AVX
Surface Mount
Ceramic Capacitor Products
A KYOCERA GROUP COMPANY
1
How to Order - AVX Part Number Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3
C0G (NP0) Dielectric
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Specifications and Test Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Capacitance Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7
U Dielectric
General Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Capacitance Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-10
Designer Kits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
X7R Dielectric
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Specifications and Test Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-15
X7S Dielectric
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Specifications and Test Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
X5R Dielectric
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Specifications and Test Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-22
Y5V Dielectric
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Specifications and Test Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
MLCC Tin/Lead Termination
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27-31
Automotive MLCC
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32-33
Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34-35
MLCC with Soft Termination
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Specifications and Test Methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37-38
Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Capacitor Array
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Multi-Value Capacitor Array (IPC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Part and Pad Layout Dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Low Inductance Capacitors
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44-45
LICC (Low Inductance Chip Capacitors) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46-47
IDC (InterDigitated Capacitors). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48-49
LICA (Low Inductance Decoupling Capacitor Arrays). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50-51
High Voltage Chips for 600V to 5000V Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52-53
MIL-PRF-55681/Chips
Part Number Example (CDR01 thru CDR06) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Military Part Number Identification (CDR01 thru CDR06) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Part Number Example (CDR31 thru CDR35) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Military Part Number Identification (CDR31) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Military Part Number Identification (CDR32) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Military Part Number Identification (CDR33/34/35) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Packaging of Chip Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Embossed Carrier Configuration - 8 & 12mm Tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Paper Carrier Configuration - 8 & 12mm Tape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Bulk Case Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Basic Capacitor Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65-69
Surface Mounting Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70-73
Ceramic Chip Capacitors
Table of Contents
2
How to Order
Part Number Explanation
Commercial Surface Mount Chips
EXAMPLE: 08055A101JAT2A
0805
Size
(L" x W")
0201
0402
0603
0805
1206
1210
1812
1825
2220
2225
5
Voltage
4 = 4V
6 = 6.3V
Z = 10V
Y = 16V
3 = 25V
D = 35V
5 = 50V
1 = 100V
2 = 200V
7 = 500V
A
Dielectric
A = NP0(C0G)
C = X7R
D = X5R
G = Y5V
U = U Series
W = X6S
Z = X7S
101
Capacitance
2 Sig. Fig +
No. of Zeros
Examples:
100 = 10 pF
101 = 100 pF
102 = 1000 pF
223 = 22000 pF
224 = 220000 pF
105 = 1”F
106 = 10”F
107 = 100”F
For values below
10 pF, use “R”
in place of
Decimal point, e.g.,
9.1 pF = 9R1.
J*
Tolerance
B = ±.10 pF
C = ±.25 pF
D = ±.50 pF
F = ±1% (≄10 pF)
G = ±2% (≄10 pF)
J = ±5%
K = ±10%
M = ±20%
Z = +80%, -20%
P = +100%, -0%
A
Failure
Rate
A = N/A
4 = Automotive
T
Terminations
T = Plated Ni
and Sn
7 = Gold Plated
J = Tin/Lead
Contact
Factory For
1 = Pd/Ag Term
Z = Soft
Termination
2
Packaging
Available
2 = 7" Reel
4 = 13" Reel
7 = Bulk Cass.
9 = Bulk
Contact
Factory For
Multiples
A
Special
Code
A = Std.
High Voltage Surface Mount Chips
EXAMPLE: 1808AA271KA11A
Contact Factory for
Special Voltages * B, C & D tolerance for ≀10 pF values.
Standard Tape and Reel material (Paper/Embossed)
depends upon chip size and thickness.
See individual part tables for tape material type for
each capacitance value.
1808
AVX
Style
1206
1210
1808
1812
1825
2220
2225
3640
A
Voltage
C=600V
A=1000V
S=1500V
G=2000V
W=2500V
H=3000V
J=4000V
K=5000V
A
Temperature
Coefficient
A = C0G
C = X7R
271
Capacitance
Code
(2 significant digits
+ no. of zeros)
Examples:
K
Capacitance
Tolerance
A
Failure
Rate
A=Not
Applicable
1
Termination
1= Pd/Ag
T = Plated Ni
and Sn
1A
Packaging/Marking
1A = 7" Reel
Unmarked
3A = 13" Reel
Unmarked
9A = Bulk/Unmarked
10 pF = 100
100 pF = 101
1,000 pF = 102
22,000 pF = 223
220,000 pF = 224
1 ”F = 105
C0G: J = ±5%
K = ±10%
M = ±20%
X7R: K = ±10%
M = ±20%
Z = +80%,
-20%
F = 63V
* = 75V
E = 150V
V = 250V
9 = 300V
X = 350V
8 = 400V
3
How to Order
Part Number Explanation
Capacitor Array
EXAMPLE: W2A43C103MAT2A
Low Inductance Capacitors (LICC)
EXAMPLE: 0612ZD105MAT2A
Interdigitated Capacitors (IDC)
EXAMPLE: W3L16D225MAT3A
Decoupling Capacitor Arrays (LICA)
EXAMPLE: LICA3T183M3FC4AA
0612
Size
0306
0508
0612
Z
Voltage
6 = 6.3V
Z = 10V
Y = 16V
3 = 25V
5 = 50V
D
Dielectric
C = X7R
D = X5R
105
Capacitance
Code (In pF)
2 Sig. Digits +
Number of Zeros
M
Capacitance
Tolerance
K = ±10%
M = ±20%
A
Failure Rate
A = N/A
T
Terminations
T = Plated Ni
and Sn
J = Tin/Lead
2
Packaging
Available
2 = 7" Reel
4 = 13" Reel
A
Thickness
See Page 51
for Codes
W
Style
3
Case
Size
2 = 0508
3 = 0612
L
Low
Inductance
1
Number
of
Terminals
1 = 8 Terminals
6
Voltage
4 = 4V
6 = 6.3V
Z = 10V
Y = 16V
D
Dielectric
C = X7R
D = X5R
225
Capacitance
Code (In pF)
2 Sig. Digits +
Number of
Zeros
M
Capacitance
Tolerance
M = ±20
T
Termination
T = Plated Ni
and Sn
3
Packaging
Available
1=7" Reel
3=13" Reel
A
Thickness
Max. Thickness
mm (in.)
A=0.95 (0.037)
S=0.55 (0.022)
A
Failure
Rate
A = N/A
LICA
Style
&
Size
3
Voltage
5V = 9
10V = Z
25V = 3
T
Dielectric
D = X5R
T = T55T
S = High K
T55T
183
Cap/Section
(EIA Code)
M
Capacitance
Tolerance
M = ±20%
P = GMV
3
Height
Code
6 = 0.500mm
3 = 0.650mm
1 = 0.875mm
5 = 1.100mm
7 = 1.600mm
F
Termination
F = C4 Solder
Balls- 97Pb/3Sn
H = C4 Solder
Balls–Low ESR
P = Cr-Cu-Au
N = Cr-Ni-Au
X = None
C
Reel Packaging
M = 7" Reel
R = 13" Reel
6 = 2"x2" Waffle Pack
8 = 2"x2" Black Waffle
Pack
7 = 2"x2" Waffle Pack
w/ termination
facing up
A = 2"x2" Black Waffle
Pack
w/ termination
facing up
C = 4"x4" Waffle Pack
w/ clear lid
A
Inspection
Code
A = Standard
B = Established
Reliability
Testing
A
Code
Face
A = Bar
B = No Bar
C = Dot, S55S
Dielectrics
4
# of
Caps/Part
1 = one
2 = two
4 = four
W
Style
2
Case
Size
1 = 0405
2 = 0508
3 = 0612
A
Array
4
Number
of Caps
3
Voltage
6 = 6.3V
Z = 10V
Y = 16V
3 = 25V
5 = 50V
1 = 100V
C
Dielectric
A = NP0
C = X7R
D = X5R
103
Capacitance
Code (In pF)
2 Sig Digits +
Number of
Zeros
M
Capacitance
Tolerance
J = ±5%
K = ±10%
M = ±20%
A
Failure
Rate
T
Termination
Code
T = Plated Ni
and Sn
2A
Packaging &
Quantity
Code
2A = 7" Reel (4000)
4A = 13" Reel (10000)
2F = 7" Reel (1000)
4
Typical Capacitance Change
Envelope: 0 ± 30 ppm/°C
%  Capacitance
+0.5
0
-0.5
-55 -35 -15 +5 +25 +45 +65 +85 +105 +125
Temperature °C
Temperature Coefficient
Insulation Resistance (Ohm-Farads)
1,000
10,000
100
0020 40 60 80
Temperature °C
Insulation Resistance vs Temperature
100
Impedance, 
10 100 1000
Frequency, MHz
Variation of Impedance with Chip Size
Impedance vs. Frequency
1000 pF - C0G (NP0)
1.0
0.1
10 1206
0805
1812
1210
Impedance, 
10 100 1000
Frequency, MHz
Variation of Impedance with Ceramic Formulation
Impedance vs. Frequency
1000 pF - C0G (NP0) vs X7R
0805
0.10
0.01
1.00
X7R
NPO
10.00
%  Capacitance
+1
+2
0
-1
-2
1KHz 10 KHz 100 KHz 1 MHz 10 MHz
Frequency
 Capacitance vs. Frequency
Impedance, 
1,000
10,000
100
110 100 1000
Frequency, MHz
Variation of Impedance with Cap Value
Impedance vs. Frequency
0805 - C0G (NP0)
10 pF vs. 100 pF vs. 1000 pF
10 pF
100 pF
1000 pF
1.0
0.1
10.0
100,000
C0G (NP0) Dielectric
General Specifications
C0G (NP0) is the most popular formulation of the “tempera-
ture-compensating,” EIA Class I ceramic materials. Modern
C0G (NP0) formulations contain neodymium, samarium and
other rare earth oxides.
C0G (NP0) ceramics offer one of the most stable capacitor
dielectrics available. Capacitance change with temperature
is 0 ±30ppm/°C which is less than ±0.3% ∆C from -55°C
to +125°C. Capacitance drift or hysteresis for C0G (NP0)
ceramics is negligible at less than ±0.05% versus up to
±2% for films. Typical capacitance change with life is less
than ±0.1% for C0G (NP0), one-fifth that shown by most
other dielectrics. C0G (NP0) formulations show no aging
characteristics.
The C0G (NP0) formulation usually has a “Q” in excess
of 1000 and shows little capacitance or “Q” changes with
frequency. Their dielectric absorption is typically less than
0.6% which is similar to mica and most films.
0805
Size
(L" x W")
5
Voltage
6.3V = 6
10V = Z
16V = Y
25V = 3
50V = 5
100V = 1
200V = 2
500V = 7
A
Dielectric
C0G (NP0) = A
101
Capacitance
Code (In pF)
2 Sig. Digits +
Number of
Zeros
J
Capacitance
Tolerance
B = ±.10 pF (<10pF)
C = ±.25 pF (<10pF)
D = ±.50 pF (<10pF)
F = ±1% (≄10 pF)
G = ±2% (≄10 pF)
J = ±5%
K = ±10%
A
Failure
Rate
A = Not
Applicable
T
Terminations
T = Plated Ni
and Sn
7 = Gold Plated
2
Packaging
2 = 7" Reel
4 = 13" Reel
7 = Bulk Cass.
9 = Bulk
Contact
Factory
For
Multiples
A
Special
Code
A = Std.
Product
PART NUMBER (see page 2 for complete part number explanation)
Contact
Factory For
1 = Pd/Ag Term
5
C0G (NP0) Dielectric
Specifications and Test Methods
Parameter/Test NP0 Specification Limits Measuring Conditions
Operating Temperature Range -55ÂșC to +125ÂșC Temperature Cycle Chamber
Capacitance Within specified tolerance Freq.: 1.0 MHz ± 10% for cap ≀1000 pF
Q<30 pF: Q≄400+20 x Cap Value 1.0 kHz ± 10% for cap > 1000 pF
≄30 pF: Q≄1000 Voltage: 1.0Vrms ± .2V
Insulation Resistance 100,000M℩or 1000M℩- ”F, Charge device with rated voltage for
whichever is less 60 ± 5 secs @ room temp/humidity
Charge device with 300% of rated voltage for
Dielectric Strength No breakdown or visual defects 1-5 seconds, w/charge and discharge current
limited to 50 mA (max)
Note: Charge device with 150% of rated
voltage for 500V devices.
Appearance No defects Deflection: 2mm
Capacitance Test Time: 30 seconds
Resistance to Variation ±5% or ±.5 pF, whichever is greater
Flexure Q Meets Initial Values (As Above)
Stresses Insulation ≄Initial Value x 0.3
Resistance
Solderability ≄95% of each terminal should be covered Dip device in eutectic solder at 230 ± 5ÂșC
with fresh solder for 5.0 ± 0.5 seconds
Appearance No defects, <25% leaching of either end terminal
Capacitance
Variation ≀±2.5% or ±.25 pF, whichever is greater Dip device in eutectic solder at 260ÂșC for 60
Q Meets Initial Values (As Above) seconds. Store at room temperature for 24 ± 2
Resistance to hours before measuring electrical properties.
Solder Heat Insulation Meets Initial Values (As Above)
Resistance
Dielectric Meets Initial Values (As Above)
Strength
Appearance No visual defects Step 1: -55ÂșC ± 2Âș 30 ± 3 minutes
Capacitance
Variation ≀±2.5% or ±.25 pF, whichever is greater Step 2: Room Temp ≀3 minutes
Q Meets Initial Values (As Above) Step 3: +125ÂșC ± 2Âș 30 ± 3 minutes
Thermal
Shock Insulation Meets Initial Values (As Above) Step 4: Room Temp ≀3 minutes
Resistance
Dielectric Meets Initial Values (As Above) Repeat for 5 cycles and measure after
Strength 24 hours at room temperature
Appearance No visual defects
Capacitance
Variation ≀±3.0% or ± .3 pF, whichever is greater Charge device with twice rated voltage in
≄30 pF: Q≄350 test chamber set at 125ÂșC ± 2ÂșC
Load Life Q≄10 pF, <30 pF: Q≄275 +5C/2 for 1000 hours (+48, -0).
(C=Nominal Cap) <10 pF: Q≄200 +10C
Insulation ≄Initial Value x 0.3 (See Above) Remove from test chamber and stabilize at
Resistance room temperature for 24 hours
Dielectric Meets Initial Values (As Above) before measuring.
Strength
Appearance No visual defects
Capacitance
Variation ≀±5.0% or ± .5 pF, whichever is greater Store in a test chamber set at 85ÂșC ± 2ÂșC/
≄30 pF: Q≄350 85% ± 5% relative humidity for 1000 hours
Load Q≄10 pF, <30 pF: Q≄275 +5C/2 (+48, -0) with rated voltage applied.
Humidity <10 pF: Q≄200 +10C
Insulation ≄Initial Value x 0.3 (See Above) Remove from chamber and stabilize at
Resistance room temperature for 24 ± 2 hours
Dielectric Meets Initial Values (As Above) before measuring.
Strength
1mm/sec
90 mm
6
C0G (NP0) Dielectric
Capacitance Range
PREFERRED SIZES ARE SHADED
Letter A C E G J K M N P Q X Y Z
Max. 0.33 0.56 0.71 0.86 0.94 1.02 1.27 1.40 1.52 1.78 2.29 2.54 2.79
Thickness (0.013) (0.022) (0.028) (0.034) (0.037) (0.040) (0.050) (0.055) (0.060) (0.070) (0.090) (0.100) (0.110)
PAPER EMBOSSED
SIZE 0201 0402 0603 0805 1206
Soldering Reflow Only Reflow Only Reflow Only Reflow/Wave Reflow/Wave
Packaging All Paper All Paper All Paper Paper/Embossed Paper/Embossed
(L) Length MM 0.60 ± 0.03 1.00 ± 0.10 1.60 ± 0.15 2.01 ± 0.20 3.20 ± 0.20
(in.) (0.024 ± 0.001) (0.040 ± 0.004) (0.063 ± 0.006) (0.079 ± 0.008) (0.126 ± 0.008)
(W) Width MM 0.30 ± 0.03 0.50 ± 0.10 0.81 ± 0.15 1.25 ± 0.20 1.60 ± 0.20
(in.) (0.011 ± 0.001) (0.020 ± 0.004) (0.032 ± 0.006) (0.049 ± 0.008) (0.063 ± 0.008)
(t) Terminal MM 0.15 ± 0.05 0.25 ± 0.15 0.35 ± 0.15 0.50 ± 0.25 0.50 ± 0.25
(in.) (0.006 ± 0.002) (0.010 ± 0.006) (0.014 ± 0.006) (0.020 ± 0.010) (0.020 ± 0.010)
WVDC 10 16 25 16 25 50 6.3 25 50 100 16 25 50 100 200 16 25 50 100 200 500
Cap 0.5 A C C C G G G G J J J J J J J J J J J
(pF) 1.0 A C C C G G G G J J J J J J J J J J J
1.2 A C C C G G G G J J J J J J J J J J J
1.5 A C C C G G G G J J J J J J J J J J J
1.8 A C C C G G G G J J J J J J J J J J J
2.2 A C C C G G G G J J J J J J J J J J J
2.7 A C C C G G G G J J J J J J J J J J J
3.3 A C C C G G G G J J J J J J J J J J J
3.9 A C C C G G G G J J J J J J J J J J J
4.7 A C C C G G G G J J J J J J J J J J J
5.6 A C C C G G G G J J J J J J J J J J J
6.8 A C C C G G G G J J J J J J J J J J J
8.2 A C C C G G G G J J J J J J J J J J J
10 A C C C G G G G J J J J J JJJJJJ
12 A C C C G G G G J J J J J JJJJJJ
15 A C C C G G G G J J J J J JJJJJJ
18 A C C C G G G G J J J J J JJJJJJ
22 A C C C G G G G J J J J J JJJJJJ
27 A C C C G G G G J J J J J JJJJJJ
33 A C C C G G G G J J J J J JJJJJJ
39 A C C C G G G G J J J J J JJJJJJ
47 A C C C G G G G J J J J J JJJJJJ
56 A C C C G G G G J J J J J JJJJJJ
68 A C C C G G G G J J J J J JJJJJJ
82 A C C C G G G G J J J J J JJJJJJ
100 A C C C G G G G J J J J J J J J J J J
120 C C C G G G G J J J J J J J J J J J
150 C C C G G G G J J J J J J J J J J J
180 C C C G G G G J J J J J J J J J J J
220 C C C G G G G J J J J J J J J J J M
270 C G G G G J J J J M J J J J J M
330 C G G G G J J J J M J J J J J M
390 G G G J J J J M J J J J J M
470 G G G J J J J M J J J J J M
560 G G G J J J J M J J J J J M
680 G G G J J J J M J J J J J P
820 G G G J J J J J J J J M
1000 G G G J J J J J J J J Q
1200 JJJ JJJJQ
1500 JJJ JJJMQ
1800 JJJ JJMM
2200 JJM JJMP
2700 JJM JJMP
3300 NNM JJMP
3900 NNM JJMP
4700 NN JJMP
5600 NN JJM
6800 NMM
8200 NMM
Cap 0.010 NMM
(”F) 0.012
0.015
0.018
0.022
0.027
0.033
0.039
0.047
0.068
0.082
0.1
WVDC 10 16 25 16 25 50 6.3 25 50 100 16 25 50 100 200 16 25 50 100 200 500
SIZE 0201 0402 0603 0805 1206
L




W




T
t
7
C0G (NP0) Dielectric
Capacitance Range
PREFERRED SIZES ARE SHADED
SIZE 1210 1812 1825 2225
Soldering Reflow Only Reflow Only Reflow Only Reflow Only
Packaging Paper/Embossed All Embossed All Embossed All Embossed
(L) Length MM 3.20 ± 0.20 4.50 ± 0.30 4.50 ± 0.30 5.72 ± 0.25
(in.) (0.126 ± 0.008) (0.177 ± 0.012) (0.177 ± 0.012) (0.225 ± 0.010)
(W) Width MM 2.50 ± 0.20 3.20 ± 0.20 6.40 ± 0.40 6.35 ± 0.25
(in.) (0.098 ± 0.008) (0.126 ± 0.008) (0.252 ± 0.016) (0.250 ± 0.010)
(t) Terminal MM 0.50 ± 0.25 0.61 ± 0.36 0.61 ± 0.36 0.64 ± 0.39
(in.) (0.020 ± 0.010) (0.024 ± 0.014) (0.024 ± 0.014) (0.025 ± 0.015)
WVDC 25 50 100 200 500 25 50 100 200 500 50 100 200 500 50 100 200 500
Cap 0.5
(pF) 1.0
1.2
1.5
1.8
2.2
2.7
3.3
3.9
4.7
5.6
6.8
8.2
10 J
12 J
15 J
18 J
22 J
27 J
33 J
39 J
47 J
56 J
68 J
82 J
100 J
120 J
150 J
180 J
220 J
270 J
330 J
390 M
470 M
560 J J J J M
680 J J J J M
820 J J J J M
1000 J J J J M K K K K M M M M M M P
1200 J J J M K K K K M M M M M M P
1500 J J J M K K K K M M M M M M P
1800 J J J M K K K K M M M M M M P
2200 J J J Q K K K K P M M M M M P
2700 J J J Q K K K P Q M M M M M P
3300 J J J K K K P Q M M M M M P
3900 J J M K K K P Q M M M M M P
4700 J J M K K K P Q M M M M M P
5600 J J M K K M P X M M M M M P
6800 J J K K M X M M M P M M P
8200 J J K M M X M M P M M P
Cap 0.010 N N K M M X M M P M M P Q
(”F) 0.012 N N K M M M M M P Q
0.015 M M M M M M Y Q
0.018 M M P M M M Y Q
0.022 M M P M Y Y
0.027 M P PY Y
0.033 M P PY Z
0.039 M P PY Z
0.047 X P P
0.068 X X P
0.082 X X P
0.1 Y Y Q
WVDC 25 50 100 200 500 25 50 100 200 500 50 100 200 500 50 100 200 500
SIZE 1210 1812 1825 2225
L




W




T
t
Letter A C E G J K M N P Q X Y Z
Max. 0.33 0.56 0.71 0.86 0.94 1.02 1.27 1.40 1.52 1.78 2.29 2.54 2.79
Thickness (0.013) (0.022) (0.028) (0.034) (0.037) (0.040) (0.050) (0.055) (0.060) (0.070) (0.090) (0.100) (0.110)
PAPER EMBOSSED
8
A
B
DD
E
C
A
BC
A
B
DD
E
C
A
B
DD
E
C
RF/Microwave C0G (NP0) Capacitors
Ultra Low ESR, “U” Series, C0G (NP0) Chip Capacitors
GENERAL INFORMATION
“U” Series capacitors are C0G (NP0) chip capacitors spe-
cially designed for “Ultra” low ESR for applications in the
communications market. Max ESR and effective capacitance
are met on each value producing lot to lot uniformity.
Sizes available are EIA chip sizes 0603, 0805, and 1210.
Size A B C D E
0402 0.039±0.004 (1.00±0.1) 0.020±0.004 (0.50±0.1) 0.024 (0.6) max N/A N/A
0603 0.060±0.010 (1.52±0.25) 0.030±0.010 (0.76±0.25) 0.036 (0.91) max 0.010±0.005 (0.25±0.13) 0.030 (0.76) min
0805 0.079±0.008 (2.01±0.2) 0.049±0.008 (1.25±0.2) 0.040±0.005 (1.02±0.127) 0.020±0.010 (0.51±0.255) 0.020 (0.51) min
1210 0.126±0.008 (3.2±0.2) 0.098±0.008 (2.49±0.2) 0.050±0.005 (1.27±0.127) 0.025±0.015 (0.635±0.381) 0.040 (1.02) min
ELECTRICAL CHARACTERISTICS
Capacitance Values and Tolerances:
Size 0402 - 0.2 pF to 22 pF @ 1 MHz
Size 0603 - 1.0 pF to 100 pF @ 1 MHz
Size 0805 - 1.6 pF to 160 pF @ 1 MHz
Size 1210 - 2.4 pF to 1000 pF @ 1 MHz
Temperature Coefficient of Capacitance (TC):
0±30 ppm/°C (-55° to +125°C)
Insulation Resistance (IR):
1012 ℩min. @ 25°C and rated WVDC
1011 ℩min. @ 125°C and rated WVDC
Working Voltage (WVDC):
Size Working Voltage
0402 - 50, 25 WVDC
0603 - 200, 100, 50 WVDC
0805 - 200, 100 WVDC
1210 - 200, 100 WVDC
Dielectric Working Voltage (DWV):
250% of rated WVDC
Equivalent Series Resistance Typical (ESR):
0402 - See Performance Curve, page 9
0603 - See Performance Curve, page 9
0805 - See Performance Curve, page 9
1210 - See Performance Curve, page 9
Marking: Laser marking EIA J marking standard
(except 0603) (capacitance code and
tolerance upon request).
MILITARY SPECIFICATIONS
Meets or exceeds the requirements of MIL-C-55681
0805
Case Size
0402
0603
0805
1210
1
Voltage
Code
3 = 25V
5 = 50V
1 = 100V
2 = 200V
U
Dielectric =
Ultra Low
ESR
100
Capacitance
J
Capacitance
Tolerance
Code
B = ±0.1pF
C = ±0.25pF
D = ±0.5pF
F = ±1%
G = ±2%
J = ±5%
K = ±10%
M = ±20%
A
Failure Rate
Code
A = Not
Applicable
T
Termination
T= Plated Ni
and Solder
2
Packaging
Code
A
Special
Code
A = Standard
HOW TO ORDER
EIA Capacitance Code in pF.
First two digits = significant figures
or “R” for decimal place.
Third digit = number of zeros or after
“R” significant figures.
2 = 7" Reel
4 = 13" Reel
9 = Bulk
DIMENSIONS: inches (millimeters)
0402 0603 0805 1210
inches (mm)
9
3.9 pF
4.7 pF
5.1 pF
6.8 pF
10.0 pF
15.0 pF
1
0.1
0.010500 1000 1500 2000 2500
Frequency (MHz)
ESR (ohms)
TYPICAL ESR vs. FREQUENCY
0603 “U” SERIES
10 pF
15 pF
3.3 pF
1
0.1
0.010500 1000 1500 2000 2500
Frequency (MHz)
ESR (ohms)
TYPICAL ESR vs. FREQUENCY
0402 “U” SERIES
10.0 pF
100 pF
1
0.1
0.010500 1000 1500 2000 2500
Frequency (MHz)
ESR (ohms)
TYPICAL ESR vs. FREQUENCY
0805 “U” SERIES
10 pF
100 pF
300 pF
1
0.1
0.010500 1000 1500 2000
Frequency (MHz)
ESR (ohms)
TYPICAL ESR vs. FREQUENCY
1210 “U” SERIES
RF/Microwave C0G (NP0) Capacitors
Ultra Low ESR, “U” Series, C0G (NP0) Chip Capacitors
CAPACITANCE RANGE
ULTRA LOW ESR, “U” SERIES
Available Size
Cap (pF) Tolerance 0402 0603 0805 1210
0.2 B,C 50V N/A N/A N/A
0.3
0.4
0.5 B,C
0.6 B,C,D
0.7
0.8
0.9 B,C,D
ESR Measured on the Boonton 34A
Available Size
Cap (pF) Tolerance 0402 0603 0805 1210
1.0 B,C,D 50V 200V 200V N/A
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.4 200V
2.7
3.0
3.3
3.6
3.9
4.3
4.7
5.1
5.6
6.2 B,C,D
6.8 B,C,J,K,M
Available Size
Cap (pF) Tolerance 0402 0603 0805 1210
7.5 B,C,J,K,M 50V 200V 200V 200V
8.2
9.1 B,C,J,K,M
10 F,G,J,K,M
11
12
13
15
18
20
22
24
27
30 50V
33 N/A
36
39
43 100V
47
51
56
68
75
82
91 F,G,J,K,M
Available Size
Cap (pF) Tolerance 0402 0603 0805 1210
100 F,G,J,K,M N/A 100V 200V 200V
110 50V
120
130
140
150 50V
160 N/A 200V
180 N/A
200
220
270
300
330
360
390
430
470 100V
510
560
620
680
750
820
910
1000 F,G,J,K,M





























10
RF/Microwave C0G (NP0) Capacitors
Ultra Low ESR, “U” Series, C0G (NP0) Chip Capacitors
TYPICAL
SERIES RESONANT FREQUENCY
“U” SERIES CHIP
1210
0805
0603
0402
10
1.0
0.11.0 10 100 1000
Capacitance (pF)
Frequency (GHz)
11
“U” SERIES KITS
Solder Plated, Nickel Barrier
0805 1210
0402 0603
Kit 4000 UZ**
Cap. Cap.
Value Tol.† Value Tol.†
pF pF
1.0 ±.25pF 6.8 ±.25pF
1.2 ±.25pF 7.5 ±.25pF
1.5 ±.25pF 8.2 ±.25pF
1.8 ±.25pF 10.0 ±5%
2.0 ±.25pF 12.0 ±5%
2.4 ±.25pF 15.0 ±5%
2.7 ±.25pF 18.0 ±5%
3.0 ±.25pF 22.0 ±5%
3.3 ±.25pF 27.0 ±5%
3.9 ±.25pF 33.0 ±5%
4.7 ±.25pF 39.0 ±5%
5.6 ±.25pF 47.0 ±5%
Kit 3000 UZ***
Cap. Cap. Cap.
Value Tol.† Value Tol.† Value Tol.†
pF pF pF
1.0 C 7.5 C 33 J
1.5 C 8.2 C 36 J
2.2 C 9.1 C 39 J
2.4 C 10.0 J 47 J
2.7 C 12.0 J 56 J
3.0 C 15.0 J 68 J
3.3 C 18.0 J 82 J
3.9 C 22.0 J 100 J
4.7 C 24.0 J 130 J
5.6 C 27.0 J 160 J
Kit 3500 UZ***
Cap. Cap. Cap.
Value Tol.† Value Tol.† Value Tol.†
pF pF pF
2.2 C 18 J 68 J
2.7 C 20 J 82 J
4.7 C 24 J 100 J
5.1 C 27 J 120 J
6.8 C 30 J 130 J
8.2 C 36 J 240 J
9.1 C 39 J 300 J
10 J 47 J 390 J
13 J 51 J 470 J
15 J 56 J 680 J
** 240 Capacitors 10 each of 24 values.
* 150 Capacitors 10 each of 15 values.
Kit 5000 UZ*
Cap. Cap.
Value Tol.† Value Tol.†
pF pF
0.5 B 4.7 B
1.0 B 5.6 B
1.5 B 6.8 B
1.8 B 8.2 B
2.2 B 10.0 J
2.4 B 12.0 J
3.0 B 15.0 J
3.6 B
Designer Kits
Communication Kits “U” Series
†Tolerance – B = ±0.1pF
C = ±0.25pF
J = ±5%
*** 300 Capacitors 10 each of 30 values.
12
0805
Size
(L" x W")
5
Voltage
4V = 4
6.3V = 6
10V = Z
16V = Y
25V = 3
50V = 5
100V = 1
200V = 2
500V = 7
C
Dielectric
X7R = C
103
Capacitance
Code (In pF)
2 Sig. Digits +
Number of
Zeros
M
Capacitance
Tolerance
J = ± 5%
K = ±10%
M = ± 20%
A
Failure
Rate
A = Not
Applicable
T
Terminations
T = Plated Ni
and Sn
7 = Gold
Plated
2
Packaging
2 = 7" Reel
4 = 13" Reel
7 = Bulk Cass.
9 = Bulk
Contact
Factory For
Multiples
A
Special
Code
A = Std.
Product
X7R Dielectric
General Specifications
X7R formulations are called “temperature stable” ceramics
and fall into EIA Class II materials. X7R is the most popular
of these intermediate dielectric constant materials. Its tem-
perature variation of capacitance is within ±15% from
-55°C to +125°C. This capacitance change is non-linear.
Capacitance for X7R varies under the influence of electrical
operating conditions such as voltage and frequency.
X7R dielectric chip usage covers the broad spectrum of
industrial applications where known changes in capaci-
tance due to applied voltages are acceptable.
PART NUMBER (see page 2 for complete part number explanation)
% Cap Change
10
-60 -40 -20 0 20 40 60 80 100 120 140
Temperature °C
X7R Dielectric
Typical Temperature Coefficient
5
0
-5
-10
-15
-20
-25
%  Capacitance
+10
+20
+30
0
-10
-20
-30
1KHz 10 KHz 100 KHz 1 MHz 10 MHz
Frequency
 Capacitance vs. Frequency
Insulation Resistance (Ohm-Farads)
1,000
10,000
100
0020 120
40 60 80
Temperature °C
Insulation Resistance vs Temperature
100
Impedance, 
10 100 1000
Frequency, MHz
Variation of Impedance with Cap Value
Impedance vs. Frequency
1,000 pF vs. 10,000 pF - X7R
0805
0.10
0.01
1.00
1,000 pF
10,000 pF
10.00
Impedance, 
110
100 1,000
Frequency, MHz
Variation of Impedance with Chip Size
Impedance vs. Frequency
100,000 pF - X7R
0.1
.01
1.0
1206
0805
10
1210
Impedance, 
110
100 1,000
Frequency, MHz
Variation of Impedance with Chip Size
Impedance vs. Frequency
10,000 pF - X7R
0.1
.01
1.0
1206
0805
10
1210
13
X7R Dielectric
Specifications and Test Methods
Parameter/Test X7R Specification Limits Measuring Conditions
Operating Temperature Range -55ÂșC to +125ÂșC Temperature Cycle Chamber
Capacitance Within specified tolerance
≀2.5% for ≄50V DC rating Freq.: 1.0 kHz ± 10%
Dissipation Factor ≀3.0% for 25V DC rating Voltage: 1.0Vrms ± .2V
≀3.5% for 16V DC rating For Cap > 10 ”F, 0.5Vrms @ 120Hz
≀5.0% for ≀10V DC rating
Insulation Resistance 100,000M℩or 1000M℩- ”F, Charge device with rated voltage for
whichever is less 120 ± 5 secs @ room temp/humidity
Charge device with 300% of rated voltage for
Dielectric Strength No breakdown or visual defects 1-5 seconds, w/charge and discharge current
limited to 50 mA (max)
Note: Charge device with 150% of rated
voltage for 500V devices.
Appearance No defects Deflection: 2mm
Capacitance Test Time: 30 seconds
Resistance to Variation ≀±12%
Flexure Dissipation Meets Initial Values (As Above)
Stresses Factor
Insulation ≄Initial Value x 0.3
Resistance
Solderability ≄95% of each terminal should be covered Dip device in eutectic solder at 230 ± 5ÂșC
with fresh solder for 5.0 ± 0.5 seconds
Appearance No defects, <25% leaching of either end terminal
Capacitance
Variation ≀±7.5% Dip device in eutectic solder at 260ÂșC for 60
Dissipation Meets Initial Values (As Above) seconds. Store at room temperature for 24 ± 2
Resistance to Factor hours before measuring electrical properties.
Solder Heat Insulation Meets Initial Values (As Above)
Resistance
Dielectric Meets Initial Values (As Above)
Strength
Appearance No visual defects Step 1: -55ÂșC ± 2Âș 30 ± 3 minutes
Capacitance
Variation ≀±7.5% Step 2: Room Temp ≀3 minutes
Dissipation Meets Initial Values (As Above) Step 3: +125ÂșC ± 2Âș 30 ± 3 minutes
Thermal Factor
Shock Insulation Meets Initial Values (As Above) Step 4: Room Temp ≀3 minutes
Resistance
Dielectric Meets Initial Values (As Above) Repeat for 5 cycles and measure after
Strength 24 ± 2 hours at room temperature
Appearance No visual defects
Capacitance
Variation ≀±12.5%
Dissipation ≀Initial Value x 2.0 (See Above)
Load Life Factor
Insulation ≄Initial Value x 0.3 (See Above)
Resistance
Dielectric Meets Initial Values (As Above)
Strength
Appearance No visual defects
Capacitance
Variation ≀±12.5%
Load Dissipation ≀Initial Value x 2.0 (See Above)
Humidity Factor
Insulation ≄Initial Value x 0.3 (See Above)
Resistance
Dielectric Meets Initial Values (As Above)
Strength
Charge device with twice rated voltage in
test chamber set at 125ÂșC ± 2ÂșC
for 1000 hours (+48, -0)
Remove from test chamber and stabilize
at room temperature for 24 ± 2 hours
before measuring.
Store in a test chamber set at 85ÂșC ± 2ÂșC/
85% ± 5% relative humidity for 1000 hours
(+48, -0) with rated voltage applied.
Remove from chamber and stabilize at
room temperature and humidity for
24 ± 2 hours before measuring.
1mm/sec
90 mm
14
X7R Dielectric
Capacitance Range
PREFERRED SIZES ARE SHADED
SIZE 0201 0402 0603 0805 1206
Soldering Reflow Only Reflow Only Reflow Only Reflow/Wave Reflow/Wave
Packaging All Paper All Paper All Paper Paper/Embossed Paper/Embossed
(L) Length MM 0.60 ± 0.03 1.00 ± 0.10 1.60 ± 0.15 2.01 ± 0.20 3.20 ± 0.20
(in.) (0.024 ± 0.001) (0.040 ± 0.004) (0.063 ± 0.006) (0.079 ± 0.008) (0.126 ± 0.008)
(W) Width MM 0.30 ± 0.03 0.50 ± 0.10 0.81 ± 0.15 1.25 ± 0.20 1.60 ± 0.20
(in.) (0.011 ± 0.001) (0.020 ± 0.004) (0.032 ± 0.006) (0.049 ± 0.008) (0.063 ± 0.008)
(t) Terminal MM 0.15 ± 0.05 0.25 ± 0.15 0.35 ± 0.15 0.50 ± 0.25 0.50 ± 0.25
(in.) (0.006 ± 0.002) (0.010 ± 0.006) (0.014 ± 0.006) (0.020 ± 0.010) (0.020 ± 0.010)
WVDC 16 16 25 50 10 16 25 50 100 10 16 25 50 100 200 10 16 25 50 100 200 500
Cap 100 A
(pF) 150 A
220 A C
330 A C G G J J J J J J K
470 A C G G J J J J J J K
680 A C G G J J J J J J K
1000 A C G G J J J J J J K
1500 C G G J J J J J J J J J J J J M
2200 C G G J J J J J J J J J J J J M
3300 C C G G J J J J J J J J J J J J M
4700 C G J J J J J J J J J J J J M
6800 C C G J J J J J J J J J J J J P
Cap 0.010 C G J J J J J J J J J J J J P
(”F 0.015 C G G J J J J J J J J J J J M
0.022 C G J J J J J M J J J J J M
0.033 G J J J J M J J J J J M
0.047 G G J J J J M J J J J J M
0.068 G J J J J J J J J J P
0.10 G G G J J J J J J J J M
0.15 G J J J J J J J
0.22 G J J M J J J J
0.33 MM JJMM
0.47 NM MMM
0.68 NMM
1.0 NMMQ
1.5 P
2.2 Q
3.3
4.7
10
22
47
100
WVDC 16 16 25 50 10 16 25 50 100 10 16 25 50 100 200 10 16 25 50 100 200 500
SIZE 0201 0402 0603 0805 1206
L




W




T
t
Letter A C E G J K M N P Q X Y Z
Max. 0.33 0.56 0.71 0.86 0.94 1.02 1.27 1.40 1.52 1.78 2.29 2.54 2.79
Thickness (0.013) (0.022) (0.028) (0.034) (0.037) (0.040) (0.050) (0.055) (0.060) (0.070) (0.090) (0.100) (0.110)
PAPER EMBOSSED
15
X7R Dielectric
Capacitance Range
Letter A C E G J K M N P Q X Y Z
Max. 0.33 0.56 0.71 0.86 0.94 1.02 1.27 1.40 1.52 1.78 2.29 2.54 2.79
Thickness (0.013) (0.022) (0.028) (0.034) (0.037) (0.040) (0.050) (0.055) (0.060) (0.070) (0.090) (0.100) (0.110)
PAPER EMBOSSED
PREFERRED SIZES ARE SHADED
SIZE 1210 1812 1825 2220 2225
Soldering Reflow Only Reflow Only Reflow Only Reflow Only Reflow Only
Packaging Paper/Embossed All Embossed All Embossed All Embossed All Embossed
(L) Length MM 3.20 ± 0.20 4.50 ± 0.30 4.50 ± 0.30 5.70 ± 0.40 5.72 ± 0.25
(in.) (0.126 ± 0.008) (0.177 ± 0.012) (0.177 ± 0.012) (0.225 ± 0.016) (0.225 ± 0.010)
(W) Width MM 2.50 ± 0.20 3.20 ± 0.20 6.40 ± 0.40 5.00 ± 0.40 6.35 ± 0.25
(in.) (0.098 ± 0.008) (0.126 ± 0.008) (0.252 ± 0.016) (0.197 ± 0.016) (0.250 ± 0.010)
(t) Terminal MM 0.50 ± 0.25 0.61 ± 0.36 0.61 ± 0.36 0.64 ± 0.39 0.64 ± 0.39
(in.) (0.020 ± 0.010) (0.024 ± 0.014) (0.024 ± 0.014) (0.025 ± 0.015) (0.025 ± 0.015)
WVDC 10 16 25 50 100 200 500 50 100 200 500 50 100 6.3 50 100 200 50 100
Cap 100
(pF) 150
220
330
470
680
1000
1500 J J J J J J M
2200 J J J J J J M
3300 J J J J J J M
4700 J J J J J J M
6800 J J J J J J M
Cap 0.010 J J J J J J M K K K K M M X X X X M P
(”F 0.015 J J J J J J P K K K P M M X X X X M P
0.022 J J J J J J Q K K K P M M X X X X M P
0.033 J J J J J J K K K X M M X X X X M P
0.047 J J J J J J K K K Z M M X X X X M P
0.068 J J J J J M K K K M M X X X X M P
0.10 J J J J J M K K K M M X X X X M P
0.15 J J J J M K K P M M X X X X M P
0.22 J J J J P K K P M M X X X M P
0.33 J J J J Z K M M M X X X M P
0.47 M M M M Z K P M M X X X M P
0.68 M M P X Z M Q M X X X M P
1.0 N N P X Z M X M Z M P
1.5 N N MMX
2.2 X Z M
3.3
4.7 Q Z
10 Z
22
47
100
WVDC 10 16 25 50 100 200 500 50 100 200 500 50 100 6.3 50 100 200 50 100
SIZE 1210 1812 1825 2220 2225
L




W




T
t
16
X7S formulations are called “temperature stable” ceramics and fall
into EIA Class II materials. X7S is the most popular of these intermedi-
ate dielectric constant materials. Its temperature variation of capaci-
tance is within ±22% from –55°C to +125°C. This capacitance
change is non-linear.
Capacitance for X7S varies under the influence of electrical operating
conditions such as voltage and frequency.
X7S dielectric chip usage covers the broad spectrum of industrial
applications where known changes in capacitance due to applied
voltages are acceptable.
X7S Dielectric
General Specifications
PART NUMBER (see page 2 for complete part number explanation)
GENERAL DESCRIPTION
TYPICAL ELECTRICAL CHARACTERISTICS
1206
Size
(L" x W")
Z
Voltage
4 = 4V
6 = 6.3V
Z = 10V
Y = 16V
3 = 25V
5 = 50V
1 = 100V
2 = 200V
Z
Dielectric
Z = X7S
105
Capacitance
Code (In pF)
2 Sig. Digits +
Number of
Zeros
M
Capacitance
Tolerance
K = ±10%
M = ±20%
A
Failure
Rate
A = N/A
T
Terminations
T = Plated Ni
and Sn
2
Packaging
2 = 7" Reel
4 = 13" Reel
7 = Bulk Cass.
A
Special
Code
A = Std.
Product
%  Capacitance
+10
+20
+30
0
-10
-20
-30
1KHz 10 KHz 100 KHz 1 MHz 10 MHz
Frequency
 Capacitance vs. Frequency
Insulation Resistance (Ohm-Farads)
1,000
10,000
100
0020 120
40 60 80
Temperature °C
Insulation Resistance vs Temperature
100
Impedance, 
10 100 1000
Frequency, MHz
Variation of Impedance with Cap Value
Impedance vs. Frequency
1,000 pF vs. 10,000 pF - X7S
0805
0.10
0.01
1.00
1,000 pF
10,000 pF
10.00
Impedance, 
110
100 1,000
Frequency, MHz
Variation of Impedance with Chip Size
Impedance vs. Frequency
100,000 pF - X7S
0.1
.01
1.0
1206
0805
10
1210
Impedance, 
110
100 1,000
Frequency, MHz
Variation of Impedance with Chip Size
Impedance vs. Frequency
10,000 pF - X7S
0.1
.01
1.0
1206
0805
10
1210
10
5
0
-5
-10
-15
-20
-25 -60 -40 -20 0 20 40
Temperature (°C)
% Cap Change
60 80 100 120 140
X7S Dielectric
Typical Temperature Coefficient
17
X7S Dielectric
Specifications and Test Methods
Parameter/Test X7S Specification Limits Measuring Conditions
Operating Temperature Range -55ÂșC to +125ÂșC Temperature Cycle Chamber
Capacitance Within specified tolerance
≀2.5% for ≄50V DC rating Freq.: 1.0 kHz ± 10%
Dissipation Factor ≀3.0% for 25V DC rating Voltage: 1.0Vrms ± .2V
≀3.5% for 16V DC rating For Cap > 10 ”F, 0.5Vrms @ 120Hz
≀5.0% for ≀10V DC rating
Insulation Resistance 100,000M℩or 1000M℩- ”F, Charge device with rated voltage for
whichever is less 120 ± 5 secs @ room temp/humidity
Charge device with 300% of rated voltage for
Dielectric Strength No breakdown or visual defects 1-5 seconds, w/charge and discharge current
limited to 50 mA (max)
Appearance No defects Deflection: 2mm
Capacitance Test Time: 30 seconds
Resistance to Variation ≀±12%
Flexure Dissipation Meets Initial Values (As Above)
Stresses Factor
Insulation ≄Initial Value x 0.3
Resistance
Solderability ≄95% of each terminal should be covered Dip device in eutectic solder at 230 ± 5ÂșC
with fresh solder for 5.0 ± 0.5 seconds
Appearance No defects, <25% leaching of either end terminal
Capacitance
Variation ≀±7.5% Dip device in eutectic solder at 260ÂșC for 60
Dissipation Meets Initial Values (As Above) seconds. Store at room temperature for 24 ± 2
Resistance to Factor hours before measuring electrical properties.
Solder Heat Insulation Meets Initial Values (As Above)
Resistance
Dielectric Meets Initial Values (As Above)
Strength
Appearance No visual defects Step 1: -55ÂșC ± 2Âș 30 ± 3 minutes
Capacitance
Variation ≀±7.5% Step 2: Room Temp ≀3 minutes
Dissipation Meets Initial Values (As Above) Step 3: +125ÂșC ± 2Âș 30 ± 3 minutes
Thermal Factor
Shock Insulation Meets Initial Values (As Above) Step 4: Room Temp ≀3 minutes
Resistance
Dielectric Meets Initial Values (As Above) Repeat for 5 cycles and measure after
Strength 24 ± 2 hours at room temperature
Appearance No visual defects
Capacitance
Variation ≀±12.5%
Dissipation ≀Initial Value x 2.0 (See Above)
Load Life Factor
Insulation ≄Initial Value x 0.3 (See Above)
Resistance
Dielectric Meets Initial Values (As Above)
Strength
Appearance No visual defects
Capacitance
Variation ≀±12.5%
Load Dissipation ≀Initial Value x 2.0 (See Above)
Humidity Factor
Insulation ≄Initial Value x 0.3 (See Above)
Resistance
Dielectric Meets Initial Values (As Above)
Strength
Charge device with twice rated voltage in
test chamber set at 125ÂșC ± 2ÂșC
for 1000 hours (+48, -0)
Remove from test chamber and stabilize
at room temperature for 24 ± 2 hours
before measuring.
Store in a test chamber set at 85ÂșC ± 2ÂșC/
85% ± 5% relative humidity for 1000 hours
(+48, -0) with rated voltage applied.
Remove from chamber and stabilize at
room temperature and humidity for
24 ± 2 hours before measuring.
1mm/sec
90 mm
18
X7S Dielectric
Capacitance Range
PREFERRED SIZES ARE SHADED
SIZE 0402 0603 0805 1206 1210
Soldering Reflow Only Reflow Only Reflow/Wave Reflow/Wave Reflow Only
Packaging All Paper All Paper Paper/Embossed Paper/Embossed Paper/Embossed
(L) Length MM 1.00 ± 0.10 1.60 ± 0.15 2.01 ± 0.20 3.20 ± 0.20 3.20 ± 0.20
(in.) (0.040 ± 0.004) (0.063 ± 0.006) (0.079 ± 0.008) (0.126 ± 0.008) (0.126 ± 0.008)
(W) Width MM 0.50 ± 0.10 0.81 ± 0.15 1.25 ± 0.20 1.60 ± 0.20 2.50 ± 0.20
(in.) (0.020 ± 0.004) (0.032 ± 0.006) (0.049 ± 0.008) (0.063 ± 0.008) (0.098 ± 0.008)
(t) Terminal MM 0.25 ± 0.15 0.35 ± 0.15 0.50 ± 0.25 0.50 ± 0.25 0.50 ± 0.25
(in.) (0.010 ± 0.006) (0.014 ± 0.006) (0.020 ± 0.010) (0.020 ± 0.010) (0.020 ± 0.010)
WVDC 6.3 6.3 4 6.3 10 6.3
Cap 100
(pF) 150
220
330
470
680
1000
1500
2200
3300
4700
6800
Cap 0.010
(”F 0.015
0.022
0.033 C
0.047 C
0.068 C
0.10 C
0.15
0.22
0.33 G
0.47 G
0.68 G
1.0 G
1.5 N Q
2.2 N Q
3.3 N Q
4.7 N Q Q
10
22 Z
47
100
WVDC 6.3 6.3 4 6.3 10 6.3
SIZE 0402 0603 0805 1206 1210
L




W




T
t
Letter A C E G J K M N P Q X Y Z
Max. 0.33 0.56 0.71 0.86 0.94 1.02 1.27 1.40 1.52 1.78 2.29 2.54 2.79
Thickness (0.013) (0.022) (0.028) (0.034) (0.037) (0.040) (0.050) (0.055) (0.060) (0.070) (0.090) (0.100) (0.110)
PAPER EMBOSSED
19
‱ General Purpose Dielectric for Ceramic Capacitors
‱ EIA Class II Dielectric
‱ Temperature variation of capacitance is within ±15%
from -55°C to +85°C
‱ Well suited for decoupling and filtering applications
‱ Available in High Capacitance values (up to 100”F)
X5R Dielectric
General Specifications
PART NUMBER (see page 2 for complete part number explanation)
GENERAL DESCRIPTION
%  Capacitance
-60 -40 -20 0 +20 +40 +60 +80
Temperature °C
Temperature Coefficient
20
15
10
5
0
-5
-10
-15
-20
TYPICAL ELECTRICAL CHARACTERISTICS
Insulation Resistance (Ohm-Farads)
1,000
10,000
100
0
Insulation Resistance vs Temperature
020 120
40 60 80
Temperature °C100
2220
Size
(L" x W")
6
Voltage
4 = 4V
6 = 6.3V
Z = 10V
Y = 16V
3 = 25V
D = 35V
5 = 50V
D
Dielectric
D = X5R
107
Capacitance
Code (In pF)
2 Sig. Digits +
Number of
Zeros
M
Capacitance
Tolerance
K = ±10%
M = ±20%
A
Failure
Rate
A = N/A
T
Terminations
T = Plated Ni
and Sn
2
Packaging
2 = 7" Reel
4 = 13" Reel
7 = Bulk Cass.
9 = Bulk
A
Special
Code
A = Std.
20
X5R Dielectric
Specifications and Test Methods
Parameter/Test X5R Specification Limits Measuring Conditions
Operating Temperature Range -55ÂșC to +85ÂșC Temperature Cycle Chamber
Capacitance Within specified tolerance
≀2.5% for ≄50V DC rating Freq.: 1.0 kHz ± 10%
Dissipation Factor ≀3.0% for 25V DC rating Voltage: 1.0Vrms ± .2V
≀3.5% for 16V DC rating For Cap > 10 ”F, 0.5Vrms @ 120Hz
≀5.0% for ≀10V DC rating
Insulation Resistance 100,000M℩or 500M℩- ”F, Charge device with rated voltage for
whichever is less 120 ± 5 secs @ room temp/humidity
Charge device with 300% of rated voltage for
Dielectric Strength No breakdown or visual defects 1-5 seconds, w/charge and discharge current
limited to 50 mA (max)
Appearance No defects Deflection: 2mm
Capacitance Test Time: 30 seconds
Resistance to Variation ≀±12%
Flexure Dissipation Meets Initial Values (As Above)
Stresses Factor
Insulation ≄Initial Value x 0.3
Resistance
Solderability ≄95% of each terminal should be covered Dip device in eutectic solder at 230 ± 5ÂșC
with fresh solder for 5.0 ± 0.5 seconds
Appearance No defects, <25% leaching of either end terminal
Capacitance
Variation ≀±7.5% Dip device in eutectic solder at 260ÂșC for 60
Dissipation Meets Initial Values (As Above) seconds. Store at room temperature for 24 ± 2
Resistance to Factor hours before measuring electrical properties.
Solder Heat Insulation Meets Initial Values (As Above)
Resistance
Dielectric Meets Initial Values (As Above)
Strength
Appearance No visual defects Step 1: -55ÂșC ± 2Âș 30 ± 3 minutes
Capacitance
Variation ≀±7.5% Step 2: Room Temp ≀3 minutes
Dissipation Meets Initial Values (As Above) Step 3: +85ÂșC ± 2Âș 30 ± 3 minutes
Thermal Factor
Shock Insulation Meets Initial Values (As Above) Step 4: Room Temp ≀3 minutes
Resistance
Dielectric Meets Initial Values (As Above) Repeat for 5 cycles and measure after
Strength 24 ± 2 hours at room temperature
Appearance No visual defects
Capacitance
Variation ≀±12.5%
Dissipation ≀Initial Value x 2.0 (See Above)
Load Life Factor
Insulation ≄Initial Value x 0.3 (See Above)
Resistance
Dielectric Meets Initial Values (As Above)
Strength
Appearance No visual defects
Capacitance
Variation ≀±12.5%
Load Dissipation ≀Initial Value x 2.0 (See Above)
Humidity Factor
Insulation ≄Initial Value x 0.3 (See Above)
Resistance
Dielectric Meets Initial Values (As Above)
Strength
Charge device with 1.5X rated voltage in
test chamber set at 85ÂșC ± 2ÂșC for 1000 hours
(+48, -0). Note: Contact factory for specific high
CV devices that are tested at 1.5X rated voltage.
Remove from test chamber and stabilize
at room temperature for 24 ± 2 hours
before measuring.
Store in a test chamber set at 85ÂșC ± 2ÂșC/
85% ± 5% relative humidity for 1000 hours
(+48, -0) with rated voltage applied.
Remove from chamber and stabilize at
room temperature and humidity for
24 ± 2 hours before measuring.
1mm/sec
90 mm
21
X5R Dielectric
Capacitance Range
PREFERRED SIZES ARE SHADED
SIZE 0201 0402 0603 0805
Soldering Reflow Only Reflow Only Reflow Only Reflow/Wave
Packaging All Paper All Paper All Paper Paper/Embossed
(L) Length MM 0.60 ± 0.03 1.00 ± 0.10 1.60 ± 0.15 2.01 ± 0.20
(in.) (0.024 ± 0.001) (0.040 ± 0.004) (0.063 ± 0.006) (0.079 ± 0.008)
(W) Width MM 0.30 ± 0.03 0.50 ± 0.10 0.81 ± 0.15 1.25 ± 0.20
(in.) (0.011 ± 0.001) (0.020 ± 0.004) (0.032 ± 0.006) (0.049 ± 0.008)
(t) Terminal MM 0.15 ± 0.05 0.25 ± 0.15 0.35 ± 0.15 0.50 ± 0.25
(in.) (0.006 ± 0.002) (0.010 ± 0.006) (0.014 ± 0.006) (0.020 ± 0.010)
WVDC 10 16 25 4 6.3 10 16 25 4 6.3 10 16 25 35 6.3 10 16 25 35 50
Cap 100 A
(pF) 150 A
220 A
330 A
470 A
680 A
1000 A
1500 A
2200 A A
3300 A
4700 A
6800 A
Cap 0.010 A C
(”F 0.015 CG
0.022 CG
0.033 CG
0.047 CGG
0.068 CG N
0.10 C C G N
0.15 C G N
0.22 C G G N
0.33 C C G G N
0.47 C G N
0.68 C G N N
1.0 C C G G G N N
1.5 NN
2.2 GG N N
3.3 N
4.7 GG N N
6.8
10 N
22
47
100
WVDC 10 16 25 4 6.3 10 16 25 4 6.3 10 16 25 35 6.3 10 16 25 35 50
SIZE 0201 0402 0603 0805
L




W




T
t
Letter A C E G J K M N P Q X Y Z
Max. 0.33 0.56 0.71 0.86 0.94 1.02 1.27 1.40 1.52 1.78 2.29 2.54 2.79
Thickness (0.013) (0.022) (0.028) (0.034) (0.037) (0.040) (0.050) (0.055) (0.060) (0.070) (0.090) (0.100) (0.110)
PAPER EMBOSSED
22
X5R Dielectric
Capacitance Range
Letter A C E G J K M N P Q X Y Z
Max. 0.33 0.56 0.71 0.86 0.94 1.02 1.27 1.40 1.52 1.78 2.29 2.54 2.79
Thickness (0.013) (0.022) (0.028) (0.034) (0.037) (0.040) (0.050) (0.055) (0.060) (0.070) (0.090) (0.100) (0.110)
PAPER EMBOSSED
PREFERRED SIZES ARE SHADED
SIZE 1206 1210 1812
Soldering Reflow/Wave Reflow Only Reflow Only
Packaging Paper/Embossed Paper/Embossed All Embossed
(L) Length MM 3.20 ± 0.20 3.20 ± 0.20 4.50 ± 0.30
(in.) (0.126 ± 0.008) (0.126 ± 0.008) (0.177 ± 0.012)
(W) Width MM 1.60 ± 0.20 2.50 ± 0.20 3.20 ± 0.20
(in.) (0.063 ± 0.008) (0.098 ± 0.008) (0.126 ± 0.008)
(t) Terminal MM 0.50 ± 0.25 0.50 ± 0.25 0.61 ± 0.36
(in.) (0.020 ± 0.010) (0.020 ± 0.010) (0.024 ± 0.014)
WVDC 6.3 10 16 25 35 6.3 10 16 25 35 6.3 10 25
Cap 100
(pF) 150
220
330
470
680
1000
1500
2200
3300
4700
6800
Cap 0.010
(”F 0.015
0.022
0.033
0.047
0.068
0.10
0.15
0.22
0.33
0.47 M
0.68
1.0 Q N
1.5
2.2 Q Q X
3.3
4.7 Q Q Q Z
6.8
10 Q Q Q Z Z
22 Q Z Z Z Z
47 Z Z
100 Z
WVDC 6.3 10 16 25 35 6.3 10 16 25 35 6.3 10 25
SIZE 1206 1210 1812
L




W




T
t
23
Y5V Dielectric
General Specifications
Y5V formulations are for general-purpose use in a limited
temperature range. They have a wide temperature character-
istic of +22% –82% capacitance change over the operating
temperature range of –30°C to +85°C.
These characteristics make Y5V ideal for decoupling applica-
tions within limited temperature range.
0805
Size
(L" x W")
3
Voltage
6.3V = 6
10V = Z
16V = Y
25V = 3
50V = 5
G
Dielectric
Y5V = G
104
Capacitance
Code (In pF)
2 Sig. Digits +
Number of
Zeros
Z
Capacitance
Tolerance
Z = +80 –20%
A
Failure
Rate
A = Not
Applicable
T
Terminations
T = Plated Ni
and Sn
2
Packaging
2 = 7" Reel
4 = 13" Reel
A
Special
Code
A = Std.
Product
PART NUMBER (see page 2 for complete part number explanation)
%  Capacitance
+20
+10
0
-55 -35 -15 +5 +25 +45 +65 +85 +105 +125
Temperature °C
Temperature Coefficient
-60
-50
-40
-30
-20
-10
-70
-80
Insulation Resistance (Ohm-Farads)
1,000
10,000
100
0+20 +30 +40 +60+50 +70 +80 +90
Temperature °C
Insulation Resistance vs. Temperature
|Z| (Ohms)
10,000
1,000
10,000 Frequency (Hz)
0.1 F - 0603
Impedance vs. Frequency
1
10
100
0.01
0.1
100,000 1,000,000 10,000,000
|Z| (Ohms)
1,000
10,000 Frequency (Hz)
0.22 F - 0805
Impedance vs. Frequency
1
10
100
0.01
0.1
100,000 1,000,000 10,000,000
|Z| (Ohms)
1,000
10,000 Frequency (Hz)
1 F - 1206
Impedance vs. Frequency
1
10
100
0.01
0.1
100,000 1,000,000 10,000,000
24
Y5V Dielectric
Specifications and Test Methods
Parameter/Test Y5V Specification Limits Measuring Conditions
Operating Temperature Range -30ÂșC to +85ÂșC Temperature Cycle Chamber
Capacitance Within specified tolerance
≀5.0% for ≄50V DC rating Freq.: 1.0 kHz ± 10%
Dissipation Factor ≀7.0% for 25V DC rating Voltage: 1.0Vrms ± .2V
≀9.0% for 16V DC rating For Cap > 10 ”F, 0.5Vrms @ 120Hz
≀12.5% for ≀10V DC rating
Insulation Resistance 100,000M℩or 500M℩- ”F, Charge device with rated voltage for
whichever is less 120 ± 5 secs @ room temp/humidity
Charge device with 300% of rated voltage for
Dielectric Strength No breakdown or visual defects 1-5 seconds, w/charge and discharge current
limited to 50 mA (max)
Appearance No defects Deflection: 2mm
Capacitance Test Time: 30 seconds
Resistance to Variation ≀±30%
Flexure Dissipation Meets Initial Values (As Above)
Stresses Factor
Insulation ≄Initial Value x 0.1
Resistance
Solderability ≄95% of each terminal should be covered Dip device in eutectic solder at 230 ± 5ÂșC
with fresh solder for 5.0 ± 0.5 seconds
Appearance No defects, <25% leaching of either end terminal
Capacitance
Variation ≀±20% Dip device in eutectic solder at 260ÂșC for 60
Dissipation Meets Initial Values (As Above) seconds. Store at room temperature for 24 ± 2
Resistance to Factor hours before measuring electrical properties.
Solder Heat Insulation Meets Initial Values (As Above)
Resistance
Dielectric Meets Initial Values (As Above)
Strength
Appearance No visual defects Step 1: -30ÂșC ± 2Âș 30 ± 3 minutes
Capacitance
Variation ≀±20% Step 2: Room Temp ≀3 minutes
Dissipation Meets Initial Values (As Above) Step 3: +85ÂșC ± 2Âș 30 ± 3 minutes
Thermal Factor
Shock Insulation Meets Initial Values (As Above) Step 4: Room Temp ≀3 minutes
Resistance
Dielectric Meets Initial Values (As Above) Repeat for 5 cycles and measure after
Strength 24 ±2 hours at room temperature
Appearance No visual defects
Capacitance
Variation ≀±30%
Dissipation ≀Initial Value x 1.5 (See Above)
Load Life Factor
Insulation ≄Initial Value x 0.1 (See Above)
Resistance
Dielectric Meets Initial Values (As Above)
Strength
Appearance No visual defects
Capacitance
Variation ≀±30%
Load Dissipation ≀Initial Value x 1.5 (See above)
Humidity Factor
Insulation ≄Initial Value x 0.1 (See Above)
Resistance
Dielectric Meets Initial Values (As Above)
Strength
Charge device with twice rated voltage in
test chamber set at 85ÂșC ± 2ÂșC
for 1000 hours (+48, -0)
Remove from test chamber and stabilize
at room temperature for 24 ± 2 hours
before measuring.
Store in a test chamber set at 85ÂșC ± 2ÂșC/
85% ± 5% relative humidity for 1000 hours
(+48, -0) with rated voltage applied.
Remove from chamber and stabilize at
room temperature and humidity for
24 ± 2 hours before measuring.
1mm/sec
90 mm
25
Y5V Dielectric
Capacitance Range
PREFERRED SIZES ARE SHADED
SIZE 0201 0402 0603 0805 1206 1210
Soldering
Reflow Only Reflow Only Reflow Only Reflow/Wave Reflow/Wave Reflow Only
Packaging
All Paper All Paper All Paper Paper/Embossed Paper/Embossed Paper/Embossed
(L) Length MM 0.60 ± 0.03 1.00 ± 0.10 1.60 ± 0.15 2.01 ± 0.20 3.20 ± 0.20 3.20 ± 0.20
(in.) (0.024 ± 0.001) (0.040 ± 0.004) (0.063 ± 0.006) (0.079 ± 0.008) (0.126 ± 0.008) (0.126 ± 0.008)
(W) Width MM 0.30 ± 0.03 0.50 ± 0.10 .81 ± 0.15 1.25 ± 0.20 1.60 ± 0.20 2.50 ± 0.20
(in.) (0.011 ± 0.001) (0.020 ± 0.004) (0.032 ± 0.006) (0.049 ± 0.008) (0.063 ± 0.008) (0.098 ± 0.008)
(t) Terminal MM 0.15 ± 0.05 0.25 ± 0.15 0.35 ± 0.15 0.50 ± 0.25 0.50 ± 0.25 .50 ± 0.25
(in.) (0.006 ± 0.002) (0.010 ± 0.006) (0.014 ± 0.006) (0.020 ± 0.010) (0.020 ± 0.010) (0.020 ± 0.010)
WVDC 6.3 10 16 25 50 10 16 25 50 10 16 25 50 10 16 25 50 10 16 25 50
Cap 820
(pF) 1000 A
2200 A
4700 A C
Cap 0.010 A A C C G
(”F) 0.022 A C C G
0.047 A C G G
0.10 C G J K
0.22 GG KN
0.47 GKN M
1.0 G G N N N
2.2 NN MM
4.7 NM N
10.0 QQ Q Q
22.0 QX
47.0
WVDC 6.3 10 16 25 50 10 16 25 50 10 16 25 50 10 16 25 50 10 16 25 50
SIZE 0201 0402 0603 0805 1206 1210
Letter A C E G J K M N P Q X Y Z
Max. 0.33 0.56 0.71 0.86 0.94 1.02 1.27 1.40 1.52 1.78 2.29 2.54 2.79
Thickness (0.013) (0.022) (0.028) (0.034) (0.037) (0.040) (0.050) (0.055) (0.060) (0.070) (0.090) (0.100) (0.110)
PAPER EMBOSSED
L




W




T
t
26
MLCC Tin/Lead Termination “B”
General Specifications
AVX Corporation will support those customers for
commercial and military Multilayer Ceramic Capacitors with
a termination consisting of 5% minimum lead. This
termination is indicated by the use of a “B” in the 12th
position of the AVX Catalog Part Number. This fulfills AVX’s
commitment to providing a full range of products to our
customers. AVX has provided in the following pages a full
range of values that we are currently offering in this special
“B” termination. Please contact the factory if you require
additional information on our MLCC Tin/Lead Termination
“B” products.
NPO Refer to page 4 for Electrical Graphs
X7R Refer to page 12 for Electrical Graphs
X7S Refer to page 16 for Electrical Graphs
X5R Refer to page 19 for Electrical Graphs
Y5V Refer to page 23 for Electrical Graphs
LD05
Size
LD02 - 0402
LD03 - 0603
LD04 - 0504
LD05 - 0805
LD06 - 1206
LD08 - 1808*
LD10 - 1210
LD12 - 1812
LD13 - 1825
LD14 - 2225
LD15 - 0204 LICC*
LD20 - 2220
LD16 - 0306 LICC
LD17 - 0508 LICC
LD18 - 0612 LICC
5
Voltage
6.3V = 6
10V = Z
16V = Y
25V = 3
50V = 5
100V = 1
200V = 2
500V = 7
A
Dielectric
C0G (NP0) = A
X7R = C
X5R = D
101
Capacitance
Code (In pF)
2 Sig. Digits +
Number of
Zeros
J
Capacitance
Tolerance
B = ±.10 pF (<10pF)
C = ±.25 pF (<10pF)
D = ±.50 pF (<10pF)
F = ±1% (≄10 pF)
G = ±2% (≄10 pF)
J = ±5%
K = ±10%
A
Failure
Rate
A = Not
Applicable
B
Terminations
B = 5% min
lead
2
Packaging
2 = 7" Reel
4 = 13" Reel
7 = Bulk Cass.
9 = Bulk
Contact
Factory
For
Multiples
A
Special
Code
A = Std.
Product
PART NUMBER (see page 2 for complete part number explanation)
ELECTRICAL GRAPHS
*Contact factory
27
MLCC Tin/Lead Termination “B”
Capacitance Range (NPO Dielectric)
PREFERRED SIZES ARE SHADED
SIZE LD02 LD03 LD05 LD06
Soldering Reflow Only Reflow Only Reflow/Wave Reflow/Wave
Packaging All Paper All Paper Paper/Embossed Paper/Embossed
(L) Length MM 1.00 ± 0.10 1.60 ± 0.15 2.01 ± 0.20 3.20 ± 0.20
(in.) (0.040 ± 0.004) (0.063 ± 0.006) (0.079 ± 0.008) (0.126 ± 0.008)
(W) Width MM 0.50 ± 0.10 0.81 ± 0.15 1.25 ± 0.20 1.60 ± 0.20
(in.) (0.020 ± 0.004) (0.032 ± 0.006) (0.049 ± 0.008) (0.063 ± 0.008)
(t) Terminal MM 0.25 ± 0.15 0.35 ± 0.15 0.50 ± 0.25 0.50 ± 0.25
(in.) (0.010 ± 0.006) (0.014 ± 0.006) (0.020 ± 0.010) (0.020 ± 0.010)
WVDC 16 25 50 6.3 25 50 100 16 25 50 100 200 16 25 50 100 200
Cap 0.5 C C C G G G G E E E E J J J J J J
(pF) 1.0 C C C G G G G E E E E J J J J J J
1.2 C C C G G G G E E E E J J J J J J
1.5 C C C G G G G E E E E J J J J J J
1.8 C C C G G G G E E E E J J J J J J
2.2 C C C G G G G E E E E J J J J J J
2.7 C C C G G G G E E E E J J J J J J
3.3 C C C G G G G E E E E J J J J J J
3.9 C C C G G G G E E E E J J J J J J
4.7 C C C G G G G E E E E J J J J J J
5.6 C C C G G G G E E E E J J J J J J
6.8 C C C G G G G E E E E J J J J J J
8.2 C C C G G G G E E E E J J J J J J
10 C C C G G G G E EE E J J JJJJ
12 C C C G G G G E EE E J J JJJJ
15 C C C G G G G E EE E J J JJJJ
18 C C C G G G G E EE E J J JJJJ
22 C C C G G G G E EE E J J JJJJ
27 C C C G G G G E EE E J J JJJJ
33 C C C G G G G E EE E J J JJJJ
39 C C C G G G G E EE E J J JJJJ
47 C C C G G G G E EE E J J JJJJ
56 C C C G G G G E EE E J J JJJJ
68 C C C G G G G E EE E J J JJJJ
82 C C C G G G G E EE E J J JJJJ
100 C C C G G G G E E E E J J J J J J
120 C C C G G G G E E E E J J J J J J
150 C C C G G G G E E E E J J J J J J
180 C C C G G G G E E E E J J J J J J
220 C C C G G G G E E E E J J J J J J
270 C G G G G E E E J M J J J J J
330 C G G G G E E E J M J J J J J
390 G G G J J J J M J J J J J
470 G G G J J J J M J J J J J
560 G G G J J J J J J J J J
680 G G G J J J J J J J J J
820 G G G J J J J J J J J M
1000 G G G J J J J J J J J Q
1200 JJJ J JJJQ
1500 JJJ J JJMQ
1800 JJJ J JMM
2200 JJM J JMP
2700 JJM J JMP
3300 NNM J JMP
3900 NNM J JMP
4700 NN J JMP
5600 NN J JM
6800 NMM
8200 NMM
Cap 0.010 NMM
(”F) 0.012 MM
0.015 MM
0.018
0.022
0.027
0.033
0.039
0.047
0.068
0.082
0.10
WVDC 16 25 50 6.3 25 50 100 16 25 50 100 200 16 25 50 100 200
SIZE 0402 0603 0805 1206
L




W




T
t
Letter A C E G J K M N P Q X Y Z
Max. 0.33 0.56 0.71 0.86 0.94 1.02 1.27 1.40 1.52 1.78 2.29 2.54 2.79
Thickness (0.013) (0.022) (0.028) (0.034) (0.037) (0.040) (0.050) (0.055) (0.060) (0.070) (0.090) (0.100) (0.110)
PAPER EMBOSSED
28
MLCC Tin/Lead Termination “B”
Capacitance Range (NPO Dielectric)
PREFERRED SIZES ARE SHADED
SIZE LD10 LD12 LD13 LD20 LD14
Soldering Reflow/Wave Reflow Only Reflow Only Reflow Only Reflow Only
Packaging Paper/Embossed All Embossed All Embossed All Embossed All Embossed
(L) Length MM 3.20 ± 0.20 4.50 ± 0.30 4.50 ± 0.30 5.70 ± 0.40 5.72 ± 0.25
(in.) (0.126 ± 0.008) (0.177 ± 0.012) (0.177 ± 0.012) (0.225 ± 0.016) (0.225 ± 0.010)
(W) Width MM 2.50 ± 0.20 3.20 ± 0.20 6.40 ± 0.40 5.00 ± 0.40 6.35 ± 0.25
(in.) (0.098 ± 0.008) (0.126 ± 0.008) (0.252 ± 0.016) (0.197 ± 0.016) (0.250 ± 0.010)
(t) Terminal MM 0.50 ± 0.25 0.61 ± 0.36 0.61 ± 0.36 0.64 ± 0.39 0.64 ± 0.39
(in.) (0.020 ± 0.010) (0.024 ± 0.014) (0.024 ± 0.014) (0.025 ± 0.015) (0.025 ± 0.015)
WVDC 25 50 100 200 25 50 100 200 50 100 200 50 100 200 50 100 200
Cap 0.5
(pF) 1.0
1.2
1.5
1.8
2.2
2.7
3.3
3.9
4.7
5.6
6.8
8.2
10
12
15
18
22
27
33
39
47
56
68
82
100
120
150
180
220
270
330
390
470
560 J J J J
680 J J J J
820 J J J J
1000 J J J J K K K K M M M X X X P P P
1200 J J J M K K K K M M M X X X P P P
1500 J J J M K K K K M M M X X X P P P
1800 J J J M K K K K M M M X X X P P P
2200 J J M Q K K K K M M M P P P
2700 J J M Q K K K P M M M P P P
3300 J J M K K K P M M M P P P
3900 J J M K K K P M M M P P P
4700 J J M K K K P M M M P P P
5600 J J M K M M P M M M P P P
6800 J J K M M X M M M P P P
8200 J J K P X X M M P P P
Cap 0.010 N N K P X X M M P P P
(”F) 0.012 N N K P M M P P P
0.015 M P P M P P Y
0.018 M P P M P P Y
0.022 M P P P Y Y
0.027 M PYY
0.033 M PYZ
0.039 PYZ
0.047 P
0.068 P
0.082
0.10
WVDC 25 50 100 200 25 50 100 200 50 100 200 50 100 200 50 100 200
SIZE 1210 1812 1825 2220 2225
L




W




T
t
Letter A C E G J K M N P Q X Y Z
Max. 0.33 0.56 0.71 0.86 0.94 1.02 1.27 1.40 1.52 1.78 2.29 2.54 2.79
Thickness (0.013) (0.022) (0.028) (0.034) (0.037) (0.040) (0.050) (0.055) (0.060) (0.070) (0.090) (0.100) (0.110)
PAPER EMBOSSED
29
MLCC Tin/Lead Termination “B”
Capacitance Range (X7R Dielectric)
PREFERRED SIZES ARE SHADED
SIZE LD02 LD03 LD05 LD06
Soldering Reflow Only Reflow Only Reflow/Wave Reflow/Wave
Packaging All Paper All Paper Paper/Embossed Paper/Embossed
(L) Length MM 1.00 ± 0.10 1.60 ± 0.15 2.01 ± 0.20 3.20 ± 0.20
(in.) (0.040 ± 0.004) (0.063 ± 0.006) (0.079 ± 0.008) (0.126 ± 0.008)
(W) Width MM 0.50 ± 0.10 0.81 ± 0.15 1.25 ± 0.20 1.60 ± 0.20
(in.) (0.020 ± 0.004) (0.032 ± 0.006) (0.049 ± 0.008) (0.063 ± 0.008)
(t) Terminal MM 0.25 ± 0.15 0.35 ± 0.15 0.50 ± 0.25 0.50 ± 0.25
(in.) (0.010 ± 0.006) (0.014 ± 0.006) (0.020 ± 0.010) (0.020 ± 0.010)
WVDC 6.3 10 16 25 50 6.3 10 16 25 50 100 200 10 16 25 50 100 200 10 16 25 50 100 200
Cap 100 C C C C C
(pF) 120 C C C C C
150 C C C C C
180 C C C C C GGGGGGG
220 C C C C C GGGGGGG
270 C C C C C GGGGGGG E E E E E E
330 C C C C C GGGGGGG E E E E E E
390 C C C C C GGGGGGG E E E E E E
470 C C C C C GGGGGGG E E E E E E
560 C C C C C GGGGGGG E E E E E E
680 C C C C C GGGGGGG E E E E E E
820 C C C C C GGGGGGG E E E E E E
1000 C C C C C G G G G G G G E E E E E E J J J J J J
1200 C C C C C G G G G G G E E E E E J J J J J J J
1500 C C C C C G G G G G G E E E E E J J J J J J J
1800 C C C C C G G G G G G E E E E E J J J J J J J
2200 C C C C C G G G G G G E E E E E J J J J J J J
2700 C C C C C G G G G G G E E E E E J J J J J J J
3300 C C C C C G G G G G G E E E E E J J J J J J J
3900 C C C C C G G G G G G E E E E E J J J J J J J
4700 C C C C C G G G G G G E E E E J J J J J J J J
5600 C C C C C G G G G G G E E E E J J J J J J J J
6800 C C C C G G G G G G E E E E J J J J J J J J
8200 C C C C G G G G G G E E E E J J J J J J J J
Cap 0.010 C C C G G G G G G E E E E J J J J J J J J
(”F) 0.012 C C C G G G G G G J J J J J J J J J J J M
0.015 C C C G G G G G J J J J J J J J J J J M
0.018 C C C G G G G G J J J J J M J J J J J M
0.022 C C C G G G G G J J J J J M J J J J J M
0.027 C C G G G G G J J J J J J J J J J M
0.033 C C G G G G G J J J J M J J J J J M
0.039 C C G G G G G J J J J M J J J J J M
0.047 G G G G J J J J M J J J J J M
0.056 G G G J J J J J J J J J P
0.068 G G G J J J J J J J J J P
0.082 G G G J J J J J J J J M
0.10 G G G J J J J J J J J M
0.12 G G J J J M J J J J
0.15 G G J J J J J J J
0.18 G G J J M J J J J
0.22 G G J J M J J J J
0.27 MM JJJM
0.33 MM JJMM
0.47 NM MMM
0.56 NMMQ
0.68 NMM
0.82 NMM
1.0 NMM
1.2
1.5 P
1.8
2.2 Q
3.3
4.7
10
22
47
100
WVDC 6.3 10 16 25 50 6.3 10 16 25 50 100 200 10 16 25 50 100 200 10 16 25 50 100 200
SIZE 0402 0603 0805 1206
Letter A C E G J K M N P Q X Y Z
Max. 0.33 0.56 0.71 0.86 0.94 1.02 1.27 1.40 1.52 1.78 2.29 2.54 2.79
Thickness (0.013) (0.022) (0.028) (0.034) (0.037) (0.040) (0.050) (0.055) (0.060) (0.070) (0.090) (0.100) (0.110)
PAPER EMBOSSED
L




W




T
t
30
MLCC Tin/Lead Termination “B”
Capacitance Range (X7R Dielectric)
PREFERRED SIZES ARE SHADED
SIZE LD10 LD12 LD13 LD14
Soldering Reflow/Wave Reflow Only Reflow Only Reflow Only
Packaging Paper/Embossed All Embossed All Embossed All Embossed
(L) Length MM 3.20 ± 0.20 4.50 ± 0.30 4.50 ± 0.30 5.72 ± 0.25
(in.) (0.126 ± 0.008) (0.177 ± 0.012) (0.177 ± 0.012) (0.225 ± 0.010)
(W) Width MM 2.50 ± 0.20 3.20 ± 0.20 6.40 ± 0.40 6.35 ± 0.25
(in.) (0.098 ± 0.008) (0.126 ± 0.008) (0.252 ± 0.016) (0.250 ± 0.010)
(t) Terminal MM 0.50 ± 0.25 0.61 ± 0.36 0.61 ± 0.36 0.64 ± 0.39
(in.) (0.020 ± 0.010) (0.024 ± 0.014) (0.024 ± 0.014) (0.025 ± 0.015)
WVDC 10 16 25 50 100 50 100 50 100 50 100
Cap 100
(pF) 120
150
180
220
270
330
390
470
560
680
820
1000 J J J J J
1200 J J J J J
1500 J J J J J
1800 J J J J J
2200 J J J J J
2700 J J J J J
3300 J J J J J
3900 J J J J J
4700 J J J J J
5600 J J J J J
6800 J J J J J
8200 J J J J J
Cap 0.010 J J J J J K K M M M M
(”F) 0.012 J J J J J K K M M M M
0.015 J J J J J K K M M M M
0.018 J J J J J K K M M M M
0.022 J J J J J K K M M M M
0.027 J J J J J K K M M M M
0.033 J J J J J K K M M M M
0.039 J J J J J K K M M M M
0.047 J J J J J K K M M M M
0.056 J J J J J K K M M M M
0.068 J J J J J K K M M M M
0.082 J J J J J K K M M M M
0.10 J J J J J K K M M M M
0.12 J J J J M K K M M M M
0.15 J J J J M K K M M M M
0.18 J J J J P K K M M M M
0.22 J J J J P K K M M M M
0.27 J J J J K M M M M M
0.33 J J J J K M M M M M
0.47 M M M M K P M M M M
0.56 M M M M Q M M M
0.68 M M P M Q M M M
0.82 M M P M M M M
1.0 N N M M M M
1.2
1.5 N N M M P
1.8
2.2 M
3.3
4.7
10
22
47
100
WVDC 10 16 25 50 100 50 100 50 100 50 100
SIZE 1210 1812 1825 2225
L




W




T
t
Letter A C E G J K M N P Q X Y Z
Max. 0.33 0.56 0.71 0.86 0.94 1.02 1.27 1.40 1.52 1.78 2.29 2.54 2.79
Thickness (0.013) (0.022) (0.028) (0.034) (0.037) (0.040) (0.050) (0.055) (0.060) (0.070) (0.090) (0.100) (0.110)
PAPER EMBOSSED
31
MLCC Tin/Lead Termination “B”
Capacitance Range (X5R Dielectric)
PREFERRED SIZES ARE SHADED
SIZE LD02 LD03 LD05 LD06 LD10
Soldering Reflow Only Reflow Only Reflow/Wave Reflow/Wave Reflow/Wave
Packaging All Paper All Paper Paper/Embossed Paper/Embossed Paper/Embossed
(L) Length MM 1.00 ± 0.10 1.60 ± 0.15 2.01 ± 0.20 3.20 ± 0.20 3.20 ± 0.20
(in.) (0.040 ± 0.004) (0.063 ± 0.006) (0.079 ± 0.008) (0.126 ± 0.008) (0.126 ± 0.008)
(W) Width MM 0.50 ± 0.10 0.81 ± 0.15 1.25 ± 0.20 1.60 ± 0.20 2.50 ± 0.20
(in.) (0.020 ± 0.004) (0.032 ± 0.006) (0.049 ± 0.008) (0.063 ± 0.008) (0.098 ± 0.008)
(t) Terminal MM 0.25 ± 0.15 0.35 ± 0.15 0.50 ± 0.25 0.50 ± 0.25 0.50 ± 0.25
(in.) (0.010 ± 0.006) (0.014 ± 0.006) (0.020 ± 0.010) (0.020 ± 0.010) (0.020 ± 0.010)
WVDC 6.3 10 6.3 25 10 16 10 16 25 16
Cap 100
(pF) 150
220
330
470
680
1000
1200
1500
1800
2200
2700
3300
3900
4700
5600
6800
8200
Cap 0.010
(”F 0.012
0.015
0.018
0.022
0.027
0.033
0.039
0.047 C
0.056
0.068 C G
0.082
0.10 C C G
0.12
0.15
0.18
0.22
0.27 G
0.33 G N
0.47 G N
0.56
0.68 G N M
0.82
1.0 G N N Q
1.2
1.5 N Q
1.8
2.2 N Q
3.3 Q
4.7 QQ
6.8
10
22
47
100
WVDC 6.3 10 6.3 25 10 16
SIZE 0402 0603 0805 1206 1210
L




W




T
t
Letter A C E G J K M N P Q X Y Z
Max. 0.33 0.56 0.71 0.86 0.94 1.02 1.27 1.40 1.52 1.78 2.29 2.54 2.79
Thickness (0.013) (0.022) (0.028) (0.034) (0.037) (0.040) (0.050) (0.055) (0.060) (0.070) (0.090) (0.100) (0.110)
PAPER EMBOSSED
32
GENERAL DESCRIPTION
AVX Corporation has supported the Automotive Industry requirements for
Multilayer Ceramic Capacitors consistently for more than 10 years. Products
have been developed and tested specifically for automotive applications and
all manufacturing facilities are QS9000 and VDA 6.4 approved.
As part of our sustained investment in capacity and state of the art
technology, we are now transitioning from the established Pd/Ag electrode
system to a Base Metal Electrode system (BME).
AVX is using AECQ200 as the qualification vehicle for this transition. A
detailed qualification package is available on request and contains results on
a range of part numbers including:
‱X7R dielectric components containing BME electrode and copper
terminations with a Ni/Sn plated overcoat.
‱X7R dielectric components BME electrode and soft terminations with a
Ni/Sn plated overcoat.
‱NP0 dielectric components containing Pd/Ag electrode and silver termi-
nation with a Ni/Sn plated overcoat.
Automotive MLCC
Automotive
HOW TO ORDER
0805
Size
0603
0805
1206
1210
1812
5
Voltage
6.3V = 6
10V = Z
16V = Y
25V = 3
50V = 5
100V = 1
200V = 2
2
Packaging
2 = 7" Reel
4 = 13" Reel
C
Dielectric
NP0 = A
X7R = C
104
Capacitance
Code (In pF)
2 Significant
Digits + Number
of Zeros
e.g. 10”F = 106
K
Capacitance
Tolerance
J = ±5%
K = ±10%
M = ±20%
4
Failure Rate
4 = Automotive
A
Special Code
A = Std. Product
Commercial Automotive
Administrative Standard Part Numbers. Specific Automotive Part Number. Used to control
No restriction on who purchases these parts. supply of product to Automotive customers.
Design Minimum ceramic thickness of 0.020" Minimum Ceramic thickness of 0.029" (0.74mm)
on all X7R product.
Dicing Side & End Margins = 0.003" min Side & End Margins = 0.004" min
Cover Layers = 0.005" min
Lot Qualification As per EIA RS469 Increased sample plan –
(Destructive Physical stricter criteria.
Analysis - DPA)
Visual/Cosmetic Quality Standard process and inspection 100% inspection
Application Robustness Standard sampling for accelerated Increased sampling for accelerated wave solder on
wave solder on X7R dielectrics X7R and NP0 followed by lot by lot reliability testing.
COMMERCIAL VS AUTOMOTIVE MLCC PROCESS COMPARISON
All Tests have Accept/Reject Criteria 0/1
T
Terminations
T = Plated Ni and Sn
Z = Soft Termination
U = Conductive Epoxy
33
SOFT TERMINATION FEATURES
Automotive MLCC
NP0/X7R Dielectric
a) Bend Test
The capacitor is soldered to the PC Board as shown:
Typical bend test results are shown below:
Style Conventional Term Soft Term
0603 >2mm >5
0805 >2mm >5
1206 >2mm >5
b) Temperature Cycle testing
“Soft Termination” has the ability to withstand at least
1000 cycles between –55°C and +125°C
1mm/sec
90 mm
ELECTRODE AND TERMINATION OPTIONS
X7R DIELECTRIC
NP0 DIELECTRIC
NP0 Ag/Pd Electrode
Nickel Barrier Termination
PCB Application
Figure 1 Termination Code T
X7R Dielectric
PCB Application
Figure 2 Termination Code T
X7R Nickel Electrode
Soft Termination
PCB Application
Figure 3 Termination Code Z
Sn
Ni
A
g
Cu
Epoxy
Ni
Sn
Ni
Sn
Ni
Cu
Ni
Cu
Termination
Conductive
Epoxy
Ni
Conductive Epoxy Termination
Hybrid Application
Figure 4 Termination Code U
3434
NP0 Automotive
Capacitance Range (Ni Barrier Termination)
0603 0805 1206 1210 1812
25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 200V 50V 100V
R47 G G G J J J J J J
R51 G G G J J J J J J
R56 G G G J J J J J J
R62 G G G J J J J J J
R68 G G G J J J J J J
R75 G G G J J J J J J
R82 G G G J J J J J J
R91 G G G J J J J J J
1R0 G G G J J J J J J
1R2 G G G J J J J J J
1R5 G G G J J J J J J
1R8 G G G J J J J J J
2R0 G G G J J J J J J
2R2 G G G J J J J J J
2R4 G G G J J J J J J
2R7 G G G J J J J J J
3R0 G G G J J J J J J
3R3 G G G J J J J J J
3R6 G G G J J J J J J
3R9 G G G J J J J J J
4R3 G G G J J J J J J
4R7 G G G J J J J J J
5R1 G G G J J J J J J
5R6 G G G J J J J J J
6R2 G G G J J J J J J
6R8 G G G J J J J J J
7R5 G G G J J J J J J
8R2 G G G J J J J J J
9R1 G G G J J J J J J
100 G G G J J J J J J
120 G G G J J J J J J
150 G G G J J J J J J
180 G G G J J J J J J
220 G G G J J J J J J
270 G G G J J J J J J
330 G G G J J J J J J
390 G G G J J J J J J
470 G G G J J J J J J
510 G G G J J J J J J
560 G G G J J J J J J
680 G G G J J J J J J
820 G G G J J J J J J
101 G G G J J J J J J
121 G G G J J J J J J
151 G G G J J J J J J
181 G G G J J J J J J
221 G G G J J J J J J
271 G G G J J J J J J
331 G G G J J J J J J
391 G G J J J J J J
471 G G J J J J J J
561 G J J J J J J
681 J J J J J J
821 J J J J J J
102 JJJJJJJJJJ
122 J J J J J J M M
152 J J M M J J M M
182 J J M M J J M M
222 M J M M J J M M
272 M J M Q J J M
332 J M Q J J M K K
392 J M J J P K K
472 J M J M P K K
562 M M
682 M M
822 M M
103 M M
25V 50V 100V 25V 50V 100V 25V 50V 100V 25V 50V 100V 200V 50V 100V
0603 0805 1206 1210 1812
Letter A C E G J K M N P Q X Y Z
Max. 0.33 0.56 0.71 0.86 0.94 1.02 1.27 1.40 1.52 1.78 2.29 2.54 2.79
Thickness (0.013) (0.022) (0.028) (0.034) (0.037) (0.040) (0.050) (0.055) (0.060) (0.070) (0.090) (0.100) (0.110)
PAPER EMBOSSED
3535
BME X7R Automotive
Capacitance Range (Ni Barrier Termination)
Letter A C E G J K M N P Q X Y Z
Max. 0.33 0.56 0.71 0.86 0.94 1.02 1.27 1.40 1.52 1.78 2.29 2.54 2.79
Thickness (0.013) (0.022) (0.028) (0.034) (0.037) (0.040) (0.050) (0.055) (0.060) (0.070) (0.090) (0.100) (0.110)
PAPER EMBOSSED
0603 0805 1206 1210 1812
16V 25V 50V 100V 200V 16V 25V 50V 100V 200V 16V 25V 50V 100V 200V 16V 25V 50V 100V 200V 16V 25V 50V 100V 200V
101
121
151
181
221
271 G G G G J J J
331 G G G G J J J J J
391 G G G G J J J J J
471 G G G G J J J J J
561 G G G G J J J J J
681 G G G G J J J J J
821 G G G G J J J J J
102 G G G G J J J J J J J J J J
122 G G G G J J J J J J J J J J
152 G G G G J J J J J J J J J J
182 G G G G J J J J J J J J J J
222 G G G G J J J J J J J J J J
272 G G G G J J J J J J J J J
332 G G G G J J J J J J J J J
392 G G G G J J J J J J J J J
472 G G G G J J J J J J J J J
562 G G G G J J J J J J J J
682 G G G G J J J J J J J J
822 G G G G J J J J J J J J
103 G G G G J J J J J J J J
123 G G G J J J M J J J J
153 G G G J J J M J J J J
183 G G G J J J M J J J J
223 G G G J J J M J J J J K
273 G G G J J J M J J J J K
333 G G G J J J M J J J J K
393 G G J J J M J J J M K
473 G G J J J M J J J M K
563 G J J J J J J M K K K M K K K
683 G J J J J J J M K K K M K K K
823 G J J J J J J M K K K M K K K
104 G J J J J J J M K K K M K K K
124 J J J J M M K K K P K K K
154 M N J J M K K K K K K
184 M N J M M M M M K K K
224 M N J M M M M M M M M
274 N J M P P P M M M
334 N J M P P P X X X
394 N M M P P P X X X
474 N M M P P P X X X
564 MPXXX
684 MPXXX
824 MPXXX
105 MPXXX
155 P
16V 25V 50V 100V 200V 16V 25V 50V 100V 200V 16V 25V 50V 100V 200V 16V 25V 50V 100V 200V 16V 25V 50V 100V 200V
0603 0805 1206 1210 1812
36
GENERAL DESCRIPTION
With increased requirements from the automotive industry for additional
component robustness, AVX recognized the need to produce a MLCC with
enhanced mechanical strength. It was noted that many components may be
subject to severe flexing and vibration when used in various under the
bonnet automotive applications.
To satisfy the requirement for enhanced mechanical strength, AVX had to
find a way of ensuring electrical integrity is maintained whilst external forces
are being applied to the component. It was found that the structure of the
termination needed to be flexible and after much research and development,
a “soft termination” was found. This soft termination is designed to enhance
the mechanical flexure and temperature cycling performance of a standard
ceramic capacitor with an X7R dielectric. The industry standard for
flexure is 2 mm minimum with Soft Termination. AVX guarantees a
minimum flexure of 5 mm, without any internal cracks. Beyond 5mm
generally the component will open. The industry standard for
temperature cycling is 1000 cycles, AVX guarantees 3000 cycles.
As well as for automotive applications the Soft Termination will provide
Design Engineers with a satisfactory solution when designing PCB’s which
may be subject to high levels of board flexure.
MLCC with Soft Termination
General Specifications
APPLICATIONS
High Flexure Stress Circuit Boards
‱ e.g. Depanelization: Components near
edges of board.
Variable Temperature Applications
‱ Soft termination offers improved reliability
performance in applications where there is
temperature variation.
‱ e.g. All kind of engine sensors: Direct
connection to battery rail.
Automotive Applications
‱ Improved reliability.
‱ Excellent mechanical performance and
thermo mechanical performance.
PRODUCT ADVANTAGES
‱ High mechanical performance able to withstand, 5mm bend test
guaranteed.
‱ Open failure mode is apparent when products are overstressed
by 5mm.
‱ Increased temperature cycling performance, 3000 cycles and beyond.
‱ Flexible termination system.
‱ Reduction in circuit board flex failures.
‱ Base metal electrode system.
‱ Automotive or commercial grade products available.
HOW TO ORDER
0805
Style
0603
0805
1206
1210
1812
5
Voltage
6 = 6.3V
Z = 10V
Y = 16V
3 = 25V
5 = 50V
1 = 100V
2 = 200V
2
Packaging
2 = 7" reel
4 = 13" reel
C
Dielectric
C = X7R
104
Capacitance
Code (In pF)
2 Sig Digits +
Number of Zeros
e.g., 104 = 100nF
K
Capacitance
Tolerance
J = ±5%
K = ±10%
M = ±20%
A
Special Code
A = Std. Product
Z
Terminations
Z = Soft
Termination
A
Failure
Rate
A=Commercial
4 = Automotive
37
MLCC with Soft Termination
Specifications and Test Methods
PERFORMANCE TESTING BOARD BEND TEST PROCEDURE
According to AEC-Q200
BEND TESTPLATE
CONTROL PANEL
CONNECTOR
DIGITAL
CALIPER
MOUNTING
ASSEMBLY
LOADING
KNIFE
CONTROL
PANEL
BOARD BEND TEST RESULTS
AEC-Q200 Vrs AVX Soft Termination Bend Test
12 0603
10
8
6
4
2
0
NPO X7R X7R soft term
12 1206
Substrate Bend (mm) Substrate Bend (mm)
Substrate Bend (mm)Substrate Bend (mm)
10
8
6
4
2
0
NPO X7R X7R soft term
12 0805
10
8
6
4
2
0
NPO X7R X7R soft term
12
1210
10
8
6
4
2
0
NPO X7R X7R soft term
TEMPERATURE CYCLE TEST PROCEDURE
1 hour 12mins
+1250 C
+250 C
-550 C
AVX ENHANCED SOFT
TERMINATION BEND TEST
PROCEDURE
Bend Test
The capacitor is soldered to the printed circuit
board as shown and is bent up to 10mm at
1mm per second:
Typical bend test results are shown below:
Style Conventional Termination Soft Termination
0603 >2mm >5mm
0805 >2mm >5mm
1206 >2mm >5mm
AEC-Q200 Qualification:
‱ Created by the Automotive Electronics
Council
‱ Specification defining stress
test qualification for
passive components
Testing:
Key tests used to compare
soft termination to
AEC-Q200 qualification:
‱ Bend Test
‱ Temperature Cycle Test
Test Procedure as per AEC-Q200:
The test is conducted to determine the resistance of the
component when it is exposed to extremes of alternating
high and low temperatures.
‱ Sample lot size quantity 77 pieces
‱ TC chamber cycle from -55ÂșC to +125ÂșC for 1000 cycles
‱ Interim electrical measurements at 250, 500, 1000 cycles
‱ Measure parameter capacitance dissipation factor,
insulation resistance
Test Procedure as per AEC-Q200:
Sample size: 20 components
Span: 90mm Minimum deflection spec: 2 mm
‱ Components soldered onto FR4 PCB (Figure 1)
‱ Board connected electrically to the test equipment
(Figure 2)
Fig 1 - PCB layout with electrical connections Fig 2 - Board Bend test
equipment
Test Temperature Profile (1 cycle)
TABLE SUMMARY
‱ The board is placed on 2 supports 90mm
apart (capacitor side down)
‱ The row of capacitors is aligned with the
load stressing knife
‱ The load is applied and the deflection where
the part starts to crack is recorded (Note:
Equipment detects the start of the crack
using a highly sensitive current detection
circuit)
‱ The maximum deflection capability is 10mm
Max. = 10mm
Max. = 10mm
90mm
38
% Failure
10
8
6
4
2
0
0 500 1000 1500
0603
2000 2500 3000
% Failure
10
8
6
4
2
0
0 500 1000 1500
1206
2000 2500 3000
% Failure
10
8
6
4
2
0
0 500 1000 1500
0805
2000 2500 3000
% Failure
10
8
6
4
2
0
0 500 1000 1500
1210
2000
Soft Term - No Defects up to 3000 cycles
2500 3000
BEYOND 1000 CYCLES: TEMPERATURE CYCLE TEST RESULTS
AEC-Q200 specification states
1000 cycles compared to AVX
3000 temperature cycles.
MLCC with Soft Termination
Specifications and Test Methods
SOFT TERMINATION TEST SUMMARY
WITHOUT SOFT TERMINATION WITH SOFT TERMINATION
Major fear is of latent board flex failures. Far superior mechanical performance.
Generally open failure mode beyond
5mm flexure.
‱ Qualified product by using the AEC-Q200 test/specifica-
tion with the exception of using AVX 3000 temperature
cycles (up to +150°C bend test guaranteed greater than
5mm).
‱ Soft Termination provides improved performance
compared to standard termination systems.
‱ Board bend test improvement by a factor of 2 to 4 times.
‱ Temperature Cycling:
– 0% Failure up to 3000 cycles
– No ESR change up to 3000 cycles
39
MLCC with Soft Termination
X7R Dielectric Capacitance Range
0603 0805 1206 1210 1812
16V 25V 50V 100V 16V 25V 50V 100V 16V 25V 50V 100V 16V 25V 50V 100V 16V 25V 50V 100V
101
121
151
181
221
271 J J J J
331 J J J J J J J J
391 J J J J J J J J
471 J J J J J J J J
561 J J J J J J J J
681 J J J J J J J J
821 J J J J J J J J
102JJ JJJJ JJJJJ J
122JJ JJJJ JJJJJ J
152JJ JJJJ JJJJJ J
182JJ JJJJ JJJJJ J
222JJ JJJJ JJJJJ J
272JJ JJJJ JJJJJ J
332JJ JJJJ JJJJJ J
392JJ JJJJ JJJJJ J
472JJ JJJJ JJJJJ J
562JJ JJJJ JJJJJ J
682JJ JJJJ JJJJJ J
822JJ JJJJ JJJJJ J
103JJ JJJJ JJJJJ J
123 J J J J J J M J J J J
153 J J J J J J M J J J J
183 J J J J J J M J J J J
223 J J J J J J M J J J J K
273 J J J J J J M J J J J K
333 J J J J J J M J J J J K
393 J J J J J M J J J M K
473 J J J J J M J J J M K
563J J J J J J J MKKK MKK KK
683J J J J J J J MKKK MKK KK
823J J J J J J J PKKK MKK KK
104J J J J J J J QKKK PKK KK
124 J J J JM K KK KK KK
154 M N J J M K K K K K K M
184 M N J M M M M M K K K M
224 M N J M M Q M M M M M M X
274 N J M P P P M M M X
334 N J M Q P P P M M M X
394 N M M P P P X X X X
474 N M M P P P X X X X
564 MPXXX
684 MPXXX
824 MPXXX
105 MPXXX
155 P
185
225 16V 25V 50V 100V 16V 25V 50V 100V 16V 25V 50V 100V 16V 25V 50V 100V 16V 25V 50V 100V
0603 0805 1206 1210 1812
Letter A C E G J K M N P Q X Y Z
Max. 0.33 0.56 0.71 0.86 0.94 1.02 1.27 1.40 1.52 1.78 2.29 2.54 2.79
Thickness (0.013) (0.022) (0.028) (0.034) (0.037) (0.040) (0.050) (0.055) (0.060) (0.070) (0.090) (0.100) (0.110)
PAPER EMBOSSED
= Range extension parts
40
Capacitor Array
Capacitor Array (IPC)
AVX capacitor arrays offer designers the opportunity to
lower placement costs, increase assembly line output
through lower component count per board and to reduce
real estate requirements.
Reduced Costs
Placement costs are greatly reduced by effectively placing
one device instead of four or two. This results in increased
throughput and translates into savings on machine time.
Inventory levels are lowered and further savings are made
on solder materials, etc.
Space Saving
Space savings can be quite dramatic when compared to
the use of discrete chip capacitors. As an example, the
0508 4-element array offers a space reduction of >40% vs.
4 x 0402 discrete capacitors and of >70% vs. 4 x 0603
discrete capacitors. (This calculation is dependent on the
spacing of the discrete components.)
Increased Throughput
Assuming that there are 220 passive components placed in
a mobile phone:
A reduction in the passive count to 200 (by replacing
discrete components with arrays) results in an increase in
throughput of approximately 9%.
A reduction of 40 placements increases throughput by 18%.
For high volume users of cap arrays using the very latest
placement equipment capable of placing 10 components
per second, the increase in throughput can be very signifi-
cant and can have the overall effect of reducing the number
of placement machines required to mount components:
If 120 million 2-element arrays or 40 million 4-element arrays
were placed in a year, the requirement for placement
equipment would be reduced by one machine.
During a 20Hr operational day a machine places 720K
components. Over a working year of 167 days the machine
can place approximately 120 million. If 2-element arrays are
mounted instead of discrete components, then the number
of placements is reduced by a factor of two and in the
scenario where 120 million 2-element arrays are placed
there is a saving of one pick and place machine.
Smaller volume users can also benefit from replacing
discrete components with arrays. The total number of
placements is reduced thus creating spare capacity on
placement machines. This in turn generates the opportunity
to increase overall production output without further invest-
ment in new equipment.
W2A (0508) Capacitor Arrays
The 0508 4-element capacitor array gives a PCB space saving of over 40%
vs four 0402 discretes and over 70% vs four 0603 discrete capacitors.
W3A (0612) Capacitor Arrays
The 0612 4-element capacitor array gives a PCB space saving of over 50%
vs four 0603 discretes and over 70% vs four 0805 discrete capacitors.
AREA = 7.0mm2 (0.276 in2) AREA = 3.95mm2 (0.156 in2)
5.0 (0.197)
1.4
(0.055)
1.0
(0.039)
2.1 (0.083)
1.88
(0.074)
4 pcs 0402 Capacitors = 1 pc 0508 Array
AREA = 13.8mm2 (0.543 in2) AREA = 6.4mm2 (0.252 in2)
6.0 (0.236)
2.3
(0.091) 1.5
(0.059)
3.2 (0.126)
2.0
(0.079)
4 pcs 0603 Capacitors = 1 pc 0612 Array
BENEFITS OF USING CAPACITOR
ARRAYS
41
SIZE 0405 0508 0508 0612
# Elements 2 2 4 4
Soldering Reflow Only Reflow/Wave Reflow/Wave Reflow/Wave
Packaging All Paper All Paper Paper/Embossed Paper/Embossed
Length MM 1.00 ± 0.15 1.30 ± 0.15 1.30 ± 0.15 1.60 ± 0.20
(in.) (0.039 ± 0.006) (0.051 ± 0.006) (0.051 ± 0.006) (0.063 ± 0.008)
Width MM 1.37 ± 0.15 2.10 ± 0.15 2.10 ± 0.15 3.20 ± 0.20
(in.) (0.054 ± 0.006) (0.083 ± 0.006) (0.083 ± 0.006) (0.126 ± 0.008)
Max. MM 0.66 0.94 0.94 1.35
Thickness (in.) (0.026) (0.037) (0.037) (0.053)
WVDC
10 16 25 50 10 16 25 50 100 16 25 50 100 16 25 50 100
Cap 100
(pF) 120
150
180
220
270
330
390
470
560
680
820
1000
1200
1500
1800
2200
2700
3300
3900
4700
5600
6800
8200
Cap 0.010 ”F
0.012
0.015
0.018
0.022
0.027
0.033
0.039
0.047
0.056
0.068
0.082
0.10
0.12
0.15
0.18
0.22
0.27
0.33
0.47
0.56
0.68
0.82
1.0
1.2
1.5
1.8
2.2
3.3
4.7
10
22
47
100
SIZE 0405 0508 0508 0612
# Elements 2 2 4 4
Soldering Reflow Only Reflow/Wave Reflow/Wave Reflow/Wave
Packaging All Paper All Paper Paper/Embossed Paper/Embossed
Length MM 1.00 ± 0.15 1.30 ± 0.15 1.30 ± 0.15 1.60 ± 0.150
(in.) (0.039 ± 0.006) (0.051 ± 0.006) (0.051 ± 0.006) (0.063 ± 0.006)
Width MM 1.37 ± 0.15 2.10 ± 0.15 2.10 ± 0.15 3.20 ± 0.20
(in.) (0.054 ± 0.006) (0.083 ± 0.006) (0.083 ± 0.006) (0.126 ± 0.008)
Max. MM 0.66 0.94 0.94 1.35
Thickness (in.) (0.026) (0.037) (0.037) (0.053)
WVDC
16 25 50 16 25 50 100 16 25 50 100 16 25 50 100
Cap 1.0
(pF) 1.2
1.5
1.8
2.2
2.7
3.3
3.9
4.7
5.6
6.8
8.2
10
12
15
18
22
27
33
39
47
56
68
82
100
120
150
180
220
270
330
390
470
560
680
820
1000
1200
1500
1800
2200
2700
3300
3900
4700
5600
6800
8200
Cap 0.010
(”F)
Capacitor Array
= NP0/C0G = X7R = X5R
NP0/C0G X7R/X5R
42
Capacitor Array
Multi-Value Capacitor Array (IPC)
GENERAL DESCRIPTION
A recent addition to the array product range is the Multi-
Value Capacitor Array. These devices combine two different
capacitance values in standard ‘Cap Array’ packages and
are available with a maximum ratio between the two capaci-
tance values of 100:1. The multi-value array is currently
available in the 0405 and 0508 2-element styles and also in
the 0612 4-element style.
Whereas to date AVX capacitor arrays have been suited to
applications where multiple capacitors of the same value are
used, the multi-value array introduces a new flexibility to the
range. The multi-value array can replace discrete capacitors
of different values and can be used for broadband decou-
pling applications. The 0508 x 2 element multi-value array
would be particularly recommended in this application.
Another application is filtering the 900/1800 or 1900MHz
noise in mobile phones. The 0405 2-element, low capaci-
tance value NP0, (C0G) device would be suited to this
application, in view of the space saving requirements of
mobile phone manufacturers.
ADVANTAGES OF THE MULTI-VALUE
CAPACITOR ARRAYS
Enhanced Performance Due to Reduced Parasitic
Inductance
When connected in parallel, not only do discrete capacitors
of different values give the desired self-resonance, but an
additional unwanted parallel resonance also results. This
parallel resonance is induced between each capacitor's
self-resonant frequencies and produces a peak in imped-
ance response. For decoupling and bypassing applications
this peak will result in a frequency band of reduced decou-
pling and in filtering applications reduced attenuation.
The multi-value capacitor array, combining capacitors in one
unit, virtually eliminates the problematic parallel resonance,
by minimizing parasitic inductance between the capacitors,
thus enhancing the broadband decoupling/filtering perfor-
mance of the part.
Reduced ESR
An advantage of connecting two capacitors in parallel is a
significant reduction in ESR. However, as stated above,
using discrete components brings with it the unwanted side
effect of parallel resonance. The multi-value cap array is
an excellent alternative as not only does it perform the
same function as parallel capacitors but also it reduces the
uncertainty of the frequency response.
1001011000
Frequency (MHz)
0
0.2
0.4
0.6
0.8
1
Impedance (Ohms)
2xDiscrete Caps (0603)
Multi Value Cap (0508)
HOW TO ORDER
W
Style
2
Case
Size
1 = 0405
2 = 0508
3 = 0612
A
Array
2
Number
of Caps
Y
Voltage
6 = 6.3V
Z = 10V
Y = 16V
3 = 25V
5 = 50V
1 = 100V
C
Dielectric
A = NP0
C = X7R
D = X5R
102M
1st Value
Capacitance
Code (In pF)
2 Sig. Digits +
Number of
Zeros
104M
2nd Value
Capacitance
Tolerance
K = ±10%
M = ±20%
A
Failure
Rate
T
Termination
Code
T = Plated Ni
and Sn
2A
Packaging &
Quantity
Code
2A = 7" Reel (4000)
4A = 13" Reel (10000)
2F = 7" Reel (1000)
Cap (Min/Max)
NPO X5R/X7R
0612 4-element 100/471 221/104
0508 2-element 100/471 221/104
0405 2-element 100/101 101/103
‱ Max. ratio between the two cap values is 1:100.
‱ The voltage of the higher capacitance value dictates
the voltage of the multi-value part.
‱ Only combinations of values within a specific dielectric
range are possible.
IMPEDANCE VS FREQUENCY
43
Capacitor Array
PAD LAYOUT DIMENSIONS
LWTBWBLPS
1.00 ± 0.15 1.37 ± 0.15 0.66 MAX 0.36 ± 0.10 0.20 ± 0.10 0.64 REF 0.32 ± 0.10
(0.039 ± 0.006) (0.054 ± 0.006) (0.026 MAX) (0.014 ± 0.004) (0.008 ± 0.004
)
(0.025 REF) (0.013 ± 0.004)
ABCDE
0.46 0.74 1.20 0.30 0.64
(0.018) (0.029) (0.047) (0.012) (0.025)
0405 - 2 Element
LWTBWBLPS
1.30 ± 0.15 2.10 ± 0.15 0.94 MAX 0.43 ± 0.10 0.33 ± 0.08 1.00 REF 0.50 ± 0.10
(0.051 ± 0.006) (0.083 ± 0.006) (0.037 MAX) (0.017 ± 0.004) (0.013 ± 0.003
)
(0.039 REF) (0.020 ± 0.004)
ABCDE
0.68 1.32 2.00 0.46 1.00
(0.027) (0.052) (0.079) (0.018) (0.039)
0508 - 2 Element
LWTBWBLPXS
1.30 ± 0.15 2.10 ± 0.15 0.94 MAX 0.25 ± 0.06 0.20 ± 0.08 0.50 REF 0.75 ± 0.10 0.25 ± 0.10
(0.051 ± 0.006) (0.083 ± 0.006) (0.037 MAX) (0.010 ± 0.003) (0.008 ± 0.003
)
(0.020 REF) (0.030 ± 0.004) (0.010 ± 0.004)
ABCDE
0.56 1.32 1.88 0.30 0.50
(0.022) (0.052) (0.074) (0.012) (0.020)
0508 - 4 Element
LWTBWBLPXS
1.60 ± 0.20 3.20 ± 0.20 1.35 MAX 0.41 ± 0.10 0.18 0.76 REF 1.14 ± 0.10 0.38 ± 0.10
(0.063 ± 0.008) (0.126 ± 0.008) (0.053 MAX) (0.016 ± 0.004) (0.007
)
(0.030 REF) (0.045 ± 0.004) (0.015 ± 0.004)
ABCDE
0.89 1.65 2.54 0.46 0.79
(0.035) (0.065) (0.100) (0.018) (0.031)
0612 - 4 Element
0405 - 2 Element
0508 - 2 Element
0508 - 4 Element
0612 - 4 Element
PART DIMENSIONS
A
B
C
D
E
L
BL
BW C/L
OF CHIP
C
L
T
W
P
SS
0405 - 2 Element PAD LAYOUT
A
B
C
D
E
L
BL
BW C/L
OF CHIP
C
L
T
W
P
SS
0508 - 2 Element PAD LAYOUT 0508 - 4 Element PAD LAYOUT
A
B
C
D
E
L
BL
BW C/L OF CHIP
C
L
T
W
XX
PSS
0612 - 4 Element PAD LAYOUT
A
B
C
D
E
L
BL
BW C/L OF CHIP
C
L
T
W
XX
PSS
PART & PAD LAYOUT DIMENSIONS millimeters (inches)
+0.25
-0.08
+0.010
-0.003
44
Low Inductance Capacitors
Introduction
As switching speeds increase and pulse rise times decrease
the need to reduce inductance becomes a serious limitation
for improved system performance. Even the decoupling
capacitors, that act as a local energy source, can generate
unacceptable voltage spikes: V = L (di/dt). Thus, in high
speed circuits, where di/dt can be quite large, the size of the
voltage spike can only be reduced by reducing L.
Figure 1 displays the evolution of ceramic capacitor toward
lower inductance designs over the last few years. AVX has
been at the forefront in the design and manufacture of these
newer more effective capacitors.
LOW INDUCTANCE CHIP CAPACITORS
The total inductance of a chip capacitor is determined both
by its length to width ratio and by the mutual inductance
coupling between its electrodes. Thus a 1210 chip size has
lower inductance than a 1206 chip. This design improve-
ment is the basis of AVX’s low inductance chip capacitors, LI
Caps, where the electrodes are terminated on the long side
of the chip instead of the short side. The 1206 becomes an
0612 as demonstrated in Figure 2. In the same manner, an
0805 becomes an 0508 and 0603 becomes an 0306. This
results in a reduction in inductance from around 1200 pH
for conventional MLC chips to below 200 pH for Low
Inductance Chip Capacitors. Standard designs and perfor-
mance of these LI Caps are given on pages 46 and 47.
LOW INDUCTANCE CHIP ARRAYS (LICAÂź)
Further reduction in inductance can be achieved by designing
alternative current paths to minimize the mutual inductance
factor of the electrodes (Figure 3). This is achieved by AVX’s
LICAÂźproduct which was the result of a joint development
between AVX and IBM. As shown in Figure 4, the charging
current flowing out of the positive plate returns in the opposite
direction along adjacent negative plates. This minimizes the
mutual inductance.
The very low inductance of the LICA capacitor stems from
the short aspect ratio of the electrodes, the arrangement of
the tabs so as to cancel inductance, and the vertical aspect
of the electrodes to the mounting surface.
2000
1500
1000
500
pH
0
1980s 1990s
25 pH
IDC
60 pH
0612
2000 pH
SpinGuard
1200 pH
1206 MLC
pH
0508 IDC
105pH
0306 LICC
LICA
50
170 pH
0612 LICC
130 pH
0508 LICC
Figure 1. The evolution of Low Inductance Capacitors at AVX
(values given for a 100 nF capacitor of each style)
1206
Charges entering - plate
Charges leaving + plate
Net
Inductance
Charges entering - plate
Charges leaving + plate
Net
Inductance
Figure 3. Net Inductance from design. In the
standard Multilayer capacitor, the charge currents
entering and leaving the capacitor create complementary
flux fields, so the net inductance is greater. On the right,
however, if the design permits the currents
to be opposed, there is a net cancellation, and the
inductance is much lower.
0612
Figure 2. Change in aspect ratio: 1206 vs. 0612
INTERDIGITATED CAPACITORS
Multiple terminations of a capacitor will also help in reducing
the parasitic inductance of the device. The IDC is such a
device. By terminating one capacitor with 8 connections the
ESL can be reduced even further. The measured inductance
of the 0612 IDC is 60 pH, while the 0508 comes in around
50 pH. These FR4 mountable devices allow for even higher
clock speeds in a digital decoupling scheme. Design and
product offerings are shown on pages 48 and 49.
-+ -+
-+-
+
45
Low Inductance Capacitors
Introduction
Figure 4. LICA’s Electrode/Termination Construction.
The current path is minimized – this reduces self-inductance.
Current flowing out of the positive plate, returns in the
opposite direction along the adjacent negative plate –
this reduces the mutual inductance.
Also the effective current path length is minimized because
the current does not have to travel the entire length of both
electrodes to complete the circuit. This reduces the self
inductance of the electrodes. The self inductance is also min-
imized by the fact that the charging current is supplied by
both sets of terminals reducing the path length even further!
The inductance of this arrangement is less than 30 pH,
causing the self-resonance to be above 100 MHz for the
same popular 100 nF capacitance. Parts available in the
LICA design are shown on pages 50 and 51.
Figure 5 compares the self resonant frequencies of various
capacitor designs versus capacitance values. The approxi-
mate inductance of each style is also shown.
Active development continues on low inductance
capacitors. C4 termination with low temperature solder
is now available for plastic packages. Consult AVX
for deta il s.
Self Resonant Frequency (MHz)
1.00
10.00
100.00
1000.00
10.00 100.00 1000.00
Capacitance, (nF)
LICA (25 pH)
0508 IDC (50 pH)
0612 IDC (60 pH)
0306 LICC (110 pH)
0508 LICC (130 pH)
0612 LICC (170 pH)
0603 (700 pH)
0805 (800 pH)
1206 (1200 pH)
Figure 5. Self Resonant Frequency vs. Capacitance and Capacitor Design
46
GENERAL DESCRIPTION
The total inductance of a chip capacitor is determined both by its
length to width ratio and by the mutual inductance coupling
between its electrodes.
Thus a 1210 chip size has a lower inductance than a 1206 chip.
This design improvement is the basis of AVX’s Low Inductance
Chip Capacitors (LICC), where the electrodes are terminated on the
long side of the chip instead of the short side. The 1206 becomes
an 0612, in the same manner, an 0805 becomes an 0508, an 0603
becomes an 0306. This results in a reduction in inductance from
the 1nH range found in normal chip capacitors to less than 0.2nH
for LICCs. Their low profile is also ideal for surface mounting (both
on the PCB and on IC package) or inside cavity mounting on the
IC itself.
Low Inductance Capacitors
0612/0508/0306 LICC (Low Inductance Chip Capacitors)
HOW TO ORDER
MLCC LICC
0.001
0.01
0.1
1
10
1 10 100 1000
Frequency (MHz)
Impedance (Ohms)
LICC_0612
MLCC_1206
0.001
0.01
0.1
1
10
110 100 1000
Frequency (MHz)
Impedance (Ohms)
LICC_0508
MLCC_0805
0612
Size
0306
0508
0612
Z
Voltage
6 = 6.3V
Z = 10V
Y = 16V
3 = 25V
5 = 50V
D
Dielectric
C = X7R
D = X5R
105
Capacitance
Code (In pF)
2 Sig. Digits +
Number of Zeros
M
Capacitance
Tolerance
K = ±10%
M = ±20%
A
Failure Rate
A = N/A
T
Terminations
T = Plated Ni
and Sn
J = Tin/Lead
2
Packaging
Available
2 = 7" Reel
4 = 13" Reel
A*
Thickness
Thickness
mm (in)
0.56 (0.022)
0.61 (0.024)
0.76 (0.030)
1.02 (0.040)
1.27 (0.050)
TYPICAL IMPEDANCE CHARACTERISTICS
PERFORMANCE CHARACTERISTICS
Capacitance Tolerances
K = ±10%; M = ±20%
Operation
X7R = -55°C to +125°C;
Temperature Range
X5R = -55°C to +85°C
Temperature Coefficient
±15% (0VDC)
Voltage Ratings
6.3, 10, 16, 25 VDC
Dissipation Factor
6.3V = 6.5% max; 10V = 5.0% max;
16V = 3.5% max; 25V = 3.0% max
Insulation Resistance
100,000M℩min, or 1,000M℩per
(@+25°C, RVDC)
”F min.,whichever is less
Package Style Measured
Inductance (pH)
1206 MLCC 1200
0612 LICC 170
0508 LICC 130
0306 LICC 105
TYPICAL INDUCTANCE
*Note: See Range Chart for Codes
47
Low Inductance Capacitors
0612/0508/0306 LICC (Low Inductance Chip Capacitors)
SIZE 0306 0508 0612
Packaging Embossed Embossed Embossed
Length MM 0.81 ± 0.15 1.27 ± 0.25 1.60 ± 0.25
(in.) (0.032 ± 0.006) (0.050 ± 0.010) (0.063 ± 0.010)
Width MM 1.60 ± 0.15 2.00 ± 0.25 3.20 ± 0.25
(in.) (0.063 ± 0.006) (0.080 ± 0.010) (0.126 ± 0.010)
WVDC 6.3 10 16 25 50 6.3 10 16 25 50 6.3 10 16 25 50
CAP 0.001
(uF) 0.0022
0.0047
0.010
0.015
0.022
0.047
0.068
0.10
0.15
0.22
0.47
0.68
1.0
1.5
2.2
3.3
4.7
10
0306
Code Thickness
A0.61 (0.024)
0508
Code Thickness
S0.56 (0.022)
V0.76 (0.030)
A1.02 (0.040)
0612
Code Thickness
S0.56 (0.022)
V0.76 (0.030)
W1.02 (0.040)
A1.27 (0.050)
Solid = X7R = X5R
mm (in.)mm (in.)mm (in.)
PHYSICAL DIMENSIONS AND
PAD LAYOUT
Wt
T
L
LWt
0612 1.60 ± 0.25 3.20 ± 0.25 0.13 min.
(0.063 ± 0.010) (0.126 ± 0.010) (0.005 min.)
0508 1.27 ± 0.25 2.00 ± 0.25 0.13 min.
(0.050 ± 0.010) (0.080 ± 0.010) (0.005 min.)
0306 0.81 ± 0.15 1.60 ± 0.15 0.13 min.
(0.032 ± 0.006) (0.063 ± 0.006) (0.005 min.)
PHYSICAL CHIP DIMENSIONS mm (in)
“A”CC
“B”
PAD LAYOUT DIMENSIONS mm (in)
ABC
0612 0.76 (0.030) 3.05 (0.120) .635 (0.025)
0508 0.51 (0.020) 2.03 (0.080) 0.51 (0.020)
0306 0.31 (0.012) 1.52 (0.060) 0.51 (0.020)
T - See Range Chart for Thickness and Codes
48
GENERAL DESCRIPTION
‱ Very low equivalent series inductance (ESL), surface mountable,
high speed decoupling capacitor in 0612 and 0508 case size.
‱ Measured inductances of 60 pH (for 0612) and 50 pH (for 0508)
are the lowest in the FR4 mountable device family. Now use 10T
devices with inductances of 45 pH (for 0612) and 35 pH (for
0508).
‱ Opposing current flow creates opposing magnetic fields. This
causes the fields to cancel, effectively reducing the equivalent
series inductance.
‱ Perfect solution for decoupling high speed microprocessors by
allowing the engineers to lower the power delivery inductance of
the entire system through the use of eight vias.
‱ Overall reduction in decoupling components due to very low
series inductance and high capacitance.
HOW TO ORDER
+ – + –
+ – + –
0.001
1 10 100 1000
Frequency (MHz)
Impedance (Ohms)
0.01
0.1
1
10
LICC_0612
IDC_0612
MLCC_1206
PERFORMANCE CHARACTERISTICS
Capacitance Tolerance
±20% Preferred
Operation
X7R = -55°C to +125°C;
Temperature Range
X5R = -55°C to +85°C
Temperature Coefficient
±15% (0VDC)
Voltage Ratings
4, 6.3, 10, 16 VDC
Dissipation Factor
4V, 6.3V = 6.5% max;
10V = 5.0% max;
16V = 3.5% max
Insulation Resistance
100,000M℩min, or 1,000M℩per
(@+25°C, RVDC)
”F min.,whichever is less
Dielectric Strength
No problems observed after 2.5 x RVDC
for 5 seconds at 50mA max current
CTE (ppm/C)
12.0
Thermal Conductivity
4-5W/M K
Terminations
Plated Nickel and Solder
Available
Max. Thickness
0.037" (0.95mm)
Package Style Measured
Inductance (pH)
1206 MLCC 1200
0612 LICC 170
0612 IDC 60
0508 IDC 50
TYPICAL ESL AND IMPEDANCE
W
Style
3
Case
Size
2 = 0508
3 = 0612
L
Low
Inductance
ESL = 50pH
ESL = 60pH
1
Number
of
Terminals
1 = 8 Terminals
6
Voltage
4 = 4V
6 = 6.3V
Z = 10V
Y = 16V
D
Dielectric
C = X7R
D = X5R
225
Capacitance
Code (In pF)
2 Sig. Digits +
Number of
Zeros
M
Capacitance
Tolerance
M = ±20%
T
Termination
T = Plated Ni
and Sn
3
Packaging
Available
1=7" Reel
3=13" Reel
A
Thickness
Max. Thickness
mm (in.)
A=0.95 (0.037)
S=0.55 (0.022)
A
Failure
Rate
A = N/A
0612
0508
Low Inductance Capacitors
0612/0508 IDC (InterDigitated Capacitors)
49
L W BW BL P X S
3.20 ± 0.20 1.60 ± 0.20 0.41 ± 0.10 0.18 0.76 REF 1.14 ± 0.10 0.38 ± 0.10
(0.126 ± 0.008) (0.063 ± 0.008) (0.016 ± 0.004) (0.007 ) (0.030 REF) (0.045 ± 0.004) (0.015 ± 0.004)
0612
PAD LAYOUT
DIMENSIONS
+0.010
-0.003
ABCDE
0.89 1.65 2.54 0.46 0.76
(0.035) (0.065) (0.100) (0.018) (0.030)
PHYSICAL CHIP DIMENSIONS millimeters (inches)
+0.25
-0.08
L W BW BL P X S
2.03±0.20 1.27±0.20 0.254±0.10 0.18 0.508 REF 0.76±0.10 0.254±0.10
(0.080±0.008) (0.050±0.008) (0.010±0.004) (0.007 ) (0.020 REF) (0.030±0.004) (0.010±.0.004)
0508
+0.010
-0.003
ABCDE
0.64 1.27 1.91 0.28 0.51
(0.025) (0.050) (0.075) (0.011) (0.020)
0508
+0.25
-0.08
0612
PHYSICAL DIMENSIONS AND PAD LAYOUT
A
B
C
D
E
W
BL
BW C/L OF CHIP
C
L
T
L
XX
PSS
Low Inductance Capacitors
0612/0508 IDC (InterDigitated Capacitors)
SIZE Thin 0508 0508 Thin 0612 0612
Length MM 2.03 ± 0.20 2.03 ± 0.20 3.20 ± 0.20 3.20 ± 0.20
(in.) (0.080 ± 0.008) (0.080 ± 0.008) (0.126 ± 0.008) (0.126 ± 0.008)
Width MM 1.27 ± 0.20 1.27 ± 0.20 1.60 ± 0.20 1.60 ± 0.20
(in.) (0.050 ± 0.008) (0.050 ± 0.008) (0.063 ± 0.008) (0.063 ± 0.008)
Terminal MM 0.508 REF 0.508 REF 0.76 REF 0.76 REF
Pitch (in.) 0.020 REF 0.020 REF 0.030 REF 0.030 REF
Thickness MM 0.55 MAX. 0.95 MAX. 0.55 MAX. 0.95 MAX.
(in.) (0.022) MAX. (0.037) MAX. (0.022) MAX. (0.037) MAX.
Inductance (pH) 95 95 120 120
WVDC 4 6.3 10 16 4 6.3 10 16 4 6.3 10 16 4 6.3 10 16
CAP (uF)
and Thickness
0.047
0.068
0.10
0.22
0.33
0.47
0.68
1.0
1.5
2.2
3.3
= X7R
= X5R
Consult factory for additional requirements
50
LICAÂźarrays utilize up to four separate capacitor sections in one
ceramic body (see Configurations and Capacitance Options). These
designs exhibit a number of technical advancements:
Low Inductance features–
Low resistance platinum electrodes in a low aspect ratio pattern
Double electrode pickup and perpendicular current paths
C4 “flip-chip” technology for minimal interconnect inductance
HOW TO ORDER
C4 AND PAD DIMENSIONS
"W" = ±.06mm
0.925 ±0.03mm
0.925 ±0.03mm
Vertical and
Horizontal
Pitch=0.4 ±.02mm
0.8 ±.03 (2 pics)
0.6 ±.100mm
L = ±.06mm
Code Face
to Denote
Orientation
(Optional)
"Hb" ±.06
"Ht" = (Hb +.096 ±.02mm typ)
C4 Ball diameter:
.164 ±.03mm
}
Code Width Length Height
(Body Height) (W) (L) Body (Hb)
1 1.600mm 1.850mm 0.875mm
3 1.600mm 1.850mm 0.650mm
5 1.600mm 1.850mm 1.100mm
6 1.600mm 1.850mm 0.500mm
7 1.600mm 1.850mm 1.600mm
TERMINATION OPTIONS
C4 SOLDER (97% Pb/3% Sn) BALLS
T55T Units
Co Nanofarads
1.4 x Co Nanofarads
Co Nanofarads
12 Percent
0.2 Ohms
2.0 Megaohms
500 Volts
8.5 ppm/°C 25-100°
15 to 120 Pico-Henries
DC to 5 Gigahertz
-55° to 125°C
Low Inductance Capacitors
LICAÂź(Low Inductance Decoupling Capacitor Arrays)
TABLE 1
Typical Parameters
Capacitance, 25°C
Capacitance, 55°C
Capacitance, 85°C
Dissipation Factor 25°
DC Resistance
IR (Minimum @25°)
Dielectric Breakdown, Min
Thermal Coefficient of Expansion
Inductance: (Design Dependent)
Frequency of Operation
Ambient Temp Range
“Centrality”*
*NOTE: The C4 pattern
will be within
0.1mm of the
center of the
LICA body, in
both axes.
Pin A1 is the lower left hand ball.
TERMINATION OPTION P OR N
LICA
Style
&
Size
3
Voltage
5V = 9
10V = Z
25V = 3
T
Dielectric
D = X5R
T = T55T
S = High K
T55T
102
Cap/Section
(EIA Code)
102 = 1000 pF
103 = 10 nF
104 = 100 nF
M
Capacitance
Tolerance
M = ±20%
P = GMV
3
Height
Code
6 = 0.500mm
3 = 0.650mm
1 = 0.875mm
5 = 1.100mm
7 = 1.600mm
F
Termination
F = C4 Solder
Balls- 97Pb/3Sn
H = C4 Solder Balls
Low ESR
P = Cr-Cu-Au
N = Cr-Ni-Au
X = None
C
Reel Packaging
M = 7" Reel
R = 13" Reel
6 = 2"x2" Waffle Pack
8 = 2"x2" Black Waffle
Pack
7 = 2"x2" Waffle Pack
w/ termination
facing up
A = 2"x2" Black Waffle
Pack
w/ termination
facing up
C = 4"x4" Waffle Pack
w/ clear lid
A
Inspection
Code
A = Standard
B = Established
Reliability
Testing
A
Code
Face
A = Bar
B = No Bar
C = Dot, S55S
Dielectrics
4
# of
Caps/Part
1 = one
2 = two
4 = four
51
Impedance vs. Frequency
Impedance
Resistance
10
1.0
.1
.01110 100
Frequency, MHz
ESR and Impedance, Ohms
Effect of Bias Voltage and
Temperature on a 130 nF LICAÂź(T55T)
5V
0V
10V
25V
Capacitance, nF
160
140
120
100
80
60
40
20
0
-60 -40 -20 0 20 40 60 80 100 140
120
Temperature, °C
LICA
DB
CAP
CA
D C B A
B1
D1
CAP 1
B2
D2
CAP 2
C1 A1 C2 A2
D1 C1 B1 A1
D2 C2 B2 A2
B1
D1
CAP 1
B2
D2
CAP 2
C1 A1 C2 A2
B3
D3
CAP 3
B4
D4
CAP 4
C3 A3 C4 A4
D1 C1 B1 A1
D2 C2 B2 A2
D3 C3 B3 A3
D4 C4 B4 A4
CONFIGURATIONLICA VALID PART NUMBER LIST
Sprocket Holes: 1.55mm, 4mm pitch
Wells for LICAÂź part, C4 side down
1.75mm x 2.01mm x 1.27mm deep
on 4mm centers 0.64mm Push Holes
Code Face
to Denote
Orientation
(Typical)
76 pieces/foot
1.75mm
WAFFLE PACK OPTIONS FOR LICAÂź
FLUOROWAREÂź
H20-080
Option "C"
400 pcs. per
4" x 4" package
Option "6"
100 pcs.
per 2" x 2"
package
Code Face
to Denote
Orientation
Code Face
to Denote
Orientation
Note: Standard configuration is
Termination side down
LICA¼PACKAGING SCHEME “M” AND “R”
8mm conductive plastic tape on reel:
“M”=7" reel max. qty. 3,000, “R”=13" reel max. qty. 8,000
Schematic Code Face
Schematic Code Face
Schematic Code Face
Part Number Voltage Thickness (mm) Capacitors per
Package
LICA3T193M3FC4AA 25 0.650 4
LICA3T153P3FC4AA 25 0.650 4
LICA3T134M1FC1AA 25 0.875 1
LICA3T104P1FC1AA 25 0.875 1
LICA3T333M1FC4AA 25 0.875 4
LICA3T263P3FC4AA 25 0.650 4
LICA3T244M5FC1AA 25 1.100 1
LICA3T194P5FC1AA 25 1.100 1
LICA3T394M7FC1AB 25 1.600 1
LICA3T314P7FC1AB 25 1.600 1
Extended Range
LICAZT623M3FC4AB 10 0.650 4
LICA3T104M3FC1A 25 0.650 1
LICA3T803P3FC1A 25 0.650 1
LICA3T503M3FC2A 25 0.650 2
LICA3T403P3FC2A 25 0.650 2
LICA3S253M3FC4A 25 0.650 4
Low Inductance Capacitors
LICAÂź(Low Inductance Decoupling Capacitor Arrays)
LICAÂźTYPICAL PERFORMANCE CURVES
52
HOW TO ORDER
DIMENSIONS millimeters (inches)
W
L
T
t
High Voltage MLC Chips
For 600V to 5000V Application
1808 A A 271 K A 1 1 A
AVX Voltage Temperature Capacitance Code Capacitance Test Termination*
Style 600V = C Coefficient (2 significant digits Tolerance Level 1 = Pd/Ag
1206 1000V = A C0G = A + no. of zeros) C0G: J = ±5% A = Standard T = NiGuard
1210 1500V = S X7R = C Examples: K = ±10% Nickel
1808 2000V = G 10 pF = 100 M = ±20% Barrier
1812 2500V = W 100 pF = 101 X7R: K = ±10% Solderable
1825 3000V = H 1,000 pF = 102 M = ±20% Plate
2220 4000V = J 22,000 pF = 223 Z = +80%, -20%
2225 5000V = K 220,000 pF = 224
3640 1 ”F =105
SIZE 1206 1210 1808* 1812* 1825* 2220* 2225* 3640*
(L) Length 3.20 ± 0.2 3.20 ± 0.2 4.57 ± 0.25 4.50 ± 0.3 4.50 ± 0.3 5.7 ± 0.4 5.72 ± 0.25 9.14 ± 0.25
(0.126 ± 0.008) (0.126 ± 0.008) (0.180 ± 0.010) (0.177 ± 0.012) (0.177 ± 0.012) (0.224 ± 0.016) (0.225 ± 0.010) (0.360 ± 0.010)
(W) Width 1.60 ± 0.2 2.50 ± 0.2 2.03 ± 0.25 3.20 ± 0.2 6.40 ± 0.3 5.0 ± 0.4 6.35 ± 0.25 10.2 ± 0.25
(0.063 ± 0.008) (0.098 ± 0.008) (0.080 ± 0.010) (0.126 ± 0.008) (0.252 ± 0.012) (0.197 ± 0.016) (0.250 ± 0.010) (0.400 ± 0.010)
(T) Thickness 1.52 1.70 2.03 2.54 2.54 3.3 2.54 2.54
Max. (0.060) (0.067) (0.080) (0.100) (0.100) (0.130) (0.100) (0.100)
(t) terminal min. 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.25 (0.010) 0.76 (0.030)
max. 0.75 (0.030) 0.75 (0.030) 1.02 (0.040) 1.02 (0.040) 1.02 (0.040) 1.02 (0.040) 1.02 (0.040) 1.52 (0.060)
High value, low leakage and small size are difficult parameters to obtain
in capacitors for high voltage systems. AVX special high voltage MLC
chips capacitors meet these performance characteristics and are
designed for applications such as snubbers in high frequency power
converters, resonators in SMPS, and high voltage coupling/DC blocking.
These high voltage chip designs exhibit low ESRs at high frequencies.
Larger physical sizes than normally encountered chips are used to make
high voltage chips. These larger sizes require that special precautions be
taken in applying these chips in surface mount assemblies. This is due
to differences in the coefficient of thermal expansion (CTE) between the
substrate materials and chip capacitors. Apply heat at less than 4°C per
second during the preheat. The preheat temperature must be within
50°C of the peak temperature reached by the ceramic bodies through
the soldering process. Chips 1808 and larger to use reflow soldering
only.
Capacitors with X7R Dielectrics are not intended for AC line filtering
applications. Contact plant for recommendations.
Capacitors may require protective surface coating to prevent external
arcing.
*Reflow Soldering Only
Packaging
1 = 7" Reel
3 = 13" Reel
9 = Bulk
Special
Code
A = Standard
53
VOLTAGE 1206 1210 1808 1812 1825 2220 2225 3640
600 min. 10 pF 100 pF 100 pF 100 pF 1000 pF 1000 pF 1000 pF 1000 pF
max. 680 pF 1500 pF 2700 pF 5600 pF 0.012 ”F 0.012 ”F 0.015 ”F 0.047 ”F
min. 10 pF 10 pF 100 pF 100 pF 100 pF 1000 pF 1000 pF 1000 pF
1000 max. 470 pF 820 pF 1500 pF 2700 pF 6800 pF 0.010 ”F 0.010 ”F 0.018 ”F
min. 10 pF 10 pF 10 pF 10 pF 100 pF 100 pF 100 pF 100 pF
1500 max. 150 pF 330 pF 470 pF 1000 pF 2700 pF 2700 pF 3300 pF 8200 pF
min. 10 pF 10 pF 10 pF 10 pF 100 pF 100 pF 100 pF 100 pF
2000 max. 68 pF 150 pF 270 pF 680 pF 1800 pF 2200 pF 2200 pF 5600 pF
min. — — 10 pF 10 pF 10 pF 100 pF 100 pF 100 pF
2500 max. — — 150 pF 390 pF 1000 pF 1000 pF 1200 pF 3900 pF
min. — — 10 pF 10 pF 10 pF 10 pF 10 pF 100 pF
3000 max. — — 100 pF 330 pF 680 pF 680 pF 820 pF 2200 pF
min. — — 10 pF 10 pF 10 pF 10 pF 10 pF 100 pF
4000 max. — — 39 pF 100 pF 220 pF 220 pF 330 pF 1000 pF
min. — — — — — — — 10 pF
5000 max. — — — — — — — 680 pF
HIGH VOLTAGE C0G CAPACITANCE VALUES
X7R Dielectric
Performance Characteristics
Capacitance Range 10 pF to 0.047 ”F
(25°C, 1.0 ±0.2 Vrms at 1kHz, for ≀1000 pF use 1 MHz)
Capacitance Tolerances ±5%, ±10%, ±20%
Dissipation Factor 0.1% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz, for ≀1000 pF use 1 MHz)
Operating Temperature Range -55°C to +125°C
Temperature Characteristic 0 ±30 ppm/°C (0 VDC)
Voltage Ratings 600, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC) 100K M℩min. or 1000 M℩- ”F min., whichever is less
Insulation Resistance (+125°C, at 500 VDC) 10K M℩min. or 100 M℩- ”F min., whichever is less
Dielectric Strength 120% rated voltage for 5 seconds at 50 mA max. current
Performance Characteristics
Capacitance Range 10 pF to 0.56 ”F (25°C, 1.0 ±0.2 Vrms at 1kHz)
Capacitance Tolerances ±10%; ±20%; +80%, -20%
Dissipation Factor 2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)
Operating Temperature Range -55°C to +125°C
Temperature Characteristic ±15% (0 VDC)
Voltage Ratings 600, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)
Insulation Resistance (+25°C, at 500 VDC) 100K M℩min. or 1000 M℩- ”F min., whichever is less
Insulation Resistance (+125°C, at 500 VDC) 10K M℩min. or 100 M℩- ”F min., whichever is less
Dielectric Strength 120% rated voltage for 5 seconds at 50 mA max. current
High Voltage MLC Chips
For 600V to 5000V Applications
C0G Dielectric
VOLTAGE 1206 1210 1808 1812 1825 2220 2225 3640
600 min. 1000 pF 1000 pF 1000 pF 1000 pF 0.01 ”F 0.01 ”F 0.01 ”F 0.01 ”F
max. 0.015 ”F 0.033 ”F 0.056 ”F 0.10 ”F 0.18 ”F 0.22 ”F 0.22 ”F 0.56 ”F
min. 100 pF 1000 pF 1000 pF 1000 pF 1000 pF 1000 pF 1000 pF 0.01 ”F
1000 max. 5600 pF 0.015 ”F 0.018 ”F 0.027 ”F 0.10 ”F 0.10 ”F 0.10 ”F 0.22 ”F
min. 100 pF 100 pF 100 pF 100 pF 1000 pF 1000 pF 1000 pF 1000 pF
1500 max. 1800 pF 3900 pF 6800 pF 0.012 ”F 0.033 ”F 0.039 ”F 0.047 ”F 0.068 ”F
min. 10 pF 100 pF 100 pF 100 pF 100 pF 1000 pF 1000 pF 1000 pF
2000 max. 1000pF 2200 pF 2700 pF 4700 pF 0.01 ”F 0.01 ”F 0.015 ”F 0.027 ”F
min. — — 10 pF 10 pF 100 pF 100 pF 100 pF 1000 pF
2500 max. — — 1800 pF 3300 pF 6800 pF 8200 pF 0.01 ”F 0.022 ”F
min. — — 10 pF 10 pF 100 pF 100 pF 100 pF 1000 pF
3000 max. — — 1500 pF 2200 pF 4700 pF 4700 pF 6800 pF 0.018 ”F
min. — — — — — — — 100 pF
4000 max. — — — — — — — 6800 pF
min. — — — — — — — 100 pF
5000 max. — — — ———— 3300 pF
HIGH VOLTAGE X7R MAXIMUM CAPACITANCE VALUES
54
MIL-PRF-55681/Chips
Part Number Example
CDR01 thru CDR06
T

W
L
Dt
MILITARY DESIGNATION PER MIL-PRF-55681
Part Number Example
CDR01 BP 101 B K S M
MIL Style
Voltage-temperature
Limits
Capacitance
Rated Voltage
Capacitance Tolerance
Termination Finish
Failure Rate
MIL Style: CDR01, CDR02, CDR03, CDR04, CDR05,
CDR06
Voltage Temperature Limits:
BP = 0 ± 30 ppm/°C without voltage; 0 ± 30 ppm/°C with
rated voltage from -55°C to +125°C
BX = ±15% without voltage; +15 –25% with rated voltage
from -55°C to +125°C
Capacitance: Two digit figures followed by multiplier
(number of zeros to be added) e.g., 101 = 100 pF
Rated Voltage: A = 50V, B = 100V
Capacitance Tolerance: J ± 5%, K ± 10%, M ± 20%
Termination Finish:
M = Palladium Silver U = Base Metallization/Barrier
N = Silver Nickel Gold Metal/Solder Coated*
S = Solder-coated W = Base Metallization/Barrier
Metal/Tinned (Tin or Tin/
Lead Alloy)
*Solder shall have a melting point of 200°C or less.
Failure Rate Level: M = 1.0%, P = .1%, R = .01%,
S = .001%
Packaging: Bulk is standard packaging. Tape and reel
per RS481 is available upon request.
CROSS REFERENCE: AVX/MIL-PRF-55681/CDR01 THRU CDR06*
Per AVX Length (L) Width (W) Thickness (T) D Termination Band (t)
MIL-PRF-55681 Style Max. Min. Max. Min. Max. Min.
CDR01 0805 .080 ± .015 .050 ± .015 .055 .020 — .030 — .010
CDR02 1805 .180 ± .015 .050 ± .015 .055 .020 — — .030 .010
CDR03 1808 .180 ± .015 .080 ± .018 .080 .020 — — .030 .010
CDR04 1812 .180 ± .015 .125 ± .015 .080 .020 — — .030 .010
CDR05 1825 .180 +.020 .250 +.020 .080 .020 — — .030 .010
-.015 -.015
CDR06 2225 .225 ± .020 .250 ± .020 .080 .020 — — .030 .010
*For CDR11, 12, 13, and 14 see AVX Microwave Chip Capacitor Catalog
55
MIL-PRF-55681/Chips
Military Part Number Identification
CDR01 thru CDR06
CDR01 thru CDR06 to MIL-PRF-55681
Military Rated temperature WVDC
Type Capacitance Capacitance and voltage-
Designation in pF tolerance temperature limits
AVX Style 0805/CDR01
CDR01BP100B--- 10 J,K BP 100
CDR01BP120B--- 12 J BP 100
CDR01BP150B--- 15 J,K BP 100
CDR01BP180B--- 18 J BP 100
CDR01BP220B--- 22 J,K BP 100
CDR01BP270B--- 27 J BP 100
CDR01BP330B--- 33 J,K BP 100
CDR01BP390B--- 39 J BP 100
CDR01BP470B--- 47 J,K BP 100
CDR01BP560B--- 56 J BP 100
CDR01BP680B--- 68 J,K BP 100
CDR01BP820B--- 82 J BP 100
CDR01BP101B--- 100 J,K BP 100
CDR01B--121B--- 120 J,K BP,BX 100
CDR01B--151B--- 150 J,K BP,BX 100
CDR01B--181B--- 180 J,K BP,BX 100
CDR01BX221B--- 220 K,M BX 100
CDR01BX271B--- 270 K BX 100
CDR01BX331B--- 330 K,M BX 100
CDR01BX391B--- 390 K BX 100
CDR01BX471B--- 470 K,M BX 100
CDR01BX561B--- 560 K BX 100
CDR01BX681B--- 680 K,M BX 100
CDR01BX821B--- 820 K BX 100
CDR01BX102B--- 1000 K,M BX 100
CDR01BX122B--- 1200 K BX 100
CDR01BX152B--- 1500 K,M BX 100
CDR01BX182B--- 1800 K BX 100
CDR01BX222B--- 2200 K,M BX 100
CDR01BX272B--- 2700 K BX 100
CDR01BX332B--- 3300 K,M BX 100
CDR01BX392A--- 3900 K BX 50
CDR01BX472A--- 4700 K,M BX 50
AVX Style 1805/CDR02
CDR02BP221B--- 220 J,K BP 100
CDR02BP271B--- 270 J BP 100
CDR02BX392B--- 3900 K BX 100
CDR02BX472B--- 4700 K,M BX 100
CDR02BX562B--- 5600 K BX 100
CDR02BX682B--- 6800 K,M BX 100
CDR02BX822B--- 8200 K BX 100
CDR02BX103B--- 10,000 K,M BX 100
CDR02BX123A--- 12,000 K BX 50
CDR02BX153A--- 15,000 K,M BX 50
CDR02BX183A--- 18,000 K BX 50
CDR02BX223A--- 22,000 K,M BX 50
Add appropriate failure rate
Add appropriate termination finish
Capacitance Tolerance
Military Rated temperature WVDC
Type Capacitance Capacitance and voltage-
Designation in pF tolerance temperature limits
AVX Style 1808/CDR03
CDR03BP331B--- 330 J,K BP 100
CDR03BP391B--- 390 J BP 100
CDR03BP471B--- 470 J,K BP 100
CDR03BP561B--- 560 J BP 100
CDR03BP681B--- 680 J,K BP 100
CDR03BP821B-- 820 J BP 100
CDR03BP102B--- 1000 J,K BP 100
CDR03BX123B-- 12,000 K BX 100
CDR03BX153B--- 15,000 K,M BX 100
CDR03BX183B--- 18,000 K BX 100
CDR03BX223B--- 22,000 K,M BX 100
CDR03BX273B--- 27,000 K BX 100
CDR03BX333B--- 33,000 K,M BX 100
CDR03BX393A--- 39,000 K BX 50
CDR03BX473A--- 47,000 K,M BX 50
CDR03BX563A--- 56,000 K BX 50
CDR03BX683A--- 68,000 K,M BX 50
AVX Style 1812/CDR04
CDR04BP122B--- 1200 J BP 100
CDR04BP152B--- 1500 J,K BP 100
CDR04BP182B--- 1800 J BP 100
CDR04BP222B--- 2200 J,K BP 100
CDR04BP272B--- 2700 J BP 100
CDR04BP332B--- 3300 J,K BP 100
CDR04BX393B--- 39,000 K BX 100
CDR04BX473B--- 47,000 K,M BX 100
CDR04BX563B--- 56,000 K BX 100
CDR04BX823A--- 82,000 K BX 50
CDR04BX104A--- 100,000 K,M BX 50
CDR04BX124A--- 120,000 K BX 50
CDR04BX154A--- 150,000 K,M BX 50
CDR04BX184A--- 180,000 K BX 50
AVX Style 1825/CDR05
CDR05BP392B--- 3900 J,K BP 100
CDR05BP472B--- 4700 J,K BP 100
CDR05BP562B--- 5600 J,K BP 100
CDR05BX683B--- 68,000 K,M BX 100
CDR05BX823B--- 82,000 K BX 100
CDR05BX104B--- 100,000 K,M BX 100
CDR05BX124B--- 120,000 K BX 100
CDR05BX154B--- 150,000 K,M BX 100
CDR05BX224A--- 220,000 K,M BX 50
CDR05BX274A--- 270,000 K BX 50
CDR05BX334A--- 330,000 K,M BX 50
AVX Style 2225/CDR06
CDR06BP682B--- 6800 J,K BP 100
CDR06BP822B--- 8200 J,K BP 100
CDR06BP103B--- 10,000 J,K BP 100
CDR06BX394A--- 390,000 K BX 50
CDR06BX474A--- 470,000 K,M BX 50
Add appropriate failure rate
Add appropriate termination finish
Capacitance Tolerance
56
MIL-PRF-55681/Chips
Part Number Example
CDR31 thru CDR35
T

W
L
Dt
MILITARY DESIGNATION PER MIL-PRF-55681
Part Number Example
(example) CDR31 BP 101 B K S M
MIL Style
Voltage-temperature
Limits
Capacitance
Rated Voltage
Capacitance Tolerance
Termination Finish
Failure Rate
MIL Style: CDR31, CDR32, CDR33, CDR34, CDR35
Voltage Temperature Limits:
BP = 0 ± 30 ppm/°C without voltage; 0 ± 30 ppm/°C with
rated voltage from -55°C to +125°C
BX = ±15% without voltage; +15 –25% with rated voltage
from -55°C to +125°C
Capacitance: Two digit figures followed by multiplier
(number of zeros to be added) e.g., 101 = 100 pF
Rated Voltage: A = 50V, B = 100V
Capacitance Tolerance: C ± .25 pF, D ± .5 pF, F ± 1%
J ± 5%, K ± 10%, M ± 20%
Termination Finish:
M = Palladium Silver U = Base Metallization/Barrier
N = Silver Nickel Gold Metal/Solder Coated*
S = Solder-coated W = Base Metallization/Barrier
Metal/Tinned (Tin or Tin/
Lead Alloy)
*Solder shall have a melting point of 200°C or less.
Failure Rate Level: M = 1.0%, P = .1%, R = .01%,
S = .001%
Packaging: Bulk is standard packaging. Tape and reel
per RS481 is available upon request.
CROSS REFERENCE: AVX/MIL-PRF-55681/CDR31 THRU CDR35
Per MIL-PRF-55681 AVX Length (L) Width (W) Thickness (T) D Termination Band (t)
(Metric Sizes) Style (mm) (mm) Max. (mm) Min. (mm) Max. (mm) Min. (mm)
CDR31 0805 2.00 1.25 1.3 .50 .70 .30
CDR32 1206 3.20 1.60 1.3 — .70 .30
CDR33 1210 3.20 2.50 1.5 — .70 .30
CDR34 1812 4.50 3.20 1.5 — .70 .30
CDR35 1825 4.50 6.40 1.5 — .70 .30
57
MIL-PRF-55681/Chips
Military Part Number Identification CDR31
CDR31 to MIL-PRF-55681/7
Military Rated temperature WVDC
Type Capacitance Capacitance and voltage-
Designation 1/in pF tolerance temperature limits
AVX Style 0805/CDR31 (BP)
CDR31BP1R0B--- 1.0 B,C BP 100
CDR31BP1R1B--- 1.1 B,C BP 100
CDR31BP1R2B--- 1.2 B,C BP 100
CDR31BP1R3B--- 1.3 B,C BP 100
CDR31BP1R5B--- 1.5 B,C BP 100
CDR31BP1R6B--- 1.6 B,C BP 100
CDR31BP1R8B--- 1.8 B,C BP 100
CDR31BP2R0B--- 2.0 B,C BP 100
CDR31BP2R2B--- 2.2 B,C BP 100
CDR31BP2R4B--- 2.4 B,C BP 100
CDR31BP2R7B--- 2.7 B,C,D BP 100
CDR31BP3R0B--- 3.0 B,C,D BP 100
CDR31BP3R3B--- 3.3 B,C,D BP 100
CDR31BP3R6B--- 3.6 B,C,D BP 100
CDR31BP3R9B--- 3.9 B,C,D BP 100
CDR31BP4R3B--- 4.3 B,C,D BP 100
CDR31BP4R7B--- 4.7 B,C,D BP 100
CDR31BP5R1B--- 5.1 B,C,D BP 100
CDR31BP5R6B--- 5.6 B,C,D BP 100
CDR31BP6R2B--- 6.2 B,C,D BP 100
CDR31BP6R8B--- 6.8 B,C,D BP 100
CDR31BP7R5B--- 7.5 B,C,D BP 100
CDR31BP8R2B--- 8.2 B,C,D BP 100
CDR31BP9R1B--- 9.1 B,C,D BP 100
CDR31BP100B--- 10 F,J,K BP 100
CDR31BP110B--- 11 F,J,K BP 100
CDR31BP120B--- 12 F,J,K BP 100
CDR31BP130B--- 13 F,J,K BP 100
CDR31BP150B--- 15 F,J,K BP 100
CDR31BP160B--- 16 F,J,K BP 100
CDR31BP180B--- 18 F,J,K BP 100
CDR31BP200B--- 20 F,J,K BP 100
CDR31BP220B--- 22 F,J,K BP 100
CDR31BP240B--- 24 F,J,K BP 100
CDR31BP270B--- 27 F,J,K BP 100
CDR31BP300B--- 30 F,J,K BP 100
CDR31BP330B--- 33 F,J,K BP 100
CDR31BP360B--- 36 F,J,K BP 100
CDR31BP390B--- 39 F,J,K BP 100
CDR31BP430B--- 43 F,J,K BP 100
CDR31BP470B--- 47 F,J,K BP 100
CDR31BP510B--- 51 F,J,K BP 100
CDR31BP560B--- 56 F,J,K BP 100
CDR31BP620B--- 62 F,J,K BP 100
CDR31BP680B--- 68 F,J,K BP 100
CDR31BP750B--- 75 F,J,K BP 100
CDR31BP820B--- 82 F,J,K BP 100
CDR31BP910B--- 91 F,J,K BP 100
Military Rated temperature WVDC
Type Capacitance Capacitance and voltage-
Designation 1/in pF tolerance temperature limits
AVX Style 0805/CDR31 (BP) cont’d
CDR31BP101B--- 100 F,J,K BP 100
CDR31BP111B--- 110 F,J,K BP 100
CDR31BP121B--- 120 F,J,K BP 100
CDR31BP131B--- 130 F,J,K BP 100
CDR31BP151B--- 150 F,J,K BP 100
CDR31BP161B--- 160 F,J,K BP 100
CDR31BP181B--- 180 F,J,K BP 100
CDR31BP201B--- 200 F,J,K BP 100
CDR31BP221B--- 220 F,J,K BP 100
CDR31BP241B--- 240 F,J,K BP 100
CDR31BP271B--- 270 F,J,K BP 100
CDR31BP301B--- 300 F,J,K BP 100
CDR31BP331B--- 330 F,J,K BP 100
CDR31BP361B--- 360 F,J,K BP 100
CDR31BP391B--- 390 F,J,K BP 100
CDR31BP431B--- 430 F,J,K BP 100
CDR31BP471B--- 470 F,J,K BP 100
CDR31BP511A--- 510 F,J,K BP 50
CDR31BP561A--- 560 F,J,K BP 50
CDR31BP621A--- 620 F,J,K BP 50
CDR31BP681A--- 680 F,J,K BP 50
AVX Style 0805/CDR31 (BX)
CDR31BX471B--- 470 K,M BX 100
CDR31BX561B--- 560 K,M BX 100
CDR31BX681B--- 680 K,M BX 100
CDR31BX821B--- 820 K,M BX 100
CDR31BX102B--- 1,000 K,M BX 100
CDR31BX122B--- 1,200 K,M BX 100
CDR31BX152B--- 1,500 K,M BX 100
CDR31BX182B--- 1,800 K,M BX 100
CDR31BX222B--- 2,200 K,M BX 100
CDR31BX272B--- 2,700 K,M BX 100
CDR31BX332B--- 3,300 K,M BX 100
CDR31BX392B--- 3,900 K,M BX 100
CDR31BX472B--- 4,700 K,M BX 100
CDR31BX562A--- 5,600 K,M BX 50
CDR31BX682A--- 6,800 K,M BX 50
CDR31BX822A--- 8,200 K,M BX 50
CDR31BX103A--- 10,000 K,M BX 50
CDR31BX123A--- 12,000 K,M BX 50
CDR31BX153A--- 15,000 K,M BX 50
CDR31BX183A--- 18,000 K,M BX 50
1/ The complete part number will include additional symbols to indicate capacitance
tolerance, termination and failure rate level.
Add appropriate failure rate
Add appropriate termination finish
Capacitance Tolerance
Add appropriate failure rate
Add appropriate termination finish
Capacitance Tolerance
58
MIL-PRF-55681/Chips
Military Part Number Identification CDR32
CDR32 to MIL-PRF-55681/8
Military Rated temperature WVDC
Type Capacitance Capacitance and voltage-
Designation 1/in pF tolerance temperature limits
AVX Style 1206/CDR32 (BP)
CDR32BP1R0B--- 1.0 B,C BP 100
CDR32BP1R1B--- 1.1 B,C BP 100
CDR32BP1R2B--- 1.2 B,C BP 100
CDR32BP1R3B--- 1.3 B,C BP 100
CDR32BP1R5B--- 1.5 B,C BP 100
CDR32BP1R6B--- 1.6 B,C BP 100
CDR32BP1R8B--- 1.8 B,C BP 100
CDR32BP2R0B--- 2.0 B,C BP 100
CDR32BP2R2B--- 2.2 B,C BP 100
CDR32BP2R4B--- 2.4 B,C BP 100
CDR32BP2R7B--- 2.7 B,C,D BP 100
CDR32BP3R0B--- 3.0 B,C,D BP 100
CDR32BP3R3B--- 3.3 B,C,D BP 100
CDR32BP3R6B--- 3.6 B,C,D BP 100
CDR32BP3R9B--- 3.9 B,C,D BP 100
CDR32BP4R3B--- 4.3 B,C,D BP 100
CDR32BP4R7B--- 4.7 B,C,D BP 100
CDR32BP5R1B--- 5.1 B,C,D BP 100
CDR32BP5R6B--- 5.6 B,C,D BP 100
CDR32BP6R2B--- 6.2 B,C,D BP 100
CDR32BP6R8B--- 6.8 B,C,D BP 100
CDR32BP7R5B--- 7.5 B,C,D BP 100
CDR32BP8R2B--- 8.2 B,C,D BP 100
CDR32BP9R1B--- 9.1 B,C,D BP 100
CDR32BP100B--- 10 F,J,K BP 100
CDR32BP110B--- 11 F,J,K BP 100
CDR32BP120B--- 12 F,J,K BP 100
CDR32BP130B--- 13 F,J,K BP 100
CDR32BP150B--- 15 F,J,K BP 100
CDR32BP160B--- 16 F,J,K BP 100
CDR32BP180B--- 18 F,J,K BP 100
CDR32BP200B--- 20 F,J,K BP 100
CDR32BP220B--- 22 F,J,K BP 100
CDR32BP240B--- 24 F,J,K BP 100
CDR32BP270B--- 27 F,J,K BP 100
CDR32BP300B--- 30 F,J,K BP 100
CDR32BP330B--- 33 F,J,K BP 100
CDR32BP360B--- 36 F,J,K BP 100
CDR32BP390B--- 39 F,J,K BP 100
CDR32BP430B--- 43 F,J,K BP 100
CDR32BP470B--- 47 F,J,K BP 100
CDR32BP510B--- 51 F,J,K BP 100
CDR32BP560B--- 56 F,J,K BP 100
CDR32BP620B--- 62 F,J,K BP 100
CDR32BP680B--- 68 F,J,K BP 100
CDR32BP750B--- 75 F,J,K BP 100
CDR32BP820B--- 82 F,J,K BP 100
CDR32BP910B--- 91 F,J,K BP 100
Military Rated temperature WVDC
Type Capacitance Capacitance and voltage-
Designation 1/in pF tolerance temperature limits
AVX Style 1206/CDR32 (BP) cont’d
CDR32BP101B--- 100 F,J,K BP 100
CDR32BP111B--- 110 F,J,K BP 100
CDR32BP121B--- 120 F,J,K BP 100
CDR32BP131B--- 130 F,J,K BP 100
CDR32BP151B--- 150 F,J,K BP 100
CDR32BP161B--- 160 F,J,K BP 100
CDR32BP181B--- 180 F,J,K BP 100
CDR32BP201B--- 200 F,J,K BP 100
CDR32BP221B--- 220 F,J,K BP 100
CDR32BP241B--- 240 F,J,K BP 100
CDR32BP271B--- 270 F,J,K BP 100
CDR32BP301B--- 300 F,J,K BP 100
CDR32BP331B--- 330 F,J,K BP 100
CDR32BP361B--- 360 F,J,K BP 100
CDR32BP391B--- 390 F,J,K BP 100
CDR32BP431B--- 430 F,J,K BP 100
CDR32BP471B--- 470 F,J,K BP 100
CDR32BP511B--- 510 F,J,K BP 100
CDR32BP561B--- 560 F,J,K BP 100
CDR32BP621B--- 620 F,J,K BP 100
CDR32BP681B--- 680 F,J,K BP 100
CDR32BP751B--- 750 F,J,K BP 100
CDR32BP821B--- 820 F,J,K BP 100
CDR32BP911B--- 910 F,J,K BP 100
CDR32BP102B--- 1,000 F,J,K BP 100
CDR32BP112A--- 1,100 F,J,K BP 50
CDR32BP122A--- 1,200 F,J,K BP 50
CDR32BP132A--- 1,300 F,J,K BP 50
CDR32BP152A--- 1,500 F,J,K BP 50
CDR32BP162A--- 1,600 F,J,K BP 50
CDR32BP182A--- 1,800 F,J,K BP 50
CDR32BP202A--- 2,000 F,J,K BP 50
CDR32BP222A--- 2,200 F,J,K BP 50
AVX Style 1206/CDR32 (BX)
CDR32BX472B--- 4,700 K,M BX 100
CDR32BX562B--- 5,600 K,M BX 100
CDR32BX682B--- 6,800 K,M BX 100
CDR32BX822B--- 8,200 K,M BX 100
CDR32BX103B--- 10,000 K,M BX 100
CDR32BX123B--- 12,000 K,M BX 100
CDR32BX153B--- 15,000 K,M BX 100
CDR32BX183A--- 18,000 K,M BX 50
CDR32BX223A--- 22,000 K,M BX 50
CDR32BX273A--- 27,000 K,M BX 50
CDR32BX333A--- 33,000 K,M BX 50
CDR32BX393A--- 39,000 K,M BX 50
1/ The complete part number will include additional symbols to indicate capacitance
tolerance, termination and failure rate level.
Add appropriate failure rate
Add appropriate termination finish
Capacitance Tolerance
Add appropriate failure rate
Add appropriate termination finish
Capacitance Tolerance
59
MIL-PRF-55681/Chips
Military Part Number Identification CDR33/34/35
CDR33/34/35 to MIL-PRF-55681/9/10/11
Military Rated temperature WVDC
Type Capacitance Capacitance and voltage-
Designation 1/in pF tolerance temperature limits
AVX Style 1210/CDR33 (BP)
CDR33BP102B--- 1,000 F,J,K BP 100
CDR33BP112B--- 1,100 F,J,K BP 100
CDR33BP122B--- 1,200 F,J,K BP 100
CDR33BP132B--- 1,300 F,J,K BP 100
CDR33BP152B--- 1,500 F,J,K BP 100
CDR33BP162B--- 1,600 F,J,K BP 100
CDR33BP182B--- 1,800 F,J,K BP 100
CDR33BP202B--- 2,000 F,J,K BP 100
CDR33BP222B--- 2,200 F,J,K BP 100
CDR33BP242A--- 2,400 F,J,K BP 50
CDR33BP272A--- 2,700 F,J,K BP 50
CDR33BP302A--- 3,000 F,J,K BP 50
CDR33BP332A--- 3,300 F,J,K BP 50
AVX Style 1210/CDR33 (BX)
CDR33BX153B--- 15,000 K,M BX 100
CDR33BX183B--- 18,000 K,M BX 100
CDR33BX223B--- 22,000 K,M BX 100
CDR33BX273B--- 27,000 K,M BX 100
CDR33BX393A--- 39,000 K,M BX 50
CDR33BX473A--- 47,000 K,M BX 50
CDR33BX563A--- 56,000 K,M BX 50
CDR33BX683A--- 68,000 K,M BX 50
CDR33BX823A--- 82,000 K,M BX 50
CDR33BX104A--- 100,000 K,M BX 50
AVX Style 1812/CDR34 (BP)
CDR34BP222B--- 2,200 F,J,K BP 100
CDR34BP242B--- 2,400 F,J,K BP 100
CDR34BP272B--- 2,700 F,J,K BP 100
CDR34BP302B--- 3,000 F,J,K BP 100
CDR34BP332B--- 3,300 F,J,K BP 100
CDR34BP362B--- 3,600 F,J,K BP 100
CDR34BP392B--- 3,900 F,J,K BP 100
CDR34BP432B--- 4,300 F,J,K BP 100
CDR34BP472B--- 4,700 F,J,K BP 100
CDR34BP512A--- 5,100 F,J,K BP 50
CDR34BP562A--- 5,600 F,J,K BP 50
CDR34BP622A--- 6,200 F,J,K BP 50
CDR34BP682A--- 6,800 F,J,K BP 50
CDR34BP752A--- 7,500 F,J,K BP 50
CDR34BP822A--- 8,200 F,J,K BP 50
CDR34BP912A--- 9,100 F,J,K BP 50
CDR34BP103A--- 10,000 F,J,K BP 50
Military Rated temperature WVDC
Type Capacitance Capacitance and voltage-
Designation 1/in pF tolerance temperature limits
AVX Style 1812/CDR34 (BX)
CDR34BX273B--- 27,000 K,M BX 100
CDR34BX333B--- 33,000 K,M BX 100
CDR34BX393B--- 39,000 K,M BX 100
CDR34BX473B--- 47,000 K,M BX 100
CDR34BX563B--- 56,000 K,M BX 100
CDR34BX104A--- 100,000 K,M BX 50
CDR34BX124A--- 120,000 K,M BX 50
CDR34BX154A--- 150,000 K,M BX 50
CDR34BX184A--- 180,000 K,M BX 50
AVX Style 1825/CDR35 (BP)
CDR35BP472B--- 4,700 F,J,K BP 100
CDR35BP512B--- 5,100 F,J,K BP 100
CDR35BP562B--- 5,600 F,J,K BP 100
CDR35BP622B--- 6,200 F,J,K BP 100
CDR35BP682B--- 6,800 F,J,K BP 100
CDR35BP752B--- 7,500 F,J,K BP 100
CDR35BP822B--- 8,200 F,J,K BP 100
CDR35BP912B--- 9,100 F,J,K BP 100
CDR35BP103B--- 10,000 F,J,K BP 100
CDR35BP113A--- 11,000 F,J,K BP 50
CDR35BP123A--- 12,000 F,J,K BP 50
CDR35BP133A--- 13,000 F,J,K BP 50
CDR35BP153A--- 15,000 F,J,K BP 50
CDR35BP163A--- 16,000 F,J,K BP 50
CDR35BP183A--- 18,000 F,J,K BP 50
CDR35BP203A--- 20,000 F,J,K BP 50
CDR35BP223A--- 22,000 F,J,K BP 50
AVX Style 1825/CDR35 (BX)
CDR35BX563B--- 56,000 K,M BX 100
CDR35BX683B--- 68,000 K,M BX 100
CDR35BX823B--- 82,000 K,M BX 100
CDR35BX104B--- 100,000 K,M BX 100
CDR35BX124B--- 120,000 K,M BX 100
CDR35BX154B--- 150,000 K,M BX 100
CDR35BX184A--- 180,000 K,M BX 50
CDR35BX224A--- 220,000 K,M BX 50
CDR35BX274A--- 270,000 K,M BX 50
CDR35BX334A--- 330,000 K,M BX 50
CDR35BX394A--- 390,000 K,M BX 50
CDR35BX474A--- 470,000 K,M BX 50
1/ The complete part number will include additional symbols to indicate capacitance
tolerance, termination and failure rate level.
Add appropriate failure rate
Add appropriate termination finish
Capacitance Tolerance
Add appropriate failure rate
Add appropriate termination finish
Capacitance Tolerance
60
Packaging of Chip Components
Automatic Insertion Packaging
TAPE & REEL QUANTITIES
All tape and reel specifications are in compliance with RS481.
8mm 12mm
Paper or Embossed Carrier 0612, 0508, 0805, 1206,
1210
Embossed Only 1812, 1825
1808 2220, 2225
Paper Only 0201, 0306, 0402, 0603
Qty. per Reel/7" Reel 2,000, 3,000 or 4,000, 10,000, 15,000 3,000 500, 1,000
Contact factory for exact quantity Contact factory for exact quantity
Qty. per Reel/13" Reel 5,000, 10,000, 50,000 10,000 4,000
Contact factory for exact quantity
REEL DIMENSIONS
Tape A B* CD* N W1W2W3
Size(1) Max. Min. Min. Min. Max. 7.90 Min.
8mm 14.4 (0.311)
(0.567) 10.9 Max.
330 1.5 20.2 50.0 (0.429)
(12.992) (0.059) (0.795) (1.969) 11.9 Min.
12mm 18.4 (0.469)
(0.724) 15.4 Max.
(0.607)
Metric dimensions will govern.
English measurements rounded and for reference only.
(1) For tape sizes 16mm and 24mm (used with chip size 3640) consult EIA RS-481 latest revision.
13.0+0.50
-0.20
(0.512+0.020)
-0.008
8.40 +1.5
-0.0
(0.331 +0.059 )-0.0
12.4 +2.0
-0.0
(0.488 +0.079 )
-0.0
61
Tape Size B1D1E2FP
1RT
2WA
0 B0 K0
Max. Min. Min. Min. Max.
See Note 5 See Note 2
8mm 4.35 1.00 6.25 3.50 ± 0.05 4.00 ± 0.10 25.0 2.50 Max. 8.30 See Note 1
(0.171) (0.039) (0.246) (0.138 ± 0.002) (0.157 ± 0.004) (0.984) (0.098) (0.327)
12mm 8.20 1.50 10.25 5.50 ± 0.05 4.00 ± 0.10 30.0 6.50 Max. 12.3 See Note 1
(0.323) (0.059) (0.404) (0.217 ± 0.002) (0.157 ± 0.004) (1.181) (0.256) (0.484)
8mm 4.35 1.00 6.25 3.50 ± 0.05 2.00 ± 0.10 25.0 2.50 Max. 8.30 See Note 1
1/2 Pitch (0.171) (0.039) (0.246) (0.138 ± 0.002) (0.079 ± 0.004) (0.984) (0.098) (0.327)
12mm 8.20 1.50 10.25 5.50 ± 0.05 8.00 ± 0.10 30.0 6.50 Max. 12.3 See Note 1
Double (0.323) (0.059) (0.404) (0.217 ± 0.002) (0.315 ± 0.004) (1.181) (0.256) (0.484)
Pitch
Embossed Carrier Configuration
8 & 12mm Tape Only
P0
B0
P1
P2
D0
T2
T
TOP COVER
TAPE
DEFORMATION
BETWEEN
EMBOSSMENTS
CENTER LINES
OF CAVITY MAX. CAVITY
SIZE - SEE NOTE 1
D1 FOR COMPONENTS
2.00 mm x 1.20 mm AND
LARGER (0.079 x 0.047)
10 PITCHES CUMULATIVE
TOLERANCE ON TAPE
±0.2mm (±0.008)
B1
E1
F
EMBOSSMENT
User Direction of Feed
E2W
K0
T1
S1
A0
B1 IS FOR TAPE READER REFERENCE ONLY
INCLUDING DRAFT CONCENTRIC AROUND B0
8 & 12mm Embossed Tape
Metric Dimensions Will Govern
CONSTANT DIMENSIONS
VARIABLE DIMENSIONS
NOTES:
1. The cavity defined by A0, B0, and K0shall be configured to provide the following:
Surround the component with sufficient clearance such that:
a) the component does not protrude beyond the sealing plane of the cover tape.
b) the component can be removed from the cavity in a vertical direction without mechanical
restriction, after the cover tape has been removed.
c) rotation of the component is limited to 20Âș maximum (see Sketches D & E).
d) lateral movement of the component is restricted to 0.5mm maximum (see Sketch F).
2. Tape with or without components shall pass around radius “R” without damage.
3. Bar code labeling (if required) shall be on the side of the reel opposite the round sprocket holes.
Refer to EIA-556.
4. B1dimension is a reference dimension for tape feeder clearance only.
5. If P1= 2.0mm, the tape may not properly index in all tape feeders.
Tape Size D0EP
0P2S1 Min. T Max. T1
8mm 1.75 ± 0.10 4.0 ± 0.10 2.0 ± 0.05 0.60 0.60 0.10
and (0.069 ± 0.004) (0.157 ± 0.004) (0.079 ± 0.002) (0.024) (0.024) (0.004)
12mm Max.
0.50mm (0.020)
Maximum
0.50mm (0.020)
Maximum
Top View, Sketch "F"
Component Lateral Movements
1.50 +0.10
-0.0
(0.059 +0.004 )
-0.0
Chip Orientation
62
Tape Size P1 E2 Min. F W A0 B0T
See Note 4
8mm 4.00 ± 0.10 6.25 3.50 ± 0.05 See Note 1
(0.157 ± 0.004) (0.246) (0.138 ± 0.002)
12mm 4.00 ± 0.010 10.25 5.50 ± 0.05 12.0 ± 0.30
(0.157 ± 0.004) (0.404) (0.217 ± 0.002) (0.472 ± 0.012)
8mm 2.00 ± 0.05 6.25 3.50 ± 0.05
1/2 Pitch (0.079 ± 0.002) (0.246) (0.138 ± 0.002)
12mm 8.00 ± 0.10 10.25 5.50 ± 0.05 12.0 ± 0.30
Double (0.315 ± 0.004) (0.404) (0.217 ± 0.002) (0.472 ± 0.012)
Pitch
Paper Carrier Configuration
8 & 12mm Tape Only
P0
B0
P1
P2
D0
T
TOP
COVER
TAPE
BOTTOM
COVER
TAPE
CENTER LINES
OF CAVITY
CAVITY SIZE
SEE NOTE 1
10 PITCHES CUMULATIVE
TOLERANCE ON TAPE
±0.20mm (±0.008)
E1
F
G
User Direction of Feed
E2W
T1
T1A0
8 & 12mm Paper Tape
Metric Dimensions Will Govern
CONSTANT DIMENSIONS
Tape Size D0EP
0P2T1G. Min. R Min.
8mm 1.75 ± 0.10 4.00 ± 0.10 2.00 ± 0.05 0.10 0.75 25.0 (0.984)
and (0.069 ± 0.004) (0.157 ± 0.004) (0.079 ± 0.002) (0.004) (0.030) See Note 2
12mm Max. Min. Min.
VARIABLE DIMENSIONS
1.10mm
(0.043) Max.
for Paper Base
Tape and
1.60mm
(0.063) Max.
for Non-Paper
Base Compositions
NOTES:
1. The cavity defined by A0, B0, and T shall be configured to provide sufficient clearance
surrounding the component so that:
a) the component does not protrude beyond either surface of the carrier tape;
b) the component can be removed from the cavity in a vertical direction without
mechanical restriction after the top cover tape has been removed;
c) rotation of the component is limited to 20Âș maximum (see Sketches A & B);
d) lateral movement of the component is restricted to 0.5mm maximum
(see Sketch C).
2. Tape with or without components shall pass around radius “R” without damage.
3. Bar code labeling (if required) shall be on the side of the reel opposite the sprocket
holes. Refer to EIA-556.
4. If P1= 2.0mm, the tape may not properly index in all tape feeders.
0.50mm (0.020)
Maximum
0.50mm (0.020)
Maximum
Top View, Sketch "C"
Component Lateral
1.50 +0.10
-0.0
(0.059 +0.004 )-0.0
8.00 +0.30
-0.10
(0.315 +0.012 )
-0.004
8.00 +0.30
-0.10
(0.315 +0.012 )-0.004
Bar Code Labeling Standar d
AVX bar code labeling is available and follows latest version of EIA-556
63
Bulk Case Packaging
CASE QUANTITIES
Part Size 0402 0603 0805 1206
Qty. 10,000 (T=.023") 5,000 (T=.023")
(pcs / cassette) 80,000 15,000 8,000 (T=.031") 4,000 (T=.032")
6,000 (T=.043") 3,000 (T=.044")
BENEFITS BULK FEEDER
‱ Easier handling
‱ Smaller packaging volume
(1/20 of T/R packaging)
‱ Easier inventory control
‱ Flexibility
‱ Recyclable
CASE DIMENSIONS
Shutter
Slider
Attachment Base
110mm
12mm
36mm
Case
Cassette
Gate
Shooter
Chips
Expanded Drawing Mounter
Head
64
I. Capacitance (farads)
English: C = .224 K A
TD
Metric: C = .0884 K A
TD
II. Energy stored in capacitors (Joules, watt - sec)
E = 1⁄2 CV2
III. Linear charge of a capacitor (Amperes)
I = C dV
dt
IV. Total Impedance of a capacitor (ohms)
Z = R2
S + (XC- XL)2
V. Capacitive Reactance (ohms)
xc=1
2 πfC
VI. Inductive Reactance (ohms)
xL= 2 πfL
VII. Phase Angles:
Ideal Capacitors: Current leads voltage 90°
Ideal Inductors: Current lags voltage 90°
Ideal Resistors: Current in phase with voltage
VIII. Dissipation Factor (%)
D.F.= tan (loss angle) = E.S.R. = (2 πfC) (E.S.R.)
Xc
IX. Power Factor (%)
P.F. = Sine (loss angle) = Cos f(phase angle)
P.F. = (when less than 10%) = DF
X. Quality Factor (dimensionless)
Q = Cotan (loss angle) = 1
D.F.
XI. Equivalent Series Resistance (ohms)
E.S.R. = (D.F.) (Xc) = (D.F.) / (2 πfC)
XII. Power Loss (watts)
Power Loss = (2 πfCV2) (D.F.)
XIII. KVA (Kilowatts)
KVA = 2 πfCV2x 10-3
XIV. Temperature Characteristic (ppm/°C)
T.C. = Ct – C25 x 106
C25 (Tt– 25)
XV. Cap Drift (%)
C.D. = C1– C2x 100
C1
XVI. Reliability of Ceramic Capacitors
L0=VtXT
tY
Lt(Vo )(
To )
XVII. Capacitors in Series (current the same)
Any Number: 1 = 1 + 1 --- 1
CTC1C2CN
C1C2
Two: CT=C1+ C2
XVIII. Capacitors in Parallel (voltage the same)
CT= C1+ C2--- + CN
XIX. Aging Rate
A.R. = %DC/decade of time
XX. Decibels
db = 20 log V1
V2

Pico X 10-12
Nano X 10-9
Micro X 10-6
Milli X 10-3
Deci X 10-1
Deca X 10+1
Kilo X 10+3
Mega X 10+6
Giga X 10+9
Tera X 10+12
K = Dielectric Constant f = frequency Lt= Test life
A = Area L = Inductance Vt= Test voltage
TD= Dielectric thickness = Loss angle Vo= Operating voltage
V = Voltage f= Phase angle Tt= Test temperature
t = time X & Y = exponent effect of voltage and temp. To= Operating temperature
Rs= Series Resistance Lo= Operating life
METRIC PREFIXES SYMBOLS
Basic Capacitor Formulas
65
General Description
Formulations – Multilayer ceramic capacitors are available
in both Class 1 and Class 2 formulations. Temperature
compensating formulation are Class 1 and temperature
stable and general application formulations are classified
as Class 2.
Class 1 – Class 1 capacitors or temperature compensating
capacitors are usually made from mixtures of titanates
where barium titanate is normally not a major part of the
mix. They have predictable temperature coefficients and
in general, do not have an aging characteristic. Thus they
are the most stable capacitor available. The most popular
Class 1 multilayer ceramic capacitors are C0G (NP0)
temperature compensating capacitors (negative-positive
0 ppm/°C).
Class 2 – EIA Class 2 capacitors typically are based on the
chemistry of barium titanate and provide a wide range of
capacitance values and temperature stability. The most
commonly used Class 2 dielectrics are X7R and Y5V. The
X7R provides intermediate capacitance values which vary
only ±15% over the temperature range of -55°C to 125°C. It
finds applications where stability over a wide temperature
range is required.
The Y5V provides the highest capacitance values and is
used in applications where limited temperature changes are
expected. The capacitance value for Y5V can vary from
22% to -82% over the -30°C to 85°C temperature range.
All Class 2 capacitors vary in capacitance value under the
influence of temperature, operating voltage (both AC and
DC), and frequency. For additional information on perfor-
mance changes with operating conditions, consult AVX’s
software, SpiCap.
Basic Construction – A multilayer ceramic (MLC) capaci-
tor is a monolithic block of ceramic containing two sets of
offset, interleaved planar electrodes that extend to two
opposite surfaces of the ceramic dielectric. This simple
structure requires a considerable amount of sophistication,
both in material and manufacture, to produce it in the quality
and quantities needed in today’s electronic equipment.
Ceramic Layer Electrode
Terminated
Edge
Terminated
Edge
End Terminations
Margin Electrodes
Multilayer Ceramic Capacitor
Figure 1
66
In specifying capacitance change with temperature for Class
2 materials, EIA expresses the capacitance change over an
operating temperature range by a 3 symbol code. The first
symbol represents the cold temperature end of the temper-
ature range, the second represents the upper limit of the
operating temperature range and the third symbol repre-
sents the capacitance change allowed over the
operating temperature range. Table 1 provides a detailed
explanation of the EIA system.
Effects of Voltage – Variations in voltage have little effect
on Class 1 dielectric but does affect the capacitance and
dissipation factor of Class 2 dielectrics. The application of
DC voltage reduces both the capacitance and dissipation
factor while the application of an AC voltage within a
reasonable range tends to increase both capacitance and
dissipation factor readings. If a high enough AC voltage is
applied, eventually it will reduce capacitance just as a DC
voltage will. Figure 2 shows the effects of AC voltage.
Capacitor specifications specify the AC voltage at which to
measure (normally 0.5 or 1 VAC) and application of the
wrong voltage can cause spurious readings. Figure 3 gives
the voltage coefficient of dissipation factor for various AC
voltages at 1 kilohertz. Applications of different frequencies
will affect the percentage changes versus voltages.
Typical effect of the application of DC voltage is shown in
Figure 4. The voltage coefficient is more pronounced for
higher K dielectrics. These figures are shown for room tem-
perature conditions. The combination characteristic known
as voltage temperature limits which shows the effects of
rated voltage over the operating temperature range is
shown in Figure 5 for the military BX characteristic.
General Description
Figure 2
50
40
30
20
10
0 12.5 25 37.5 50
Volts AC at 1.0 KHz
Capacitance Change Percent
Cap. Change vs. A.C. Volts
X7R
Figure 3
Curve 3 - 25 VDC Rated Capacitor
Curve 2 - 50 VDC Rated Capacitor
Curve 1 - 100 VDC Rated Capacitor Curve 3
Curve 2
Curve 1
.5 1.0 1.5 2.0 2.5
AC Measurement Volts at 1.0 KHz
Dissipation Factor Percent
10.0
8.0
6.0
4.0
2.0
0
D.F. vs. A.C. Measurement Volts
X7R
EIA CODE
Percent Capacity Change Over Temperature Range
RS198 Temperature Range
X7 -55°C to +125°C
X6 -55°C to +105°C
X5 -55°C to +85°C
Y5 -30°C to +85°C
Z5 +10°C to +85°C
Code Percent Capacity Change
D ±3.3%
E ±4.7%
F ±7.5%
P ±10%
R ±15%
S ±22%
T +22%, -33%
U +22%, - 56%
V +22%, -82%
MIL CODE
Symbol Temperature Range
A -55°C to +85°C
B -55°C to +125°C
C -55°C to +150°C
Symbol Cap. Change Cap. Change
Zero Volts Rated Volts
R +15%, -15% +15%, -40%
S +22%, -22% +22%, -56%
W +22%, -56% +22%, -66%
X +15%, -15% +15%, -25%
Y +30%, -70% +30%, -80%
Z +20%, -20% +20%, -30%
Table 1: EIA and MIL Temperature Stable and General
Application Codes
EXAMPLE – A capacitor is desired with the capacitance value at 25°C
to increase no more than 7.5% or decrease no more than 7.5% from
-30°C to +85°C. EIA Code will be Y5F.
Temperature characteristic is specified by combining range and
change symbols, for example BR or AW. Specification slash sheets
indicate the characteristic applicable to a given style of capacitor.
67
General Description
Typical Cap. Change vs. D.C. Volts
X7R
Typical Cap. Change vs. Temperature
X7R
Effects of Time – Class 2 ceramic capacitors change
capacitance and dissipation factor with time as well as tem-
perature, voltage and frequency. This change with time is
known as aging. Aging is caused by a gradual re-alignment
of the crystalline structure of the ceramic and produces an
exponential loss in capacitance and decrease in dissipation
factor versus time. A typical curve of aging rate for semi-
stable ceramics is shown in Figure 6.
If a Class 2 ceramic capacitor that has been sitting on the
shelf for a period of time, is heated above its curie point,
(125°C for 4 hours or 150°C for 1⁄2hour will suffice) the part
will de-age and return to its initial capacitance and dissi-
pation factor readings. Because the capacitance changes
rapidly, immediately after de-aging, the basic capacitance
measurements are normally referred to a time period some-
time after the de-aging process. Various manufacturers use
different time bases but the most popular one is one day
or twenty-four hours after “last heat.” Change in the aging
curve can be caused by the application of voltage and
other stresses. The possible changes in capacitance due to
de-aging by heating the unit explain why capacitance
changes are allowed after test, such as temperature cycling,
moisture resistance, etc., in MIL specs. The application of
high voltages such as dielectric withstanding voltages also
tends to de-age capacitors and is why re-reading of capaci-
tance after 12 or 24 hours is allowed in military specifica-
tions after dielectric strength tests have been performed.
Effects of Frequency – Frequency affects capacitance
and impedance characteristics of capacitors. This effect is
much more pronounced in high dielectric constant ceramic
formulation than in low K formulations. AVX’s SpiCap soft-
ware generates impedance, ESR, series inductance, series
resonant frequency and capacitance all as functions of
frequency, temperature and DC bias for standard chip sizes
and styles. It is available free from AVX and can be down-
loaded for free from AVX website: www.avx.com.
25% 50% 75% 100%
Percent Rated Volts
Capacitance Change Percent
2.5
0
-2.5
-5
-7.5
-10
0VDC
-55 -35 -15 +5 +25 +45 +65 +85 +105 +125
Temperature Degrees Centigrade
Capacitance Change Percent
+20
+10
0
-10
-20
-30
Figure 4
Figure 5
1 10 100 1000 10,000 100,000
Hours
Capacitance Change Percent
+1.5
0
-1.5
-3.0
-4.5
-6.0
-7.5
Characteristic Max. Aging Rate %/Decade
C0G (NP0)
X7R, X5R
Y5V
None
2
7
Figure 6
Typical Curve of Aging Rate
X7R
68
Effects of Mechanical Stress – High “K” dielectric
ceramic capacitors exhibit some low level piezoelectric
reactions under mechanical stress. As a general statement,
the piezoelectric output is higher, the higher the dielectric
constant of the ceramic. It is desirable to investigate this
effect before using high “K” dielectrics as coupling capaci-
tors in extremely low level applications.
Reliability – Historically ceramic capacitors have been one
of the most reliable types of capacitors in use today.
The approximate formula for the reliability of a ceramic
capacitor is:
Lo=VtXTtY
LtVoTo
where
Lo= operating life Tt= test temperature and
Lt= test life To= operating temperature
Vt= test voltage in °C
Vo= operating voltage X,Y = see text
Historically for ceramic capacitors exponent X has been
considered as 3. The exponent Y for temperature effects
typically tends to run about 8.
A capacitor is a component which is capable of storing
electrical energy. It consists of two conductive plates (elec-
trodes) separated by insulating material which is called the
dielectric. A typical formula for determining capacitance is:
C = .224 KA
t
C= capacitance (picofarads)
K= dielectric constant (Vacuum = 1)
A= area in square inches
t= separation between the plates in inches
(thickness of dielectric)
.224 = conversion constant
(.0884 for metric system in cm)
Capacitance – The standard unit of capacitance is the
farad. A capacitor has a capacitance of 1 farad when 1
coulomb charges it to 1 volt. One farad is a very large unit
and most capacitors have values in the micro (10-6), nano
(10-9) or pico (10-12) farad level.
Dielectric Constant – In the formula for capacitance given
above the dielectric constant of a vacuum is arbitrarily cho-
sen as the number 1. Dielectric constants of other materials
are then compared to the dielectric constant of a vacuum.
Dielectric Thickness – Capacitance is indirectly propor-
tional to the separation between electrodes. Lower voltage
requirements mean thinner dielectrics and greater capaci-
tance per volume.
Area – Capacitance is directly proportional to the area of
the electrodes. Since the other variables in the equation are
usually set by the performance desired, area is the easiest
parameter to modify to obtain a specific capacitance within
a material group.
Energy Stored – The energy which can be stored in a
capacitor is given by the formula:
E= 1⁄2CV2
E= energy in joules (watts-sec)
V= applied voltage
C= capacitance in farads
Potential Change – A capacitor is a reactive component
which reacts against a change in potential across it. This is
shown by the equation for the linear charge of a capacitor:
Iideal = C dV
dt
where I= Current
C= Capacitance
dV/dt = Slope of voltage transition across capacitor
Thus an infinite current would be required to instantly
change the potential across a capacitor. The amount of
current a capacitor can “sink” is determined by the above
equation.
Equivalent Circuit – A capacitor, as a practical device,
exhibits not only capacitance but also resistance and
inductance. A simplified schematic for the equivalent circuit
is:C= Capacitance L = Inductance
Rs= Series Resistance Rp= Parallel Resistance
Reactance – Since the insulation resistance (Rp) is normal-
ly very high, the total impedance of a capacitor is:
Z = R2
S+ (XC - XL)2
whereZ= Total Impedance
Rs= Series Resistance
XC= Capacitive Reactance = 1
2πfC
XL= Inductive Reactance = 2 πfL
The variation of a capacitor’s impedance with frequency
determines its effectiveness in many applications.
Phase Angle – Power Factor and Dissipation Factor are
often confused since they are both measures of the loss in
a capacitor under AC application and are often almost
identical in value. In a “perfect” capacitor the current in the
capacitor will lead the voltage by 90°.




General Description
R
LR
C
P
S

69
General Description
In practice the current leads the voltage by some other
phase angle due to the series resistance RS. The comple-
ment of this angle is called the loss angle and:
Power Factor (P.F.) = Cos for Sine 
Dissipation Factor (D.F.) = tan 
for small values of the tan and sine are essentially equal
which has led to the common interchangeability of the two
terms in the industry.
Equivalent Series Resistance – The term E.S.R. or
Equivalent Series Resistance combines all losses both
series and parallel in a capacitor at a given frequency so
that the equivalent circuit is reduced to a simple R-C series
connection.
Dissipation Factor – The DF/PF of a capacitor tells what
percent of the apparent power input will turn to heat in the
capacitor.
Dissipation Factor =E.S.R. = (2 πfC) (E.S.R.)
XC
The watts loss are:
Watts loss = (2 πfCV2) (D.F.)
Very low values of dissipation factor are expressed as their
reciprocal for convenience. These are called the “Q” or
Quality factor of capacitors.
Parasitic Inductance – The parasitic inductance of capac-
itors is becoming more and more important in the decou-
pling of today’s high speed digital systems. The relationship
between the inductance and the ripple voltage induced on
the DC voltage line can be seen from the simple inductance
equation: V = L di
dt
The seen in current microprocessors can be as high as
0.3 A/ns, and up to 10A/ns. At 0.3 A/ns, 100pH of parasitic
inductance can cause a voltage spike of 30mV. While this
does not sound very drastic, with the Vcc for microproces-
sors decreasing at the current rate, this can be a fairly large
percentage.
Another important, often overlooked, reason for knowing
the parasitic inductance is the calculation of the resonant
frequency. This can be important for high frequency, by-
pass capacitors, as the resonant point will give the most
signal attenuation. The resonant frequency is calculated
from the simple equation:
fres = 1
2LC
Insulation Resistance – Insulation Resistance is the
resistance measured across the terminals of a capacitor
and consists principally of the parallel resistance R Pshown
in the equivalent circuit. As capacitance values and hence
the area of dielectric increases, the I.R. decreases and
hence the product (C x IR or RC) is often specified in ohm
faradsor more commonly megohm-microfarads. Leakage
current is determined by dividing the rated voltage by IR
(Ohm’s Law).
Dielectric Strength – Dielectric Strength is an expression
of the ability of a material to withstand an electrical stress.
Although dielectric strength is ordinarily expressed in volts, it
is actually dependent on the thickness of the dielectric and
thus is also more generically a function of volts/mil.
Dielectric Absorption – A capacitor does not discharge
instantaneously upon application of a short circuit, but
drains gradually after the capacitance proper has been dis-
charged. It is common practice to measure the dielectric
absorption by determining the “reappearing voltage” which
appears across a capacitor at some point in time after it has
been fully discharged under short circuit conditions.
Corona – Corona is the ionization of air or other vapors
which causes them to conduct current. It is especially
prevalent in high voltage units but can occur with low voltages
as well where high voltage gradients occur. The energy
discharged degrades the performance of the capacitor and
can in time cause catastrophic failures.
di
dt

I (Ideal) I (Actual)
Phase
Angle
Loss
Angle
V
IRs
f
E.S.R. C

70
Surface Mounting Guide
MLC Chip Capacitors
Component pads should be designed to achieve good
solder filets and minimize component movement during
reflow soldering. Pad designs are given below for the most
common sizes of multilayer ceramic capacitors for both
wave and reflow soldering. The basis of these designs is:
‱ Pad width equal to component width. It is permissible to
decrease this to as low as 85% of component width but it
is not advisable to go below this.
‱ Pad overlap 0.5mm beneath component.
‱ Pad extension 0.5mm beyond components for reflow and
1.0mm for wave soldering.
D1
D2
D3
D4
D5
Case Size D1 D2 D3 D4 D5
0402 1.70 (0.07) 0.60 (0.02) 0.50 (0.02) 0.60 (0.02) 0.50 (0.02)
0603 2.30 (0.09) 0.80 (0.03) 0.70 (0.03) 0.80 (0.03) 0.75 (0.03)
0805 3.00 (0.12) 1.00 (0.04) 1.00 (0.04) 1.00 (0.04) 1.25 (0.05)
1206 4.00 (0.16) 1.00 (0.04) 2.00 (0.09) 1.00 (0.04) 1.60 (0.06)
1210 4.00 (0.16) 1.00 (0.04) 2.00 (0.09) 1.00 (0.04) 2.50 (0.10)
1808 5.60 (0.22) 1.00 (0.04) 3.60 (0.14) 1.00 (0.04) 2.00 (0.08)
1812 5.60 (0.22) 1.00 (0.04)) 3.60 (0.14) 1.00 (0.04) 3.00 (0.12)
1825 5.60 (0.22) 1.00 (0.04) 3.60 (0.14) 1.00 (0.04) 6.35 (0.25)
2220 6.60 (0.26) 1.00 (0.04) 4.60 (0.18) 1.00 (0.04) 5.00 (0.20)
2225 6.60 (0.26) 1.00 (0.04) 4.60 (0.18) 1.00 (0.04) 6.35 (0.25)
Dimensions in millimeters (inches)
REFLOW SOLDERING
WAVE SOLDERING
Component Spacing
For wave soldering components, must be spaced sufficiently
far apart to avoid bridging or shadowing (inability of solder
to penetrate properly into small spaces). This is less impor-
tant for reflow soldering but sufficient space must be
allowed to enable rework should it be required.
Preheat & Soldering
The rate of preheat should not exceed 4°C/second to
prevent thermal shock. A better maximum figure is about
2°C/second.
For capacitors size 1206 and below, with a maximum
thickness of 1.25mm, it is generally permissible to allow a
temperature differential from preheat to soldering of 150°C.
In all other cases this differential should not exceed 100°C.
For further specific application or process advice, please
consult AVX.
Cleaning
Care should be taken to ensure that the capacitors are
thoroughly cleaned of flux residues especially the space
beneath the capacitor. Such residues may otherwise
become conductive and effectively offer a low resistance
bypass to the capacitor.
Ultrasonic cleaning is permissible, the recommended
conditions being 8 Watts/litre at 20-45 kHz, with a process
cycle of 2 minutes vapor rinse, 2 minutes immersion in the
ultrasonic solvent bath and finally 2 minutes vapor rinse.
D1
D2
D3
D4
D5
Case Size D1 D2 D3 D4 D5
0603 3.10 (0.12) 1.20 (0.05) 0.70 (0.03) 1.20 (0.05) 0.75 (0.03)
0805 4.00 (0.15) 1.50 (0.06) 1.00 (0.04) 1.50 (0.06) 1.25 (0.05)
1206 5.00 (0.19) 1.50 (0.06) 2.00 (0.09) 1.50 (0.06) 1.60 (0.06)
Dimensions in millimeters (inches)
≄1mm (0.04)
≄1.5mm (0.06)
≄1mm (0.04)
Component Pad Design
71
Surface Mounting Guide
MLC Chip Capacitors
APPLICATION NOTES
Storage
Good solderability is maintained for at least twelve months,
provided the components are stored in their “as received”
packaging at less than 40°C and 70% RH.
Solderability
Terminations to be well soldered after immersion in a 60/40
tin/lead solder bath at 235 ± 5°C for 2 ± 1 seconds.
Leaching
Terminations will resist leaching for at least the immersion
times and conditions shown below.
Recommended Soldering Profiles
Lead-Free Reflow Profile
Lead-Free Wave Soldering
The recommended peak temperature for lead-free wave
soldering is 250°C-260°C for 3-5 seconds. The other para-
meters of the profile remains the same as above.
The following should be noted by customers changing from
lead based systems to the new lead free pastes.
a) The visual standards used for evaluation of solder joints
will need to be modified as lead free joints are not as
bright as with tin-lead pastes and the fillet may not be as
large.
b) Resin color may darken slightly due to the increase in
temperature required for the new pastes.
c) Lead-free solder pastes do not allow the same self align-
ment as lead containing systems. Standard mounting
pads are acceptable, but machine set up may need to be
modified.
General
Surface mounting chip multilayer ceramic capacitors
are designed for soldering to printed circuit boards or other
substrates. The construction of the components is such that
they will withstand the time/temperature profiles used in both
wave and reflow soldering methods.
Handling
Chip multilayer ceramic capacitors should be handled with
care to avoid damage or contamination from perspiration
and skin oils. The use of tweezers or vacuum pick ups
is strongly recommended for individual components. Bulk
handling should ensure that abrasion and mechanical shock
are minimized. Taped and reeled components provides the
ideal medium for direct presentation to the placement
machine. Any mechanical shock should be minimized during
handling chip multilayer ceramic capacitors.
Preheat
It is important to avoid the possibility of thermal shock during
soldering and carefully controlled preheat is therefore
required. The rate of preheat should not exceed 4°C/second
Termination Type Solder Solder Immersion Time
Tin/Lead/Silver Temp. °C Seconds
Nickel Barrier 60/40/0 260 ± 5 30 ± 1
Reflow
300
250
200
150
100
50
0
Solder Temp.
10 sec. max
1min
1min
(Minimize soldering time)
Natural
Cooling
220°C
to
250°C
Preheat
Wave
300
250
200
150
100
50
0
Solder Temp.
(Preheat chips before soldering)
T/maximum 150°C
3 sec. max
1 to 2 min
Preheat Natural
Cooling
230°C
to
250°C
T
300
250
200
150
100
50
00 50 100 150 200 250 300
‱ Pre-heating: 150°C ±15°C / 60-90s
‱ Max. Peak Gradient 2.5°C/s
‱ Peak Temperature: 245°C ±5°C
‱ Time at >230°C: 40s Max.
Temperature °C
Time (s)
72
Surface Mounting Guide
MLC Chip Capacitors
and a target figure 2°C/second is recommended. Although
an 80°C to 120°C temperature differential is preferred,
recent developments allow a temperature differential
between the component surface and the soldering temper-
ature of 150°C (Maximum) for capacitors of 1210 size and
below with a maximum thickness of 1.25mm. The user is
cautioned that the risk of thermal shock increases as chip
size or temperature differential increases.
Soldering
Mildly activated rosin fluxes are preferred. The minimum
amount of solder to give a good joint should be used.
Excessive solder can lead to damage from the stresses
caused by the difference in coefficients of expansion
between solder, chip and substrate. AVX terminations are
suitable for all wave and reflow soldering systems. If hand
soldering cannot be avoided, the preferred technique is the
utilization of hot air soldering tools.
Cooling
Natural cooling in air is preferred, as this minimizes stresses
within the soldered joint. When forced air cooling is used,
cooling rate should not exceed 4°C/second. Quenching
is not recommended but if used, maximum temperature
differentials should be observed according to the preheat
conditions above.
Cleaning
Flux residues may be hygroscopic or acidic and must be
removed. AVX MLC capacitors are acceptable for use with
all of the solvents described in the specifications MIL-STD-
202 and EIA-RS-198. Alcohol based solvents are acceptable
and properly controlled water cleaning systems are also
acceptable. Many other solvents have been proven successful,
and most solvents that are acceptable to other components
on circuit assemblies are equally acceptable for use with
ceramic capacitors.
POST SOLDER HANDLING
Once SMP components are soldered to the board, any
bending or flexure of the PCB applies stresses to the sol-
dered joints of the components. For leaded devices, the
stresses are absorbed by the compliancy of the metal leads
and generally don’t result in problems unless the stress is
large enough to fracture the soldered connection.
Ceramic capacitors are more susceptible to such stress
because they don’t have compliant leads and are brittle in
nature. The most frequent failure mode is low DC resistance
or short circuit. The second failure mode is significant loss
of capacitance due to severing of contact between sets of
the internal electrodes.
Cracks caused by mechanical flexure are very easily identi-
fied and generally take one of the following two general
forms:
Mechanical cracks are often hidden underneath the termi-
nation and are difficult to see externally. However, if one end
termination falls off during the removal process from PCB,
this is one indication that the cause of failure was excessive
mechanical stress due to board warping.
Type A:
Angled crack between bottom of device to top of solder joint.
Type B:
Fracture from top of device to bottom of device.
73
Surface Mounting Guide
MLC Chip Capacitors
PCB BOARD DESIGN
To avoid many of the handling problems, AVX recommends that MLCs be located at least .2" away from nearest edge of
board. However when this is not possible, AVX recommends that the panel be routed along the cut line, adjacent to where the
MLC is located.
Solder Tip
Solder Tip
Preferred Method - No Direct Part Contact Poor Method - Direct Contact with Part
No Stress Relief for MLCs Routed Cut Line Relieves Stress on MLC
COMMON CAUSES OF
MECHANICAL CRACKING
The most common source for mechanical stress is board
depanelization equipment, such as manual breakapart, v-
cutters and shear presses. Improperly aligned or dull cutters
may cause torqueing of the PCB resulting in flex stresses
being transmitted to components near the board edge.
Another common source of flexural stress is contact during
parametric testing when test points are probed. If the PCB
is allowed to flex during the test cycle, nearby ceramic
capacitors may be broken.
A third common source is board to board connections at
vertical connectors where cables or other PCBs are con-
nected to the PCB. If the board is not supported during the
plug/unplug cycle, it may flex and cause damage to nearby
components.
Special care should also be taken when handling large (>6"
on a side) PCBs since they more easily flex or warp than
smaller boards.
REWORKING OF MLCs
Thermal shock is common in MLCs that are manually
attached or reworked with a soldering iron. AVX strongly
recommends that any reworking of MLCs be done with hot
air reflow rather than soldering irons. It is practically impossi-
ble to cause any thermal shock in ceramic capacitors when
using hot air reflow.
However direct contact by the soldering iron tip often caus-
es thermal cracks that may fail at a later date. If rework by
soldering iron is absolutely necessary, it is recommended
that the wattage of the iron be less than 30 watts and the
tip temperature be <300ÂșC. Rework should be performed
by applying the solder iron tip to the pad and not directly
contacting any part of the ceramic capacitor.
S-MLCC10M1204-C
Contact:
AVX Myrtle Beach, SC
Corporate Offices
Tel: 843-448-9411
FAX: 843-448-1943
AVX Northwest, WA
Tel: 360-699-8746
FAX: 360-699-8751
AVX North Central, IN
Tel: 317-848-7153
FAX: 317-844-9314
AVX Mid/Pacific, CA
Tel: 510-661-4100
FAX: 510-661-4101
AVX Southwest, AZ
Tel: 602-678-0384
FAX: 602-678-0385
AVX South Central, TX
Tel: 972-669-1223
FAX: 972-669-2090
AVX Southeast, GA
Tel: 404-608-8151
FAX: 770-972-0766
AVX Canada
Tel: 905-238-3151
FAX: 905-238-0319
AVX Limited, England
European Headquarters
Tel: ++44 (0) 1252-770000
FAX: ++44 (0) 1252-770001
AVX/ELCO, England
Tel: ++44 (0) 1638-675000
FAX: ++44 (0) 1638-675002
AVX S.A., France
Tel: ++33 (1) 69-18-46-00
FAX: ++33 (1) 69-28-73-87
AVX GmbH, Germany
Tel: ++49 (0) 8131-9004-0
FAX: ++49 (0) 8131-9004-44
AVX srl, Italy
Tel: ++390 (0)2 614-571
FAX: ++390 (0)2 614-2576
AVX Czech Republic
Tel: ++420 465-358-111
FAX: ++420 465-323-010
A KYOCERA GROUP COMPANY
http://www.avx.com
AVX/Kyocera, Singapore
Asia-Pacific Headquarters
Tel: (65) 6286-7555
FAX: (65) 6488-9880
AVX/Kyocera, Hong Kong
Tel: (852) 2-363-3303
FAX: (852) 2-765-8185
AVX/Kyocera, Korea
Tel: (82) 2-785-6504
FAX: (82) 2-784-5411
AVX/Kyocera, Taiwan
Tel: (886) 2-2698-8778
FAX: (886) 2-2698-8777
AVX/Kyocera, Malaysia
Tel: (60) 4-228-1190
FAX: (60) 4-228-1196
Elco, Japan
Tel: 045-943-2906/7
FAX: 045-943-2910
Kyocera, Japan - AVX
Tel: (81) 75-604-3426
FAX: (81) 75-604-3425
Kyocera, Japan - KDP
Tel: (81) 75-604-3424
FAX: (81) 75-604-3425
AVX/Kyocera, Shanghai, China
Tel: 86-21 6886 1000
FAX: 86-21 6886 1010
AVX/Kyocera, Tianjin, China
Tel: 86-22 2576 0098
FAX: 86-22 2576 0096
USA
EUROPE
ASIA-PACIFIC