR COMPONENTS 2.00 mm x 1.20 mm AND LARGER (0.079 x 0.047) User Direction of Feed 8 & 12mm Embossed Tape Metric Dimensions Will Govern CONSTANT DIMENSIONS Tape Size 8mm and 12mm D0 1.50 (0.059 E +0.10 -0.0 +0.004 -0.0 ) P0 P2 1.75 0.10 4.0 0.10 2.0 0.05 (0.069 0.004) (0.157 0.004) (0.079 0.002) S1 Min. T Max. T1 0.60 (0.024) 0.60 (0.024) 0.10 (0.004) Max. VARIABLE DIMENSIONS Tape Size B1 Max. D1 Min. E2 Min. F P1 See Note 5 R Min. See Note 2 T2 W Max. A0 B0 K0 8mm 4.35 (0.171) 1.00 (0.039) 6.25 (0.246) 3.50 0.05 4.00 0.10 (0.138 0.002) (0.157 0.004) 25.0 (0.984) 2.50 Max. (0.098) 8.30 (0.327) See Note 1 12mm 8.20 (0.323) 1.50 (0.059) 10.25 (0.404) 5.50 0.05 4.00 0.10 (0.217 0.002) (0.157 0.004) 30.0 (1.181) 6.50 Max. (0.256) 12.3 (0.484) See Note 1 8mm 1/2 Pitch 4.35 (0.171) 1.00 (0.039) 6.25 (0.246) 3.50 0.05 2.00 0.10 (0.138 0.002) (0.079 0.004) 25.0 (0.984) 2.50 Max. (0.098) 8.30 (0.327) See Note 1 12mm Double Pitch 8.20 (0.323) 1.50 (0.059) 10.25 (0.404) 5.50 0.05 8.00 0.10 (0.217 0.002) (0.315 0.004) 30.0 (1.181) 6.50 Max. (0.256) 12.3 (0.484) See Note 1 NOTES: 1. The cavity defined by A0, B0, and K0 shall be configured to provide the following: Surround the component with sufficient clearance such that: a) the component does not protrude beyond the sealing plane of the cover tape. b) the component can be removed from the cavity in a vertical direction without mechanical restriction, after the cover tape has been removed. c) rotation of the component is limited to 20 maximum (see Sketches D & E). d) lateral movement of the component is restricted to 0.5mm maximum (see Sketch F). 2. Tape with or without components shall pass around radius "R" without damage. 3. Bar code labeling (if required) shall be on the side of the reel opposite the round sprocket holes. Refer to EIA-556. 4. B1 dimension is a reference dimension for tape feeder clearance only. 5. If P1 = 2.0mm, the tape may not properly index in all tape feeders. Top View, Sketch "F" Component Lateral Movements 0.50mm (0.020) Maximum 0.50mm (0.020) Maximum 61 Paper Carrier Configuration 8 & 12mm Tape Only 10 PITCHES CUMULATIVE TOLERANCE ON TAPE 0.20mm (0.008) P0 D0 T P2 E1 BOTTOM COVER TAPE TOP COVER TAPE F W E2 B0 G T1 T1 A0 CENTER LINES OF CAVITY CAVITY SIZE SEE NOTE 1 P1 User Direction of Feed 8 & 12mm Paper Tape Metric Dimensions Will Govern CONSTANT DIMENSIONS Tape Size 8mm and 12mm D0 1.50 (0.059 +0.10 -0.0 +0.004 -0.0 E ) P0 P2 1.75 0.10 4.00 0.10 2.00 0.05 (0.069 0.004) (0.157 0.004) (0.079 0.002) T1 G. Min. R Min. 0.10 (0.004) Max. 0.75 (0.030) Min. 25.0 (0.984) See Note 2 Min. VARIABLE DIMENSIONS P1 See Note 4 E2 Min. F W A0 B0 4.00 0.10 (0.157 0.004) 6.25 (0.246) 3.50 0.05 (0.138 0.002) 8.00 +0.30 -0.10 -0.004 ) (0.315 +0.012 See Note 1 12mm 4.00 0.010 (0.157 0.004) 10.25 (0.404) 5.50 0.05 (0.217 0.002) 12.0 0.30 (0.472 0.012) 8mm 1/2 Pitch 2.00 0.05 (0.079 0.002) 6.25 (0.246) 3.50 0.05 (0.138 0.002) -0.10 8.00 +0.30 (0.315 +0.012 -0.004 ) 12mm Double Pitch 8.00 0.10 (0.315 0.004) 10.25 (0.404) 5.50 0.05 (0.217 0.002) 12.0 0.30 (0.472 0.012) Tape Size 8mm NOTES: 1. The cavity defined by A0, B0, and T shall be configured to provide sufficient clearance surrounding the component so that: a) the component does not protrude beyond either surface of the carrier tape; b) the component can be removed from the cavity in a vertical direction without mechanical restriction after the top cover tape has been removed; c) rotation of the component is limited to 20 maximum (see Sketches A & B); d) lateral movement of the component is restricted to 0.5mm maximum (see Sketch C). 1.10mm (0.043) Max. for Paper Base Tape and 1.60mm (0.063) Max. for Non-Paper Base Compositions 2. Tape with or without components shall pass around radius "R" without damage. 3. Bar code labeling (if required) shall be on the side of the reel opposite the sprocket holes. Refer to EIA-556. 4. If P1 = 2.0mm, the tape may not properly index in all tape feeders. Top View, Sketch "C" Component Lateral 0.50mm (0.020) Maximum 0.50mm (0.020) Maximum Bar Code Labeling Standard AVX bar code labeling is available and follows latest version of EIA-556 62 T Bulk Case Packaging BENEFITS BULK FEEDER * Easier handling * Smaller packaging volume (1/20 of T/R packaging) * Easier inventory control Case * Flexibility * Recyclable Cassette Gate Shooter CASE DIMENSIONS Shutter Slider 12mm 36mm Mounter Head Expanded Drawing 110mm Chips Attachment Base CASE QUANTITIES Part Size Qty. (pcs / cassette) 0402 80,000 0603 15,000 0805 10,000 (T=.023") 8,000 (T=.031") 6,000 (T=.043") 1206 5,000 (T=.023") 4,000 (T=.032") 3,000 (T=.044") 63 Basic Capacitor Formulas XI. Equivalent Series Resistance (ohms) E.S.R. = (D.F.) (Xc) = (D.F.) / (2 fC) I. Capacitance (farads) English: C = .224 K A TD .0884 KA Metric: C = TD XII. Power Loss (watts) Power Loss = (2 fCV2) (D.F.) XIII. KVA (Kilowatts) KVA = 2 fCV2 x 10 -3 II. Energy stored in capacitors (Joules, watt - sec) E = 12 CV2 XIV. Temperature Characteristic (ppm/C) T.C. = Ct - C25 x 106 C25 (Tt - 25) III. Linear charge of a capacitor (Amperes) dV I=C dt XV. Cap Drift (%) C1 - C2 C.D. = C1 IV. Total Impedance of a capacitor (ohms) Z = R2S + (XC - XL )2 V. Capacitive Reactance (ohms) 1 xc = 2 fC XVI. Reliability of Ceramic Capacitors Vt L0 X Tt Y = Lt Vo To ( ) ( ) VI. Inductive Reactance (ohms) xL = 2 fL XVII. Capacitors in Series (current the same) Any Number: 1 = 1 + 1 --- 1 CT C1 C2 CN C1 C2 Two: CT = C1 + C2 VII. Phase Angles: Ideal Capacitors: Current leads voltage 90 Ideal Inductors: Current lags voltage 90 Ideal Resistors: Current in phase with voltage XVIII. Capacitors in Parallel (voltage the same) CT = C1 + C2 --- + CN VIII. Dissipation Factor (%) D.F.= tan (loss angle) = E.S.R. = (2 fC) (E.S.R.) Xc IX. Power Factor (%) P.F. = Sine (loss angle) = Cos (phase angle) f P.F. = (when less than 10%) = DF XIX. Aging Rate A.R. = % D C/decade of time XX. Decibels db = 20 log V1 V2 X. Quality Factor (dimensionless) Q = Cotan (loss angle) = 1 D.F. METRIC PREFIXES Pico Nano Micro Milli Deci Deca Kilo Mega Giga Tera 64 X 10-12 X 10-9 X 10-6 X 10-3 X 10-1 X 10+1 X 10+3 X 10+6 X 10+9 X 10+12 x 100 SYMBOLS K = Dielectric Constant f = frequency Lt = Test life A = Area L = Inductance Vt = Test voltage TD = Dielectric thickness = Loss angle Vo = Operating voltage V = Voltage f = Phase angle Tt = Test temperature t = time X&Y = exponent effect of voltage and temp. To = Operating temperature Rs = Series Resistance Lo = Operating life General Description Basic Construction - A multilayer ceramic (MLC) capacitor is a monolithic block of ceramic containing two sets of offset, interleaved planar electrodes that extend to two opposite surfaces of the ceramic dielectric. This simple Ceramic Layer structure requires a considerable amount of sophistication, both in material and manufacture, to produce it in the quality and quantities needed in today's electronic equipment. Electrode End Terminations Terminated Edge Terminated Edge Margin Electrodes Multilayer Ceramic Capacitor Figure 1 Formulations - Multilayer ceramic capacitors are available in both Class 1 and Class 2 formulations. Temperature compensating formulation are Class 1 and temperature stable and general application formulations are classified as Class 2. Class 1 - Class 1 capacitors or temperature compensating capacitors are usually made from mixtures of titanates where barium titanate is normally not a major part of the mix. They have predictable temperature coefficients and in general, do not have an aging characteristic. Thus they are the most stable capacitor available. The most popular Class 1 multilayer ceramic capacitors are C0G (NP0) temperature compensating capacitors (negative-positive 0 ppm/C). Class 2 - EIA Class 2 capacitors typically are based on the chemistry of barium titanate and provide a wide range of capacitance values and temperature stability. The most commonly used Class 2 dielectrics are X7R and Y5V. The X7R provides intermediate capacitance values which vary only 15% over the temperature range of -55C to 125C. It finds applications where stability over a wide temperature range is required. The Y5V provides the highest capacitance values and is used in applications where limited temperature changes are expected. The capacitance value for Y5V can vary from 22% to -82% over the -30C to 85C temperature range. All Class 2 capacitors vary in capacitance value under the influence of temperature, operating voltage (both AC and DC), and frequency. For additional information on performance changes with operating conditions, consult AVX's software, SpiCap. 65 General Description EIA CODE Percent Capacity Change Over Temperature Range RS198 Temperature Range X7 X6 X5 Y5 Z5 -55C to +125C -55C to +105C -55C to +85C -30C to +85C +10C to +85C Code Percent Capacity Change D E F P R S T U V 3.3% 4.7% 7.5% 10% 15% 22% +22%, -33% +22%, - 56% +22%, -82% Effects of Voltage - Variations in voltage have little effect on Class 1 dielectric but does affect the capacitance and dissipation factor of Class 2 dielectrics. The application of DC voltage reduces both the capacitance and dissipation factor while the application of an AC voltage within a reasonable range tends to increase both capacitance and dissipation factor readings. If a high enough AC voltage is applied, eventually it will reduce capacitance just as a DC voltage will. Figure 2 shows the effects of AC voltage. Cap. Change vs. A.C. Volts X7R Capacitance Change Percent Table 1: EIA and MIL Temperature Stable and General Application Codes 50 40 30 20 10 0 12.5 EXAMPLE - A capacitor is desired with the capacitance value at 25C to increase no more than 7.5% or decrease no more than 7.5% from -30C to +85C. EIA Code will be Y5F. Symbol Temperature Range A B C -55C to +85C -55C to +125C -55C to +150C Symbol R S W X Y Z Cap. Change Zero Volts Cap. Change Rated Volts +15%, -15% +22%, -22% +22%, -56% +15%, -15% +30%, -70% +20%, -20% +15%, -40% +22%, -56% +22%, -66% +15%, -25% +30%, -80% +20%, -30% Temperature characteristic is specified by combining range and change symbols, for example BR or AW. Specification slash sheets indicate the characteristic applicable to a given style of capacitor. 50 Figure 2 Capacitor specifications specify the AC voltage at which to measure (normally 0.5 or 1 VAC) and application of the wrong voltage can cause spurious readings. Figure 3 gives the voltage coefficient of dissipation factor for various AC voltages at 1 kilohertz. Applications of different frequencies will affect the percentage changes versus voltages. D.F. vs. A.C. Measurement Volts X7R 10.0 Dissipation Factor Percent MIL CODE 25 37.5 Volts AC at 1.0 KHz Curve 1 - 100 VDC Rated Capacitor 8.0 Curve 2 - 50 VDC Rated Capacitor Curve 3 - 25 VDC Rated Capacitor 6.0 Curve 3 Curve 2 4.0 Curve 1 2.0 0 .5 In specifying capacitance change with temperature for Class 2 materials, EIA expresses the capacitance change over an operating temperature range by a 3 symbol code. The first symbol represents the cold temperature end of the temperature range, the second represents the upper limit of the operating temperature range and the third symbol represents the capacitance change allowed over the operating temperature range. Table 1 provides a detailed explanation of the EIA system. 66 1.0 1.5 2.0 2.5 AC Measurement Volts at 1.0 KHz Figure 3 Typical effect of the application of DC voltage is shown in Figure 4. The voltage coefficient is more pronounced for higher K dielectrics. These figures are shown for room temperature conditions. The combination characteristic known as voltage temperature limits which shows the effects of rated voltage over the operating temperature range is shown in Figure 5 for the military BX characteristic. General Description tends to de-age capacitors and is why re-reading of capacitance after 12 or 24 hours is allowed in military specifications after dielectric strength tests have been performed. 2.5 Typical Curve of Aging Rate X7R 0 -2.5 +1.5 -5 0 -7.5 -10 25% 50% 75% Percent Rated Volts 100% Figure 4 Capacitance Change Percent Typical Cap. Change vs. Temperature X7R Capacitance Change Percent Capacitance Change Percent Typical Cap. Change vs. D.C. Volts X7R -1.5 -3.0 -4.5 -6.0 -7.5 +20 1 10 100 +10 0VDC 0 -10 Max. Aging Rate %/Decade None 2 7 Figure 6 -20 -30 -55 -35 Characteristic C0G (NP0) X7R, X5R Y5V 1000 10,000 100,000 Hours -15 +5 +25 +45 +65 +85 +105 +125 Temperature Degrees Centigrade Figure 5 Effects of Time - Class 2 ceramic capacitors change capacitance and dissipation factor with time as well as temperature, voltage and frequency. This change with time is known as aging. Aging is caused by a gradual re-alignment of the crystalline structure of the ceramic and produces an exponential loss in capacitance and decrease in dissipation factor versus time. A typical curve of aging rate for semistable ceramics is shown in Figure 6. If a Class 2 ceramic capacitor that has been sitting on the shelf for a period of time, is heated above its curie point, (125C for 4 hours or 150C for 12 hour will suffice) the part will de-age and return to its initial capacitance and dissipation factor readings. Because the capacitance changes rapidly, immediately after de-aging, the basic capacitance measurements are normally referred to a time period sometime after the de-aging process. Various manufacturers use different time bases but the most popular one is one day or twenty-four hours after "last heat." Change in the aging curve can be caused by the application of voltage and other stresses. The possible changes in capacitance due to de-aging by heating the unit explain why capacitance changes are allowed after test, such as temperature cycling, moisture resistance, etc., in MIL specs. The application of high voltages such as dielectric withstanding voltages also Effects of Frequency - Frequency affects capacitance and impedance characteristics of capacitors. This effect is much more pronounced in high dielectric constant ceramic formulation than in low K formulations. AVX's SpiCap software generates impedance, ESR, series inductance, series resonant frequency and capacitance all as functions of frequency, temperature and DC bias for standard chip sizes and styles. It is available free from AVX and can be downloaded for free from AVX website: www.avx.com. 67 General Description Effects of Mechanical Stress - High "K" dielectric ceramic capacitors exhibit some low level piezoelectric reactions under mechanical stress. As a general statement, the piezoelectric output is higher, the higher the dielectric constant of the ceramic. It is desirable to investigate this effect before using high "K" dielectrics as coupling capacitors in extremely low level applications. Reliability - Historically ceramic capacitors have been one of the most reliable types of capacitors in use today. The approximate formula for the reliability of a ceramic capacitor is: Lo = Lt Vt Vo where Lo = operating life Lt = test life Vt = test voltage Vo = operating voltage X Tt To Y Tt = test temperature and To = operating temperature in C X,Y = see text Historically for ceramic capacitors exponent X has been considered as 3. The exponent Y for temperature effects typically tends to run about 8. A capacitor is a component which is capable of storing electrical energy. It consists of two conductive plates (electrodes) separated by insulating material which is called the dielectric. A typical formula for determining capacitance is: C = .224 KA t C = capacitance (picofarads) K = dielectric constant (Vacuum = 1) A = area in square inches t = separation between the plates in inches (thickness of dielectric) .224 = conversion constant (.0884 for metric system in cm) Capacitance - The standard unit of capacitance is the farad. A capacitor has a capacitance of 1 farad when 1 coulomb charges it to 1 volt. One farad is a very large unit and most capacitors have values in the micro (10-6), nano (10-9) or pico (10-12) farad level. Dielectric Constant - In the formula for capacitance given above the dielectric constant of a vacuum is arbitrarily chosen as the number 1. Dielectric constants of other materials are then compared to the dielectric constant of a vacuum. Dielectric Thickness - Capacitance is indirectly proportional to the separation between electrodes. Lower voltage requirements mean thinner dielectrics and greater capacitance per volume. Area - Capacitance is directly proportional to the area of the electrodes. Since the other variables in the equation are usually set by the performance desired, area is the easiest parameter to modify to obtain a specific capacitance within a material group. 68 Energy Stored - The energy which can be stored in a capacitor is given by the formula: E = 12CV2 E = energy in joules (watts-sec) V = applied voltage C = capacitance in farads Potential Change - A capacitor is a reactive component which reacts against a change in potential across it. This is shown by the equation for the linear charge of a capacitor: I ideal = C dV dt where I = Current C = Capacitance dV/dt = Slope of voltage transition across capacitor Thus an infinite current would be required to instantly change the potential across a capacitor. The amount of current a capacitor can "sink" is determined by the above equation. Equivalent Circuit - A capacitor, as a practical device, exhibits not only capacitance but also resistance and inductance. A simplified schematic for the equivalent circuit is: C = Capacitance L = Inductance Rp = Parallel Resistance Rs = Series Resistance RP L RS C Reactance - Since the insulation resistance (Rp) is normally very high, the total impedance of a capacitor is: Z= where R 2S + (XC - XL )2 Z = Total Impedance Rs = Series Resistance XC = Capacitive Reactance = XL = Inductive Reactance 1 2 fC = 2 fL The variation of a capacitor's impedance with frequency determines its effectiveness in many applications. Phase Angle - Power Factor and Dissipation Factor are often confused since they are both measures of the loss in a capacitor under AC application and are often almost identical in value. In a "perfect" capacitor the current in the capacitor will lead the voltage by 90. General Description di I (Ideal) I (Actual) Loss Angle Phase Angle f V IR s In practice the current leads the voltage by some other phase angle due to the series resistance RS. The complement of this angle is called the loss angle and: Power Factor (P.F.) = Cos f or Sine Dissipation Factor (D.F.) = tan for small values of the tan and sine are essentially equal which has led to the common interchangeability of the two terms in the industry. Equivalent Series Resistance - The term E.S.R. or Equivalent Series Resistance combines all losses both series and parallel in a capacitor at a given frequency so that the equivalent circuit is reduced to a simple R-C series connection. E.S.R. C Dissipation Factor - The DF/PF of a capacitor tells what percent of the apparent power input will turn to heat in the capacitor. Dissipation Factor = E.S.R. = (2 fC) (E.S.R.) XC The watts loss are: Watts loss = (2 fCV2 ) (D.F.) The dt seen in current microprocessors can be as high as 0.3 A/ns, and up to 10A/ns. At 0.3 A/ns, 100pH of parasitic inductance can cause a voltage spike of 30mV. While this does not sound very drastic, with the Vcc for microprocessors decreasing at the current rate, this can be a fairly large percentage. Another important, often overlooked, reason for knowing the parasitic inductance is the calculation of the resonant frequency. This can be important for high frequency, bypass capacitors, as the resonant point will give the most signal attenuation. The resonant frequency is calculated from the simple equation: 1 fres = 2 LC Insulation Resistance - Insulation Resistance is the resistance measured across the terminals of a capacitor and consists principally of the parallel resistance R P shown in the equivalent circuit. As capacitance values and hence the area of dielectric increases, the I.R. decreases and hence the product (C x IR or RC) is often specified in ohm faradsor more commonly megohm-microfarads. Leakage current is determined by dividing the rated voltage by IR (Ohm's Law). Dielectric Strength - Dielectric Strength is an expression of the ability of a material to withstand an electrical stress. Although dielectric strength is ordinarily expressed in volts, it is actually dependent on the thickness of the dielectric and thus is also more generically a function of volts/mil. Dielectric Absorption - A capacitor does not discharge instantaneously upon application of a short circuit, but drains gradually after the capacitance proper has been discharged. It is common practice to measure the dielectric absorption by determining the "reappearing voltage" which appears across a capacitor at some point in time after it has been fully discharged under short circuit conditions. Corona - Corona is the ionization of air or other vapors which causes them to conduct current. It is especially prevalent in high voltage units but can occur with low voltages as well where high voltage gradients occur. The energy discharged degrades the performance of the capacitor and can in time cause catastrophic failures. Very low values of dissipation factor are expressed as their reciprocal for convenience. These are called the "Q" or Quality factor of capacitors. Parasitic Inductance - The parasitic inductance of capacitors is becoming more and more important in the decoupling of today's high speed digital systems. The relationship between the inductance and the ripple voltage induced on the DC voltage line can be seen from the simple inductance equation: V = L di dt 69 Surface Mounting Guide MLC Chip Capacitors REFLOW SOLDERING D2 D1 D3 D4 D5 Dimensions in millimeters (inches) Case Size 0402 0603 0805 1206 1210 1808 1812 1825 2220 2225 D1 D2 D3 D4 D5 1.70 (0.07) 2.30 (0.09) 3.00 (0.12) 4.00 (0.16) 4.00 (0.16) 5.60 (0.22) 5.60 (0.22) 5.60 (0.22) 6.60 (0.26) 6.60 (0.26) 0.60 (0.02) 0.80 (0.03) 1.00 (0.04) 1.00 (0.04) 1.00 (0.04) 1.00 (0.04) 1.00 (0.04)) 1.00 (0.04) 1.00 (0.04) 1.00 (0.04) 0.50 (0.02) 0.70 (0.03) 1.00 (0.04) 2.00 (0.09) 2.00 (0.09) 3.60 (0.14) 3.60 (0.14) 3.60 (0.14) 4.60 (0.18) 4.60 (0.18) 0.60 (0.02) 0.80 (0.03) 1.00 (0.04) 1.00 (0.04) 1.00 (0.04) 1.00 (0.04) 1.00 (0.04) 1.00 (0.04) 1.00 (0.04) 1.00 (0.04) 0.50 (0.02) 0.75 (0.03) 1.25 (0.05) 1.60 (0.06) 2.50 (0.10) 2.00 (0.08) 3.00 (0.12) 6.35 (0.25) 5.00 (0.20) 6.35 (0.25) Component Pad Design Component pads should be designed to achieve good solder filets and minimize component movement during reflow soldering. Pad designs are given below for the most common sizes of multilayer ceramic capacitors for both wave and reflow soldering. The basis of these designs is: * Pad width equal to component width. It is permissible to decrease this to as low as 85% of component width but it is not advisable to go below this. * Pad overlap 0.5mm beneath component. * Pad extension 0.5mm beyond components for reflow and 1.0mm for wave soldering. WAVE SOLDERING D2 D1 Case Size 0603 0805 1206 D3 D4 D1 D2 D3 D4 D5 3.10 (0.12) 4.00 (0.15) 5.00 (0.19) 1.20 (0.05) 1.50 (0.06) 1.50 (0.06) 0.70 (0.03) 1.00 (0.04) 2.00 (0.09) 1.20 (0.05) 1.50 (0.06) 1.50 (0.06) 0.75 (0.03) 1.25 (0.05) 1.60 (0.06) Dimensions in millimeters (inches) D5 Component Spacing Preheat & Soldering For wave soldering components, must be spaced sufficiently far apart to avoid bridging or shadowing (inability of solder to penetrate properly into small spaces). This is less important for reflow soldering but sufficient space must be allowed to enable rework should it be required. The rate of preheat should not exceed 4C/second to prevent thermal shock. A better maximum figure is about 2C/second. For capacitors size 1206 and below, with a maximum thickness of 1.25mm, it is generally permissible to allow a temperature differential from preheat to soldering of 150C. In all other cases this differential should not exceed 100C. For further specific application or process advice, please consult AVX. Cleaning 1.5mm (0.06) 1mm (0.04) 1mm (0.04) 70 Care should be taken to ensure that the capacitors are thoroughly cleaned of flux residues especially the space beneath the capacitor. Such residues may otherwise become conductive and effectively offer a low resistance bypass to the capacitor. Ultrasonic cleaning is permissible, the recommended conditions being 8 Watts/litre at 20-45 kHz, with a process cycle of 2 minutes vapor rinse, 2 minutes immersion in the ultrasonic solvent bath and finally 2 minutes vapor rinse. Surface Mounting Guide MLC Chip Capacitors APPLICATION NOTES Wave 300 Storage Preheat Good solderability is maintained for at least twelve months, provided the components are stored in their "as received" packaging at less than 40C and 70% RH. Terminations to be well soldered after immersion in a 60/40 tin/lead solder bath at 235 5C for 2 1 seconds. Leaching Solder Temp. Solderability Terminations will resist leaching for at least the immersion times and conditions shown below. Termination Type Nickel Barrier Solder Solder Tin/Lead/Silver Temp. C 60/40/0 260 5 Natural Cooling 250 200 T 230C to 250C 150 100 50 Immersion Time Seconds 30 1 0 1 to 2 min 3 sec. max (Preheat chips before soldering) T/maximum 150C Recommended Soldering Profiles Lead-Free Wave Soldering The recommended peak temperature for lead-free wave soldering is 250C-260C for 3-5 seconds. The other parameters of the profile remains the same as above. The following should be noted by customers changing from lead based systems to the new lead free pastes. a) The visual standards used for evaluation of solder joints will need to be modified as lead free joints are not as bright as with tin-lead pastes and the fillet may not be as large. b) Resin color may darken slightly due to the increase in temperature required for the new pastes. c) Lead-free solder pastes do not allow the same self alignment as lead containing systems. Standard mounting pads are acceptable, but machine set up may need to be modified. Reflow 300 Natural Cooling Preheat Solder Temp. 250 200 220C to 250C 150 100 50 0 1min 10 sec. max 1min General (Minimize soldering time) Surface mounting chip multilayer ceramic capacitors are designed for soldering to printed circuit boards or other substrates. The construction of the components is such that they will withstand the time/temperature profiles used in both wave and reflow soldering methods. Temperature C Lead-Free Reflow Profile 300 250 200 150 100 50 0 0 Handling 50 100 150 * Pre-heating: 150C 15C / 60-90s * Max. Peak Gradient 2.5C/s * Peak Temperature: 245C 5C * Time at >230C: 40s Max. 200 250 Time (s) 300 Chip multilayer ceramic capacitors should be handled with care to avoid damage or contamination from perspiration and skin oils. The use of tweezers or vacuum pick ups is strongly recommended for individual components. Bulk handling should ensure that abrasion and mechanical shock are minimized. Taped and reeled components provides the ideal medium for direct presentation to the placement machine. Any mechanical shock should be minimized during handling chip multilayer ceramic capacitors. Preheat It is important to avoid the possibility of thermal shock during soldering and carefully controlled preheat is therefore required. The rate of preheat should not exceed 4C/second 71 Surface Mounting Guide MLC Chip Capacitors and a target figure 2C/second is recommended. Although an 80C to 120C temperature differential is preferred, recent developments allow a temperature differential between the component surface and the soldering temperature of 150C (Maximum) for capacitors of 1210 size and below with a maximum thickness of 1.25mm. The user is cautioned that the risk of thermal shock increases as chip size or temperature differential increases. Soldering Mildly activated rosin fluxes are preferred. The minimum amount of solder to give a good joint should be used. Excessive solder can lead to damage from the stresses caused by the difference in coefficients of expansion between solder, chip and substrate. AVX terminations are suitable for all wave and reflow soldering systems. If hand soldering cannot be avoided, the preferred technique is the utilization of hot air soldering tools. POST SOLDER HANDLING Once SMP components are soldered to the board, any bending or flexure of the PCB applies stresses to the soldered joints of the components. For leaded devices, the stresses are absorbed by the compliancy of the metal leads and generally don't result in problems unless the stress is large enough to fracture the soldered connection. Ceramic capacitors are more susceptible to such stress because they don't have compliant leads and are brittle in nature. The most frequent failure mode is low DC resistance or short circuit. The second failure mode is significant loss of capacitance due to severing of contact between sets of the internal electrodes. Cracks caused by mechanical flexure are very easily identified and generally take one of the following two general forms: Cooling Natural cooling in air is preferred, as this minimizes stresses within the soldered joint. When forced air cooling is used, cooling rate should not exceed 4C/second. Quenching is not recommended but if used, maximum temperature differentials should be observed according to the preheat conditions above. Cleaning Flux residues may be hygroscopic or acidic and must be removed. AVX MLC capacitors are acceptable for use with all of the solvents described in the specifications MIL-STD202 and EIA-RS-198. Alcohol based solvents are acceptable and properly controlled water cleaning systems are also acceptable. Many other solvents have been proven successful, and most solvents that are acceptable to other components on circuit assemblies are equally acceptable for use with ceramic capacitors. Type A: Angled crack between bottom of device to top of solder joint. Type B: Fracture from top of device to bottom of device. Mechanical cracks are often hidden underneath the termination and are difficult to see externally. However, if one end termination falls off during the removal process from PCB, this is one indication that the cause of failure was excessive mechanical stress due to board warping. 72 Surface Mounting Guide MLC Chip Capacitors COMMON CAUSES OF MECHANICAL CRACKING REWORKING OF MLCs The most common source for mechanical stress is board depanelization equipment, such as manual breakapart, vcutters and shear presses. Improperly aligned or dull cutters may cause torqueing of the PCB resulting in flex stresses being transmitted to components near the board edge. Another common source of flexural stress is contact during parametric testing when test points are probed. If the PCB is allowed to flex during the test cycle, nearby ceramic capacitors may be broken. A third common source is board to board connections at vertical connectors where cables or other PCBs are connected to the PCB. If the board is not supported during the plug/unplug cycle, it may flex and cause damage to nearby components. Special care should also be taken when handling large (>6" on a side) PCBs since they more easily flex or warp than smaller boards. Solder Tip Preferred Method - No Direct Part Contact Thermal shock is common in MLCs that are manually attached or reworked with a soldering iron. AVX strongly recommends that any reworking of MLCs be done with hot air reflow rather than soldering irons. It is practically impossible to cause any thermal shock in ceramic capacitors when using hot air reflow. However direct contact by the soldering iron tip often causes thermal cracks that may fail at a later date. If rework by soldering iron is absolutely necessary, it is recommended that the wattage of the iron be less than 30 watts and the tip temperature be <300C. Rework should be performed by applying the solder iron tip to the pad and not directly contacting any part of the ceramic capacitor. Solder Tip Poor Method - Direct Contact with Part PCB BOARD DESIGN To avoid many of the handling problems, AVX recommends that MLCs be located at least .2" away from nearest edge of board. However when this is not possible, AVX recommends that the panel be routed along the cut line, adjacent to where the MLC is located. No Stress Relief for MLCs Routed Cut Line Relieves Stress on MLC 73 USA AVX Myrtle Beach, SC Corporate Offices AVX North Central, IN AVX Southwest, AZ AVX Southeast, GA Tel: 317-848-7153 FAX: 317-844-9314 Tel: 602-678-0384 FAX: 602-678-0385 Tel: 404-608-8151 FAX: 770-972-0766 AVX Mid/Pacific, CA AVX South Central, TX AVX Canada Tel: 510-661-4100 FAX: 510-661-4101 Tel: 972-669-1223 FAX: 972-669-2090 Tel: 905-238-3151 FAX: 905-238-0319 Tel: 843-448-9411 FAX: 843-448-1943 AVX Northwest, WA Tel: 360-699-8746 FAX: 360-699-8751 EUROPE AVX Limited, England European Headquarters Tel: ++44 (0) 1252-770000 FAX: ++44 (0) 1252-770001 AVX/ELCO, England Tel: ++44 (0) 1638-675000 FAX: ++44 (0) 1638-675002 AVX S.A., France AVX srl, Italy Tel: ++33 (1) 69-18-46-00 FAX: ++33 (1) 69-28-73-87 Tel: ++390 (0)2 614-571 FAX: ++390 (0)2 614-2576 AVX GmbH, Germany AVX Czech Republic Tel: ++49 (0) 8131-9004-0 FAX: ++49 (0) 8131-9004-44 Tel: ++420 465-358-111 FAX: ++420 465-323-010 ASIA-PACIFIC AVX/Kyocera, Singapore Asia-Pacific Headquarters Tel: (65) 6286-7555 FAX: (65) 6488-9880 AVX/Kyocera, Hong Kong Tel: (852) 2-363-3303 FAX: (852) 2-765-8185 AVX/Kyocera, Korea Tel: (82) 2-785-6504 FAX: (82) 2-784-5411 AVX/Kyocera, Taiwan Kyocera, Japan - KDP Tel: (886) 2-2698-8778 FAX: (886) 2-2698-8777 Tel: (81) 75-604-3424 FAX: (81) 75-604-3425 AVX/Kyocera, Malaysia AVX/Kyocera, Shanghai, China Tel: (60) 4-228-1190 FAX: (60) 4-228-1196 Tel: 86-21 6886 1000 FAX: 86-21 6886 1010 Elco, Japan AVX/Kyocera, Tianjin, China Tel: 045-943-2906/7 FAX: 045-943-2910 Tel: 86-22 2576 0098 FAX: 86-22 2576 0096 Kyocera, Japan - AVX Tel: (81) 75-604-3426 FAX: (81) 75-604-3425 Contact: A KYOCERA GROUP COMPANY http://www.avx.com S-MLCC10M1204-C